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Abstract

A variety of di�erent bed forms is observed in the nearshore zone of coastal seas. Gaining
knowledge on the evolution of the morphology of such sytems is important for engineering
purposes, preservation of coastal systems and to increase public awereness for the transitional
states of the beaches. In this study, the e�ect of the rollers, which form during wave breaking,
on the long term evolution of the bed patterns is investigated. The surface roller is the aerated
mass of water located on the shoreward face of the breaking waves. The working hypothesis of
the present study is that additional physics results in new bottom patterns such as shoreline
sand bars.

The speci�c objectives of this study are threefold. First, to quantify the changes in the
behaviour of the variables of the basic state (representing longshore averaged conditions) when
rollers are included in the system. Second, to analyze the spatio-temporal characteristics of the
growing crescentic bars in the initial stages of their formation. Third, to investigate the e�ect of
the rollers on the growth, position, shape and �ow characteristics of the bed features in the �nite
amplitude regime. In order to answer these questions the nonlinear system of equations that
describe the waves, the rollers and the currents coupled with the sediment transport and the bed
evolution equations is solved by the numerical model Morfo55+. Compared to a case without
the rollers, for the basic state, the results show that when including the rollers in the model
the set-up is smaller in the inner surf zone. The depth-integrated concentration maxima are
shifted shoreward of the longshore sand bar compared to the case without the rollers. Moreover,
for the initially forming sand bars, it is found that when rollers are activated, their growth is
slower than the roller-o� case. Results obtained from Morfo55+ and the results provided by
linear stability analysis (Morfo62) show that the di�erence in the e-folding time between the
two models is less than 5% with rollers. However, for the roller-o� case the di�erence is almost
50%. With Morfo55+ the linear regime ends after ' 2 days, when rollers are activated. For the
roller-o� case nonlinear e�ects are evident after ' 1:7 days. For the nonlinear regime, between
the two cases, bars are di�erent in growth rates, wavelengths and maximum amplitudes. The
most important result is that sand-bars form close to the shoreline only when the rollers are
included in the model. Further analysis, showed that the inclusion of the rollers both in the
hydrodynamics and the sediment transport is needed for shoreline sand bars to occur.
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Chapter 1

Introduction

Coastal areas around the world are often characterized by sandy beds bordered by long beaches.
Such areas are found in the east coast of Australia and of the USA, as well as in the western coast
of the Netherlands and the Atlantic coast of France. The study of the evolution of nearshore
morphological systems is directly linked to societal, engineering and scienti�c purposes. Gaining
knowledge on their long-term evolution can be very useful for coastal infrastucture safety and
natural environment preservation. Moreover, modeling the evolution of these beach systems is
very impotant when humans intervene in several ways. This involves from extracting/adding
sand to installation of large machinery in the coasts, such as underwater energy turbines.

The present study predominantly focuses in the shoaling zone and the surf zone, which are
shown in the conceptual picture of Fig.(1.1), bounded by a vertical wall at the shoreline. In this
region, the approaching waves are transformed due to the reducing depth, grow in amplitude
and eventually break.

Figure 1.1: Conceptual picture of the coastal area with a sloping bottom and a single longshore
uniform sand bar. Numbers indicate the di�erent areas: shore (1), nearshore (2), study area of
this study (2a), o�shore (3). Approaching waves are also scetched.
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Frequently, the morphology of the coastal seas shows various bed forms that are rhythmic.
A classi�cation of the di�erent beach states and the di�erent sand bar types has been made by
Wright & Short (1984). Some of them are: transverse bars, crescentic bars and ridge and runnel
systems (Fig.(1.2) a, c). In this �gure, the intensity of the image is used to indentify where
most of the wave breaking occurs. In turn, the breaking waves indicate the presence of the
shallows, i.e. bathymetric anomalies, which in these cases are rhythmic. Crescentic bars span
in the order of hundreds meters along the beach and they are separated by bed depressions in
between, called rip channels. They are linked to the presence of initially longshore uniform bars,
which form during storms. Crescentic bars usually evolve under post-storm wave conditions in
time scales of a few days (Van Enckevort et al, 2004). An example of such patterns is shown in
Fig.(1.2c): over the shore parallel sand bar (white line in the right) bed patterns that resemble
crescentic moons are observed.

Figure 1.2: 10-minute time exposure images showing di�erent kinds of bed patterns: a) trans-
verse bars b) transverse bars with di�erent wavelength c) crescentic bars d) longshore uniform
sand bar. The increased white foam due to the breaking waves in the surf zone indicates the
presence of the shoals. Picture taken from Lippmann & Holman (1990)

A well established theory that explains the formation of such bed forms is the self organi-
zation mechanism (Falques et al, 2000, Calvete et al., 2005 and references herein). According
to this, bed patterns grow due the positive feedback between the morphology and the hydro-
dynamics. If an initial bottom pro�le is in equilibrium, then a small topographic perturbation,
superimposed on the bottom will modify the waves and the currents which will subsequently
a�ect the sediment transport. The divergence or convergence of the latter will either reinforce
or damp the perturbation and thus the bed will grow or decay.

Crescentic bars form in the case of normally, or near normally, incident waves to the shore-
line, i.e. in the absence of a longshore current. This study considers only such waves. Past
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studies (Falques et al., 2000), have linked the formation of crescentic bar systems with a cel-
lular circulation pattern and the spatial distribution of the stirring of sediment caused by the
waves. In particular, increased wave breaking over the crests, leads to longshore variations of
set up, that drives a certain cellular circulation. The currents transport the sediment that is
accumulated reinforcing the shoals, thus leading to a positive feedback mechanism.

Recently, an additional physical process, the surface rollers, has been added in several mod-
els (Reniers et al., 2004; Ribas et al., 2011), describing a more realistic picture of the breaking
waves. Physically, the roller is the aerated mass in the shoreward face of the breaking wave.
In the model, the inclusion of the rollers a�ects both the currents and the sediment transport.
The energy that is lost by wave breaking is temporarily stored in the rollers and then is dissi-
pated. The roller energy gives rise to roller radiation stresses the divergence of which creates an
additional force to drive the currents. Additionally, the bed shear stress exerted by the currents
and the orbital motion of waves at the bottom is increased due to resuspension of sediment
by the rollers. So far, these processes have been investigated in studies that were only able to
describe the initial formation of bars, for either normal or oblique incident waves. Ribas et al.
(2011) have investigated the role of the surface rollers in both the hydrodynamics and the sedi-
ment transport in the initial formation of transverse �nger bars. They found, after comparison
of model results with characteristics of observed transverse bars at the Noordwijk beach, the
Netherlands, that the inclusion of rollers is necessary to describe accurately their wavelength,
crest orientation and e-folding growth time. Also, according to their results, positive feedback
between the bed and the �ow that gives rise to transverse bars, only occurs when resuspension
of sediment due to the rollers is included in the sediment transport. Furthermore, in Ribas
et al. (2012), the model results showed that the characteristics of crescentic bars are more
accurate (compared with real time data from the Noordwijk beach), if the longshore current
is simulated with the presence of the rollers. Both studies used models which employed linear
stability analysis. This implies that only the initial formation of the patterns has been simu-
lated and that �nite-amplitude e�ects have been omitted. Garnier et al. (2008) have used a
fully nonlinear model to simulate the long-term evolution of sand bars for both normally and
obliquely incident waves. In that study, results of bed forms were analyzed for up to 100 days
of morphological evolution. In the �nite-amplitude regime, saturation of growth was obtained
for the crescentic bar system, meaning that bars hardly grew after ' 20 days of morphological
evolution. The system went trough several transitions and was in agreement with conceptual
models of other studies (Wright & Short, 1984). Castelle et al. (2012) have also made extended
simulations (in the order of tenths of days), inspecting the role of a bathymetric anomaly on the
wavelength, growth rate and migration rate of rip channel systems. Their analysis showed that,
downdrift of the anomaly, rip channels self-organize into patterns with larger wavelengths and
smaller migration rates compared to the ones updrift. However, both studies did not include
the surface rollers.

The working hypothesis of this project is that roller processes are going to resolve bed pat-
terns in the long-term that - so far- morphodynamic models have not shown, either because
only the initial formation of the bed forms has been described or because the long-term simu-
lations did not include the rollers. In particular, it is aimed to show that shoreline undulations
are going to form only with the present con�guration. Although crescentic bars are nowadays
well understood (Caballeria et al., 2001 and Calvete el al., 2005), there is a lack of long-term
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simulations with a fully nonlinear model that includes the rollers. Evidently, the joint action of
and between physical processes at various time and length scales in the surf zone, still makes
the analysis of such systems a prominent task.

The research questions about the evolution of the sand-bars under the e�ect of the surface
rollers are the following:

1. What are the di�erences in the wave and roller energy, mean sea level and integrated
concentration between the default case (rollers activated) and a roller-o� case in the case
of an initially alongshore uniform beach?

2. What are characteristics of bars (growth rate, amplitude, wavelength) that initially form
in the surf zone, in the default case and the roller-o� case?

3. What are the time limits of the linear regime? What is the e�ect of the rollers on the
growth rate, amplitude, wavelength and position of the sand-bars in the �nite-amplitude
regime?

How the morphology of the surf zone is directly related to the currents and the waves? The �ow
chart of the feedback between the di�erent components is depicted in Fig.(1.3). The breaking
waves in the surf zone and the induced currents are eroding the bed and transport sediment,
respectively, the divergence of which determines the evolution of the bed. Subsequently, the
updated bottom pro�le a�ects the waves and the currents. Note that, the induced currents also
interact with the waves. To address the 3 research questions, experiments are conducted with a
numerical model. In particular, an extension of the existing Morfo55 model (Garnier, 2006) is
used that includes surface rollers. Throughout this study, experiments are carried out with two
con�gurations: one that includes all roller dynamics (default case) and one that does not. The
model results are then analyzed and compared between these two cases, in order to quantify
the di�erences in the sand bar characteristics.

Figure 1.3: Schematic picture of the di�erent components and the feedbacks.

The remainder of this M.Sc. thesis is structured as follows. In Chapter 2 the equations of
the morphodynamical model are presented. The model consists of equations for the waves and
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the currents that are coupled with equations for the sediment transport and the bed evolution.
Moreover, some basics on linear stability analysis are provided. In Chapter 3 the experimental
setup and the methodology are described. The parameters, their values and their meaning for
the so-called default case are explained. Then, the methods to analyze results and answer the
three research questions follow. In Chapter 4 the results for the basic state and the initial
formation of bars are presented, thereby answering question 1 and 2. In Chapter 5 the results
for the �nite-amplitude regime are given, associated with question 3. Furthermore, Chapter 6
discusses some physical mechanisms that provide an explanation for the e�ect of the rollers on
two of the most important results, namely the formation of sand bars at the shoreline and the
decrease of the global growth rate. Also, some information is given on the limitations of the
model. In Chapter 7 conclusions are drawn.



Chapter 2

Material

In this chapter, a description of the material that is used in this study is given. Two numerical
models are employed in order to obtain and analyze results: the Morfo55 (Garnier, 2006) and
the Morfo62 model (Calvete et al., 2005, Ribas, 2003). The former is the main tool for this
study and is used in every experiment that is performed. The latter is an assistant tool that
aids in testing the performance of Morfo55. Section (2.1) describes the updated version of the
Morfo55 model, which includes the surface rollers and Section (2.2) brie�y presents the Morfo62
model and linear stability analysis.

2.1 The Morfo55+ model

2.1.1 Introduction

The present model is an extension of the nonlinear model Morfo55 (from now on Morfo55+)
and it has been modi�ed in order to include surface rollers. These modi�cations have been
implemented in the model with three main options that can be �switched on and o�� separately
so that it can run with or without them (see Subsection (2.1.6) for an overview of these options).

In general, Morfo55+ is a nonlinear model that numerically solves the depth-averaged shallow
water equations coupled with the sediment transport and the bed evolution equations. It can be
described as a surf zone model based on the fact that it simulates the self-organized processes
that generate the morphodynamical instabilities in the surf zone. These self-organized processes
occur due to the feedbacks between the waves, the rollers, the depth averaged currents and the
bed evolution (Ribas et al., 2011).

6
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Figure 2.1: Physical domain and unknown variables of the physical system

2.1.2 Physical domain

The physical domain consists of a coordinate system (0; x; y; z) or (0; x1; x2; x3) with an erodible
bottom pro�le that can be subjected to morphological changes under the in�uence of sediment
transport (Fig.(2.1). The longshore direction [0; y) coincides with a rectilinear shoreline, the
positive cross-shore direction [0; x) points at the seaward direction and the positive vertical
direction [0; z) points upwards.

Fig.(2.1) shows the variables for the waves, the currents and the morphology. Wave and
depth averaged properties of the original instantaneous variables are considered. Wave aver-
aging stands for mean variables over the wave period T and depth averaging means that the
variables are depth uniform. In the surf zone, shallow water theory is employed (Mei 1989).
The coordinate system after averaging is (0; x1; x2; t). The �gure shows:

� the properties of the waves: the wave vector k(x1x2; t), the wave frequency �(x1; x2; t)
and the wave height H (x1; x2; t)),
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� the properties of the currents: the wave and depth averaged horizontal velocity vector
v(x1x2; t), where v = (u; v) = (v1; v2),

� the sea level and the properties of the bed: the wave averaged free sea level zs(x1; x2; t),
the wave averaged bed level zb(x1; x2; t), the wave averaged bed pertubation h(x1; x2; t)
and �nally the wave averaged depth D(x1; x2; t) = zs(x1; x2; t)� zb(x1; x2; t).

2.1.3 Hydrodynamics

2.1.3.1 Waves

In the present study, surface gravity waves are considered that originate from deep water and
travel to the coast. Breaking waves in the surf zone induce a subsequent circulation by transfer-
ring momentum into the water. Waves are considered to be irregular with random wave heights
H, with a spectrum that is narrow in frequency and angle. These heights H follow the Rayleigh
distribution, from which the root mean square wave height Hrms and the wave energy density
E = �gH2

rms=8 can be computed , with � being the water density and g the acceleration due to
gravity.

As the waves approach the coast, linear wave theory is used to physically describe a number
of properties such as the intrinsic wave frequency �, i.e. as experienced by an observer moving
with the current

� =
p
gk tanh (kD) ; (2.1)

where k is the module of the wavenumber vector k = (k1; k2). The phase velocity is de�ned as

c =
�

k
=

r
g

k
tanh (kD) (2.2)

whose components are straightforwardly computed via

ci =
ki
k
c for i = 1; 2 : (2.3)

Similarly, the components of the group velocity cg are

cgi =
ki
k
cg; i = 1; 2 (2.4)

and its magnitude is calculated by means of

cg =
@�

@k
=

c

2

�
1 +

2kD

sinh (2kD)

�
: (2.5)

Lastly, the root mean square velocity urms of the waves is

urms =
�Hrms

2 sinh (kD)
; (2.6)
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where D is the water depth and k the modulus of the wavenumber. The Doppler shift is
considered and the intrinsic frequency � is related with the absolute frequency !, i.e. the
frequency experienced by an inertial observer. The relation reads,

! =
p
gk tanh (kD) + viki; i = 1; 2: ; (2.7)

with vi representing the two components of the current velocity vector v. Due to the irrota-
tionality of the wavenumber,

@ki
@xj

� @kj
@xi

= 0; i; j = 1; 2 ; (2.8)

Refraction of the waves is computed with the global Snell law, i.e.

ki sin � = koffi sin �off (2.9)

where koff and �off are the wavenumber and the angle of incidence of the wave far o�shore,
respectively. Equations (2.7) and (2.9) describe the mechanism of wave refraction. Other more
complicated physical processes, like di�raction of waves due to vertical objects or islands will
be considered to be beyond the scope of this study.

The wave energy balance, including wave-current interactions, reads,

@E

@t
+

@

@xj
((vj + cgj)E) + Sw

ij

@vj
@xi

= �D; i; j = 1; 2 ; (2.10)

where vj are the current velocity components in (x1; x2), S
w
ij are the wave radiation stresses

and D is the dissipation rate due to the breaking of the waves and due to bottom friction.
Therefore D = Dw + Df . The linear wave theory is used to formulate the expressions for the
wave radiation stresses (Longuet-Higgins-Stewart, 1964) . It reads,

Sw
ij = E

�
cg
c

kikj
k2

+

�
cg
c
� 1

2

�
�ij

�
; i; j � 1; 2 ; (2.11)

where �ijis the Kronecker delta and cg, c are the moduli of the group velocity and phase velocity,
given by (2.4) and (2.1), respectively.

For the dissipation rate due to the breaking of the waves the formulation of Thornton &
Guza (1983) is adopted

Dw =
3
p
�

16
B3fp�g

H5
rms

bD3

 
1� 1�

1 + (Hrms=bD)2
�5=2

!
; (2.12)

Here B = 1 is the breaker index. In this case, the entire wave front is considered to be covered
with foam. Moreover, b is the index of wave saturation, given by Hrms=D, and fp the intrinsic
frequency peak of the wave �eld, fp = �=2�.The dissipation due to bottom friction Df is
parameterized according to Horikawa (1988),

Df =
4

3�
�CD

�3H3
rms

T 3

1

sinh3 (kD)
; (2.13)
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with CD being the dimensionless drag friction coe�cient CD = 5 10�3 and T = 2�=! being
the period of the waves. The energy dissipated by the breaking waves feeds the surface rollers,
i.e. the aerated mass of water located on the shoreward face of the breaking waves. Following
Reniers et al. (2004) and Ribas et al. (2011) the roller energy equation, including wave-current
interactions, reads

@ (2Er)

@t
+

@

@xi
(2 (vi + ci)E

r) + Sr
ij

@vj
@xi

= �Dr +D; i; j = 1; 2 ; (2.14)

with Er representing the roller energy density, ci being the xi � direction phase velocity com-
ponents and Sr

ij being the radiation stresses due to roller propagation. The latter are parame-
terized, following Ribas et al. (2011)

Sr
ij = 2Er kikj

jkj2 ; i; j = 1; 2 : (2.15)

For the roller energy dissipation rate the formulation of Rueesink et al (2001) is adopted

Dr =
2gEr sin (�rol)

c
: (2.16)

In this equation �rol = 0:1 is the angle of the wave/roller interface.

2.1.3.2 Currents

Currents are physically described by conservation of water mass, i.e.

@D

@t
+

@

@xj
(Dvj) = 0; j = 1; 2 (2.17)

and the momentum balance equations,

@vi
@t

+ vj
@vi
@xj

= �g@zs
@xi

+
1

�D

@

@xj

�
Sw
ij + Sr

ij + St
ij

�� �bi
�D

; i; j = 1; 2 ; (2.18)

In equation (2.18), St
ij are the turbulent Reynolds stresses and �bi is the bottom shear stress.

Wind stress and tidal forcing will not be accounted in the momentum balance and will be
excluded from any further discussion. For the bottom shear stress the extension of the Feddersen
et al. (2000) formulation for a 2-dimensional �ow by Ribas et al. (2011) is chosen

�bi = �cD
urmsp

2
vi

�
1:162 + 2

jvj

u2rms

�1=2

; i = 1; 2 ;

with urms the root mean square velocity of the waves to the bottom and cD being the dimension-
less hydrodynamic drag coe�cient of friction that follows the Manning-Stricker law (Soulsby,
1997)

cD = 0:015

�
ka
D

�1=3

: (2.19)
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Here ka is the apparent bed roughness (default value ka = 3:5 � 10�2 m). Finally, the turbulent
Reynolds stresses are described by

St
ij = ��tD

�
@vi
@xj

+
@vj
@xi

�
; i; j = 1; 2 ; (2.20)

with the lateral turbument mixing coe�cient being

�t = M (Dr=�)1=3 ; (2.21)

where M is a turbulence parameter equal to 1. When rollers are de-activated Dr = Dw in this
equation.

2.1.4 Bed Evolution and Sediment Transport

The hydrodynamic variables are coupled with the bed level zb through the conservation of
sediment mass

@zb
@t

+
1

1� p

@qj
@xj

= 0; j = 1; 2 ; (2.22)

which describes the evolution of the mean bed level zb(x1; x2; t), with p = 0:4, being the porosity
(the ratio of 'empty' volume space over the total volume space between the grains of sediment)
and qj being the jth component of the wave averaged volumetric sediment transport vector q
per unit width (m2s�1). Note that, according to equation (2.22), the evolution of the bed level
zb increases (accretion) if there is convergence of sediment. Similarly, if there is divergence of
sediment (erosion), the bed level zb decreases. Sediment transport q = (q1; q2) is computed
following the total load sediment transport formula of Soulsby and Van Rijn (Soulsby, 1997).
It reads

qi = C

�
vi � �

@h

@xi

�
; i = 1; 2 : (2.23)

Here, C can be interpreted as the depth integrated volumetric sediment concentration, often also
called the stirring function, and � is the bed slope coe�cient, which accounts for the tendency
of the bed perturbations h to be smoothed out downslope. The depth integrated sediment
concentration C follows

C = As (ustir � ucrit)
2:4 ; if ustir > ucrit (2.24)

C = 0 ; otherwise: (2.25)

In this expression As = Ass+ASB is a constant that represents suspended and bedload sediment
transport and that depends on the sediment characteristics and the water depth D. The term
ustir�ucrit is the threshold for the current above which sediment is stirred and it also depends
on sediment characteristics. The sediment coe�cients read
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ASS =
0:012d50D

�0:6
�

((s� 1) gd50)
1:2 ; (2.26)

ASB =
0:005h (d50=D)1:2

((s� 1) gd50)
1:2 ; (2.27)

where d50 is the median grain size, d50 = 0:20 mm, s is the density of the sediment, s = 2:65,
and D� is the dimensionless grain size, given by

D� =

�
g (s� 1)

�2b

�1=3

d50 ; (2.28)

with �b being the kinematic viscosity of water (�b = 1:3 10�6 m2s�2). In equation (2.24) ucrit
given by

ucrit = � log10
h

d50
; (2.29)

with

� = 0:19 (d50)
0:1 for 0:0001 m � d50 � 0:0005 m ; (2.30)

or

� = 8:5 (d50)
0:6 for 0:0005 m � d50 � 0:002 m :

The stirring velocity ustir is the velocity representing resuspension of sediment and it reads

ustir =
q
jvj+ 0:018c�1D u2rms + nboru2bor (2.31)

with cD , being the drag coe�cient, given by expression (2.19).
In equation (2.31) nbor is a constant parameter represents the turbulence velocity of the vortices
after roller energy is dissipated (Calvete et al., 2011). Physically the last term in the rhs of
equation (2.31) describes the stirring of sediment due to turbulence induced by the surface
rollers. The velocity ubor is related with the roller energy dissipation and is given by,

u2bor =

�Dr

�

�2=3�
exp

�
D

Hrms

�
� 1

�
;�1 (2.32)

where the roller dissipation Dr is given by equation (2.16) and D is the mean depth. The
exponential pro�le of ubor accounts for the decrease of the turbulence velocity from the surface
to the bottom of the physical domain. Of signi�cant importance is the roller stirring parameter
nbor. By decreasing (increasing) nbor, the resuspension of sediment due to the presence of the
rollers is aslo decreased (increased) (see equation (2.31) & (2.32)). The original Soulsby-Van
Rijn formulation (i.e. without surface rollers) is obtained for nbor = 0. Therefore, the value
of nbor (being equal to 0 or not) determines to what extent the rollers account for stirring of
sediment.
The bedslope coe�cient � in (2.23) is calculated as
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� =  (ustir � ucrit) ; (2.33)

with ustir given by equation (2.31) and  being a constant, called the bed slope parameter.

2.1.5 Boundary Conditions

In order for the system presented in Subsections (2.1.3) - (2.1.4) to be mathematically well
de�ned, boundary conditions for the unknown variables must be imposed. The unknown vari-
ables that need to be imposed to such conditions are E;Er;v; D; zb; zs; q; and k. Three types
of boundaries should be de�ned: shoreline, o�shore and lateral boundaries. The domain is Lx

wide (x-direction) and Ly long (y�direction). The boundary conditions are similar to those
explained by Caballeria et al. (2002) and Garnier (2006), except that extra conditions must be
accounted for the roller dynamics.

2.1.5.1 Shoreline

At the shoreline a virtual vertical wall is considered, meaning that swash dynamics will be
completely neglected from the scope of this study. This means that at the shore, x1 = 0, the
cross shore component of the velocity and of the sediment transport must vanish, i.e.

v1(0; x2; t) = 0 and q1(0; x2; t) = 0 : (2.34)

A no slip boundary condition is imposed and the longshore component of the velocity must also
vanish at the shore,

v2(0; x2; t) = 0 : (2.35)

Roller energy Er(0; x2; t) and the rest of the variables are set to behave free according to the
equations that describe them.

2.1.5.2 O�shore

At the boundary x1 = Lx it follows:

Eoff = E(Lx; x2; t) = �g
�
Hoff

rms

�2
=8 : (2.36)

Since the formation of bars in the surf zone will induce a currents that will be coupled with the
growing bed patterns, extra boundary conditions must be accounted for, so that the induced
�ow still vanishes o�shore. To that end, the following conditions are assigned,

�i
@vi
@xi

+ vi = 0; i = 1; 2: at x1 = Lx ; (2.37)

with �i > 0 being constant coe�cients describing an exponential decay of the �ow in the o�shore
direction at this boundary.
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2.1.5.3 Lateral

Periodic boundary conditions are imposed at the two lateral boundaries, i.e. at x2 = 0 and
x2 = Ly, for E;E

r;v; zb; zs; D;k and q. As an example, the energy density E and the roller
energy density Er conditions read,

E(x1; 0; t) = E(x1; Ly; t) ; (2.38)

Er(x1; 0; t) = Er(x1; Ly; t) : (2.39)

Also, periodic boundary conditions are applied to the �rst longshore derivatives of the unknown
variables. Again, as an example, tthese conditions for E;Er read,

@

@x2
(E(x1; 0; t)) =

@

@x2
(E(x1; Ly; t)) ; (2.40)

@

@x2
(Er(x1; 0; t)) =

@

@x2
(Er(x1; Ly; t)) : (2.41)

2.1.6 Overview of model options

Overall, there are three ways of explicitly including rollers in the present model. These are
summarized under three main options, together with important model options, in Table (2.1)
and can be activated/de-activated separately.

Options Meaning/Inclusion in Default Setting

1 Roller radiation stresses Sr
jk in mom. eq. On

2 Lateral mixing coe�cient with Dr On
3 Contribution of rollers in stir. velocity ustir On
Friction dissipation Df in wave energy E due to bot. friction O�
Wind forcing Wind shear stress �wi in mom. equation O�
Friction formulation Bed shear stress �bi: Feddersen et al.,(2000) On
Wave/current interaction Doppler shift and energy equations On
Refraction Global Snell Law On
Di�raction Di�raction of waves due to vertical objects O�
Sediment Soulsby & van Rijn total load sed. transport On

Table 2.1: Model options, their meaning and their settings.

2.2 The Morfo62 model

The Morfo62 model (Calvete et al., 2005, Ribas, 2003) is employed as an additional tool in order
to test whether the results of Morfo55+ in the initial stages of bar formation are in agreement
with linear stability analysis (LSA). A description of the basic theoretical background of Morfo62
is given in this section.
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2.2.1 Linear stability analysis

The system of equations that Morfo62 analyzes is the same as the ones presented in Subsections
(2.1.3 and (2.1.4). The substantial di�erence with Morfo55+ is that Morfo62 is based on linear
stability analysis. This means that the model investigates the initial evolution of small bed
perturbations superimposed on a basic state, in order to yield information about the stability
of the latter.

To perform linear stability analysis, �rst a basic state must be obtained. This is stationary
and alongshore uniform; it represents the equilibrium values of the system variables under a
steady bottom pro�le. Under this consideration, small alongshore periodic bed perturbations
can be superimposed on this basic state. For the bed level zb (x; y; t) this reads

zb (x; y; t) = zb0 (x) + h (x; y; t) ; (2.42)

where zb0 (x) represents the basic state for the bed and h (x; y; t) describes the small perturba-
tion, which is allowed to evolve in time. For the perturbation it follows

hM62 (x; y; t) = <fhM62 (x) exp [ikM62y + !M62t]g ; (2.43)

where kM62 = 2�=�M62 is the corresponding wavenumber, describing the spatial periodicity of
the perturbation in the loghshore direction, �M62 is the related wavelength and !M62 is the
complex frequency. For the solution to have a physical meaning, only the real part (denoted by
the symbol <) is taken into account. Expressions like (2.42) and (2.43) are formulated for the
rest of the dependent variables of the system.

The expressions (2.42) and (2.43) are inserted into the equations described in Subsections
(2.1.3) and (2.1.5). The fact that the perturbations are small compared to the basic state, i.e.
jhM62j � jzb0j, allows for a linearization of the system. This is done by keeping only the terms
that depend linearly on the perturbations. This procedure yields an eigenvalue problem: to
each small perturbation (2.43) corresponds a number of di�erent eigenvalues !n (n = 1; 2; :::),
that rise as the necessary restrictions for the system to obey the imposed solutions. These
eigenvalues !n characterize the di�erent growing modes n and are complex. Thus it follows

!M62 = !real + i!im ; (2.44)

The subscript real represents the real part of the eigenvalue describing the growth rate of
the bed perturbation: it will grow for 
M62= < (!M62) > 0 or it will decay for 
M62 < 0. In
the �rst case the the basic state is unstable: convergence of sediment transport occurs over the
crests of the bed and the perturbations grow. On the other hand, when 
M62 < 0 divergence
of sediment occurs over the bed and the perturbations get damped: the basic state is stable.

The imaginary part of expression (2.44), denoted with the subscript im, represents the phase
speed of the perturbation h, i.e.

cM62 =
�= (!)

kM62

also called the migration rate cM62 = V (m day�1). If V 6= 0, then the bed perturbations
migrate in the longshore direction. This happens when divergence of sediment transport occurs
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upstream of the bar and at the same time convergence of sediment transport occurs downstream.
Subsequently, the bar grows downstream and gets eroded upstream, which leads to its migration.

From the perturbations that result in instabilities, eventually one will dominate the dynamics
of the system. This is referred to as the fastest growing mode (FGM) and is associated with the
highest growth rate 
M62m = 
FGM and with a corresponding wavenumber kM62m = 2�=�M62m.
The properties of this perturbation can be representative of how bed patterns grow during the
initial stage of their formation.



Chapter 3

Methodology

In this chapter the experimental setup, the methods to analyze model results and the description
of the model experiments are presented. The use of each of these methods is essential in order
to answer the research questions that were formulated in Chapter 1.

Hereafter, three sections follow. First, the setup of the experiment for the default case
is provided (Section 3.1). After that, Section (3.2) describes the methodology to analyze the
results obtained with Morfo55+, in order to describe the basic state and the initial growth of
bars and to compare results with the Morf62 model, which employs linear stability analysis.
Finally, quantitative measures of the bar characteristics in the �nite amplitude regime are given
in Section (3.3), in order to assess the e�ect of the rollers in long-term evolution of sand bars.

3.1 Design of the experiment; default case

The imposed longshore averaged bottom pro�le of the domain (Fig. (3.1)) is similar to the one
that has been used in the study of Yu & Slinn (2003) and Garnier et al. (2008). It has a sloping
bottom towards the shore with a longshore uniform bar crest.

Figure 3.1: Initial bathymetry.

The peak of the crest is located at the cross shore direction at x = 80 m away from the
shoreline. More details about the bottom pro�le formulation and the parameters used are given

17
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in Appendix A. This setting is representative for a real beach system, like the one in Duck, North
Carolina, USA. The length of the domain (longshore direction) Ly is 2000 m and its width (cross-
shore direction) Lx is 250 m. The cross-shore direction is chosen so that it comprises the full
width of the surf zone under the present wave breaking conditions. The point, at which the
bottom is allowed to change de�nes the time t = 0 days for all the simulations. The values
at t = 0 days are part of the initial conditions of the perturbed system. These pro�les are
the basic state solutions for the variables with no bottom perturbations h superimposed on the
equilibrium bed zbo (Fig. (3.1)).

The waves are assumed to be normally incident to the shore, i.e. � = 0o . Their properties
are prescribed at the o�shore boundary by a root mean square wave height Hoff

rms = 1:5 m and
a peak period Tp = 7:5 sec . These are typical conditions that frequently occur at the Duck
site (Konicki & Holman, 2000). Roller dynamics are fully included in the default case. For the
default case the numerical parameters, the parameters of the model and the con�guration are
summarized in Tables (3.1) and (3.2) .

Parameter Meaning Default Value
4x cross-shore grid step 5 m
4y longshore grid step 10 m
Lx width of the domain 250 m
Ly length of the domain 2000 m
4t hydrodynamical time step 0:05 sec
moac morphological acceleration factor 20
4tmorpho morphological time step (4t �moac) 1 sec

Table 3.1: Main numerical settings for the default case with Morfo55

Di�erences in the values of parameters between the default case and similar studies, for
example Ribas et al. (2011), concern the apparent bed roughness ka = 0:7 m, the saturation
ratio  = 0:6 and the root mean square wave height Hrms = 1:5 m (values of that article
ka = 0:035m,  = 0:475 and Hrms = 1 m). The values of the parameters in this study are
within the range that is commonly used (see for example Table 1 in Ribas et al., 2011) so that
the corresponding conditions resemble the ones of natural beach systems. Finally, the value of
the bedslope coe�cient is  = 5, following Garnier et al. (2008).
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Hydrodynamics

Parameter Physical Meaning Default Value

g Acceleration due to gravity 9:81 ms�2

b Index of wave saturation 0:6
B Breaker coe�cient 1
cD Bottom friction drag coe�cient 0:5 � 10�2
ka Apparent bed roughness 7 � 10�2 m
M Turbulence dissipation parameter 1
�rol Slope of wave/roller front 0:05
�o� O�shore wave angle of incidence 0o

Ho�
rms O�shore rms wave height 1:5 m

Tp Peak wave period 7:5 sec

Morphodynamics

Parameter Physical Meaning Default Value
p Porosity of the bed 0:4
d50 Median grain size of sediment 0:2 � 10�3 m
 Donwslope sediment coe�cient 5
nbor Rollers parameter for stirring velocity 50

Table 3.2: Summary of parameters, their meaning and their values for the default case. Top:
settings for the hydrodynamics. Bottom: settings for the morphodynamics.

3.2 Basic state and initial formation of bars

The �rst part of the study focuses on the investigation of the cross-shore pro�les of the variables
in the basic state and the description of the spatial and temporal characteristics of the initially
growing bed patterns. This will be done by considering and comparing two cases, i.e. the default
con�guration (Section 3.1) and a roller-o� con�guration, in which Sr

ij = 0; Dr = Dw; nbor = 0
in equations (2.18), (2.21) and (2.31), respectively.

3.2.1 Methods to analyze results with Morfo55+

To check the Morfo55+ model for the consistency of its results, the growth rates and the growth
times of the emerging bed patterns for their initial growth are needed. There are two ways of
computing these properties that are used here: �rst, by analyzing the evolution in time of the
Fourier transform of the bed perturbation h (x; y; t) and second, by analyzing the evolution of
the bed perturbation jjhjj and the global growth rate �.

3.2.1.1 Growth rates from Fourier analysis

The �rst method to retrieve the growth rate of small bed forms is by considering the along-
shore uniform bed pro�le zb (x; y; t) = �zb0 (x) + h (x; y; t) of Section (3.1) and by writing the
corresponding bed perturbation h (x; y; t) as a Fourier series of the form:
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h (x; yj; t) =
NX
n=1

H (kn; x; t) exp [iknyj] ; (3.1)

where H (kn; x; t) is the amplitude of the perturbation, with yj = j4y with j = 1; 2::Ny and
wavenumber kn in the longshore direction

kn =
2� (n� 1)

Ly
; n = 1; 2:::N ; (3.2)

By inverting (3.1) and choosing a �xed location x = xo the amplitude H follows

H (kn; x0; t) =

NyX
j=1

h (x0; yj; t) exp (�iknyj) : (3.3)

At the initial stage of the simulations with Morfo55+ the perturbations are expected to behave
according to linear stability theory, i.e. allowing to approximate the amplitude H (kn; x0; t) as,

H (kn; x0; t) � H (kn; x0; 0) exp [!nt] ; (3.4)

with !n being the frequency and the initial amplitude of H. By taking the logarithm of the
modulus of expression (3.4),

ln (jH (kn; x0; t) j) � < (!n) t+ ln (jH (kn; x0; 0) j) : (3.5)

The growth rate 
 = < (!n) is the slope of (3.5), which describes a straight line. For the
dominant Fourier mode the growth rate is 
m = max f< (!n)g. Subsequently, the wavenumber
for kn ! km is �m = 2�=km.

3.2.1.2 Growth rates from global variables

An alternative way of obtaining information about the initial formation of bars with the
Morfo55+ model is by using the global growth rate. First, the averaging over the whole domain
for a variable f of the system is de�ned. It reads

f =
1

LyLx

� Ly

0

� Lx

0

f dxdy ; (3.6)

The global growth rate is de�ned as (Garnier et al., 2006)

� � 1

jjhjj2
@

@t

�
1

2
jjhjj2

�
; (3.7)

with jjhjj2 being the spatial variance of the bedforms, given by

jjhjj2 =
�
h2
�
; (3.8)
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For small amplitude bars, jjhjj=
�
h2
�1=2

can be expressed in the same way as in (3.4), i.e

jjhjj � jjhojj exp [�t], where jjh0jj is the initial value of jjhjj, so that its logarithm yields

ln (jjhjj) � �t+ ln (jjh0jj) ; (3.9)

with jjh0jj being the initial value of the amplitude jjhjj. In the linear regime, expression (3.7)
or (3.9) should be identical and yield growth rates that are in accordance with those obtained
from linear stability theory.

3.2.1.3 Identifying the limits of the linear regime

For the most part, this study aims to present and then analyze a sand bar state where the
growing of the bed perturbations is not in�nitesimal compared to the initial topography. The
evolution of the global growth rate is analyzed in order to identify when the linear regime of
the bar formation ends. To illustrate this, a conceptual picture of the global growth rate � as a
function of time is shown in Fig.(3.2). At the beginning of the bar evolution, a selection between
various modes occurs, which is depicted in the �gure as an increase of � in time. After some
time, the dynamics of the system are controlled by the perturbation with the fastest growing
mode and therefore � is constant in time. This is the linear regime of bar formation, de�ned by
the two vertical dashed lines in Fig.(3.2). In this regime, the amplitude Am of the bars grows
exponentially in time (not shown). Due to the nonlinear character of the system, the interaction
of di�erent modes becomes evident after a certain period of time. This is shown in this �gure
with a change of the growth rate �, which is no longer constant (regime bounded to the left by
the second vertical line in Fig.(3.2)) . The change in � is used here to de�ne the onset of the
nonlinear interactions in the system, something that will be referred to as the �nite amplitude
regime of the bed formations. A nonlinear model, such as Morfo55+, in principle could give rise
to all kinds of possible sand bar states (further growing of bars, saturated state and negligible
growth rate, periodic growth rate, chaotic behavior, etc) for longer times of beach evolution.

Figure 3.2: Conceptual picture of the di�erent stages of the growing of bars in the surf zone.
The evolution of the global growth rate � in time t is analyzed to distinguish the di�erent
regimes. The linear regime and the �nite amplitude regime are highlighted.
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3.3 E�ect of rollers on the bar characteristics in the �nite

amplitude regime

In order to quantify the e�ect of the surface rollers in the long-term evolution on the growing
bars several parameters are de�ned which describe their characteristics like the amplitude, the
wavelength and the growth rate.

3.3.1 Parameters describing the bar properties

There are two types of parameters that characterize the bars either spatially or temporally. The
spatial characteristics are measured by four parameters:

� The amplitude of the bars Am = 1
2
(max (h)�min (h)), given in meters (m), where the

maximum and the minimum values of the perturbations h of the whole physical domain
are taken into account.

� The global bed perturbation amplitude, also called the root mean square amplitude, jjhjj
given by the square root of Eq.(3.8) in meters (m).

� The mean wavelength �mean = Ly=Nbar of the bars, also referred to as the mean spacing
of the bars. It is the ratio of the longshore distance of the beach Ly and the number of
the emerging bars Nbarand it describes the distance at the longshore direction between
two consecutive crests of the bed.

� The dominant wavelength �m = �max of the bars. It is de�ned from Fourier analysis (sub-
section 3.1.1) and gives the spacing between two consecutive bar crests for the dominant
Fourier mode.

The temporal behaviour of the bars is characterized by two following parameters:

� The growth rate of the dominant Fourier mode 
m = max f< (!n)g, described in subsub-
section (3.2.1.1),

� The global growth rate � de�ned by expression (3.7).



Chapter 4

Results: basic state and initial formation
of bars

In this chapter the basic state and the initial formation of the bars are presented. This chapter
will yield answers on the �rst two research questions of the introduction. It is aimed to a)
show and to compare pro�les of variables at the initial state between the default case and
the case without rollers (�rst research question) and b) describe the initial formation of bars
and to quantifying the extent by which the nonlinear model Morfo55+ is able to reproduce
their characteristics, as obtained with the Morfo62 model, which employs LSA (second research
question).

4.1 Basic state

Two di�erent cases are presented in this section: the default case with the parameter values
and the settings as described in Section (3.1) and the roller-o� case, in which Sr

ij = 0; Dr =
Dw; nbor = 0 in equations (2.18), (2.21) and (2.31), respectively.

First, Morfo55+ is spun up. It turns out that the values of the variables reach an equilibrium
under a steady bottom pro�le in approximately 50 mins (not shown). In Fig.(4.1a) the pro�les
of the wave energy Ew0 for the two cases are plotted versus the cross-shore distance x. For both
cases Ew0 is decreasing towards the coast starting from 2:7 kJm�2 at the o�shore boundary
to 0 kJm�2 at the shoreline (x = 0 m). The most signi�cant decrease in Ew0 occurs over the
longshore bar (x = 80m) and the inner surf zone (x < 20 m). This is where most of the wave
breaking occurs. In general the two pro�les are similar, with the roller-o� case (red dashed line)
being slightly larger than the default case. The largest di�erence between the two is seen in the
inner surf zone (x < 20 m).
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Figure 4.1: a) wave energy Ew0 and roller energy Er0 (purple line) versus cross-shore distance
x of the basic state and b) As in a, but for the sea level zos . The notation o denotes the value of
the variable for the basic state. Black colour indicates the values for the default case and red
color indicates values for the roller-o� case.

Figure 4.2: As Fig.(4.1), but a) stirring velocity uostir versus cross-shore distance x of the basic
state b) integrated volumetric sediment concentration Co.
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The purple line in the same �gure describes the pro�le of the roller energy Er0 of the basic
state for the default case. The pro�le of Er0 is clearly di�erent than Ew0. For the most part,
the roller energy increases where the wave energy decreases. This implies that the energy
that is dissipated from wave breaking feeds the roller energy (see eq. (2.10) and eq. (2.12)).
The di�erence in the behaviour between the two (black and purple line in Fig.(4.1b) is more
pronounced above the longshore bar and very close to the shoreline. In between the two locations
both the wave energy and the roller energy slowly decrease.

The pro�les of the mean sea level z0s are shown in Fig.(4.1b) for the default and the roller-o�
case. Again, the changes are distinguishable where the longshore bar is located and the inner
surf zone. The set-up of the mean sea level, caused by the breaking waves and the changes
in the amplitude of the crests and troughs, is larger for the roller-o� case (red line) above the
longshore bar and close to the shore.

Pro�les of basic state variables associated with sediment transport are plotted in Fig.(4.2).
Starting from the top panel, the in�uence of the rollers in increasing the stirring velocity u0stir
and thus the bed shear stress in Fig.(4.2a). In particular, the resuspension of sediment due
to the roller turbulent bores (eq. (2.24)) in u0stir is evident in the maxima of the default case
pro�le (black line), which are larger than the roller-o� case. This di�erence is also depicted in
the other two panels of this �gure, with the maxima being larger for the default case in both
sediment concentration C0. The value of the concentration is almost ten times larger (Fig.4.2b)
between the default and the roller-o� case. In fact, it is interesting that C0 exhibits a second
peak at the shoreline for the default case (the �rst one is located at x = 80 m), whereas the
peak is shifted shorewards for the red curve of the roller-o� case.

4.2 Characteristics of initially growing sand bars

4.2.0.1 Growth rate from global analysis

The method described in Chapter 3 is followed and the evolution of the global bed perturbation
jjhjj is analyzed. The global growth rate � (d�1) and jjhjj (m) are computed by using expres-
sions (3.7) and (3.8), respectively. The pro�les of these quantities are plotted versus time for
the default case in Fig.(4.3) (�, jjhjj at the top and middle panels, respectively).

The slope of ln (jjhjj) gives the growth rate 
jjhjj = 0:072 h�1 and the growth time t =
1=
jjhjj = 14 h. The subscript jjhjj denotes the method that the growth rate is derived with.
The behaviour of � versus time (top panel in the Fig.(4.3)) is followed in order to determine
where the initial formation of bars ends. Until t � 1:5 days � increases in time, implying that
a selection of the di�erent modes occurs.
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Figure 4.3: Top panel: Global growth rate � (d�1) : Middle panel: Global perturbation
jjhjj (m). Bottom panel: logarithm of jjhjj when jjhjj is assumed to follow LSA in the lin-
ear regime. The results are for the default case

After that point, the global growth rate has a constant value, � = 0:15 d�1, between 1:5 and
2:4 days, which is the regime where the pattern formation is dominated by the fastest growing
mode, also called the linear regime. Finally, a change in � is observed at t ' 2:4 days, as its
value starts to decrease.

Figure 4.4: As in Fig.(4.3), but for the roller-o� case.

For the roller-o� case, sand-bar formation occurs faster, something that is clear from Fig.(4.4).
Again, the bar amplitude (middle panel in this �gure) grows exponentially until t ' 2 days.
This is the linear regime for the roller-o� case. The slope of its logarithm (bottom panel) gives

jjhjj = 0:11 h�1 or t = 9:5 h. Following the behaviour of � in time (top panel), two things
are highlighted: �rst, that the bar system forms faster (larger growth rate) than it does in the
default case and second, that the changes in bar growth occur in a shorter time period compared
to the former case.
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4.2.0.2 Spatial and temporal characteristics

The perturbations h are plotted in plan view for the default case (Fig.4.5) after t = 1:4 days
(top) and t = 2 days. The �ow associated with these patterns is also shown in the �gure (by
vectors). Rip channel systems are present mostly shoreward of the longshore bar (Lx ' 60 m).
In both panels of Fig.(4.5), the patterns are more pronounced between Ly = 400 � 800 m.
Bars also form close to the shoreline, Lx = 20 m and they are out of phase with the bars at
Lx ' 70 m. The amplitude the patterns is in the order of � 10�2 m after 2 days (bottom
panel). Jet-like �ow is moving o�shore in the channels and shoreward over the shoals, resulting
in a cell-like circulation. Here, the wavelength �mean of the rhythmic features is determined at
Lx ' 60 m, by dividing the length of the domain Ly = 2000 m and the number of bars Nbar(see
also Subsection 3.3). For t = 1:4 days, top panel, �mean = 285 m (kmean = 0:022 m�1) and at
t = 2 days (bottom panel) �mean = 250 m (kmean = 0:025 m�1).

Figure 4.5: Plan view of bottom perturbations h for the default case, obtained with Morfo55+.
Top: h after t = 1:4 days. Bottom: h after 2 days. Crests are in red color and trouphs are in
blue color. The vectors represent the currents.

Figure 4.6: As in Fig.(4.5), but for the roller-o� case.

For the roller-o� case the spatial patterns of the perturbations h and the currents v are
plotted in Fig.(4.6). Again, bars form in the domain and the associated �ow behaves the
same way as in the default case (o�shore currents in the channels, onshore currents over the
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shoals). The bars emerge simultaneously over the entire domain. The bottom patterns reach an
amplitude of � 0:02 m in t = 1:7 days. In this case, the main bar line is located at x � 60 m,
but there is not separate crest-trouph-crest sequence forming at the shoreline. The wavelength
is �mean = 285 m after t = 1:7 days (kmean = 0:022 m�1).

To quantify the di�erences in the hydrodynamics between the two runs, the perturbed mean
sea level zsper = zs � z0s and the wave energy Ew

per = Ew � Ew0 are plotted in Fig.(4.7). Again,
the circulation pattern is superimposed over zs in the left panels of the �gure. Results are shown
for a plan view of a part of the domain after t = 2 days and t = 1:7 days of morphological
evolution for the default case (top) and roller-o� case (bottom), respectively. At this stage, z

0

s

is smaller when rollers are added to the system (top left panel), than without the rollers, i.e.
Sr
ij = 0; Dr = Dw; nbor = 0. However, it is shown that there is set-up and set-down close

to the shoreline for the default case (top left panel). For both cases, the rest of the pattern is
similar. For the perturbed wave energy Ew

per (right panels) the pattern is more clear. When
rollers are activated (top right panel) there are alongshore periodic patterns of Ew

per at x � 70 m
and in the inner surf zone. These are out of phase with each other. This is not the case where
rollers are de-activated (bottom right panel): Ew

per is again alongshore periodic in the surf-zone
(x = 20� 70 m), but there is not an out of phase separate pattern very close to the shoreline.
Note that, values of Ew

per are almost 10 times smaller for the default case compared to the
roller-o� case.

Figure 4.7: Left panels: Plan view of the current circulation v superimposed on contours of
perturbed mean sea level zsper after t = 2 days. Top: default case. Bottom: roler-o� case. Right
panels: Contour plot of the perturbed wave energy Ew

per after t = 1:7 days. Top: default case.
Bottom: roller-o� case.

A comparison of the patterns of the Ew
per with the those of the perturbed roller energy Er

per

(Fig.(4.8)) is feasible. Interestnigly, where there are negatives (positive) values of Er
per near the

shoreline, the perturbed wave energy Ew
per is positive (negative). This is also the case across the

longshore bar, where most the wave breaking occurs (and energy is dissipated).
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Figure 4.8: Perturbed roller energy Er
per after t = 2 days for the default case.

Figure 4.9: Plan view of the perturbed depth integrated concentration C after t = 2 days and
t = 1:7 days of evolution for the default case (top) and the roller-o� case (bottom), respectively.

Fig.(4.9) shows contours of the perturbed integrated sediment concentration Cper at t =
2 days and t = 1:7 days for the default case (top) and roller-o� case (bottom), respectively.
Values between the two cases are similar, but the distribution is di�erent. The largest concen-
tration values are located very close to the shore for the default case (top panel of Fig.(4.9),
whereas the maxima for the roller-o� con�guration (bottom panel of the same �gure) are lo-
cated at x = 80 m, slightly o�shore of the longshore bar. For the former case, there is also
a pattern over the longshore bar, but it located shoreward approximately at x � 90 m with
smaller values, compared to the roller-o� case.

4.2.0.3 Fourier analysis

Methods in order to obtain wavenumbers and wavelengths, as well as growth rates and e-folding
times with Morfo55+ are used, following the subsequent methodology that was described in
Section (3.2). Here, a Fourier decomposition of the amplitudes of the bed perturbations h is
performed. The most representative mode that dominates the dynamics of the perturbations at
xo at the initial stage of formation is the dominant Fourier mode. The cross-shore location at
xo = 52:5 m is chosen shorewards of the longshore bar. The evolution in time of the amplitude
H (km; x0; t) j of the bottom perturbation h(x0; y; t) (given by expression (3.3)) is shown in
Fig. (4.10) for the default case. This result allows for expression (3.3) to be written as (3.4).
Subsequently, the logarithm of the modulus of (3.4) for jH (km; x0; t) j is described by a straight
line (given by (3.5)). The latter is plotted as a function of time in Fig. (4.11).
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Figure 4.10: Black dashed line: evolution of dominant Fourier mode H (km; x0; t) jj for kn ! km
for Fourier transformation of h (x0; y; t) at xo = 52:5 m. Red line: the corresponding exponential
�t to the data. Results are for the default case.

Figure 4.11: Logarithm of the modulus of the dominant Fourier mode jH (km; t) j, Fig.(4.10),
given by expression (3.5) for the default case.

The slope of (3.5) (Fig.4.11) provides the growth rate 
m(d
�1). The result is 
m = 0:078 h�1

with a growth time tm = 1=
m = 13 h. The associated wavelength �m of the dominant mode
is retrieved from the model output and plotted in Fig.(4.12). The transitions between di�erent
wavelengths �m have been omitted (increase in �m values in the beginning of the simulation).
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Figure 4.12: Dominant wavelength �m as a function of time, according to Fourier analysis for
the default case.

The wavelength is �m = 250 m between t = 0:7 � 1:5 days, i.e. k = 0:021 m�1 From
Fig.(4.12) it is evident that for t < 0:7 days the spacing of the bed patterns at xo keeps on
changing; it is increasing until �m = 250 m (t = 0:7 days). Fourier analysis is also used for the
roller-o� case. Here, only the plot of the logarithm of jH (km; t) j is shown (Fig.(4.13), which
shows again a straight line, implying that the amplitude of the dominant Fourier mode grows
exponentially in time. The growth rate is 
 = 0:12 h�1and the e-folding time tm = 8:3 h. The
corresponding wavelength for kn ! km is �m = 250 m and after t = 0:7 days it does not change
anymore (not shown).

Figure 4.13: As Fig.(4.11), but for the roller-o� case.

4.2.0.4 Morfo62 results

Morfo62 is run with similar settings for the default case for a range of wavenumbers kM62 =
0:010� 0:060 m�1. This way bars of di�erent wavelengths are able to form in the domain. The
growth rates 
M62 with Morfo62 are plotted as a function of wavenumber kM62 in Fig.(4.14) for
the default con�guration.
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Figure 4.14: Growth rate, 
 (h�1), as a function of wavenumber, k (m�1), computed with
Morfo62 for the default con�guration. Blue line indicates the fastest growing mode growth rate
and wavenumber, 
FGM and kFGM , respectively.

The growth rate and the wavenumber for the fastest growing mode, 
FGM and kFGM , respec-
tively, are indicated by the blue lines. They read: 
FGM = 0:081 h�1 for kFGM = 0:021 m�1

which corresponds to a wavelength of �FGM = 299 m. The growth time for the FGM is
tFGM = 1=
FGM = 12:4 h. For kM62m > 0:035 m�1(excluded from Fig.(4.14)) the growth rates
are O (10�8) h�1. For Ly = 2000 m, the only modes allowed are kn = (2�=Ly)n with n being an
integer. This yields values of k = ::0:0188; 0:22; 0:0251; ::. Accroding to Fourier analysis, it was
found that km = 0:021 m�`, which is the closest value to the fastest growing mode, obtained
from Morfo62. Subsequently the e-folding time is t = 13 h. For the latter, the discrepancy
between the results obtained from Morfo62 and Morfo55+ is almost 5%. The analysis of the
growth rate from global properties yielded a growth rate 
jjhjj = 0:072 h�1 and a growth time
t = 1=
jjhjj = 14 h, which are also close to the results of Morfo62 ( almost 15% di�erence in
e�folding times).

For the roller case, an equivalent run with Morfo62 and the same analysis of the growth
rate versus the wavenumber gives 
FGM = 0:075 h�1for kFGM = 0:021m�1 (Fig(4.15)). The
e-folding time is tFGM = 13:3 h. The di�erence is almost 50% between this result and the
growth rate retrieved from the Fourier analysis of the Morfo55+ output (tm = 8:3 h). The
analysis of global properties gave 
jjhjj = 0:11 and tjjhjj = 9:1 h.
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Figure 4.15: As in Fig.(4.14), but for the roller-o� case.



Chapter 5

Results: �nite amplitude regime of bar
formation

5.1 Amplitude, growth, position and �ow

Results are presented of the spatial and temporal characteristics of surf zone bars in the �nite
amplitude regime. In order to address research question 3 of the introduction this is done in both
the presence of rollers (default case) and in the absence of rollers (Sr

ij = 0; Dr = Dw; nbor=0
in equations (2.18), (2.21) and (2.31) respectively). The �nal state of the bed pro�le at t =
15:7 days and the evolution of the maximum bar amplitude Am (Section 3.3) for the default
case is shown in Fig.(5.1)

Figure 5.1: Top: �nal state of the bathymetry of the domain after t = 15:7 days. Bottom:
evolution of the bar amplitude Am in tme. Legend indicates the value of Am at the end of the
simulation. Results are for the default case with Morfo55+.

Overall, for t = 0 to 15:7 days additional rhythmic patterns that are located mostly between
x = 0� 120 m have developed over the initial alongshore bar, at x = 80 m, . The amplitude of
the growing bars is increases from Am = 0:001 m at t = 0 days to Am = 0:27m at t = 4:5 days.
For the rest of the simulation the amplitude increase is notably smaller: from t = 5 to 15:7 days
Am grows approximately 0:01 m, from 0:27 to 0:28 m.

34
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Figure 5.2: Global properties of growing bars. Top: root mean square amplitude of the pertur-
bation jjhjj versus time. Bottom: global growth rate � versus time. Resutls are for the default
case.

The fact that sand bars grow slowly compared to the �rst 5 days is highlighted by analyzing
the global properties in Fig.(5.2). The evolution of jjhjj (top panel) and � (bottom panel) in
time are shown. The decrease in � reveals the nonlinear character of the system and therefore
implying that linear stability theory is no longer applicable in order to describe the stability
of the bed any further. Interestingly, the global growth rate not only decreases, but also goes
to zero after t ' 5:5 days, having a negligible value (less than 10�3 d�1) for the rest of the
simulation. This implies that the bars �rst go through a saturation process and then they
reach a so-called saturated bar state, a state in which bars hardly evolve. This criterion for the
saturated state, i.e. a bar state characterized by � ' 0, is given in the past study of Garnier et
al. (2008). In spite that the bar amplitude never ceases to increase completely as it is clear for
the top panel of Fig.(5.2) and the bottom panel of Fig.(5.1). Nevertheless, this increase is very
small.

Another way of investigating the spacing between the bed formations and the limits of the
linear regime is with Fourier analysis. The method has been described in subsubsection (3.2.1.1)
and the Fourier coe�cients H (kn; x0; t) (x0 = 52:5 m), given by expression (3:3), are used. For
the default case, the normalized modulus of H, with corresponding wavelength �n is plotted in
Fig.(5.3) (top). Bright colours indicate the dominant modes.
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Figure 5.3: Top: Wavelength � corresponding to the Fourier modes as a function of time. Con-
tours show the normalized modulus of the Fourier transformation H (�; x = 52:5 m; t). Brighter
colours indicate the most dominant wavelengths. Bottom: time series of the dominant wave-
length �m of the Fourier analysis.

According to this �gure, several modes interact mostly during the saturation process, i.e. at
t ' 4� 7 days approximately. The wavelengths of these modes range from �n = 180� 250 m at
t = 4 days. After 8 days the wavelength focuses around �n = 200�220 m. The bottom panel of
Fig.(5.3) is an extension of Fig.(4.12) for the entire beach evolution. The dominant wavelength
�m jumps from 250 m to 222 m and then remains constant until the �nal state. Jumps in the
wavelength and the decrease of � indicate that nonlinear e�ects become evident.

The changes of the bottom patterns between t = 4:1 � 15:7 days and their position in the
domain are analyzed through Fig.(5.4). The circulation pattern has been added on this �gure,
indicated by the vectors, in order to relate the currents with the forming sand bars. Crests are
indicated by the red colour and troughs by the blue colour.

Bottom patterns consist of alternating bars, over which currents are landward and rip chan-
nels, in which seaward currents occur. Channels that are typically narrower than shoals. These
resemble crescentic bars, formations that resemble crescentic moons, which are more pronounced
at x ' 60 m and extent along the whole beach, but they are also evident at the shoreline. In
general, three main lines of alongshore periodic sand bars are observed in this �gure in the
cross-shore direction. The �rst crest-trough-crest sequence is centered at x ' 10 m, the second
line at x ' 60 m and the third line at x ' 120 m. The latter is the least pronounced one.
Crests are in anti-phase with the channels shoreward. This means that a (trouph) crest o�shore
is followed by a (crest) trough inshore.

From Fig.(5.4), a change in the bar amplitude is mostly visible between the �rst two panels
on the left (top: t = 4:1 days, bottom: t = 10:2 days). In fact, bars still grow between that
time. Note that, the colorbars are calibrated to show the same range for all the plots. According
to Fig.(5.1) the amplitude does not change signi�cantly after t ' 6 days. In Fig.(5.4), though,
between 4:1 and 10:2 days bars grow bigger. This is better seen in Fig.(5.2). Generally, the
troughs appear to have smaller amplitudes than the crests do. During the rest of the simulation,
di�erences in the amplitude, the shape or the position of the patterns are more di�cult to detect.

Regarding the �ow, a rip current circulation is formed, with strong velocity vectors also
being parallel close to the shoreline. This already seen from the top-left panel of the �gure,
where bars are still relatively small compared to the other case. The shore-parallel currents are
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also called feeder currents. This result follows from the previous chapter (Fig.(4.5)), but now
the circulating pattern is stronger (not shown). The relation with the morphological pattern is
more clear from the bottom panel of the same �gure, because the crescentic bars have almost
reached their full growth and �nal shape. In general, the �ow is directed shoreward over the
crests, gets de�ected in the form of feeder currents which then turn o�shore as they pass through
the channels.

Figure 5.4: Snapshots of the bottom perturbations during di�erent stages of their formation in
the nonlinear regime (t = 4:1; 10:2; 12:9; 15:7 days). Contours show bottom perturbations h: red
colour indicates crests and blue colour indicates troughs. The associated circulation, indicated
by the vectors, is superimposed on the �gure.

The magnitude of the inshore and o�shore directed �ow does not change signi�cantly between
t = 4:1 days and the �nal state. Rip current velocities are almost equal to the velocities over
the shoals, although the former are a little larger. This agrees with previous studies on rip
channel systems that highlight the di�erence: rip currents are more intense than currents over
the crests as, also, rip channels are narrower than the crests. Nevertheless, their di�erence is
small for the default case: umax;channel = 0:27 ms�1 and umax;shoal = �0:22 ms�1.

Moreover, the same procedure but for a roller-o� case is followed. The �nal state of the
bathymetry at t = 15:7 days and the evolution of the maximum amplitude Am are shown in
Fig.(5.5). Here, most of the bar growth occurs between t = 0� 3 days. By that time sand bars
grow up to Am = 0:42 m at day 3:5. This is the maximum value that the bars reach for the
entire run. From this day and until t = 10:2 days the amplitude decreases 0:06 m (Am = 0:36
at that time). Then, remains almost constant until the end of the simulation, at t = 15:7 days.
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Figure 5.5: As in Fig.(5.1), but for the roller-o� case.

Figure 5.6: As in Fig.(5.2), but for the roller-o� case.

As in the default case, the time when bars reach the �nite amplitude regime and eventually
stop growing is shown in Fig.(5.6). The onset of the nonlinear regime begins earlier than before.
Following the criterion of negligible growth rate (� ' 0) of Garnier et al. (2008) the system
seems to result into a so-called saturated state after t � 6 days. Furthermore, four di�erences
with respect to results of the default case should be stressed. First, the growing of bars is faster
and the �nite-amplitude regime is reached in just t ' 2 days, according to the bottom panel of
Fig.(5.6) and the subsequent decrease of �. Second, the overall growth rates are larger, with
a maximum value of 0:26 d�1. Third, � appears to have negative values, which explains the
decrease of the amplitude that was observed after 4 days in Fig.(5.5). Last, the growth rate
has a tendency to increase after the saturation occurs, which is more evident from the pro�le
of jjhjj from the top panel of Fig.(5.6). Indeed, for an increase of jjhjj = 0:1� 0:11 m between
t = 13:7� 15:7 days then � ' 0:004 d�1, according to equation (3.7).
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Figure 5.7: As in Fig.(5.3), but for the roller-o� case.

From the top panel of Fig.(5.7) the results of performing a Fourier analysis on the bed
perturbations h(y; x0; t) are shown for the roller-o� case. For t ' 2:5� 7 days there is a wider
range of wavelengths compared to the analysis of the default case, indicating that more modes
are active in the saturation process. The dominant mode has a wavelength of 250 m (bottom
panel in Fig.5.7). For the rest of the simulation, i.e. after 7 days, the range of wavelengths is
narrower and centered mostly around 250 m, a value which is larger than the default case.

Figure 5.8: As in Fig.(5.4) but for the roller-o� case.

In Fig.(5.8) the focus is on changes in the shape and the position of the patterns. This plot
is similar to Fig.(5.4) but for the rollers o� case. In this case, classical crescentic bars form,
similar to those found by Calvete et al., (2005) with the main pattern line located at x ' 60 m.
In this case, there is no evidence of any bar sequence at the shoreline (Fig. (5.8)). There is a
bar line o�shore of the longshore bar, at x ' 120 m, which is more pronounced at t = 4:1 days
(top left panel), but then it slowly fades out. Crests becoming bigger and its troughs being
smoothed out until t = 15:7 days. Crests and troughs of the main sequence (x ' 60 m)
are more elongated in the longshore direction at the �rst snapshot (top left panel) and they
become shorter as time goes by. Note, that in the default case there was a separate bar line
between the main bar line at x ' 60 m and the shoreline during almost the entire run. Here,
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no such pattern is observed. Moreover, the crescentic pattern is associated with a certain �ow
circulation (Fig. 5.8). The corresponding �ow is superimposed on the bottom perturbations
on this �gure. The di�erence between the maximum shoal velocity and the maximum channel
velocity is umax;channel = 0:49 ms�1and umax;shoal = �0:20 m. The jet like character of the
rip currents is observed on the red contours in Fig.(5.8). Compared to the previous case, rip
currents are stronger and channels are narrower.

5.2 Mean sea level, energy and depth-integrated concen-

tration

Increased wave breaking over the shoals leads to increased set up at these locations (Fig.(5.9))
for the default case (top left panel) and for the roller-o� case (bottom left panel). These changes
in the perturbed sea level zsper drive a certain rip current current circulation (represented by
the vectors). It is interesting that the set up is �ve times larger for the default case (rollers on)
compared to the roller-o� case very close to the shore (x < 15 m). For the former case it is also
alongshore periodic in this region, whereas for the roller-o� case this is not observed.

Figure 5.9: Left panels: Perturbed mean sea level zsper for the default case (top) and the roller-
o� case (bottom). Vectors represent the currents. Right panels: Perturbed wave energy Ew0

per

for the default case (top) and the roller-o� case (bottom). Snapshots are after t = 12:5 days of
beach evolution.

Di�erences in the perturbed wave energy Ew
per are also clear: a di�erent pattern is shaped

for the default case with large positive and negative values almost at the shoreline (top right
panel in Fig.(5.9)). On the other hand, for the rolller-o� case Ew

per is alongshore periodic only
at x ' 70 m. Following from Chapter 4 (Fig.(4.8)) the perturbed energy Er

per (Fig.(5.10)) is
in anti-phase with Ew

per for the default case. This means that where Er
per is negative (positive)

Ew
per is positive (negative).
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Figure 5.10: Perturbed roller energy Er
per after t = 12:5 days.

Figure 5.11: Top: Perturbed depth-integrated concentration Cper for the default case after
t = 12:5 days. Bottom: As in the top panel, but for the roller-o� case.

Perturbed depth integrated concentration Cper is related with sediment transport which is
related with the evolution of the bottom. In Fig.(5.11) (top panel) longshore variations of Cper

are evident very close to the shoreline when rollers are activated (default case). These variations
are shifted o�shore for the roller-o� case (bottom panel). The magnitude in the values of Cper is
almost ten times larger after t = 12:5 days for the default case compared to the roller-o� case.
This di�erence was not observed in the linear regime (4.9).

5.3 Wavelength, merging and splitting

Time series of the bottom perturbations reveal aspects of the nonlinear behaviour of patterns,
such as merging or splitting of crests in time, possible migration and changes in the bar/channel
dimensions. In (Fig.5.12) a time series is shown at the cross-shore location x0 = 52:5 m. The
formation of the crescentic patterns is initiated at the middle of the domain. The patterns,
contained in y = 800� 1300 m; seem to grow �rst and faster as they reach the �nite amplitude
regime at t ' 3 � 4 days with amplitudes of Am = 0:27 m. On the other hand, the bars at
the two sides of the domain grow slower and until t = 5 days have not reached yet such values.
Notice that this �gure is mostly representative of the main crescentic bar line (x ' 60 m). The
two sand bars at the edges of the domain grow slower than the others. The spacing between
them decreases between t ' 4 days and t ' 7 days. After t > 4 days there are Nbar = 9 crests,
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which means that the observed wavelength is � = Ly=Nbar ' 222 m, remaining the same during
the entire simulation.

Figure 5.12: Contour plots of the time evolution of bed perturbations h at x = 52:5 m until
t = 15:7 days and in plan view. Red colour is for the crests and blue is for the trouphs. Results
are for the default case.

For the roller-o� case the time series of the bar formation at x = 52:5 m reveals the evolution
of the bars during the di�erent stages of their formation (Fig. 5.13). Here, the perturbations
grow in a di�erent way compared to that in the default case. Their amplitude becomes signi�cant
(deep yellow contours, Am = 0:2m) after t ' 2:5 days, whereas in the default case most of the
bars had not reached such amplitudes before t ' 3:7 days (see Fig. 5.12). The �rst bars to
grow are not the ones in the middle of the domain, but the ones on the edges (x > 1600m and
x < 500m).

Figure 5.13: Same as in Fig.(5.12) but for the rollers o� case.

Some of the patterns have the tendency to split, merge and change their length, especially,
as it can be seen in Fig.(5.13) from t = 2 to 5 days. The biggest merging event happens in the
bottom part of the domain (x < 550 m). Between 2:5 and 4:5 days, there are two channels that
form (blue colour) that later merge into one after 4 days.



Chapter 6

Discussion

6.1 Formation of sand bars

Following previous studies (Falques et al., 2000 & Calvete et al., 2005), in this study it is shown
that classical crescentic bars (without the rollers) rise as a free instability of the system and
grow due to the positive feedback between the bed and the �ow. In other words, the increased
wave breaking over the crests is leading to changes in the mean sea level zs that are alongshore
periodic. In turn, a cellular current �eld is generated that accumulates sediment over the shoals,
reinforcing them and, thus, creating a positive feedback. The accretion of sediment over the
crests occurs in combination with a certain spatial distribution of the stirring of the sediment
by the waves. This is understood if a bottom evolution equation is derived (Appendix B), i.e.

(1� p)
@h

@t
= r � (�rh)�D v�r

�
C

D

�
: (6.1)

According to this, accretion (@h=@t > 0) is induced when v�r �C
D

�
< 0. This means that

the component of the current v and the gradient of the depth averaged sediment concentration
(Cda = C=D) have to oppose each other for accretion to occur. Indeed, this is what happens over
the crests of the crescentic bars without the rollers. Fig.(6.1) shows the distribution of Cda after
12:5 days for this case. Combining this with the currents in Fig.(5.8), it is clear that the joint
action of the onshore directed current at y ' 100 m and the steep o�shore directed gradient
of Cda across this location, leads to accumulation of sediment over the crest that is formed
there. In a similar way, due to the o�shore directed currents and the distribution of Cda in the
channels, the latter are eroded further on. At the same time, sediment is accumulated o�shore
of the channel, thus creating a mirrored pattern (crests are followed by troughs o�shore).
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Figure 6.1: Depth averaged sediment concnetration Cda(= C=D) after t = 12:5 days without
rollers.

For the default case, the the principle is the similar (Fig.(6.2). The gradients are positive
over the crests (o�shore directed) and thus the shoals are reinforced by advection sediment by
the currents that are directed onshore. In the inner surf zone the distribution of Cda is somehow
di�erent, as its alongshore periodicity, leads to a modi�ed accretion pattern compared to the
roller-o� case, giving rise to shoreline sand bars.

Figure 6.2: As in Fig.(6.1), but for the default case.

6.2 Sand bars at the shoreline: FOT run

Why do sand bars form in the inner surf zone with rollers? Which processes are mainly respon-
sible for the observed changes in these bar characteristics? The possible candidates are found
by inspecting in which ways the rollers are included in the model:
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1. Additional forcing in the hydrodynamics, i.e. in the momentum balance, eq.(2.18), due to
convergence of the roller radiation stresses (Option 1). This causes changes in the currents
v, the sediment transport q and the bed level zb.

2. Di�erent forcing in the currents by computing the lateral mixing coe�cient, eq.(2.21),
with Dr, instead of Dw (Option 2). This causes changes in the same variables as in 1.

3. Additional stirring of sediment, eq.(2.31), caused by the roller turbulent bores (Option 3).
This causes changes in the sediment transport q and the bed level zb.

4. A combination of options 1, 2 and 3, i.e. the default case con�guration.

To further investigate on this, a new experiment is performed, namely the �ow over topography
(FOT) run. In the present case, it boils down into inspecting how the �ow induced by these
di�erent drivers behaves over the topography of a fully formed crescentic bar pattern. First, a
simulation without rollers is performed and the beach morphology evolves for several days. At
a certain time, after the �nite-amplitude regime is reached, con�gurations with cases 1 or 4 are
activated. This way, the currents, which are now induced by both the waves and the rollers, are
�owing over a topography that is not in principle compatible. Note that, hereafter experiments
with settings of cases 2 and 3 are not performed. Case 2 is found to have very small impact
on driving the currents, as the convergence of the Reynolds stresses is at least one order of
magnitude smaller than the ones of the wave and the roller radiation stresses (not shown). Case
3 is considered to be physically unrealistic, as it is unlikely that turbulent bores could naturally
exist without the inclusion of the rollers in the hydrodynamics. Finally, case 1 will include Dr

in the computation of equation (2.21) as well.
The rollers-o� con�guration is run and after 12:5 days the rollers are activated only in

the hydrodynamics, i.e. case 1 with nbor = 0 in eq.(2.31). After spinning up the system,
the di�erence �urms in the root mean square velocity after activating the case 1 settings, i.e.
urms;case 1, from the urms;off , i.e. the roller-o� con�guration urms, is plotted in plan view in
Fig.(6.3). The largest value is very close to the shoreline, namely for x < 5 m. In the rest
of the domain, there is no notable di�erence (�urms ' 0 ms�1). Variations in the mean sea
level zs are an important driver of the currents, as they generate di�erences in pressure. Hence,
di�erences in this �eld, meaning di�erent set up and set down in the surf zone, are mainly
responsible for the formation of di�erent circulation patterns between the rollers-o� and the
case 1 con�gurations. Here, �zs = zs;case 1 � zs;off is shown in the right panel of Fig.(6.3). The
largest negative values of �zs are observed near the shoreline and they are alongshore periodic.
Also, zs;case 1 is larger than zs;off for x ' 20 m, although the di�erence is not that large.

The distribution of C plays a key role as it represents the sediment that is available to be
transported by the currents, according to equation (2.23). The di�erence�C is shown in the left
panel of Fig.(6.4). Overall, there are very small di�erences between the two con�gurations, with
the largest values spotted o�shore of the longshore bar (for x > 90 m). Near the coast, the small
di�erences in �C are alongshore periodic. The di�erence in the currents, on the other hand
(right panel in the same �gure), is more clear. The presence of strong current perturbations
close and parallel the shoreline, as well as circulation cells at x ' 40 m, indicate that the
circulation pattern is di�erent now that before activating the rollers in the hydrodynamics.
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Figure 6.3: Left pannel: Di�erence�urms = urms;case 1�urms;off of the root mean square velocity
of the waves urms in the FOT run, after activating the rollers only in the hydrodynamics (case
1) and without any rollers (rollers-o�). Right panel: as in the left panel, but for the mean sea
level Zs.

Figure 6.4: As in Fig.(6.3), but for the depth-integrated sediment concentration (left panel) and
the current velocity �eld (right panel), represented by the arrows.

The latter is attributed to the di�erence in the forcing that is available to drive the circulation
in the two cases. The study of Castelle at al. (2012) is followed and the mechanism that drives
the currents is analyzed for each case of the FOT simulation, namely before and after switching
on the case 1 con�guration. The so-called residual forcing Fres, comprising the vectorial sum of
the pressure gradients Fp and of the radiation stress gradients of the waves Fw and the rollers
Frol, reads

Fres = Fp + Fw + Frol (6.2)

or

Fres =� g
@zs
@xi

� 1

�D

@

@xj

�
Sw
ij + Sr

ij

�
; i; j = 1; 2 ; (6.3)
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taken into account from the momentum balance, equation (2.18).
The di�erence �F res is plotted in Fig.(6.5). This �gure shows that, taking into account the

modi�ed mean set up due to the rollers in the hydrodynamics (right panel, Fig.(6.3)), which
leads to a modi�ed pressure gradient force (1st term in the rhs of equation (6.3), and the roller
forcing, namely the convergence of the roller radiation stresses, shifts the maxima of the forcing
closer to the shoreline. This is in agreement with the currents in the previous �gure.

The negative divergence of sediment transport (right panel in Fig.(6.5)) determines the
evolution of the bottom. It is related with the currents, via sediment transport relation (equation
(2.23)). Interestingly, near the shoreline, strong divergence of sediment transport (green colour)
is not observed where the feeder currents are. Nevertheless, the positive (negative) values of

�~r � q agree with the currents behaviour. This is an indication that the joint action of the
currents and the spatial distribution of Cda must be investigated. In Fig.(6.6), the pattern is
similar to the one of Fig.(6.1). This is expected since the rollers are not included in the stirring
of sediment (nbor = 0). As it was shown in that case (previous section) the distribution of Cda

(combined with the currents) tended to favor the formation of a speci�c crescentic bar system,
that did not include sand bars at the shoreline. Therefore, in the present case, although the
currents are much di�erent than without the rollers, it is probable that sand bars will not form
at the shoreline, due to the absence of a suitable Cda pattern.

Figure 6.5: Left: Di�erence �F res = F res;a � F res;o� of the residual forcing F res. Right: mi-
nus the divergence of sediment transport (�~r � q) after the rollers are �switched on� in the
hydrodynamics. Blue-green colour indicates divergence of sediment transport and red colour
convergence of sediment transport.
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Figure 6.6: Left panel: Depth-averaged sediment concentrarion Cda for the FOT run and case
1. Right panel: The di�erence �Cda = Cda;case 1 � Cda;off .

For the second FOT run, the same procedure is followed, except that this time the rollers are
included in both hydrodynamics and sediment transport (case 4). This means that nbor = 50
in equation (2.31), as in the default case. As expected, the �gures for the currents and the
residual forcing show similar results as before, right panel in Fig.(6.7) and left panel in Fig.(6.8,
respectively. The integrated sediment concentration, C on the other hand, has increased ten
times in the inner surf zone compared to the case 1 FOT run, due to the inclusion of the roller
turbulent bores in the stirring of the sediment. In Fig.(6.8), right panel, the divergence of
sediment transport pattern shows strong erosion/deposition very close to the coast, in spite of
the fact that the currents are the same in distribution and magnitude compared to the previous
case (case 1). Analyzing of the bottom evolution equation, eq.(6.1), the Cda pattern, Fig.(6.9),
reveals stronger cross-shore gradients of Cda in the inner surf zone than in case 1, which now
allows for a di�erent accretion/erosion pattern (combined with the currents behaviour). Also, it
is shown (right panel in the same �gure) that Cda shows larger and steeper longshore undulations
compared to case 1 FOT run. The combination of the two characteristics, clearly favors the
formation of crests and troughs in the inner surf zone, thus, concluding that a joint interaction
of both rollers in the hydrodynamics and in the sediment transport is needed for shoreline bar
patterns to occur.
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Figure 6.7: As in Fig.(6.4), but for the FOT run with the con�guration of case d (all roller
options activated).

Figure 6.8: As in Fig.(6.5) but for the FOT run with con�guration of case d.

Figure 6.9: As in Fig.(6.6), but for the FOT run with all roller options activated (case 4).
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6.3 Decrease of global growth rate

In Chapter 5, and following the study of Garnier et al. (2010), the �nite amplitude regime
of the bars was characterized by a saturation process (� ' 0). In order to investigate the
saturation process of the crescentic bars the global properties of the bed forms are analyzed.
It boils down into analyzing the terms in the potential energy balance, which is derived by the
modi�ed bottom evolution equation (Appendix B). The potential energy balance is derived by
multiplying the two sides of the BEE with the bottom perturbation h and by integrating over
the whole domain (Garnier et al., 2006). It yields

@

@t

1

2
jjhjj2 = P �� ; (6.4)

with jjhjj2 being the potential energy density of the bed forms. The �rst term in the rhs is the
production of potential energy P due to advection of sediment transport, given by

P = �hr � (Cv) ' �hDv � rCda ; (6.5)

where the overbar denotes averaging over the whole domain, given by equation (3.6). The
second term is the loss of potential energy � due to the di�usive e�ect of downslope sediment
transport and it reads

� = �hr � (�rh) ; (6.6)

which is typically positive. By taking into consideration equation (3.7) the global growth rate
is expressed as

� =
1

jjhjj2 (P ��) : (6.7)

According to this expression the bed forms grow if P > �. Indeed, this is seen by the upper
plot of Fig.(6.10).

Here, the two terms of the rhs of equation (6.4) are plotted as a function of jjhjj. It is
interesting that only a slight di�erence between the production (blue line) and the damping
terms (black line) of potential energy su�ce for the bed instabilities to grow, which happens
for jjhjj = 0:01 � 0:08 m. For jjhjj � 0:08 m the production P balances the loss � and the
saturation point is reached for the �rst time, since � ' 0 (expression (6.7). This corresponds to
t ' 5:5 days in Fig.(5.2).
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Figure 6.10: Top: Production term P (blue line) and damping term � (black line) versus jjhjj.
Bottom: P=jjhjj2 (blue line) and �=jjhjj2 (black line) versus jjhjj. Both plots are for the default
case.

This does not explain, though, why � decreases and the instability mechanism saturates.
In order to investigate that, the two terms of expression (6.7), i.e. P=jjhjj2(blue) and �=jjhjj2
(black), versus jjhjj are analyzed. According to the bottom plot of Fig.(6.10), the loss of potential
energy (black line) is almost constant for jjhjj = 0�0:08, which is the point where the saturation
is �rst reached. According to this plot, the term that changes during the simulation is the
production (blue line) and in particular it decreases until it balances �. In other words, sand
bars seem to cease growing because the instability mechanism that �rst made them grow is
weakened and not because the damping term is strengthened.

6.4 Limitations and suggestions for future research

The model was quite sensitive to several parameters, for instance to the change in waveheight
at the o�shore boundary Hoff

rms and parameters such as the breaking index b and the bedslope
coe�cient . For the �rst, simulations with Morfo55+ with rollers for values of Hrms below
1 m led to a stable bed pro�le with no sand bars growing. On the other hand, bars grew for
the same waveheight and without rollers. For values above 2 m both cases were unstable after
some time, meaning the sand bars were large enough to grow above the sea surface. The same
happened in the case of b < 0:45 or  < 3, with the bars growing too much after a few days of
beach evolution and never saturate.

An important success of this work is that it simulates the long term evolution of sand
bars, �rst done by Garnier et al. (2008), both with the rollers and for a new experimental
setting. For example, the friction formulation was di�erent from Garnier et al. (2008). Also the
wave/current interaction was implemented both in the energy and dispersion relation, something
that the latter study did not account for. In that sense, the present study is more an extension
of the previous work done by Ribas et al. (2012) rather than Garnier et al. (2008), despite the
fact that the numerical model of the latter is used to simulate the long-term evolution of the
bed features.
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Last, an important extension of the present research would be to investigate the role of the
surface rollers in the �nite amplitude regime for oblique waves. Oblique waves are important
to model because they are more frequently found in natural beach systems and therefore the
corresponding simulations would somehow be more challenging. This would be the extension
of the work of Ribas et al. (2012) who only analyzed the initial formation of bars in a model
that included the surface rollers under oblique wave incidence. As it has been observed in the
� = 0o scenario, in the �nite-amplitude regime, there might be changes in � and �, thus strongly
deviating from the results of linear stability analysis.



Chapter 7

Conclusions

In this project, for the �rst time, the long-term evolution of surf zone sand bars has been
investigated with a nonlinear morphodynamic model that accounts for the e�ects of the surface
rollers on their temporal and spatial characteristics. Normally incident waves were considered
and a bottom pro�le with a shore-parallel bar. Systematic insight into the dynamics of bars
was obtained by comparing and analyzing results between a default con�guration, that included
rollers, and a roller-o� con�guration. Also, with regard to the longshore averaged state and the
initial formation of bars, model results were compared with those of other studies. First, the
implementation of the rolller dynamics in the numerical model was successful, showing that the
cross-shore pro�les were numerically smooth. A comparison of the variables in the basic state
showed that depth-integrated sediment concentration C is ten times larger compared to the
roller-o� case, due to the addition of the turbulent bore velocity of the rollers ubor in the bed
shear stress. Also, when rollers are included, maxima of C occur shoreward of the longshore
parallel bar, compared to the roller-o� case that the maxima are shifted o�shore. A second
peak of C is also observed very close to the coast. Interestingly, the maxima are shifted also for
the mean sea level zs and for the default case the set-up is smaller in the inner surf zone, than
in the case without the rollers.

Furthermore, an analysis of the linear regime showed that sand bars in the two cases have
di�erent growth rates and spatial characteristics, meaning the wavelength, amplitude and shape.
Analysis from global properties showed that, at this stage, �default < �rolloff (0:15 d�1 and
0:25 d�1, respectively). The corresponding e-folding time for the default case was 14 h and for
the roller-o� case 9:5 h: A comparison of results obtained from the the Morfo55+ model and the
Morfo62 model, which is based on linear stability analysis, showed similar results for the default
case. More speci�cally, growth rates obtained with either Fourier analysis or analysis of globally
averaged properties were less than 5% di�erent than the Morfo62 results. Therefore, the sand
bars simulated with Morfo55+ were not represented by the fastest growing mode of the system.
On the other hand, when rollers were de-activated the two models did not agree, i.e growth
rates di�er almost 50%: This can be attributed to inevitable con�guration di�erences between
the two models, e.g. the small di�erence in the wave height Hoff

rms at the o�shore boundary.
Long-term simulations of 15:7 days conducted with Morfo55+ revealed that shoreline un-

dulations appear only when rollers are included in the model. For that case, a separate crest-
trouph-crest sequence is fully developing in the inner surf zone. When rollers are not activated
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this is not observed. For the latter case, the coupling between the bed and the �ow gave rise to
fully developed crescentic bar patterns. When rollers are activated di�erences are also observed
in the wavelength and amplitude. When comparing results for the default case with those of
rollers-o�, the maximum amplitude is 0:29 m compared to 0:42 m . This value occurs in the
�nal state, whereas for the latter occurs after t = 4 days: Crests are narrower and channels
are wider. Also, the circulation characteristics are di�erent: rip currents are almost two times
weaker when rollers are accounted for.

It was found that the limit of the linear regime is reached after ' 2 days with rollers and after
' 1:7 days in the case of rollers-o�. That's when the global growth rate � starts to decrease
and nonlinear e�ects become evident. Analysis of the growth rates for both cases indicated
that bars grow, saturate and stabilize, according to � ' 0; after several days. However, after
' 13 days bars start to grow again in the case without the rollers.

In order to gain further understanding about the changes in the bar characteristics caused by
the rollers, two new experiments were performed (called the �ow over topography runs). These
runs isolated the processes of the rollers in the hydrodynamics and the sediment transport by
inspecting how the di�erent roller processes a�ect the evolution of the bed over a fully formed
crescentic bar pattern. First, the rollers were included only in the hydrodynamics and second
the rollers were fully included in the model. The bottom evolution equation was qualitatively
analyzed in order to explain the erosion/accretion patterns. Although the currents were similar
between the two cases, the di�erence in the depth-averaged concentration pattern when nbor 6= 0,
played a crucial role in the sediment deposition pattern very close to the shoreline. Therefore,
it is concluded that shoreline sand bars tend to grow only if the roller processes are included in
the sediment transport.

Conclusions on the e�ect of rollers in the long-term evolution of sand bars for other beach
systems with di�erent settings than the present one, should be carefully drawn. However, the
settings used in this research project are commonly found in natural beach systems with a
moderate wave climate, such as the beach at Duck, and certainly lie within the range of values
that the observations indicate (Ribas et al. (2012)).



Appendix A

Bottom pro�le formulation

The initial topography zb(x; y; 0) follows,

zb(x; y; 0) = zb0(x) ; (A.1)

where the initial equilibrium pro�le zb0(x) reads,

zb0(x) = �ao � a1

�
1� b2

b1

�
tanh

�
b1x

a1

�
� b2x+ a2 exp

"
�5
�
x� xb
xb

�2
#
; (A.2)

with xb being the location of the longshore uniform bar crest (default case xb = 80 m). The
pro�le zb0 is supposed to represent the pro�le found in some natural coasts, such as the one in
the coast at Duck, North Carolina. The rest of the parameters in equation (A.2) are: the height
of the water depth at the shore boundary a0 = 0:25 m, a1 = 2:97 m and the bar amplitude
a2 = 1:5 m, . Finally, the shore and o�shore slopes are b1 = 0:075 and b2 = 0:0064, respectively.
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Appendix B

Bottom evolution equation (BEE)

A derivation of the bottom evolution equation (BEE from now on) following Garnier et al.
(2006) is presented here. First, the conservation of sediment mass (2.22) and the sediment
transport (2.23) equations are combined. This yields

(1� p)
@h

@t
+r � (Cv)�r � (�rh) = 0 ; (B.1)

with C representing the depth integrated sediment concentration, given by (2.21) and � being
the bedslope coe�cient, given by (2.30). Also @zb=@t = @h=@t since zbo is constant in time. The
second term in the lhs of (B.1) can be written as

r � (Cv) = r �
�
C

D
Dv

�
= Dr

�
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D

�
� v � C

D

@D

@t
; (B.2)

where the water mass conservation (2.15) has also been used. By inserting (B.2) into (B.1) it
follows

(1� p)
@h

@t
= r � (�rh)�D v�r

�
C

D

�
+
C

D

@D

@t
; (B.3)

Garnier et al. (2006) found that the last term in the rhs of equation ((B.3)), for the case that
rollers are not included in the model, can be neglected for several reasons: First, for a current
jvj � 1 ms�1and for assuming depth of D & 0:1m an upper bound for C is obtained, yielding.
C . 10�3m. Consequently, the depth averaged concentration Cda = C=D . 10�2. Second,
by assuming a quasi steady behaviour, i.e. that the �ow adjusts instantaneously to the slow
changes of the bed, j@D=@tj = j@zs=@t � @h=@tj � j@h=@tj. Therefore the last term in the rhs
of ((B.3)) is very small compared to the term on the lhs and can be neglected. Thus, the BEE
reads

(1� p)
@h

@t
= r � (�rh)�D v�r

�
C

D

�
: (B.4)
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