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Abstract

In General Relativity (GR) the Kerr Black hole is the unique vacuum solu-
tion for a given mass and angular momentum. In Supergravity (SUGRA),
the low-energy limit of string theory that extends GR, there is another
mechanism that can support matter and that is the non-trivial topology of
spacetime. Many “black hole microstate geometries” are known that are
supported by cohomological fluxes on topological cycles in the geometry.
This mechanism has been described recently, in detail, in terms of Komar
integrals and a Smarr formula by Gibbons and Warner, in the context
of five dimensional SUGRA. In this project I investigate this mechanism
thoroughly initially in 4 dimensions and then in 10 dimension in the con-
text of Type IIA superstring theory. Moreover, I extend this idea to
asymptotically not-flat AdS spacetime.
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Chapter 1

Introduction

1.1 Brief History of Black Holes

In 1915, Albert Einstein presented the theory of General Relativity (GR), which
constitutes one of the cornerstones of Theoretical Physics, since it entails a novel
description of gravity (For a general review of General Relativity see [1, 2, 3, 4]).

The load-bearing part of GR is of course the Einstein field equations:

Rµν −
1

2
gµνR = Tµν (1.1)

where Rµν and R are the Ricci tensor and Ricci scalar respectively, gµν is the
metric and Tµν is the stress-energy tensor.

The first solution of (1.1) that was ever found was the so-called Schwarzschild
black hole, which was discovered by Karl Schwarzschild in 1916. The geometry
of this black hole, is the well-known Schwarzschild metric:

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2
2 (1.2)

where M is the ADM mass of the black hole. It worth mentioning that the
ADM energy is a way of defining energy at the boundaries of an asymptotically
flat spacetime. The above-mentioned solution describes an empty spacetime (i.e
Tµν = 0) and it is completely characterised by its mass M . As it was shown
later by Birkhoff, Schwarzschild black hole is the only spherically symmetric
vacuum solution that exists.

The following years, more light was shed on the field of black holes. More
specifically, Reissner and Nordstrom, found a charged black hole, completely
characterised by its electric charge Q [5, 6], while Kerr found a non static black
hole, which in turn is characterised by its angular momentum J [7].
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Figure 1.1: The impact of a black hole to spacetime continuum.

On top of that, there is the so-called “No-hair conjecture”, and later “No-hair
theorem”, which states that in 4 dimensions a black hole can be fully described
by these three parameters M , Q, and J . The latter suggests that a solution
which already contains these three parameters, is the most general solution that
one could get in 4 dimensions. This solution is known as the “Kerr-Newman”
black hole [7, 8, 9].

Based on the above, one could speculate that there is nothing more general,
concerning the parameters that you can use in order to describe a black hole,
beyond Kerr-Newman black hole. However, after the emergence of string theory,
and later superstring theory, the idea of black holes in higher dimensions arose.

1.2 New Solutions: Microstate Geometries

Despite the fact that GR proved to be right in almost every experiment that
has been done, a major drawback of the theory is that it fails to come to an
agreement with quantum mechanics. However, the occurrence of black holes
creates some famous paradoxes and then a quantum theory of gravity becomes
really necessary in order to solve those paradoxes.

Two major aspects that involve black holes, and they appear to be of great
importance, and at the same time difficult to solve, comprise of the famous
“Information Paradox” and the “Black hole entropy”. (For a general review of
the paradoxes see [10, 11, 12]).

Concerning the “Information Paradox”, it is widely known that an object that
passes the event horizon of a black hole cannot escape the gravitational force
of the black hole afterwards. To put it differently, every piece of information
regarding these objects remains trapped into the black hole. However, Hawking
provided evidence that it is possible for a virtual particle pair to be created near
the horizon of a black hole, and furthermore, that even if one of them falls into
the black hole, the other can still escape in form of a thermal radiations that
carries no information, known as Hawking radiation. Eventually, this radiation
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will lead to the evaporation of the black hole and all the information that will
have been inside the black hole, will be lost [13]. This process demolish the idea
of unitarity evolution, and it is in contrast with quantum physics.

Regarding the second aspect, it was suggested by Bekenstein and Hawking in
1972, that a well-defined entropy of a black hole should be connected with its
horizon area according to the following formula [14, 15].

SBH =
A

4G
(1.3)

where S is the entropy of the black hole and A is the area of the event hori-
zon. The nature of this entropy is purely thermodynamical. Our experience
from classical physics, and more specifically from the principals of statistical
mechanics, has taught us that the entropy has also a statistical nature which
it must be related to a microscopic description of a black hole. We reverse the
term “microstate geometries” for all the different microscopic descriptions of
a black hole which they are also solutions to Einstein equations. Since a mi-
crostate geometry should exclude any entropy itself, it becomes apparent that
the microstate geometry should be without horizon. Furthermore, another ne-
cessity of the microstate geometries is that they need to be smooth everywhere.
That way, any potential naked singularities after removing the horizon will be
kept away. On top of that we can also take for granted that the microstate
geometries are time-independent. These properties reveal a solitonic nature of
microstate geometries.

Considering however, that a large horizon entails a large entropy, it is necessary
to assume the existence of a very large number of possible microstate geome-
tries. (According to Boltzmann’s entropy formula there should be eS number
of micorstate geometries). Inevitably, the question that emerges is how can we
find such a big number of different microstate geometries.

As it has been already stated above, an ideal quantum gravity theory needs
to incorporate a solution for the paradoxes we described. String theory seems
to provide the means for the solution of those problems, and consequently to
become a successful quantum gravity theory. It was shown, that the correct
number of microstate geometries that matches the Bekenstein-Hawking entropy
[14, 15], can be obtained by counting the different configurations of the branes
and strings in the zero gravitational coupling limit. Despite this progress how-
ever, the geometric aspects of the microstates, following the initiation of the
gravitational coupling, still remain unsolved.

1.3 Conserved Charges

In this section, we will describe a theoretical mechanism able to produce the
parameters that can describe a black hole as conserved charges out of given
solutions of black holes. (For a review see[1, 16]). Motivated by the easiest of
the parameters to be obtained, the electric charge, one can show that it can be
interpreted as the associated conserved charge of a conserved current.
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1.3.1 Electric Charge - Electrodynamics

Starting with Maxwell’s equations written in terms of differential forms (see
Appendix A)1.

dF = 0 d ∗ F = ∗j (1.4)

where F is the 2-form corresponding field strength of the 1-form U(1) gauge
field A, and j is the current, it is very easy to prove that the resulting current
is conserved, since:

d ∗ j = d2 ∗ F = 0 (1.5)

where the basic property of the exterior derivative d2 = 0 has been used.

In order to find the associated conserved charge, one has to integrate the con-
served current over the spatial components of the manifold Σ that the theory
lives on:

Q =

∫
Σ

∗j =

∫
Σ

d ∗ F =

∫
∂Σ

∗F (1.6)

where in the last equality Stokes’ theorem was applied. The final integral stands
for the integration of the dual field over a hyper-surface that includes the man-
ifold Σ. This is what we is defined in the electrodynamics as the electric charge
that is included in the area covered by the hyper-surface ∂Σ. Hence, the asso-
ciated charge of the conserved current is the electric charge.

1.3.2 Komar Integral

In an effort to find a similar process able to produce the mass M and the angular
momentum J as conserved charges, we attempt to define an 1-form current with
components jµ of the form [1, 16]

jµ = TµνKν (1.7)

where Tµν is the stress energy tensor and Kµ is a Killing vector admitted by
the geometry. It can be easily shown that this current is conserved, since:

∇µjµ = ∇µ(KνT
µν) = (∇µKν)Tµν +Kν(∇µTµν) = 0 (1.8)

1In this project we follow the conventions of [17]
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where in the last equality each individual term is zero, due to the Killing equa-
tion, the symmetries of Tµν , and also due to the fact that Tµν is conserved
itself.

One cannot avoid observing though, that a charge of the form:

Q =

∫
Σ

jµdΣµ =

∫
Σ

TµνKνdΣµ (1.9)

could create some problems. In the case of the Schwarzschild spacetime for
example, where the stress-energy tensor vanishes everywhere, the above integral
produces a zero charge, despite the fact that one anticipates to obtain a non-
zero energy. As we already mentioned, there is a non-zero ADM energy, even
in the Schwarzschild black hole.

In order to overcome this problem, we define a new 1-form current with com-
ponents jµ of the form:

jµ = RµνKν (1.10)

The difference with the previous current is that now we use the Ricci tensor
Rµν instead of the stress-energy tensor.

This new current is still conserved since:

∇µjµ = ∇µ(KνR
µν) (1.11)

= (∇µKν)Rµν +Kν(∇µRµν)

=
1

2
(∇µKν +∇µKν)Rµν +Kν

1

2
(∇νR) = 0

where the Killing equation, and Killing vector properties have been used.

Having removed the previous problems arose by a current that contains the
stress-energy tensor, we are now able to find the conserved charge that results
out of (1.10). The conserved current (1.10) can be written in terms of differential
forms as j = ∗dK where K the Killing 1-form. Using this expression for the
current, in the same manner as in electrodynamics, we can find the following
associated charge:

Q =

∫
Σ

∗j =

∫
Σ

d ∗ dK =

∫
∂Σ

∗dK (1.12)

where Σ is a space-like hyper-surface and ∂Σ stands for the outer boundary of
the space-like hyper-surface Σ. This final expression is called “Komar integral”
[18].
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QK = κD

∫
∂Σ

∗dK (1.13)

where κD is a normalisation constant that can be specified by linearising Einstein
equations, and by assuming that at infinity the T00 is the dominant term of the
stress - energy tensor, i.e : T00 � T0i, Tij for i, j 6= 0. Under this energy
condition, one can show [19]

κD = − 1

16πGD

D − 2

D − 3
(1.14)

1.3.3 Example: The Schwarzschild Black Hole

A way to verify that (1.13) indeed produces the mass M as the associated
conserved charge, is to apply the formula on the Schwarzschild black hole [1].

As it was already mentioned, Schwarzschild black hole is a solution to the empty
Einstein equation Rµν = 0. This solution has the form (1.2). Since the metric
is static, it admits a time-like Killing vector of the form Kµ = (1, 0, 0, 0). We
will calculate the Komar integral for the given geometry and Killing vector.

The Komar integral (1.13) in 4 dimensions, in terms of indices is:

QK =
1

4πG

∫
∂Σ

d2x
√
γ(2)σµnν∇µKν (1.15)

where γ is the metric at infinity, and σµ,nν are the normal unit vectors of the
huper-surface ∂Σ normalised to σµσ

µ = −1 and nµn
µ = +1.

For the normalised (unit) vectors we can show:

nµ =
(

1− 2GM

r

)− 1
2

δµr σµ = −
(

1− 2GM

r

) 1
2

δµt (1.16)

Hence, the only surviving term in Komar expression is:

σµnν∇µKν = σtnr∇tKr = −GM
r2

(1.17)

The metric at infinity is:

γ
(2)
ij = r2(dθ2 + sin2 θdφ2) (1.18)
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therefore

√
γ(2) = r2 sin θ (1.19)

Substituting back, we get:

QK =
1

4πG

∫
dθdφr2 sin θ

(GM
r2

)
= M (1.20)

As we can observe, the Komar integral is indeed the expected ADM mass.
However, despite the fact that we proved that the Komar integral is equal to
the mass only for the Schwarzschild case, it is true that Komar charge can
always be interpreted as the mass. To elaborate on the latter, let us first,
remind ourselves that the components of the conserved current j are RµνK

ν

and the only non vanishing components of the Killing vector is the temporal
one. Subsequently, the only term that survives inside the Komar integral is
the temporal component of the Ricci tensor R00 which according to Einstein
equations is equal to T00. We neglected the contribution of the trace of the
stress energy tensor, since as we already mentioned, the energy condition that
we imposed, implies that at infinity T00 � Tij. The temporal component of
the stress energy tensor can be interpreted as energy (or mass), hence we are
always able to interpret the Komar integral as energy.

1.4 Smarr Formula

The Komar integral can be extended in such a way to include a topological
term, as well as a term coming from the event horizon. (For a review see
[20]). That way, it can be shown that the Komar mass, which is calculated at
infinity, is comprised by a contribution coming from the bulk (i.e topology), and
a contribution coming from the event horizon.

The way to succeed that, is to consider a new kind of manifold that describes
the spacetime (Figure 2.21). In this new configuration, it is assumed that the
space contains an inner boundary, apart from the boundary at infinity. Between
those two boundaries there is the bulk of our space, that it might be empty or,
as it will be shown in the next sections, filled with matter fields.

Regarding the integration of differential forms in such a space, Stokes’ theorem
for a manifold with two boundaries is of the form:

∫
Σ

dAp =

∫
∂Σout

Ap −
∫

∂Σint

Ap (1.21)

Coming to our case, for the conserved current j = ∗dK, one obtains:
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Figure 1.2: A manifold with two boundaries: An outer boundary, an inner
boundary and the bulk in-between.

∫
Σ

d ∗ dK =

∫
∂Σout

∗dK −
∫

∂Σint

∗dK (1.22)

The first integral of the RHS of equation (1.22) is the definition that we gave
for the Komar integral. As a last step, in order to make connection with black
holes, we identify the inner boundary of the manifold as the event horizon of a
black hole. That way, our configuration consist of a black hole with its event
horizon as an inner boundary, the bulk, and the outer boundary (Figure 2.21).
Finally, by rearranging terms we obtain:

QK =

∫
Σ

d ∗ dK +

∫
∂Σh

∗dK (1.23)

Equation (1.23) is called “Smarr Formula”, and it relates the Komar integral
with contributions coming from the bulk, and from the event horizon [21].

An application of the Smarr formula to the Schwarzschild black hole, leads to
the definition of the Komar integral. Indeed, since the bulk of Schwarzschild
spacetime is empty, the current, which is proportional to the Ricci tensor van-
ishes everywhere in the bulk. Hence, the topological term vanishes and the final
expression we get is the original definition of the Komar integral. However, as
we will show, there are also some other cases which can produce more interesting
results.

It is used for the Smarr formula to be treated by assuming that there is no
topology and consequently, that all the contribution arises from the event hori-
zon [22]. In the previous section we already advocated that Komar integral can
be interpreted as the ADM energy, and one could show that the integral at
the event horizon is proportional to the area of the black hole covered by the
hyper-surface of an event horizon. If we also include the other two parameters
(electric charge and angular momentum) we will obtain that the contribution of
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the event horizon is also proportional to the electric charge and to the angular
momentum. Hence, by ignoring topology, a manipulation of equation (1.23)
yields:

dE =
κ

8π
dA+ ΩdJ + ΦdQ (1.24)

where Ω is the angular velocity and Φ is the electrostatic potential. Equation
(1.24) is known as the first law of black hole thermodynamics [20].

In this thesis we will treat the Smarr formula in a different way, namely by
assuming that there is no event horizon and the whole contribution is coming
from the bulk. We will also discuss how a mass can survive from collapsing in
this horizonless case.

1.5 Motivation and Aim of the Thesis

In light of the foregoing, the aim of the present project is to study a mecha-
nism which was originally created by Gibbons and Warner [19], in four and ten
dimensions. This mechanism shows, by making use of the Komar Integral and
the Smarr Formula that has been described before, that one is able to measure
a non-zero mass coming from the bulk of the spacetime, even without an event
horizon. A black hole cannot exist without the existence of an event horizon,
since in the absence of the latter what remains is a naked singularity absorbing
everything. In this extreme case of no event horizon the whole universe would
collapse into the singularity and in the end, a zero Komar mass would be ad-
mitted. However, as it was mentioned, one, using this new mechanism that we
described, is able to obtain a non-zero mass, coming from a solution without an
event horizon. These solutions are the microstate geometries that have already
been discussed.

To begin with, we focus on four dimensions, in which we clarify that topology
makes it very hard to find such solutions. In particular, we will show that
in four dimensions the final result depends only in the first cohomology group
of the manifold (see Appendix B). Therefore if we make the assumption that
we work only with simply connected topological spaces which they admit a
trivial first cohomology group, we will show that this trivial topology generates
a non-interesting result which advocates the non-existence of solitons in four
dimensions. That will underlie the need of introducing extra dimensions, which
as we will show, provide us with more freedom on choosing the topology. Indeed,
even for one extra dimensions of Gibbons and Warner [19], one can observe
that there is more than one cohomology groups evolved. In our project, more
specifically, we work in frame of the ten dimensional supergravity [23, 24], which
is the low energy limit of ten dimensional type II superstring theory.

Finally, we examine the validity of this mechanism under the existence of a
cosmological constant Λ which leads to either a deSitter or AdS spacetime, de-
pending on its value. The cosmological constant Λ creates a curvature which
gives a divergent Komar integral. In this thesis, we will try to treat this diver-
gence both at infinity, meaning the Komar mass, and in the bulk, by trying to
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cancel the divergence appearing in Smarr formula. As we see, there is a lot of
literature concerning this topic In our project we will treat the problem by the
use of a concept called “Killing potential” [25, 26], since, as we will show, it
an also be used in order to treat the divergence in the bulk, i.e in the RHS of
Smarr formula.
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Chapter 2

AdS Spacetime

The main tools that will build the mechanism involving topology, that will be
described in the next chapters, are the Komar integral and the Smarr formula.
In the present chapter we examine the behaviour of these formulas under the
presence of a non-zero cosmological constant Λ. That way, we show that the
mechanism can be extended to AdS spacetime. In this project we will focus
only on four-dimensional AdS spacetime, however, the manipulation that we
will present works well in any number of dimensions.

2.1 Komar Integral in AdS Spacetime

The definition (1.13) of the Komar integral does not take into account the cur-
vature of the spacetime. In the current chapter we want to study the behaviour
of Komar integral in a spacetime which also includes a negative cosmological
constant Λ. This leads to curved AdS spacetime. Up to now we have been deal-
ing with asymptotically flat spacetimes and as we will show, spacetime with a
cosmological constant, produces a divergent Komar integral. This suggests that
the Komar integral (1.13) is not well-defined for spaces with curvature (For a
more general review see[25, 26, 27]).

The Hilbert-Einstein action, including a cosmological constant in 4 dimensions
is of the form:

1

2κ

∫
d4x
√
−g
(
R− 2Λ

)
(2.1)

The variation of the action with respect to the metric yields:

Rµν −
1

2
gµνR+ Λgµν = 0 (2.2)

By contraction of the indices we get straightforwardly that R = 4Λ, and by
substituting back to (2.2) we obtain:
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Rµν = Λgµν (2.3)

Since the Komar integral depends on the Ricci tensor, we can very easily con-
clude that it is proportional to the integral of the cosmological constant. Sub-
sequently, the charge is proportional to the volume of the spacetime, and thus,
since the integration takes place at infinity, the radius goes to infinity and the
Komar integral diverges.

In order to find explicitly the cause of this divergence, we will calculate the
Komar integral for AdS spacetime. Following the same procedure as in the
Schwarzschild black hole, the only ingredients that are needed, are a geometry
that solves (2.3) and a time-like Killing vector. Such geometry is the familiar
AdS4 spacetime, described by the following metric

ds2 = − r
2

R2
dt2 +

R2

r2
dr2 + r2dΩ2

2 (2.4)

where in abstract dimensions

1

R2
=

2Λ

(D − 1)(D − 2)
(2.5)

where D is the number of dimensions of spacetime. In our case for D = 4 we
get 1

R2 = Λ
3 .

Once again, the metric does not depend on time, hence, it admits a time-like
Killing vector of the form Kµ = (1, 0, 0, 0). Repeating the same steps as before,
one obtains for the Komar integral

QK =

∫
∂Σ

∗dK =

∫
∂Σ

dΣµν∇µKν =

∫
∂Σ

dΣtr
r

R2
(2.6)

As we can observe, the integral is proportional to the radius, hence, for r →∞,
the charge also goes to infinity. This entails that the original definition of Komar
integral is not well defined in the case of an asymptotically AdS spacetime.

2.2 Possible Solutions For the Divergence

2.2.1 Various Solutions

There is a lot of literature concerning the divergent Komar integral for AdS
spacetime. For instance, Brown and York proposed the idea of the quasilocal
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stress-energy tensor, which is a redefinition of the latter at infinity, including
the extrinsic curvature of the spacetime Θ as

Tµνbound =
1

8πG

(
Θµν −Θγµν +

2√
−γ

δSct

δγµν

)
(2.7)

where Sct is an extra counter-term that cancels the divergency coming from the
curvature [28, 29]. It worth mentioning that indeed, one can show that this idea
can treat the problem of divergence in pure AdS spacetimes, however it does
not apply well in spacetimes of the form AdSp × Sq. Despite the fact that such
spaces are flat, since the negative curvature of AdS is exactly cancelled by the
positive curvature of the sphere, the Komar integral still diverges at infinity.

Another way to treat the problem could be via gravitational Hamiltonian for-
malism, introduced by Hawking and Horowitz [30]. It needs to be mentioned
though, that this is a much more general framework, which can be used also in
our case.

However, in this present project, we will try to fix the divergence using the
Killing potential, which was first introduced in [25, 26]. The reason why we
chose the Killing potential is because it also fits well with the divergence coming
from the cosmological constant in the bulk.

2.2.2 Killing Potential

In this section we introduce the Killing potential ωµν , and we show how it can
be used in order to treat the divergence coming from Λ [26, 27].

Let us first try to define it. A Killing vector is the solution of the Killing
equation:

∇µKν +∇νKµ = 0 (2.8)

or by contracting the indices:

∇µKµ = 0 (2.9)

Motivated by equation (2.9) we define the fully antisymmetric Killing potential
ωµν in such a way so that the derivative of the Killing potential is equal to the
Killing vector

Kν = ∇µωµν (2.10)

Acting with a derivative on the last equation, we observe that the symmet-
ric part of the derivatives combined with the antisymmetric Killing potential,
satisfies equation (2.9)
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∇µKµ = ∇µ∇νωνµ = 0 (2.11)

It worth mentioning that the Killing potential is not uniquely defined, since we
can always add an exact term of the form ∇ρλρµν and the new Killing potential
ω̃µν = ωµν +∇ρλρµν satisfies again equation (2.9).

As far as the divergence is concerned, the main idea is to use the Killing potential
as a counter-term that we will add to the original Komar integral definition
(1.13), hoping that it will consequently cancel the divergence coming from the
cosmological constant.

The new, redefined, Komar integral for asymptotically non-flat spacetimes using
the Killing potential, in abstract dimensions, will be of the form:

QK =

∫
∂Σ

dΣµν

(
∇µKν +

2Λ

D − 2
ωµν

)
(2.12)

This redefinition can be seen as a generalisation of the Komar integral. In the
case of a non-AdS spacetime, the cosmological constant vanishes and we get the
original definition of the Komar integral(1.13).

For the abstract dimensional AdSD spacetime geometry (2.5) and a Killing
vector of the form Kµ = (1, 0, 0, 0), we can solve equation (2.10). By assuming
that Killing potential does not depend on the angles, we can show that the only
surviving term in D dimensions is:

ωrtAdSD = −ωtrAdSD =
r

D − 1
(2.13)

Let us apply equations (2.12) and (2.13) to our 4 dimensional problem. For
D = 4 (2.12) becomes

QK =

∫
∂Σ

dΣµν

(
∇µKν + Λωµν

)
(2.14)

while (2.13) is simply

ωrtAdS4
= −ωtrAdS4

=
r

3
(2.15)

Hence, by taking into consideration the redefined Komar integral (2.10), and
the result we obtained for the original Komar integral 2.6 we get
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QK =

∫
∂Σ

dΣtr

( r

R2
+ Λωtr

)
(2.16)

=

∫
∂Σ

dΣtr

(Λr

3
− Λ

r

3

)

= 0 (2.17)

As we can see, the divergence at infinity is cancelled due to the contribution
coming from ωµν and yields QK = 0. However, one is still able to interpret
the charge as the mass from the remaining stress energy tensor of Einstein
equations. To elaborate more on that, the same procedure can be applied to
AdS-Schwarzschild geometry. In that case, Killing Potential will treat the diver-
gence coming from the AdS part of the metric, and the remaining Schwarzschild
part will produce the non-zero mass.

We should mention once again that this procedure works fine for any number
of dimensions.

2.3 Smarr Formula & Killing Potential

Smarr formula (1.23) can be written in terms of indices in the following way

QK =

∫
Σ

RµνKνdΣµ +

∫
∂Σh

∇µKνdΣµν (2.18)

As we showed in the previous section, after including the Killing potential term,
the Komar integral does not diverge. That means that the LHS of (2.18) is
finite, hence one would expect that the RHS is also free of divergences.

In order to show this, we first have to add the Killing potential inside the two
integrals. To begin with the horizon term integral, we add ωµν in the same way
as we did for the outer boundary integral. On the other hand, in order to add
ωµν in the bulk one has to use Stokes’ theorem, since it is not a boundary term.
The Smarr formula after adding the extra terms becomes

QK =

∫
Σ

(
RµνKν + Λ∇νωµν

)
dΣµ +

∫
∂Σh

(
∇µKν + Λωµν

)
dΣµν (2.19)

In order to manipulate the second integral, one should know the geometry of
spacetime around the event horizon, and then to solve equation (2.10) for this
specific geometry. However, as we already pointed out, in the end we will not
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contain an event horizon and this particular integral will vanish. Hence, there
is no need to manipulate it more. The reason why we have not removed it yet,
is because there are also some other terms that eventually will be moved there.

Concerning the bulk integral however, we must show that it is free of divergences.
Indeed, by making use of the definition of the Killing potential (2.10) and by
substituting Rµν from (2.3) we get for the first integral of (2.19)

QK =

∫
Σ

(
RµνKν + Λ∇νωµν

)
dΣµ

=

∫
Σ

dΣµ

(
ΛKµ − ΛKµ

)

= 0 (2.20)

As we can observe the result is consistent with the one we got for the Komar
integral in the previous section. Hence, as we argued before, the Killing potential
treats the divergence both at infinity and in the bulk, while remains unknown
the impact of it in the horizon integral.

In the following chapters we will take for granted that we already dealt with the
problem that arose from cosmological constant and we will not include it into
our manipulations. The same will hold also for the Smarr formula which now
takes the final form

QK =

∫
Σ

RµνKνdΣµ +

∫
∂Σh

(
∇µKν + Λωµν

)
dΣµν (2.21)
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Chapter 3

Matter Fields

Up to this point we have only considered empty spacetimes. However, the
interesting part is to study the contribution coming form the bulk of a non-
empty spacetime to the Komar mass. More specifically, since we are interested
in horizonless solutions, we seek a non-vanishing Komar mass where the whole
contribution will arise from the topology.

For that reason, we assume the existence of a vector multiplet of scalar fields XI ,
as well as a vector multiplet of U(1) gauge fields AI with their corresponding
2-form gauge field strengths F I = dAI , where I counts the number of the
fields. The reason why we use supergravity multiplets is twofold. First of all
supergravity provides us with a framework in which we are able to perform
calculations. Second, supergravity, as we will see in the next chapter, is the
low energy limit of superstring theory, which will be the main topic of the next
chapter [23, 24].

3.1 The Action in Four Dimensions

The starting point is the four dimensional Hilbert-Einstein action, including
also a Klein-Gordon part for the scalar fields, and a Maxwell part for the gauge
fields. The full action is of the form:

S =

∫
d4x
√
−g
(
R− 1

2
QIJ∂µX

I∂µXJ − 1

4
QIJF

I
µνF

Jµν − 1

4
CIJF

I
µνF

J
ρσ ε̄

µνρσ
)

(3.1)

where both QIJ(X) and CIJ(X) are functions of the scalar fields XI . The
cosmological constant is absent, since we already discussed the way to overcome
the divergence. The ε̄ notation, means that this term does not contain the
metric.

The last term of action (3.1), the Chern-Simons term, does not contain the
metric at all, hence is purely topological and it produces a topological current.
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We can make this clear, by focusing only on the part of the action that includes
the gauge fields. This part may be rewritten using differential forms as (see
Appendix C.1)

Sgauge = −
∫ (1

2
QIJ ∗ F I ∧ F J + CIJF

I ∧ F J
)

(3.2)

Since F I = dAI we get straightforwardly the Bianchi identity for the field
strength which is

dF I = 0 (3.3)

By varying the action with respect to the gauge field (see Appendix C.2) we
obtain the equation of motion for F I

d(QIJ ∗ F J) = ∗JCS = −2d(CIJ)F J (3.4)

The RHS of this equation is the topological current ∗JCS produced by the
Chern-Simons term.

At this point, it is a common procedure to define the dual field strength of F I

to be the 2-form

GI = QIJ ∗ F J (3.5)

Since the Bianchi identity of the dual field is the equation of motion of the orig-
inal fields, it follows trivially from (3.4) that GI satisfies the following Bianchi
identity

dGI = −2d(CIJ)F J (3.6)

3.2 Einstein Equations

Our goal is to find the contribution from the bulk to the Komar mass. This can
be done by calculating Smarr formula for the given action (3.1).

Smarr formula (2.21) in four dimensions is of the form

M =
1

8πG4

∫
Σ

RµνKµdΣν +
1

8πG4

∫
∂Σh

(
∇µKν + Λωµν

)
dΣµν (3.7)

In order to calculate the Ricci tensor we vary the action (3.1) with respect to
the metric gµν and we obtain the following Einstein equations (see Appendix
C.3)
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Rµν −
1

2
gµνR =

1

2
QIJ∂µX

I∂νX
J − 1

4
QIJgµν∂ρX

I∂ρXJ +
1

2
QIJF

I
µρF

Jρ
ν

− 1

8
QIJgµνF

I
ρσF

Jρσ (3.8)

By contracting the indices, keeping in mind that the fully contracted metric is
equal to the dimensions of the space, we get for the Ricci scalar

R =
1

2
QIJ∂µX

I∂µXJ (3.9)

Substituting (3.9) back into Einstein equations (3.8) we get

Rµν =
1

2
QIJ∂µX

I∂νX
J +

1

2
QIJF

I
µρF

Jρ
ν −

1

8
QIJgµνF

I
ρσF

Jρσ (3.10)

Using the definition of the dual field (3.5), we can prove the following relation
between F I and GI

QIJGIµρG
ρ
Jν = QKL

(
FKµρF

Lνρ − 1

2
gµνF

K
ρσF

Lρσ
)

(3.11)

or by solving with respect to the metric:

gµνQIJF
I
ρσF

Jρσ = 2QKLF
K
µρF

Lνρ − 2QKLGKµρG
ρ
Lν (3.12)

By substituting (3.12) back to (3.10), we can rewrite the Ricci tensor in an
elegant form, as a function of the derivatives of the scalar fields XI and the
field strengths F I and GI as

Rµν =
1

2
QIJ∂µX

I∂νX
J +

1

4
QIJF

I
µρF

Jρ
ν +

1

4
QIJGIµρG

ρ
Jν (3.13)

Hence, the Smarr formula (3.7) becomes

M =
1

32πG4

∫
Σ

(
2QIJK

µ∂µX
I∂νXJ +QIJK

µF IµρF
Jρν +QIJKµGIµρG

ρν
J

)
dΣν

+
1

8πG4

∫
∂Σh

(
∇µKν + Λωµν

)
dΣµν (3.14)
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3.3 Invariances

In order to be able to proceed, we need to calculate the contraction of the Killing
vector with the derivative of the scalar fields, and the two field strengths. At this
point, motivated by the fact that all the fields are time-independent, we make
the assumption that the matter fields respect the symmetries of the metric.

As it is known, if a spacetime admits a Killing vector K then the Lie derivative
of the metric vanishes

LKgµν = 0 (3.15)

Under the assumption that matter fields respect the isometries we get the fol-
lowing equations:

LKXI = 0 (3.16)

LKF I = 0 (3.17)

LKGI = 0 (3.18)

Using “Cartan’s magic formula”, the Lie derivative of a p-form is given by the
following expression

LKω = d(iKωp) + iKdωp (3.19)

where the notation iKωp stands for the contraction of the Killing vector with
the first component of the p-form ω. In terms of forms, it can be seen as a
(p− 1)-form.

Applying Cartan’s magic formula (3.19) on equation (3.16) we obtain for the
scalar fields

d(iKX
I) + iK(dXI) = 0 (3.20)

where by definition iKX
I is zero since scalar fields do not carry any index in

order to be contracted with the Killing vector. Hence, the final result is

iK(dXI) = 0 (3.21)

which in terms of indices can be written as Kµ∂µX
I = 0, which is the term

appearing inside the Smarr formula (3.14). Thus, the scalar fields do not con-
tribute at all to the Komar mass and the whole contribution is coming from the
gauge fields.
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Since we can remove scalar fields form Smarr formula, equation (3.14) can be
rewritten in a more convenient way in terms of differential forms as

M =
1

32πG4

∫
Σ

(
QIJ iKF

I ∧ ∗F J +QIJ iKGI ∧ ∗GJ
)

+
1

8πG4

∫
∂Σh

(
∇µKν + Λωµν

)
dΣµν (3.22)

or by using the dual field (3.5)

M =
1

32πG4

∫
Σ

(
iKF

I ∧GI − iKGI ∧ F I
)

(3.23)

+
1

8πG4

∫
∂Σh

(
∇µKν + Λωµν

)
dΣµν

Equation (3.17) for the Lie derivative of the field strength F I , yields

d(iKF
I) + iK(dF I) = 0

d(iKF
I) = 0

iKF
I = ΛI + dλI (3.24)

where in the second equality we used the Bianchi identity (3.3) for F I .

In (3.24), ΛI is a closed but not exact 1-form, while dλI is an exact 1-form,
where λI is a just a function.

Finally, the last equation (3.18) admits for GI

d(iKGI) = −iK(dGI) = −iK(−2dCIJF
J) = 2

(
(iKdCIJ)F J − dCIJ(iKF

J)
)

= −2
(
dCIJ ∧ (ΛJ + dλJ)

)
= d
(
− 2CIJ ∧ (ΛJ + dλJ)

)
(3.25)

where we made use of the Bianchi identity of GI field (3.6) Finally, we get:

iKGI = −2CIJΛJ − 2CIJdλ
J +HI + dhI (3.26)
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where, as before, HI are closed but not exact 1-form and hI is a function.
As we can observe, beside the harmonic and the exact part, the solution for
GI contains also a term which is originated by the topological Chern-Simons
current.

We point out, that in order for ΛI and HI to exist, one needs to make the
assumption that the first cohomology group of the theory is non-trivial, i.e
H1(M) 6= 0.

It is also of great importance to distinguish between harmonic (as ΛI and HI)
and exact forms (as λI and hI) . The exact forms do not contribute at all to the
the bulk integral, since they can be moved at the boundary integral by making
use of Stokes theorem. On the other hand, harmonic forms, cannot be written
as the exterior derivative of other forms, therefore, they contribute to the bulk.

3.4 Smarr Formula

In the previous section we calculated all the terms in Smarr formula, therefore
by substituting (3.24) and (3.26) to (3.23) we obtain

M =
1

32πG4

∫
Σ

(
(ΛI + dλI) ∧ (GI + 2CIJ ∧ F J)− (HI + dhI) ∧ F I

)

+
1

8πG4

∫
∂Σh

(
∇µKν + Λωµν

)
dΣµν (3.27)

One can verify, using the Bianchi identities that the expressions (GI+2CIJ∧F J)
and F I appearing in the bulk integral are closed. Motivated by that we can
rewrite (3.27) as

M =
1

32πG4

∫
Σ

(
ΛI ∧ (GI + 2CIJ ∧ F J)−HI ∧ F I

+ d(λI ∧ (GI + 2CIJF
J))− d(hI ∧ F I)

)
+

1

8πG4

∫
∂Σh

(
∇µKν + Λωµν

)
dΣµν (3.28)

By making use of Stokes theorem we can move the exact terms of the bulk
integral at the boundaries. At this point we make the assumption that the
terms inside the derivatives are sufficiently small at infinity, thus, they do not
affect the integral at infinity, and subsequently, the Komar mass.

As a final step, we assume that our solutions carry no event horizon, hence the
horizon integral in Smarr formula vanishes, and the final result is of the form
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M =
1

32πG4

∫
Σ

(
ΛI ∧ (GI + 2CIJ ∧ F J) + F I ∧HI

)
(3.29)

Equation (3.29) carries highly important information. We can measure a non-
zero mass coming out from a geometry that contains no event horizon. On top
of that, it is time-independent, and in order to avoid any catastrophic collapses
out of the fact that it is horizonless, it should also be regular everywhere. We
believe that these solutions are the microstate geometries.

Of course, in order for (3.29) to be non-zero, one has to impose a non-trivial
first cohomology group. For trivial cohomology, all the closed forms are exact,
meaning that harmonic forms are supported. Subsequently, ΛI1 = 0 and HI1 =
0, which leads us to observe that no topological contribution takes place. An
obvious way to avoid this non interesting case is to focus on topological spaces
with non-trivial first cohomology. However, if one restricts themselves to simply
connected topological spaces, a trivial cohomology will be inevitable. This result
was already known, since it was proved in a different way in [31].

The only way to work with simply connected topological spaces and get a non-
zero mass from the bulk, is by adding extra dimensions, as it has already been
shown in the original work in five dimensions by Gibbons and Warner. The
latter is analysed in the context of the ten-dimensional SUGRA, in the next
chapter.
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Chapter 4

Type IIA Superstring
Theory

4.1 Brief History of Superstring Theory

Bosonic string theory requires 26 dimensions in order to be Lorentz invariant
[32, 33, 34, 35, 36, 37]. Supersymmetry, the symmetry that relates bosons to
fermions, can drop the number of dimensions down to 10, and the theory that
results is called superstring theory.

During the early years of string theory, physicists developed several different
types of formulation of string theory. In total, 5 different types have been
developed: Type I, Type IIA, Type IIB, SO(32) Heterotic and E8×E8 Heterotic.
(Figure 4.1)

Figure 4.1: Different types of Superstring Theory

In 90’s there was the so called “second superstring revolution” in which, among
other things, Edward Witten proposed that all those different types of super-
string theories, were in fact different limits of one unique theory called “M-
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Theory”, which the low energy limit leads to eleven dimensional SUGRA. Fur-
ther work towards this direction, revealed the existence of various dualities and
other mechanisms, which relate one theory to another. For instance, one can
compactify the eleven dimensional M-Theory in order to obtain type IIA super-
string theory, which in turn is related to type IIB theory, under a duality which
wraps the IIA string on a circle of radius R, called T-duality.

In this project we will work with type II superstring theory.

4.2 Type II Superstring Theory

M theory is comprised of the metric gµν , and an antisymmetric three-form gauge
field Aµνρ with its corresponding four-form field strength Fµνρσ. As we already
mentioned, a relation between eleven-dimensional theory and ten-dimensional
type IIA theory exists. The way to proceed, is by making the eleventh dimension
small, and compactifying it on a circle. There are two different cases that could
happen under compactification. Either one of the components of the fields
lie along the eleventh dimensions, or the field was completely inside the ten
dimensional spacetime, and it retains its form.

M-Theory Compactification

gM
µν → gIIA

µν or Cµ = gM
µ11

CM
µνρ → CIIA

µνρ or Bµν = CM
µν11

FM
µνρσ → F IIA

µνρσ or Hµνρ = CM
µνρ11

The resulting fields that we obtain out of this process, are the fields of type IIA
superstring theory which can be categorised in two sectors of fields. The first
one is called “NS-NS Sector” and the second is called “R-R Sector”. In what
follows, we will describe the bosonic fields of these two sectors.

The fields of the NS-NS sector can be obtained by acting on the vacuum state
with the creation operator α−1

µ . Since we are interested in working in the low
energy limit of string theory, we want the mass of the particles to be as low
as possible. By choosing to act on the vacuum with two creation operators we
manage to get zero-mass particles.

α−1
µ α−1

ν |0〉 = massless particles (4.1)

In order to express (4.1) in an irreducible way, we split the combination of
creation operators to a symmetric part without the trace, to an antisymmetric
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part and to the trace. The excitations that we get out of this split is the graviton
gµν , the antisymmetric 2-form B2 and the dilaton φ respectively. These three
fields form the NS-NS sector.

On the other hand, the R-R sector contains the generalised gauge fields Cp. In
electrodynamics, the electric charge e, couples electrically to the U(1) gauge
field as

Sel = e

∫
A1 (4.2)

or magnetically to the dual U(1) gauge fields Ã1 as

Sel = gM

∫
Ã1 (4.3)

In ten dimensions we are allowed to define a larger number of dual gauge fields
Cp, where p = 0, 1, . . .. These gauge fields form the R-R sector.

Type II has a further separation in type IIA and type IIB, depending on the
chirality of the gauge fields. More specifically, type IIA contains only non-chiral
fields, (i.e. left-right symmetric), while type IIB contains chiral fields. The
NS-NS sector is common to both theories, while fields of the R-R sector are
categorised as follows

Bosonic Fields - Type II SUGRA

NS - NS Sector: gµν , B
(2)
µν , φ

R - R Sector (Type IIA): C
(1)
µ , C

(3)
µνρ

R - R Sector (Type IIB): C(0), C
(2)
µν , C

(4)
µνρσ

In what follows we will work with type IIA superstring theory, but the whole
procedure can be redone in the framework of type IIB.

4.3 Action of Type IIA Superstring Theory

As we described in the previous section, the fields that constitute type IIA
superstring theory are the graviton gµν , the antisymmetric 2-form B2 and the
dilaton φ coming from NS-NS sector, and the gauge fields C(0), C(2) along with
their duals C(6), C(8) coming from R-R sector. Now we are ready to define the

30



effective action of Type IIA supergravity which is the low energy limit of Type
IIA superstring theory. The action, which is separated into three individuals
terms, is of the form:

SIIA = SNS−NS + SR−R + SCS (4.4)

Since we are interested to study black holes, the usual tactic is to write down
the action in the Einstein frame, in which the Ricci scalar is not multiplied by
the dilaton term. In the democratic formulation framework, where all the fields
appear in the action, the explicit form of each term is:1

SNS−NS =
1

2κ2

∫
d10x
√
−g
(
R− 1

2
∂µφ∂

µφ− 1

2
e−φ|H3|2

)
(4.5)

SR−R =
1

2κ2

∫
d10x
√
−g
(
− 1

2
e

3φ
2 |F̃2|

2 − 1

2
e
φ
2 |F̃4|

2
)

(4.6)

SCS = − 1

4κ2

∫
B2 ∧ F̃4 ∧ F̃4 (4.7)

where H3 = dB2, Fn = dCn−1 and the tilde fields are

F̃2 = F2 F̃4 = F4 + C1 ∧H3 (4.8)

following the general rule

F̃n = Fn + Cn−3 ∧H3 (4.9)

A topological Chern-Simons term in 10 dimensions has also been included.

As in four dimensions, it is convenient to define the dual fields based on the
equations of motion. We define the dual field of the antisymmetric B2 field to
be the 7-form:

H7 = e−φ ∗H3 (4.10)

and upon employing the following rule:

1The following notation is used through out this paper:

|Fn|2 =
1

n!
gµ1ν1gµ2ν2 . . . gµnνnFµ1µ2...µnFν1ν2...νn

|Fn|2µν =
1

(n− 1)!
gµ2ν2 . . . gµn−1νn−1Fµµ2...µn−1Fνν2...νn−1
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F̃n = (−1)
(n−1)(n−2)

2 e
n−5
2 φ ∗ F̃10−n, n ≥ 5 (4.11)

we define the dual fields of the R-R sector as:

F̃6 = e
φ
2 ∗ F̃4 F̃8 = −e

3φ
2 ∗ F̃2 (4.12)

Based on (4.8) and on the fact that H3 = dB2 we get the following Bianchi
identities:

dH3 = 0 dF̃2 = 0 dF̃4 = H3 ∧ F̃2 (4.13)

By varying the action with respect to the gauge fields (see Appendix C.2) we
can derive the equations of motion for H3, F̃2 and F̃4, where in a compact way
they can be written as:

d ∗ e−φH3 =
1

2

∑
all fields

e
5−n
2 φF̃n−2 ∧ ∗F̃n (4.14)

d ∗ e
5−n
2 φF̃n = e

3−n
2 φ ∗ F̃n+2 ∧H3 (4.15)

where in order for these relations to make sense, the dual fields definitions (4.10)
and (4.12) must be used.

Combining the definitions of the dual fields with (4.10) and (4.12), we can see
that the equations of motion of the original fields are the Bianchi identities of
the dual fields. We can rewrite everything in a more compact notation as [38]

dH3 = 0, (4.16)

dH7 =
1

2

∑
all fields

e
5−n
2 φF̃n−2 ∧ ∗F̃n, (4.17)

dF̃n = H3 ∧ F̃n−2 (4.18)

4.4 Einstein Equations for Type IIA Supergrav-
ity

The goal is to repeat the steps that we did in four dimensions, in order to
calculate the Smarr formula for type IIA supergravity in 10 dimensions. The
Smarr formula (2.21) in 10 dimensions is of the form
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M =
1

14πG10

∫
Σ

RµνKµdΣν +
1

14πG10

∫
∂Σh

(
∇µKν + Λωµν

)
dΣµν (4.19)

The first step is to find the form of Ricci tensor for the action (4.4).

Given (4.5) and (4.6), we can calculate Einstein equations by varying the action
with respect to the metric. As in four dimensions, the Chern-Simons term (4.7)
is purely topological and subsequently it does not contribute to the Einstein
equations.

The variation of the general field Fn with respect to the metric gives (see Ap-
pendix C.2):

δ|Fn|2

δgµν
= |Fn|2µν (4.20)

Using (4.20), by varying action (4.4) with respect to the metric we obtain the
following Einstein equations

Rµν −
1

2
gµν R =

1

2
∂µφ∂νφ−

1

4
gµν∂ρφ∂

ρφ− 1

4
e−φgµν |H3|2

+
1

2
e−φ|H3|2µν −

1

4
e

3φ
2 gµν |F̃2|

2
+

1

2
e

3φ
2 |F̃2|

2

µν

− 1

4
e
φ
2 gµν |F̃4|

2
+

1

2
e
φ
2 |F̃4|

2

µν (4.21)

By contracting the indices, equation (4.21) admits

R =
1

2
∂µφ∂

µφ+
1

4
e−φ|H3|2 +

3

8
e

3φ
2 |F̃2|

2
+

1

8
e
φ
2 |F̃4|

2
(4.22)

Substituting (4.22) back to (4.21), we finally obtain

Rµν =
1

2
∂µφ∂νφ+ e−φ{H3}2µν + e

3φ
2 {F̃2}

2

µν + e
φ
2 {F̃4}

2

µν (4.23)

where in the last equation the following notation has been used:

{Fn}2µν =
1

2

(
|Fn|2µν −

(n− 1)

8
gµν |Fn|2

)
(4.24)
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As in chapter 3, by manipulating the definition of the dual fields (4.10) and
(4.12) we can prove the following relation between the fields and their duals

|Fn|
2
µν = e±(n−5)φ

(
|F10−n|2µν − gµν |F10−n|2

)
(4.25)

where (+) stands for R-R sector and (−) for NS-NS sector.

Solving with respect to the metric equation (4.25), Einstein equations (4.23),
can be rewritten as

Rµν =
1

2
∂µφ∂νφ+

3

8
e−φ|H3|2µν +

1

8
eφ|H7|2µν +

7

16
e

3φ
2 |F̃2|

2

µν

+
1

16
e−

3φ
2 |F̃8|

2

µν +
5

16
e
φ
2 |F̃4|2µν +

3

16
e−

φ
2 |F̃6|2µν (4.26)

As we already showed before, scalar fields do not contribute at all to the bulk
integral, hence the dilaton part does not appear in Smarr formula. By keeping
this in mind, we can use Ricci tensor of the form (4.26) and the definitions of
the dual fields (4.10) and (4.12) in order to write Smarr formula in an elegant
way in terms of differential forms as (see Appendix C.1)

M =
1

224πG10

∫
Σ

(
− 6iKH3 ∧H7 − 2iKH7 ∧H3 − 7iK F̃2 ∧ F̃8 (4.27)

+ iK F̃8 ∧ F̃2 + 5iK F̃4 ∧ F̃6 − 3iK F̃6 ∧ F̃4

)
+

1

14πG10

∫
∂Σh

(
∇µKν + Λωµν

)
dΣµν

Once again in order to proceed we need to calculate the contraction of the
Killing vector with the various fields.

4.5 Invariances

At this point we make the same assumption we did in the four dimensional
case. Namely, that the matter fields of the theory respect the symmetries of the
metric. Therefore, assuming that there is an isometry generated by a Killing
vector field K, we get the following equations
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LKφ = 0 (4.28)

LKH3 = 0 (4.29)

LKH7 = 0 (4.30)

LK F̃n = 0, n = 2, 4, 6, 8 (4.31)

Using Cartan’s magic formula (3.19), we can manipulate equations (4.28) to
(4.31) in the same manner we did in chapter 3. Namely, as we already men-
tioned, we anticipate no contribution from scalar fields. Indeed, (4.28) for the
dilaton admits

iK(dφ) = 0 (4.32)

Equation (4.29) for H3 produces straightforwardly that

iKH3 = Λ2 + dλ1 (4.33)

where Λ2 is a harmonic form and dλ1 is an exact form.

In the same way, one can manipulate equations (4.31), and the final result can
be written in a compact way as

iK F̃n = Ωn−1 ∧ eB2 + dωn−2 ∧ eB2 − Λ2 ∧ Cn−3 (4.34)

where Ωn are harmonic n-forms and dωn are exact n-forms originated by the
R-R sector. Equation (4.33) is written in terms of polyforms. One can expand
(4.33) according to the following formula

Ap ∧ eB2 = Ap +Ap−2 ∧B2 +
1

2
Ap−4 ∧B2 ∧B2 + . . . (4.35)

Finally by making use of (4.33) and (4.34), we can manipulate (4.30) and the
final result is of the form

iKH̃7 =− (Ω5 + dω4) ∧ C1 + Ω3 + dω2 ∧ (C3 −B2 ∧ C1)

− (Ω1 + dω0) ∧ (C5 −B2 ∧ C3 +
1

2
B2 ∧B2 ∧ C1)

+ (Λ2 + dλ1) ∧ C1 ∧ C3 + Λ6 + dλ5 (4.36)
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where Λ6 and dλ5 are the harmonic and the exact forms coming from the dual
fields of B2, i.e the NS-NS sector.

4.6 Smarr Formula for Type IIA Supergravity

Once we calculated all the contractions of the Killing vectors with the fields, we
are know ready to calculate Smarr formula in 10 dimensions, by substituting
equations (4.32) - (4.34) and equation (4.36) back to Smarr formula (4.27).

As we already mentioned in four dimensional case, exact forms do not contribute
at all to the bulk and they can be moved to boundaries integrals via Stokes’
theorem. Once again, we make the assumption that all the corresponding terms
are small at infinity, hence, the LHS of Smarr formula remains the same. Finally,
after removing the event horizon integral, we obtain the final ten dimensional
Smarr formula for type IIA supergravity which is

M =

∫
Σ

Λ2 ∧ f(fields) + Λ6 ∧H∗
3 +

1,3,5,7∑
n

Ωn ∧
(
F̃ ∗

9−n +H∗
3 ∧ C∗

6−n

)
∧ eB2

(4.37)

where the function f is equal to:

f = H∗
7 − F̃ ∗

6 ∧ C∗
1 − F̃ ∗

4 ∧ C∗
3 − F̃ ∗

2 ∧ C∗
5 + C∗

1 ∧ C∗
3 ∧H∗

3 (4.38)

and we redefined the fields in the following way:

C∗
n = (−1)

5−n
2 Cn (4.39)

H∗
n = (−1)

5−n
2 (n− 1)Hn (4.40)

F ∗
n = (−1)

10−n
2 (n− 1)Fn (4.41)

Our final Komar mass (4.37) is a higher dimensional analog of the Komar mass
(3.29) in 4 dimensions. The extra dimensions of our theory made the ten di-
mensional result of Komar mass (4.38) to include harmonic forms of various
dimensions. The latter provides us with more freedom on choosing the topology
of the spacetime without getting a zero mass.

In the case, for instance, where one restricts themselves to work only with simply
connected topological space, hence trivial first cohomology group, we get as a
result that a harmonic 1-form cannot exist, subsequently Ω1 = 0.

On top of that, we could also assume that our space has a trivial second co-
homology group, which would admit a vanishing harmonic 2-form, hence Λ2
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also could not exist. However, even then, we would have been left with a
plethora of non-vanishing harmonic forms that deter the mass from vanishing,
since our topological space could have non-trivial cohomology groups Hn(M)
for n = 3, 5, 6, 7.

Therefore, we showed that adding extra dimensions to our theory, involves more
cohomology groups, and saves the Komar mass from vanishing. One does not
necessarily need to assume ten dimensions, in order to get an interesting result.
The same outcome can been achieved even in five [19] or six dimensions [39].
Once again, the latter underlines the difficulty of finding microstate geometries
in four dimensions.

37



Chapter 5

Conclusion

The objective of the present thesis was to verify that there is another way,
apart from black holes, to support mass from gravitational collapse. As we
mentioned, these new solutions of Einstein Equations, called microstate geome-
tries, are time-independent, horizonless, and smooth meaning that they carry
no singularity. Moreover, we verified that, in order for microstate geometries
to support mass, they should also have non-trivial cohomology groups. Finally,
we extended this mechanism to asymptotically non-flat AdS spacetime, and we
showed the need of a way to overcome the divergence, coming from the cosmo-
logical constant.

Our four-dimensional result suggests that if we restrict ourselves to work with
simply connected topological spaces, there is no way to obtain microstate geome-
tries. The way to overcome this problem relies on finding microstate geometries
in higher dimensional spaces. The first solution that was studied, with a non-
vanishing result is the five-dimensional case, which was originally published by
Gibbons and Warner in 2014 [19]. They introduced a mechanism containing a
Komar Integral and the Smarr formula, and this was used in the present thesis,
and more specifically in chapters 3 and 5. We pointed that the pioneering idea
that Gibbons and Warner introduced, was to remove the event horizon integral
of Smarr formula and to focus only on the topological integral. Earlier one
treated the Smarr formula in the opposite way, by assuming that there is no
topology, and the whole contribution comes from the event horizon.

Moreover, a paper published in 2015, [39] dealt with the six-dimensional case,
while at the same time, another paper [40] was published, in the framework
of the eleven-dimensional supergravity. A further relation between solutions
was also established, since upon Calabi-Yau compactification of the eleven-
dimensional result provided us with the five-dimensional result, originally ob-
tained by Gibbons and Warner [19].

In the present thesis, we studied ten dimensions, in the general framework of
type IIA superstring theory. Based on the studies [19, 39, 40], we speculated
that the extra dimensions would provide us with a non-zero result, even in the
case of simply connected topological spaces. Indeed, the harmonic forms that
we got in the final result, were of various dimensions, which gave us freedom to
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work with the associated cohomology groups.

As far as the extension in AdS spacetime is concerned, during the last years,
myriads of studies were published. In particular, Brown and York introduced
the idea of the quasilocal stress-energy tensor [28, 29]. Their proposal was to
redefine the stress-energy tensor at infinity including the extrinsic curvature of
the spacetime, and an extra counter-term which would cancel the divergence
coming from the extrinsic curvature. Another example, consists of the gravita-
tional Hamiltonian formalism, introduce by Hawking and Horowitz [30]. As the
name indicate, this is an additional way to describe gravity, using a Hamiltonian
formalism, which could be used to treat the divergence.

This thesis, however, dealt with the divergence coming from the cosmological
constant, by introducing the Killing Potential. As we showed, the latter cancels
the divergence of the Komar Integral at infinity, but it also fits well with the
Smarr formula, since it treats the divergence in the bulk as well.

It would be of great interest for future studies to apply to some specific geome-
tries, such as the LLM geometries AdS5×S5, or more general geometries of the
form AdSp × Sq in the result we obtained in type IIA in ten dimensions (4.37).
(For general review of these geometris see [41, 42]). Our anticipation is to find
a relation between the mass and the charges of the brains that were used in
order to build the black hole. Furthermore, it would be interesting to obtain
the six- and five-dimensional result by compactifying our own result. That way,
we would have a complete catalogue of all the different results.

Last but not least, concerning the AdS divergence, one could try to apply one of
the above-mentioned suggestions (i.e, quasilocal stress-energy tensor and grav-
itational Hamiltonian formalism) when topology is present.
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Appendix A

Differential Forms &
Conventions

A differential p-form is defined as

Ap =
1

p!
Aµ1...µpdx

µ1 ∧ . . . ∧ dxµp (A.1)

where the wedge product (∧) denotes the antisymmetry

dxµ ∧ dxν = −dxν ∧ dxµ (A.2)

Hence, a 0-form is just an function, an 1-form could be a U(1) gauge field
A = Aµdx

µ, a 2-form could be the associated field strength of a gauge field
F = 1

2Fµνdx
µdxν etc.

Relation (A.3) manifests the following algebra for two forms

Ap ∧Bq = −(−1)pqBq ∧Ap (A.3)

Another useful tool in differential forms is the exterior derivative (d) which is
the way to get the derivative of forms. Exterior derivative, obeys Leibniz rule
and acts on a form in the following way

dAp =
1

p!
∂νAµ1...µpdx

ν ∧ dxµ1 ∧ . . . ∧ dxµp (A.4)

A differential form is called closed if dAp = 0, and it is called exact if it can be
written as the exterior derivative of another (p-1) form, i.e: Ap = dBp−1. An
exact form is always closed, while the reverse does not necessarily hold.
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The Hodge dual operator (*) is a map which sends a p-form to a (d− p)-form,
where d stands the dimensions of the manifold, according to the following rule

∗Ap =
1

p!

1

(d− p)!
Aµ1...µpε

µ1...µp
νp+1...νd

dxνp+1 ∧ . . . ∧ dxνd (A.5)

where εµ1...µd =
√
−gεµ1...µd and ε is the Levi-Civita symbol which in d dimen-

sions obeys the following convention

ε01...d−1 = 1 (A.6)

and it is fully antisymmetric εµ1...µp = ε[µ1...µp]. For the contraction of the ε
tensor holds:

εµ1...µpµp+1...µdε
µ1...µpνp+1...νd = (−1)tp!(d− p)!δνp+1...νd

µp+1...µd
(A.7)

where t is the number of the timelike components of the spacetime. δ
ν1...νp
µ1...µp is

the generalised Kronecker delta which is defined by the following relation

δµ1...µp
ν1...νp =


+1 if ν1 . . . νp are an even permutation of µ1 . . . µp

−1 if ν1 . . . νp are an odd permutation of µ1 . . . µp

0 in any other case

(A.8)

Generalized Kronecker delta has the following useful property

δµ1...µp
ν1...νp =

p∑
n=1

(−1)n+pδµpνn δ
µ1...µn...µ̃p
ν1...ν̃n...µp

(A.9)

where the tilde notation means that the particular term should be left out form
the sequence.

Generalized Kronecker delta can act on a tensor in the following way

δµ1...µp
ν1...νp ω

ν1...νp = p!ω[µ1...µp] (A.10)

δµ1...µp
ν1...νp ωµ1...µp = p!ω[ν1...νp] (A.11)

Finally, another useful formula is the contraction of generalized Kronecker delta
with itself which produces
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δµ1...µp
ν1...νp δ

ν1...νp
ρ1...ρp = p!δµ1...µp

ρ1...ρp (A.12)

Hodge dual satisfies the following properties

∗Ap ∧Bp = ∗Bp ∧Ap (A.13)

∗ ∗Ap = (−1)p(d−p)+tAp (A.14)

Regarding integration of differential forms, Stokes’ theorem can be written in
an elegant way using forms as

∫
Σ

dAp =

∫
∂Σ

Ap (A.15)

where Σ denotes the spatial components of the manifold and ∂Σ is a hupers-
uface boundary which includes Σ. In the case where manifold Σ has also an
inner boundary ∂Σinner beside from an outer boundary ∂Σoutter, Stokes’ theorem
becomes

∫
Σ

dAp =

∫
∂Σoutter

Ap −
∫

∂Σinner

Ap (A.16)
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Appendix B

Cohomology

Homology, which is a commutative alternative to homotopy, is a tool of algebraic
topology which associates a sequence of abelian groups to a topological space.
The dual of homology, is called cohomology. We define the r-cohomology group
of a topological space, to be the quotient group of all closed r-forms (i.e dA = 0)
modulo the exact r-forms (i.e A = dB).

Hr(M) =
Zr(M)

Br(M)
(B.1)

where Hr(M) is the r cohomology of the manifold M . Zr(M) is called “the
group of cocycles” and it contains all the r-forms which are closed, and Br(M)
is called “the group of coboundaries” and it contains all the r-forms that are
exact.

Cohomology gives us the information of which forms are allowed by the topology
and which are not. For instance, a trivial cohomology, (i.e Hr(M) = 0 where
0 stand for the unit element of the commutative theory), admits that all the
closed forms are exact.
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Appendix C

Derivation of Various
Formulas

C.1 Action in Forms and in Index Notation

One can interchange between an action in terms of form notation and in terms
of notation with indices. The following proof applies between the two notations

∗Fp ∧ Fp =
1

p!
Fµ1...µp

1

(d− p)!p!
F ν1...νp

√
−gεν1...νpkp+1kddx

µ1 ∧ . . . ∧ dxµp ∧ dxkp+1 ∧ . . . ∧ dxkd

=
1

p!
Fµ1...µp

1

(d− p)!p!
F ν1...νp

√
−gεν1...νpkp+1kdε

µ1...µpkp+1kdddx

=
1

p!
Fµ1...µp

1

����(d− p)!p!
F ν1...νp����(d− p)!δν1...νpµ1...µp

√
−gddx

=
1

p!
Fµ1...µp

1

��p!
��p!F

[ν1...νp]√−gddx

=
1

p!
Fµ1...µpF

ν1...νp
√
−gddx

=
1

p!
gµ1ν1 . . . gµpνpFµ1...µpF

ν1...νp
√
−gddx

=
1

p!
Fµ1...µpF

µ1...µp
√
−gddx

(C.1)

44



C.2 Variation of Field Strength with Respect to
the Gauge Fields

In terms of forms, the variation of the field strength F with respect to the gauge
field C, can be written as

δC

∫
Fp ∧ ∗Fp = δC

∫
dCp−1 ∧ ∗dCp−1

=

∫
dδCCp−1 ∧ ∗dCp−1 + dCp−1 ∧ ∗dδCCp−1

=

∫
dδCCp−1 ∧ ∗dCp−1 + dδCCp−1 ∧ ∗dCp−1

= 2

∫
dδCCp−1 ∧ ∗dCp−1

= 2
[
δCCp−1 ∧ ∗dCp−1

]
boundaries

− 2

∫
δCCp−1 ∧ d ∗ dCp−1

=

∫
δCCp−1 ∧ (−2d ∗ dCp−1) (C.2)

Hence

δC

∫
Fp ∧ ∗Fp =

∫
δCCp−1 ∧ (−2d ∗ Fp) (C.3)

Same manipulations can prove the following relation between Fp and an abstract
form Ap

δC

∫
Ap ∧ ∗Fp = δC

∫
Fp ∧ ∗Ap =

∫
δCCp−1 ∧ (−d ∗Ap) (C.4)
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C.3 Variation of Field Strength with Respect to
the Metric

In order to calculate Einstein equation out of a given action, we need to vary
the latter with respect to the metric. By making use of the following notation

|Fn|2 =
1

n!
gµ1ν1gµ2ν2 . . . gµnνnFµ1µ2...µnFν1ν2...νn (C.5)

|Fn|2µν =
1

(n− 1)!
gµ2ν2 . . . gµn−1νn−1Fµµ2...µn−1Fνν2...νn−1 (C.6)

the variation of the general field strength |Fn| produces:

δg|Fn|2 = δg

( 1

n!
gµ1ν1 . . . gµnνnFµ1...µnFν1...νn

)
=

1

n!

(
δgg

µ1ν1 . . . gµnνnFµ1...µnFν1...νn + . . .+ gµ1ν1 . . . δgg
µnνnFµ1...µnFν1...νn

)
=

1

n!
nδgg

µ1ν1 . . . gµnνnFµ1...µnFν1...νn

=
( 1

n− 1
gµ2ν2 . . . gµnνnFµ1...µnFν1...νn

)
δgg

µ1ν1

= δgg
µ1ν1 |Fn|2µ1ν1

Therefore

δ|Fn|2

δgµν
= |Fn|2µν (C.7)
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[5] Hans Reissner. Über die eigengravitation des elektrischen feldes nach der
einsteinschen theorie. Annalen der Physik, 355(9):106–120, 1916.

[6] Gunnar Nordström. On the energy of the gravitation field in einstein’s
theory. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings
Series B Physical Sciences, 20:1238–1245, 1918.

[7] Roy P Kerr. Gravitational field of a spinning mass as an example of alge-
braically special metrics. Physical review letters, 11(5):237, 1963.

[8] Ezra T Newman and AI Janis. Note on the kerr spinning-particle metric.
Journal of Mathematical Physics, 6(6):915–917, 1965.

[9] Ezra T Newman, E Couch, K Chinnapared, A Exton, A Prakash, and
R Torrence. Metric of a rotating, charged mass. Journal of mathematical
physics, 6(6):918–919, 1965.

[10] Iosif Bena and Nicholas P Warner. Black holes, black rings, and their
microstates. In Supersymmetric Mechanics-Vol. 3, pages 1–92. Springer,
2008.

[11] Andrew Strominger and Cumrun Vafa. Microscopic origin of the
bekenstein-hawking entropy. Physics Letters B, 379(1):99–104, 1996.

[12] Kostas Skenderis. Black holes and branes in string theory. From the Planck
Length to the Hubble Radius, 1:345, 2000.

[13] Stephen W Hawking. Black hole explosions. Nature, 248(5443):30–31, 1974.

[14] Jacob D Bekenstein. Black holes and entropy. Physical Review D, 7(8):2333,
1973.

47



[15] SW Hawking. Nature 248 30 hawking sw 1975. Commun. Math. Phys,
43:199, 1974.

[16] Paul K Townsend. Black holes. arXiv preprint gr-qc/9707012, 1997.

[17] Ulf H Danielsson, Sheikh Shajidul Haque, Gary Shiu, and Thomas
Van Riet. Towards classical de sitter solutions in string theory. Journal of
High Energy Physics, 2009(09):114, 2009.

[18] Arthur Komar. Positive-definite energy density and global consequences
for general relativity. Physical Review, 129(4):1873, 1963.

[19] GW Gibbons and NP Warner. Global structure of five-dimensional bps
fuzzballs. arXiv preprint arXiv:1305.0957, 2014.

[20] Hideo Kodama. Lecture on black holes. 2011.

[21] Larry Smarr. Mass formula for kerr black holes. Physical Review Letters,
30(2):71, 1973.

[22] Simon F Ross. Black hole thermodynamics. arXiv preprint hep-th/0502195,
2005.

[23] Daniel Z Freedman and Antoine Van Proeyen. Supergravity. Cambridge
University Press, 2012.

[24] Horatiu Nastase. Introduction to supergravity. arXiv preprint
arXiv:1112.3502, 2011.
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