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Abstract

We consider the incompressible viscous Navier-Stokes equations for a rotat-
ing fluid. In a tilted domain inertial waves converge to a wave-attractor and
potentially influence the mean flow. This motivates the numerical simulation
of the solution to the Navier-Stokes equations with a Chebyshev-Galerkin
method. A Stokes time-marching scheme involves two second-order partial
differential equations and guarantees continuity.

We develop a Chebyshev-Galerkin method to find a weak solution to a
system of separable second-order partial differential equations in a three-
dimensional rectangular domain with homogeneous boundary conditions.
We consider a spectral method with Chebyshev polynomials as basis func-
tions. Weak solutions of a second-order partial differential equation are
obtained by solving a linear system of inner-product matrices, which can
be solved in terms of expansion coefficients. Boundary conditions can be
satisfied with a superposition of Chebyshev polynomials. This approach
is extended to higher dimensions in rectangular domains for linear second-
order operators.

Chebyshev polynomials are orthogonal with respect to a weighted inner-
product. Thus, elegant expressions exist for the mass, first-derivative and
stiffness matrices. We show exponential convergence of accuracy with grid-
resolution and design fast schemes with linear complexity for the multiplica-
tion of the inner-product matrices. We construct diagonal preconditioners
for the Laplace-operator in one, two and three dimensions. The precon-
ditioned Poisson-system has a condition number that increases sublinearly
with grid-size. This is shown analytically in one dimension and numerically
in up to three dimensions.
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1 Introduction

Inertial waves can occur in fluids that are stratified in angular momentum.
As angular momentum is a conserved quantity, perturbations on an equi-
librium lead to oscillations around this equilibrium state. These oscillations
are the inertial waves. Because the earth rotates, inertial waves may form
and they may influence ocean dynamics.

Mander and Maas [17] show that for an inviscid fluids the group velocity
of inertial waves has a fixed angle with respect to the rotation axis. The
angle depends on the monochromatic wave frequency and the rotation rate.
Because of the fixed angle of propagation, the angle of a monochromatic
wave beam is conserved with respect to the rotation axis upon reflection
at a tilted wall. This is contrary to reflection by Snell’s law (for e.g. sur-
face waves, light), in which the angle with respect to the reflecting wall is
preserved. In some domains inertial wave beams converge to a limit cycle,
referred to as wave-attractor. They do so independently of their starting
location. Manders and Maas [15], [16] gave experimental evidence of a
wave-attractor in a trapezoidal domain. Maas [13] and Nurijanyan et al.
[18] derived analytical stream function solutions in a parallelepiped for in-
viscid flow. Wave-attractors of inertial waves are similar to attractors of
internal-gravity waves. For example, they share the property that in the
inviscid case, the energy density on the attractor approaches infinity. In
viscous fluids, viscosity dampens the velocity, but the energy density in the
vicinity of the attractor is nevertheless significantly increased.

Maas [12] investigated effects of inertial waves on the mean flow in a
laboratory experiment. A small rectangular box (20× 10× 10 cm) is filled
with homogeneous fluid and two pipes at opposing side walls are connected
to a pump via tubes (Figure 3.2). The domain has a rigid-lid, thereby
excluding surface wave formation. The pump causes a pressure gradient
between the entrance and exit tubes, which in turn drives inflow through one
tube and outflow through the other. It is observed that the volumetric flow
rate at the exit is increased when the box is tilted with respect to the rotation
axis. It is hypothesised that in the titled domain, inertial waves converge to
a wave-attractor, which traps the energy. The organised behaviour of the
wave-attractor might enhance the mean flow. Numerical simulations of this
experiment by Rodda [20] show discrepancies with the observations. The
simulations suffered from numerical viscosity and additionally the flow was
not exactly divergence free.

The aim of this project is to develop a numerical method to simulate the
experiment by Maas [12]. We construct a Chebyshev-Galerkin method to
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simulate solutions to the full-nonlinear viscous Navier-Stokes equations and
the continuity equation for a rotating domain. We mimic the laboratory
set-up, taking into account viscosity and inflow/outflow through pipes.

In this report, we expand the Chebyshev-Galerkin method as introduced
in Shen et al. [21] and Shen [22]. This is a spectral method, originally de-
signed for space-discretisation in one dimension. Here the method is ex-
tended to higher dimensions and more boundary conditions. We derive
elegant expressions for the inner-product matrices (discretisation of the gra-
dient and diffusion terms) and design fast schemes for multiplication of these
matrices. With a suitable diagonal preconditioner, the condition number of
the matrix representing the Laplace operator (diffusion term) can be re-
duced. We show that the condition number of the preconditioned discrete
Laplace operator grows only sublinearly with resolution. Furthermore, test-
ing the accuracy shows that the numerical approximate solution converges
exponentially to a unique solution if such solution exists.

To simulate the time-dependent behaviour of the flow, a time-marching
scheme is required that guarantees exact mass conservation. We discuss the
pressure-correction method and a generalised Stokes method. For a single
generalised Stokes time step, the Chebyshev-Galerkin formulation in terms
of inner-product matrices is derived for the three-dimensional Navier-Stokes
and continuity equations. The Poisson equation is used as the main example
in the derivation of the Chebyshev-Galerkin method, because for simulations
of the laboratory set-up, we need to solve Poisson-type equations.

The structure of this thesis is as follows. In the next section, the govern-
ing equations are briefly introduced. In part I, the governing equations are
derived in more detail and emergent phenomena are discussed. We review
the laboratory results by Maas [12] and introduce two time-stepping meth-
ods mentioned above. Part II presents the Chebyshev-Galerkin method,
including the derivation of the inner-product matrices and the extension
to higher-dimensions. The accuracy, complexity and condition number are
analysed in part III. A discussion of the numerical method and suggestions
for further research can be found in part IV.
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Figure 1.1: Sketch of the set-up. Indicated are the rotation vector k, the rotation rate Ω, and
entrance and exit holes (blue) with velocity vector u.

1.1 Governing equations

We aim to approximate the fluid motion in a rotating three-dimensional
rectangular domain with inflow and outflow (Figure 1.1). This mimics the
set-up used by Maas [12], described in section 3. We align the coordinate-
frame with the walls of the box.

The dynamics of a homogeneous incompressible viscous fluid under rota-
tion can be described the Navier-Stokes equations together with a continuity
equation. The evolution of the pressure p and the velocity field u is affected
by the prescribed rotation rate Ω and viscosity ν. The governing equations
are

∂u

∂t︸︷︷︸
evolution

+ (u · ∇)u)︸ ︷︷ ︸
advection

= −R−1
o k× u︸ ︷︷ ︸
rotation

− ∇p︸︷︷︸
pressure
gradient

+R−1
e ∆u︸ ︷︷ ︸

diffusion

,

∇ · u︸ ︷︷ ︸
divergence

= 0,

where Ro = U/(2LΩ) is the Rossby number, Re = UL/ν is the Reynolds
number and k is the unit rotation vector.
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Part I

Physical Background

2 Governing equations

In this section the governing equations for fluids in rotating domains are
derived from the momentum and mass balances. Emergent phenomena such
as geostrophy and inertial waves are discussed.

2.1 General continuum equations

The mass conservation equation is given by

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

where u is the velocity vector, and ρ is the density. Additionally, the mo-
mentum conservation equation is given by

∂

∂t
(ρu) +∇ · (ρuu) = s, (2.2)

where s is a vector representing the sources and sinks of momentum. We
focus on incompressible homogeneous fluids. So, the density ρ is constant.
As a result, the mass balance (2.1) reduces to

∇ · u = 0, (2.3)

which is referred to as the continuity equation. So, for incompressibility,
the flow must be divergence free. With constant density, the momentum
balance (2.2) simplifies to

∂u

∂t
+ (u · ∇)u = ρ−1 s.

An ocean does not have a uniform density. Assuming a constant density
allows us to focus on the effects of rotation, because in density stratified
fluids the appearance of internal-gravity waves complicates the dynamics.

2.1.1 Navier-Stokes equations

Let the sources and sinks of momentum consist of the fictitious Coriolis
acceleration due to rotation1 Ω, the pressure gradient force, gravity and

1Traditionally the rotation rate is depicted with the symbol Ω. This same symbol is
common notation for a domain. In this report Ω is used for both and its meaning will be
clear from context.
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the kinematic viscosity. The Coriolis acceleration is explained in Cushman-
Roisin and Beckers [3]. Including the sources into the momentum balance
(2.2) yields the so-called incompressible Navier-Stokes equations,

∂u

∂t︸︷︷︸
variation

+ (u · ∇)u︸ ︷︷ ︸
advection

= − 2Ω× u︸ ︷︷ ︸
rotation

− 1

ρ
∇p︸ ︷︷ ︸

pressure
gradient

+ ν∆u︸︷︷︸
diffusion

+ g︸︷︷︸
gravity

.

Here u is the velocity vector, p is the pressure, Ω is the rotation vector, ρ
is the density, ν is the kinematic viscosity and g is gravity. Let’s define the
thermodynamic work per unit mass as w = p/ρ. Gravity is exerted by a
conservative field φ. So, g = −∇φ. Then, we can define reduced work as
p′ = w + φ. This leads to

∂tu + (u · ∇)u = −2Ω× u−∇p′ + ν∆u. (2.4)

The shorthand ∂t is introduced to denote ∂
∂t , and similar abbreviations can

be constructed for spatial partial derivatives. In the rest of this report
reduced work is referred to as pressure and its meaning will be clear from
context.

2.2 Non-dimensional form

In physics, conservation laws in which the variables have units are called
dimensional. To be clear, this has nothing to do with number of spatial
dimensions of the domain. Dimensionless variables do not have units and
are usually scaled such that the magnitude is order one. With dimensionless
variables, simple analysis on the magnitude of different terms is possible.
Define

x∗ =
x

L0
, u∗ =

u

U0
, ∇∗ = L0∇, t∗ =

U0

L0
t, k =

Ω

|Ω|
, p∗ =

p′

U2
0

, (2.5)

where L0 is a characteristic length scale and U0 is a characteristic velocity.
Upon substituting the scaled variables (2.5) into the momentum balance
(2.4), one obtains

∂u

∂t
+ (u · ∇)u = − 1

Ro
k× u−∇p+

1

Re
∆u, (2.6)

Here and in the rest of the report the asterisks are omitted as context in-
dicates whether dimensional or dimensionless variables are implied. The
Rossby number Ro and the Reynolds number Re are defined below.
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The governing equations are formed by the dimensionless Navier-Stokes
equations (2.6) and the continuity condition (2.3), which remains the same
after scaling and dropping of the asterisk.

2.2.1 Reynolds number

The Reynolds number Re is a dimensionless number that characterises dif-
ferent flow regimes. It is defined as the ratio of the inertial forces over the
viscous forces

Re =
U0L0

ν
.

Here U0 and L0 are respectively the characteristic velocity and length scale.
Furthermore, ν is the kinematic viscosity. Low Reynolds numbers indicate
laminar flow and high values occur when the flow is turbulent.

2.2.2 Rossby number

The Rossby number Ro is a dimensionless quantity describing the ratio of
the inertial to Coriolis force,

Ro =
U0

2L0Ω
,

where Ω is the angular frequency of the rotation. A low Rossby number indi-
cates a system in which Coriolis forces dominate and one expects geostrophic
balance. When the Rossby number is large, inertial and viscosity forces
dominate and turbulence occurs.

2.3 Geostrophic flow

The governing equations (2.6) and (2.3) describe waves and currents. In
the next sections we describe phenomena specific to rotating fluids. The
laboratory observations [12] were interpreted with these flow characteristics
in mind.

Geostrophy or geostrophic flow refers to a flow regime in which the Cori-
olis and pressure gradient forces dominate. This flow regime is characterised
by a low Rossby number Ro. Maintaining only the leading terms, the mo-
mentum equations (2.6) then reduce to

−R−1
o k× u = ∇p. (2.7)
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Parallel to the rotation axis, the Coriolis force is zero. Therefore, geostrophy
causes an effectively two-dimensional flow. Let u = (u, v, w)T . Assume
rotation is along the z-axis, such that k = (0, 0, 1)T , then (2.7) becomes

R−1
o v =∂xp, (2.8)

−R−1
o u =∂yp, (2.9)

0 =∂zp. (2.10)

Observe that the velocity vector is perpendicular to the pressure gradient.
For 0 < Ro, the rotation is counterclockwise. Looking in the direction of
the velocity vector, pressure gradient points to the right. In contrast, when
Ro < 0, the rotation is clockwise and the pressure gradient points to the
left.

Substitution of (2.10) into the z-derivatives of (2.8) and (2.9), yields
∂zv = 0 = ∂zu. So, the geostrophic flow is indeed two-dimensional in the
plane perpendicular to the rotation axis k. This result is known as the
Taylor-Proudman theorem.

2.4 Inertial waves

Rotating fluids are radially stratified in angular momentum (Figure 3.2).
Angular momentum conservation restores perturbations away from the equi-
librium stratification. Oscillations around the equilibrium stratification are
called inertial waves. These waves occur in the interior of a fluid and propa-
gate with a fixed angle with respect to the rotation axis. When we consider
an inviscid fluid with monochromatic waves, e.g. waves with a fixed fre-
quency ω, the angle α of the group velocity with respect to the rotation axis
k is then dictated by the rotation rate Ω and the wave frequency ω as in
Manders and Maas [17], ( ω

2Ω

)2
= sin2 α.

As a result, the frequency ω of inertial waves is bounded by 0 ≤ ω ≤ 2Ω. The
angle with respect to the rotation axis is fixed. This means that reflection at
a sloping wall (oblique to the rotation axis) can lead to focussing (increase
in energy density) of the inertial waves. For certain domain geometries, an
inertial wave beam might converge over successive (focusing) reflections to
a closed orbit called a wave-attractor. This is similar to the emergence of a
wave-attractor for internal-gravity waves (Maas and Lam [14]). An orbit of a
wave-attractor is sketched in Figure 2.1. The sketched trajectories converge
upon reflection with the sloping walls.
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Figure 2.1: Sketch of a wave attractor in a tilted rectangular domain. The positive x-direction
points out of the plane. Denoted are the tilt angle θ, the reflection angle α, the rotation axis
k, and the rotation rate Ω. The constant angle of propagation results in wave focussing upon
reflection.

The existence and shape of an attractor depends on the domain geom-
etry and the direction of the rotation vector k. The depicted rectangular
attractor is the simplest closed orbit. Some domains support attractors
with more reflections, such as a rectangular figure-eight. When none of the
walls is oblique with respect to the rotation vector, the inertial waves do not
converge to an attractor.

The synchronised flow of the wave-attractor can store and transport
energy. This raises the question of how wave-attractors can influence the
mean flow.

2.5 Boundary layers

Viscosity dominates in a small so-called boundary layer, because the velocity
must vanish at the boundaries (referred to as the no-slip condition). At the
top and bottom walls,t his layer is called the Ekman boundary layer and
it has a typical thickness δ =

√
ν/Ω. Under rotation, the velocity changes

direction in the boundary layer with respect to the interior in a so-called
Ekman-spiral. This may cause vortex stretching and angular momentum
transport, aiding the formation of inertial waves.

Near the vertical boundaries (parallel to the rotation axis), viscosity
dominates in a so-called Stewartson boundary layer with a thickness pro-
portional to

√
δ (Greenspan [7]).
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Figure 3.1: Top view of the experimental set-up in the laboratory of the NIOZ. The flow is
pumped (pump in green) through the box from left to right. The volume flux Q is measured with
a propellor vane (red arrow). The pressure gauges are numbered. The equipment is mounted on
a turntable, which rotates counterclockwise. This figure is adapted from Maas [12].

3 Previous laboratory experiments

The aim of this project is to investigate the fluid dynamics in a rotating
rectangular domain with inflow and outflow tubes, through which water
was pumped, mimicking the set-up at NIOZ used by Maas [12]. In this
section, we introduce the laboratory set-up in detail, discuss the expected
flow regimes and review the observations.

3.1 Set-up

A top view of the set-up at the NIOZ is shown in Figure 3.1 and a sketch
is provided in Figure 3.2. The rectangular box has dimensions 20× 10× 10
cm and is located on a rotating table. The box is filled with (homogeneous)
degassed tap water. At two sides of the box, a tube with an inner diameter
of 8 mm is inserted (blue arrow in Figure 3.2). The tubes are connected to
a pump such that water is forced to flow through the box.

The settings for pump rate P in the experiments by Maas [12] are listed
in Table 1. Under flat non-rotating conditions, the pump rate can be cali-
brated linearly to a volumetric flow rate Q, which is also listed in the table.
For rotating conditions the pump could be considered as imposing a pressure
gradient in the x-direction. Rodda [20] used a prescribed entrance-exit pres-
sure gradient to simulate this set-up with Gerris software. We use prescribed
inflow and outflow velocity profiles to drive the flow.

The box is in the centre of a turntable whose motor voltage determines

9
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Figure 3.2: Sketch of the set-up. Lines of equal angular momentum are sketched in shades of
green. Indicated are the rotation vector k, the rotation rate Ω, and entrance and exit holes (blue)
with velocity u in the pump direction (blue arrow).

the rotation rate Ω linearly. The range of rotation rates is listed in Table 1.
For each pair of parameter settings, the experiment was run for 200 seconds:
50 seconds for adjustment (spin-up) and 150 seconds for measurements.

The pressure was measured with three pairs of differential pressure gauges
that protrude downwards from the lid near the sideway boundaries (Figure
3.1). The volumetric flow rate is measured with a propellor vane behind the
exit of the box (red arrow in Figure 3.1).

min max units

pump rate P 0 7 V
volumetric flow rate Q 0 5.44 10−5 m3/s
rotation rate Ω 0 2π rad/s

Table 1: Settings as in Maas (2007).

3.2 Theoretical expectations

The energy inserted via the pressure gradient is expected to cascade via
turbulence to small scale motions and eventually dissipate into heat. The
higher the pump rate, the higher the velocity, the more turbulence is gener-
ated. We expect turbulence to dominate for high pump rates (high Rossby
number). In contrast, geostrophy is expected to dominate for high rotation
rates (low Rossby number).

When the box is tilted, inertial waves can converge to a wave-attractor
and store wave-energy (section 2.4). This energy is not available for dissipa-
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tion. In the geostrophic regime, inertial waves may feed the stored energy
back to the mean flow. In a flat domain, inertial waves do not converge to
an attractor. It is expected that the outflow is increased in a tilted domain
with respect to a flat domain.

3.3 Observations

Figures 3.3 and 3.4 depict the main results of Maas [12]. Figure 3.3 sug-
gests occurrence of different flow regimes. Near-geostrophy is found for low
pump rates and high rotation rates. In contrast turbulence dominates at
high pump rates and low rotation rates. The division seems to be along
the diagonal corresponding to a Rossby number of 1, whose characteristic
length scale L0 is the tube diameter d. The scale d also describes the ver-
tical thickness of the flow from source to sink, because vertical motion is
suppressed by rotation. The characteristic velocity U0 is the sheet velocity
Q/dH, where Q is the flow rate ∼ 10−5 m3/s, d is the diameter of the tube
8 mm, and H is the width of the box in the y-direction, i.e. 0.1 m.

The outflow for different cases is compared in Figure 3.4, where the
flow anomalies are shown for different pump rates P and rotation rates Ω.
The results suggest that in the geostrophic regime rotation increases the flow
rate (panel A). This unexpected result could be explained by the observation
in Van der Lugt [11] that the table does not rotate smoothly but wobbles.
Better understood are panels B and C, showing that tilting the box enhances
the flow rate, consistent with the conjecture that inertial waves can increase
the mean flow.

−6

−4

−2

0

+2

∆p

P

Ω

Figure 3.3: Differential pressure ∆p = p5 − p6 [N/m2] between gauges 5 and 6 for pump rates
P and rotation rates Ω. The axes are linear between the values in Table 1. The blue hyperbola
indicate geostrophic flow, whose velocities are inversely proportional to the rotation rate for a
fixed pressure difference. This figure is adapted from Maas [12].
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Figure 3.4: Flow rate anomalies ∆Q [L/min] for pump rates P and rotation rates Ω as in Table
1. A) Flow rate relative to stationary (both flat): ∆Q = Qrot − Qstat. B) Comparison flat and
10◦ tilted (both rotating): ∆Q = Q10 − Qflat. C) Flat compared to 20◦ tilted (both rotating):
∆Q = Q20 −Qflat. This figure is adapted from Maas [12].

4 Numerical Set-up

We intend to examine interior velocity fields with numerical simulations.
Numerical simulations for a similar set-up can be found in Jouve and Ogilvie
[10] and Rodda [20] The former study is purely two-dimensional. It proves
the existence of a wave attractor in tilted rectangles, but excludes mean flow
dynamics.

Rodda [20] analysed three-dimensional simulations obtained with Gerris
software on settings representing the laboratory experiment. The flow is
driven with a pressure gradient between the pipes, mimicking the effect of
the pump. The simulations verified increased flow rate in a tilted versus
flat domain. Unfortunately, the chosen entrance-exit pressure differences
created a higher mean flow than the pump rates in the laboratory, precluding
quantitative comparison with laboratory results. Gerris software is based on
a finite volume type method. Rodda [20] states that numerical viscosity on
top of the kinematic viscosity alters the flow, causing differences between
her simulations and the laboratory observations. She additionally observed
flow divergence, indicating mass was not exactly conserved.

The time-discretisation of the governing equations forms a system of
partial differential equations. We develop a Chebyshev-Galerkin (CG) spec-
tral method to approximate solutions to second-order partial differential
equations. A spectral method is not impeded by numerical viscosity. The
CG method is applicable to three-dimensional rectangular domains and can
account for viscosity.
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At the solid walls, we assume no-slip (Dirichlet) boundary conditions
on the velocity. In the laboratory the pump causes a pressure difference
between the entrance and exit areas. In the CG method, we prescribe a
velocity profile at the entrance and exit. To compare with parameter set-
tings in Rodda or Maas, the resulting entrance-exit pressure gradient after
simulation could be used as a proxy for the pump-rate.

4.1 Hagen-Poisseuille flow

Assume the velocity profile at the entrance and exit is dominated by the
flow in the pipes, which is approximated by incompressible Hagen-Poisseuille
flow. The normal (x-direction) velocity u is described in terms of the radial
position r =

√
y2 + z2 as

u(r) =
1

4µ

∆p

∆x
(R2 − r2),

where µ = ρν is the dynamic viscosity, ∆p is the pressure drop in the tube,
∆x is the tube length, and R is the tube radius. Integration of the velocity
over the entrance gives the volumetric flow rate Q,

Q =
π

8ρν

∆p

∆x
R4.

So, one can express the velocity profile as a function of the flow rate Q,

u(r) =
2

π
QR−4(R2 − r2). (4.1)

For prescribed Q the velocity profile at the entrance and exit can be com-
puted with relation (4.1), as displayed in Figure 4.1.

0 umax
−R

0

R

u

r

Figure 4.1: Scaled velocity profile at the entrance, where umax = 2/π QR−2.
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5 Time-discretisation methods

Simulation of the time-dependent Navier-Stokes equations requires a time-
stepping method. We consider a time-discretisation with discrete time-steps
of size τ . The local time-derivatives are approximated to map the variables
from one time step to the next.

In this section, we introduce a general time-discretisation method for
advection-diffusion equations and then discuss two strategies to discretise
the Navier-Stokes equations (2.6) constraint by condition (2.3): the pressure-
correction method and the generalised Stokes equations.

5.1 IMEX method

The momentum equations (2.6) have advection and diffusion terms. Advec-
tion is nonlinear and can only be treated explicitly, while diffusion is stiff and
should be treated implicitly to guarantee stability. Therefore, the system is
discretised with a so-called implicit-explicit (IMEX) method.

Frank et al. (1996) investigated the stability of several second-order
IMEX methods with an A-stable implicit part. Based on their results,
we choose the extrapolated backwards differentiation formula (BDF). In
Peyret (2002) this method is referred to as Semi-Implicit Adam-Bashforth
Backward-Differentiation.

Consider a variable u, whose time-dependent dynamics are governed by
a non-stiff operator F and a stiff operator G, as

∂t u = F (t, u) +G(t, u).

Let’s consider time steps of size τ and denote tn = nτ, un = u(tn), Fn =
F (tn, un), Gn = G(tn, un). With extrapolated BDF, the evolution can be
discretised at time tn+1 yielding an equation for un+1, Gn+1,

3un+1 − 4un + un−1

2τ︸ ︷︷ ︸
BDF

= 2Fn − Fn−1︸ ︷︷ ︸
extrapolation

+ Gn+1︸ ︷︷ ︸
operator at tn+1

The left hand side is derived in Appendix A. This time scheme requires a
start-up procedure u0, u1.
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5.2 Pressure-correction method

The pressure-correction method is a fractional step method, which means
that each time step is solved in several steps. A variant of the pressure-
correction method is discussed in Guermond et al. [8],[9] and we follow
their approach. In short, an intermediate velocity ũ is determined from
the previous velocity and pressure. Then a pressure-correction is computed
to satisfy the continuity conditions. We present a concise version.

Let the time be discretised in steps of size τ and let the superscript
t denote the time-dependent variable at the current time step. Similarly
superscript t + 1 indicates the following time step and t − 1 the previous
one. In the first step, we solve the momentum equation with the previous
pressure to find the so-called intermediate velocity ũ

1

2τ
(3ũ− 4ut+ut−1) +R−1

o k× ũ−R−1
e ∆ũ

=−∇pt −
(
2(ut · ∇)ut − (ut−1 · ∇)ut−1

)
. (5.1)

Let’s assume Dirichlet boundary conditions on ũ. The updated pressure can
be composed of the previous pressure and an pressure-correction q̃,

pt+1 = pt + q̃. (5.2)

One can approximate the next velocity as the intermediate velocity ũ plus
the gradient of the pressure-correction q̃ (whose contribution was lacking in
(5.1)),

ut+1 = ũ− (2τ/3)∇q̃. (5.3)

The next velocity should be divergence free, ∇ · ut+1 = 0. Taking the diver-
gence of (5.3) yields that q̃ must satisfy

∆q̃ =(3/2τ)∇ · ũ, (5.4)

where ∆ = ∇2 is the Laplace operator. To solve for the pressure correction in
relation (5.4) uniquely, one needs boundary conditions on q̃. Since ut+1 and
ũ have Dirichlet boundary conditions, relation (5.3) gives Neumann bound-
ary conditions on q̃. The pressure-correction equation (5.4) with Neumann
boundary conditions, satisfies the so-called compatibility condition (6.8),
because ũ has Dirichlet boundary conditions (section 6.3).

For each time step in the pressure-correction scheme, one first solves
(5.1), then (5.4) and lastly updates the velocity and the pressure with (5.2)-
(5.3).
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5.3 Stokes equations

An alternative time-discretisation of the Navier-Stokes equations leads to a
set of (time-independent) Stokes equations at each time step,

αut+1 +R−1
o k× ut+1 −R−1

e ∆ut+1 +∇pt+1 = f t,

∇ · ut+1 = 0, (5.5)

where f t = τ−1(2ut − 1/2 ut−1)−
(
2(ut · ∇)ut)− (ut−1 · ∇)ut−1)

)
, and

α = (3/2) τ−1. Define operators A, B and C as

Au =αu +R−1
o k× u−R−1

e ∆u,

Bp =∇p,
Cu =∇ · u.

To find weak solutions, the operators A,B,C are expanded as a sum of
products of mass, stiffness and first-derivative matrices (M,S,K) in chapter
11. The resulting A is invertible. With A,B,C so-defined, the system (5.5)
becomes

Aut+1 +B pt+1 =f t, (5.6)

Cut+1 =0. (5.7)

Pre-multiplying the first equation with CA−1 and substituting the second,
yields

CA−1B pt+1 = CA−1f t. (5.8)

Solutions to (5.8) yield a unique pressure pt+1 after imposing the integral
constraint. So pt+1 does not require boundary conditions. With the so-
obtained pt+1, we can solve (5.6) for ut+1, as

Aut+1 = f t −B pt+1. (5.9)
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5.4 Lifting of boundary conditions

As discussed in section 6.3, the Chebyshev-Galerkin method requires homo-
geneous boundary conditions. When an application does not have homoge-
neous boundary conditions, one can find a corresponding problem that does.
The procedure is referred to as lifting of boundary conditions (Appendix B).
We use this to remove the inflow and outflow boundary conditions.

Consider the domain [−2, 2] × [−1, 1]2 with boundary Γ. Define the
entrance, Γ1, and exit, Γ2. Then the solid walls are Γ0 = Γ/(Γ1 ∪ Γ2), with

Γ1 ={(x, y, z) ∈ Γ|x = −2, y2 + z2 < R},
Γ2 ={(x, y, z) ∈ Γ|x = 2, y2 + z2 < R}.

Let the velocity u = (u, v, w)T at the pipes be described by Hagen-Poisseuille
flow (4.1) yielding the boundary condition

u = 2
πQR

−4
(
R2 − (y2 + z2)

)
, on Γ1 and Γ2,

u = 0, on Γ0,
v = 0 = w, on Γ.

(5.10)

These boundary conditions are satisfied by ú = (ú, v́, ẃ)T , given by v́ = 0 =
ẃ and

ú =

{
2
πQR

−4
(
R2 − (y2 + z2)

)
, for all y2 + z2 ≤ R2,

0, otherwise,

Because ú is uniform in the x-direction and v́, ẃ are zero, the velocity field ú
is divergence free. We can decompose ut+1 = ū + ú, where ū should satisfy
Dirichlet boundary conditions. The Stokes equations (5.5) with boundary
conditions (5.10) can be rewritten in terms of ū as

α ū +R−1
o k× ū−R−1

e ∆ū +∇pt+1 = f̄ ,

∇ · ū = 0,

where

f̄ =f t −
(
α ú +R−1

o k× ú−R−1
e ∆ú

)
.

At the end of each time step, ú is added to the obtained ū to construct the
velocity at the new time step ut+1.
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Part II

Chebyshev-Galerkin Method

For the rotating box experiment, we need a method that solves Poisson equa-
tion efficiently, because most of the simulation time is used solving Poisson-
type equations. In this part we develop a Chebyshev-Galerkin method to
solve second-order partial differential equations, such as the Poisson equa-
tion.

6 Spectral-Galerkin Method

Consider a second-order linear partial differential equation (PDE) in a con-
nected bounded domain Ω ⊂ Rd, d = 1, 2, 3,

Lu(x) = f(x), x ∈ Ω, (6.1)

where L is a linear operator. We want to solve this for u(x) under forcing
f(x). For well-posedness, we require boundary conditions of the form

Bu(x) = g(x), x ∈ Γ := ∂Ω, (6.2)

where B is an at most first-order linear operator and g(x) is the boundary
value or flux. A simple example would be the Poisson equation,

∆u = f. (6.3)

where ∆ = ∇2 is the Laplace operator. The Poisson equation serves as the
main example in the next sections.

6.1 Spectral discretisation

Numerical methods need spatial discretisation to compute derivatives. Con-
sider a function f(x) ∈ X, where x ∈ Ω and X is an appropriate solution
space. In many cases, the solution f(x) can be approximated by a superpo-
sition of N + 1 basis functions φk(x) as

f ≈ fN (x) =
N∑
k=0

f̂kφk(x). (6.4)

Let XN be a finite-dimensional approximation of X with dim(XN ) = N + 1.
Then we can choose φn such that {φk}N0 spans XN . A function can thus
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be represented by its expansion coefficients f̂k. In the limit N → ∞ the
approximation (6.4) becomes an equality.

Numerical methods in which spatial derivatives only consider the values
at neighbouring grid points are referred to as local methods. Examples are
finite difference, finite volume or finite element methods.

Spectral methods distinguish themselves from local methods by using
globally smooth basis functions which have continuous derivatives over the
domain. The basis functions are frequently chosen to be orthogonal poly-
nomials. The most common choice of basis functions in periodic or infinite
domains are Fourier series. The main advantage is that these global modes
provide superior accuracy with resolution. In return, spectral methods allow
less domain flexibility.

6.2 Weak formulation

Considering the second-order problem (6.1), the boundary conditions (6.2)
can be incorporated into the solution space of u as

X = {u ∈ C2(Ω)
∣∣Bu(x) = g(x) on Γ}.

Solutions to (6.1) can be approximated with a weighted residual method.
The residual is defined by

R(x) := Lu(x)− f(x), x ∈ Ω.

For any solution u, the residual should be zero. When the residual is zero
multiplying with any function v and taking the integral with respect to some
weight function, must also be zero. As a result, u is a weak solution to (6.1)
when it holds that

(R, v)ω =

∫
Ω

R(x)v(x)ω(x) dx = 0, for all v ∈X,

where ω is a positive weight function.2

Approximating u with (6.4) under boundary conditions (6.2) gives

u ≈ uN (x) =
N∑
k=0

ûkφk(x),

We choose v from a set of so-called test functions ψj also spanning XN . So,

(RN , ψj)ω =

∫
Ω

RNψjω dx = 0, for all j ∈ {0, . . . , N}.

2The weight function ω is usually chosen such that the basis functions are orthogonal.
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When the test functions ψj are the same as the basis functions φj , the
method is called a Galerkin method. A Galerkin approach preserves sym-
metry properties of operators. The advantage of a spectral method is that
the equations can be solved in terms of expansion coefficients ûk.

For weak solutions, relation (6.2) must holds for all j, yielding a linear
system in terms of expansion coefficients,

Lu = f, (6.5)

where

u = (û0, û1, . . . , ûNu)T , fj = (f, φj)ω , f = (f0, f1, . . . , fN−2)T ,

ljk = (Lφk, φj)ω , L = (ljk)j,k=0,...,N .

6.3 Boundary conditions

Second order partial differential equations usually need boundary conditions
to obtain a unique solution. One needs a condition of the form

a(x)u(x) + b(x)
∂

∂n
u = g(x), x ∈ Γ, (6.6)

where n is the outwards normal vector at the boundary Γ and a, b, g are
smooth, continuously differentiable functions. The directional derivative is
defined as ∂/(∂ n) = n · ∇. A polynomial of order N that must satisfy
boundary conditions has only dim(N − 1) degrees of freedom.

When g is zero over all Γ, the boundary conditions are called homoge-
neous,

a(x)u(x) + b(x)
∂

∂n
u = 0, x ∈ Γ. (6.7)

With homogeneous boundary conditions, each of the basis functions φn must
satisfy the boundary conditions (6.7). Therefore, a solution built from these
basis functions also satisfies the homogeneous boundary conditions. This
does not work for non-homogeneous boundary conditions. As a result, we
require homogeneous boundary conditions.

Problems with non-homogeneous boundary conditions can be rewritten
as problems with homogeneous boundary conditions. This is explained in
Appendix B. From here on boundary conditions are always homogeneous
unless specified otherwise.

The special case b(x) = 0 is called the Dirichlet boundary condition. The
case a(x) = 0 is referred to as the Neumann boundary condition. Neumann
boundary conditions only fix the solution of the Poisson equation up to an
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additive constant. To find a unique solution, one can additionally demand
the so-called integral constraint (6.9). Besides, not every forcing f allows
solutions u with Neumann boundary conditions. When we integrate the
Poisson equation (6.3) over the domain, and apply Gauss’s divergence theo-
rem and substitute homogeneous Neumann boundary conditions, we obtain
the so-called compatibility condition,

0 =

∫
Γ

∂u

∂n
=

∫
Ω
∇2u =

∫
Ω
f. (6.8)

For solution to exist for a Poisson equation with Neumann boundary condi-
tions, the forcing f needs to satisfy the compatibility condition.

6.3.1 Integral constraint

The Navier-Stokes equations include the gradient of the pressure p. When p
is a solution, then so is p+c0 for any constant c0. Uniqueness of the solution
requires an extra condition. We consider the s-called integral constraint
condition, ∫

Ω
p(x) dx = 0, (6.9)

As a result of this condition, p has one less degree of freedom.

Interlude on notation

In the next sections, the integral of the product of two functions with respect
to a weight function is referred to as the weighted inner product,

(f, g)ω :=

∫
Ω
f(x)g(x)ω(x) dx. (6.10)

Its discrete variant is referred to as the discrete weighted inner product,

〈f, g〉ω :=
N∑
j=0

f(xj)g(xj)ωj . (6.11)
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7 Chebyshev

The choice of basis functions and weights determines the complexity, con-
dition number and accuracy of the linear system (6.5). For a confined do-
main with non-periodic boundary conditions, the Chebyshev-Gauss-Lobatto
quadrature has a favourable node (evaluation point) positioning, because is
has a high concentration of nodes near the boundaries, thereby minimising
of the Gibbs phenomenon.3

Additionally, there is a fast discrete transform between the function val-
ues at the particular choice of nodes f(xj) and the Chebyshev coefficients

f̂k. This transform takes O(N log2N) computations with the aid of a fast
Fourier transform (FFT), see Appendix C.3.
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Figure 7.1: The first five Chebyshev polynomials Tn(x)

7.1 Properties

The one-dimensional Chebyshev polynomials are given by

Tn(x) = cos(nθ), θ = arccos(x), x ∈ [−1, 1], 0 ≤ n. (7.1)

3The boundary conditions can be perceived as a discontinuity. The Fourier series of a
function with a discontinuity generates large oscillations of the highest frequency near the
discontinuity. This is called the Gibbs phenomenon. Chebyshev polynomials do not suffer
from the Gibbs phenomenon, because their high node density near the boundaries. The
highest frequency of a finite Chebyshev series cannot oscillate on the small scale between
the nodes closest to the boundary.
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They satisfy the following recursion relation, which shows that Tn is an nth
degree polynomial,

Tn+1(x) = 2xTn(x)− Tn−1(x),

with T0 = 1 and T1 = x. The Chebyshev polynomials are orthogonal in the
weighted inner product ( , )ω with ω(x) = (1− x2)−1/2,

(Tn(x), Tm(x))ω =

∫ 1

−1
Tn(x)Tm(x)ω(x) dx =

cnπ

2
δnm, (7.2)

where c0 = 2 and cn = 1 for n ≥ 1. The following properties can be derived
(Shen et al. [21]),

Tn(±1) =(±1)n, (7.3)

T ′n(±1) =(±1)n−1 n2, (7.4)

where T ′n(x) denotes the spatial derivative ∂xTn(x). Additionally, Shen et
al. [21] gives

T ′n(x) =2n

n−1∑
k=0

k+n odd

1

ck
Tk(x), (7.5)

T ′′n (x) =
n−2∑
k=0

k+n even

1

ck
n(n2 − k2)Tk(x). (7.6)

7.2 Quadrature

Consider the Chebyshev-Gauss-Lobatto (CGL) nodes and weights

xj = − cos

(
jπ

N

)
, ωj =

π

c̃jN
, for j = 0, 1, . . . , N, (7.7)

where c̃0 = c̃N = 2 and c̃j = 1 otherwise. With these nodes xj and weights
ωj , the quadrature is exact for polynomials p of at most degree 2N − 1, as
proved in Shen et al. [21],∫ 1

−1
p(x)

1√
1− x2

dx =

N∑
j=0

p(xj)ωj , ∀ p ∈ P2N−1. (7.8)

23



Moreover, direct substitution of (7.7) into (7.1) gives,

Tn(xj) = (−1)n cos

(
njπ

N

)
. (7.9)

The derivation is straightforward (Appendix C.1). The factor (−1)n is some-
times (mistakenly) missing in literature. The discrete inner product of Tn
with itself is given by integral (7.2) for all n < N . For the highest order
polynomial (n = N), the discrete inner product is

〈TN , TN 〉ω =
π

N

N∑
j=0

1

c̃j
cos2(jπ) = π.

As a result, the discrete inner product (6.11) of Tn and Tm can be given as

〈Tn, Tm〉ω =
c̃nπ

2
δmn. (7.10)

with c̃0 = 2 = c̃N and else c̃j = 1.

7.3 Transform

Consider the approximation of u with Chebyshev polynomials as basis func-
tions,

uN (x) =
N∑
n=0

ûnTn(x). (7.11)

The expansion coefficients can be determined via the forward discrete Cheby-
shev transform (see Appendix C.3),

ûn =
2

c̃nN

N∑
j=0

1

c̃j
u(xj)Tn(xj). (7.12)

The function values at the quadrature nodes can be retrieved from the co-
efficients using the backward discrete Chebyshev transform,

u(xj) =
N∑
n=0

ûnTn(xj) =
N∑
n=0

ûn(−1)n cos

(
njπ

N

)
. (7.13)

These transforms can be computed in O(N logN) computations using FFT
as explained in Appendix C.3.
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7.4 Basis functions with boundary conditions

The basis functions must span the solution space XN . For homogeneous
boundary conditions of the form (6.7), there exists a unique set of {an, bn},
such that

φn(x) = Tn(x) + anTn+1(x) + bnTn+2(x) (7.14)

satisfies boundary conditions (6.7) for every n ≥ 0. The set of basis functions
{φn}N−2

0 spans XN . This is Lemma 4.3 in Shen et al. [21].

7.4.1 Chebyshev-Dirichlet polynomial

Consider the special case of Dirichlet boundary conditions

u(x) = 0, x ∈ Γ. (7.15)

Define the Chebyshev-Dirichlet (CD) polynomial, as

φn(x) = Tn(x)− Tn+2(x). (7.16)

The basis functions span the solution space. The first five basis functions are
depicted in Figure 7.2. It follows from property (7.3) that these polynomials
fulfil Dirichlet boundary conditions

φn(±1) = 0, for all n.

Lets approximate uN (x) with Dirichlet boundary conditions,

uN (x) =
N−2∑
n=0

ũnφn(x), (7.17)

where ũn are referred to as the CD coefficients. As described in section
6.3, only N − 1 basis functions {φn}N−2

0 are needed to build Nth order
polynomials.

The expansion coefficients can also be computed in O(N logN) compu-
tations, using recursion relations with respect to the Chebyshev coefficients
û (Appendix C.4).

7.4.2 Chebyshev-Neumann polynomial

Similarly, define

φn(x) = Tn(x)− n2

(n+ 2)2
Tn+2(x), (7.18)

25



x

-1 -0.5 0 0.5 1

φ
n
(x
)

-2

-1

0

1

2

φ0

φ1

φ2

φ3

φ4

Figure 7.2: The first five Chebyshev-Dirichlet basis functions φn(x)as in (7.16).

as the Chebyshev-Neumann (CN) polynomial (see Figure 7.3). It can easily
be derived from property (7.4) that the CN polynomial satisfies the Neu-
mann boundary conditions

∂xφn(±1) = 0, for all n.

Again an Nth order function with Neumann boundary conditions can be
represented in N−1 basis functions {φn}N−2

0 . Moreover, recursion relations
relate the CN coefficients ũn and the Chebyshev coefficients ûn (Appendix
C.4).

Not every forcing f admits solutions that satisfy Neumann boundary
conditions. (section 6.3).

7.4.3 Zero integral polynomial

Lets denote

µn =
1

2

∫ 1

−1
Tn(x) =

{
1/(1− n2), n is even,
0, n is odd.

(7.19)

Then, the basis functions

ψn = Tn −
µn
µn+2

Tn+2, (7.20)

satisfy the integral constraint (6.9). An Nth order function p with an inte-
gral constraint can be represented with N basis functions {ψn}N−1

0 , losing
one degree of freedom.

26



x

-1 -0.5 0 0.5 1

φ
n
(x
)

-1.5

-1

-0.5

0

0.5

1

1.5

φ0

φ1

φ2

φ3

φ4

Figure 7.3: The first five Chebyshev-Neumann basis functions φn(x) as in (7.18).

8 Inner products

The linear system (6.5) for the expansion coefficients requires inner product
matrices. In this chapter we derive expressions for the elements of the inner
product matrices.

8.1 Chebyshev

First we consider Chebyshev polynomials as basis functions. Define the mass
matrix M , the first-derivative matrix K, and the stiffness matrix S,

M =(mmn)0≤m,n≤N , mmn =(Tn(x), Tm(x))ω, (8.1)

K =(kmn)0≤m,n≤N , kmn =(T ′n(x), Tm(x))ω, (8.2)

S =(smn)0≤m,n≤N , smn =(T ′′n (x), Tm(x))ω. (8.3)

The weighted inner products defined in (6.10) can be evaluated with orthog-
onality (7.2) and the relations for derivatives (7.5) and (7.6). A derivation
of the following expressions is detailed in Appendix D.1.

mmn =
cnπ

2
δmn, (8.4)

kmn =

{
πn n = m+ 1,m+ 3,m+ 5, . . .
0 otherwise,

(8.5)

smn =

{
π
2n(n2 −m2) n = m+ 2,m+ 4,m+ 6, . . .
0 otherwise.

(8.6)
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8.2 Superpositions

For basis functions φm (7.14) that satisfy some homogeneous boundary con-
dition (6.7), denote

M∗ =(m∗mn)0≤m,n≤N−2, m∗mn =(φn(x), φm(x))ω, (8.7)

K∗ =(k∗mn)0≤m,n≤N−2, k∗mn =(φ′n(x), φm(x))ω, (8.8)

S∗ =(s∗mn)0≤m,n≤N−2, s∗mn =(φ′′n(x), φm(x))ω, (8.9)

R∗ =(r∗mn)0≤m≤N−2, 0≤n≤N , r∗mn =(Tn(x), φm(x))ω, (8.10)

G∗ =(g∗mn)0≤m,n≤N−2, g∗mn =(T ′n(x), φm(x))ω. (8.11)

Be aware that the asterisk does not indicate complex conjugate. We refer
to R as the transformation matrix. The entries can be expressed in terms
of the inner products of Chebyshev polynomials mmn (8.1), kmn (8.2) and
smn (8.3). These expressions are given in Appendix D.2.

In the special cases of Dirichlet and Neumann boundary conditions the
expressions of S∗, K∗ and M∗ simplify.

8.2.1 Dirichlet

The derivation of these expression is in Appendix D.3.

mD
mn =mD

nm =


(cm+1)π

2 , n = m,
−π

2 , n = m− 2 or n = m+ 2,
0, otherwise.

(8.12)

kDmn =


−(m+ 1)π, n = m− 1,
(m+ 1)π, n = m+ 1,
0, otherwise.

(8.13)

sDmn =


−2π(m+ 1)(m+ 2), n = m,
−4π(m+ 1), n = m+ 2,m+ 4, . . . ,
0, otherwise.

(8.14)

rDmn =


cmπ

2 , n = m,
−π

2 , n = m+ 2,
0, otherwise.

(8.15)

Here the superscript D refers to Dirichlet boundary conditions.
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8.2.2 Neumann

For derivations see Appendix D.4. Let βm =
(

m
m+2

)2
,

mN
mn = mN

nm =


π
2

(
cm + β2

m

)
, n = m,

−π
2βm, n = m+ 2,
−π

2βn, n = m− 2,
0, otherwise.

(8.16)

kNmn =


− πn2

n+2 , n = m− 1,
πn
n+2 (2− nβm) , n = m+ 1,
2πn
n+2 (1− βm) , n = m+ 3,m+ 5, . . .

0, otherwise.

(8.17)

sNmn =


−2πm2m+1

m+2 , n = m,

−4πn2 m+1
(m+2)2 , n = m+ 2,m+ 4, . . .

0, otherwise.

(8.18)

rNmn =


cmπ

2 , n = m,
−βmπ

2 , n = m+ 2,
0, otherwise.

(8.19)

The Neumann boundary conditions are indicated with the superscript N .

8.3 Integral constraint

For basis functions (7.20) satisfying the integral constraint, no elegant ex-
pression for the elements of the inner-product matrices (8.7)-(8.11) have
been found. Moreover, in higher dimensions, basis functions satisfying the
integral constraint cannot be formed via separation of variables, which is
possible for homogeneous boundary conditions (chapter 10).

Therefore, we propose to use Chebyshev polynomials (7.1) as basis func-
tions for a variables with an integral constraint. To yield a unique solution,
we add a constant such that the integral is zero. Therefore, the basis func-
tions (7.20) are not considered further.
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9 Application to the Poisson equation

Suppose we want to solve the Poisson equation with Neumann boundary
conditions. Let’s examine the one dimensional case on the domain Ω =
[−1, 1]. In short,

∆u = f,
∂

∂x
u(±1) = 0. (9.1)

In one dimension the Laplace operator ∆ is ∂2/∂x2. The weak form of (9.1)
is

(∆u, v)ω = (f, v)ω, for all v ∈X,

where X is constrained to functions with Neumann boundary conditions.
By approximating u in terms of CN basis functions (7.18),

uN (x) =

N−2∑
n=0

ũnφn(x),

the weak form can be expressed as a linear system. We approximate f in
terms of Chebyshev basis functions

fN (x) =
N∑
n=0

f̂nTn(x).

Problem (9.1) can then be expressed as

SNu = RN f , (9.2)

where SN and RN are respectively the stiffness and transformation matrices
for Neumann basis functions, as given in (8.18) and (8.19). Additionally,
the vectors u and f are composed of expansion coefficients,

u = (ũ0, ũ1, . . . , ũN−2)T , f = (f̂0, f̂1, . . . , f̂N )T .

This situation can be extended to other boundary conditions, with corre-
sponding basis functions (7.14), whose stiffness and transformation matrices
can be created as outlined in Appendix D.2. Additionally, the situation can
also be scaled to other domain lengths. The Poisson type problem is ex-
tended to higher dimensions in section 10.3.
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9.1 Solution scheme

Here and in general, the Chebyshev-Galerkin approach to a problem with
homogeneous boundary conditions roughly follows these steps:

1. Form a set of basis functions from a superposition of Chebyshev poly-
nomials such that they satisfy the boundary conditions and span the
solution space XN . Compute the relevant inner products.

2. Expand forcing f in Chebyshev coefficients f̂ and evaluate the right
hand side of (9.2).

3. Solve for the coefficients ũ that minimise the residual of the linear
system (9.2).

4. Compute the nodal values u(xj) from ũ with a backwards transform.

Step 1 can be costly, but is only performed once. Steps 2 and 4 both involve
O(N logN) operations. Finding the solution in step 3 is most costly.

In step 3, the solution can be approximated with aid of an iterative solver
such as BiCGSTAB. All applications in this report use BiCGSTAB, which is
described in Van der Vorst [23] and Barrett et al. in [1]. When an iterative
method is used, the cost for each iterate must be multiplied by the number of
iterations needed. The results in part III demonstrate that the Chebyshev-
Galerkin framework allows for cost efficient and accurate solutions to the
Poisson equation with Neumann or Dirichlet boundary conditions.
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10 Extension to higher dimensions

Rectangular domains can be rescaled to Ω = [−1, 1]D forD dimensions. This
section extends the Chebyshev-Galerkin framework to higher dimensional
second-order partial differential equations. First the two dimensional basis
functions and transforms are introduced, followed by the three and higher
dimensional case. Next, the linear systems representing the Poisson equation
in two and higher dimensions are discussed.

10.1 Basis functions in two dimensions

Take a two dimensional domain Ω = [−1, 1]2. For j ∈ {0, 1, . . . , Nx}, k ∈
{0, 1, . . . , Ny}, the Chebyshev-Gauss-Lobatto points are (xj , yk) with

xj = − cos

(
jπ

Nx

)
, yk = − cos

(
kπ

Ny

)
.

Consider Chebyshev polynomials in both the x and y direction

Tn(x) = cos(nθ), θ = arccos(x), x ∈Ω, n ≥ 0,

Tm(y) = cos(mξ), ξ = arccos(y), y ∈Ω, m ≥ 0.

A finite-dimensional Chebyshev approximation of u(x, y) is

u(x, y) ≈
Nx∑
n=0

Ny∑
m=0

ûnmTn(x)Tm(y). (10.1)

Some literature denotes the two-dimensional basis functions as Tnm(x, y) =
Tn(x)Tm(y). The coefficients ûnm form a tensor. The entries of a two-
dimensional tensor can be mapped straightforwardly to a matrix.

The coefficients û can be obtained from nodal values by applying the
forward discrete Chebyshev transform (7.12) twice: once in the x- and once
in the y-direction (Appendix E.1). Analogously, the nodal values can be
retrieved from the coefficients using the backward discrete Chebyshev trans-
form (7.13) twice.

10.1.1 Dirichlet and Neumann

A function u with boundary conditions can be approximated in terms of the
basis functions φm(x)φn(y),

u(x, y) ≈
Nx−2∑
n=0

Ny−2∑
m=0

ũnmφn(x)φm(y), (10.2)
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where the notation φnm(x, y) = φn(x)φm(y) is often used as a convention.
For Dirichlet boundary conditions φn(x) is given by (7.16). Alternatively,
the basis functions φn as defined in (7.18) satisfies Neumann boundary con-
ditions. Similarly to Chebyshev basis functions, transforms between the
coefficients ũnm and nodal values u(xj , yk) are obtained by performing the
one-dimensional transforms twice.

10.2 Three and higher dimensions

The applications in this report are at most three-dimensional. However, for
completeness, this section examines the general case of D dimensions.

Consider the domain Ω = [−1, 1]D in D-dimensional space. Choose the
number of grid points Nd in each direction d ≤ D and group them together
as N = (N1, N2, . . . , ND). The vector x = (x(1), x(2), . . . , x(D)) denotes the
position vector. Let the grid nodes be labeled with a D-dimensional index
n = (n1, n2, . . . , nD), where 0 ≤ nd ≤ Nd. The positions of the Chebyshev-
Gauss-Lobatto nodes xn are

xn =(x(1)
n1
, . . . , x(d)

nd
, . . . , x(D)

nD
), x(d)

nd
=− cos

(
ndπ

Nd

)
,

0 ≤nd ≤ Nd, 1 ≤d ≤ D.

We want to approximate u in terms of a tensor ũ containing the expansion
coefficients. A D-dimensional version of (10.1) is

u(xn) ≈
N∑
k=0

ûk

D∏
d=1

Tkd(x(d)
nd

), (10.3)

where k = (k1, k2, . . . , kD) labels the expansion coefficients with 0 ≤ kd ≤
Nd. Above, the sum means summing over each kd in k independently (Ap-
pendix E). The Chebyshev coefficients ûk of (10.3) can be determined by
applying the forward discrete Chebyshev transform (7.12) D times. Like-
wise, one executes the backwards discrete Chebyshev transform (7.13) D
times to retrieve the nodal values (Appendix E.1).

The forward and backward transforms cost order Ntot log(Ntot) compu-
tations, where Ntot =

∏D
d=1Nd.
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10.2.1 Dirichlet and Neumann

Consider a three-dimensional domain Ω = [−1, 1]3. Let’s approximate u in
terms of the basis functions φ and expansion coefficients ũ:

u(x, y, z) ≈
N1−2∑
n=0

N2−2∑
m=0

N3−2∑
k=0

ũnmkφn(x)φm(y)φk(z). (10.4)

Recall that the basis functions are

φn = Tn − βnTn+2

where βn = 1 and βn = n2

(n+2)2 for respectively Dirichlet and Neumann

boundary conditions. Moreover, the transforms between nodal values and
coefficients are performed by computing the one-dimensional fast transform
three times.

10.3 Poisson in 2D

The Poisson equation serves as a good example of a second-order partial
differential equation in the following sections. In two dimensions, the Poisson
equation is

Lu :=

(
∂2

∂x2
+

∂2

∂y2

)
u(x, y) = f(x, y).

Assume Neumann boundary conditions and let the solution in exist in the
space of Nth-order polynomials. Then, the solution space XN is spanned
by the Neumann basis functions {φi(x)φj(y)}N−2

i,j=0, each defined in (7.18).
In the weak form

(LuN , φi(x)φj(y))ω = (f, φi(x)φj(y))ω, for all i, j. (10.5)

It holds that(
φm(x)φn(y), φk(x)φl(y)

)
ω

=
(
φm(x), φk(x)

)
ω

(
φn(y), φl(y)

)
ω
. (10.6)

Substitution of approximation (10.2) into relation (10.5) yields a linear sys-
tem (Appendix E.2),

SUMT +MUST = RFRT , (10.7)

where U and F are matrices composed of coefficients ũnm and f̂kl and the
elements of matrices S, M and R are given by sNmn (8.18), mN

mn (8.16) and
rNmn (8.19).
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The linear system for U, F is equivalent to the linear system for vectors
u, f employing Kronecker products

(M ⊗ S + S ⊗M) u = (R⊗R)f , (10.8)

where u = vec(ũnm) and f = vec(f̂kl). Appendix E.3 gives the definition of a
Kronecker product ⊗ and of vec(X). Additionally, the equivalence between
(10.7) and (10.8) is shown in Appendix E.3.

10.4 Operators in higher dimensions

Let’s consider the general problem (6.1) on a D-dimensional domain

Lu(x) = f(x).

Assume the operator is linear. Then we can split the operator as a sum of
operators, each of which is the product of a partial operator in each direction

3D∑
k=1

(
D∏
d=1

L(d)

)
u(x) = f(x).

For example, the three-dimensional Laplace operator is the sum of three
operators, each of which takes the second-derivative in one direction and is
the identity operator in the other directions.

The functions u(x) can be approximated in coefficients ũn, forming a
D-dimensional tensor. Let the indices be indicated by n = (n1, n2, . . . , nD),
where each component 0 ≤ nd ≤ Nd − 2. The chosen number of grid points
in each direction can be grouped as N = (N1, N2, . . . , ND). Expansion in
terms of ũ and f̂ gives the following system for weak solutions,

N−2∑
n=0

(
D∏
d=1

l(d)
md,nd

)
ũn =

K∑
k=0

(
D∏
d=1

r
(r)
md,kd

)
f̂k, for 0 ≤ md ≤ Nd − 2,

(10.9)
where

l(d)
md,nd

=
(
L(d)φnd

, φmd

)
ω

and r
(d)
md,kd

= (Tkd , φmd
)ω .

Analogous to the situation in two dimensions, this problem can be rewritten
in terms of Kronecker products(

L(1) ⊗ L(2) ⊗ · · · ⊗ L(D)
)

u =
(
R(1) ⊗R(2) ⊗ · · · ⊗R(D)

)
f , (10.10)
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where

L(d) = (l(d)
md,nd

)0≤m,n≤Nd−2, u = vec(ũn),

R(d) = (r
(d)
md,kd

)0≤m≤Nd−2, 0≤k≤Nd
, f = vec(f̂k).

Upon designing a computation scheme, it is desired that the multiplications
can be computed efficiently. This is often measured in terms of computation
cost, which counts the number of required floating point operations.

Computations with the Kronecker formulation (10.10) can be very costly,
because one needs a matrix of size N2

tot, where Ntot =
∏d
d=1Nd. Instead,

like in two dimensions, one can perform the multiplications in (10.10) as a
sequence of D matrix-matrix multiplications. As an advantage, the Kro-
necker product need not be formed explicitly and the multiplication cost is
reduced to O(

∑D
d=1NdNtot). In chapter 12 efficient matrix multiplication is

performed with help of recursion relations, reducing costs further.
The Kronecker product multiplication can be computed indirectly with

D successive matrix-matrix multiplications. For each direction d, we map
the tensor entries ũn to an Nd × (Ntot/Nd) matrix such that the dth tensor
index is the row index of the matrix. Then, we multiply L(d) with this matrix
and map the result back to a tensor (to be used for the next direction).
Repeat this for each 1 ≤ d ≤ D.

The two-dimensional case was given in section 10.3, where equation
(10.7) is the two-dimensional Poisson case of (10.9), and (10.8) corresponds
to (10.10).

10.5 Poisson in 3D

The Poisson equation uses the Laplace operator ∆ in three dimensions

∆u =
∂2

∂x2
u+

∂2

∂y2
u+

∂2

∂z2
u = f.

So, the Laplace operator can be split into a sum of three operators: each
taking the second derivative in one direction, and being the identity operator
in the other directions. In the weak case, approximating u in terms of basis
functions, for every 0 ≤ i ≤ N1 − 2, 0 ≤ j ≤ N2 − 2, 0 ≤ l ≤ N3 − 2 it must
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hold that

N1−2∑
n=0

N2−2∑
m=0

N3−2∑
k=0

sinmjmmlk ũnmk +

N1−2∑
n=0

N2−2∑
m=0

N3−2∑
k=0

minsjmmlk ũnmk

+

N1−2∑
n=0

N2−2∑
m=0

N3−2∑
k=0

minmjmslk ũnmk =

N1∑
r=0

N2∑
s=0

N3∑
t=0

rirrjsrlt f̂rst. (10.11)

Here S, M and R are the inner product matrices for a set of appropriate
basis functions. Equivalently one can write (10.11) in Kronecker product
notation

(S ⊗M ⊗M +M ⊗ S ⊗M +M ⊗M ⊗ S) u = (R⊗R⊗R) f . (10.12)

In chapter 12 it is derived that the left hand side can be computed using
cost efficient recursive schemes in O(N1N2N3) computations.4 As a result,
solving this linear system with an iterative method is attractive.

4As explained above, the multiplication with the Kronecker product can be obtained
as matrix-matrix multiplications in each x, y, z-direction. The multiplications can be com-
puted with a fast recursion scheme in O(size(ũ)) flops. For example, in three dimensions
size(ũ) = N1N2N3.
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11 Application to the Stokes equations

In this section we derive the inner product system equivalent to the Stokes
equations (5.6)-(5.7) with homogeneous Dirichlet boundary conditions. In
three dimensions, define u = (u, v, w)T and v = (a, b, c)T . In the weak form
of (5.5), it must hold for all v and q that

α (u,v)ω +R−1
o (k× u,v)ω −R−1

e (∆u,v)ω + (∇p,v)ω = (f ,v)ω,

(∇ · u, q)ω = 0. (11.1)

Consider a finite-dimensional expansion of u, v, w in terms of CD basis func-
tions {φn}N−2

0 described by (7.16) with coefficients ũ, ṽ, w̃. Analogously,
one expands p, f in terms of Chebyshev polynomials {Tn}N−2

0 with coeffi-

cients p̂, f̂ . As the weak form must hold for all a, b, c, q, we can choose them
from the set {φj}N−2

0 .
It was motivated in Shen et al. [21] that pressure p and test function q

should be in the space of N−2 degree polynomials to yield a well-posed prob-
lem. This can be understood intuitively because the second-order deriva-
tives of an order N polynomial are order N − 2. Therefore, it seems logical
to expand u with second-order derivatives in two-order-higher polynomi-
als N , which (with boundary conditions) can be spanned by basis functions
{φ}N−2

0 . As a result, for an N×N×N grid, all the matrices are N−2×N−2.
Following the example in section 10.5, it is straightforward to derive the

next Kronecker product formulations. The one-dimensional inner-product
matrices are given in section 8. Define M (3) = MD ⊗MD ⊗MD. The first
term in (11.1) is discretised as,

(u,v)ω 7→

M (3) 0 0

0 M (3) 0

0 0 M (3)

vec(ũ)
vec(ṽ)
vec(w̃)

 .

with vec( ) as defined in Appendix E.3. Similarly, with k = (k1, k2, k3)T

(k× u,v)ω 7→

 0 −k3M
(3) k2M

(3)

k3M
(3) 0 −k1M

(3)

−k2M
(3) k1M

(3) 0

vec(ũ)
vec(ṽ)
vec(w̃)

 .

Recall L(3) = SD⊗MD⊗MD+MD⊗SD⊗MD+MD⊗MD⊗SD. Here L(3)

represents the discrete Laplace operator with Dirichlet boundary conditions
in contrast to its definition with Neumann boundary conditions in section
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13.3. So,

(∆u,v)ω 7→

L(3) 0 0

0 L(3) 0

0 0 L(3)

vec(ũ)
vec(ṽ)
vec(w̃)

 .

With Gx = GD⊗RD⊗RD, Gy = RD⊗GD⊗RD, and Gz = RD⊗RD⊗GD,

(∇p,v)ω 7→
(
Gx Gy Gz

) (
vec(p̂)

)
.

We consider f = (f1, f2, f3)T and define R(3) = RD ⊗RD ⊗RD, such that

(f ,v)ω 7→

R(3) 0 0

0 R(3) 0

0 0 R(3)

vec(f̂1)

vec(f̂2)

vec(f̂3)

 .

Lastly, Kx = KD ⊗MD ⊗MD, Ky = MD ⊗KD ⊗MD, and Kz = MD ⊗
MD ⊗KD, such that

(∇ · u, q)ω 7→

Kx

Ky

Kz

vec(ũ)
vec(ṽ)
vec(w̃)

 .

Gathering the terms together in A(3), B(3) and C(3) yields

A(3) = α

M (3) 0 0

0 M (3) 0

0 0 M (3)

+R−1
0

 0 −k3M
(3) k2M

(3)

k3M
(3) 0 −k1M

(3)

−k2M
(3) k1M

(3) 0


−R−1

e

L(3) 0 0

0 L(3) 0

0 0 L(3)

 ,

B(3) =
(
Gx Gy Gz

)
,

C(3) =

Kx

Ky

Kz

 .

Let us define ũ = (vec(ũ), vec(ṽ), vec(w̃))T , p̂ = vec(p̂), and

f̂ =

R(3) 0 0

0 R(3) 0

0 0 R(3)

vec(f̂1)

vec(f̂2)

vec(f̂3)

 .

39



As a result, one can write a single time-step of the Navier-Stokes equations
as

A(3)ũ +B(3)p̂ = f̂ , (11.2)

C(3)ũ = 0. (11.3)

This can be separated into an equation for p̂ and for ũ like in (5.8)-(5.9).
For time-dependent simulations, linear system (11.2)-(11.3) must be

solved at each time step. Because of the low complexity of these matri-
ces, we propose to use an iterative solver such as BiCGSTAB. Equivalent to
the simple Poisson case in section 13.3, one could investigate preconditioners
formed by the diagonals of the matrices themselves.

11.1 Implementation

In this project, a pilot toolbox for the Chebyshev-Galerkin method was de-
veloped for Matlab. It includes transforms between the grid point values and
several expansion coefficients, the inner-product matrices, and the fast mul-
tiplication schemes (chapter 12). Additionally, functions for grid creation,
numerical weighted integration, boundary condition lifting for pipe flow (sec-
tion 5.4), and integral constraint adjustment are present. All functions can
handle one, two or three dimensional domains. The implemented functions
can be combined to solve the Stokes time-marching scheme (11.2)-(11.3).

A complete time-marching for the pressure-correction method was im-
plemented in Matlab. It was observed that Poisson equation (5.4) was not
tolerably solved for randomly generated velocity ũ (with Dirichlet boundary
conditions) and the simulations were unstable.
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Part III

Mathematical Results

Linear second-order partial differential equations on rectangular domains
can be reformulated in the finite-dimensional weak form as a linear system.
This chapter explores the properties of these linear systems. The complex-
ity, convergence and condition number of the matrices that form the linear
system are presented. To the best of our knowledge, the subsequent results
are new to the literature. Note that in this part, an N × N matrix has
indices 0 ≤ i, j ≤ N − 1.

12 Complexity

In the literature the term complexity is most often used to express the dif-
ficulty of a problem. Different fields have different definitions. In com-
putational sciences complexity often measures the amount of either com-
munication, storage or processors. Within this report we take a machine-
independent definition: the complexity (of an algorithm) is the computa-
tional cost in terms of floating-point operations (flops).

For example, the general matrix-vector multiplication of a matrix in
RN×N with column vector in RN costs 2N2 operations, thus the complexity
is O(N2).

Sparse matrices can be computed in fewer operations: approximately
twice the number of nonzero entries. The simplest example is a diagonal
matrix having nonzero entries on the main diagonal and zeros elsewhere.
Multiplication with a diagonal matrix is equivalent to N element-wise mul-
tiplications.

Moreover, consider a matrix with nonzero entries along one or more
(diagonal) bands distance d from the main diagonal: aij 6= 0 when j = i+d,
for d ∈ Z. A matrix is banded when its nonzeros are restricted to a bounded
region around the main diagonal. The number of bands k with nonzero
entries is matrix-size independent and multiplication of such a matrix with
a vector costs 2kN flops.

A checkerboard matrix consists of alternating ones and zeros. Formally,
aij = 1 if i + j is even. Upon multiplying a vector with a checkerboard
matrix, the resulting column vector g ∈ RN has two alternating values:
gj = g0 for all j even, and gj = g1 for all j odd. Computation of g0 and
g1 each cost N flops, totalling 2N operations for the entire matrix-vector
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multiplication.
We are interested in the complexity of the stiffness, first-derivative and

mass matrixes, because they form the linear system representing our applica-
tion. As described in section 9.1, an iterative method involves many matrix
multiplications. Hence we want to compute these as efficiently as possible.
Our application is composed of Poisson-type equations, whose corresponding
linear system involves the stiffness matrix, which has an upper-triangular
checkerboard structure.

An upper-triangular checkerboard matrix has a checkerboard structure
in the upper right part and is zero below the main diagonal: aij = 1 if i ≤ j
and i+ j even. Fast matrix-vector multiplication starts at the bottom row
and recursively extends upwards. For the upper-triangular checkerboard
matrix A, consider g = Au. The fast algorithm is

gN−1 =uN−1,

gN−2 =uN−2,

gn =gn+2 + un, for n = N − 3 to 0, (12.1)

which takes N operations.
Moreover, a strictly-upper-triangular checkerboard matrix has zeros along

the main diagonal: aij = 1 for i < j and i+ j even. With a slight variation
of algorithm (12.1)

gN−1 =0,

gN−2 =0,

gn =gn+2 + un+2, for n = N − 3 to 0, (12.2)

the costs are again N flops.
The matrices introduced in chapter 8 can be decomposed into products

and sums of diagonal, banded and (strictly) upper-triangular checkerboard
matrices. As a result, the multiplication costs are O(N). The fast algorithms
and their complexity are in Appendix F.

12.1 Extension to more dimensions

Sections 10.3 and 10.4 show that linear second-order partial differential equa-
tions in more dimensions can be solved as a linear system involving products
of the mass, first-derivative and stiffness matrices. In two dimensions these
systems require operations of the form G = AUBT with A and B being
N ×N matrices. Decompose G = AUBT as

G = AV T , V = BUT .
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If Av and Bu can be computed in O(N) operations via a fast scheme, then
the products AV and BU for any U, V ∈ RN×N entail O(N2) complexity.
So when the matrix-vector product of A,B entails O(N) complexity, the
product A(BUT )T cost O(N2) flops, which is the size of the system. Thus
the complexity is linear.

We extend this approach to D-dimensional rectangular domains. As
explained in section 10.4, we can compute several matrix-matrix products
instead of a kronecker-product matrix-vector multiplication. Each matrix-
matrix multiplication has linear complexity using fast schemes. With Ntot =∏D
d=1Nd, computation with fast schemes has O(Ntot) complexity. The cost

of vector multiplication with aNtot×Ntot matrix resulting from the kronecker
product (10.10) is O(N2

tot). With fast schemes the complexity is the square
root of the cost with the kronecker-product matrix.

Iterative solution methods repeatedly evaluate the residual rt = g −
Aut for improved estimates of u. For systems that are not symmetric,
BiCGSTAB is a fast-converging iterative method. More details on BiCGSTAB
can be found in Van der Vorst [23] and in Barrett et al. [1]. One advan-
tage of iterative methods is that they avoid constructing the inverse of an
ND×ND matrix, which is generally full even when the matrix itself is sparse
and which requires O(N3

tot) flops. An iterative solver employing fast schemes
saves both computation and memory costs.
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13 Condition number

In this section the condition number of the discrete Laplace operator ∆ is
analysed. The one-dimensional Laplace operator is just the stiffness matrix.
This allows for both numerical computations and analytical bounds on the
growth of the condition number with matrix size N . Furthermore, we ex-
amine the dependence on N of numerically computed condition numbers in
higher dimensions. In both the one and more dimensional case precondi-
tioners are proposed to improve the condition number.

The condition number κ of a matrix A is

κ(A) =
∣∣∣∣A−1

∣∣∣∣ ||A|| , (13.1)

where one can use any induced norm or the Frobenius norm (Golub and Van
Loan [6]). The standard choice is the 2-norm.

Let’s consider Au = f . The condition number κ indicates the sensitivity
of the output f on the input u. A small condition number suggests that
a slight change in the input will not lead to a large change in the output.
This property is beneficial when solving a linear system. Matrices with low
condition numbers take less iterations in iterative methods.

Preconditioning is a procedure to lower the condition number of a matrix
A by multiplying with the inverse of a so-called preconditioner M . Let M be
a matrix whose inverse is cheap and such that M−1A has a lower condition
number than A. Then

M−1Au = M−1f

is equivalent to solving the original Au = f system and takes less iterations
in an iterative method. This is referred to as the preconditioned system and
Â = M−1A is referred to as the preconditioned operator.

Similarly one can precondition from the right as

AM−1v = f, u = M−1v.

13.1 Preconditioning of Dirichlet

The stiffness matrix SD with Dirichlet boundary conditions defined in (8.14)
is given by

sDmn =


−2π(m+ 1)(m+ 2), n = m,
−4π(m+ 1), n = m+ 2,m+ 4, . . . ,
0, n < m orn+m odd,
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With a diagonal preconditioner PD, whose entries are given by the diagonal
of SN ,

pDmm = −2π(m+ 1)(m+ 2),

we can precondition SD as

Ŝ = (PD)−1SD,

Substitution of PD and SD yields that Ŝ is an upper-triangular matrix given
by

ŝmn =


1, m = n,
2/(m+ 2), n = m+ 2,m+ 4, . . . ,
0, otherwise.

(13.2)

13.1.1 Analytical bounds

To find a bound on the condition number, the norms of the matrix and its
inverse must be bounded. Let’s denote the inverse of SD by Z = (SD)−1,
whose elements are derived explicitly in Appendix G.1.1,

zkj =


−
(
2π (n+ 1)(n+ 2)

)−1
, n = m,(

4π n(n+ 1)(n+ 2)
)−1

, n = m+ 2,m+ 4, . . . ,
0, otherwise.

(13.3)

Let N denote the size of SD. Using norm inequalities, it is straightforward
to compute (Appendices G.1.2 and G.1.3)∣∣∣∣SD∣∣∣∣

2
≤ O(N2), and ||Z||2 ≤ O(1).

Combine this with definition (13.1) to conclude

κ2(SD) ≤ O(N2). (13.4)

Preconditioned

The preconditioned version of SD was denoted Ŝ and its entries are given in
(13.2). The inverse of Ŝ is denoted by Ẑ, whose entries can easily be derived
(Appendix G.1.1) as

ẑ−1
mn =


1, n = m,
− 2
n , n = m+ 2,m+ 4, . . .

0, otherwise.
(13.5)
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From the explicit expressions for Ŝ and Ẑ, one can derive (Appendices G.1.4-
G.1.5) that the condition number of Ŝ is bounded by

κ1(Ŝ) ≤O(N1/2),

κ2(Ŝ) ≤O
(√

N ln (N/2)
)
. (13.6)

This upper bound grows sublinearly with N .

13.2 Preconditioning of Neumann

For Neumann boundary conditions the stiffness matrix SN defined in (8.18)
is given by

sNmn =


−2πm2(m+ 1)/(m+ 2), n = m,
−4πn2(m+ 1)/(m+ 2)2, n = m+ 2,m+ 4,m+ 6...,
0, n < m or n+m odd.

We decompose SN as
SN = PN ŜBN , (13.7)

where Ŝ is defined in (13.2), and PN , BN are diagonal matrices given by

PNmm = −2π(m+ 1)/(m+ 2),

BN
mm = m2. (13.8)

Because PN has amplitude order 1, we combine PN and Ŝ. Define L̂(1) as

L̂(1) = PN Ŝ, (13.9)

such that
S = L̂(1)BN .

The superscript of L̂(1) refers the one-dimensional domain on which the
operator is relevant. Consider SNu = g, which can be rewritten as

L̂(1)v = g, u = (BN )−1v. (13.10)

The inverse of BN is performed element-wise along the diagonal, which can
be executed in N entry-wise divisions.
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13.2.1 Analytical bound on the condition number

In section 13.1, the condition number of Ŝ has been analytically bounded
(13.6),

κ2(Ŝ) ≤ O
(√

N ln (N/2)
)
.

It is straightforward to extend the derivation in Appendix G.1.4 with a
factor pNmm. Because a bound on the amplitude of PN is N -independent
(|pNmm| ≤ 2π and |p−1

mm| ≤ 1/π), the condition number of L̂(1) is the same
order as the condition number of Ŝ,

κ2(L̂(1)) ≤ O
(√

N ln (N/2)
)
. (13.11)

13.2.2 Numerical computation of the condition number

The condition number in the 1-norm, κ1, and 2-norm, κ2, of matrices SN

and L̂(1) are computed explicitly for various matrix sizes N . Figure 13.1
displays the condition numbers as a function of N . The graphs also show
the average number of iterations the BiCGSTAB algorithm needs to obtain
the required precision. The settings for these tests are in Appendix G.3.
Note the different axis scaling in panels A and B.

The results in Figure 13.1.A indicate that the condition number of the
stiffness matrix SN grows with order N2 and that the number of iterations
grows with O(N). The preconditioned operator L̂(1) in Figure 13.1.B has a
condition number that grows with less than order N1/2. As expected this
is below the upper bound predicted by inequality (13.11) . On top of that,
the growth rate of the number of iterations is much lower than N1/2.

As contemplated in section 13.2.1, the numerically obtained condition
numbers for Ŝ and L̂(1) show similar growth with N . Comparison of the
condition numbers and iteration counts is shown in Appendix G.2.
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Figure 13.1: The condition numbers in 1-norm (blue) and 2-norm (red) of the Neumann stiffness

matrix SN (panel A) and the preconditioned stiffness matrix L̂(1) (panel B) are shown on the
left and right respectively, where N denotes the number of CGL points. Additionally, the dots
denote the average number of iterations the BiCGSTAB algorithm needs to obtain the required
precision.

13.3 Preconditioning in Multiple Dimensions

In two dimensions the Poisson equation gives linear system (10.8),

(M ⊗ S + S ⊗M) u = (R⊗R) f .

Let’s denote by L(2) = (M ⊗ S + S ⊗M) the discrete Laplacian operator in
two dimensions. One can precondition L(2) as L̂(2) = L(2)(B(2))−1 with

B(2) = (I ⊗BN +BN ⊗ I),

where BN is defined in (13.8). Similarly, in three dimensions, denote

L(3) = (M ⊗M ⊗ S +M ⊗ S ⊗M + S ⊗M ⊗M). (13.12)

With this notation, the three-dimensional Poisson equation (10.12) becomes

L(3) u = (R⊗R⊗R) f

One can precondition L(3) as L̂(3) = L(3)(B(3))−1 with

B(3) = (I ⊗ I ⊗BN + I ⊗BN ⊗ I +BN ⊗ I ⊗ I).
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Figure 13.2: In two dimensions, the condition numbers in 1-norm (blue) and 2-norm (red) of the

Laplacian operator L(2) (panel A) and the preconditioned operator L̂(2) (panel B) with respect
to N , denoting the number of CGL points in each direction. Additionally, the dots denote the
average number of iterations the BiCGSTAB algorithm needs to obtain the required precision.
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Figure 13.3: For the three-dimensional Laplacian, the condition numbers in 1-norm (blue) and

2-norm (red) of L(3) (A) and preconditioned L̂(3) (B) are shown on the left and right respectively.
The values are plotted against N denoting the number of CGL points in each direction. The
crosses denote the average number of iterations the BiCGSTAB algorithm needs to obtain the
required precision.
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13.3.1 Condition Number

For notational convenience, the resolution is set to N in all directions. Thus,
the column vectors u, f have length N2 or N3 for two or three dimensions
respectively.

Figure 13.2 displays that the condition number of the Laplacian operator
L(2) grows with N3 and that the average number of BiCGSTAB iterations
is order N2. In contrast, for the preconditioned matrix L̂(2), the condition
number growth rate reduces to order N2 and the number of iterations is
order N . Note that the matrix is N2 × N2, thus with N iterations, the
scheme is sublinear. Observe the different scaling of the axes in Figure 13.2.

In three dimensions, the condition number of the Laplacian operator
L(3) grows with O(N4) and the iteration count with order N2, shown in
Figure 13.3. For the preconditioned Laplace operator L̂(3) the growth rate
of the condition number and the iteration count are O(N3) and O(N3/2)
respectively. The latter growth rate is sublinear for a problem with an
unknown vector of length N3.

When the tolerance value of the BiCGSTAB is increased or decreased,
the average number of iterations changes accordingly. However, for any fixed
tolerance, the iterations seems to grow with O(ND/2) for the preconditioned
D-dimensional discrete Laplace operator.
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14 Convergence

Spectral methods have global basis functions. Therefore, the error between
a solution and its spectral approximation is not concentrated on part of
the domain, but spread out evenly. Spectral methods generally display
exponential convergence, also referred to as spectral convergence. This means
that, as a function of resolution N , the error decreases faster than O(N−p)
for any p.

The convergence test is conducted on a Poisson equation ∆u = f , with
Neumann boundary conditions. Consider the following forcing f and corre-
sponding solutions u, in one, two and three dimensions respectively:

u(x) = cos(xπ), f(x) = −π2 cos(xπ), (14.1)

u(x, y) = cos(xπ) cos(yπ), f(x, y) = −2π2 cos(xπ) cos(yπ),

u(x, y, z) = cos(xπ) cos(yπ) cos(zπ), f(x, y, z) = −3π2 cos(xπ) cos(yπ) cos(zπ).

We observe that the forcings f satisfy the compatibility condition (6.8).
In general, the error can be defined as the norm of the difference between

the approximate solution uN and analytical solution u as in (14.1),

error =
(√
N
)−1
∣∣∣∣∣∣uN − u ∣∣∣∣∣∣

2
(14.2)

Figure 14.1 suggests that the convergence of the approximate solution is
exponential in one, two and three dimensions until it hits machine precision
around 10−15.
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Figure 14.1: Convergence uN to u in 1D (A), 2D (B) and 3D (C). The resolution N indicates the
number of Chebyshev-Gauss-Lobatto points in one direction. So, in 2D u represents an N × N
tensor and in 3D u represents an N ×N ×N tensor. The error is defined in (14.2). The settings
for these results can be found in Appendix G.4.
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Part IV

Discussion and conclusions

15 Discussion

In this section we discuss the Chebyshev-Galerkin (CG) method, in partic-
ular its suitability for the inertial wave application.

15.1 Comparison with the laboratory set-up

Let’s highlight some of the advantages and disadvantages of using a Chebyshev-
Galerkin method to simulate the rotating-box experiment. The method is
developed for rectangular domains and is thus applicable to the right-angled
tank. A Chebyshev-Gauss-Lobatto quadrature places more grid points near
the boundaries. Therefore, the boundary layer, which plays an important
role in viscous fluids, is better resolved.

In contrast to the laboratory, where an adjustable voltage determines
the pump rate, and to the Gerris simulations, in which a pressure gradient
drives the flow, the Chebyshev-Galerkin method needs specified velocity
inflow and outflow. As the solid walls have no-slip conditions, the boundary
conditions at the entrance and exit cannot be Neumann type, but must
be a prescribed velocity (for continuity of the boundary condition (6.7) at
the edges of the entrance/exit). The in- and outflow is approximated as
Hagen-Poisseuille pipe flow. To compare CG simulations with laboratory
parameters, one could calibrate the resulting entrance-exit pressure gradient
to a pump-voltage, using the flow rate in a stationary flat experiment as the
calibration control.

Other boundary conditions might be possible when implementing do-
main decomposition, in which the domain is subdivided into multiple do-
mains. One can pose the boundary conditions at the outer boundaries for
each subdomain independently, allowing for a prescribed pressure-difference
between the entrance and exit tubes. The solutions in the subdomains must
match at the division surfaces, which adds additional constraints.

15.2 Numerical method

Because the derivatives in the Chebyshev-Galerkin framework are computed
analytically, even low resolutions yield high accuracy. The convergence test
in section 14 show exponential converge to the analytical solution with in-
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creasing resolution. For a simple Poisson equation the accuracy reaches
machine precision for a grid resolution of N = 30 points.

In the current method, the continuity equation is automatically satisfied.
This is a huge advantage with respect to the Gerris simulations which could
not guaranty continuity. Rodda [20] reported a flux variation of around
10%, indicating significant divergence of the flow.

15.3 Time-marching methods

We implemented the pressure-correction time-stepping method in Matlab,
including the inner-product formulation of the pressure-correction step, equa-
tion (5.4). Upon spatially discretising (5.4) we find the discrete Laplace
operator. In one dimension, this is the stiffness matrix (8.18) for Neumann
boundary conditions, which is rank deficient. As a result, not every forcing
f has solutions q̃. The forcing should satisfy the compatibility constraint
(6.8). When f = ∇ · ũ and when ũ has Dirichlet boundary conditions, the
compatibility constraint is satisfied and solutions should exist. In one di-
mension we find accurate solutions of the discrete Poisson equation for every
such forcing.

For the higher dimensional discrete Laplace operator, we do not seem
to be able to find accurate solutions for all f = ∇ · ũ with ũ satisfying
Dirichlet boundary conditions. For simple examples, such as the forcing f
in (14.1), whose analytical solutions we can derive, accurate solutions are
found. However, for randomly generated {un} with Dirichlet boundary con-
ditions, not all approximations of q returned by the iterative solver actually
solve equation (5.4).

This issue is specific to Neumann boundary conditions. The Stokes time-
stepping method does not employ Neumann boundary conditions. There-
fore, we think that with this scheme simulations are stable. Additionally,
one may solve the discrete Stokes equations (5.6)-(5.7) with a fractional
step method (as a Lagrange Multiplier method). This is based on first dis-
cretising in space and then in time, thereby avoiding Neumann boundary
conditions.

15.4 Inviscid limit

The first priority was to simulate viscous Navier-Stokes equations, because
viscosity is significant in the small laboratory box. For the inviscid limit
let the inverse of the Reynolds number R−1

e go to 0. The full Navier-Stokes
equations cannot exploit the structure of the inviscid limit. For inviscid
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Navier-Stokes equations, analytical reduction is possible and could be pre-
ferred above just putting the inverse Reynolds number to zero in the full
equations.

For example in two dimensions the system can be written in terms of
a stream function eliminating the continuity equation. Three dimensional
inviscid flow in a parallelepiped is described in Maas [13]. Without viscos-
ity the two-dimensional governing equations can be rewritten as a Poincare
equation with Robin (mixed) boundary conditions. One can construct ba-
sis functions for these boundary conditions and find expressions for the
inner-product matrices. So, the Poincare system can be investigated with a
Chebyshev-Galerkin method, which might be more efficient than the current
eigenvalue problem approach [13].

15.5 Trapezoidal domains

The Chebyshev-Galerkin method has domain restrictions. The current ap-
proach only works for rectangular domains. It seems natural that with an
appropriate mapping one could simulate trapezoidal domains as well. In
that case, the equations in transformed coordinates can have cross partial
derivatives (such as ∂2/(∂x ∂y)), which negates the mainly block diagonal
structure of the matrix A(3). Trapezoidal domains will involve more book-
keeping and additional inner-product matrices.

For separability it seems crucial that the domain has corners to be
mapped to the corners of a rectangular domain, because the singularity
at the corners is exploited. Circular domains lack corners and applying the
presented CG approach seems impossible. Alternatively, spherical or cylin-
drical domains in polar- or cylindrical coordinates could be represented by
Chebyshev-type basis functions in the bounded directions and Fourier basis
functions in the periodic directions.
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16 Conclusions

Rotating systems can have complex dynamics. Laboratory experiments have
shown that the flow through a rotating tank is enhanced when the domain
has tilted walls. It is expected that wave-attractors of inertial waves inhibit
turbulence and thus aid the mean flow. To study the interaction between
inertial waves and currents in more detail, we propose a numerical model
for the three-dimensional viscous Navier-Stokes equations under rotation.

In this project we developed a Chebyshev-Galerkin method to find weak
solutions for second-order partial differential equations numerically. Start-
ing from Chebyshev polynomials, basis functions satisfying homogeneous
boundary conditions were constructed and their inner product matrices
were derived analytically. Because of the upper-triangular and/or banded
structure, these mass, first-derivative and stiffness matrices possess linear
complexity. For the Poisson equation under Neumann and under Dirichlet
boundary conditions, we proposed a diagonal pre-conditioner that reduces
the growth rate of the condition number to sublinear order. Finally, the ac-
curacy was shown to be exponential. To conclude, the Chebyshev-Galerkin
method is near-optimal for a Poisson equation.

We consider the Navier-Stokes equations as an application for the CG
method. To simulate the time-dependent behaviour of the flow, an implicit-
explicit Stokes method can be employed for time-marching. Inflow and
outflow at the boundary could be approximated as Hagen-Poisseuille flow.
The non-homogeneous boundary conditions at the entrance and exit can be
lifted and result in an additional forcing.

Several advantages of the Chebyshev-Galerkin method include guaran-
teed incompressibility, naturally more grid points in the boundary layers and
fast transforms between point evaluations and expansion coefficients. Some
disadvantages are the limited domain flexibility, and the Hagen-Poisseuille
pipe flow approximation. In short, the Chebyshev-Galerkin framework is an
elegant method. Further development could extend the method for more
applications and geometries.
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Part V

Appendix
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A Backward differentiation formula

Consider the time-derivative w′(t) = ∂tw(t). The two-step backward differ-
entiation (BDF) is an implicit time-derivative scheme. Its derivation uses
linear extrapolation and the midpoint method,

w′ (tn+1) ≈1

2

(
w′ (tn+1 + τ/2) + w′ (tn+1 − τ/2)

)
,

≈1

2

(
w′ (tn+1 + τ/2) +

(
wn+1 − wn

τ

))
,

≈1

2

((
2w′(tn + τ/2)− w′(tn−1 + τ/2)

)
+

(
wn+1 − wn

τ

))
,

≈1

2

(
2

(
wn+1 − wn

τ

)
−
(
wn − wn−1

τ

)
+

(
wn+1 − wn

τ

))
,

≈ 3wn+1 − 4wn + wn−1

2τ
.

B Boundary conditions

Consider problem (6.1) with non-homogeneous boundary conditions (6.6).
Take some v(x) such that the boundary conditions are satisfied,

a±v + b±
∂

∂n
v = g.

Note that v does not need to satisfy the problem (6.1). Assume there exists
a solution u that solves the problem and satisfies the boundary conditions.
Then split u = ū + v. Because v already satisfies (6.6), ū only needs to
satisfy the homogeneous boundary conditions (6.7), given by

a±ū+ b±
∂

∂n
ū = 0 (B.1)

Substitute u = ū+ v into the problem (6.1), so

Lū(x) = f(x)− Lv(x), x ∈ Ω. (B.2)

Together (B.2) and (B.1) form a problem for ū with homogeneous boundary
conditions.
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C Chebyshev

C.1 Quadrature

Consider the Chebyshev polynomials (7.1) at the quadrature points (7.7),

xj = − cos

(
πj

N

)
= cos

(
π(N − j)

N

)
,

θj = arccos(xj) =
π(N − j)

N
,

Tn(xj) = cos(nθj) = (−1)n cos

(
πnj

N

)
.

This proves (7.9).

C.2 Discrete Chebyshev Transform

Substitution of basis function (7.9) into the Chebyshev approximation (7.11)
gives the backwards Chebyshev transform (7.13),

u(xj) =

N∑
n=0

ûnTn(xj) =

N∑
n=0

ûn(−1)n cos

(
πnj

N

)
.

One can derive the forward transform (7.12) from the backwards transform
(7.13), using the discrete inner product (7.10),

u(xj) =
N∑
n=0

ûnTn(xj),

N∑
j=0

1

c̃j
u(xj)Tm(xj) =

N∑
n=0

ûn

N∑
j=0

1

c̃j
Tm(xj)Tn(xj),

N∑
j=0

1

c̃j
u(xj)Tm(xj) =

N∑
n=0

ûn
c̃mN

2
δmn,

N∑
j=0

1

c̃j
u(xj)Tm(xj) =ûm

c̃mN

2
,

2

c̃mN

N∑
j=0

1

c̃j
u(xj)Tm(xj) =ûm.
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C.3 Fast Chebyshev Transform

The discrete Chebyshev transform can be computed in O(N logN) opera-
tions because of its close relation to the discrete cosine transform and the
fast Fourier transform.

C.3.1 Fourier transform

The discrete Fourier transform is given by,

uj =
N−1∑
k=0

ũ(k)e−i2πjk/N , (C.1)

with inverse,

ũ(k) =
1

N

N−1∑
j=0

uj e
i2πjk/N . (C.2)

Substitute the trigonometric identity eiθ = cos(θ) + i sin(θ) into (C.2) and
take the real part. So,

<(ũ(k)) =
1

N

N−1∑
j=0

<(uj) cos

(
2πjk

N

)
+ =(uj) sin

(
2πjk

N

)
.

For purely real uj , this simplifies to

<(ũ(k)) =
1

N

N−1∑
j=0

uj cos

(
2πjk

N

)
.

Denote Cn(xj) := cos(2πnj/N). It holds that

Cn(xj) = CN−n(xj), for all n ∈ {0, 1, . . . , N − 1} (C.3)

Consider taking the inverse transform of a function that is twice as long
(M = 2N) and even. First using (C.3), and next using uj = uM−j , because
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the extension is even, gives

<(ũ(k)) =
1

M

M−1∑
j=0

uj cos

(
2πjk

M

)
,

<(ũ(k)) =
1

M

u0 +

N−1∑
j=1

(uj + uM−j) cos

(
2πjk

M

)
+ uN cos (πk)

 ,
<(ũ(k)) =

1

2N

u0 +
N−1∑
j=1

2uj cos

(
2πjk

2N

)
+ uN cos (πk)

 ,
<(ũ(k)) =

1

N

N∑
j=0

1

c̃j
uj cos

(
πjk

N

)
,

where c̃0 = c̃N = 2 and c̃1≤j≤N−1 = 1. It follows that

(−1)k<(ũ(k)) =
1

N

N∑
j=0

1

c̃j
uj(−1)k cos

(
πjk

N

)
.

C.3.2 Left and right extensions

Let us consider a function f on [a, b] and its even extension to the left, fext
on [2a− b, b] given by:

fleft-ext(x) :=

{
f(x), a ≤ x ≤ b,
f(2a− x), 2a− b ≤ x ≤ a.

Note that the left extension is different from the right extension of the
previous section. The left extension is related to the right extension via

f̃right-ext(k) = (−1)kf̃left-ext(k), because for all odd k the cos
(
πjk
N

)
are odd

on the interval 0 ≤ j ≤ N . In short, the left extension is the original function

on the domain N ≤ j ≤ 2N , where the values of cos
(
πjk
N

)
are opposite. As

a result,

<(f̃left-ext(k)) =(−1)k<(f̃right-ext(k)),

=
1

N

N∑
j=0

1

c̃j
fright-ext,j(−1)k cos

(
πjk

N

)
. (C.4)
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C.3.3 Inverse Fourier and forward Chebyshev transforms

The Chebyshev transform (7.12),

ûn =
2

cnN

N∑
j=0

1

c̃j
u(xj)(−1)n cos

(
njπ

N

)
,

is related to the Fourier expansion expression (C.4), as

ûn =
2

cn
<(ũleft-ext(n)),

where the coefficients ũleft-ext(n) can be determined from uleft-ext(xj) with
the inverse fast Fourier transform (iFFT).

C.3.4 Backward Chebyshev Transform

Analogously, the backward Chebyshev transform (7.13) can be related to the
forward Fourier transform. Denote with ū a left extension of the expansions
coefficients,

ūn =

{
(1/2) cn (−1)n ûn, 0 ≤ n ≤ N,
(1/2) cn (−1)n û2N−n, N + 1 ≤ n ≤ 2N − 1.

Substitution into backward transform (7.13), and taking M = 2N gives

u(xj) =

N∑
n=0

2

cn
ūn cos

(
πnj

N

)
=

M−1∑
n=0

ūn cos

(
2πnj

M

)
.

This expression is identical to the discrete Fourier transform (C.1) of ū.
The backward Chebyshev transform can be performed in O(N logN) oper-
ations, through computation of ū, executing a fast Fourier transform and
then taking the real part of the right half.

C.4 Transform to superposition

The CD coefficients ũn of (7.17) are related to the Chebyshev coefficients1

ûn, through the recursion relations

û0 = ũ0,

û1 = ũ1,

ûn = ũn − ũn−2, ∀n ∈ [2, N − 2],

ûN−1 = −ũN−3,

ûN = −ũN−2.
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These transformations cost O(N) operations.
In addition, the recursion relations between the Chebyshev coefficients

ûn of a functions with Neumann boundary conditions and its CN coefficients
ũn are

û0 = ũ0,

û1 = ũ1,

ûn = ũn −
(n− 2)2

n2
ũn−2, ∀n ∈ [2, N − 2],

ûN−1 = −(N − 3)2

(N − 1)2
ũN−3,

ûN = −(N − 2)2

N2
ũN−2.

The above recursion relations can also be performed in O(N) computations.

1Of course, this only holds for Chebyshev coefficients representing a function that
actually has Dirichlet boundary conditions.
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D Inner product matrices

D.1 Chebyshev

The mass matrix (8.4) for Chebyshev basis functions is just the weighted
inner product (7.2)

mmn = (Tn(x), Tm(x))ω =

∫ 1

−1
Tn(x)Tm(x)

1√
1− x2

dx =
cnπ

2
δmn.

The first derivatives are expressed in property (7.5) as a sum of lower order
polynomials:

T ′n(x) = 2n
n−1∑
k=0

k+n odd

1

ck
Tk(x).

Substitution of the property into the definition of K (8.2) yields

kmn =(T ′n(x), Tm(x))ω,

=2n
n−1∑
k=0

k+n odd

1

ck
(Tk(x), Tm(x))ω,

=πn
n−1∑
k=0

k+n odd

δkm,

kmn =

{
πn, n = m+ 1,m+ 3,m+ 5, . . . ,
0, otherwise.

The last result proves expression (8.5).

For the stiffness matrix, we use property (7.6), given by

T ′′n (x) =

n−2∑
k=0

k+n even

1

ck
n(n2 − k2)Tk(x).
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Substitution of the property into definition (8.3) gives

smn =(T ′′n (x), Tm(x))ω,

=

n−2∑
k=0

k+n even

1

ck
n(n2 − k2)(Tk(x), Tm(x))ω,

=
π

2

n−2∑
k=0

k+n even

n(n2 − k2)δkm,

smn =

{
π
2n(n2 −m2), n = m+ 2,m+ 4,m+ 6, . . . ,
0, otherwise.

This proves (8.6).

D.2 General boundary conditions

Assume any mixed boundary condition of type (6.7). The choice fixes the
coefficients {an, bn} of superposition (7.14),

φn(x) = Tn(x) + anTn+1(x) + bnTn+2(x).

D.2.1 Mass matrix

The elements of the mass matrices are

mφ
mn =(φn(x), φm(x))ω,

=mmn + anmm,n+1 + bnmm,n+2

+ ammm+1,n + amanmm+1,n+1 + ambnmm+1,n+2

+ bmmm+2,n + bmanmm+2,n+1 + bmbnmm+2,m+2,

mφ
mn =mφ

nm =



π
2

(
cm + a2

m + b2m
)

n = m,
π
2 (am + am+1bm), n = m+ 1,
π
2 (an + an+1bn), n = m− 1,
π
2 bm, n = m+ 2,
π
2 bn, n = m− 2,
0, Otherwise,

with mmn according to (8.4), an, bn as in (7.14) and still c0 = 2 and cn = 0
for all n ≥ 1.
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D.2.2 First derivative matrix

The first derivative matrix has elements

kφmn =(φ′n(x), φm(x))ω,

=kmn + ankm,n+1 + bnkm,n+2

+ amkm+1,n + amankm+1,n+1 + ambnkm+1,n+2

+ bmkm+2,n + bmankm+2,n+1 + bmbnkm+2,m+2,

with kmn as in (8.5).

D.2.3 Stiffness matrix

Analogously,

sφmn =(φ′′n(x), φm(x))ω,

=smn + ansm,n+1 + bnsm,n+2

+ amsm+1,n + amansm+1,n+1 + ambnsm+1,n+2

+ bmsm+2,n + bmansm+2,n+1 + bmbnsm+2,m+2.

D.2.4 Transformation matrix

The inner product with Chebyshev polynomials is

rφmn =(Tn(x), φm(x))ω,

=mmn + ammm+1,n + bmmm+2,n,

rφmn =


π
2 cm, n = m,
am

π
2 , n = m+ 1,

bm
π
2 , n = m+ 2,

0, otherwise.

Next, we consider the special cases of Dirichlet and Neumann boundary
conditions.

D.3 Dirichlet

Suppose, we have Dirichlet boundary conditions and employ CD basis func-
tions (7.16) given by

φn(x) = Tn(x)− Tn−2(x).
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D.3.1 Mass matrix

For Dirichlet boundary conditions we obtain,

mD
mn =(φn(x), φm(x))ω,

=mmn −mm,n+2 −mm+2,n +mm+2,m+2,

mD
mn =


(cm+1)π

2 , n = m,
−π

2 , n = m− 2 and n = m+ 2,
0, otherwise,

where c0 = 2 and other cn = 1.

D.3.2 First derivative matrix

Property (7.5), given by

T ′n(x) = 2n
n−1∑
k=0

k+n odd

1

ck
Tk(x),

can be adapted for Chebyshev-Dirichlet basis functions (7.16),

φ′n =2n
n−1∑
k=0

k+n odd

1

ck
Tk(x)− 2(n+ 2)

n+1∑
k=0

k+n odd

1

ck
Tk(x),

=− 4
n−1∑
k=0

k+n odd

1

ck
Tk(x)− 2(n+ 2)

1

cn+1
Tn+1(x),

=

n+1∑
k=0

k+n odd

γn,kTk(x),

where

γn,k =

{
−2(n+ 2) 1

ck
, k = n+ 1,

− 4
ck
, k = n− 1, n− 3, . . . .

Thus,

(φ′n, φm)ω =

n+1∑
k=0

k+n odd

γn,k(Tk(x), Tm(x))ω −
n+1∑
k=0

k+n odd

γn,k(Tk(x), Tm+2(x))ω,

kdmn =


−(m+ 1)π, n = m− 1,
(m+ 1)π, n = m+ 1,
0, otherwise.
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The first-derivative matrix is thus a double banded matrix.

D.3.3 Stiffness matrix

In addition, we require an expression for the stiffness matrix. Denoting
αn,k = 1

ck
n(n2 − k2), reduces property (7.6) to

T ′′n (x) =
n−2∑
k=0

k+n even

αn,kTk(x).

So,

T ′′n (x)− T ′′n+2(x) =
n−2∑
k=0

k+n even

αn,kTk(x)−
n∑

k=0
k+n even

αn+2,kTk(x),

= −αn+2,nTn(x) +

n−2∑
k=0

k+n even

(αn,k − αn+2,k)Tk(x),

=

n∑
k=0

k+n even

dn,kTk(x), (D.1)

where

dn,k =

{
− 1
cn

4(n+ 1)(n+ 2), k = n,
1
ck

(n3 − (n+ 2)3 + 2k2), k < n.

Substitute relation (D.1) in the stiffness matrix

sDmn =(φ′′n(x), Tm(x))ω − (φ′′n(x), Tm+2(x))ω,

=
n∑

k=0
k+n even

dn,k(Tk(x), Tm(x))ω −
n∑

k=0
k+n even

dn,k(Tk(x), Tm+2(x))ω (D.2)

With property (7.2), only certain elements of SD are nonzero. When m > n
or when n+m is odd, (φ′′n(x), φm(x))ω = 0.

Additionally, when n = m, only the first sum in (D.2) is nonzero:

(φ′′n(x), φn(x))ω =dn,n(Tn(x), Tn(x))ω,

=− 1

cn
4(n+ 1)(n+ 2)

cnπ

2
,

=− 2π(n+ 1)(n+ 2).
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For n = m+ 2,m+ 4,m+ 6, ..., relation (D.2) yields

(φ′′n(x), φm(x))ω =

n∑
k=0

k+n even

dn,k(Tk(x), Tm(x))ω −
n∑

k=0
k+n even

dn,k(Tk(x), Tm+2(x))ω,

= dn,m(Tm(x), Tm(x))ω − dn,m+2(Tm+2(x), Tm+2(x))ω,

=
1

cm
(n3 − (n+ 2)3 + 2m2)

cmπ

2
− 1

cm+2
(n3 − (n+ 2)3 + 2(m+ 2)2)

cm+2π

2
,

=(2m2 − 2(m+ 2)2)
π

2
,

=− 4π(m+ 1).

As a result, the stiffness matrix is given by

sDmn =


−2π(m+ 1)(m+ 2), n = m,
−4π(m+ 1), n = m+ 2,m+ 4, . . . ,
0, n < m orn+m odd,

which is presented in expression (8.14). This matrix is checkerboard upper
triangular.

D.3.4 Transformation matrix

Substituting the Chebyshev-Dirichlet basis functions (7.16) into the defini-
tion of the transformation matrix (8.10) gives

rDmn =(Tn(x), φm(x))ω,

=


cnπ

2 , n = m,
−π

2 , n = m+ 2,
0, otherwise.

D.4 Neumann

Assuming Neumann boundary conditions, the basis functions (7.18) are

φn(x) = Tn(x)− n2

(n+ 2)2
Tn+2(x).

Define βn := n2

(n+2)2 .
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D.4.1 Mass matrix

We build the mass matrix as

(φn(x), φm(x))ω =(Tn(x), Tm(x))ω − βn(Tn+2(x), Tm(x))ω

− βm(Tn(x), Tm+2(x))ω + βnβm(Tn+2(x), Tm+2(x))ω,

=
cnπ

2
δn,m + βmβn

π

2
δn+2,m+2 − βn

π

2
δn+2,m − βm

π

2
δn,m+2,

where still c0 = 2 and cn = 1 otherwise. As a result,

mN
mn = mN

nm =


π
2

(
cm + m4

(m+2)4

)
, n = m,

−π
2

m2

(m+2)2 , n = m+ 2,

−π
2

n2

(n+2)2 , n = m− 2,

0, otherwise,

where c0 = 2 and cm = 1 for all m ≥ 1.

D.4.2 First derivative matrix

Also, for Neumann boundary conditions, the first derivative matrix KN is

aided by property (7.5). Denote βn =
(

n
n+2

)2
, then

φ′n =2n
n−1∑
k=0

k+n odd

1

ck
Tk(x)− βn2(n+ 2)

n+1∑
k=0

k+n odd

1

ck
Tk(x),

=

n+1∑
k=0

k+n odd

γn,kTk(x).

with

γn,k =


−2 n2

n+2
1
ck
, k = n+ 1,

4n
n+2

1
ck
, k = n− 1, n− 3, . . . ,

0, otherwise.
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Hence,

(φ′n, φm)ω =
n+1∑
k=0

k+n odd

γn,k(Tk(x), Tm(x))ω −
n+1∑
k=0

k+n odd

γn,k(Tk(x), Tm+2(x))ω,

=


− πn2

n+2 , n = m− 1,
πn
n+2 (2− nβm) , n = m+ 1,
2πn
n+2 (1− βm) , n = m+ 3,m+ 5,m+ 7, . . . ,

0, otherwise.

D.4.3 Stiffness matrix

For the stiffness matrix, consult property (7.6) with αn,k = 1
ck
n(n2 − k2),

T ′′n (x) =
n−2∑
k=0

k+n even

αn,kTk(x).

Then

T ′′n (x)− n2

(n+ 2)2
T ′′n+2(x) =

n−2∑
k=0

k+n even

αn,kTk(x)− n2

(n+ 2)2

n∑
k=0

k+n even

αn+2,kTk(x),

= − n2

(n+ 2)2
αn+2,nTn(x) +

n−2∑
k=0

k+n even

(αn,k −
n2

(n+ 2)2
αn+2,k)Tk(x),

=
n∑

k=0
k+n even

dn,kTk(x), (D.3)

with

dn,k =

{
−4n2

cn
n+1
n+2 , k = n,

− 1
ck

1
n+2n(2n2 + 4n− 2k2), k < n.

Combine relation (D.3) with the stiffness matrix (7.18),

(φ′′n(x), φm(x))ω =(φ′′n(x), Tm(x))ω −
m2

(m+ 2)2
(φ′′n(x), Tm+2(x))ω,

=

n∑
k=0

k+n even

dn,k(Tk(x), Tm(x))ω −
m2

(m+ 2)2

n∑
k=0

k+n even

dn,k(Tk(x), Tm+2(x))ω.
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Because Chebyshev polynomials are orthogonal with respect to the weight
function, many elements are zero. For example, when m > n or when n+m
odd, (φ′′n(x), φm(x))ω = 0. Suppose n = m, then

(φ′′n(x), φn(x))ω = dn,n(Tn(x), Tn(x))ω,

=− 4n2

cn

n+ 1

n+ 2

cnπ

2
,

=− 2πn2n+ 1

n+ 2
.

Moreover, when n = m+ 2,m+ 4,m+ 6, ..., then

(φ′′n(x), φm(x))ω =
n∑

k=0
k+n even

dn,k(Tk(x), Tm)ω −
m2

(m+ 2)2

n∑
k=0

k+n even

dn,k(Tk(x), Tm+2(x))ω,

= dn,m(Tm(x), Tm(x))ω −
m2

(m+ 2)2
dn,m+2(Tm+2(x), Tm+2(x))ω,

=− 1

n+ 2
(2n3 + 4n2 − 2m2n)

π

2
+

m2

(m+ 2)2

1

n+ 2
(2n3 + 4n2 − 2(m+ 2)2n)

π

2
,

=− π

2

1

n+ 2

1

m+ 2

((
(m+ 2)2 −m2

)
(2n3 − 4n2)

)
,

=− 4πn2 m+ 1

(m+ 2)2
.

As a result,

sNmn =


−2πm2m+1

m+2 , n = m,

−4πn2 m+1
(m+2)2 , n = m+ 2,m+ 4,m+ 6...,

0, n < m or n+m odd.

D.4.4 Transformation matrix

For Neumann boundary conditions, the transformation matrix can be ex-
pressed with βm = ( m

m+2)2 as

rNmn =(Tn(x), φm(x))ω,

=


cnπ

2 , n = m,
−βmπ

2 , n = m+ 2,
0, otherwise.
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E Extension to more dimensions

Introduce the short hand

N∑
k=0

:=

N1∑
k1=0

N2∑
k2=0

· · ·
ND∑
kD=0

,

where N = (N1, N2, . . . , ND) and k = (k1, k2, . . . , kD) for some D ≥ 1.

E.1 Three dimensional transform

Higher dimensional transforms are obtained by performing the one-dimensional
transform in each direction. As an example, this section discusses the three
dimensional case. Denote N1, N2, N3 the chosen number of grid points in
the x, y, z directions respectively. The N th order approximation5 uN (x, y, z)
is expanded in terms of basis functions

uN (x, y, z) =

N1∑
n=0

N2∑
m=0

N3∑
k=0

ûnmkTn(x)Tm(y)Tk(z).

The coefficients ûnmk are obtained from the nodal values u(xi, yj , zl) upon
performing the forward discrete Chebyshev transform (7.12) three times.
First transform the z direction

u
(1)
k (x, y) =

2

c̃kN3

N3∑
j=0

1

c̃j
u(x, y, zj)Tk(zj),

then transform in the y direction

u
(2)
m,k(x) =

2

c̃mN2

N2∑
j=0

1

c̃j
u

(1)
k (x, yj)Tm(yj),

and in the x direction

ûn,m,k =
2

c̃nN1

N1∑
j=0

1

c̃j
u

(2)
m,k(xj)Tn(xj),

where c̃0 = c̃N = 2 and c̃n = 1 otherwise. The forward transforms can each
be performed using the fast Chebyshev transform described in section C.3.

5This is a shorthand to denote that uN is at most order N1 in the x-direction, N2 in
the y-direction and N3 in the Z-direction.
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Likewise, the nodal values can be retrieved from the coefficients using
the backward discrete Chebyshev transform (7.13) three times, whose fast
implementation is outlined in section C.3.

u
(2)
m,k(xj) =

N1∑
n=0

ûn,m,kTn(xj)

u
(1)
k (x, yj) =

N2∑
m=0

u
(2)
m,k(x)Tm(yj)

u(x, y, zj) =

N3∑
k=0

u
(1)
k (x, y)Tk(zj)

The computation cost is order N1N2N3 log(N1N2N3). If Nd = N for d =
1, 2, 3, then the cost simplifies to O(N3 logN).

Analogously, one can transform with other basis functions in each direc-
tion successively.

E.2 Operator to matrix notation

The derivation of (10.7) from (10.5) is based on seperation of variables. It
uses Lu = uxx + uyy, approximation (10.2) and observation (10.6). For
simplicity assume equal order polynomials in both directions N1 = N2 = N .

(LuN ,φi(x)φj(y))ω

=

(
∂2

∂x2
uN , φi(x)φj(y)

)
ω

+

(
∂2

∂y2
uN , φi(x)φj(y)

)
ω

,

=

N∑
m,n=0

(
φ′′m(x)φn(y), φi(x)φj(y)

)
ω
ûmn +

N∑
m,n=0

(
φm(x)φ′′n(y), φi(x)φj(y)

)
ω
ûmn,

=
N∑

m,n=0

(
φ′′m(x), φi(x)

)
ω
ûmn

(
φn(y), φj(y)

)
ω

+
N∑

m,n=0

(
φm(x), φi(x)

)
ω
ûmn

(
φ′′n(y), φj(y)

)
ω
,

= (SUMT +MUST )ij ,

where the elements of U are given by the coefficients ũnm and the elements
of S and M are given by (8.9) and (8.7). Each element (SUMT +MUST )ij
represents the left hand side of (10.5) for one pair of test functions φij(x, y).
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Similarly,

(f,φi(x)φj(y))ω

=

N∑
m,n=0

(
Tk(x)Tl(y), φi(x)φj(y)

)
ω
f̂mn,

=

N∑
m,n=0

(
Tk(x), φi(x)

)
ω
f̂mn

(
Tl(y), φj(y)

)
ω
,

= (RFRT )ij ,

where the elements of F are given by the coefficients f̂nm and the elements
of R are given by (8.10).

E.3 Kronecker product

The Kronecker product of A an m×n matrix and B a p× q matrix, is given
by

(A⊗B) =

a11B . . . a1nB
...

. . .
...

am1B · · · amnB


Suppose we want to compute X in AXB = C, then(

BT ⊗A) vec(X) = vec(AXB) = vec(C)

where vec(X) is called the vectorization of X. The vectorization is obtained
by stacking the column of X into a single column vector:

x = vec(X) =



X00
...

Xn0

X01
...

Xn1
...

Xnp


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F Fast schemes

Consider matrix vector multiplications of the type Au = g with column
vectors u = (u0, u1, . . . , uN−1)T and g = (g0, g1, . . . , gN−1)T . Interme-

diate steps use column vectors f (i) = (f
(i)
0 , f

(i)
1 , . . . , f

(i)
N−1)T and h(i) =

(h
(i)
0 , h

(i)
1 , . . . , h

(i)
N−1)T .

F.1 Fast schemes for Chebyshev

Mass matrix

The mass matrix M with entries (8.4) is diagonal. So g = Mu is simply

gn =

{
πun, n = 0,
π
2un, 1 ≤ n ≤ N − 1.

which costs O(N) flops.

First-derivative matrix

To perform g = Ku with K as expressed in (8.5), we first create f as

fn = πnun, 0 ≤ n ≤ N − 1,

and then use f in the following recursion relations to obtain g:

gN−1 =0,

gN−2 =fN−1,

gn =gn+2 + fn+1, for n = N − 2, . . . , 0.

The order of execution is important. The cost is again O(N).

Stiffness matrix

To compute g = Su as (8.6), start with

f (1)
n =

π

2
nun, 0 ≤ n ≤ N − 1,

f (3)
n =n2f (1)

n un, 0 ≤ n ≤ N − 1.

We again use backward recursion relations for both i = 1 and i = 3

h
(i)
N−1 = 0 = h

(i)
N−2

h(i)
n =h

(i)
n+2 + f

(i)
n+2, for n = N − 3, . . . , 0.
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Finally, we combine

gn = h(3)
n − n2h(1)

n , 0 ≤ n ≤ N − 1.

Even this more complicated scheme is completed in O(N) computations.

F.2 Fast schemes for Dirichlet boundary conditions

Mass matrix

Consider the computation g = MDu. The elements of the banded matrix
MD are given by (8.12). The product can be computed efficiently as

gn =


π
(

3
2un −

1
2un+2

)
, n = 0,

π
(
un − 1

2un+2

)
, n = 1,

π
(
un − 1

2(un−2 + un+2)
)
, 2 ≤ n ≤ N − 3,

π
(
un − 1

2un−2

)
, n = N − 2, N − 1.

This costs O(N) computations.

First-derivative matrix

Furthermore, we examine g = KDu with entries of KD as in (8.13).

gn =


π un+1, n = 0,
π(n+ 1) (un+1 − un−1) , 1 ≤ n ≤ N − 2,
π(n+ 1)un−1, n = N − 1,

The above scheme is computed in O(N) computations.

Stiffness matrix

Let us explore recursions for g = SDu, where SD is given by (8.14). We
split SD into

SD = D(1)(I +D(0)CS)

where I is the identity matrix, D(1) and D(0) are diagonal matrices with
entries below and CS is a strictly upper-triangular checkerboard matrix
whose elements are given by:

d(1)
m = −2π(m+ 1)(m+ 2),

d(0)
m = 2/(m+ 2),

cSmn =

{
1 n = m+ 2,m+ 4,m+ 6 . . .
0 otherwise.

(F.1)
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These multiplications can be computed efficiently using the following back-
ward recursion relations. We start with f = CSu,

fN−1 = fN−2 = 0,

fn = fn+2 + un+2, for n = N − 3, . . . , 0. (F.2)

Compute g = D(1)(I +D(0)CS)u with aid of (F.2) as

gn = d(1)
n (un + d(0)

n fn), 0 ≤ n ≤ N − 1.

This scheme of recursion relations takes O(N) computations.

Transformation matrix

Take g = RDu with RD as in (8.15):

gn =


π
(
un − 1

2un+2

)
, n = 0,

π
2 (un − un+2) , 1 ≤ n ≤ N − 3,
π
2un, n = N − 2, N − 1.

F.3 Fast schemes for Neumann boundary conditions

Mass matrix

Analogously, we take g = MNu for basis functions with Neumann boundary

conditions, with MN as in (8.16). Recall βn =
(

n
n+2

)2
, such that

gn =


π un, n = 0,
π
2

(
β2
nun − βnun+2

)
, n = 1,

π
2

(
β2
nun − βnun+2 − βnun−2

)
, 2 ≤ n ≤ N − 3,

π
2

(
β2
nun − βnun+2

)
, n = N − 2, N − 1,

which can be done in O(N) computations.

First-derivative matrix

Additionally, we explore g = KNu with KN from (8.17). Define ηn = n
n+2 .

We take

f (1)
n =ηnun,

f (2)
n =nf (1)

n .
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We perform a recursion scheme for h as

hN−1 = 0 = hN−2 = hN−3,

hn =hn+2 + f
(1)
n+3, for n = N − 4, . . . , 0.

We combine f (1), f (2) and h to get g

gn =

 π
(

2f
(1)
n+1 − βnf

(2)
n+1 + 2(1− βn)hn

)
, n = 0,

π
(

2f
(1)
n+1 − βnf

(2)
n+1 + 2(1− βn)hn − f (2)

n−1

)
, 1 ≤ n ≤ N − 1.

The costs of the above algorithm is order N as well.

Stiffness matrix

Similarly to the Dirichlet case in section F.2, one can split SN as given
in (8.18) as

SN = D(1)(I +D(2)CSD(3)),

where again I is the identity matrix, C has entries (F.1) and D(1), D(2), D(3)

are diagonal matrices with entries:

d(1)
m = −2πm2(m+ 1)/(m+ 2),

d(2)
m =

2

m2(m+ 2)
,

d(3)
m = m2.

Efficient recursion relations for g = SNu are

hN−1 = hN−2 = 0,

hn = hn+2 + d
(3)
n+2un+2, for n = N − 3, . . . , 0.

We incorperate hn into

gn = d(1)
n (un + d(2)

n hn), 0 ≤ n ≤ N − 1.

This recursion scheme can be done in O(N) computations.

Transformation matrix

Lastly, we investigate g = RNu with (8.19) and βn =
(

n
n+2

)2
,

gn =


π
(
un − βn

2 un+2

)
, n = 0,

π
2 (un − βnun+2) , 1 ≤ n ≤ N − 3,
π
2un, n = N − 2, N − 1.
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G Condition number

Suppose A ∈ RN×N with elements aij for 0 ≤ i, j ≤ N − 1. We introduce
several norms (Golub and Van Loan [6]),

||A||1 = max
0≤j≤N−1

N−1∑
i=0

|aij | , (G.1)

||A||∞ = max
0≤i≤N−1

N−1∑
i=0

|aij | , (G.2)

||A||F =

N−1∑
i=0

N−1∑
j=0

|aij |2
1/2

. (G.3)

The last of the above is referred to as the Frobenius norm. Definitions (G.1)
and (G.2) are special cases of the general p-norm

||A||p = sup
x 6=0
||Ax||p ,

where x ∈ RN such that ||x||p = 1. The following inequalities [6] relate the
norms,

||A||2 ≤
√
N ||A||1 ,

||A||2 ≤
√
N ||A||∞ ,

||A||2 ≤ ||A||F , (G.4)

||A||2 ≤ (||A||1 ||A||∞)1/2 . (G.5)

G.1 Condition number of the stiffness matrix

G.1.1 Derivation of the inverse of stiffness matrix

First we define dm = (m + 1)(m + 2) and am = 2(m + 1). Consider the
stiffness matrix SD with Dirichlet boundary conditions (8.14) in terms of d
and a

sDmn =


−2πdm, n = m,
−2πam, n = m+ 2,m+ 4, . . . ,
0, otherwise.

Let us denote the inverse of SD with Z = (SD)−1 such that SDZ = ZSD =
I, where I is the identity matrix. The diagonal elements must satisfy

1 = Imm = (SDZ)mm = −2πzmmdm, for all m.
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As a result,

zmm = (−2πdm)−1 =
(
− 2π(m+ 1)(m+ 2)

)−1
.

Define δm = −2πzmm such that

δm =
(
(m+ 1)(m+ 2)

)−1
. (G.6)

For n = m+ 2, the elements of SDZ = I are

0 = Im,m+2 = (SDZ)m,m+2 = amδm − 2πdm+2zm,m+2.

This gives

−2π zm,m+2 = − am
dmdm+2

= − 2

(m+ 2)(m+ 3)(m+ 4)
.

Define αn = −2π zn−2,n. Thus,

αn =− 2
(
n(n+ 1)(n+ 2)

)−1
. (G.7)

Some bookkeeping verifies that for all m

amδm + am+2αm+2 =
2

m+ 4
= am+2δm+2. (G.8)

We construct an expression for the fourth off-diagonal (SDZ)m,m+4 and
substitute equality (G.8)

Im,m+4 =(SDZ)m,m+4,

0 =amδm + am+2αm+2 − 2πdm+4zm,m+4,

=am+2δm+2 − 2πdm+4zm,m+4.

Comparison to

Im+2,m+4 =(SDZ)m+2,m+4,

0 =am+2δm+2 + dm+4αm+4,

gives that αm+4 must be equal to−2πzm,m+4. Likewise, for all k = 6, 8, 10, . . . ,
the expression for(SDZ)m,m+k can be compared with (SDZ)m,m+k−2 result-
ing in −2πzm,m+k = αm+k.

As a result, the inverse Z of the Dirichlet stiffness matrix SD also has
an upper-triangular checkerboard structure

zmn =


−(2π)−1δn, n = m,
−(2π)−1αn, n = m+ 2,m+ 4, . . . ,
0, otherwise,

with δn as in (G.6) and αn as in (G.7).
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G.1.2 Norm of SD

Computation of (G.1), (G.2) and (G.3) for SD gives

∣∣∣∣SD∣∣∣∣
1
≤2π

dN +
N−2∑
k=0

k+m odd

ak,N

 ,

≤2π

(
dN +

⌊
N

2

⌋
abN−1

2
c

)
,

≤2π

(
(N + 1)(N + 2) +

N

2
(N + 1)

)
,

≤O(N2).

∣∣∣∣SD∣∣∣∣∞ =2πdN−1 = 2π(N + 1),

=O(N2).

∣∣∣∣SD∣∣∣∣
F

=2π

√√√√N−1∑
k=0

d2
k +

N−3∑
k=0

⌊
N − k

2

⌋
a2
k,

≤2π

√√√√N−1∑
k=0

(k + 1)2(k + 2)2 +
N−3∑
k=0

N − i
2

4(k + 1)2,

≤2π

√
1

15
(N + 1)(N + 2)(N + 3) (3N2 + 12N + 10),

+
1

6
(N − 1)N(N2 + 5N − 2),

≤O(N5/2).

In the last derivation above Maple software was used for the analytic ex-
pression of the sum. Inequality (G.5) yields∣∣∣∣SD∣∣∣∣

2
≤
√
||SD||1 ||SD||∞,

≤

√
2π

(
(N + 1)(N + 2) +

N

2
(N + 1)

)
2π(N + 1)(N + 2),

≤ O(N2).
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G.1.3 Norm of Z

The norms (G.1)-(G.3) of the inverse stiffness matrix Z (13.3) are

||Z||1 =
1

2π
δ0 =

1

4π
,

≤O(1).

||Z||∞ =
1

2π

δ0 +

bN/2c∑
k=1

|α2k|

 ,

=
1

2π

1

2
+

bN/2c∑
k=1

1

k(2k + 1)(2k + 2)

 ,

≤ 1

2π

(
1

2
+
π2

6

)
,

≤O(1).

||Z||F =
1

2π

√√√√N−1∑
k=0

δ2
k +

N−1∑
k=2

⌊
k

2

⌋
α2
k,

≤ 1

2π

√√√√N−1∑
k=0

(k + 1)−2(k + 2)−2 +

N−1∑
k=2

k

2

(
2

k(k + 1)(k + 2)

)2

,

≤ 1

2π

√
π2

6
+
π2

6
,

≤O(1).

Using inequality (G.4) an upper bound on the norm of Z is

||Z||2 ≤ ||Z||F ,
≤ O(1).

G.1.4 Norm of Ŝ

The relation
N∑
j=1

1

j
≤ 1 + ln(N) ≤ 1 + 2

√
N, (G.9)
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is derived in Appendix section G.1.6. For Ŝ as in (13.2), the norms (G.1) is∣∣∣∣∣∣Ŝ∣∣∣∣∣∣
1

=1 +

N−3∑
k=0

k even

2

i+ 2
,

≤1 +

bN/2c∑
k=1

1

k
,

≤2 + ln

(
N

2

)
,

≤2 + 2
√
N,

≤O(N1/2).

where (G.9) was used. Moreover, norms (G.2)-(G.3) are∣∣∣∣∣∣Ŝ∣∣∣∣∣∣
∞

=
N−1∑
k=0

k even

1,

=1 + bN/2c,
≤O(N).

∣∣∣∣∣∣Ŝ∣∣∣∣∣∣
F

=

√√√√N−1∑
k=0

1 +

N−3∑
k=0

⌊
N − k

2

⌋(
2

k + 2

)2

,

≤
√
N + 1 + 2N

π2

6
,

≤O(N1/2).

Due to inequality (G.4), an upper bound of the norm of Ŝ can be found as∣∣∣∣∣∣Ŝ∣∣∣∣∣∣
2
≤ O(N1/2).

G.1.5 Norm of Ẑ

With aid of (G.9)we evaluate the (G.1)-(G.3) norms for Ẑ given by (13.5)
produces ∣∣∣∣∣∣Ẑ∣∣∣∣∣∣

1
=2.
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∣∣∣∣∣∣Ẑ∣∣∣∣∣∣
∞

=1 +

bN/2c∑
k=1

1

k
,

≤2 + ln

(
N

2

)
,

≤2 + 2
√
N,

≤O(N1/2).

∣∣∣∣∣∣Ẑ∣∣∣∣∣∣
F

=

√√√√N−1∑
k=0

1 +
N−1∑
k=2

⌊
k

2

⌋(
2

k

)2

,

≤

√√√√N + 1 +
N−1∑
k=2

2

k
,

≤
√
N + 1 +N − 1,

≤O(N1/2).

An upper bound for Ẑ can be found with inequality (G.4),∣∣∣∣∣∣Ẑ∣∣∣∣∣∣
2
≤ O(N1/2).

G.1.6 Derivation of (G.9)

For k ≥ 2,

1

k
≤ 1

x
, for all k − 1 ≤ x ≤ k.

Thus
1

k
≤
∫ k

k−1

1

x
dx, for all k ≥ 2. (G.10)

Let’s consider
N∑
j=1

1

j
= 1 +

N∑
j=2

1

j
.
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Substitute (G.10) for each element of the sum and join the integrals

N∑
j=1

1

j
≤1 +

∫ N

1

1

x
dx,

≤1 + ln(N). (G.11)

Logarithmic rules state

ln(xα) =α ln(x).

If x ≥ 1, then ln(x) ≤ x, because d
dx ln(x) = 1

x ≤ 1 = d
dxx. As a result,

ln(xα) ≤αx, for all x ≤ 1.

We take x = (
√
N)2 such that

ln(N) ≤2
√
N.

Combining this with inequality (G.11) shows relation (G.9):

N∑
j=1

1

j
≤ 1 + ln(N) ≤ 1 + 2

√
N.

G.2 Condition number of Ŝ versus L̂(1)

Figure G.1 shows that the condition number of L̂(1) is (as expected) the
same order as the condition number of Ŝ.

G.3 Settings in numerical tests on condition number

The condition numbers in section 13.2.2 have been computed in Matlab and
the iteration numbers are obtained by solving the system Au = g for u
with the Matlab built-in BiCGSTAB routine. The iteration number per N
was averaged over 10 trials with g comprising normally distributed random
numbers.

For the one-dimensional case displayed in Figures 13.1 and G.1, the
range is N = 4, 6, 8, . . . , 500. The BiCGSTAB algorithm was executed with
tolerance 10−14, which is well-above the Matlab machine precision of 10−16.

The two-dimensional case in Figure 13.2 has range N = 4, 6, 8, . . . , 50,
and the three dimensional situation in Figure 13.3 employedN = 2, 4, 6, . . . , 20.
The tolerance was set to 10−14 and 10−8 for respectively, the two and three
dimensional case.
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Figure G.1: The condition numbers in 1-norm (blue,yellow) and 2-norm (in red,purple) of precon-

ditioned Neumann stiffness matrices Ŝ (13.7) (in yellow,purple) and L̂(1) (13.9) (in blue,red), where
N denotes the number of CGL points. Additionally, the average iteration counts in BiCGSTAB
are shown as dots for L̂(1) and crosses for ŜN .

G.4 Setting in tests on convergence

The tests on the condition numbers where performed using Matlab with test
problem (14.1). Solutions were obtained from the linear systems solved with
BiCGSTAB with a tolerance of 10−15. The error was measured as (14.2).

In one, two and three dimensions, the resolution (in each direction)
was set to respectively N = 5, 7, 9, . . . , 81, N = 3, 5, 7, . . . , 91 and N =
4, 6, 8, . . . , 30.
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