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Abstract

Now that the first signatures of Majorana zero modes have been ob-
served in experiments, a huge effort towards topological quantum com-
putation is currently underway. Majorana zero modes can appear in
nanowire systems, with their topological protection depending on the spin-
orbit interaction strength. The spin-orbit interaction strength is therefore
a crucial parameter in this experimental field. The largest contribution is
expected to be Rashba spin-orbit interaction, which is the subject of this
thesis.

Spin orbit interaction in semiconducting systems is governed by sym-
metry. Spin-orbit interaction is forbidden by symmetry if no additional
symmetries are broken in [111] InSb nanowires. Upon reducing the spa-
tial symmetry group, both Dresselhaus and Rashba spin-orbit interaction
can emerge in the system. In this thesis a perturbative model for Rashba
spin-orbit interaction, which occurs when an electric field reduces spatial
symmetry, is developed to predict the interaction strength. This model
is then compared to numerical simulations in quantum well systems per-
formed with Mathematica and in nanowire simulations performed with
Kwant.

The model, incorporating the effect of changing geometric dimensions,
subband number and the material, shows good agreement with the numer-
ical simulations. Electrical fields resulting from Schrödinger-Poisson sim-
ulations are then used to induce Rashba spin-orbit interaction in hexago-
nal nanowire systems similar to experimental devices again matching the
model. Finally, it is shown that the model can be used to calculate re-
sults which are intractable to calculate via numerical simulations to find
the effect of superconducting coverage of the nanowire on the spin-orbit
interaction.
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1 Introduction

1.1 Overview of Majorana zero modes

In 1937, Ettore Majorana published a revolutionary paper proposing a new
solution of the Dirac equation. Traditionally, only complex valued solutions to
the Dirac equation were investigated, hence predicting an antiparticle for each
particle solution. What Majorana realized was that by a suitable transformation
the Dirac equation could be made real, which guarantees the existence of a real
solution. The particles predicted by this real solution are their own antiparticle
and have since been called Majorana fermions [1].

Majorana fermions have been sought as a fundamental particle but have
so far not been found, making it unclear if such fundamental particles exist
[2]. Alexei Kitaev noticed that Majorana quasiparticles can be fabricated in
condensed matter systems as composite particles [3]. The superposition of an
electron and a hole indeed leads to a quasiparticle equal to its own antiparti-
cle, which is called Majorana zero mode (MZM) or Majorana bound state. The
term Majorana fermion is also often used, but these quasiparticles are not gen-
uine fermions because normal fermions obey the Pauli exclusion principle while
MZMs do not. Moreover, the creation operator of a MZM (which equals the an-
nihilation operator) squares to one instead of zero. The term Majorana fermion
does not reflect these properties making the term MZM preferable.

The exchange statistics of MZMs has caused considerable interest in these ex-
otic states. Where the wavefunction of normal fermions only changes sign when
two particles are exchanged, MZMs are predicted to obey non-abelian exchange
statistics instead. A particle which obeys more general exchange statistics than
bosons or fermions is called an anyon [4], see also Sec. 2.3. The process of
exchanging, or braiding, these particles can lead to elaborate manipulations of
the wavefunction which makes MZMs interesting for quantum computing.

Several problems which are intractable to solve on a classical computer could
efficiently be solved on a quantum computer. These problems include factor-
ing large integers [5], database searches [6] and simulation of complex physical
systems [7]. A quantum computer uses quantum bits, or qubits, instead of nor-
mal bits. A qubit is defined as a two level quantum system, but not all such
systems are equally useful for quantum computation. For a two level system to
be usable as a qubit it must be addressable but stable against environmental
noise. The process of information leaking from the qubits to the environment is
called decoherence and forms a major hurdle towards the realization of a quan-
tum computer. Topological quantum computing uses topology to protect the
qubits from decohering. MZMs are expected to exhibit this topological protec-
tion because they can only interact with their environment by exchanging their
positions or fusing together making them more stable against decoherence [8].

After the theoretical prediction of MZMs, experiments were performed to
realize them in the lab. In 2012, the first signatures were seen that would
indicate the existence of MZMs [9]. The most definitive proof for their existence
would be an experiment in which the exchange statistics are put to the test.
Unfortunately, such an experiment has not yet been performed, although huge
efforts towards a so called braiding experiment are being made.

For a braiding experiment to work, all elements of that experiment have to
work flawlessly. Obtaining a better understanding of the creation process of

4



the MZMs is therefore an important step in this rapidly developing field. One
crucial ingredient for the creation of MZMs in semiconducting nanowires is the
so called spin orbit interaction. In this thesis, Rashba spin orbit interaction in
nanowires will be investigated after a short introduction into MZMs is given in
the remainder of this chapter.

1.2 A toy model for Majorana zero modes: The Kitaev
chain

In this section, the toy model devised by Kitaev will be investigated and it will
be shown how MZMs appear at the edges of this system. The physical relevance
of this toy model will be considered later in Sec. 1.5. The content of this section
closely follows reference [10].

MZMs can be realized in a toy model called the Kitaev chain which consists
of a 1-dimensional chain of lattice sites. The Hamiltonian of this chain describes
an effectively spinless superconducting state. Electrons can move from a site
to its neighboring sites with a hopping term t. The energy associated with an
electron on a certain lattice site is µ. The superconducting gap is denoted by ∆.
In order to write the Hamiltonian in second quantized notation, creation and
annihilation operators c†i and ci are introduced. These operators respectively
create and annihilate an electron at lattice site i. Denote the number of lattice
sites by N . This means that the Hamiltonian can be written as

H = −µ
N∑
i=1

ni −
N−1∑
i=1

(
tc†i ci+1 −∆cici+1 + h.c.

)
. (1.1)

In this equation, h.c. denotes the Hermitian conjugate of the preceding terms.
The operator ni is the number operator on lattice site i. The system under
consideration is a spinless system. This means that the Pauli exclusion principle
allows only a single electron per lattice site.

Any operator can be split into a real and imaginary part. In particular the
electron creation and annihilation operator can be written as:

ci =
1

2
(γ2i + ıγ2i+1), (1.2)

c†i =
1

2
(γ2i − ıγ2i+1), (1.3)

where the operators γn are real. In other words the N complex operators are
expressed by 2N real operators. The real operators can be expressed in the
complex operators by the inverse transformation:

γ2i =(ci + c†i ), (1.4)

γ2i+1 =ı(c†i − ci). (1.5)

It will now be shown that these new operators are in fact Majorana operators
by showing that the operators γn are hermitian and obey the Clifford algebra,
i.e. {γm, γn} = 2δmn, where

m = 2i+ r1 with i ∈ Z, r1 ∈ {0, 1}, (1.6)

n = 2j + r2 with j ∈ Z, r2 ∈ {0, 1}. (1.7)

5



By definition, γn is a real operator, hence it is hermitian, γ†n = γn. Consider
now the anti-commutation relations:

{γm, γn} = (ı)r1+r2
[
(−1)r1(cic

†
j + c†jci) + (−1)r2(cjc

†
i + c†i cj)

]
. (1.8)

By using the normal fermion anti-commutation relations, this can be reduced
to:

{γm, γn} = ır1+r2 [(−1)r1 + (−1)r2 ] δij = 2δmn. (1.9)

This means that the entire system is described in terms of Majorana opera-
tors. It is important to note that this can be done with any system of fermions
and is not limited to this specific model. The special properties of this system
ensure that it is possible to create localized Majorana states. To show this,
assume that t = ∆ and µ = 0. This means that the Hamiltonian in Eq. (1.1)
can be simplified to

H = t

N−1∑
i=1

[
(c†i − ci)(ci+1 + c†i+1)

]
. (1.10)

If the Majorana operators are substituted in this equation the Hamiltonian
becomes

H = −ıt
N−1∑
i=1

[
γ2i+1γ2(i+1)

]
. (1.11)

This Hamiltonian does not depend on the Majorana operators γ2 and γ2N+1.
In other words, the operators γ2 and γ2N+1 commute with the Hamiltonian.
These Majorana operators are separated by the entire length of the chain. Each
Majorana operator carries half a degree of freedom and is, in a sense, half a
fermion. These two Majorana operators can be combined by

c̃M =
1

2
(γ2N+1 + ıγ0), (1.12)

c̃†M =
1

2
(γ2N+1 − ıγ0). (1.13)

This describes a nonlocal fermion that commutes with the Hamiltonian. This
means that if the empty groundstate |0〉 is considered, a new groundstate c̃†M |0〉
can be constructed. This state is also at zero energy which means that the
groundstate is twofold degenerate. This is called the topological phase of the
Kitaev chain.

For the parameters µ < 0 and t = ∆ = 0 the system Hamiltonian can be
reduced to

H = −µ1

2

N∑
i

(2 + ıγ2iγ2i+1) . (1.14)

Hence all Majorana operators appear in the Hamiltonian and there is no ground-
state degeneracy. This state is called the trivial phase.

The considerations presented above are not only valid for the special val-
ues of µ, t and ∆ used here. For parameter values that are close enough, the
delocalized MZMs also appear at the edge of the chain when |µ| < 2t.
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1.3 Properties of Majorana zero modes

In the previous section it was found that two Majorana zero modes could appear
at the edge of a 1-dimensional chain. In this section more properties of the
Majorana zero modes will be discussed.

The exchange statistics of MZMs is an important motivation for investigat-
ing them. Fundamental particles are either bosons or fermions (see Sec. 2.3).
Exchanging a pair of bosons leaves the wavefunction unchanged while exchang-
ing a pair of fermions multiplies the wavefunction by −1. The reason that a
wavefunction normally cannot be changed by an arbitrary phase is that exchang-
ing a pair of particles twice must be equal to doing nothing. There are however
some exceptions; exchanging a pair of particles twice around a vortex does not
necessarily yield the identity. These so called anyons can emerge in condensed
matter systems. Abelian anyons are particles that change the wavefunction by
a phase θ upon exchanging two of these particles.

Non-abelian anyons can also emerge in these systems. In this case the op-
erations exchanging pairs of particles do not commute between themselves. A
good way to visualize the exchange of particles is to draw the world line of these
particles. Hence particles are represented as strings going from top to bottom
representing the flow of time. Exchanging particles then leads to braiding of
the world lines.

6= (1.15)

The non-abelian nature of the exchange process is shown in Eq. (1.15). The
braiding of n particles is described with the braid group Bn. As will be shown
in Sec. 2.3, representation theory can describe the result of braiding when the
number of particles is fixed.

For MZMs, the result of exchanging them can be calculated. It turns out
that the Majorana operators of the previous section obey non-abelian braiding
statistics [11]. This means that the permutation group can no longer be used
to faithfully describe an exchange of particles. Instead the more general braid
group Bn has to be used. The proof that MZMs obey non-abelian exchange
statistics can be found in appendix C. The unitary operator representing the
exchange of MZMs γi and γj is [12]:

U = eıφeπλγiγj/4, (1.16)

where λ is an arbitrary sign depending on the direction of rotation. The factor
φ denotes an extra abelian phase and is often omitted from the braiding result,
as an overall phase is not observable.

By combining Majorana zero modes in a way similar to Eq. (1.12) a number

operator can be constructed by c̃†Mc̃M. This operator has the eigenvalues 0 and
1, suggesting the interpretation that 2 MZMs can together either be filled or
empty. This is also true in a more general setting. Consider a system with
2N MZMs. All possible states of the system can then only be described by
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pairing up the MZMs in a definite way and investigate for each pair if it is
empty or filled. A different pairing would correspond to describing the system
in a different basis.

This suggests the following, very general, picture. When two anyons are
brought together, they form a new anyon. This process is called fusion. All
fusion processes are given by the fusion rules which can be described by category
theory. In this framework, the fusion rules can be described by

Si ⊗ Sj '
⊕
k

Nk
ijSk. (1.17)

Here ' means that the LHS and RHS are isomorphic as objects of a modular
tensor category. The charges1 of the anyons are represented by the Si which
are simple objects of this category. The numbers Nk

ij are called the fusion
coefficients.[13]

This formula has a simple interpretation. Given two anyons with charge Si
and Sj , fusing them can have different resulting anyons Sk. The number of ways
it can fuse to an anyon with charge Sk is given by the fusion coefficient Nk

ij .
For MZMs, the fusion rules are much simpler. There are only three possible

charges. There is the vacuum charge 1, the charge of an electron ε and finally
the charge of the MZM σ. There are the following fusion rules [14]

ε⊗ ε ' 1, ε⊗ σ ' σ, σ ⊗ σ ' 1⊕ ε. (1.18)

These rules can be interpreted as two electrons together becoming a Cooper
pair and two MZMs that together are either empty or filled.

The use of category theory and fusion is not necessary for systems with
Majorana zero modes. These systems are simple enough to be described by
linear algebra and giving the state relative the some basis of pairings of the
MZMs. As particle number is not conserved whenever fusion processes are
considered, using only the braid group Bn for a single value of n is not sufficient,
all braid groups Bn have to be considered simultaneously. For all groups a
representation must be chosen that is compatible with the other braid groups
and fusion. This is where category theory can help to ensure consistency [15].

1.4 Quantum computation with Majorana zero modes

A pair of MZMs can be in two states. Fusing them can either result in vacuum
or in an electron. This means that two MZMs together are a 2 state system and
therefore could form the basis of a qubit. The result of a fusion process only
depends on the braiding of the two MZMs protecting the state of the qubit. The
qubit does not couple to its noisy environment making the qubit more stable
against decoherence.

In physical systems, the electron parity (i.e. the parity of the number of
electrons) is conserved. This means that it is not possible to create a qubit with
only two MZMs. If those two MZMs would have been created from the vacuum,
they must always fuse to vacuum again to conserve parity. By constructing
qubits from four MZMs, one pair can compensate for the parity of the other
pair. The four possible states of a qubit are then |00〉, |11〉 for the even parity

1The charge of an anyon is a label of the particle that denotes the type of anyon under
consideration. This charge is not related to the electrical charge of the particles.
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subspace and |01〉, |10〉 for the odd parity subspace. The first/second number
denotes the result of fusion of the first/second MZM pair. The first MZM pair
is associated with the fermion operator c1 and the second pair with c2. The
numbers then correspond to the fermion number operators c†1c1 and c†2c2.

If the qubit is in the even parity subspace, the state of the qubit is then
given by:

|ψ〉 = α |00〉+ β |11〉 , (1.19)

where |α|2 + |β|2 = 1.
The result of braiding operations on the qubit can now be calculated. For

example the braid

B23 = (1.20)

acts via ρ(B23) on the state |00〉 as2

ρ(B23) |00〉 = eπλγ2γ3/4 |00〉 =
1√
2

(1 + λγ2γ3) |00〉 =

1√
2

(1 + ı(c†1 − c1)(c†2 + c2)) |00〉 =
1√
2

(|00〉+ ı |11〉). (1.21)

All other braid operations can be calculated similarly.
Unfortunately, the braid structure of Majorana qubits is not rich enough

to support universal quantum computation. The π/8 gate is not possible with
braiding of MZMs, also the CNOT gate is not possible within the logical sub-
space of the qubit. To resolve this problem, the topological gates must be
complemented with non-topological gates [16]. Theoretical predictions have
been made for other types of anyons which would be allow topological universal
quantum computing such as the Fibonacci anyon [15]. These ideas will however
not be discussed in this thesis.

Several proposals aim to implement a Majorana qubit. The major difficulty
when trying to implement these qubits is being able to move the MZMs such
that they can be braided. Networks of nanowires have been proposed in which
the MZMs are dragged around and can hence be braided [17].

A different proposal uses superconducting transmon qubits as a basis for
Majorana qubits. The transmon is coupled to the fermion parity of the MZMs.
The coupling can however be tuned exponentially by changing the EJ/EC ratio
of the transmon. Therefore the topological protection of the resulting top-
transmon can be turned on and off. In the non-protected state, the qubit
can be read-out and the π/8 and CNOT gate can be applied [18]. Changing
the coupling between the MZMs leads to an effective braiding [19]. The non-
abelian behavior of Majorana zero modes could be experimentally confirmed by
building a suitable network of nanowires and superconducting islands [20]. In
reference [20] they envision a setup as in Fig. 1.1 . The effective Hamiltonian
for the braiding operation is given by

H = −ı∆1γ
′
1γ3 − ı∆2γ3γ

′
3 − ı∆3γ3γ2. (1.22)

2Elements of groups can only act on states in the Hilbert space via a representation. The
representation corresponding to the exchange of Majorana zero modes is denoted here by ρ.
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γ1 γ'1 γ3 γ2

γ'2 γ'3

Δ0 Δ1 Δ3

Δ2

Figure 1.1: The experimental setup of the braiding experiment. Image adapted
from [20].

Here, ∆i denotes the coupling between Majorana pairs and can be tuned expo-
nentially by changing the magnetic flux through the split Josephson junctions.

The result of the braiding operation can be obtained by solving the time
dependent Schrödinger equation with the Hamiltonian of Eq. (1.22) using time
dependent couplings ∆i. The result of this simulation is shown in Fig. 1.2. Only
the even parity subspace of the Hilbert space is used. Therefore only the even
parity states are shown. In this braiding scheme, an extra ancillary Majorana
pair is needed. Therefore the states are denoted with three quantum numbers.
The states hence look like |n1n2n3〉 where ni is the occupation number of the
fermion given by 1

2 (γ′i + ıγi). Applying the braiding scheme repeatedly to the
initial state |000〉 gives the following cycle:

|000〉 7→ 1√
2

(c1 |000〉+ c2 |110〉) 7→

|110〉 7→ 1√
2

(c3 |000〉+ c4 |110〉) 7→ |000〉 . (1.23)

Here ci denote relative phase factors obeying |ci|2 = 1.

1.5 Experimental realization of Majorana zero modes

In Sec. 1.2, MZMs were predicted to exist in an idealized model. The goal of this
section is to translate the idealized requirements into physically realizable fea-
tures. The idealized model contains a 1-dimensional superconducting nanowire
which is effectively spinless. It is not immediately clear that such systems can
be made in practice.

It is possible to create nanowires which are very thin compared to their
length. The wires are long enough that the longitudinal quantization can be
ignored. The orthogonal quantization induces large energy differences between
the consecutive bands. This allows the system to effectively be described by a
1-dimensional model.

Normal, s-wave superconductors pair electrons of opposite spins into Cooper
pairs. If the system is effectively spinless, it is not clear how to construct
superconducting pairing. To overcome this problem spin orbit coupling will be
used together with an magnetic field. It will be shown that these two ingredients
can be combined to obtain spinless superconductivity. Spin orbit coupling leads
to a term in the Hamiltonian that lifts the degeneracy of the two spin directions
by an energy proportional to the momentum.

Calculations on the spin-orbit coupling will form the major part of this thesis.
For the present purposes however, it is enough to consider spin-orbit coupling
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Figure 1.2: This figure shows the result of four consecutive virtual braiding
operations. Each braiding operation is delimited by a black vertical line. The
four solid lines denote the occupation probability of the four states in this cal-
culation. The dashed lines represent the coupling ∆ between the Majorana
zero modes. This parameter depends on the magnetic flux through the split
Josephson junctions. The horizontal axis denotes time in microseconds. This
figure shows that each braiding operation cycles though the states of Eq. (1.23).
The parameters for this simulations are EJ = 2 × 100 GHz, Ec = 0.5 GHz and
Em = 50 GHz.
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Figure 1.3: The band structure corresponding to the Hamiltonian in Eq. (1.24)
Fig. a shows the band structure for Bz = 0, the definitions of Eso and kso are
given in this figure as well. Fig. b shows the band structure for a finite value
of Bz. A gap opens when a finite magnetic field is introduced in the system.

as an effective term in the Hamiltonian proportional to kzσz. The strength of
the spin-orbit coupling is denoted by α (which depends on the electric field).
Without a magnetic field this produces a band structure as in Fig. 1.3a. In this
figure, the definition of kso and Eso are shown as well. These quantities allow
the spin-orbit strength to be calculated for simulated systems.

In order to obtain a system that can host Majorana zero modes, a magnetic
field has to be added as well. This will produce the Hamiltonian

H =
~2k2

z

2m
− µ+ αkzσy +

1

2
gµBBzσz. (1.24)

With g the Landé g-factor and µb the magnetic dipole moment. The band
structure for a finite value of the magnetic field is shown in Fig. 1.3b.

If the chemical potential is low enough, only the lowest band in Fig. 1.3b
is occupied, rendering the system is effectively spinless. Without spin-orbit
interaction, only a single spin direction would be present in the system such
that superconductivity cannot be induced. With spin-orbit interaction, both
spin directions are still present in the system and superconductivity can be
induced by coupling electrons of opposite spin and momentum.

In summary, there are four requirements for MZMs to appear:

• a 1-dimensional system

• a parallel magnetic field

• induced superconductivity

• strong spin-orbit interaction

This thesis will focus on the fourth requirement. Both theoretical results and
simulations will be employed to predict the strength of the Rashba spin-orbit
interaction in nanowires.

1.6 Thesis outline

The aim of this thesis as roughly twofold. Firstly to calculate the Rashba
spin-orbit interaction in realistic nanowire systems and secondly to develop a
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theory to independently check the numerical results and investigate the nanowire
systems in a broader parameter regime.

In this chapter the basic properties of Majorana zero modes have been in-
vestigated and the major concepts of this thesis have been introduced. Here,
the structure of the remainder of the thesis is described.

Chapter 2 presents a theoretical framework as a foundation for developing an
analytical formula to predict the strength of Rashba spin-orbit interaction. This
formula is then calculated in Chapter 3 together with a general Hamiltonian for
semiconductors. The so called 8× 8 Kane Hamiltonian.

The Kane Hamiltonian is then used to perform simulations in 2-dimensional
quantum wells in Chapter 4. These simulations serve to introduce an intuition
for the effects that emerge in this thesis. First, calculations are performed in
reciprocal space, followed by real space calculations.

Finally, in Chapter 5, nanowires are simulated in a real space basis. First, a
number of parameters like shape, width and growth direction are investigated.
Then a Schrödinger-Poisson solver is used to induce a realistic electric field in
these nanowires. The geometry used is similar to the device where the first
signatures of MZMs were observed.

The contents of Chapter 1 is mainly based on existing literature. Only the
simulation corresponding to Fig. 1.2 were performed by the author. Chapter 2
is also based on literature. Section 2.1 consists of well known definitions of
representation theory. Sections 2.2 and 2.3 consist of examples of the preceding
section. Finally, Sec. 2.4 is based on reference [21], but was fully rewritten. The
author hopes that this section is easier to understand than the original. An
effort was made to exclude as much dependencies as possible and arrive at a self
contained proof of the theory of invariants.

Chapter 3 is mainly based on existing literature, but the results were re-
derived by the author revealing a difference in the resulting formula in Eq. (3.39).
Section 3.5 contains the explicit application of the theory to 1-dimensional
nanowire systems. Here it was found that the existing theory leads to ambiguous
results, which is resolved in this section by the author. Finally, Sec. 3.6 contains
results that originated in discussions with Roland Winkler and Michael Wimmer
which cannot be found in existing literature as far as the author is aware.

The results of Chapter 4 are calculated by the author using Mathematica.
The results of Chapter 5 were also calculated by the author using Kwant. The
Hamiltonian was implemented by Rafa l Skolasiński. The Schrödinger-Poisson
solver was implemented by Adriaan Vuik [22].
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2 Symmetry

2.1 Representation theory

Representations of groups allow to study the behavior of groups in the context of
linear algebra. Quantum mechanics can be formulated in the language of linear
algebra making representations an important link between quantum mechanics
and symmetry. This section is an attempt to capture the most important aspects
of representations for this thesis. First, representations will be defined together
with some important properties. Afterwards the concept of restrictions and
characters will be enlightened.

Let G be a group and V be a vector space. The group of linear maps on V
is denoted as GL(V ). A representation is a group homomorphism ρ between G
and GL(V ). The complete definition of ρ is then

ρ : G→ GL(V ) : g 7→ ρ(g) such that ∀g, h ∈ G : ρ(gh) = ρ(g)ρ(h). (2.1)

The dimension n of V is called the dimension of the representation ρ.
If a representation maps only to unitary matrices, the representation is said

to be unitary. This condition can be expressed as

ρ†(g) = ρ−1(g). (2.2)

If the vector space has a nonempty subspace W ( V such that

∀g ∈ G, w ∈W : ρ(g)w ∈W, (2.3)

then ρ is said to be reducible. If no such subspace exists, ρ is said to be irre-
ducible. Note that for a 1-dimensional representation, such a subspace cannot
exist. Hence, a 1-dimensional representation is always irreducible.

Because representations which are both unitary and irreducible will play an
important part in the rest of this thesis, unitary irreducible representation is be
abbreviated to unirrep.

It is possible to define a basis on our vector space V of vectors e1, ..., en. Any
vector v ∈ V can be denoted in terms of this basis, v =

∑
i viei. Then ρ(g) can

be thought of as a matrix, with components ρ(g)ij , acting on the components
of the vectors. Instead of letting ρ(g) act on the components of a vector, ρ(g)
can also act on the basis of the vector space itself. In other words, the vector
components no longer transforming according to

vi 7→
∑
j

ρ(g)ijvj , (2.4)

but instead the basis vectors themselves transform according to

ej 7→
∑
i

eiρ(g)ij . (2.5)

Note that the vector v gets mapped to the same physical vector in both nota-
tions. A set of basis vectors which transform according to Eq. (2.5) is called a
basis of a representation ρ.
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Given two representations ρ from G to GL(Vρ) and σ from G to GL(Vσ) these
representations can be combined to from new representations. First define the
direct sum of two representations as

(ρ⊕ σ) (g) = ρ(g)⊕ σ(g). (2.6)

The direct sum on the RHS must be understood as the direct sum of matrices.
It can be shown that ρ ⊕ σ is again a representation from G to GL(Vρ ⊕ Vσ).
Similarly the (Kronecker) product [23] of two representations can be defined as

(ρ⊗ σ) (g)ik,jl = (ρ(g)⊗ σ(g))ik,jl = ρ(g)ijσ(g)kl. (2.7)

It can again be checked that this is a genuine representation from G to GL(Vρ⊗
Vσ). Finally one can take the complex conjugate of a representation by

ρ∗(g) = ρ(g)∗, (2.8)

which is again a representation.
The character of a representation is defined as

χρ : G→ C : g 7→ Tr(ρ(g)). (2.9)

In general, a character can map to an arbitrary field. In this thesis this will
always be the complex numbers however. An important property of characters
is that it maps the identity to the dimension of the representation,

χρ(e) = n. (2.10)

Furthermore, there exist the following identities for the composition of charac-
ters which can be proved using the definitions for the respective representations.

χρ⊕σ = χρ + χσ (2.11)

χρ⊗σ = χρ · χσ (2.12)

χρ∗ = χρ (2.13)

Using characters it can be shown that any reducible representation can be re-
duced into the direct sum of irreducible constituents. Hence a reducible repre-
sentation ρ can be written as

ρ =
⊕
i∈I

ρaii , (2.14)

where the direct sum is index by the irreducible representations ρi. The number
of times that a representation ρi is contained in ρ is given by the number ai.
This number can be determined by [24]

ai =
1

h

∑
g∈G

[χρi(g)]
∗
χρ(g), (2.15)

where h is the order of the group G under consideration.
Once the irreducible representations of a group G are known, it is interest-

ing to look at representations in a subgroup H < G. If an irreducible repre-
sentation is restricted from G to H, then the resulting representation might be
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reducible. This restricted representation can then be decomposed into the sum
of irreducible representations. This decomposition is encoded in the so called
branching laws [25].

In the next subsections two examples will be discussed before continuing
with the implications of symmetry. These examples are very different in nature,
but very similar in framework. The first example considers the structure of
spin. It is shown that bosonic spins correspond to irreducible representations of
SO(3) while fermionic spins appear only when the more complete structure of
SU(2) is studied.

The second example has the same structure, but considers exchange statis-
tics. By studying the permutation group, normal bosonic and fermionic ex-
change statistics are recovered. To recover anyonic exchange statistics, the more
complete braid group has to be studied.

2.2 Application of symmetry to spin

In this section the symmetry properties of spin will be considered. Spin is an
important property of particles in quantum mechanics that describes intrin-
sic angular momentum. By considering the 3-dimensional rotation group, the
integer spin particles appear as irreducible representations. By studying the
universal cover group of the rotation group, half-integer spin representations
will appear as well.

Consider rotation of space. These rotations can be described by group the-
ory. The group containing all rotations in 3-dimensional space is isomorphic
to SO(3), the special orthogonal group in three dimensions. The group SO(3)
contains all 3-dimensional real orthogonal matrices with unit determinant. This
can be written as

SO(3) = {M ∈ GL(R3)|MT = M−1,det(M) = 1}. (2.16)

This group allows for an infinite number of irreducible representations. These
representations all have an odd number of dimensions [26] and correspond to
particles with integer spin. Hence the transformation rules for bosons are re-
covered, but fermions do not fit into these representations.

The problem is that the description of rotation by SO(3) is not faithful as
the group SO(3) is not simply connected. This means that a closed path of
rotations can not always be contracted to a point. Starting with the identity
and rotating along an arbitrary axis by 2π yields the identity rotation, but the
path cannot be contracted to a point. Only by rotating by 2π once more, the
path can be contracted to a point again.

This can be visualized by representing rotations as n̂φ with n̂ a unit vector
and φ the angle of rotation around this unit vector. The space of all rotations
is then a ball with radius π that has the antipodal points identified which is
called the parametric ball [23]. A path of a rotation by 2π can be represented
by a path going from the center of the parametric ball to the south pole which
is identified to the north pole from which the path goes down further to the
center. This path cannot be deformed to a point, but a path corresponding to
a rotation of 4π can be deformed to a point which is shown in Fig. 2.1.

This means that Quantum mechanics can (and sometimes will) make a dif-
ference between a rotation of 2π and 4π. Therefore a group is needed to take
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Figure 2.1: A rotation of 4π is shown by a red line in a cross section of the
parametric ball, which is represented by a square with opposite ends identified.
By deforming the path along the blue arrows, the path can be deformed to a
point.

this additional structure into account. This group is called SU(2) and is isomor-
phic to the group of equivalence classes of homotopic paths3 in SO(3). Hence
the special unitary group has to be used when describing rotations. This group
is described by

SU(2) = {M ∈ GL(C2)|M† = M−1,det(M) = 1}. (2.17)

The groups SO(3) and SU(2) are connected by a group homomorphism such
that the irreducible representations in SO(3) can be lifted to an irreducible
representation of SU(2). This group homomorphism is denoted by φ : SU(2)→
SO(3) and is a double cover4, hence φ is onto. The kernel of φ is {±I} ' Z2,
hence the isomorphism theorem gives [26]

SU(2)/Z2 ' SO(3). (2.18)

Given an irreducible representation ρ of SO(3), ρ ◦ φ gives an irreducible repre-
sentation on SU(2).

It is possible to define all finite dimensional representations on SU(2). Define
the representation πn on SU(2) acting on the space of homogeneous polynomials
P (z1, z2) of degree n by

πn(g)P (

(
z1

z2

)
) = P (g−1

(
z1

z2

)
), (2.19)

where g must be thought of as a two dimensional matrix and P is a homogeneous
polynomial on z1 and z2 of degree n. Note that the representation πn has
dimension n+ 1. It can be proven that all irreducible representations of SU(2)
are equivalent to one of the representations πn [26]. The representations that
are lifted from SO(3) to SU(2) correspond to all πn with even n. These are all
odd dimensional representations corresponding to integer spin and obey

ρ(θ~n) = ρ((θ + 2π)~n). (2.20)

3Two paths are homotopic if they can be continuously deformed in one another.
4A double cover means that for each element in SO(3) there are exactly 2 elements in

SU(2) that get mapped to it.
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For odd n, the representations πn has no counterpart in SO(3). These represen-
tations have odd dimension and correspond to half-integer spin. These fermionic
representations obey

ρ(θ~n) = −ρ((θ + 2π)~n). (2.21)

Electrons are particles with spin 1/2. Hence they are fermions and as dis-
cussed in the introduction do not return to themselves after a rotation of 2π.
The representation of electrons is denoted by D 1

2
. This representation will play

an important role in the symmetry considerations of Chapter 3.

2.3 Application of symmetry to exchange statistics

Exchange statistics are the basis for very important properties of quantum me-
chanical systems. The symmetry of bosons allows them to condense in a Bose-
Einstein condensate. The anti-symmetry of fermions gives rise to the Pauli
exclusion principle. This section will show how these statistics arise from the
permutation group. Next, the braid group is considered to study anyonic ex-
change statistics. To describe the exchange statistics, representation theory is
used as a framework. This exposes the difference between anyons, fermions and
bosons.

The symmetry of the exchange of particles is described by the permutation
group. The permutation group Sn on n particles can be built by considering
the n − 1 pairwise exchange operators σi that exchanges particles i and i + 1.
These operators obey the following relations:

σiσj =σjσi for |i− j| 6= 1 (2.22)

σiσi+1σi =σi+1σiσi+1 (2.23)

σ2
i =1. (2.24)

This group has two 1-dimensional unirreps for n ≥ 25. The first is the trivial
representation which sends every element to the 1-dimensional identity matrix.
The second is the alternating representation which sends the group elements
σi to minus the identity. This uniquely defines the representation on the other
elements as well. These two representations correspond to bosons and fermions
respectively. These are the only 1-dimesional unirreps as can be seen by con-
sidering σ2

i = 1. This means that for any unirrep ρ it holds that ρ(σi) = ±1. If
ρ(σi) = ±1 for a certain i then by Eq. (2.23), ρ(σj) has the same sign for all
j. This leads to the trivial and alternating representation of the permutation
group.

Similar to the fact that SO(3) gives an incomplete picture of spin (see Sec.
2.2), Sn gives an incomplete picture of the symmetry of particle exchange. In
other words, the description of the exchange process given by the permutation
group is not faithful. For spin, the paths traversed in SO(3) by the particles
must be taken into account. Similarly for exchange statistics, it is necessary to
take the paths traversed in configuration space into account. The group taking
the history of exchanges into account is given by the braid group Bn. The braid
group looks a lot like the permutation group with the exception that Eq. (2.24)

5There are also higher dimensional irreducible representations of the permutation group.
These representations lead to parastatistics [27]. A discussion of parastatistics would lead us
beyond the scope of this thesis.
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is dropped as a relation. Hence, the definition of the braid group is given by
the generators σ1 . . . σN−1 and the relations:

σiσj =σjσi for |i− j| 6= 1 (2.25)

σiσi+1σi =σi+1σiσi+1. (2.26)

A 1-dimensional unirrep of the braid group can assign any phase to the braiding
of two particles

ρ(σi) = eıθ. (2.27)

Particles that have exchange statistics according to this representation are called
(abelian) anyons. The braid group contains the permutation group as a sub-
group. The representations for bosons and fermions can be recovered for θ = 0
and θ = π respectively. Hence, bosons and fermions can be thought of as special
cases of a more comprehensive set of representations.

There are also higher dimensional representations of the braid group. In
these representations it might happen that

ρ(g1)ρ(g2) 6= ρ(g2)ρ(g1). (2.28)

If this is the case, the exchange statistics are said to be non-abelian.
A group homomorphism φ : Sn → Bn can be constructed by mapping a

braid to the corresponding exchange of strands, but neglecting the intermediate
exchanges. The kernel of this homomorphism gives rise to a subgroup of Bn
which is called the pure braid group Pn. This group consists of all braids where
the final position of all strands is the same as their initial position. By the
isomorphism theorem [26]

Bn/Pn ' Sn. (2.29)

In (3+1) dimensional systems it is possible to continuously deform any braid in
the pure braid group to the identity braid [27]. Therefore, only the permutation
group is needed to describe particle exchange. In contrast for a lower number of
dimensions, this deformation is not possible which can lead to anyons emerging
in these systems.

2.4 Symmetry and the theory of invariants

The goal of this section is to describe the conditions that are imposed on the
Hamiltonian by symmetry considerations. This method was first described by
Bir and Pikus in reference [21]. This section aims to explain the theory of
invariants using only basic representation theory.

The Hamiltonian is an operator in the state space. It generally depends on
a variety of physical fields, such as the electric and magnetic field but also the
momentum operators. These fields are denoted by a general tensor K leading to
H(K). The explicit form of the Hamiltonian depends on the basis of the fields
and the state space. If the system is invariant under a certain group of symmetry
operations, then the Hamiltonian must obey the same symmetries. That means
that the Hamiltonian should be invariant under a symmetry transformation on
the basis vectors of the state space and a simultaneous transformation of the
physical fields.
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Consider a representation ρ of the symmetry group G in the state space with
basis e1, ..., en. The Hamiltonian can then be written relative to this basis. The
matrix elements are

Hij = 〈ei|H|ej〉 . (2.30)

It is known how the basis transforms under elements of G. This can be
used to determine how the matrix H changes under transformations of the basis
vectors.

Hij 7→ H′ij = 〈
∑
k

ekρ(g)ki|H|
∑
p

epρ(g)pj〉 =
∑
kp

〈ekρ(g)ki|H|epρ(g)pj〉 .

(2.31)
Using the fact that ρ(g)ki and ρ(g)pj are just complex numbers, ρ is a unitary
representation and the definition of Hkp it is possible to rewrite this expression
to

H′ij =
∑
kp

ρ(g)∗ki 〈ek|H|ep〉 ρ(g)pj = ρ(g)−1
ik Hkpρ(g)pj . (2.32)

The transformation of the fields by a symmetry operation is denoted by ĝ. Then
the invariance of the systems gives

ρ(g)−1H(ĝK)ρ(g) = H(K). (2.33)

This can be rewritten to the central equation of this section

ρ(g)H(g−1K)ρ(g)−1 = H(K). (2.34)

This equation must hold for all elements of the symmetry group G and captures
the constraints posed by symmetry on the Hamiltonian. However, this condition
does not immediately show how to construct Hamiltonians that satisfy this
constraint. A flaw that is remedied by the theory of invariants. This theory
shows that the Hamiltonian must be the sum of so called invariants. How these
invariants arise will be the subject of the remainder of this section.

Eq. (2.34) in this compact form is not useful in order to make progress. The
symmetry structure of the matrix H and the tensor K are not explicitly present
in the equation. Expanding H and K in turn in a suitable basis solves this
problem.

Firstly, a suitable basis for H must be formed. Such a basis consists of n2

matrices of dimensions n×n. It is possible to construct these n2 basis elements,
Xi, such that Xi does not depend on K. In order to express the Hamiltonian
in these basis elements, n2 functions fi : K 7→ f(K) ∈ C need to be found such
that

H(K) =
∑
i

fi(K)Xi. (2.35)

A representation can then be defined by

Xi 7→ X ′i = ρ(g)Xiρ(g)−1. (2.36)

The matrices Xi form a basis for all n × n matrices, which ensures that an
explicit formulation of this representation can be found in the form of a matrix
ρX(g)ji such that

X ′i =
∑
j

Xjρ
X(g)ji. (2.37)
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In order for ρX to be a representation, it must be shown that it behaves as a
group homomorphism,

ρX(gh) = ρX(g)ρX(h). (2.38)

This result follows by substituting the definition of ρX and using that ρ is itself
a representation,

Xjρ
X
ji(gh) = ρ(gh)Xiρ(gh)−1 = ρ(g)ρ(h)Xiρ(h)−1ρ(g)−1. (2.39)

Substituting back the definition of ρX gives

Xjρ
X
ji(gh) = ρ(g)Xkρ

X(h)kiρ(g)−1 = Xjρ
X(g)jkρ

X(h)ki. (2.40)

Hence, ρX is a representation and the Xi form a basis for this representation.
This representation is in general reducible. This representation can be decom-
posed into its irreducible constituents indexed by µ. This gives a new set of
representations ρµ and basis matrices Xµ

i ,

Xµ
i 7→ ρ(g)Xµ

i ρ(g)−1 =
∑
j

Xµ
j ρ

µ(g)ji. (2.41)

Therefore Eq. (2.35) becomes

H(K) =
∑
iµ

fµi (K)Xµ
i . (2.42)

The matrices Xµ
i make it possible to make a first step rewriting Eq. (2.34),

H = ρ(g)
∑
iµ

fµi (g−1K)Xµ
i ρ(g)−1 =

∑
iµ

fµi (g−1K)ρ(g)Xµ
i ρ(g)−1. (2.43)

Hence,

H =
∑
iµ

fµi (K)Xµ
i =

∑
ijµ

fµi (g−1K)Xµ
j ρ

µ(g)ji. (2.44)

Using that the Xµ
i form a basis, the factors in front of these matrices can be

equated

fµl (K) =
∑
i

fµi (g−1K)ρµ(g)li. (2.45)

Now, a suitable basis for K will be constructed. The existence of this basis
guarantees that g−1K can be expanded in this basis. The fields in K transform
as vectors. In other words, they obey the following transformation rule

K′i = g−1K = ρK(g−1)ijKj . (2.46)

This can be split in irreducible components labeled by λ and rewritten to

K′λ
∗

j =
∑
k

ρλ
∗

kj (g)Kλ
∗

k . (2.47)

The functions fµl must now be expanded in the basis of K. The coefficients
of this expansion depend on the indices of the function f and on all the indices
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of the basis of K. Hence, the coefficients are complex numbers denoted by cµλkj .
Then the explicit expansion looks like

fµk =
∑
jλ

cµλkj K
λ∗

j . (2.48)

Substituting this into Eq. (2.45) yields∑
jλ

cµλlj K
λ∗

j =
∑
imλ

ρµ(g)lic
µλ
imK

′λ∗
m . (2.49)

Now K′ can be expanded as∑
jλ

cµλlj K
λ∗

j =
∑
imjλ

ρµ(g)lic
µλ
imK

λ∗

j ρλ
∗
(g)jm. (2.50)

Using that the terms Kλ∗j form a basis leads to

cµλlj =
∑
im

ρµ(g)lic
µλ
imρ

λ∗(g)jm. (2.51)

This can be rewritten as

cµλlj =
∑
im

(
ρµ(g)⊗ ρλ

∗
(g)
)
lj,im

cµλim. (2.52)

The tensor product of two representations is again a representation (cf. Eq. (2.7)).
The equation above holds for all elements of the symmetry group. If c is inter-
preted as a vector with index im, then this representation has a one-dimensional
invariant subspace, where it acts as the identity representation. The identity
representation is only present in ρµ(g)⊗ ρλ∗(g) if λ = µ [28].

Combining this with ρλ
∗
(g)ij = ρλ(g−1)ji, the symmetry condition can be

rewritten as ∑
j

cµljρ
µ(g)jk =

∑
i

ρµ(g)lic
µ
ik. (2.53)

Interpreting cij as an operator, the equation tells us that c commutes with all
elements of the representation. By Schur’s second lemma [28] it follows that

cµλlm = cµδλµ1lm (2.54)

where cµ ∈ C and no summation over µ is implied. This result leads to

H(K) =
∑
iµjλ

cµλij K
λ∗

j Xµ
i =

∑
µ

cµ
∑
i

Kµ
∗

i Xµ
i . (2.55)

The terms in this equation are called invariants. It is important to notice that if
the initial representation ρ is reducible, then ρ can be written as the direct sum
of representations. Then in turn, the Hamiltonian can be factored into blocks.
For each of these blocks the symmetry requirement can be written as

ρα(g)Hαβ(g−1K)ρβ(g)−1 = Hαβ . (2.56)
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This affects the theory of invariants by reducing Eq. (2.41) to

ρα(g)abX
µi
bc ρ

β(g−1)cd =
(
ρα(g)⊗ ρβ

∗
(g)
)
ad,bc

Xµi
bc . (2.57)

This shows that the representation ρX must be contained in the representation
ρα(g)⊗ ρβ∗(g) meaning that all blocks of the Hamiltonian can only contain the
invariants that transform according to the right representations which results in
a huge restriction on the terms that are allowed in the Hamiltonian. The effects
on the structure of the Hamiltonian are demonstrated in Sec. 3.3.

Finally it is worth mentioning that time reversal adds an additional require-
ment to the diagonal blocks in the Hamiltonian Hαβ . Only the invariants that
are invariant under time reversal are allowed as diagonal blocks.[29]
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3 General semiconductor systems

3.1 Exposition of spin-orbit interaction

Spin-orbit interaction is an effect that couples momentum and spin through
the electric field. The easiest way to understand this effect is to look at a
semiclassical calculation of an electron in orbit around a nucleus. Assume that
there are no external magnetic fields. In this situation there is only the electric
field of the nucleus that needs to be considered. In the derivation, care is needed
to keep the order of the operators because these do not generally commute. A
figure depicting the situation under considerations is shown in Fig 3.1.

Figure 3.1: This figure is a cartoon of spin-orbit interaction of an electron around
a nucleus. The nucleus is depicted in red, the electron in purple and the orbit
in orange. The spin of the electron is indicated by a green arrow.

First, make a transformation to the inertial frame of the electron. The
Lorentz transformation gives the magnetic field in this frame,

~B′ = γ( ~B⊥ −
1

c
~β × ~E). (3.1)

Here, ~B and ~E denote the fields in the inertial frame of the nucleus, ~B′ denotes
the magnetic field in the reference frame of the electron. Note that ~p = γm~v,
hence, in the absence of an external magnetic field, ~B′ is given by

~B′ = − 1

mc2
~p× ~E. (3.2)

This magnetic field couples to the spin of the electron via [30]

HSO = −~µ · ~B. (3.3)

For an electron, ~µ is given by

~µ =
ge

2m
~S with ~S =

~
2
~σ. (3.4)
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Putting these formulas together gives

HSO =
(g − 1)e

2m2c2
~S · (~p× ~E). (3.5)

Here, 1 is subtracted from the g-factor to compensate for the fact that the
electron is not in an inertial frame. By doing so, the Thomas precession is
taken into account[31].

In the case of an electron around a nucleus, the electric field is spherically
symmetric making it possible to write it as

~E = −∇φ(r) = −∂φ
∂r
r̂ = −~r

r

∂φ

∂r
. (3.6)

When this field is substituted into the Hamiltonian, the new Hamiltonian be-
comes

HSO =
(g − 1)e

2m2c2
~S · (~p× ~r1

r

∂φ

∂r
). (3.7)

To introduce the angular momentum operator ~L = ~r×~p the product in Eq. (3.7)
has to be reversed. Doing this explicitly yields

(~p× ~r)i = εijkpjrk = εijkrkpj − ı~εijkδjk = −εikjrkpj = −(~r × ~p)i. (3.8)

Now, the commutation relations of the electric field and the other terms in the
equation will be investigated. Momentum operators do not generally commute
with objects that depend on position. The angular momentum operator Li how-
ever, does commute with spherical symmetric objects. Let f(r) be a spherically
symmetric function, then

[Li, f(r)] =
∑
j,k

εijkrjpkf(r) ∝
∑
j,k

εijk

(
rj
∂r

∂rk

)
∂f

∂r
= 0. (3.9)

This means that the electric field can be placed in front of ~S · ~L. Plugging this
all into Eq. (3.7) gives the spin-orbit Hamiltonian,

HSO = − (g − 1)e

2m2c2
1

r

∂φ

∂r
~S · ~L. (3.10)

In mesoscopic systems a term similar to Eq. (3.5) also appears in the Hamil-
tonian. Only in the mesoscopic case, there is a different constant in front of
the interaction. One could derive the spin-orbit splitting in semiconductors by
considering only an external electric field applied to the system. This would
however give results that are far weaker than the observed spin-orbit splittings.
The reason for this is that in such a derivation, the strong electric fields of the
nuclei in the system are neglected. The derivation of Rashba spin-orbit splitting
will be the subject of the remainder of this chapter.

3.2 Broken symmetries and spin-orbit interaction

Symmetry plays a central role in the derivation of the Hamiltonian of this sys-
tem. Therefore this section starts with some general symmetry considerations.
A symmetry of nature is given by the CPT invariance [32]. A combination of
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charge conjugation, parity transformation6 and time reversal. These transfor-
mations can give important restrictions on spin splitting.

This restriction can be obtained by considering parity transformation

P : ~x 7→ −~x. (3.11)

and time reversal
T : t 7→ −t. (3.12)

If a system is symmetric under parity transformation, then the energy dispersion
relation of the system obeys

E~k↑ = E−~k↑. (3.13)

The systems which are considered in this thesis are symmetric under time
reversal. Time reversal symmetry holds long as no explicit time dependence is
introduced in the Hamiltonian and there is no magnetic field. Time reversal
reverses the direction of spin. Hence, systems symmetric under time reversal
obey Kramers degeneracy [24],

E~k↑ = E−~k↓. (3.14)

These two energy relations can be combined in order to get

E~k↑ = E~k↓. (3.15)

This means that the energy of spin-up and spin-down particles in the system
must be identical. Consequently there can be no spin splitting. In order to
obtain a non-zero spin splitting, it is necessary to break the symmetry under
parity transformation or time reversal.

Breaking time reversal symmetry can be done by applying an external mag-
netic field. This induces Zeeman spin splitting lifting the spin degeneracy. It is
important to note however, that this splitting does not depend on momentum.
In general, terms linear in magnetic field and momentum can be formed. In the
diagonal blocks of the Hamiltonian however, all terms must be invariant under
time reversal (see Sec. 2.4). A function linear in momentum, magnetic field
and spin would be odd under time reversal and does therefore not contribute to
spin-orbit splitting in the effective electron Hamiltonian [21].

There are two important ways in which parity transformation symmetry can
be broken. The first is to break the microscopic parity transformation symmetry.
zincblende and wurtzite structures do not have inversion symmetry, hence the
spin degeneracy can be lifted. Dresselhaus spin-orbit splitting can result from
this type of asymmetry. This type of parity asymmetry is called bulk inversion
asymmetry (BIA) and will be briefly discussed in Sec. 3.6.

Another way to break parity transformation symmetry is to have structure
inversion asymmetry (SIA). This means that parity is broken by an external
field. The electric potential of an electric field generally depends on position and
breaks parity inversion symmetry. Such an electric field couples the momentum
and spin of an electron. This is called Rashba spin-orbit interaction. The Rashba
effect will be investigated in the remainder of this thesis. How Rashba spin-
orbit interaction arises in mesoscopic systems follows by performing a Löwdin
partitioning on the multiband Hamiltonian that will be derived in Sec. 3.3.

6Note that parity transformation is unrelated to the fermion parity in a superconductor,
although both are referred to as parity.
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3.3 Semiconductor band structures: The Kane Hamilto-
nian

It is now interesting to see how a Hamiltonian can be formed for electrons and
holes in a semiconductor. It turns out that if the theory of invariants is taken
into account, it is possible to give an approximate Hamiltonian.

The relevant symmetry group in semiconductors is given by the group SU(2)
(see Sec. 2.2) together with the behavior under parity transformation. The
resulting group is denoted by

R = SU(2)× Ci. (3.16)

In this thesis we are only interested in the first conduction band of electrons
and they have a central position in the Hamiltonian. The wavefunction of an
electron has transformation properties derived from the full rotation group. It
is important to find out how all the bands transform in the full rotation group.
Electrons transform according to the irreducible representation D 1

2
of SU(2).

The lowest conduction band of zincblende structures is even with respect to
parity. This means that the lowest conduction band transforms according to
D+

1
2

. The representations of the highest valence bands can also be determined.

The light and heavy holes transform according to D−3
2

. The last band that will

be taken into account is the spin splitoff band. These holes transform according
to D−1

2

The system under consideration does not have the symmetry of the full
rotation group however. The symmetry is lowered by the crystal structure of
the system. A zincblende bulk crystal has the symmetry of the pointgroup
Td. This point group has the same symmetries as a tetrahedron making it a
subgroup of the full rotation group. The representations of the full rotation
group induce representations in the subgroup Td. These representations need
not be irreducible and the decomposition of the restricted representations into
irreducible representations of Td is given by the branching laws (see Sec. 2.1),
which can be found for example in the compatibility tables of reference [33].

For Td as a subgroup of the full rotation group, the compatibility table gives
that D+

1
2

is restricted to Γ6. In other words, the first conduction band transforms

according to Γ6. Light and heavy holes transform according according to Γ8 and
the spin splitoff band transforms according to Γ7.

The theory of invariants now gives that there is a block in the Hamiltonian
for each combination of two irreducible representations. This means that the
Kane Hamiltonian can be written in 3× 3 blocks.

H8×8 =

H6c6c H6c8v H6c7v

H8v6c H8v8v H8v7v

H7v6c H7v8v H7v7v

 (3.17)

It is also possible to take higher conduction bands transforming according to
γ7c and γ8c into account. This would give a 14 × 14 dimensional Hamiltonian.
Because the corrections induced by these bands is very small, these bands will
not be taken into account explicitly. Note that in order to take Dresselhaus
spin-orbit interaction into account, these bands cannot simply be ignored.

The theory or invariants (see Sec. 2.4) now tells us that each of this blocks
can only be build up from invariants that belong to a representation that is in
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the direct product of the two bands that it couples. This means that H6c6c can
only contain invariants contained in Γ6 ⊗ Γ6 = Γ1 ⊕ Γ4. The multiplication
of two representations can be found with the help of the multiplication tables
given in reference [33].

If all fields except for the momenta are set to 0 the Kane Hamiltonian is
recovered up to some constant parameters. For the 6c6c block this means that

H6c6c = Ec + c6c6c
12 k2σ0, (3.18)

for some constant c6c6c
12 . It makes sense to equate this constant with ~2

2m′c
to

identify this term with the kinetic energy of particles in the first conduction
band. By proceeding similarly, the Kane Hamiltonian H8×8 can be recovered.
For the explicit form of H8×8 see reference [29].

3.4 Application of Löwdin partitioning and theory of in-
variants

Using Löwdin partitioning, (see reference [29]), remote bands can effectively be
taken into account instead of explicitly. Löwdin partitioning allows to determine
an effective 2× 2 Hamiltonian for the system. There are three invariants which
are relevant for the bulk system. The constant energy proportional to σ0, the
kinetic energy, proportional to k2σ0 and the Rashba spin-orbit term proportional
to

~σ · ~k × ~E. (3.19)

Since energy is only defined up to an additive constant, the constant energy can
be ignored. This means that the 2× 2 Hamiltonian can be written as

H2×2 =
~2k2

2mc
σ0 + r6c6c

41 ~σ · ~k × ~E. (3.20)

The value of mc for bulk systems can be obtained from literature. A predic-
tion for r6c6c

41 and nonbulk mc can be obtained by Löwdin partitioning. The
dispersion relation of this Hamiltonian is shown in Fig. 1.3a.

The dispersion relation can also be calculated from the full H8×8 Kane
Hamiltonian. In order to do this however, the missing constants such as m′c
appearing in H6c6c must be determined. In H8v8v and H7v7v, γ′1 and γ′2 ap-
pear to parametrize the effective masses in the Kane Hamiltonian. The other
parameters are P , γ′3 and the energy offsets E6c, E7v and E8v. The unprimed
parameters can be found in band structure parameter tables (e.g. ref. [29]). For
the primed parameters only the unprimed versions can be looked up. The un-
primed versions of the parameters correspond to the smaller effective models of
the semiconductor. For m′c, for example, one can only look up mc appearing in
Eq. (3.20) for the mass of the conduction band electrons where the other bands
have been effectively taken into account. Calculating the primed parameters can
be done by calculating mc with a Löwdin partitioning of H6c6c with unknown
m′c. This then gives a relation between mc and m′c which can be solved for m′c.

There are two contributions to the invariant ~2k2

2mc
. The first is from the

H6c6c block appearing as the first order in the Löwdin partitioning. The second
is from the Γ7 and Γ8 valence bands in the full H8×8 Hamiltonian in the second
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Figure 3.2: In this figure the dispersion relation of H8×8 is shown. From the
figure it can be seen that the conduction band bends down for higher values of
k.

order terms in the Löwdin partitioning. This leads to

~2

2mc
=

~2

2m′c
+
P 2

3

(
2

E6c − E8v
+

1

E6c − E7v

)
, (3.21)

or alternatively

mc =
1

1
m′c

+ 2P 2

3~2

(
2

E6c−E8v + 1
E6c−E7v

) . (3.22)

The parameters γ′1, γ′2 and γ′3 can be calculated similarly. This defines all
parameters of the H8×8 Hamiltonian.

Once these calculations are performed, it turns out that m′c is negative. For
small k, the conduction band is pushed up by the valence bands and the band
bends up. For larger k however, the kinetic energy term starts to dominate and
the conduction band bends down. This behavior is shown in Fig. 3.2.

In fig. 3.2 it can be seen that for some k0 the conduction band crosses
zero and it closes the gap of the system. It is important to note however that
these solutions do not represent real solutions of the system. If one is not
careful when determining the solutions of the system, the spurious zero energy
solutions can drastically alter the result. For calculations in momentum space,
all momenta must be much smaller than k0. For calculations in real space the
situation becomes more complicated. The problem of the spurious solutions will
be postponed until Chapter 4.

For bulk systems, it is now possible to calculate r6c6c
41 from this Hamiltonian.

The electric field is treated as a small perturbation on the Hamiltonian appear-
ing on the diagonal of the matrix. The Rashba term appears in the third order
terms of the Löwdin partitioning. This expansions leads to

r6c6c
41 =

eP 2

3

(
1

(E6c − E8v)2
− 1

(E6c − E7v)2

)
. (3.23)

This gives a first estimation of the strength of Rashba spin-orbit coupling. The
system of interest, however, is not a bulk system. Considering nanowires instead
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of bulk systems has two effects. Firstly the structure of the invariant changes
and secondly, the confinement changes the Löwdin partitioning because the
different subbands have to be taken into account. In the next section, these
effects will be calculated.

3.5 A model for confined systems: Subband Löwdin par-
titioning

Changing from bulk systems to quantum well systems or nanowire systems
breaks the symmetry of the system. These systems have respectively one and
two confined directions that are no longer similar to the other directions. This
means that the symmetry group is no longer Td but a subgroup thereof. The ori-
entation of the system relative to the tetrahedral symmetry group is important
and gives rise to the growth direction which determines the relevant subgroup
of Td.

For this thesis, two growth directions of the nanowires are especially impor-
tant. The [100] direction and the [111] direction. For nanowires the symmetry
group of these wires can be determined by taking all elements of Td that keep
the orientation of the wire fixed. For the [100] direction, D2d is obtained and for
[111], C3v is obtained. These groups give a different set of invariants that can
arise in the system. Using the compatibility table to find which representation
represents electrons, the representations for H6c6c can be found. A representa-
tion of the unit cell of zincblende together with the growth direction is given in
Fig. 3.3.

The invariants that can be used to expand the Hamiltonian depend on the
symmetry group of the problem. Going to a subgroup reduces the symme-
try of the system. Therefore the number of allowed invariants increases. The
subgroups corresponding to either 2-dimensional quantum well systems or 1-
dimensional nanowire systems have principle axis of rotation which is the ẑ-
direction. This means that it is no longer necessary to treat every direction on
the same footing. The bulk Rashba invariant (see Eq. (3.19)) splits in three new
invariants. These are

Ez(kyσx − kxσy) (3.24)

(Eykx − Exky)σz (3.25)

kz(Exσy − Eyσx). (3.26)

For 2-dimensional quantum well systems, the relevant invariant has the
wavevector in the x̂- or ŷ-direction and the electric field along the ẑ-direction.
Therefore the term in the Hamiltonian is

r6c6c
41 Ez(kyσx − kxσy). (3.27)

For 1-dimensional nanowires, the only wavevector that can occur in the invariant
is kz. The electric field can then be applied in either the x̂- or ŷ-direction. The
term in the Hamiltonian takes the form

r6c6c
41 kz(Exσy − Eyσx). (3.28)

For the [100] direction these invariants belong to the representation Γ5 of the
point group D2d. One could therefore introduce new notations for coefficients of
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Figure 3.3: This figure shows the unit cell of a zincblende structure. The unit
cell consists of two different types of materials, one shown in red and one in
blue. The back shaded regions are four tetrahedrons and function as a guide to
the eye. The [100] and [111] direction are shown with arrows.

the invariants. It will always be clear from the context however, which invariant
is meant. Therefore, only the notation r6c6c

41 will be used in this thesis.
Besides the fact that the invariant has a different structure in systems with

lower symmetry, the confinement itself also influences the wavefunctions in the
system. This confinement results in discrete states. These subband states
change the result of the Löwdin partitioning. In order to do this subband
Löwdin partitioning, the 8 × 8 Kane Hamiltonian is expanded with respect to
a set of basis states. Then Löwdin partitioning on this new matrix will be per-
formed. This will then give an effective 2× 2 matrix for one of the subbands of
the conduction band.

To obtain a set of basis vectors, a new 8×8 Hamiltonian H0 is defined. This
H0 is defined in such a way that it models all bands of the Kane Hamiltonian,
but without coupling between the bands. Hence, H0 can be written in block
diagonal form as

(H0)b1,b2 = δb1b2

(
− ~2

2mb1

(k2
⊥) + V (~r) + Eb1

)
. (3.29)

In this equation the vector ~k⊥ denotes wavevector component perpendicular
to all infinite directions in the system. The indices b1 and b2 take values in
c, l,h, s for respectively the conduction band, light holes, heavy holes and the
spin splitoff band. The eigenstates of this Hamiltonian can be calculated. There
is an infinite number of subbands per band indexed by a quantum number i.
Then the eigenstates can be denoted by |ψbi〉 and the following matrix can be
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defined
Hb1i,b2j = 〈ψb1i|H8×8|ψb2j〉 . (3.30)

In order to apply Löwdin partitioning, the states described by this matrix have
to be partitioned in two sets A and B. Let A consist of all states of the con-
duction band and B of all other states. Then, the hamiltonian must be split in
three parts. The first part is a diagonal Hamiltonian, which is

H ′0 = 〈ψb1i|H0|ψb2j〉 . (3.31)

the second and third part, H1 and H2 respectively, contain the various coupling
terms such that

Hb1i,b2j = H ′0 +H1 +H2, (3.32)

where H1 is a diagonal matrix.
The Löwdin expansion can be written in terms of the matrices (H1+H2)b1,b2 .

One has to take care however, that these terms are infinite dimensional matrices
and do not commute with each other in general in contrast to the bulk case where
the terms were just numbers.

The masses mb1 in Eq. (3.29) must now be defined. For the conduction band
the mass is known as this is a fundamental parameter of the material (c.f. [29]).
For the spin splitoff band a similar calculation leads to ms = −m0/γ1. In the
case of 2-dimensional systems one can distinguish the heavy holes and the light
holes which leads to ml = −m0/(γ1 + 2γ2) and mh = −m0/(γ1 − 2γ2) which
are the parameters used in Chapter 4.

For 1-dimensional systems the directions are less clear and the difference
between heavy holes and light holes is no longer clear. Therefore, the average
of all masses appearing in H8v8v is taken which leads to

ml = mh =
−m0

6

(
2

γ1 − γ2
+

2

γ1 + γ2
+

1

γ1 + 2γ2
+

1

γ1 − 2γ2

)
. (3.33)

The result in Chapter 5 are calculated using these values for ml and mh.
To keep the resulting formulas concise, the following notation is introduced

∆b1b2
ij = Eb1i − E

b2
j . (3.34)

In this notation b1 and b2 denote two bands and i, j denote two subband indices.
The energies on the right hand side are the energies of the states |ψb1i〉, |ψb2j〉.

Performing the partitioning in practice taking these subband states into
account is more involved than the bulk case. The theory of invariants can
simplify the calculation though. The structure of the invariant is known form the
beginning. If all terms that are not proportional to this invariant are removed
from the calculation, a significant part of the terms can be removed from the
calculation. If a term is not proportional to the electric field for example, it
can never contribute to Rashba spin-orbit coupling. As the electric field enters
the 8 × 8 Kane Hamiltonian only on the diagonal, it can be deduced that for
third order Löwdin partitioning, the other terms on the diagonal do not enter
the expansion.

Assuming that the wavefunction does not depend on the band b

|ψbi〉 ≡ |ψi〉 (3.35)
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and form an orthonormal basis

〈ψb1i|ψb2j〉 = δij (3.36)

greatly simplifies the result of the calculation. This assumption ensures that the
formula for mc is independent on the explicit form of the wavefunctions. The
result of the calculation for the conduction band mass is

~2k2

2mc
=

~2k2

2m′c
+
P 2

6

(
1

∆cl
ii

+
3

∆ch
ii

+
2

∆cs
ii

)
. (3.37)

If the limit of this formula is taken to the bulk system, the subband indices can
be surpressed and using ∆cl = ∆ch the bulk equation for mc can be recovered.
Just as in the bulk case. The Rashba coefficient contains a term coming from
the light hole band, and a term from the spin splitoff band. Similar to the bulk
case, these terms are very similar but opposite in sign. Therefore the following
notation is introduced:

T cb
ij = (〈ψci|z|ψbj〉 〈ψbj |kz|ψci〉 − 〈ψci|kz|ψbj〉 〈ψbj |z|ψci〉)

×

 1

∆cb
ii∆

cb
ij

+
1

2∆cb
ii∆

cb
ji

− 1

2∆cb
ij∆

cb
jj︸ ︷︷ ︸

r

 . (3.38)

With this notation, the formula for the Rashba coefficient can be written as (see
appendix D)

r6c6c
41 =

−ıeP 2

3

∑
j

(
T cl
ij − T cs

ij

)
. (3.39)

In the limit of a bulk system, the subbands lose their meaning which means
that the i and j can be suppressed. The brakets reduce to [k, kz] = ı. In this
limit Eq. (3.23) is recovered.

It is interesting to note that Eq. (3.39) does not fully agree7 with reference
[29]. The terms denoted with r in Eq. (3.38) are not present in the equivalent
equation in reference [29] which can be written as

r6c6c
41 =

−ıeP 2

3

∑
j

(
T ′cl
ij − T ′cs

ij

)
, (3.40)

with

T ′cbij = (〈ψci|z|ψbj〉 〈ψbj |kz|ψci〉 − 〈ψci|kz|ψbj〉 〈ψbj |z|ψci〉) ×

(
1

∆cb
ii∆

cb
ij

)
.

(3.41)
In this thesis Eq. (3.39) will be used instead of Eq. (3.40). It is worth noting

that the difference between the two equation is small. This can be seen from
Fig. 4.2.

7The factor of −2 has been changed in the errata of reference [29].
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3.6 Intermezzo: Bulk inversion asymmetry and Dressel-
haus spin-orbit interaction

This section describes a different effect from Rashba spin-orbit interaction and
can be skipped without breaking the continuity of the thesis. The unit cells
of zincblende and wurtzite are not inversion symmetric. This means that the
parity symmetry is broken and the reasoning of Sec. 3.2 does not a priori forbid
spin-orbit interaction. The spin-orbit interaction that results from bulk inver-
sion asymmetry (BIA) is called Dresselhaus spin-orbit splitting. In this section
the appearance this effect will be investigated. It will be explained how one
can derive symmetry conditions from the pointgroup of the system under in-
vestigation. In this section, only zincblende will be discussed but results for
other structures can be derived similarly. Nanowires grown in the [111] direc-
tion will be given considerable attention for this is the most relevant system
experimentally.

The pointgroup corresponding to the zincblende is Td. All fermionic par-
ticles in the system must transform according to a representation such that a
rotation of 2π changes the sign of the wavefunction (cf. Eq. (2.21)). These
kind of representations are called double group representations [23]. The dou-
ble group representations in Td are Γ6, Γ7 and Γ8, with dimensions 2, 2 and 4.
Following the theory of invariants, the Hamiltonian must satisfy the symmetry
induced by these representations. The representation corresponding to the first
conduction band is Γ6, which is 2-dimensional. Therefore the Hamiltonian can-
not assign different energies to the spin-up and spin-down particles. In other
words, the two spin directions are degenerate. From the fact that all of the rep-
resentations are higher dimensional it can be deduced that spin-orbit splitting
is not allowed in the Td symmetry group.

The situation changes when the symmetries of Td are broken. Then the
relevant symmetry groups become a subgroup of Td and 1-dimensional unirreps
can appear. There are 4 subgroups which are especially important and are
denoted in table 3.1. From this table it can be deduced that the groups Td,
D2d, and C2v never allow for spin splitting. The group C3v only allows for spin
splitting in some bands and Cs always allows for spin splitting. Note however
that if the symmetry group allows for spin splitting, this does not mean that
the spin splitting must occur. So called accidental degeneracies can exist in the
system [24].

The first effect of symmetry breaking that must be taken into account is
the orbit of the spin-orbit coupling. By choosing a specific directions for the
wavevector the symmetry of Td is broken to a lower symmetry group. The
resulting symmetry group depends on the direction of the wavevector. For k
along the [100] direction, the resulting symmetry group is C2v, for [111] the
resulting group is C3v and for [110] the resulting group is Cs. This means that
the appearance of Dresselhaus spin-orbit interaction depends on the direction
in the bulk system.

If non-bulk systems are considered the symmetry can be lowered even fur-
ther. For a detailed description of all possibilities, cf. reference [34]. Most
importantly for nanowires, the direction of the wavevector must always align
with the growth direction of the nanowire. Therefore the results derived in the
previous paragraph hold for nanowires as well. In a [111] nanowire, the con-
duction band electrons transform according to Γ4 of C3v. This means that no
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Group Double group representations

Td Γ6(2), Γ7(2), Γ8(4)

D2d Γ6(2), Γ7(2)

C3v Γ4(2), Γ5(1), Γ6(1)

C2v Γ5(2)

Cs Γ3(1), Γ4(1)

Table 3.1: In this table several pointgroups are given with their irreducible dou-
ble group representations. The dimensionality of every representation is given
in brackets. The information in this table is taken from reference [33]. Note
that representations in different rows denote different representations, although
their notation is the same.

spin-orbit is possible in [111] nanowires if no additional symmetry is broken.
This is often taken to mean that Dresselhaus spin-orbit interaction is not

possible in [111] nanowires [34][35]. Rashba spin-orbit interaction is still pos-
sible in these systems because the electric field breaks an additional symmetry
allowing for spin-orbit interaction. The same is true however for Dresselhaus
spin-orbit interaction. If additional symmetries are broken, by strain, electric
field or any other effect, there is no longer any reason to believe that Dresselhaus
spin-orbit interaction cannot occur in these systems. There is always an electric
field in the experimental devices for Majorana research, hence Dresselhaus could
occur in these devices. Further research is needed to confirm this prediction and
predict the strength of this effect.
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4 Quantum well systems

4.1 Theoretical model for quantum well systems

In this chapter, focus will be shifted from general systems to 2-dimensional
quantum well systems. The bulk system has three infinite spatial directions. A
confinement potential in one direction will be added to the bulk system such that
one direction becomes finite. In particular, the potential of an infinite square
well is added to the problem such that a 2-dimensional quantum well system
is obtained. The advantage of 2-dimensional quantum wells over 1-dimensional
nanowires is that the quantum wells are computationally much more tractable
and can be used to gain intuition for the problem. This chapter aims to provide
a fundamental understanding and the full parameter space will not be explored.
Hence, although the orientation of the underlying crystal in the well can be
important, only quantum well systems in the [001] growth direction will be
considered. Furthermore, only InSb quantum well systems will be investigated
in this chapter.

First, in this section, a theoretical prediction will be obtained by using the
results from Löwdin partitioning. In the remainder of this chapter, this the-
oretical prediction will be compared to numerical results. In order to obtain
numerical results, a basis must be chosen. The bases considered here are the
reciprocal space basis (see Sec. 4.2) and the real space basis (see Sec. 4.3). Both
have different advantages and care must be taken not to introduce spurious
solutions to the problem.

The confined direction in this chapter is the ẑ direction. This means that
the x̂ and ŷ direction remain free infinite directions in the problem. Hence
kx and ky remain good quantum numbers to label the states, while kz is no
longer a good quantum number. The confinement in the ẑ direction introduces
discretized states. Hence the bulk problem changes to a subband problem. The
subband index is denoted by i and the width of the quantum well by L.

The analytical results for the effective mass and the Rashba coefficient were
already calculated. These results must now be applied to the 2-dimensional
quantum well case. This means that the basis states in the system must be
known such that the brackets in Eq. (3.37) and Eq. (3.39) can be calculated.

A very useful approximation is that the eigenstates of the system are the
quantum well states such that every band is described by the wavefunction

ψn(z) =

√
2

L
sin
(nπz
L

)
, (4.1)

where L denotes the with of the quantum well and n denotes the subband num-
ber. This means that the wavefunction is equal for all bands in the problem. The
second advantage is that quantum well states form an orthonormal basis, and
are known analytically. This means that the assumptions given by Eq. (3.35)
and Eq. (3.36) in the derivation of Eq. (3.37) and Eq. (3.39) are satisfied.

With the width L the only undefined parameter, a theoretical prediction
for the effective mass can now be made. The relation between the theoretical
effective mass and the width of the quantum well can be made for the different
subband indices. The result is shown in Fig. 4.1 where the value for the bulk
prediction is given as well. More confined quantum well system (i.e. systems
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Figure 4.1: Theoretical prediction for the effective mass. This prediction is
shown for the first five electron subbands. It can be seen that the value of
the effective mass is predicted to increase as the width of the quantum well is
decreased. Finally, the prediction for a bulk system is shown in black.

with a smaller width) exhibit larger effective masses for the conduction band
than less confined systems.

For the theoretical prediction of the Rashba effect more work needs to be
done. To evaluate Eq. (3.39) an infinite sum must be performed. In practice
however, a cutoff can be introduced by neglecting the higher subbands that have
a negligible contribution. The resulting equation still contains many terms, but
this poses no computational difficulty. The width of the quantum well is the
only unknown in the calculation and this relation between r6c6c

41 and L is shown
in Fig. 4.2. Confined systems show a smaller Rashba spin-orbit strength than
bulk systems and increasing the confinement leads to smaller values of r6c6c

41 .
The effect of the cutoff can be estimated by calculating the result for different

values of the cutoff subband index. Both Eq. (3.39) and Eq. (3.40) are shown
for comparison. The calculation converges very fast and for nmax & 10 the
difference is no longer discernible. The value for the bulk calculation is given as
a reference.

The theoretical predictions for the effective mass and the Rashba coefficient
have now been obtained. These parameters together give the following Hamil-
tonian (cf. Eq. (3.20)):

H2×2 =
~2(k2

x + k2
y)

2mc
σ0 + r6c6c

41 Ez(kyσx − kxσy). (4.2)

This means that for wave vectors in the x̂-direction, the quantities kso and Eso

can be expressed in terms of r6c6c
41 (see Fig. 1.3a). Explicitly this gives

kso =
mcr

6c6c
41 Ez
~2

(4.3)
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Figure 4.2: Theoretical prediction for r6c6c
41 for different values of the cutoff

subband index nmax. The solid lines correspond to Eq. (3.39) while the dashed
lines correspond to Eq. (3.40).

and

Eso =
mc(r6c6c

41 Ez)
2

2~2
. (4.4)

The theoretical predictions of mc and r6c6c
41 will be compared to numerical

simulations in the remainder of this chapter. The value for mc can be extracted
from the curvature of band structure of the numerical simulation. The param-
eters kso and Eso can be extracted from the lowest point in the band structure
of the numerical simulations, see Fig. 1.3a. From these parameters the value of
r6c6c
41 can be obtained via

r6c6c
41 =

Eso

kso

2

Ez
. (4.5)

By choosing an appropriate basis to expand the Hamiltonian, it can be sub-
sequently diagonalized to yield the band structure. These simulations will be
the content of the rest of this chapter. First, the Hamiltonian is expanded in
reciprocal space. Then the Hamiltonian is expanded in a real space basis.

4.2 Numerical simulations in reciprocal space

The finiteness in the ẑ direction of 2-dimensional quantum well systems in-
troduces discretization in the system. In other words, kz is no longer a good
quantum number, but an operator acting on the subband state instead. The
Hamiltonian of Eq. (3.17) contains the operators z and kz which introduce cou-
pling between the different basis states. The explicit form of this coupling must
be investigated to perform the numerical simulations. In this section, momen-
tum states will be used as basis states. The explicit form of these momentum
states is

ψi(z) =

√
2

L
sin

(
iπz

L

)
, (4.6)
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Figure 4.3: The spatial representation of the conduction electron wave functions.
The left plot is for a quantum well width of 30 nm. The right plot shows the
same plot for a width of 100 nm. The solid blue lines denote the result of the
simulation. The dashed orange curves are the lowest quantum well states of
Eq. (4.6).

where L denotes the width of the quantum well.
To take the subband structure into account the Hamiltonian must contain

the coupling between the different basis states. The expanded Hamiltonian
takes the form:

Hb1i,b2j = 〈ψi|(H8×8)b1,b2 |ψj〉 . (4.7)

Linearity of the bracket means that the problem can be simplified. The
operators kx and ky are good quantum numbers and therefore can be treated
as numbers and taken outside of the bracket. Therefore many terms can be
reduced to a form proportional to

〈ψi|ψj〉 = δij . (4.8)

The remaining terms can be calculated analytically as well. For example, for
i 6= j,

〈ψi|kz|ψj〉 =
2ı(−1 + (−1)i+j)ij

L(i2 − j2)
. (4.9)

As can be seen in the denominator, coupling to remote basis states is small. In
a similar way, the operators z and k2

z can be taken into account.
The expanded Hamiltonian can be diagonalized to find the eigenstates and

eigenenergies of the system. In order to do a numerical diagonalization, the
Hamiltonian must be finite. Therefore a cutoff momentum is introduced with
the assumption that states with a higher momentum do not contribute to the
problem. In the light of the spurious solutions this cutoff momentum must
be lower than the point where the bands start to bend down. In doing so
the spurious solutions are avoided and the eigenstates and eigenenergies can
be calculated. The eigenstates for a quantum well of 30 nm and 100 nm are
shown in Fig. 4.3. From this figure it can be seen that the approximation of
quantum well states is justified for larger quantum well systems while for smaller
quantum well systems a larger deviation from this approximation is observed.
If the energy of the lowest energy conduction band is calculated for different
values of kx and ky, a dispersion relation can be calculated. This dispersion
relation can be compared to theory and the result is shown in Fig. 4.4a.
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Figure 4.4: Fig. a shows the first conduction band. The solid curve denotes the
result from the simulation. The dashed curve is the result of subband Löwdin
partitioning with zero free parameters. The system under consideration is a 2-
dimensional quantum well with L = 100 nm. Fig. b shows the simulated value
for mc as blue dots and the theoretical value of Eq. (3.37) by a dashed orange
line.

By fitting the dispersion relation with a simple parabola the effective mass
can be extracted. The model that is used for the fitting procedure is Eq. (3.20)
where the field is fixed to zero. The result in Fig. 4.4b shows a very good
qualitative agreement with the simulations. Adding confinement to the bulk
system increases the mass. The physical picture to understand this result is
that the conduction electrons are harder to squeeze through the system as the
confinement is increased. The agreements between the analytical formula and
the simulations also suggest that this simulation can be used as a baseline for
the simulations in real space. This reciprocal space simulation can be compared
with to conclude if the spurious solutions that arise in the real space simulations
are dealt with without changing the system disproportionately.

4.3 Numerical simulations in real space

In the previous section, a momentum basis was chosen to construct the Hamil-
tonian. The upside of this method is that the spurious solutions are automat-
ically avoided when introducing a momentum cutoff. The downside is that it
is nontrivial to introduce spatial structures in the Hamiltonian. To perform
simulations for nanowires, a basis must be chosen such that the confinement is
taken into account. For a square or rectangular wire, one could use the quan-
tum well states. For hexagonal wires, however, it is much harder to find suitable
states to expand the Hamiltonian. Furthermore, it is hard to introduce more
complicated and more realistic electric fields in the problem. For these reasons
it is advantageous to investigate a real space basis for the problem.

This method discretizes space instead of momentum. For this 2-dimensional
quantum well, a single line of lattice sites is needed to describe the subband
states. Hence an evenly spaced chain of lattice sites will be considered with
lattice spacing a. Wave functions will be described in this basis by their value
on each of the lattice sites. The eigenstates of the position operator ẑ are then
simply ψi(z) = δz,ia with eigenvalue z. The operator k̂z is more complicated in
this basis.

Denote a state in this basis by a vector ψ containing a values on each lattice
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sites. Then, a finite difference formula can be used to determine the derivatives

∂

∂z
ψ(z) =

ψ(z + 1
2a)− ψ(z − 1

2a)

a
. (4.10)

For higher derivatives of order n, Eq. (4.10) must be repeated n times. This
gives the general form

∂n

∂zn
ψ(z) =

1

an

n∑
i=0

(
n

i

)
(−1)iψ

(
x+ (

n

2
− i)a

)
. (4.11)

For n odd, the lattice positions occurring in the formula are non-integer. To
resolve this, the following approximation is made:

∂n

∂zn
ψ(z) =

1

2

(
∂n

∂zn
ψ(z − a

2
) +

∂n

∂zn
ψ(z +

a

2
)

)
. (4.12)

These equations yield the momentum operator in the real space basis, which is
given explicitly by

kzψ(z) = −ı~ψ(z + a)− ψ(z − a)

2a
. (4.13)

With these equations, the brackets of Eq. (4.7) can be expanded and calculated.
This procedure is very similar to the reciprocal space case of the previous section.

Calculating the eigenvalues of the expanded Hamiltonian yields a gapless
system as shown Fig. 4.5a. Hence spurious solutions appear in the system.
Before continuing they must be removed.
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Figure 4.5: The dispersion relation is shown with and without k4-
renormalization. Without the renormalization (β = 0 nm4 eV) it can be ob-
served that the gap is closed for higher values of kz. With the renormalization
(β = 0.5 nm4 eV) the conduction band bends up for higher values of kz.

In the reciprocal space, the spurious solutions could be avoided by introduc-
ing a momentum cutoff. In the real space representation, this is not possible.
Hence a different solution must be used. The reason for the spurious solutions
is the negative bare mass of the electrons. This causes the conduction band to
bend down at high momentum. This effect is intensified by the discretization
of space leading to a dispersion relation shown in Fig. 4.5a

To remove the spurious solutions the problem must be altered such that
the bands no longer bend down at hight momentum. One solutions is called P
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renormalization in which the parameter P is slightly altered together with the
other parameters. This is done in such a way that at low k the systems closely
resembles the original system, but the new system has a positive bare mass. As
will be shown in the next chapter, this renormalization will not work for the
purposes of this thesis and therefore a different solution will be employed.

Instead of altering the coupling parameters of the problem, a new term can
be introduced in the Hamiltonian to counteract the spurious solutions while
leaving the physical system the same. The simulations in this thesis all use the
approximation that k is small, hence at those small k the Hamiltonian must
remain as close as possible to the original. The term that will be used in this
thesis is βk4. Here, β is a parameter to tune this extra term such that it is
strong enough to make the conduction band bend up but not so strong that
it will dominate the physical problem at small k. This solution is called k4-
renormalization.

In the expanded Hamiltonian, the result of adding a k4 term can be calcu-
lated from Eq. (4.11). This introduces coupling between lattice sites on z and
z±2a. This is called next nearest neighbor hopping. For the calculations in this
section this introduces no problems. For the calculations in the next chapter,
the unit cells are doubled by the next nearest neighbor hopping. This means
that the Hamiltonian doubles in size making memory restrictions more strin-
gent. To avoid confusion, k4 is meant to mean k4

x + k4
y + k4

z for the purposes of
k4-renormalization.

This renormalization is critical to the gap in the system. If the gap is closed
by artificial discretization effects in the system, it is not to be expected that the
results resemble either the theoretical predictions or experimental observations.

Now that the Hamiltonian is properly defined, it can again be diagonalized.
The resulting band structure is shown in Fig. 4.5b. The figure shows that k4-
renormalization is successful in preventing the conduction band bending down.
Similar to the previous section, the lowest conduction band states are calculated
for L = 30 nm and L = 100 nm. The result is shown in Fig. 4.6.
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Figure 4.6: The eigenstates for the first conduction band are shown for a 2-
dimensional quantum well. The left figure shows a quantum well of L = 30 nm
and the right picture shows a quantum well for L = 100 nm. The solid blue lines
denote the result of the simulation. The orange dashed line is the first theoretical
quantum well state of Eq. (4.6). For these simulation k4-renormalization was
used with β = 1.0 nm4 eV

For the first three conduction bands, the effective mass can be simulated for
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Figure 4.7: In this figure the effective mass is plotted for the first three conduc-
tion subbands. The result of the analytical formula is plotted with a dashed line.
The points represent numerical simulations done for a 2-dimensional quantum
well. Finally the bulk value of the effective mass is plotted with the black line.

different values of L (see Fig. 4.7). The result can be compared to the theoretical
prediction and with the prediction for a bulk system. For larger values of L,
the result indeed approaches the bulk value of the effective mass.

To show the effect of k4-renormalization, the energy of the first conduction
band is plotted as a function of β. The result is shown in Fig. 4.8a. For large
enough β, the band edges have been pushed to above the gap. The energy of the
first conduction subband then becomes independent on β. Then r6c6c

41 is plotted
as a function of β. In this plot, the electric field and he width of the quantum
well are fixed. The width is L = 100 nm and Ez = 0.0005 eV nm−1. In the plot
it can be seen that the Rashba coefficient is very sensitive to β for the smaller
values of β. If the band edges have been pushed to above the gap, the value of
r6c6c
41 becomes less sensitive to β. The Rashba coefficient then converges to the

theoretical bulk value for higher values of β.
Finally the Rashba coefficient can be calculated for a fixed value of β =

1 nm4 eV and the electric field Ez = 0.0005 eV nm−1. The value of r6c6c
41 is

calculated from the simulations by using Eq. (4.5) for the first three conduction
subbands. The result of the analytical formula (see Eq. (3.39)) is shown as well
together with the bulk value for the Rashba coefficient. The result is shown in
Fig. 4.9.

In the figure it can be seen that for large values of L the simulations reflect
the bulk properties. For smaller values of L, the difference between the simu-
lations and the theoretical predictions become appreciable. Especially for the
higher subbands the difference is significant. In practice however, the lowest
conduction band is the most interesting one and the width of the systems under
consideration is L = 100 nm for the Majorana nanowire systems.

The results from the previous section show similar behavior as the results of
this section. In particular, the approximations made by the theoretical model in
Sec. 4.1 break down when the width of the quantum well drops below L ≈ 30 nm.
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Figure 4.8: Fig. a shows the energy of the lowest conduction band for varying
value of β. From this figure it can be seen that if the bands are pushed up
far enough, the energy of the lowest conduction band no longer changes and
represents the energy of the state with k = 0. Fig. b Shows the Rashba spin
orbit strength r6c6c

41 for a varying value of β. The orange dashed line represents
the theoretical value.
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Figure 4.9: In this figure the dependence of r6c6c
41 on L is shown. The simulated

values are shown with dots for the first three conduction subbands. The result
for the theoretical prediction is shown with a dashed line. The black line denotes
the bulk prediction for the Rashba coefficient.

In the next chapter, these 1-dimensional nanowire systems will be investigated
in much the same way as this section. From the next chapter, more definitive
answer can be obtained on the effective difference between theory and simulation
for the relevant systems.
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5 Nanowire systems

5.1 Theoretical model for nanowire systems

The 2-dimensional quantum well, as considered in the previous chapter, is ob-
tained form the bulk system by adding confinement in one spatial dimension.
To obtain a wire from the bulk system, the confinement is added to two spatial
dimensions, which in this thesis are chosen as the x and y directions such that
the z direction is the only free, infinite direction left in the system. The con-
finement potential is zero inside the region of the wire and infinite outside this
region.

To obtain a theoretical prediction from the Löwdin partitioning for the 1-
dimensional wire, basis states commensurate with the wire must be constructed.
Similar to the quantum well case, particle in a (2-dimensional) box states will
be used, forming a square nanowire with width L. This means that the states
can be denoted with quantum numbers kz, i and j.

With these states, Eq. (3.37) and Eq. (3.39) can be evaluated. For the 1-
dimensional problem, not only the lowest subband will be considered, but also
higher subbands. The theoretical predictions can be obtained separately for all
different subbands as a function of L. For the effective mass, the obtained pre-
diction is shown in Fig. 5.1. The two quantum numbers i and j are exchangeable
without a electric field present. This explains that some subband states have
identical effective masses.
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Figure 5.1: This figure shows the prediction for the effective mass for the six
lowest conduction band states versus the width L of the nanowire. The result
for a bulk system is shown in black.

For the Rashba coefficient r6c6c
41 , a corresponding prediction can be obtained.

In Fig. 5.2 the result is shown. It is interesting to note that the presence of the
electric field breaks the symmetry between the quantum numbers i and j. This
is reflected by a small difference in the prediction for the |2, 1〉 and |1, 2〉 subband
state. Similar to the quantum well case, confinement leads to smaller spin-orbit
interaction.

In the remainder of this chapter the influence of the parameters of the system
is studied. The parameters under consideration are the shape, growth direction
and the material. Simulations will be used to investigate these parameters.
The next section will describe the method used for these simulations. From
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Figure 5.2: This figure shows the relation of r6c6c
41 (cf. Eq. (3.39)) and the width

L of the wire. The result is shown for the six lowest conduction band states
with dashed lines. The result for a bulk system is shown with a black line.

the simulations it is possible to obtain kso and Eso (cf. Fig. 1.3a). This can
be converted to a value for r6c6c

41 by Eq. (4.5) which can be compared to the
theory of this section. In Sec. 5.3 a range of simulations is discussed where
the electric field is modeled by a constant value over the wire area. In Sec. 5.4
the constant electric field is replaced by a more realistic electric field for the
Majorana devices.

5.2 Method for numerical simulations of 1-dimensional
systems

The nanowire simulations of this chapter are computationally much more chal-
lenging than the 2-dimensional quantum well simulations because the number of
quantum numbers of a state has increased dramatically. Therefore this section
is devoted to explain the method for performing these numerical simulations.

In the 2-dimensional case, states could be described by the quantum numbers
kx, ky and the functional form on the 1-dimensional lattice. This means that for
a lattice of 100 points, there is a 800 × 800 matrix that must be diagonalized.
The factor of 8 comes form the fact that there are 8 different bands in the
Hamiltonian (see Eq. (3.17)). For a 1-dimensional quantum wire, the functional
form of the eigenstates must be determined on a 2-dimensional lattice. This
means that if the wire is build on a 100 × 100 lattice, the matrix that is to be
diagonalized is 80 000× 80 000 dimensional. This takes considerably more time
so one has to be careful when defining the parameters of the simulation.

It is also more difficult to write down the matrix because each lattice site
now couples in four directions instead of two. When k4-renormalization is used,
each site couples to 8 other sites which further complicates the construction of
the Hamiltonian. The software package Kwant [36] is used to make this problem
more tractable. Instead of specifying the matrix explicitly, in Kwant one can
define the lattice sites in the system. Then one can define the onsite and hopping
energies of each site, while Kwant keeps track where the hoppings lead to.
Then Kwant constructs a sparse matrix of the problem which can then be
subsequently diagonalized.

The quantity of interest in this chapter is Eso and kso or equivalently r6c6c
41 .
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This means that the minima of the bands need to be found. For each wavevector,
the matrix must be diagonalized, which takes considerable time. In the previous
section, the simulation times were sufficiently short to be able to sample the
entire band and subsequently selecting the minimal point but for the simulations
in this chapter this method is no longer feasible. Therefore a method is employed
to minimize the number of diagonalizations. The shape of the band is always
roughly the same in that it contains a single minimum at (kso, Eij −Eso) where
Eij denotes the energy of the subband state |i, j〉 at k = 0. This similarity in
shape can be used to decrease the number of steps needed to find kso.

The method used in this thesis is based on the golden section search algo-
rithm [37]. The implementation can best be described recursively. Start with
three points k1, k3 and k5 corresponding to the search window for kso and diag-
onalize the matrix for these points. Then diagonalize the matrix for k2 = k1+k3

2

and k4 = k3+k5
2 . Then select the point ki for which the result is minimal and

repeat this process with the three points ki−1, ki and ki+1. Each iteration gives
a better estimation of the minimal point. One can terminate this process once
the accuracy goal has been reached. The algorithm can be optimized by noting
that not both the point at k2 and k4 can be smaller than the point at k3. By
making better choices for the location of k1 . . . k5 the algorithm can be optimized
further.

Another problem occurs when the matrix is diagonalized. A numerical pro-
cess is used that gives n eigenvalues of the matrix around a certain point in
energy denoted by σ. Selecting the first several conduction bands is then a non-
trivial task because the value of the gap changes depending on the electric field.
Therefore it is hard to estimate a priori what σ should be. It is however possible
to know whether σ is too high or too low. When σ is too high, no valence band
states are found (i.e. no solutions with E < 0 are found). If σ is too low, no
solutions are found with E > 0. With this information σ can be adjusted at
runtime, to retry finding the first few conduction bands. The fastest algorithm
in general would be a binary search algorithm. It is however possible to give a
reasonable estimation of σ as initial value. Then the proper value of σ can be
found by increasing or decreasing this parameter by a small amount. The value
of σ does not require a high accuracy such that this method terminates within
a few iterations.

5.3 Numerical simulations in constant electric fields

The field used to break the spatial inversion symmetry in this section will be a
constant electric field. This leads to a linear potential of the form

V (x) = Exx. (5.1)

This form can be implemented on the lattice sites of the simulations. Although
this form of the electric field is not represented by physical systems, the sim-
ulations in this section can be used to gain intuition for various parameters.
First the subband behavior and lattice spacing parameter are studied. Then
the dependence on growth direction, shape and material are studied.
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Figure 5.3: These figures are the result of simulations with parameters Ez =
180 µeV nm−1, L = 50 nm and β = 1 nm4 eV. The results from the numerical
simulation are shown in blue. The results from the theoretical model for the
bulk system are shown in black, the results from the theoretical model for a
square nanowire are shown in orange. The horizontal axes denote the different
subband states. Fig. a shows the value for mc for the first six conduction band
states calculated with Eq. (5.2). Fig. b is similar to Fig. a but shows r6c6c

41 .

5.3.1 Dependence on subband number

Similar to the previous chapter, the simulations can be used to investigate mul-
tiple subbands. In this subsection the effective mass and the Rashba coefficient
will be investigated for the first six subbands. The simulations give the value
for kso and Eso from which r6c6c

41 can be calculated with Eq. (4.5). The effective
mass mc can be calculated with

mc =
~2k2

so

2Eso
. (5.2)

The result of the theory and the simulation for the effective mass is shown
in Fig. 5.3a. The corresponding result for the Rashba coefficient is shown in
Fig. 5.3b.

From these figures it can be seen that the theory shows reasonable agreement
with the simulations. Especially the lowest conduction subbands shows good
agreement with the theory which is the most important subband in this thesis.
For this reason the rest of the parameter space will only be explored for this
lowest subband state. The lattice spacing, the growth direction and the shape
of the nanowire will be investigated in the next subsections.

5.3.2 Dependence on lattice spacing

In the previous chapter, it has not been investigated how the number of lattice
sites influences the result. If the width of the nanowire is fixed, increasing the
number of lattice sites means decreasing the distance between two lattice sites.
This distance is denoted with a. All quantum well simulations of the previous
chapter were performed with 100 lattice sites on a 1-dimensional chain. For a
two dimensional lattice that is considered here, the number of lattice sites N
is proportional to a−2. This means that increasing a means decreasing compu-
tational time significantly. Besides different numbers of lattice sites, different
values for β were chosen as well. The bulk value for r6c6c

41 is shown together with
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the theoretical value for a nanowire system. The system under consideration
was a nanowire with width L = 50 nm.
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Figure 5.4: This figure shows the value of the spin orbit strength r6c6c
41 as it

depends on the electric field Ez. For different values of lattice constant a, the
simulations were performed. The system under consideration has width L =
50 nm. For each value of a the simulations were done for both β = 0.5 nm4 eV
and β = 1 nm4 eV. The black line shows the bulk value for r6c6c

41 given by
Eq. (3.23). The theoretical prediction for a confined nanowire is shown in blue.

From Fig. 5.4 it can be observed that for lattice spacings of a = 5 nm the
results are very far from the theoretical predictions. Furthermore the difference
between β = 0.5 nm4 eV and β = 1 nm4 eV is enormous. If the lattice con-
stant is decreased to a = 2 nm, the results are already more well behaved. By
decreasing the lattice constant even further, the results come closer to the theo-
retical prediction. In order to keep simulation times manageable the remaining
simulations in this chapter will be performed with a = 1 nm.

Theory predicts that r6c6c
41 does not depend on the value of the electric field.

This property is violated by the a = 5 nm simulations. It is reflected by the other
simulations, although only a small variation can be seen in those simulations.
This variation form a straight line is more apparent in the next section, in
Fig. 5.5.

5.3.3 Dependence on growth direction

Another aspect which has been ignored up until now is the growth direction
of the crystal, but in this section the effects of the growth direction will be
investigated. The growth direction of the nanowire denotes the infinite direction
in the nanowire relative to the crystal of the underlying material. Two directions
are especially important in this thesis. The [100] direction is computationally
very convenient and has therefore been used for all simulations up until now.
The nanowires used for the Majorana experiments are nanowires grown in the
[111] direction. Although this direction is experimentally more relevant, it is
computationally more difficult. These two growth directions are shown relative
to the crystal structure in Fig. 3.3.
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Figure 5.5: This figure shows two different nanowire systems with width L =
50 nm. The two systems have respectively growth directions [100] and [111].
For various values of the electric field and β the value of the Rashba coefficient
r6c6c
41 is given. In black, the bulk value for r6c6c

41 is shown. In blue the result of
the subband Löwdin partitioning is shown.

The spin orbit strength is calculated for two different values of β and the
two different growth directions, [100] and [111]. Various values for the electric
field are used. All results are relatively close together. This means that the
variation for the different values of the electric field can be seen more clearly
than in Fig. 5.4. The result for a nanowire of width L = 50 nm is shown in
Fig. 5.5.

In the figure it can be seen that there is no significant difference between
the two growth directions. The values for the [100] direction are a bit closer
to the theoretical prediction. The spin orbit interaction is a bit larger in the
[111] direction. The difference between the two growth directions is 5% for
this system. As other differences in the thesis are larger, this effect will not
be explicitly taken into account. The increased computational difficulty of the
[111] direction prevents extensive research of this effect. In Sec. 5.4.2 another
result for the [111] is calculated and in this case, the result is negligible further
justifying the choice to neglect the growth direction.

5.3.4 Comparison between nanowire shapes

For 2-dimensional quantum well systems, only one shape of the system ex-
ists. This is the 1-dimensional chain. For 2-dimensional lattices however, more
shapes can be chosen. All results shown in the previous section were for square
nanowires. Square and hexagonal wires are equally difficult to simulate, but the
theoretical prediction is much harder for hexagonal wires. For square wires all
brackets and energies occurring in Eq. (3.39) can be calculated. This is because
the eigenstates for a square system with an infinite confining potential are very
similar to the normal quantum well states. For hexagonal systems, these eigen-
states are not so simple. In this section, it will be investigated if the theory for
hexagonal wires must be derived separately, or that the theory for square wires
can be used for the hexagonal wires as well.

The width of an hexagonal nanowire is no longer defined uniquely. In this
thesis, the width of a nanowire will be defined according to Fig. 5.6. From this
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Figure 5.7: This figure shows r6c6c
41 as a function of the width L. Both square

and hexagonal wires are used for the simulation. The parameter β = 1 nm4 eV
is used. The different values are representing by showing points corresponding
to a smaller field by darker points. The field ranged from Ez = 10 µeV nm−1

to Ez = 100 µeV nm−1. The black line shows the bulk value for r6c6c
41 while the

orange dashed line corresponds the the subband value given by Eq. (3.39).

figure it can be seen that the area of a hexagonal nanowire is smaller than the
area of a square nanowire with the same width L for this choice of the definition
of L.

L

Figure 5.6: This figure shows a cross
section of a square nanowire in gray and
a hexagonal nanowire in back. They are
both defined be the same width L.

For nanowires of different widths
and shapes the Rashba coefficient is
calculated. The result is shown in
Fig. 5.7. different values for electric
field were simulated. Points corre-
sponding to a smaller electric field are
shown with a darker color.

From the figure it can be seen
that the two different shapes yield dif-
ferent results, but for nanowires of
L = 100 nm the difference can be ne-
glected. The width of the hexago-
nal nanowires used in the Majorana
experimentis large enough to neglect
the difference in shape. Therefore no
separate theory will be developed for
hexagonal wires. In the next section (i.e. Sec. 5.4) hexagonal wires are used to
calculate the electrostatic environment, so then the numerical simulations must
use hexagonal wires as well to keep the shape of the field compatible with the
simulation.
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Figure 5.8: The system under consideration is a square GaAs nanowire of width
L = 50 nm with growth direction [100]. The magnitude of the spin orbit interac-
tion is shown for different values of the electric field. The different colors indicate
β = 0.5 nm4 eV and β = 1 nm4 eV. The black and blue lines correspond to the
bulk and subband theory respectively.

5.3.5 Dependence on Material of the nanowire

For the Majorana device, InSb nanowires are used. This makes InSb the most
interesting material for the simulations as well. To test the generality of the
simulations and the theory, this section will investigate a different material,
GaAs in particular. For InSb the bulk value for the Rashba spin orbit interaction
was shown a few times already. It can be calculated with Eq. (3.23) and the
result for InSb is

r6c6c
41 = 5.23 enm2. (5.3)

This result only depends on the material under consideration. Therefore all re-
sults in this thesis show correspondence to this value. The actual value depends
on the system geometry as was shown before. Changing the material has a large
influence on the Rashba coefficient. The bulk value in GaAs systems is given
by:

r6c6c
41 = 0.0530 enm2. (5.4)

Hence the Rashba spin orbit splitting in GaAs is expected to be 100 times
weaker than in InSb systems, for similar electric fields. The magnitude of r6c6c

41

depends strongly on ∆0 as can be seen from Eq. (3.19).
In agreement with this prediction, the results of the numerical simulations

indeed show a much weaker spin-orbit interaction, as is shown in Fig: 5.8. In
order to obtain a appreciable Eso larger values for the electric fields are used
to simulate the nanowires in order to compensate for the weaker spin-orbit
interaction. Again, different values for β are used to indicate that this parameter
has a non-negligible influence on the resulting value for r6c6c

41 .
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5.4 Numerical simulations in simulated electric fields

In contrast to Sec. 5.3 where a constant electric field is used to break the struc-
ture inversion symmetry, this section describes the results when this symmetry
is broken by an electric field that follows from electrostatic simulations. The
electric fields are obtained by solving the Schrödinger equation and the Poisson
equation self consistently which is done by a Schrödinger-Poisson solver imple-
mented by Adriaan Vuik as described in reference [22]. The Poisson equation is
solved in the geometry of the real Majorana devices and the Schrödinger equa-
tion is solved for the 2 × 2 Hamiltonian from Eq. (3.20) with r6c6c

41 = 0. The
resulting potential as a function of position given by

V : R2 → R : (x, y) 7→ V (x, y). (5.5)

An image of the geometry is shown in Fig. 5.9 in which the important param-
eters for the electrostatic simulation are given. The geometry of the system is
described by the width L of the nanowire and the superconducting coverage of
the nanowire given by c0. The parameter Vg denotes the voltage of the gate
underneath the dielectric and Vsc denotes the effective voltage of the super-
conductor arising from a potential work function difference. For two different
instances of these voltages the resulting energy potential

Epot(x, y) = −eV (x, y) (5.6)

are shown in Fig. 5.10.

Vg

c0

L

Vsc

Figure 5.9: The geometry of the Majo-
rana device. The wire is shown in gray,
the superconductor in orange and the
dielectric in blue. The width of the wire
is denoted by L and the coverage of the
superconductor by c0.

The simulations considered in this
thesis diagonalize the Hamiltonian to
construct the band structure of the
system for which it is enough to ob-
tain the eigenvalues of the Hamil-
tonian matrix. The numerical di-
agonalization calculates the eigen-
states as well however and these
can be used to show the wavefunc-
tion of the lowest conduction band.
For the energy potential given in
Fig. 5.10a the conduction band is cal-
culated with both p-renormalization
and k4-renormalization and shown
in Fig. 5.11. The resulting wave-
functions differ a lot. For the p-
renormalization case, the wavefunc-
tion oscillates strongly close to the
edges of the nanowire. Physical in-
tuition suggests that the state should
resemble the particle in a box ground-
state. This is the behavior shown by
the k4-renormalization case. There-
fore all simulations in this thesis were
performed using k4-renormalization rather than p-renormalization.

For Vsc = 0.2 V, Vg = −0.2 the resulting energy potential is also calculated
and shown in Fig. 5.10b. The interplay between the gate voltage and the super-

53



(a) Vsc = 0 V, Vg = 0.3 V (b) Vsc = 0.2 V, Vg = −0.2 V

Figure 5.10: This image shows the energy potential for electrons in electron
volt for the hexagonal nanowire. The influence of the superconductor can be
seen on the top left resulting of an energy of 0 and −0.2 respectively. The
gate introduces a voltage in the lower part of the nanowire. The system under
consideration has L = 100 nm and c0 = 0 nm.

(a) p-renormalization (b) k4-renormalization

Figure 5.11: The figures above show the electron density in the nanowire for
Vg = 0.3 V and Vsc = 0 V. The spurious solutions were removed in different
ways. The left plot corresponds to p-renormalization while the right plot corre-
sponds to k4-renormalization with β = 1 nm4 eV.
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(a) Vsc = 0.2 V, Vg = −0.2 V (b) Vsc = 0.2 V, Vg = 0.5 V

Figure 5.12: The wavefunction in a nanowire with L = 100 nm and c0 = 0 nm.
The figures correspond to different values of the gate potential Vg. The Hamil-
tonian is diagonalized with β = 1 eV nm4.
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(a) Vsc = 0 V
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(b) Vsc = 0.2 V

Figure 5.13: Every point in this figure corresponds to an eigenstate in the
nanowire. The x-axis denotes the gate voltage Vg. The voltage of the super-
conductor is Vsc = 0 V for Fig. a and Vsc = 0.2 V for Fig. b. The simulation
automatically adjusted the parameter σ to find the eigenvalues around the gap
which are shown as large blue dots (see Sec. 5.2). This causes block structure
at the top of the figure.

conducting wavefunction now causes different behavior for positive and negative
gate voltages which will be further discussed in Sec. 5.4.3.

The band structure depends on the voltages Vsc and Vg which in turn influ-
ences the spin-orbit interaction, but these voltages also change the gap of the
system. It is interesting to study the development of the gap for different gate
voltages, and the available states in the system are shown in Fig. 5.13 from
which the gap can be inferred. For larger electric fields the gap closes, but
the gate voltage for which the gap is maximal depends on the superconducting
workfunction. The relevant regime for the simulations consists of those voltages
where the gap has a finite value and hence Fig. 5.13 is used to determine this
regime.

The resulting fields are stronger than the fields used in the previous section
and have a significant effect on the wavefunction in the nanowire. Therefore the
width of the nanowire is no longer a good measure for the effective width of the
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quantum well states. From the explicit form of the wavefunction an effective
width can be calculating by requiring that the variance of the position operator
in the simulation and quantum well state must be equal:

var(~rqw) = var(~rsim). (5.7)

The LHS of this equation is understood to describe a quantum well system with
width Leff and solving this equation yields an explicit value for this parameter.

The electric field needed to obtain a theoretical prediction is no longer unam-
biguously defined as the theory assumes a constant electric field (see Eq. (4.5)).
The results in this section will therefore not be given in terms of r6c6c

41 but in
terms of kso which is unambiguously defined for the simulations. To obtain
a theoretical prediction for kso an effective field parameter is needed which is
taken as

Eeff =

√
〈ψ|Ex|ψ〉2 + 〈ψ|Ey|ψ〉2. (5.8)

The parameters Leff and Eeff can be obtained from the functional form of the
wavefunction which follows from the Schrödinger-Poisson solver. Theoretical
predictions can be made for the numerical simulations set forth in this section.
First the case of Vsc = 0 V is investigated followed by an investigation of Vsc =
0.2 V. Finally the influence of the parameter c0 is studied where the numerical
simulations are dropped for they would be too time consuming to simulate and
only the theoretical prediction is calculated.

5.4.1 Results for Vsc = 0 V

For this subsection the effective voltage of the superconductor is set to zero to
obtain an initial result for the simulated electric fields. From Fig. 5.13a the range
for the gate voltage is obtained and simulations are done for 0 V < Vg ≤ 0.8 V.
The spin orbit interaction strength is obtained for the first six subbands in terms
of kso. The growth direction in this simulation is taken as [100]. The theoretical
result if given for the bulk system given by Eq. (3.19) and for the subband
theoretical prediction for L = Leff given by Eq. (3.39) for the first subband.

The result of the numerical simulation and the theoretical prediction agree
well. The trend predicted by theory is followed by the numerical simulation
and it would be possible to extrapolate the theoretical predictions to obtain a
similar result for higher values of Vg. Higher subbands exhibit smaller spin orbit
interaction, in agreement with Fig. 5.3b. The corresponding spin-orbit length
at Vg = 0.8 V is approximately lso = 200 nm.

5.4.2 Results for Vsc = 0.2 V

Once the fields have been calculated, it is possible to obtain the theoretical
prediction, as shown in the previous subsection. Here, similar calculations are
made where the superconducting wavefunction is taken into account by setting
Vsc = 0.2 V. Again a bulk prediction and a subband prediction are obtained from
these calculations which can both be compared to the numerical simulations.

The numerical simulations were done for 0.2 V ≤ Vg ≤ 1.0 V for a nanowire
system with L = 100 nm and c0 = 0 nm. The simulation is performed for both
growth direction [100] and [111] but only the first subband is calculated. The
result of this simulation is shown in Fig. 5.15.
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Figure 5.14: The spin-orbit momentum kso for the first six subbands of a
nanowire of L = 100 nm and c0 = 0 nm. The field is simulated for Vsc = 0 V
and various values for Vg. The solid black line denotes the bulk theoretical pre-
diction of Eq. (3.19). The dashed blue line denotes the theoretical prediction of
Eq. (3.39).

0.0 0.2 0.4 0.6 0.8 1.0
Vgate (V)

0.001
0.002
0.003
0.004
0.005
0.006

Kso(nm-1)

[100]

[111]

Figure 5.15: The spin-orbit momentum kso for a nanowire of L = 100 nm and
c0 = 0 nm. The effective voltage of the superconductor is taken as Vsc = 0.2 V
while the voltage of the backgate is varied over the x̂-axis. The growth direction
of the wire is [100] for the blue dots and [111] for the orange dots. Similar to
Fig. 5.14 the solid black line denotes the bulk theoretical prediction of Eq. (3.19)
and the dashed blue line denotes the theoretical prediction of Eq. (3.39).
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Figure 5.16: Left shows the value of kso resulting from Eq. (3.39) for various gate
voltages on the ŷ-axis and coverage parameters c0 on the x̂-axis. The parameter
c0 is denoted in tens of nanometers. Every black dot in the picture corresponds
to a data point from which the contour plot is calculated. The right plot shows
two line traces corresponding to the dashed and dotted line in the left picture.

The theoretical predictions matches the simulations again very well and the
difference between the two growth direction is not significant for this simulation.
This increases the confidence that growth direction parameter can be ignored in
these simulations as previously announced in Sec. 5.3.3. In contrast to the simu-
lation of the previous subsection more fields are calculated than are used for the
numerical simulation, as the numerical simulation is the most time consuming
part of these calculations. This reveals that the lowest point for the spin-orbit
interaction strength is obtained for Vg = 0.33 V. This minimum arises when the
average electric field over the wavefunction of the conduction band electrons is
smallest. The results from the electric field simulations show that this happens
at Vg = 0.33 V.

5.4.3 Effects of superconducting coverage

For this subsection, the numerical simulations are dropped as they would be too
time consuming to generate the result for this subsection. From the previous two
subsection it can be deduced that the results of the theoretical prediction and the
numerical calculation are sufficiently close in order to get a good understanding
of the spin-orbit interaction by only finding the theoretical prediction.

In this section the effect of the superconducting coverage parameter c0 is
studied. For many different values of Vg and c0 the parameter kso is calculated
keeping Vsc = 0.2 V fixed. The formula for calculating the theoretical prediction
is taken as the subband formula for r6c6c

41 form Eq. (3.39) corresponding to the
blue dashed line in Fig. 5.13a and Fig. 5.15. A contour plot is shown together
with two line traces in Fig. 5.16. The two line traces correspond to one negative
and one positive gate voltages, chosen such that kso is roughly equal in the two
cases.

The figure shows similar behavior as Fig. 5.15 which exhibits a minimum at
Vg = 0.33V . For positive gate voltages the effect of changing the superconduct-
ing coverage is small shown by a dashed line. For negative gate voltages however,
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the effect of changing c0 is much larger. This can also be understood from the
physical picture of Fig. 5.12 where for positive gate voltages the wavefunction
is far away from the superconductor and the influence of the superconductor
should hence be limited. For negative gate voltages the wavefunction is very
close to the superconductor and a much larger effect from the parameter c0 is
expected.
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6 Conclusion and Outlook

6.1 Conclusion

In this thesis the effect of symmetry in quantum mechanics is investigated.
Representation theory is used to combine symmetry with quantum mechanics.
This leads to the different representations for spin of particles and exchange
statistics of bosons and fermions. By extending the permutation group it is
found that anyons can have very different exchange statistics than ordinary
bosons or fermions. Symmetry also imposes conditions on the Hamiltonian
which is exemplified by the theory of invariants. This theory is then used to
construct the 8× 8 Kane Hamiltonian which is used to describe semiconductor
systems. By studying the symmetry explicitly, it is found that not only Rashba
spin-orbit interaction, but also Dresselhaus spin-obrit interaction can contribute
to the spin splitting in [111] nanowires.

The Rashba spin orbit effect is studied by applying Löwdin partitioning to
the Kane Hamiltonian and using the theory of invariants. Doing the partitioning
explicitly for bulk systems and confined systems yields a theoretical prediction
for the Rashba coefficient r6c6c

41 . The bulk formula agrees with reference [29],
while the confined formula has a small difference. An important result is that
the structure of the prediction for the 1-dimensional nanowire and 2-dimensional
quantum well systems is the same. The actual prediction can differ because the
energies of the eigenstates is different, which leads to the difference between
1-dimensional and 2-dimensional systems from the point of view of this theory.

The problem of spin-orbit interaction was then simulated in 2-dimensional
quantum well systems. The resulting states in the system approximated particle
in a box states for increasing L. The bare mass for the conduction band is
negative in the Kane Hamiltonian. This leads to a closing of the gap of the
semiconductor at a finite value for the wavevector in the numerical simulations.
To prevent the resulting spurious solutions, two methods were studied. First,
p-renormalization turned out not to work in the situation of nanowire systems,
hence this method was dropped. Instead k4-renormalization is used to prevent
the spurious solutions. With k4-renormalization the numerical result for the
spin-orbit interaction strength is well approximated by theory.

Subsequently, the problem was transformed to the 1-dimensional nanowire
case. For different parameters the Rashba coefficient is obtained such that a
comparison with theory can be made. For constant electric fields various pa-
rameter dependencies are studied and all found reasonable agreement with the-
ory. Most notably, the theoretical formula takes material, subband and system
width into account which can be used to predict the behavior of the system for
different combinations of these parameters.

For simulated electric fields, an effective width and effective field are calcu-
lated from the functional form of the electric field and the wavefunction. This
results in good agreement between the numerical simulations and the theoreti-
cal prediction. This result holds for simulations with and without an effective
voltage on the superconductor. These results suggest that the theoretical pre-
diction is a good measure for the value obtained form numerical simulations.
Hence, dependency on the superconducting coverage of the wire is studied by
calculating the theoretical prediction for various values of c0.
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6.2 Outlook

The nanowire simulations in this thesis are calculated on a 2-dimensional lattice.
It is implicitly assumed that the third direction is an infinite, homogeneous
direction and that the gates under the nanowire are also infinitely long. This
implication does not represent reality and it is not obvious if this is a reasonable
approximation. Therefore the 3-dimensional structure of the nanowire with
gates must be studied. It is however not computationally achievable to calculate
the 8×8 Kane Hamiltonian for a 3-dimensional nanowire. If it would be possible,
however, to find the electric fields in 3-dimensional structures, the theoretical
predictions of this thesis can be applied to those results to yield the Rashba
spin-orbit interaction strength in these 3-dimensional structures. This would
then enable the more accurate prediction of spin orbit interaction in nanowire
systems.

Secondly, the results of this thesis should be compared to experiment. By
comparing to experiments, the theory, simulations and the experiment can be
understood better. In this thesis, the theory matches the simulations reasonably
well and experiments could verify these results independently.

Finally, the Dresselhaus spin-orbit interaction in [111]-nanowires predicted
in Sec. 3.6 must be studied. A similar theoretical prediction should be obtained
and verified by numerics by implementing the 14× 14 Kane Hamiltonian.
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A Symbols and Notation

This appendix is a summary of all notation used in this thesis together with the
values of the constants relevant for this research. The notation of point groups
and their representations is not included, but can be found in Reference [33].
The parameters for the 8× 8 Kane Hamiltonian such as P , γi, etc can be found
in Reference [29]. The notation~· means the three dimensional vector, such that
~σ only means (σx, σy, σz).

Symbol Name
1 The identity operator
a Lattice constant
~B Magnetic field
Bn The braid group on n strands
β Parameter controlling the k4-renormalization
c Speed of light
c†, c Fermion creation/annihilation operator
C Charge conjugation
c0 Parameter for the superconducting coverage of the nanowire
∆ Superconducting gap

∆b1b2
ij Energy difference between band b1 subband i and band b2 subband j

D±s Representation of R
E Energy or energy difference
~E Electric field
Eso Parameter of the spin-orbit interaction, see Fig. 1.3a
γ Majorana zero mode operator
GL(V ) General linear group on a vector space V
H or H Hamiltonian
~ Reduced Planck constant

ı Imaginary unit
√
−1

kso Parameter of the spin-orbit interaction, see Fig. 1.3a
L Width of quantum well and nanowire systems
mb Effective mass of band b
P Parity transformation
Pn Pure braid group on n elements
σ Parameter for the numerical diagonalization algorithm
σi Exchange operator of elements i and i+ 1 in the context of Sn or Bn
σi Pauli matrices, where σ0 = 1

r6c6c
41 Rashba spin-orbit coëfficient

Sn Permutation group on n elements
SO(3) Special orthogonal group in three dimensions
SU(2) Special unitary group in two dimensions
T Time reversal
Z2 The unique group of order two represented as addition modulo 2
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B Units

The relevant quantities in this thesis are all on the level of quantum mechanical
phenomena. With normal SI units, the results of this thesis would be expressed
by extremely small (or large) numerical prefactors. To circumvent this, a new
system of units is introduced together with a conversion table.

There are four relevant physical base dimensional which are length, mass,
time and current. These dimensions are denoted by respectively L, M, T and I
[38]. A corresponding unit is chosen for each of these dimensions.

For the length dimension L the quantities are expressed in units of 1 nm and
for the mass dimension M the values are expressed in units of electron mass,
me.

Next, the time and current units are defined such that the electrical charge
of an electron is 1 and the unit of energy becomes eV. Imagine a stationary
electron that is subsequently accelerated by an electric field of 1 V, the time te
it takes for the electron to travel a distance of

√
2nm is taken as the unit for the

time dimension T. The unit for the current dimension I is then straightforwardly
defined as one electron charge e per unit of time te. This leads to the following
conversion table

Dimension new unit conversion to SI unit
L nm 1× 10−9 m
M me 9.109 382 91× 10−31 kg
T te 2.384 46× 10−15 s
I Ae 6.719 25× 10−5 A

With the units defined, the important constants of nature can be defined in
terms of these units. The electrical charge in the new units is

1Ae · 1te = 1e (B.1)

This means that the electrical charge is denoted in units of e. Similar for energy
it holds that

1
menm2

t2e
= 1 eV (B.2)

such that energy is expressed in eV in this system of units. Finally the value
for ~ must be calculated by

~ = 1.054 571 73× 10−34 J s = 0.276 043 eVte. (B.3)

C Exchange statistics of Majorana zero modes

In this section it will be shown that the Majorana zero modes obey non-abelian
braiding statistics starting from the following assumptions

γi =γ†i (C.1)

{γi, γj} =2δij (C.2)

partity conservation. (C.3)

64



Consider a state with two Majorana zero modes. By varying the Hamilto-
nian adiabatically, the two Majorana fermions can be exchanged. The time-
dependent Hamiltonian at time t is denoted by H(t) and time-dependent Ma-
jorana operators are introduced as

γi(t) = U†(t)γiU(t), (C.4)

where the time-evolution operator is

U(t) = e
− ı

~
∫ t
t0
H(t′)dt′

. (C.5)

If the square of Eq. (C.4) is taken, this results in

γi(t)
2 = U†(t)γiU(t)U†(t)γiU(t) = U†(t)γiγiU(t) = U†(t)U(t) = 1. (C.6)

The time dependence considered here corresponds to a exchange operation,
hence the final Hamiltonian must be equal to the initial Hamiltonian. That
the exchange is adiabatic means that all states transform to the corresponding
states of the final Hamiltonian. In other words, the final Majorana operators
are given by

γ2(t1) = s1γ1(t0) (C.7)

γ1(t1) = s2γ2(t0). (C.8)

Combined with Eq. (C.6) and Eq. (C.2) this leads to

1 = (siγi)
2 = s2

i (C.9)

To show that the exchange operation is non-abelian, it remains to be shown
that s1s2 = −1. Fermion creation operators can be constructed from the two
Majorana operators by

c† = γ1 + ıγ2. (C.10)

If U is the operator exchanging the two Majorana zero modes, this means that

U†d†U = s2γ2 + ıs1γ1. (C.11)

Assume, leading to contradiction, that s1 equals s2 which would result in

U†d†U = −ıs1d, (C.12)

or equivalently
d†U = −ıs1Ud. (C.13)

Majorana zero modes have no energy and commute with the Hamiltonian. This
means that d†d also commutes with the Hamiltonian and hence the ground state
can be taken to be a simultaneous eigenstate of H and d†d which is denoted
with |0〉 where d |0〉 = 0. With this notation, it holds that

d†U |0〉 = −ıs1Ud |0〉 = 0. (C.14)

If |0〉 has a definite parity, then U |0〉 ∝ |1〉 has the opposite parity and this
contradicts the conservation of parity. Hence our assumption that s1 = s2 must
be false and this leads to s1s2 = −1.

Hence exchanging two Majorana zero modes is non-abelian. Repeating the
exchange twice does not give the identity as for normal bosons and fermions,
but it gives minus the identity instead.
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D Derivation r6c6c
41

the goal of Löwdin partitioning is to make a basis transformation such that
the Hamiltonian becomes block diagonal. A detailed explanation of Löwdin
partitioning is beyond the scope of this thesis. A good explanation of this
method can be found in reference [29]. In this appendix the process to obtain
Eq. (3.39) from the 8× 8 Kane Hamiltonian will be explained. The first step in
subband Löwdin perturbation is to divide the Hamiltonian in two sets of states,
A and B. Set A consists of all conduction band states from H6c6c and set B
consists of all valence band states from H8v8v and H7v7v. To get an effective
Hamiltonian for the conduction band the Hamiltonian can be expanded as

H2×2 = H(0) +H(1) +H(2) +H(3) + . . . , (D.1)

where H(n) depends on the full 8 × 8 Kane Hamiltonian. In order to define
H(n), the original Hamiltonian must be split into a diagonal Hamiltonian, and
a part containing all other terms which is treated as a small perturbation of the
diagonal Hamiltonian. The diagonal Hamiltonian is taken as

H0 =

Hd
6c6c 0 0
0 Hd

8v8v 0
0 0 Hd

7v7v

 , (D.2)

where Hd
bb = − ~2

2mb
∇2 + V (~r). The other part is taken as

H ′ = H8×8 + e1 ~E −H0. (D.3)

The matrices here should be interpreted as matrices of infinite dimensional
matrices as explained in Sec. 3.5 and Eq. (3.30).

The Rashba coefficient is contained in the third order of the expansion of
H2×2. Explicitly define

(t1)mi,m′i′ =
∑

m′′i′′,lj

(
H ′mi,ljH

′
lj,m′′i′′H

′
m′′i′′,m′i′

∆m′i′,lj∆m′′i′′,lj
+
H ′mi,m′′i′′H

′
m′′i′′,ljH

′
lj,m′i′

∆mi,lj∆m′′i′′,lj

)
(D.4)

and

(t2)mi,m′i′ =
∑
lj,l′j′

(
H ′mi,ljH

′
lj,l′j′H

′
l′j′,m′i′

∆mi,lj∆mi,l′j′
+
H ′mi,ljH

′
lj,l′j′H

′
l′j′,m′i′

∆m′i′,lj∆m′i′,l′j′

)
(D.5)

such that H(3) can be written as

H
(3)
mi,m′i′ = −1

2
(t1)mi,m′i′ +

1

2
(t2)mi,m′i′ . (D.6)

In these equations m, m′ and m′′ denote the conduction band and i, i′ and
i′′ the corresponding subband numbers. The variables l and l′ denote one of
the valence bands (light hole, heavy hole or spin splitoff) and j and j′ the
corresponding subband numbers. These indices make explicit the fact that H ′

is an infinite dimensional matrix and hence does not commute. Keeping track
of the indices is most easily done by a computer program such as Mathematica,
Maple, etc.
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In the rest of this section, the steps to arrive at Eq. (3.39) is described with-
out giving intermediate results as that would lead to many pages of derivation.

The first step is to realize that the only conduction band of interest is the
6c band and the subband indices i and i′ must be equal. Every operator in
Eq. (D.6) allows distributivity hence the distributivity law is applied to the
plus operators occurring in Eq. (D.3). This leads to an expression of 33 terms.

Next, all terms that are not proportional to the electric charge e are dropped
as these terms can never contribute to the Rashba coëfficient, doing so result
in a expression of only 9 of the original 33 terms. To continue, the definition
of the 8× 8 Kane Hamiltonian must be used. All parts of this Hamiltonian are
defined in terms of σ Pauli matrices. Once this is done, distributivity is again
applied over every plus operation and all conjugate transpose operations in the
equation are explicitly be performed.

The products of sigma matrices can also be calculated and every term that
is not proportional to either σx, σy or σz is removed as these terms cannot
contribute to r6c6c

41 . Doing so results in an expression consisting of 42 terms.
Now, the explicit form of the spin-orbit term is used and σy and σz are set

to zero while ~E is set to Ez ẑ. For each term that is left in the equation at
this point, the three H ′ matrices change into ẑ, k̂z and 1 in some permutation,
but each one occurring exactly once. These operators still act on the basis
states used to define Eq. (3.30). Some terms, however, only contain the identity
operator such that the two basis states act on one another and this results
by assumption in a delta-function. Hence each term left in the equation is
proportional to 〈ψci|z|ψbj〉 〈ψbj |kz|ψci〉 or 〈ψci|kz|ψbj〉 〈ψbj |z|ψci〉 for some band
b. After enumerating every term, Eq. (3.39) is obtained.
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