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Abstract

Measurement of anisotropies in the cosmic microwave background (CMB) can
give a wealth of information about the period of inflation that is assumed to have
occurred in the early universe. The perturbations that cause these anisotropies
are predominantly Gaussian, but there is the freedom for small non-Gaussianity,
which is directly represented in the bispectrum (three-point function) of the
perturbations. The non-Gaussianities can encode information on the underly-
ing theory of inflation, but measuring these is hard, so theoretical work on the
shape of the bispectrum is required. We will discuss how the bispectrum is typ-
ically calculated in single-field scalar models using slow-roll approximations. We
calculate for the canonical scalar field model the contribution of an interaction
term at next-to-leading order, not coming from coupling to gravity but from
self-coupling. This term is proportional to εη̇, using Hubble slow-roll paramet-
ers. We find that the contribution diverges and needs to be compensated by a
boundary term in time that is commonly ignored in literature and we conclude
that the slow-roll combination εη̇ is not present in the bispectrum.



Contents

1 Introduction 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Chapter contents . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 CMB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Relating CMB to primordial fluctuations . . . . . . . . . 8

2 Isotropic inflation 13
2.1 FLRW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Friedmann equations . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Cosmological constant . . . . . . . . . . . . . . . . . . . . 17
2.2.3 The Hubble parameter . . . . . . . . . . . . . . . . . . . . 17
2.2.4 Arguments for inflation . . . . . . . . . . . . . . . . . . . 18
2.2.5 Slow-roll inflation . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Scalar field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Slow-roll inflation . . . . . . . . . . . . . . . . . . . . . . . 21

3 Perturbations 23
3.1 Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Linear perturbation theory . . . . . . . . . . . . . . . . . 24
3.1.2 Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.3 Gauge freedom . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Inflaton perturbations . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 ADM formalism . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Conservation outside the horizon . . . . . . . . . . . . . . 32
3.2.3 Action for perturbations . . . . . . . . . . . . . . . . . . . 34

3.3 Correlators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Gaussian random variables . . . . . . . . . . . . . . . . . 37
3.3.2 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.3 Power spectrum and bispectrum definition . . . . . . . . . 40
3.3.4 Canonical scalar field . . . . . . . . . . . . . . . . . . . . 41
3.3.5 Bispectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1



CONTENTS CONTENTS

4 (Bi)spectrum 46
4.1 Quantisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 In-In formalism . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.2 Field shift . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.3 Quantisation . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.4 Equations of motion . . . . . . . . . . . . . . . . . . . . . 50
4.1.5 Choice of vacuum . . . . . . . . . . . . . . . . . . . . . . 53
4.1.6 Wick’s theorem . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Calculation overview . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.1 Calculation in slow-roll . . . . . . . . . . . . . . . . . . . 55

4.3 Power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Bispectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.1 Non-integral term . . . . . . . . . . . . . . . . . . . . . . 59
4.4.2 Integral terms . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.3 Momentum conservation . . . . . . . . . . . . . . . . . . . 61
4.4.4 Example: εη̇-contribution . . . . . . . . . . . . . . . . . . 63
4.4.5 Issue with convergence . . . . . . . . . . . . . . . . . . . . 67

5 Conclusion 68
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Beyond the scalar field . . . . . . . . . . . . . . . . . . . . . . . . 69

A Conformal time and slow-roll 72

2



Chapter 1

Introduction

3
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1.1 Introduction

The early universe is thought to have undergone a period of accelerated, ex-
ponential expansion, called inflation. There are many models of inflation, with
the simplest model consisting of a single scalar field with canonical kinetic term
and an arbitrary potential, subject to slow-roll restrictions, coupled to grav-
ity. Classically, the scalar field reproduces a period of inflation for an isotropic
universe, compatible with measurements of the cosmic microwave background
(CMB). The CMB is almost isotropic but has small anisotropies.

When the classical field is quantised to become a quantum field theory (in
curved space-time), the quantum fluctuations of the field can be a natural gen-
erator for these anisotropies. The field can be decomposed semi-classically, into
an isotropic background that reproduces inflation and small perturbations on
this background. The background can be kept classical and the perturbations
quantised. The quantised perturbations can then be studied theoretically and
the predictions of their primary observables, the two-field and three-field correl-
ators of perturbations, can be compared against the measurement data of the
CMB.

From the CMB, the correlators must be approximately Gaussian, but a
small amount of non-Gaussianity is allowed. Gaussianity is characterised by
vanishing of odd numbered correlators and so small non-Gaussianity is char-
acterised by odd-numbered correlators deviating from zero. Considering now
scalar perturbations, which give the predominant contributions to the CMB
temperature anisotropies, the two-point function gives information about the
size of the perturbations, whereas the three-point function gives information on
the non-Gaussianity of the perturbations.

Two ‘sources’ of non-Gaussianity can be distinguished. A free scalar field
is Gaussian, but when it’s coupled to gravity, because gravity is a non-linear
theory, non-Gaussianity is automatically generated. Second, (self-)interaction
terms in the action for the scalar field directly contribute non-Gaussianity. Lit-
erature results for the leading non-Gaussianity, coming from the coupling to
gravity, of the canonical scalar field are known.

There are many different models of inflation and so far very few have been
ruled out by observations. Generally, they can be divided into two categories:
single-field and multi-field inflation. In this thesis, we focus our attention only
on the single-field models, with a particular focus on the canonical scalar field,
which is arguably the simplest. Definitions and methods of calculation reviewed
here can be directly related to other single-field models.

It would help our understanding of inflation if more models could be ruled
out. One can wait for measurements to improve and rule out models, of course,
but it might also be possible to combine the bounds from data on different
parameters in novel ways to strengthen the bounds. For example, the Lyth
bound[19], which comes from the ratio (r) of the two-point functions of tensor
perturbations to scalar perturbations, was strengthened using the spectral in-
dex[17] (ns), which is the leading-order scale-dependence of the two-point func-
tion of scalar perturbations. There are also restrictions on how much more
measurements can be improved, before effects other than sensitivity of meas-
urement equipment become the limiting factor.

Self-interactions should play a role not only in the three-point function, but
also in the scale-dependence of the two-point function (in the running, α, of the
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1.2. OVERVIEW CHAPTER 1. INTRODUCTION

spectral index), so relating the two might give better bounds on one or the other.
This is one motivation for studying the non-Gaussianity. Another motivation for
studying non-Gaussianity is because all interactions between perturbations are
reflected only in the three-point function and not the two-point function. Said
in another way, all the hints of ‘interesting physics’ are in the non-Gaussianity.
For example, in [1] the authors view inflation as a ‘cosmological particle collider’
and showed that new particles created during inflation with masses close to
the Hubble scale could leave characteristic imprints on the squeezed limit of
the three-point function. It is therefore interesting, in general, to be able to
calculate the three-point function for a theory of inflation.

In this thesis, we calculate the contribution to the three-point function
of scalar perturbations of a term in the action, the εη̇-term, related to self-
interactions of the inflaton (V ′′′δφ3 ⊂ S). We find a divergence that should not
be present and then from literature a boundary term that not only cancels this
divergence, but cancels the entire term in the action. This boundary terms and
others like it cannot, therefore, be neglected in deriving the action for perturb-
ations. The calculation follows the methodology of [20] and has been described
in detail and generality in this thesis, which allows the description to also be
applicable to other terms or different models.

1.2 Overview

The thesis has been written to be self-contained where possible and assumes the
reader to have basic knowledge of general relativity and quantum field theory.
Understanding of basic cosmology definitely helps, but is not required. The
structure of the thesis is as follows. First, the CMB is discussed and then a
model that can reproduce the isotropy and inflation is introduced. We then
consider perturbations to this model which can be quantised to give a quantum
field theory model for perturbations, which can reproduce the anisotropy of
the CMB. The primary observables, the two-point and three-point functions, of
the quantum field theory are defined and discussed. After that, we show how
these can be calculated and calculate a specific term related to self-interactions.
We then conclude the thesis and offer some perspective on extensions of this
simplest model.

1.2.1 Chapter contents

We start with preliminaries which introduce some of the notation and conven-
tions, followed by an introduction of the CMB, highlighting its isotropy and the
small anisotropies and what we learn from it, all in chapter 1.

The Einstein equations for an isotropic universe are given, which are the
FLRW equations. Inflation is introduced and the motivation for a period of
inflation is given. The slow-roll parameters are introduced, which are important
when expanding quantities order by order. After this, we introduce the arguably
simplest model that can produce inflation, the canonical scalar field with slow-
roll conditions. This is the contents of chapter 2.

In chapter 3, small perturbations to the isotropic universe (and inflation
model) are considered. First, perturbations are formally introduced, where it
is mentioned how in linear perturbation theory the scalar degrees of freedom
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1.3. PRELIMINARIES CHAPTER 1. INTRODUCTION

decouple from the tensor degrees of freedom. The perturbations are conserved
outside the horizon, as proved by Weinberg, and we discuss how this allows
relating the perturbations to the CMB anisotropies. Gauge freedom of the per-
turbations is discussed. This is the contents of section 3.1. The next section
applies perturbation theory to the canonical scalar field, but does not use the
formalism discussed in the previous section. Instead, starting from the scalar
field action, the ADM formalism is used to rewrite the action in Hamiltonian
formalism, which will allow quantising the action. The elegant proof by Mal-
dacena of conservation outside the horizon of perturbations for the canonical
scalar field is explained. Finally, an action for the perturbations is given. This
concludes section 3.2. In the last section of the chapter, the correlation func-
tions and their derived quantities are defined. The two-point function defines
the power spectrum and the three-point function defines the bispectrum. It
is shown how the three-point function can be taken as the definition of non-
Gaussianity. Literature results are quoted for these quantities and their values
from CMB measurements are given. This is the contents of section 3.3.

In chapter 4, the perturbations derived in the previous chapter are quantised
to give a quantum field theory for perturbations. Formula’s are given for calcu-
lating the power spectrum and bispectrum in the in-in formalism. Solutions to
the classical equations of motion and choice of vacuum are discussed. The power
spectrum is calculated, giving the result from literature. The contribution to
the bispectrum of the εη̇-term, a term in the interactions for perturbations, is
calculated. The calculation is described in a general way that allows it to be
applied directly to other terms and extended to other models of inflation. Fol-
lowing the calculation of the εη̇-contribution, a log |Kτ | divergence is found and
a boundary term in time is found in literature to compensate this divergence.

Chapter 5 concludes the thesis. The conclusion is that the εη̇ term does not
contribute to the non-Gaussianity. A very general extension to the canonical
scalar field model, the effective field theory of inflation, is mentioned, along with
some interesting results from this effective field theory formalism.

1.3 Preliminaries

We will be working in units of c = ~ = 1 and with two related sets of coordinates,
corresponding to the flat FLRW metric (introduced in section 2.1), with the time
t and coordinate distances ~x defined via

ds2 = −dt2 + a(t)2 d~x2,

and the conformal time τ defined via

ds2 = a(τ)2(−dτ2 + d~x2).

Time derivatives are indicates by a dot, e.g. ȧ := ∂ta. We will also use primes to
indicate derivative with respect to τ when a function explicitly depends on time,
e.g. a′ := ∂τa. We assume the reader is familiar with the Hubble observations
that space is always expanding, such that ȧ > 0. Coordinate distance is related
to physical distance via the scale factor a and conformal time is related to time
via

dτ =
dt

a
. (1.1)
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Time runs from −∞ to ∞ as conformal time runs from −∞ to 0, so τ < 0. For
de Sitter space the scale factor is given by

a = eHt, (1.2)

so for both de Sitter space-time and inflation up to slow-roll corrections, the
relation between time and the scale factor is

τ =
−1

aH
⇔ a =

−1

Hτ
. (1.3)

We will stick to the convention that Greek indices, µ, ν, etc., are space-time
indices that go from 0 to 3 and Latin indices, i, j, etc., are space indices that
go from 1 to 3.

The Fourier convention used here is

f̂(~k) =

∫
Rd

f(~x)e−i
~k·~x ddx, (1.4)

f(~x) =
1

(2π)d

∫
Rd

f̂(~k)ei
~k·~x ddk. (1.5)

There exist multiple conventions for the Fourier transform, so we mention the
convention used here explicitly. Mixing conventions often results in incorrect
factors of 2π. The Fourier transform of a product becomes a convolution, which
when written explicitly in this convention becomes

F(f · g)(k) = (f̂ ? ĝ)(k) =
1

(2π)d

∫
Rd

f̂(~q)ĝ(~k − ~q) ddq. (1.6)

The mnemonic for this convention is to divide every momentum integration
measure ddk by (2π)d.

When working with slow-roll parameters, ε, η, etc., the order notation O(εn)
denotes all terms that are nth power in slow-roll parameters, e.g. O(ε) =
O(ε, η, ξ, . . .).
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1.4 Cosmic Microwave Background

The cosmic microwave background, abbreviated as the CMB, is thermal radi-
ation coming to us from the early universe. It’s the oldest light we can ob-
serve, created during the epoch of recombination which occurred 375 000±1800
years after the big bang[8]. Before this epoch, the light was in thermal equi-
librium with the baryonic matter contents of the universe, forming an opaque
plasma, with light being effectively trapped inside small regions. Because of
this thermalisation process, the spectrum of this radiation became a blackbody
spectrum; see fig. 1.1. A blackbody spectrum is characterised by its temperat-
ure, T , so this associates a temperature to the incoming photons of the CMB.
When the CMB temperature measurement is repeated for each angle in the
sky a temperature map is created; see fig. 1.2. The CMB has a temperature of
T = 2.725 48±0.000 57 K [14]. It’s one of the most precisely measured blackbody
spectrums in nature, which gives confidence that what is measured is primordial
(from the thermal history of the universe). During the epoch of recombination,
as the universe cools due to its expansion, the electrons in the plasma become
bound into hydrogen and helium atoms. This causes the universe to become
transparent to the photons and they fall out of thermal equilibrium, after which
the photons are allowed to travel freely. This point in time is referred to as
last scattering and the origin of the CMB photons as observed from earth is
called the surface of last scattering. The photons that were ‘released’ during
last scattering cool due to the expansion of the universe, whilst preserving the
blackbody distribution of the spectrum during this free streaming. The black-
body spectrum temperature drops down from around 3000 K 1 to its current
value of 2.725 K.

What is striking about the CMB is its isotropy: the differences between the
spectrum at different angles in the sky are of order 400µK on a background of
2.725 K.[22] This means that different patches of the universe that were näıvely
never in causal contact with one another somehow thermalised to the same
temperature to striking precision. This is a strong motivator for a history of the
universe that allows these patches to have been in causal contact with each other
at some point in the past; this history is believed to be a period of inflation, as
we’ll explain and further motivate in section 2.2.

The fluctuations in temperature, ∆T/T , between different points in the sky
are called the anisotropy. They can be traced back to fluctuations present
during inflation. These primordial fluctuations seeded the CMB anisotropy and
the matter density contrast, δ = δρ/ρ, in large-scale structure observations.

1.4.1 Relating CMB to primordial fluctuations

To relate the fluctuations produced during inflation to the CMB anisotropies,
the evolution of the fluctuations needs to be traced from the time the fluctuations
were created to the time the fluctuations were observed. We will primarily focus
on a particular type of fluctuations, namely scalar perturbations, which are
the predominant source of the temperature anisotropies in the CMB. First we
discuss the observation of the CMB anisotropy and then we show the relation
between this and the primordial perturbations.

1Using[25] T = T0(1 + z) as a function of redshift z, with T0 = 2.725 K and z = 1090 [23]
gives the temperature of one particular time during recombination.
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Figure 1.1: Blackbody spectrum of CMB photons.[26]

The observation of the CMB is performed by looking at every angle in the
sky from a ‘fixed’ point; it is a probe of a sphere (of last scattering). The
temperature as a function of angle over the sphere, T (ϕ, θ), can be decomposed
using spherical harmonics, which can be thought of as the Fourier basis on a
sphere. This automatically gives a form of averaging the measurement over the
entire sky, just like Fourier for function on real space. The spherical harmonics
are a set of functions on the spherical coordinates (ϕ, θ) ∈ [0, 2π)× [0, π),

Y ml (ϕ, θ), l ≥ 0, −l ≤ m ≤ l. (1.7)

With the inner product for functions on the sphere given by

〈f, g〉 =
1

4π

∫ π

0

dθ

∫ 2π

0

sin θ dϕ f(ϕ, θ)g(ϕ, θ)∗, (1.8)

the spherical harmonics form an orthonormal basis of functions on the sphere:〈
Y ml , Y m

′

l′

〉
=

1

4π

∫ π

0

dθ

∫ 2π

0

sin θ dϕ Y ml (ϕ, θ)Y ∗m
′

l′ (ϕ, θ) = δl l′δmm′ , (1.9)

‖Y ml ‖
2

= 〈Y ml , Y ml 〉 = 1. (1.10)

Furthermore, they are defined such that they obey the relation

Y ∗ml = Y −ml . (1.11)

The temperature variations ∆T (n̂), with n̂ the normal vector indicating the
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Figure 1.2: Map of the temperature fluctuations in the CMB sky. The average
temperature is 2.725 K, with fluctuations shown as colour differences with a
range of ±200 µK.[22]

angle in the sky being short-hand for (ϕ, θ), are defined and decomposed as

∆T (n̂) := T (n̂)− T0 =
∑
lm

almY
m
l (n̂), (1.12)

T0 :=
1

4π

∫
d2n̂ T (n̂). (1.13)

Here, alm are the spherical harmonics components of ∆T (like Fourier compon-
ents); T0 is defined by averaging the temperature over the sky. Reality of ∆T
imposes that

a∗lm = al(−m). (1.14)

Cosmic variance

To get information out of the CMB that allows determining the underlying
statistics, an average over the position from which the CMB is measured should
be taken; ideally, the CMB would be measured not just from earth, but from
numerous places in the universe. For the same reason, ideally the measurement
would be performed over an ensemble of ‘universes’, to be able to average over
all possible quantum fluctuations. Because we can only measure the CMB from
one particular spot and we can only see the events of one particular sequence
of quantum fluctuations, what we end up measuring is only one instance of
a random variable. We need to know how this one measurement relates to
the statistics of what is being measured; in other words, we need to make an
estimate of the difference between the proper statistical measurement we would
like to perform and the ‘single’ measurement we actually can perform. We will
now describe how these can be related, closely following Weinberg [25]. First a
remark: the ergodic theorem says that these two kinds averages are the same,
under reasonable assumptions about the separability of the measurements. For
the rest of this piece on relating CMB observations to models, the average will
be taken to mean both quantum and positional averaging.
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Using isotropy, all averages 〈∆T (n̂1)∆T (n̂2) · · · 〉 are rotationally invariant;
in particular, this means that 〈∆T (n̂)〉 is independent of n̂. Combining this
with the fact that the sky-average of ∆T is 0 by definition, it follows that:

1

4π

∫
d2n̂ 〈∆T (n̂)〉 = 0 ⇒ 〈∆T (n̂)〉 = 0. (1.15)

The addition theorem for spherical harmonics states that, with Pl the Legendre
polynomials,

Pl(n̂ · n̂′) =
4π

2l + 1

∑
m

Y ml (n̂)Y
∗(−m)
l (n̂′). (1.16)

Therefore, if the correlator between two temperature variations is to be rota-
tionally invariant,

〈∆T (n̂)∆T (n̂′)〉 =
∑
lm

∑
l′m′

〈almal′m′〉Y ml (n̂)Y m
′

l′ (n̂′), (1.17)

it follows that
〈almal′m′〉 = δll′δm(−m′)Cl, (1.18)

with Cl an l-labeled set of numbers, after which the correlator can be written
as

〈∆T (n̂)∆T (n̂′)〉 =
∑
l

Cl

(
2l + 1

4π

)
Pl(n̂ · n̂′). (1.19)

By inverting the Legendre transform, Cl can be expressed in terms of the cor-
relator,

Cl =
1

4π

∫
d2n̂d2n̂′ Pl(n̂ · n̂′) 〈∆T (n̂)∆T (n̂′)〉 . (1.20)

What is actually observed is not the true average that gives Cl, but rather
an average over m:

Cobs
l =

1

2l + 1

∑
m

almal(−m). (1.21)

The difference between the theoretical Cl and the observed Cl is called cos-
mic variance. Fortunately, the difference between the observed Cobs

l and the
underlying theoretical Cl for (near) Gaussian random variables decreases with
l: 〈(

Cl − Cobs
l

Cl

)2
〉

=
2

2l + 1
. (1.22)

That means that cosmic variance is an issue with the low-l modes, but for higher
l what is observed from the CMB can be taken as actually being the average
over position and quantum fluctuations. Higher-l modes can give information
on the statistics of the primordial universe. The measured multipole coëfficients,
Cl, of the CMB are shown in figure 1.3.

Transfer function

The relation between the perturbations created during inflation, characterised
by the power spectrum PR, which we will define in section 3.3, and the measured
multipole coëfficients of the CMB, Cl, is given by:[13, 5]

Cl =
2

π

∫
dk k2PR(k)Tl(k), (1.23)
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Figure 1.3: Measured multipole coëfficients (anisotropy) in the CMB; the quant-
ity l(l + 1)Cl/2π is plotted against the multipole moment l.[21]

where Tl(k) is a known transfer function that accounts for evolving the per-
turbations from the moment they ‘re-enter the horizon’ until the time they are
measured. We will discuss what it means for a mode to ‘re-enter the horizon’ in
section 3.1. For now, the message is that scalar perturbations during inflation
can be directly related to multipole coëfficients measured in the CMB. Looking
again at the CMB anistropy measurements, fig. 1.3, the characteristic peaks
arise from the transfer function; the scalar perturbations must have a nearly
scale invariant power spectrum (PR(k) is approximately constant). This ap-
proximate scale-dependence is one of the key predictions of models of inflation
that is observed in the data.
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2.1 Friedmann-Lemâıtre-Robertson-Walker

To construct models of the (early) universe and perform calculations, the start-
ing point is general relativity and the Einstein-Hilbert action:

SEH =
M2

Pl

2

∫
d4x
√
−g R, (2.1)

where we have set ~ = c = 1. Gravity is (minimally) coupled to other fields by
adding a relativistic action for the Lagrangian, Lm, describing the fields,

Sm =

∫
d4x
√
−gLm, (2.2)

to the total action
S = SEH + Sm. (2.3)

Variation of this action with respect to the metric, gµν , gives the Einstein equa-
tions1

Rµν −
1

2
Rgµν =

1

M2
Pl

Tµν , (2.4)

where Tµν is the stress-energy tensor of Sm, given by

Tµν =
−2√
−g

δSm

δgµν
. (2.5)

From the CMB observation, we know that our universe is homogeneous and
isotropic to a high degree.2 We therefore look for isotropic solutions to the
Einstein equations, by assuming an isotropic form of the metric and demanding
that the matter content of the universe, which sources the metric, has the same
symmetry.

The assumed metric is the Friedmann-Lemâıtre-Robertson-Walker metric,
which for zero spatial curvature is

ds2 = −dt2 + a(t)2 d~x2. (2.6)

Here, a(t) is the scale factor, which gives how much the universe has expanded.
For instance, if a(0) = 1 and a(t) = 2, then in the time from 0 to t space has
expanded by a factor of 2. This means that the distance between two points
in space with (fixed) coordinates ~x1 and ~x2 has been increased by a factor of 2
and the volume of space has increased by a factor of 8 during this time.

The stress energy tensor, under the assumption of isotropy and zero curvature,
takes on the form of a perfect fluid[25]

T 00 = ρ(t), T 0i = 0, T ij = a(t)−2p(t)δij . (2.7)

1To be completely accurate, the Gibbons-Hawking-York boundary term needs to be added
to the Einstein-Hilbert action to reproduce the Einstein equations.

2Homogeneous corresponds to translational symmetry in all spatial directions, while iso-
tropic corresponds to rotational symmetry in all angles and at each point. Isotropy is a
superset of homogeneity; by saying the universe is isotropic we are automatically saying it
is homogeneous. However, homogeneity is possible without isotropy, for instance an electric
field equal in all of space aligned in one particular direction.
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Taking both together gives the Friedmann equations for zero curvature

−2ȧ2

a2
− ä

a
= − 1

2M2
Pl

(ρ− p), (2.8)

3ä

a
= − 1

2M2
Pl

(3p+ ρ). (2.9)

These express the evolution of the scale factor in terms of the matter contents
in the universe. The stress-energy tensor is a conserved quantity in general
relativity, characterised by the conservation law

Tµν;ν := ∇νTµν = 0. (2.10)

Here, ∇ denotes the covariant derivative. For the perfect fluid form, these
equations reduce to the conservation equation

ρ̇+
3ȧ

a

(
p+ ρ

)
= 0. (2.11)

These three equations together, the Friedmann equations plus the energy-momentum
conservation, characterise the general solution.
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2.2 Inflation

It is believed that at the beginning of the universe, before the period of baryonic
matter creation, there was a period of approximately exponential expansion of
the universe, dubbed inflation. During inflation, the scale factor a, so also
physical distances, grew by a factor of at least 1026. The driving ‘force’ behind
inflation is thought to be one, or more, scalar fields that slowly roll down a
potential, causing a to grow approximately exponentially. There is no direct
evidence of inflation and the details are not known, but the idea of inflation has
become very plausible: inflation solves three classical problems of cosmology,
and theories of inflation make predictions for the properties of CMB anisotropies
that have been observed.

2.2.1 Friedmann equations

Inflation is the approximately exponential expansion of the universe,

a(t) ∼ eHt, (2.12)

where H is approximately constant. The choice of calling the factor H is not
arbitrary, because H is actually the Hubble parameter, as we shall see shortly.
More generally, we can look for solutions of the FLRW equations (2.8, 2.9) with
a positive scale factor a, so a can be written as

a(t) = a0e
∫ t
t0

dtH(t)
, (2.13)

for some function H(t). Another way to write the dependence of a on H is

ȧ

a
= H, (2.14)

and with this the Friedmann equations can be recombined to give

H2 =
1

3M2
Pl

ρ, (2.15)

2Ḣ + 3H2 = − 1

M2
Pl

p, (2.16)

where we used that

Ḣ =
ä

a
− ȧ2

a2
. (2.17)

If ȧ > 0 for all times, which we will henceforth assume, then a and t are two
different ways of denoting (cosmological) time. A convenient quantity is the
number of e-folds from a time t to some fixed (later) time t0, defined as

∆N = N (t0)−N (t) = log a(t0)/a(t) =

∫ t0

t

dt′H(t′). (2.18)

The number of e-folds (like tenfolds, but with base e) is the number of times
the universe has expanded by a factor of e in the time from t to t0. Note the
relation between time and number of e-folds:

dN = −H dt. (2.19)
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2.2.2 Cosmological constant

One thing that can be seen from the FLRW equations in Hubble form is that to
have exactly exponential expansion, the matter contents of the universe needs
to obey

p = −ρ. (2.20)

This is the specific instance of w = −1 of a perfect fluid obeying the cosmological
equation of state:

p = wρ, w ∈ R. (2.21)

The equation of state with w = −1 is associated to the cosmological constant,
typically denoted by Λ. It is constant because ρ and p are constant, either by
the Friedmann equations or directly by the conservation equation (2.11) which
reduces to ρ̇ = 0. It is equivalent to adding a cosmological constant term to the
action:

SΛ =

∫
d4x
√
−gΛ, (2.22)

for which the stress-energy tensor is

T µν
Λ = Λgµν , (2.23)

from which, using eq. (2.7), we can read off that ρ = −Λ and p = Λ. The
conclusion is that a cosmological constant is the unique solution that gives
exact exponential (and eternal) inflation. The manifold associated to exact
exponential inflation is de Sitter space-time.

2.2.3 The Hubble parameter

To see that H is indeed the Hubble parameter, consider two points on the man-
ifold, x1 and x2, in the flat coordinate system used (eq. (2.6)). The definition
of the Hubble constant is via the relation between the observed drift velocity,
vD, and the physical distance, d, between the points:

vD = Hd. (2.24)

This is true only for points that are nearby enough such that H can be taken to
be constant. Because the points are stationary in the coordinates, the physical
distance and drift velocity between the two points, using eq. (2.6), is

d2 = g(x2 − x1, x2 − x1) = 0 + a2 |x2 − x1|2 , (2.25)

d = a |x2 − x1| , (2.26)

vD =
dd

dt
= ȧ |x2 − x1| . (2.27)

Therefore, from the Hubble relation it can be seen that H is indeed the Hubble
parameter:

vD =
ȧ

a
d ⇒ H =

ȧ

a
is the Hubble parameter. (2.28)

17



2.2. INFLATION CHAPTER 2. ISOTROPIC INFLATION

2.2.4 Arguments for inflation

Inflation solves (at least) three ‘problems’ in hot big big bang cosmology, making
it a plausible theory. Observations of the CMB and other data favour a model
of the universe that is spatially flat, or nearly flat. If the universe is spatially
flat now, then, following backwards the thermal evolution of the universe, at
earlier times the universe must have been even more flat. This is not necessar-
ily a problem; the universe could have started out as very flat, but a natural
mechanism that made the universe become flat is preferred over demanding it
to start out as such. If inflation lasted a minimum of 17-68 e-folds[25], then it
will have flattened out the universe enough to be consistent with current data;
the wide range of 17-68 comes about from minimal and maximal estimates of
the energy density at the end of inflation.

The second problem has to do with horizons. The high degree of isotropy in
the observed CMB cannot be explained by the thermal history of the universe,
as calculations show that regions of space that we see separated by more than
a couple of degrees in the sky were never in causal contact with each other and
therefore could not have thermalised to the exact same background temperat-
ure. Initial inhomogeneities would have caused different regions of the sky to
have a different temperature. Inflation solves this problem by allowing these
different regions of the sky to start out as being in causal contact at some point
during inflation; to solve the horizon problem, inflation needs to last a min-
imum, again, of 17-68 e-folds. We will revisit the horizon problem using a more
qualitative picture when discussing perturbation modes, in section 3.1.2 and
using figure 3.1.

The third problem is about topological defects, such as magnetic monopoles,
which are thought to be created in high-energy gauge theories when a simple
symmetry group is spontaneously broken to the gauge symmetry of the Standard
Model. In all such cases, magnetic monopoles (magnetic charge) are created and
it is believed that no continuous processes exist that can smooth these out to
undetectable levels. One possible solution is that a period of inflation causes
enough expansion to reduce the magnetic monopole ratio such that its presence
would not be observable today. This ‘problem’ is still purely speculative, though.

Of these three, the horizon problem is the most convincing argument for
inflation. Finally, as mentioned, there is also the idea that inflation is a nat-
ural candidate for creating the cosmological perturbations that we observe in
the CMB data and in seeding the formation of large scale structure. The nat-
ural quantum mechanical perturbations of the fields during inflation become
stretched out to cosmological scale, giving the observed inhomogeneities.

2.2.5 Slow-roll inflation

For inflation to solve the aforementioned problems it must last for at least
O(50) e-folds. The proposed model for this is a scalar field, or multiple scalar
fields, evolving under a potential, where the scalar fields slowly roll down the
the potential. This causes a slowly decreasing Hubble parameter, thus giving a
period of exponential expansion, and eventually ending inflation when the field
reaches the minimal of the potential. We will discuss the scalar field model in
section 2.3. It is now useful to have a characterisation of the ‘slowness’ of H,
i.e. of the slowness of the slow-roll, in very general terms without referring to
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any particular model. This characterisation can be made at the level of H and
its derivatives, by the Hubble slow-roll parameters:

H =
ȧ

a
, (2.29)

ε = − Ḣ

H2
, (2.30)

η =
ε̇

εH
, (2.31)

ξ =
η̇

ηH
. (2.32)

Each slow-roll parameter is the fractional and dimensionless change of the pre-
vious. The change is expressed via a derivative in time, but this has dimension
of [s−1], so by dividing by the time scale of inflation, H [s−1], it is made di-
mensionless. For instance, ε gives the average relative change in H during one
Hubble time; a Hubble time is ∆t = 1/H. If ε is small, then this means that H
does not vary much during one Hubble time.

Slow-roll inflation is the name given to (the period of) inflation that not only
has a slowly varying Hubble parameter, in the sense that ε� 1, but where also
ε is slowly varying, in the sense that |η| � 1. Typically, all slow-roll parameters
are taken to be much smaller than 1 during the entirety of slow-roll. However,
it is admissible for the parameters after η, starting with ξ, to take on sizable
values for a short period, such as when it is oscillating.

Energy conditions: Ḣ < 0

From the FLRW eqs. (2.15) and (2.16) it follows that

Ḣ = − 1

2M2
Pl

(p+ ρ), (2.33)

p+ ρ > 0 ⇒ Ḣ < 0, (2.34)

where we have already seen the edge case of ρ+ p = 0⇔ w = −1⇔ Ḣ = 0 for
a cosmological constant. All energy conditions give ρ+p ≥ 0, so we will assume
for the rest that Ḣ ≤ 0, so H is decreasing. This explains the ‘odd’ choice of
sign for the definition of ε, which is now seen to fix ε to be positive. The other
parameters are not necessarily bounded to be positive or negative. From the
requirement of accelerated expansion, ä > 0, it follows from

Ḣ =
ä

a
− ȧ2

a2
,

that

ε = − Ḣ

H2
= 1− ä

aH2
, (2.35)

so accelerated expansions occurs precisely while ε < 1; accelerated expansion is
a minimal requirement for inflation.
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2.3 Canonical Scalar Field

The single canonical scalar field offers a simple model for inflation. The action
for the canonical scalar field model, minimally coupled to gravity and with an
arbitrary potential, V , is

S =

∫
d4x
√
−g
[
M2

Pl

2
R− 1

2
(∇φ)2 − V (φ)

]
. (2.36)

Here, again, ∇ denotes the covariant derivative, which for a scalar coincides
with the regular coordinate derivative.

The next step is to examine the space-time dynamics generated by this
scalar field, by solving the Friedmann equations for φ. The stress-energy tensor,
defined in eq. (2.5), for φ is given by

Tµν =

[
−1

2
gαβ∂αφ∂βφ− V (φ)

]
gµν + ∂µφ∂νφ. (2.37)

We look for solutions that give an isotropic space-time, which requires Tµν to
take the perfect-fluid form, therefore φ(x, t) must be a function of only time
φ(t), and the metric becomes the FLRW (flat) metric, eq. (2.6), such that

Tµµ =

[
1

2
φ̇2 − V (φ)

]
gµµ + δµ0φ̇

2,

Tµν = 0, when µ 6= ν.

(2.38)

This can be written to match the perfect fluid form, eq. (2.7),

T 00 =
1

2
φ̇2 + V (φ), T 0i = 0, T ij = a(t)−2

(
1

2
φ̇2 − V (φ)

)
δij , (2.39)

from which we can read off that

ρ =
1

2
φ̇2 + V (φ), p =

1

2
φ̇2 − V (φ). (2.40)

The FLRW equations, eqs. (2.15), (2.15), and the conservation equation, eq. (2.11),
become:

Ḣ = − 1

2M2
Pl

φ̇2, (2.41)

Ḣ + 3H2 =
1

2M2
Pl

V (φ), (2.42)

φ̈+ 3Hφ̇+ V ′(φ) = 0. (2.43)

Unfortunately, it’s not possible to give a general solution to these equations,
of which only two are independent, for a general potential V . Eq. (2.43) can
be written completely in terms of φ and V , after which the solution for φ can
be found for a given potential and from this H can be determined. The usual
approach is to either consider specific potentials to solve for, or to say that
the solution to these equations can be described well enough by a few slow-roll
parameters and then calculate using the presumed solutions for H, ε, η, etc. In
this thesis the second route is taken, where the slow-roll parameters are kept as
unknown functions that can in principle be determined, and practically can be
determined for specific potentials. Results will be expressed in terms of these
unknown functions, with the slow-roll assumption giving bounds on their size
and variation.
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2.3.1 Slow-roll inflation

The slow-roll conditions should be imposed on the model such that it causes
inflation. In imposing these restrictions, the connection between the slow-roll
conditions and the dynamics can be understood. Slow-roll inflation requires
that H changes little in one Hubble time and this is directly expressed via ε.
For this model, this translates to the velocity φ̇/H being small compared to the
Planck mass, from eq. (2.41):

ε =
φ̇2

2M2
PlH

2
� 1. (2.44)

The inflaton field should also roll down the potential in a gradual manner, such
that the acceleration is small compared to the velocity. This is not a requirement
of inflation per se, but having sharp features in the potential will introduce time-
dependence into the generated quantum fluctuations. This would be observable
in the CMB as a scale dependence, as we shall see later when we discuss what
happens to the quantum fluctuations (perturbations) after inflation and when
we look at the scale-dependence (running) of the perturbations, section 3.3. The
observed scale dependence is very small, so relevant models of inflation should
not generate strong scale dependence. In eq. (2.43) the size of the acceleration,
φ̈/H2, should be constrained relative to the velocity φ̇/H; taking the derivative
of ε and then using the definition for η gives

|η| � 1 ⇒ φ̈

Hφ̇
=
η

2
− ε� 1. (2.45)

Therefore, to have a feasible model of inflation via a single scalar field we must
demand that ε, |η| � 1 are both slow-roll constrained. We shall see in section 3.3
that for this model a small scale-dependence also exactly requires |η| � 1. The
slope of the potential now is the only thing that determines the velocity of φ:

3Hφ̇+ V ′(φ) ≈ 0. (2.46)

From ε � 1 the velocity of φ is small and from |η| � 1 it follows that φ does
not have a velocity beyond that directly induced by the potential slope, so φ is
slowly rolling.

Potential slow-roll parameters

The slow-roll conditions were formulated by restricting φ, but the potential
V (φ) determines the evolution of φ, so actually the slow-roll conditions are
restrictions on the shape of the potential. For this reason, in literature, often
different slow-roll parameters, εV and ηV , are used, which are the potential
slow-roll parameters defined as

εV =
M2

Pl

2

(
V ′

V

)2

, (2.47)

ηV = M2
Pl

V ′′

V
, (2.48)
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and related to the Hubble slow-roll parameters by3

εV = ε

(
3 + η/2− ε

3− ε

)2

= ε+O
(
ε2
)
, (2.49)

ηV =
6ε− 3η/2− 2ε2 + 5εη/2− (η/2)2 − η/2 · ξ

3− ε
= 2ε− η

2
+O

(
ε2
)
. (2.50)

We prefer to use the Hubble slow-roll parameters, as these are more general and
well-defined for any model. The Hubble slow-roll parameters ε and η express
the core of slow-roll inflation in a model-independent way.

Model of inflation

The scalar field can offer a period of isotropic inflation, for a set of potentials that
obey the slow-roll conditions, and inflation ends when the scalar field reaches
the minimum of the potential. What has not been shown is that it is possible
to reach a given number of e-folds of inflation with this model, but in practice
it turns out that demanding η to be slow-roll will ensure a long enough period
of inflation. The model is relatively simple to understand and it gives a good
basis on which to build a quantum perturbation model for scalar inflation. This
will be the subject of the next chapters.

3For the relation between εV and ε, see [15]. An interesting observation is that it seems
that η/2 is the ‘natural’ quantity appearing in most calculations.
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Perturbations
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3.1 Perturbations

In the previous chapter we described an isotropic model of inflation. The next
step is to consider the inhomogeneities, because everything interesting about
the universe, such as large scale structures, stars, the solar system, us, is cer-
tainly not homogeneous. We extend the model to include small perturbations
that violate isotropy and homogeneity, which can become the source of the
cosmological inhomogeneities observed today. Isotropy will become statistical
isotropy and the perturbation can be quantised to become quantum perturba-
tions, which then become a natural generator for the inhomogeneities. It is, of
course, possible to start inflation with an initial condition that already contains
the necessary inhomogeneities (at tiny scales). These tiny inhomogeneities are
then stretched to cosmological scales during inflation, but then the question
becomes “what caused these initial inhomogeneities?”. This is what would hap-
pen if only classical perturbations were considered, because classical evolution
does not allow for the creation of perturbations. On the other hand, a quantum
model would mean that perturbations are naturally generated, independent of
whatever the initial conditions are. This does not free us completely from ini-
tial conditions, because even with a quantum model the initial state has to be
chosen, but this does give more freedom in this choice. Without quantum fluctu-
ations during inflation, all anisotropies observed in the CMB need to be exactly
included into the initial state. With a quantum model the ‘correct’ fluctuations
are generated during inflation. With both the classical and quantum model,
inhomogeneities in the initial state are smoothed out, which gives freedom in
choosing the inhomogeneities in the initial state at scales that evolve to be out-
side the Hubble horizon today. Indeed, quantum fluctuations during inflation
have a really good chance of being the source of the observed inhomogeneities
today; being created during inflation, which is a slow-roll deviation from de
Sitter space-time, they naturally acquire scale-invariance up to slow-roll correc-
tions. This is the prediction of inflation models for the properties of the CMB
anisotropies mentioned earlier.

3.1.1 Linear perturbation theory

The first step is to understand perturbations at the classical level. This will be
the subject of this section and the next. After the classical picture has been
formulated, the perturbations can be quantised and the effects on the CMB can
be calculated. The inhomogeneities are very small, so they can be modelled
as (linear) perturbations to the isotropic background. The metric gµν can be
perturbed by a small quantity, hµν ,

gµν = ḡµν + hµν , (3.1)

where ḡµν is the isotropic FLRW metric. Similarly, the stress-energy tensor
becomes

Tµν = T̄µν + δTµν , (3.2)

The particular choice of the background metric/stress-energy tensor breaks ex-
plicit time-translation symmetry and Lorentz boosts, but because it is isotropic
all spatial symmetries (translations and rotations) are still explicitly intact for
the background. These symmetries allow the metric and stress-energy tensor
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perturbations to be decomposed into scalars, vectors and tensor with respect
to spatial symmetry, which is the so-called scalar-vector-tensor decomposition.
This can be seen as an extension of the Helmholtz decomposition for a vector
into a rotation-free and a divergence-free part:

Vi = ∂iΦ +Bi, (3.3)

where Bi is divergence-free, i.e. ~∂ · ~B = ∂iBi = 0 which also means it can
be written as the rotation of a vector, ~B = ~∂ × ~A, and ∂iΦ is rotation-free, by
~∂×~∂f = 0 for any function f(~x). Divergence-free is also referred to as transverse,
because in Fourier space the vector is seen to be perpendicular (transverse)
to the wavevector. Intuitively, h00 should transform as a scalar, h0i should
transform as a vector, and hij should transform as a tensor, so these degrees of
freedom don’t mix under the spatial symmetries. The vector can be Helmholtz
decomposed and the tensor can be split into a trace plus a traceless part, where
the traceless part has an analogous ‘Helmholtz’-like decomposition. The result
of this for the perturbed metric, following Weinberg [25], is

h00 = −E, (3.4)

h0i = a (∂iF +Gi) , (3.5)

hij = a2
(
Aδij + ∂i∂jB + ∂iCj + ∂jCi +Dij

)
, (3.6)

where Dij is symmetric, traceless and ‘transverse’ and the vectors, Ci and Gi,
are transverse:

∂iCi = 0, Dij = Dji, D i
i = 0, ∂iDij = 0, ∂iGi = 0. (3.7)

The 10 degrees of freedom in the metric (4 × 4 symmetric matrix) are decom-
posed into four scalars, two transverse vectors, and one symmetric, traceless,
‘transverse’ 3D-2-tensor, which adds up to 4× 1 + 2× 2 + 1× (6− 1− 3) = 10
degrees of freedom. To find a similar decomposition for the perturbed stress-
energy tensor is bit more involved, but gives[25]

δT00 = −ρ̄h00 + δρ, (3.8)

δT0i = p̄hi0 − (ρ̄+ p̄)
(
∂iδu+ δuVi

)
, (3.9)

δTij = p̄hij + a2
(
δpδij + ∂i∂jπ

S + ∂iπ
V
j + ∂jπ

V
i + πTij

)
, (3.10)

with the equivalent properties,

∂iπVi = 0, πTij = πTji, πTii = 0, ∂iπTij = 0, ∂iδuVi = 0. (3.11)

These formula’s can be taken as the definition of the quantities δρ, δp and
δui := ∂iδu + δuVi , which represent the perturbation to the perfect fluid form
quantities. The quantity ui (and its perturbation δui) we haven’t mentioned
yet, but it is the velocity vector of the perfect fluid,

Tµν = pgµν + (ρ+ p)uµuν . (3.12)

So far, we have worked in the rest frame of the perfect fluid (by assuming iso-
tropy), uµ = diag{−1, 0, 0, 0}. This decomposition can also be taken as the
definition of the anisotropic inertia quantities πS , πV , and πT , which character-
ise the departure from the perfect fluid form. The expression for δTµν is slightly
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less clean than that of hµν , as it mixes stress-energy tensor and metric quantities
in the same line. The advantage of this split is that the Einstein equations and
conservation equation decouple into three sets of equations, one for the scalars,
one for the vectors and one for the tensors. In linear perturbation theory, there
is no coupling between the scalar mode and the tensor mode, the scalar mode
and the vector mode, and the vector mode and the tensor mode, which simplifies
the calculations.

3.1.2 Modes

We used the word ‘mode’ here, without defining what that is. When the equa-
tions for the perturbed scalars, vectors, or tensors are Fourier transformed, then
to first order in perturbations different wave numbers do not mix. Each wave
number corresponds to a Fourier transformed degree of freedom, a mode, which
can be solved independently from the other Fourier components. We are most
interested in the scalar modes in this thesis, because these are currently observ-
able in the CMB. Tensor modes might become observable in the near future, by
measurement of the polarisation of light from the CMB; tensor modes are asso-
ciated to propagating gravitational waves. Finally, vector modes tend to decay
as 1/a2, so we will not be able to see them in the CMB. The mode evolves in
the period between the creation of a perturbation during inflation and the time
that it is measured in the CMB. The relevant physics of the universe are not
precisely known for the entire history of the universe. In particular, the period
just after inflation, such as the era of reheating and cold dark matter decoupling,
is not fully understood. So then, how can measurements of anisotropies in the
CMB be related to perturbations created during inflation?

Conservation outside the horizon

Weinberg [25] showed that there are always two (independent) scalar quantity
solutions and one tensor quantity solution to the perturbation equations that
are conserved outside of the horizon. Outside the horizon means that the mode
of the quantity with associated wave number k has k � aH. Conserved means
that, no matter the constituents of the universe, the time evolution of the mode
goes to zero as k � aH. The wave number k is the comoving wave number
and k/a is the physical wave number, so conservation is related to the domain
where the physical wavelength is larger than the Hubble horizon, R = 1/H.
The inverse comoving Huble horizon, aH, evolves as

d(aH)

dt
=

a

H2
(1− ε) , (3.13)

so it grows exponentially in time during inflation (0 ≤ ε� 1). More generally,
it is a growing quantity during accelerated expansion and a decreasing quantity
otherwise. If a mode with a given wave number k started inside the horizon,
k � aH, then if enough time of inflation passes then this mode will be outside of
the horizon k � aH. The moment where the mode k crosses the horizon is called
horizon crossing and happens when k ≈ aH. When a mode crosses the horizon
and becomes conserved, we say that the mode freezes out. The terms seems
appropriate, because inflationary modes freeze out at order O(k/aH), which
becomes small exponentially fast after horizon crossing. Within only a few
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Hubble times as the mode crosses the horizon, its time evolution vanishes, so it
truly ‘freezes out’. These conserved scalar modes are also called adiabatic modes,
because they affect/perturb all constituents of the universe equally (δρ/ ˙̄ρ is the
same for every species). Another term to denote the scalar modes is comoving
curvature perturbations, because, as we shall see when we discuss gauges, in the
comoving gauge the conserved scalar quantity appears directly in the metric as
a perturbation to a.

Relating perturbations to the CMB

Now to answer the question of relating measured perturbations to primordial
perturbations and CMB anisotropies: the modes that freeze out during inflation,
that are outside the horizon during the period between inflation and recombin-
ation, and that have fully reentered the horizon before now are the ones we can
(potentially) observe in the CMB. Figure 3.1 shows how a mode is inside/outside
the horizon during the evolution of the universe. All modes that have a chance
of getting to us conserved need to at least freeze out during inflation. They
need to be unaffected by the evolution of the universe during thermalisation
and when we don’t know the physics, so they need to be outside the horizon un-
til after recombination. They need to observable, so this means that they must
have fully reentered the horizon by the time they reach us; wave lengths that
are of the order of Hubble or larger cannot be measured in practice. Finally,
they must have free-streamed from the surface of last scattering to now. This
gives a range of observable wave lengths for primordial perturbations that reach
us from the surface of last scattering that contain direct information from the
period of inflation; they can rightfully be called ‘primordial’. Despite the CMB
having thermalised to a near-perfect blackbody spectrum, these perturbations
were conserved and are observable as anisotropies in the CMB. This conservation
is critical for relating CMB observations to inflation, but of course conservation
is not required for the perturbations to be the seeds of inhomogeneities in our
universe.

As a final note, figure 3.1 can also be used to explain qualitatively how infla-
tion solves the horizon problem, when taking λphys to be the distance between
patches of the universe. If the patches start out as further away than the Hubble
horizon, then the λphys-line starts out as being above the horizon during matter
domination. If inflation lasts long enough, that is if it extends enough to the
left, then λphys will intersect with the horizon during inflation and the scale
between the patches will have been inside the horizon during inflation.

3.1.3 Gauge freedom

There are more degrees of freedom in the background plus perturbation equa-
tions than there are physical degrees of freedom. The coordinate system can
be freely chosen and doing so does not change anything about the physics (co-
variance). However, while rotations and translations preserve the background,
general coordinate transformations do not; for instance, moving in an isotropic
fluid makes it non-isotropic in the new rest frame. Rather than considering gen-
eral coordinate changes as coordinate changes, they can be considered (gauge)
transformations of the fields. For instance, a scalar field φ(x) under a change of
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log a

Inflation Radiation Matter

R=1/H
R~

a²

R~
a
3/2

λphys= 2πa/k

Figure 3.1: The state of a mode (inside/outside horizon) during the evolution of
the universe. The physical wavelength evolves as a. During inflation, the Hubble
radius is constant and it grows during matter and radiation domination.

coordinates x→ x′ is
φ(x)→ φ′(x′) = φ(x(x′)), (3.14)

which can be written, using the infinitesimal form of the coordinate change,
x→ x′ = x+ ε(x), as a transformation of the field while leaving the coordinates
untouched,

φ(x)→ φ(x)− ε(x)∂xφ(x). (3.15)

The equivalence can be seen by filling in the infinitesimal transformation in
eq. (3.14):

φ′(x′) = φ(x′ − ε(x′)) = φ(x′)− ε(x′)∂xφ(x′). (3.16)

Physicists often prefer to consider coordinate changes as field transformation
because it unifies transformations of the coordinates with other potential trans-
formations of the fields. For instance, consider the infinitesimal field transform-
ation,

φ(x)→ φ(x)− ε∂2
xφ(x).

This transformation of the field does not correspond to any change of coordin-
ates, because eq. (3.15) gives how any scalar must transform, but using the
transformation of fields, both coordinate changes and general field transform-
ations can be written in the same way. The isotropy of the background when
considering the coordinate freedom can be preserved by using the field trans-
formations picture and attributing all change in the total metric (and the total
stress-energy tensor) to the perturbations. By doing so, the background is
kept constant and the perturbations become gauge fields that transform in a
particular way, representing coordinate changes. The gauge freedom explicitly
parametrises the unphysical degrees of freedom in the choice of coordinates.

A second freedom comes from the full stress-energy tensor sourcing the full
metric, but the division between background and perturbations not being fixed.
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There is room to shift the perturbations by a small time-dependent constant
which can be absorbed into the background; this changes the exact division
between background and perturbations but leaves the physics unaltered. In
practice, this freedom can be ignored as the choice will either arise naturally or
the split can be kept formal without requiring specification.

Gauge freedom can obscure physical solutions and complicate quantisation.
It is often desirable to choose a suitable gauge to fix the gauge freedom and we
will do this for the scalar field model.
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3.2 Scalar field perturbations

The previous chapter formally defined perturbations. For this chapter, we take
a step back and start from the canonical scalar field, eq. (2.36), and derive an
action for the perturbations; we will follow Maldacena [20] and Chen [9]. The
scale factor a(t) is a monotonically increasing function, so t and a can be used
interchangeably to denote time (N , the number of e-folds, can also be used).
Choosing a background metric amounts to choosing a(t), which is equivalent
to choosing t, which in turn amounts to choosing a preferred time-slicing of
the manifold. Choosing a time-slicing is giving the hyper-surfaces of constant
time. By doing so, explicit Poincaré symmetry is broken to explicit spatial
symmetry and implicit time symmetry. The reason for doing this explicit time
slicing is because for quantum field theory it is desirable to have a Hamiltonian
formulation of the field theory to facilitate quantisation; a Hamiltonian form-
alism requires breaking explicitly time symmetry by choosing a preferred time
coordinate. For the scalar field, it is convenient to use the ADM formalism,
developed by Arnowitt, Deser, and Misner, to effect a Hamiltonian description
of the system from the current Lagrangian description.

3.2.1 ADM formalism

Consider again the action for a scalar field, eq. (2.36), but now without assuming
isotropy, such that φ(x, t) is a function of both space and time,

S =

∫
d4x
√
−g
[
M2

Pl

2
R− 1

2
(∇φ)2 − V (φ)

]
.

Using the ADM metric,

ds2 = −N2 dt2 + hij
(
dxi +N i dt

) (
dxj +N j dt

)
, (3.17)

where N is the lapse function, N > 0, giving the elapsed proper time between
two hyper-surfaces as ds = −N dt, and N i is the shift vector, which gives the
spatial direction that a fixed point is shifted to when going from one hyper-
surface to the next under coordinate-time evolution. Together, the lapse and
the shift describe how the different hyper-surfaces are ‘glued’ together. The
determinant becomes √

−g =
√
hN, (3.18)

and the four-dimensional Ricci scalar R is related to the three-dimension Ricci
scalar via the Gauss-Codazzi equation,1

R = (3)R+
1

N2

(
EijE

ij − E2
)
, (3.19)

where

Eij =
1

2

(
ḣij −∇iNj −∇jNi

)
, (3.20)

E = E i
i . (3.21)

1What is shown is, in fact, not the full Gauss-Codazzi equation, but the Gauss-Codazzi
equation plus the Gibbons-Hawking-York boundary term; taken together, terms cancel to give
this result for R.
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The action in the ADM formalism becomes[20]

S =

∫
d3xdt

√
hN
[M2

Pl

2
(3)R+

M2
Pl

2N2

(
EijE

ij − E2
)

+
1

2N2

(
φ̇−N i∂iφ

)2

− hij∂iφ∂jφ− V (φ)
]
.

(3.22)

The tensor Eij is related to the extrinsic curvature Kij of the slices:

Kij =
1

N
Eij . (3.23)

In this new form of the action, hij and φ are the dynamical fields, while N and
N i do not have dynamical terms (no time derivatives) and thus play the role of
Lagrange multipliers: their equations of motion are constraint equations.

Comoving gauge

A convenient gauge for the scalar field is the comoving gauge, which has the
remarkable feature that all perturbations become absorbed into the metric and
there are no perturbations to the scalar field in this gauge:

φ(x, t) = φ(t), δφ = 0, hij = a2e2Rĥij ,

det ĥ = 1, ĥij = δij + γij +
1

2
γilγlj + . . . ,

(3.24)

where the gauge choice has been shown up to second order; R and γij are first
order perturbation quantities. The comoving curvature perturbations R are seen
to be direct perturbations to the scale factor. With this gauge the action and
constraint equations are

S =

∫
d3xdt a3e3RN

[M2
Pl

2
(3)R− V (φ) +

M2
Pl

2N2

(
EijE

ij − E2
)

+
1

2N2
φ̇2
]
,

(3.25)

1

2
M2

Pl
(3)R− V (φ)− M2

Pl

2N2

(
EijE

ij − E2
)
− 1

2N2
φ̇2 = 0, (3.26)

∇i
[

1

N
Eij −

1

N
Eδij

]
= 0. (3.27)

We also used that deth =
(
a2e2R)3. To get the action for the perturbations,

first the constraints need to be solved (possibly in a perturbative manner, order
by order) and then the solution to the constraints can be plugged back into the
action to give an action for perturbations.

Zeroth order constraint

Looking at the constraint equations order by order, at zeroth order in perturb-
ations the constraints give the original isotropic background equations. This
can be seen by considering all fields at zeroth order and solving the resulting
equations. By comparing the ADM metric with the FLRW metric it should be
solved by N = 1, N i = 0, so we assume that N i starts at first order. The Ricci-
3-scalar contains first and second-order spatial derivatives of hij , but not terms
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without any spatial derivatives, and ∂khij starts at first order in perturbations,
so the entire (3)R starts at first order. The second term, containing E’s, can be
written at first order by

hij = a2δij , hij = a−2δij ,

ḣij = 2a2Hδij ⇒ Eij = a2Hδij ,

ḣij = −2a−2Hδij ⇒ Eij = −a−2Hδij ,

E = hijE
ij = −3H.

This gives the zeroth order constraint from N :

3H2 =
1

M2
Pl

(
N2V (φ) +

1

2
φ̇2

)
, (3.28)

which is equivalent to eq. (2.41)-(2.42) for N = 1. The freedom to choose N
different from 1 by small amounts and thereby tuning the background solution
for φ is the additional freedom in splitting perturbations from the background
that we mentioned earlier. The way we have chosen to do perturbation theory
forces the choice N = 1 in order to be consistent.

3.2.2 Conservation outside the horizon

For a canonical scalar field, Weinberg [25] showed that the solution for the per-
turbations is always in the conserved mode, so the solutions to the equations
of motion for the perturbations from the scalar field are conserved perturba-
tions. It is also possible to see this now, directly from the action, as shown by
Maldacena [20].

Proving conservation

We want to show that R = constant and γij = constant is a solution to the
equations of motion outside the horizon. That is, we want to show that for any
wave number k with k � aH we have (with f denoting the collection of fields
R and γ) that

δS =

∫
d4x
√
−g δL

δf

∣∣∣∣
f=const.

δf = 0 +O
(
k

aH

)2

. (3.29)

We want this up to second order in k/aH to get that the solution approaches a
constant quickly after horizon crossing. The way we will show this is by proving
that outside the horizon L can be written as the sum of a total derivative in
time and a part that vanishes on the constant solution,

S =

∫
d4x (∂tW + T ) (3.30)

with
δT

δf

∣∣∣∣
f=const.

= 0, because then the desired conclusion directly follows:

δSW =

∫
d4x ∂t

(
δW

δf
δf

)
=

[
δW

δf
δf

]t=t1
t=t0

= 0, (3.31)
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so any total derivative terms play no role in the equations of motion and

δS =

∫
d4x

δT

δf

∣∣∣∣
f=const.

δf = 0, (3.32)

then gives that constant f is a solution.
Any terms in the action that have a spatial derivative acting on f will give,

outside the horizon, a contribution of O(k/aH), because a spatial derivative
becomes multiplication by the wave number in Fourier space.2 To prove conser-
vation up to the desired order in k/aH it is enough to keep only terms that come
with zero or one spatial derivatives. For terms with time derivatives, we need
to determine whether or not the term belongs to T . Trivially, terms without
any time derivatives on f do not belong to T , so these must be shown to be in
∂tW . Any term in T must have at least two fields with a time derivative acting
on it, in order to give a term proportional to ∂tfδf in δT , such that filling in
f = constant sets the term to 0 by hitting at least one ∂tf . Only one field
having a time derivative is not sufficient, as (. . .)δ∂tf after partial integration
can have ∂t hitting a background quantity, such as a, rather than a field, giving
ȧ(. . .)δf which is not (necessarily) zero on the constant solution. In the same
way, it is not sufficient to have multiple time derivatives acting on a single field.
The theory we are working with, however, only has zero or one time derivatives3

working on a field (barring partial integrations which can be performed).

Total derivative term

Given this, it is enough to take the action up to first order in spatial derivatives
in fields, first order in time derivatives in fields, but to all order in fields for the
rest and show that it is a total derivative of time; the remaining (neglected)
terms are then in T or well outside the horizon, after which it follows that any
solution f to the equations of motion goes to a constant and thus is conserved,
outside the horizon.

To show that all the relevant terms form a total derivative, let the constraint
for N be solved completely, then plug the constraint back into the action, after
which the action becomes very simple looking:

S =
1

2

∫
d3xdt a3e3RN

(
M2

Pl
(3)R− 2V (φ)

)
. (3.33)

Assume now that to first order in derivatives N is solved by N = 1+δN (i.e. δN
solves the constraints in first-order in derivatives along with a suitable choice
for N i) and assume that N i starts at zeroth order in derivatives, then ∇iN j

starts at first order in derivatives. The Ricci scalar, (3)R, is of second order in
derivatives, so it can be neglected. From the constraint equation for N ,

2V δN = 2M2
PlH(3Ṙ − ∇iN i), (3.34)

so

S = −1

2

∫
d3x dt a3e3R

(
2V (φ) + 2M2

PlH(3Ṙ − ∇iN i)
)
. (3.35)

2It is O(k/aH) and not just O(k), because aH is the relevant length scale in the problem;
all derivatives in the action come with a relative factor of 1/a.

3Because of the Gibbons-Hawking-York boundary term which cancels the second-order
time derivatives of hij in the ADM formalism.
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Using the background equations4 for V , eq. (2.42),

Ḣ + 3H2 =
1

2M2
Pl

V (φ),

the action becomes

S = −1

2
M2

Pl

∫
d3xdt a3e3R

(
2Ḣ + 6H2 + 6HṘ − 2H∇iN i

)
. (3.36)

The last term can be written as a total derivative and thus ignored5, using the
following identity for the covariant derivative of a vector:

∇iV i =
1√
h
∂i

(√
hV i

)
. (3.37)

The action is a total derivative, namely it is equal to

S = −M2
Pl

∫
d3x dt ∂t

(
a3e3RH

)
. (3.38)

Therefore, we conclude that the solutions to the equations of motion are con-
served outside of the horizon.

3.2.3 Action for perturbations

To get the action for perturbations, the constraints need to be solved. This is
a complicated task and therefore it is done order by order in powers of (per-
turbation) fields; expanding all quantities order by order and then plugging in
the constraints gives the action order by order. The quadratic action gives the
equations of motion and the higher order actions give the interactions. We
know from perturbation theory that at first order in perturbations the scalar
and tensor decouple, so the quadratic actions for the scalar and tensor decouple.
At cubic and higher order, there will be terms that mix scalar and tensor de-
grees of freedom. From this point onwards we focus only on the scalar field,
R, and omit the tensor, γij , and all mixing between scalars and tensors. The
way the quantum field theory calculations will be set up for calculating correla-
tion functions (the ‘in-in formalism’) makes this possible: the tensor terms will
not mix with the calculated answers for the scalar, but instead give additional
contributions only. Therefore, tensors can be omitted and we can still be sure
that the answers we get for scalars do not need to be modified when tensors are
included. For the rest of the calculations, we set MPl = 1 for convenience of
notation.

To get S2, the action quadratic in R, it is enough to solve the constraints up
to first order, because a second order term in N would multiply the constraint,
δL/δN , evaluated at zeroth order, which is 0. A similar argument goes for
N i.[20] To this order, the constraints are solved by

N = 1 +
Ṙ
H
, N i = ∂i

(
− R

a2H
+ χ̃

)
, ∂2χ̃ =

1

2
εṘ. (3.39)

4More accurate is to say: using the zeroth order (in fields) solution to the N constraint.
5It vanishes either because a manifold without boundary is used and all quantities are

assumed to be square-integrable, or simply because we are currently only concerned with the
equations of motions, to which boundary terms have been shown to not contribute.
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Note that at first order, there is no ‘true’ vector to source N i, as the first object
with an index is γij , but we know this to decouple from R at this order, so that
only leaves partial derivatives ∂i of a scalar. The quadratic action for scalars is

S2 =

∫
d4x εa3

(
Ṙ2 − 1

a2
(∂R)2

)
. (3.40)

In a similar way, the cubic action, which describes the leading order interactions,
can be found using the same order in constraints and is given by:[9]

S3 =

∫
d4x

(
a3ε2RṘ2 + aε2R(∂R)2 − 2aε2Ṙ(∂R)(∂χ)

+
a3εη̇

2
R2Ṙ+

ε3

2a
(∂R)(∂χ)∂2χ+

ε3

4a
(∂2R)(∂χ)2

+ f(R)
δL

δR

∣∣∣
1

)
.

(3.41)

The function f(R) is quadratic in R and its derivatives. We also modified
the definition of χ to be different from both Chen [9]’s and Maldacena [20]’s
definition:

χ = a2∂−2Ṙ, (3.42)

where the difference is a factor of 2a2/ε from Maldacena and a factor of 1/ε
from Chen. Every spatial derivative naturally comes with a factor of a−1, mak-
ing it a derivative of physical distance, and this definition makes that explicit;
every term in the integral has a common factor of a3, with spatial derivatives
modifying this power accordingly (maybe it would be more accurate to say that
the natural integral measure is a3 d3x of physical volume). Finally, we prefer to
have the slow-roll parameters explicitly expressed in the integral, to be able to
tell at a glance to which order in slow-roll a given term is. Typically, εη̇ is of
third order in slow-roll, but it can vary a lot more on small timescales than ε3,
being then closer to O(ε) for a short time.

Field shift

The function f(R) multiplies the first order equations of motion (from S2) and
can be removed by performing a field shift to a field Q:

R → Q− f(Q) = Q+
η

4
Q2 + . . . , (3.43)

where ‘. . .’ denotes the terms in f which have derivatives on Q; at the order in
power of perturbations and slow-roll parameters considered here, all these terms
with derivatives give no contribution to the correlation functions of interest,
therefore they can be ignored. In Fourier space, the field shift is given by

R(k)→ Q(k) +
η

4

1

(2π)3

∫
R3

d3qQ(q)Q(k − q) + . . . (3.44)

Note that the multiplication in real space became convolution in Fourier space;
convolution is denoted by a ?:

[f ? g](k) :=
1

(2π)3

∫
R3

d3q f(q)g(k − q). (3.45)
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This field shift leaves the quadratic action unchanged, removes the f(R) term
from the cubic action and only further modifies the action at order S4 and
beyond. The calculation presented here goes up to S3, so the only side-effect
will be a fixed contribution that comes from translating correlation functions
from Q to R.

Tensor perturbations

Finally, although we will not discuss these in much detail, the quadratic action
for tensor perturbations is

Sγ2 =
1

8

∫
d4x a3

(
γ̇ij γ̇ij −

1

a2
∂lγij∂lγij

)
. (3.46)

Here, summation is implied without the use of the metric, which would have
been the case when writing raised indices. This is essentially the action for two
massless scalar fields, labelled by polarisation.[20][5]

We now have the complete classical field theory setup to perform quant-
isation on and calculate what quantum fluctuations do for the observables of
inflation, such as the CMB. First we take a small detour to talk about the rel-
evant expectation values of powers of the perturbations, which are the primary
observables of the quantum field theory of the canonical scalar field. After we
have explained what the observables are and how they are of interest to us, we
will proceed with quantising the field theory and showing how to calculate the
correlators of perturbations.
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3.3 Correlators of perturbations

The primary observables of the quantum field theory of the canonical scalar
field are the correlation functions of the perturbations. It is these perturbations
that seed the inhomogeneities and their correlators are directly related to obser-
vations of the CMB. Assume for the moment that the perturbations have been
quantised, giving operators R̂ and γ̂ij ; these are the primary observables of the
theory. The background evolution of the field, which determines the scale factor
a and the slow-roll parameters, can be indirectly measured via these observables,
because their expectation values depend on the value of the background field.
Because of the conservation outside of the horizon, the value of the background
is imprinted onto the mode as it leaves the horizon. It is most convenient to
express things in Fourier space for this reason, because each mode k leaves the
horizon at a time aH ≈ k, so the background is imprinted at the time tk when
a(tk)H(tk) = k, which is determined per mode, so for each Fourier transformed
R(k, t) rather than R(x, t).6

3.3.1 Gaussian random variables

A Gaussian distribution variable X can be fully characterised by its mean and
variance,

µ = E(X), (3.47)

σ2 = E(X2)− E(X)2, (3.48)

E((X − µ)n) =

{
0 n odd

σn(n− 1)!! n even
. (3.49)

The expectation values E((X − µ)n) are called the central moments of X and
for a Gaussian variable these are completely determined by the second central
moment and the mean (the first moment). Note that n!! is the double factorial
(the product of all numbers up to n with the same parity as n). If the per-
turbations are completely Gaussian then all the information on its statistics is
contained in the second central moment; taking other moments offers no addi-
tional information.

Because the perturbations are small, higher moments are much smaller than
lower moments and become increasingly difficult to detect. For this reason,
measurements determine the second and third central moments of the perturb-
ation; the first moment is zero by definition of ‘perturbation’, so central moment
and moment can be used interchangeably. The measured perturbations in the
CMB are Gaussian to a very high degree, but not perfectly, so in particular that
means that the third moment will be non-zero and this is a direct measurement
of the non-Gaussianity of the perturbations; in fact, the deviation of the third
moment from zero can be taken as the definition of ‘non-Gaussianity’ for the
perturbations.

The simplest way to get an approximately Gaussian distribution is to take
a Gaussian distribution X, with µ = 0, and make it non-Gaussian by adding to

6We will be a bit sloppy about distinguishing between a function and its Fourier trans-
formed, letting either the context or the argument (e.g. x or k) determine which one is meant,
but this should not cause ambiguity.
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it a non-linear term:

X → X ′ = X +
3

5
fNL

(
X2 − E(X2)

)
. (3.50)

The parameter fNL is a real number that signifies the departure from Gaussian-
ity; ‘NL’ stands for non-linear and the factor of 3/5 (or−3/5) is by convention[4].
The (central) moments for this shifted variable become

µ′ = E(X ′) = 0, (3.51)

σ′2 = E(X ′2) = σ2 +
18

25
f2

NLσ
4, (3.52)

E(X ′3) =
18

5
fNLσ

4 +
216

125
f3

NLσ
6, (3.53)

For |fNL| � σ−1 the induced non-Gaussianity does not significantly deform the
second moment and in this limit,

µ′ = 0, (3.54)

σ′2 = σ2, (3.55)

E(X ′3) =
18

5
fNLσ

4, (3.56)

so the fNL-induced non-Gaussianity linearly shifts the third moment away from
zero. The standard deviation σ is the measure of the size of the perturbations
and we see that

E(X ′3) ∼ fNLE(X ′2)E(X ′2), (3.57)

so the third moment is proportional to the square of the second moment, with
a small proportionality constant (in units of σ−1). In general, of course, the
non-Gaussianity can take any form and then measurements of higher moments
are needed to determine its statistics; because we currently do not have access
to higher moments in the CMB, we are forced to pick a presumed form of the
non-Gaussianity and then we can express our measurements in terms of the
presumed form.

3.3.2 Symmetries

Translation

For the mode functions, R(~k, t), the ‘Gaussian’ random variables are not directly

R(~k, t) for each ~k. Because of homogeneity, the expectation values,

〈R(~x1, t)R(~x2, t) · · ·R(~xn, t)〉 , (3.58)

must be invariant under spatial translations, which in Fourier space leads to
that the expectation value must have a momentum-conservation delta function〈

R(~k1, t) · · ·R(~kn, t)
〉

= (2π)3δ(3)(~k1 + . . .+ ~kn)
〈
R(~k1, t) · · ·R(~kn, t)

〉′
,

(3.59)
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where the prime indicates the expectation value with the momentum conserva-
tion part stripped off (the stripped correlator). From this it can directly be seen
that R(k, t) is not a Gaussian variable on its own, by momentum conservation:7〈

R(~k, t)R(~k, t)
〉

= 0. (3.60)

Instead,R(~k, t) behaves like a (near) Gaussian random variable with its adjoined

R(−~k, t): 〈
R(~k, t)R(−~k, t)

〉
6= 0. (3.61)

Rotation

Because of momentum-conservation, the non-trivial momentum configurations
of n momenta form an n-sided polygon in three-dimensional space. Rotational
invariance further restricts the freedom in expectation values by imposing that
only the shape and size of the n-sided polygon matters, but not its orientation
(its embedding into three-dimensional space). There are näıvely 3n degrees of
freedom; momentum conservation reduces this to 3n− 3. Rotational invariance
allows us to align the axis of the coordinate system with, say, the first momentum
vector ~k1, losing another 2 degrees of freedom. For n = 2 this leaves 3n−3−2 = 1
degree of freedom, for instance the length of k1. For n > 2, we can then choose
our last rotational degree of freedom to rotate the coordinate system around the
k1 axis (our x-axis) and make, say, the y-component of k2 zero. After this, the
rotational degrees of freedom are expended. This leaves 3n− 3− 2− 1 = 3n− 6
degrees of freedom for n ≥ 3. In the most relevant cases, this means that a
correlator of two fields has one degree of freedom, the size of the momentum, k;
a correlator of three fields has three degrees of freedom, for instance the shape
of the triangle (two angles) and its size (size of any side), or one angle and the
size of two sides, or the size of three sides (k1, k2, and k3), or the overall size
K = k1 + k2 + k3 plus the size of two sides, etc.

Approximate scale-invariance

The dependence of the expectation values on the scale of k is typically small, so
it is convenient to work with expressions that are scale-independent whenever
the expectation value is scale independent. From the assumption that a general
expectation value is scale independent, for ~x→ λ~x,

〈R(λ~x1, t) · · ·R(λ~xn, t)〉 = 〈R(~x1, t) · · ·R(~xn, t)〉 , (3.62)

it follows that in momentum space ~k scales as ~k → ~k/λ and therefore〈
R
(~k1

λ
, t
)
· · ·R

(~kn
λ
, t
)〉

= λ3n
〈
R(~k1, t) · · ·R(~kn, t)

〉
, (3.63)

so to get scale-invariant quantities from an expectation value of n fields we
should multiply the expectation value by k3n:〈

R(~k1, t) · · ·R(~kn, t)
〉

=
Sn(~k1, . . . ,~kn; t)

k3
1 · · · k3

n

. (3.64)

7The result is proportional to δ(3)(k) and we assume that the expectation values are smooth
functions, so the result is 0.
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This gives Sn as a scale-invariant quantity whenever the expectation values are
scale-invariant. It is also useful to know how the delta-function scales, namely
as

δ(3)
(~k
λ

)
= λ3δ(3)(~k), (3.65)

so to define a scale invariant quantity S′n from the stripped correlator the full
correlator must be multiplied by k3n−3:〈

R(~k1, t) · · ·R(~kn, t)
〉

=
S′n(~k1, . . . ,~kn; t)

k3
2 · · · k3

n

(2π)3δ(3)(~k1 + . . .+ ~kn). (3.66)

To get a scale-invariant quantity, it is enough to multiply by any combination
of momenta that gives the appropriate power; we have chosen a democratic
combination for the full correlator and a notationally convenient combination
for the stripped correlator. For the stripped correlator of three field, a better
(democratic) choice is available, as we shall see shortly.

3.3.3 Power spectrum and bispectrum definition

For the perturbations, the second moment is referred to as the two-point func-
tion:[9]

lim
t→∞

〈
R(~k, t)R(~k′, t)

〉
=

(2π)2PR(k)

2k3
(2π)3δ(3)(~k + ~k′). (3.67)

The quantity PR defined here is the power spectrum; note the factor of k3 in the
denominator to get a (potentially) scale-independent power spectrum.8 A scale-
independent power spectrum also directly means that PR(k) does not depend
on k. Technically, ‘power spectrum’ only refers to PR, but we will use it to
also refer to the two-point function. The third moment is referred to as the
three-point function or bispectrum:[9]

lim
t→∞

〈
R(~k1, t)R(~k2, t)R(~k3, t)

〉
=
S(k1, k2, k3)

k2
1k

2
2k

2
3

(2π)4PR(k∗)
2(2π)3δ(3)(~k1+~k2+~k3).

(3.68)
The quantity S(k1, k2, k3) is the shape function, or shape, of the bispectrum.
Note again the (democratically chosen) factor of k6 in the denominator to make
the shape (potentially) scale-invariant. We will come back to the shape function
later and explain why it’s so named, but for now the message is that it encodes
the shape of the bispectrum. Note the direct inclusion of the power spectrum
into the definition, as motivated by the relation between the third and second
moments in the fNL model, eq. (3.57); from this one can also see that the shape S
is related to fNL. The power spectrum is evaluated at a specific wave number k∗,
which should be chosen to be representative for the given model/observation, in
order to normalise the shape function/fNL, whilst keeping all scale-dependence
of the bispectrum in the shape function S. The power spectrum gives the size of
the perturbations, while the bispectrum gives the size of the non-Gaussianities
in the perturbations.

8One might wonder at this point why the artificial factor of (2π)2/2 is introduced here
(and also in the bispectrum); this is the convention, see e.g. [9], but the rational behind this
is unclear to this author.

40



3.3. CORRELATORS CHAPTER 3. PERTURBATIONS

Tensor power spectrum definition

Similarly, a power spectrum is defined for tensor perturbations. For a given
polarisation γs the tensor power spectrum is defined by:

lim
t→∞

〈
γs(~k, t)γs

′
(~k′, t)

〉
=

(2π)2P sγ (k)

2k3
(2π)3δss′δ

(3)(~k + ~k′). (3.69)

One could also define a bispectrum for tensors, but considering that typically
the power spectrum for tensors is too small to be observable in the CMB it
seems pointless to do so.

3.3.4 Canonical scalar field

Power spectrum

For the canonical scalar field, the power spectrum for scalar and tensors has
been calculated and are well-known in literature. For a general potential V (φ),
as mentioned, the results are expanded in powers of slow-roll parameters, with
the leading order in slow-roll power spectrum:[9][20][5]9

PR(k) =
H(tk)2

8π2M2
Plε(tk)

. (3.70)

The size of the scalar perturbations from measurements is

PR(k∗) = (2.142± 0.049) · 10−9,

with 68% confidence level at k∗ = 0.05 Mpc−1 (Planck (2015), [23]). The tensor
power spectrum (sum of both polarisations) is given by:[20][5]

Pγ(k) =
H(tk)2

π2M2
Pl

. (3.71)

We can directly see that ε = 0 gives divergent PR. This is because in pure de
Sitter there are no physical scalar perturbations; they are pure gauge modes
which can be gauged away. This is not true for tensor perturbations, which
cannot be gauged away in de Sitter. Therefore, to have physical scalar perturb-
ation we must have ε 6= 0, but then it immediately follows that PR must have
scale-dependence, because then H changes in time, so H(tk) changes with k.
The slow-roll parameter ε is directly related to both scale-dependence of the
power spectrum and the presence of physical perturbations.

The ratio of the tensor power spectrum to scalar power spectrum is known
as the tensor-to-scalar ratio, denoted by

r =
Pγ(k∗)

PR(k∗)
= 8 ε(k∗), (3.72)

and has not been measured yet, but the current constraints on it are r < 0.07
(95% CL) at k∗ = 0.05 Mpc−1 (BICEP2/Keck, [2]). This also gives a direct
bound on ε for the scalar field model, ε < 0.01.

9To compare with other references, note that φ̇2 = −M2
PlḢ = M2

PlεH
2; there are factors

of 2 differences stemming from disagreement about the exact definition of PR.
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Spectral index and running

The quantity (number) that characterises the scale-dependence of the (scalar)
power spectrum is the spectral index, ns, defined as

ns − 1 :=
d logPR
d log k

∣∣∣∣
k∗

. (3.73)

The quantity ns is the spectral index and we call ns−1 the spectral tilt, or just tilt
if it’s clear from the context. The value of ns−1 obviously depends on the value
of k∗ chosen, which is referred to as the pivot. Two of the most common choices
are ns = 0.968 ± 0.012 (68% CL) at k∗ = 0.002 Mpc−1 (WMAP-7year (2011),
[18]) and ns = 0.9667 ± 0.0040 (68% CL) at k∗ = 0.05 Mpc−1 (Planck (2015),
[23]). The same pivot value should be used everywhere, e.g. for the measured
power spectrum PR(k∗) the same pivot appears. With 99.5% confidence level
(CL), ns is smaller than 1, so ns− 1 is negative. The spectral tilt (ns− 1) gives
the tilt of the power spectrum as a function of log k, which would otherwise be
a flat horizontal line. There is also the possibility that the tilt of the power
spectrum has a running, that is that it is slightly curved rather than straight,
characterised by the running of the spectral index, α (or sometimes αs), defined
as

α :=
d2 logPR
d log k 2

∣∣∣∣
k∗

. (3.74)

A running of the spectral index has not been detected, so far, but its value
is constrained to α = −0.002 ± 0.013 (95% CL) at k∗ = 0.05 Mpc−1 (Planck
(2015), [23]), compatible with zero running.

Definition of spectral index

The way these quantities are defined might seem slightly arbitrary, but there
is reason behind these particular definitions. First, the use of both log’s makes
the tilt and running inherently dimensionless numbers, which is a nice property.
The power spectrum can be split into a scale-independent factor and a part that
captures the scale-dependence,

PR(k) = P ∗R ·
(
k

k∗

)n(k)

, (3.75)

where P ∗R = PR(k∗) and n(k) is some index function, n � 1 for a small scale-
dependence. To get n and its derivatives out of this, we first take the log,

logPR(k) = logP ∗R + n(k) log

(
k

k∗

)
, (3.76)

and then Taylor-expand PR to get a Taylor-expansion of n, but from the formula
we can see that a natural variable for n is not k, but rather log k, such that if
we expand n in terms of log k around k = k∗ we get

logPR(k) = logPR(k∗)+n(k∗) log

(
k

k∗

)
+

dn(k∗)

d log k
log

(
k

k∗

)2

+O

(
log

(
k

k∗

)3
)
,

(3.77)
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which is a much cleaner expansion than for expansion in k. From this, the
natural choice is to let ns− 1 be the first Taylor coëfficient of Taylor-expanding
logPR in log k and α the second Taylor coëfficient, so

logPR(k) = logPR(k∗)+(ns−1) log

(
k

k∗

)
+

1

2
α log

(
k

k∗

)2

+O

(
log

(
k

k∗

)3
)
,

(3.78)
which gives the definitions for ns − 1 and α as before, and the relation to n(k)
as

n(k) = (ns − 1) + 2α log

(
k

k∗

)
+O

(
log

(
k

k∗

)2
)
. (3.79)

As a final technical note, the Taylor expansion employed is not in the smallness
of log k/k∗, but rather in the smallness of the coëfficients, relative to log k/k∗,
of the Taylor series.

Formula for spectral index

For the scalar field model, the tilt and running can be expressed in terms of
the slow-roll parameters, using the expression for the power spectrum from
eq. (3.70) and the definitions of ns and α, eqs. (3.73) and (3.74). In eq. (3.70)
time is evaluated at horizon crossing for the mode k, at time tk such that
a(tk)H(tk) = k, so this gives

d log k =
dk

k
=

d(aH)

aH
=
ȧ

a
dt+

Ḣ

H
dt = H(1− ε) dt, (3.80)

or equivalently

d

d log k
=

1

H(1− ε)
d

dt
=

1

H
(1 + ε+ ε2 + . . .)

d

dt
. (3.81)

We only need the zeroth order expression in slow-roll here, because the power
spectrum as given by eq. (3.70) is only given to leading-order in slow-roll, so we
use

d

d log k
=

1

H

d

dt
= − d

dN
. (3.82)

The spectral tilt of the scalar field is:

ns − 1 = − d

dN
(2 logH − log ε) +O

(
ε2
)

= −2ε− η +O
(
ε2
)
. (3.83)

The parameters ε and η should be evaluated at k∗. The tilt for the model is neg-
ative and small, which is in line with the value from measurements, if both ε and
η are taken to be constrained by slow-roll. We mentioned before that η should
be small for the field to roll slowly down the potential, but that was of course a
slightly artificial constraint; here we see the more physical reason, namely that
not taking η to be small would introduce significant scale-dependence that is
not in line with data. From the measurement result, 2ε+η ≈ 0.04 and ε < 0.01,
so an estimate for η is η . 0.02.
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Running of the spectral index

The running of the spectral index is calculated in the same way to give

α = −2εη − ηξ +O
(
ε3
)
. (3.84)

Again, the parameters should be evaluated at k∗. Remember that ξ = −∂N log η
is the slow-roll parameter after η, but its value is not constrained to always be
small, so locally (for a short time) the second term, ηξ, could be of order ε or
larger. For a discussion of models where the potential has features that give rise
to such running, see for example Flauger and Pajer [15] or Chen, Easther and
Lim [11][10]. The order estimate of O

(
ε3
)

should be taken to mean O
(
ε3
)

on

average, but slow-roll parameters after η may vary becoming of order O
(
ε2
)
–

O(ε) for short times. On average, the running is of order O
(
ε2
)
, which is small

and compatible with measurements.

3.3.5 Bispectrum

For the bispectrum, because there are three degrees of freedom, two if one as-
sumes scale-invariance, just giving the size doesn’t contain all the information.
In the example non-Gaussianity model, the parameter fNL parametrises the
amount of non-Gaussianity and for this model it gave the size of the third mo-
ment. We want to do an analogous thing for the bispectrum: give a number for
fNL that indicates the degree of non-Gaussianity. The shape function, S, en-
codes both shape and size, so to get a size number a specific shape (momentum
configuration) must be picked and the value of S for that shape is the ‘size’. Of
course, different shapes may have their maximum in different limits and certain
shapes may have divergences for certain limits of momentum configuration, so
there is no ‘one size fits all’ number that can be given. There are, however,
some common shapes that come from models and that can be calculated from
the data, so typically to give the amount of non-Gaussianity one gives the pre-
sumed (approximate) shape plus the size of that shape, fNL. The shape of the
bispectrum is the dependence of S on the momentum ratio’s k2/k1 and k3/k1

whilst keeping the momentum scale K = k1 + k2 + k3 fixed. The bispectrum
can also have a running, which is the dependence of S on the total momentum
K; if the bispectrum is scale-invariant then S does not depend on K. The size
of the bispectrum, fNL, is defined as:[9]

S(k, k, k)→ 9

10
fNL(k), (3.85)

so as S evaluated at the equilateral triangle configuration, that is k1 = k2 =
k3 (= K/3). If the bispectrum is scale-invariant, then fNL(k) is independent of
k.

Shapes

The most common shapes are the equilateral shape, local shape, and orthogonal
shape. The local shape is

Slocal(k1, k2, k3) =
1

3

(
k2

1

k2k3
+ 2 perm.

)
, (3.86)
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where ‘+2 perm.’ stands for the two other permutations of k1, k2, k3 and is
characterised by the fact that it peaks, divergently, in the squeezed limit, that
is when one momentum is much smaller than the other two momenta that are
roughly the same size, e.g. k1 � k2 ≈ k3:

Slocal(k1, k2, k3)→ 2

3

k2

k1
. (3.87)

The simple non-Gaussianity model we introduced has this shape and it’s local
in real space, hence the name ‘local’. The equilateral shape is

Sequil(k1, k2, k3) = 6

(
k1

k2
+ 5 perms.

)
− 6

(
k2

1

k2k3
+ 2 perms.

)
− 12. (3.88)

It peaks in the equilateral triangle configuration. The orthogonal shape is a
shape that is orthogonal to both the local and equilateral shape, for a properly
defined inner product on shapes (see e.g. [15][9]), and is given by

Sortho(k1, k2, k3) = −18

(
k2

1

k2k3
+ 2 perms.

)
+18

(
k1

k2
+ 5 perms.

)
−48. (3.89)

From the Planck (2015) data[24], the constraints on fNL for the above shapes are

at 68% confidence level: f local
NL = 0.8± 5.0, f equil

NL = −4± 43, fortho
NL = −26± 21.

We see that typically the bispectrum is at the order of the power spectrum
squared, because fNL ∼ O(1)−O(10), so it’s very small.

Scalar field

For the scalar field model, the bispectrum is a combination of the local shape,
with f local

NL ∼ η, and new kind of shape, with fNL ∼ ε, given up to first order in
slow-roll by:[20][9]

S =
ε

8

[(
k1

k2
+ 5 perms.

)
−
(

k2
1

k2k3
+ 2 perms.

)
+

8

K

(
k1k2

k3
+ 2 perms.

)]
+
η

8

(
k2

1

k2k3
+ 2 perm.

)
.

(3.90)

Thus, for the scalar field model, f scalar
NL = 10

72 (11ε+3η) = O(ε) ∼ 0.03. Non-linear
effects in the CMB evolution will generate non-Gaussianity with fNL ∼ O(1),
so the bispectrum from a canonical scalar field is unlikely to be detectable in
the CMB.[9]
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(Bi)spectrum calculation
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4.1 Quantisation of the scalar field

In the previous chapter we discussed the observables of a quantum field theory
for inflation and showed the literature results for the canonical scalar field. Now,
we turn our attention to how the results for the scalar field were calculated. The
first step is quantising the field theory and after that the method of calculation
is detailed. Quantisation is done using a semi-classical approximation for a
quantum field theory in curved space time, where the background field (and the
resulting metric) are kept classical and the perturbations are quantised.

The starting point is the action for the perturbations, the S2 and S3 actions,
given by eqs. (3.40) and (3.41):

S2 =

∫
d4x εa3

(
Ṙ2 − 1

a2
(∂R)2

)
,

S3 =

∫
d4x

(
a3ε2RṘ2 + aε2R(∂R)2 − 2aε2Ṙ(∂R)(∂χ)

+
a3εη̇

2
R2Ṙ+

ε3

2a
(∂R)(∂χ)∂2χ+

ε3

4a
(∂2R)(∂χ)2

+ f(R)
δL

δR

∣∣∣
1

)
,

where we remind ourselves that the f(R) term can be removed via the field shift
R → Q− f(Q), eq. (3.43).

4.1.1 In-In formalism

The quadratic action looks ‘simple’, whereas the cubic action (and beyond) looks
‘hard’, so this motivates to use the interaction picture: the calculation of the
expectation values will be done in the ‘in-in’ formalism of quantum mechanics;
for a more detailed discussion of this and the quantisation procedure, see the
excellent review by Chen [9]. The procedure works by putting the part of the
Hamiltonian whose Schrödinger equation can be solved, denoted by H0, in the
Heisenberg picture and the rest, denoted by HI, into the Schrödinger picture.
Operators gain an implicit time dependence via H0 and the states gain an
implicit time dependence via HI; for a (time-independent) operator X̂ and a
(time-independent) state |Ψ〉 the time dependence is:

d

dt
X̂I(t) = i

[
Ĥ0(t), X̂I(t)

]
, X̂I(t0) = X̂, (4.1)

d

dt
|Ψ(t)〉 = −iĤI(t) |Ψ(t)〉 , |Ψ(t0)〉 = |Ψ〉 . (4.2)

This representation is very suited to calculating vacuum expectation values,
because it pairs the ‘difficult’ time dependence with the ‘simple’ state. The
expectation value of an operator X̂ for a state |Ψ〉 can be written as

〈X̂〉Ψ(t) = 〈Ψ(t)| X̂I(t) |Ψ(t)〉

= 〈Ψ|
[
T̄ exp

(
i

∫ t

t0

dt′ĤI(t
′)

)]
X̂I(t)

[
T exp

(
−i
∫ t

t0

dt′ĤI(t
′)

)]
|Ψ〉 .

(4.3)
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Here, T stands for time-ordering (of the exponential) and T̄ for anti-time order-
ing. Note that a product of operators goes into a product of interaction picture
operators as

O1 · · ·On → U0O1 · · ·OnU−1
0 = OI,1 · · ·OI,n, (4.4)

because U0, the time-evolution operator of H0, has the property U−1
0 U0 = 1.

Power and bispectrum

Applied to the current case, H0 comprises of S2, that is all terms of second
order in R, and HI comprises of S3 and onwards, that is all terms of third or
higher order in R. The expectation values of interest are the power spectrum
(two-point function) and bispectrum (three-point function). These correspond
to the moments of R at a time t during inflation, evolved to outside the horizon
(t→∞), where they become frozen. The quantum state of the universe during
inflation is denoted by |Ψ〉 = |0〉 in the infinite past (t0 → −∞; the start of
inflation); the state |0〉 is referred to as the Bunch-Davies vacuum and is the
equivalent of the Minkowski vacuum in de Sitter. The exact definition of the
vacuum will be given in section 4.1.5 where the time-solution of RI(t) in the
interaction picture is determined. It is convenient to work in Fourier space for
the operators RI(x, t), so instead of x it becomes a function of k: RI(k, t). An
expansion in HI in eq. (4.3) is justified, because the perturbations are very small,
giving for the scalar power spectrum at a time t during inflation:

〈R(k1)R(k2)〉(t) = 〈0|RI(k1, t)RI(k2, t) |0〉+

i

∫ t

−∞
dt′ 〈0| [HI(t

′),RI(k1, t)RI(k2, t)] |0〉+O
(
R8

I

)
,

(4.5)

and for the scalar bispectrum at a time t during inflation:〈
R(k1)R(k2)R(k3)

〉
(t) = 〈0|RI(k1, t)RI(k2, t)RI(k3, t) |0〉

+i

∫ t

−∞
dt′ 〈0| [HI(t

′),RI(k1, t)RI(k2, t)RI(k3, t)] |0〉

+O
(
R9

I

)
.

(4.6)

4.1.2 Field shift

The shift R → Q− f(Q) (eq. (3.43)) gives a field theory for Q derived from the
field theory for R. The bispectrum (eq. (4.6)) can also be calculated in the field
theory for Q, which is more convenient, because S3 was made simpler. However,
the (bi)spectrum for Q does not directly correspond to the (bi)spectrum for R,
but is related via the shift. One important detail is that S2 is the same for
both theories, so the expression for R(k, t) is the same as for Q(k, t). However,
the vacuum state |0〉R is not the same as the vacuum state |0〉Q: for instance,
〈0|QR(k, t) |0〉Q 6= 0. This difference is critical in relating calculations in the
two field theories. In the field theory for Q, the operator R is a function of Q,
via the shift: R(Q) = Q − f(Q). Therefore, when calculating an expectation
value for R in the field theory for Q this relation needs to be applied: the
(bi)spectrum of R can be calculated in the field theory for Q by applying the
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shift on the right side of eq. (4.6) with all other quantities (in particular, |0〉)
taken in the field theory for Q.

To calculate the (bi)spectrum and get the order inR at which the calculation
is valid, the following two points are relevant. The first point is that the goal is
to calculate the effect of the interactions in S3. Therefore, from

HI = −LI,3 +O
(
R4

I

)
, (4.7)

with L3 the Lagrangian defined by

S3 =

∫
dt L3(t), (4.8)

it is sufficient to take HI at third order and neglect higher orders of R and,
moreover, HI,3 only involves terms from S3. The second point is that all odd
powers of the primary field sandwiched between vacuum states vanish. This is
due to the way that the vacuum state |0〉 is defined (or, rather, will be defined)
in section 4.1.5. For example, in the field theory for Q, for every odd natural
number n, 〈0|QQnI |0〉Q = 0. In other words, QI is Gaussian, but Q is not
because it involves interactions.

Formula for (bi)spectrum

The above discussion gives that the power spectrum is easiest to calculate in
the field theory for R:

〈R(k1)R(k2)〉(t) = 〈0|RRI(k1, t)RI(k2, t) |0〉R +O
(
R6

I

)
, (4.9)

and that the bispectrum is easiest to calculate in the field theory for Q:〈
R(k1)R(k2)R(k3)

〉
(t) =

η

4
〈0| [QI ?QI](k1, t)QI(k2, t)QI(k3, t) |0〉+ 2 perm.

+
η3

64
〈0| [QI ?QI](k1, t)[QI ?QI](k2, t)[QI ?QI](k3, t) |0〉

+ terms that vanish outside the horizon

+ terms that vanish as t→∞

+ i

∫ t

−∞
dt′ 〈0| [HI,3(t′),QI(k1, t)QI(k2, t)QI(k3, t)] |0〉

+O
(
R8

I

)
(4.10)

The ‘+ 2 perm.’ on the first line stands for the three different choices of asso-
ciating the convolution with one of the (external) momenta ki; the ‘terms that
vanish’ lines refer to terms that result from the other terms in the shift f(Q).

4.1.3 Quantisation

To quantise the scalar perturbations, the canonical quantisation procedure is
used. The classical equations of motion are solved in Fourier space, giving
solutions u(~k, τ), such that classically

RI(~x, τ) =

∫
d3~k

(2π)3
u(~k, τ)e−i

~k·~x. (4.11)
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After quantisation, R̂I(x, t) and R̂I(k, t) become operators, and we demand that
R̂I(x, t) is an observable, which requires it to be Hermitian, such that

R̂†I (~k, τ) = R̂I(−~k, τ). (4.12)

If we take R̂I(~k, τ) = u(~k, τ)Â~k, then this translates to

u(~k, τ)∗Â†~k
= u(−~k, τ)Â−~k. (4.13)

This is elegantly solved by

u(~k, τ)Â~k → u(~k, τ)â~k + u∗(−~k, τ)â†
−~k
, (4.14)

such that
R̂I(~k, t) = u(~k, τ)â~k + u∗(−~k, τ)â†

−~k
. (4.15)

The commutation relations of RI(~x, t) with it’s conjugate momentum, ΠR(~x, t)
are

[RI(~x, t),ΠR(~y, t)] = iδ(3)(~x− ~y), (4.16)

which gives for a~k and a†
−~k

that they are a pair of creation/annihilation oper-

ators: [
â~k, â

†
−~q

]
= (2π)3δ(3)(~k + ~q). (4.17)

This also gives for the normalisation of u(~k, τ) that the Wronskian condition
needs to be satisfied:

εa3u(~k, τ)u̇∗(~k, τ)− c.c. = i. (4.18)

This condition will be used when normalising the solutions to the classical equa-
tions of motion. To be able continue with creating the Fock space, we need to
have the solutions to the classical equations of motion.

4.1.4 Equations of motion

The equations of motion for RI(x, t) and QI(x, t) are given by (classically) solv-
ing eq. (4.1). The equation of motion for R is given by

R̈(~x, t) +

(
3H +

ε̇

ε

)
Ṙ(~x, t)− 1

a2
~∇2R(~x, t) = 0, (4.19)

or in Fourier space

R̈(~k, t) +

(
3H +

ε̇

ε

)
Ṙ(~k, t) +

~k2

a2
R(~k, t) = 0. (4.20)

This looks like the equation for a damped harmonic oscillator, if the coefficients
would not depend on time:

d2R~k
dt2

+ 2d~kω~k
dR~k
dt

+ ω2
~k
R~k = 0, (4.21)

where

ω~k =
k

a
(4.22)
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is the undamped frequency and

d~k =
a

2k

(
3H +

ε̇

ε

)
(4.23)

is the damping ratio. The damping ratio can be written in the more insightful
form

d~k =
aH

k

(
3

2
+
η

2

)
. (4.24)

Directly from this it can be seen that the system is underdamped (d < 1) inside
the horizon, where k & aH, and overdamped (d > 1) outside the horizon, where
k . aH, which corresponds to the fact that the modes freeze out.

Rewriting to Bessel’s equation

Unfortunately, both d~k and ω~k depend on time, but by going to conformal
time the time-dependence from ω~k can be removed; the differential equation
(eq. (4.20)) can be written as:

Lu = 0, (4.25)

1

a2
L :=

d2

dt2
+H(3 + η)

d

dt
+
~k2

a2
, (4.26)

and in conformal time, with

d2

dt2
=

1

a

d

dτ

(
1

a

d

dτ

)
=

1

a2

d2

dτ2
− a′

a3

d

dτ
=

1

a2

d2

dτ2
− H

a

d

dτ
,

the expression for L is

L =
d2

dτ2
+ aH(2 + η)

d

dτ
+ ~k2. (4.27)

Next, aH can be expressed in terms of τ and slow-roll parameters (see ap-
pendix A):

τ =
−1

aH

(
1 + ε+ ε2 + εη + ε3 + 2ε2η + εη2 + εηξ +O

(
ε4
))
. (4.28)

Using the abbreviation

ρ :=
(
2 + η

)(
1 + ε+ εη + ε2 +O

(
ε3
))
, (4.29)

the operator is written as

L =
d2

dτ2
− ρ

τ

d

dτ
+ ~k2. (4.30)

If ρ is a constant (does not depend on τ), then L can be reduced to Bessel’s
differential equation operator[25],

Bα = x2 d2

dx2
+ x

d

dx
+ (x2 − α2), (4.31)
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where α is a complex parameter. To go from L to Bα, the coefficient in front of
the first derivative needs to become 1. This is achieved by considering a specific
(well-guessed) form for the solution:

L τny(τ) =

[
τn

d2

dτ2
+ (2n− ρ)τn−1 d

dτ
+
(
n(n− 1)− ρn+ ~k2τ2

)
τn−2

]
y(τ).

(4.32)
From this it is seen that

n =
ρ+ 1

2
, for ρ constant, (4.33)

as it was also assumed in the calculation that n is a constant. Therefore, to use
the solution the assumption needs to be made that ρ does not depend on time.
To get the correct powers of τ , multiply the entire expression by τ2−n:

τ2−n L τny(τ) =

[
τ2 d2

dτ2
+ τ

d

dτ
+
(
n(n− 1)− ρn+ ~k2τ2

)]
y(τ). (4.34)

The final step is noting that all the differential terms are invariant under τ → λτ ,
where λ ∈ C, which allows changing only the non-differential term to become
of the form τ2 − α2, via

x = kτ, (4.35)

such that
τ2−n L τny(τ) = B±n(y ◦ (x 7→ x/k)) (kτ), (4.36)

n =
ρ+ 1

2
. (4.37)

All terms in L are invariant under τ → −τ . Therefore, a solution y(x) of
Bn y(x) = 0, gives a solution uk(τ) = τny(±kτ) of Luk(τ) = 0. As kτ < 0, it is
natural to choose the − sign solution for uk.

Solutions to equations of motion

The set of independent solutions to the Bessel’s equation depends on the value
of α; here,

± α =
3

2
+O(ε) , (4.38)

so a preferred solution set is one that is independent around α = +3/2. Fur-
thermore, the domain of interest is −∞ < τ < 0, so the solutions should be
regular for this domain. One choice is to work with the two Bessel functions of
the first kind, Jα and J−α, which are independent if α is not an integer, but
Jα(x) does not diverge as x → 0, so it cannot compensate for the factor τn

in front. Another choice would be to use one or two of the Bessel functions of
the second kind, Yα and Y−α. Finally, a third choice, used here because it is

most convenient to work with, are the two Hankel functions, H
(1)
α and H

(2)
α ,

also known as the Bessel functions of the third kind. The Hankel functions have
the property that they are convenient to work with theoretically and are always
linearly independent, for any value of α. They diverge at τ = 0 in such a way

that the combination τnH
(∗)
n (−kτ) is regular.
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4.1.5 Choice of vacuum

The solutions u(~k, τ) only depend on the norm, k, so we will write them as
u(k, τ). Any linear combination of

{τnH(1)
n (−kτ), τnH(2)

n (−kτ)} (4.39)

on the principal domain, −∞ < τ < 0, gives a solution to the equations of
motion, so the initial conditions must be used to select a particular combination.
When the mode is well within the horizon, that is k � aH, and we consider
a period much smaller than a Hubble time, the mode should effectively feel

the Minkowski vacuum. The solution τnH
(1)
n (−kτ) goes to the flat Minkowski

solution in this limit, therefore this is the preferred solution; the operator that
pairs to this mode is the annihilation operator that annihilates the vacuum, |0〉,
so a~k |0〉 = 0. This choice of vacuum is called the Bunch-Davies vacuum.

The Hankel functions have a closed form for integer and half-integer α, so
taking n = 3/2 gives a solution that is valid up to corrections of first order in
slow-roll, which will be denoted by u(k, τ):[9]

u(k, τ) :=
iH√
4εk3

(1 + ikτ)e−ikτ . (4.40)

The mode u only depends on the norm k, so the first argument is never negative.
With this choice of mode and vacuum, the scalar perturbations are quantised
as

R̂I(~k, τ) = u(k, τ)â~k + u∗(k, τ)â†
−~k
. (4.41)

The same quantisation applies to the field theory for QI, because, as men-
tioned, it has the same H0. Finally, when going from the classical theory to the
quantum theory it is typical to take all operators to be normal ordered. We shall
remark on this more during the calculations, when situations are encountered
that require normal ordering.

The choice of vacuum is correct for the non-interaction part of the system,
but it fails to be the vacuum under the in-in formalism time evolution of the
state, such that, as it stands, full vacuum expectation values do not vanish.
The solution is to use the Hartle-Hawking prescription of the vacuum[20], which
amounts to keeping the Bunch-Davies vacuum and deforming the contour of the
integrals in the time-ordered exponentials so as to provide exponential damping
for t→ −∞. We will touch upon this again and with more detail in sections 4.2.1
and 4.4.4, where the calculations of expectation values in the in-in formalism
are performed.

4.1.6 Wick’s theorem

To work out vacuum expectation values, Wick’s theorem is an invaluable tool.
A contraction between two operators Â and B̂, for any ordering : :, is defined
as

Â•B̂• := ÂB̂ − :ÂB̂:. (4.42)

Using this with normal ordering, any product of fields can be rewritten in terms
of normal ordered products and contractions. The advantage of using normal
ordered products is that for products that involve creation and annihilation
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operators, the ordering places annihilation operators to the right of creation
operators and when sandwiched between vacuum states any such normal ordered
product is directly seen to vanish. The contractions are often easy to work with
as well, to the point of usually not being operators but (complex) numbers. For
fields, like R and Q, that are built up as

Â = Â+ + Â−, (4.43)

where the positive part is associated with the creation operator and negative
part with the annihilation operator, the contraction becomes

Â•B̂• =
[
Â−, B̂+

]
. (4.44)

From this, a contraction between Q fields is a function (not an operator):

•(k1, τ ; k2, τ
′) := Q(k1, τ)•Q(k2, τ

′)• = (2π)3u(k1, τ)u∗(k2, τ
′)δ(3)(k1 + k2).

(4.45)
Wick’s theorem will be used to work out expectation values of products of
operators to products of normal ordered operators and contractions.
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4.2 Calculation of (bi)spectrum

The goal of this section is to show how to calculate the (power) spectrum and
bispectrum of the canonical scalar field. In the previous section the field theory
was quantised and in the chapter before that the observables, such as the power
spectrum and bispectrum, have been discussed. These results were all at leading
order in slow-roll; in this chapter the calculation of a non-leading term for the
bispectrum is exemplified, which we will refer to as the εη̇-term (in S3). This
term has not been calculated before in literature, as far as we have been able to
find.

The starting point is the solution for RI and QI (eq. 4.41), the Wick con-
traction between two QI’s (eq. (4.45)), and the S3 action for Q (eq. 3.41 with
field shift),

S3 =

∫
d4x

(
a3ε2QQ̇2 + aε2Q(∂Q)2 − 2aε2Q̇(∂Q)(∂χ)

+
a3εη̇

2
Q2Q̇+

ε3

2a
(∂Q)(∂χ)∂2χ+

ε3

4a
(∂2Q)(∂χ)2

)
,

along with the expressions for calculating the power spectrum (eq. 4.9) and the
bispectrum (eq. 4.10):

〈R(k1)R(k2)〉(t) = 〈0|RRI(k1, t)RI(k2, t) |0〉R +O
(
R6

I

)
,〈

R(k1)R(k2)R(k3)
〉
(t) =

η

4
〈0| [QI ?QI](k1, t)QI(k2, t)QI(k3, t) |0〉+ 2 perm.

+ i

∫ t

−∞
dt′ 〈0| [HI,3(t′),QI(k1, t)QI(k2, t)QI(k3, t)] |0〉

+O
(
R8

I

)
.

For the power spectrum, we see that the interaction terms, which represent the
non-Gaussianities, do not come in until much higher order, as was expected
from the fNL-toy model, eq. (3.50), where the second moment is not affected by
fNL when f2

NLPR � 1 and from the results in that chapter we know that for
the scalar field f2

NLPR ∼ 10−9ε2, which is indeed much smaller than one. For
the bispectrum calculation, we will focus on the εη̇-term in S3, (1/2)a3εη̇Q2Q̇,
as a sufficiently rich example.

4.2.1 Calculation in slow-roll

The exact solutions for the inflationary background (a, H, ε, η, etc.) for a gen-
eral potential is not known. It is therefore impossible to perform the calculation
of the (bi)spectrum exactly. There is, however, a method of calculation that
can be used with generic background quantities, assuming only slow-roll, that
minimises the error in the calculation from not knowing the exact evolution of
these quantities. This method was first explained by Maldacena [20]. There are
two related problems that come up here; the first was already mentioned when
having to choose a vacuum when quantising the theory:

1. Problem: we want to calculate expectation values in the vacuum of the
interacting theory, not of the free theory. Solution: for integrals, deform
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the contour to provide exponential damping for early times, such that
early contributions cancel out.

2. Problem: the background quantities are unknown, so we don’t know how
to take their limits or integrate them. Solution: the relevant quantities
are taken to be slow-roll and together with freezing out of the modes, the
background quantities can be evaluated at horizon crossing. The relative
error this introduces is � O(1), which holds true both in limits and in
performing integrals over time.

It is worth discussing these problems and their solutions separately for terms
that involve integrals and that don’t involve integrals. Throughout this chapter,
a star will be used to denote quantities that are evaluated at horizon crossing,
e.g. ε∗ = ε(tk). This is related to, but not the same as the previously used star
to denote quantities evaluated at the pivot, but if a quantity is scale-invariant
then these coincide.

Terms not involving time integrals

For expectation value calculations (or terms thereof) that do not involve an
integral over time, at the end of the calculation the result is a time-dependent
expectation value. We want to evolve this expectation value to the infinite
future, or at least until after freeze-out, as this gives the conserved expectation
value outside the horizon. The issue is that we do not know how to take the limit,
because the background quantities are unknown. As explained, a mode with
wavenumber k freezes out as k � aH, or −kτ � 1 in terms of conformal time.
When these terms consist only of a product ofR fields (orQ fields), such as when
calculating expectation values of the fields, it follows that the expectation value
freezes out as well. The closed form of the modes used is only valid when the
slow-roll parameters (and H) can be taken to be constants and taking the limit
for τ ↑ 0 is in principle not a valid operation, because the slow-roll parameters
will change significantly over infinite time. Luckily, the freeze-out means that
the limit only needs to be taken until the mode (or modes) are outside of the
horizon, which happens exponentially fast, after which their value is constant
up to corrections that are of fractional order O(−kτ)� O(1) for a single mode.
For multiple modes, ki, the order from the single mode is multiplied by the
factor H(tS − tL) . O(10), where tS (tL) is the time that the shortest (longest)
of the modes crosses the horizon and is for extreme squeezing[16] kL/kS . 10−7

of order 7 at most, therefore this does not change the order estimate.
The procedure to get the final result is therefore to take the time-dependent
result, evaluate all background quantities on the average time of horizon crossing
for the mode, k, or modes, ki, and then take the limit for τ ↑ 0. The relative
error this introduces is � O(1), both for a single mode and multiple modes in
all realistic momentum configurations.

Terms involving time integrals

For expectation value calculations (or terms thereof) that involve integrals over
time, from the infinite past to now, there are the two issues mentioned. The
first is that we want to calculate expectation values for the vacuum state of the
interacting theory rather than the free theory. The second is similar to the issue
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with expectation value calculations of non-integral terms, where the absence of
an exact solution for the background quantities means that there are unknown
functions in the integral, thus it cannot be evaluated. Both can be ‘solved’ by
the same procedure, which allows the approximate calculation to be performed
whilst minimising the error.

The time integral over perturbations is split into three logical time domains:
evolution well inside the horizon, evolution near horizon crossing, and evolution
well outside the horizon. For evolution well inside the horizon, that is at early
times1, the first issue needs to be tackled and this can be done using the Hartle-
Hawking prescription for the vacuum, which translates to a choice of complex
contour for the (normally) real contour time integral, such that early time fluc-
tuations are exponentially suppressed. The exact contour used to achieve this
suppression will be seen when performing the calculations. The contribution,
therefore, from early times will be zero. For evolution near horizon crossing,
the slow-roll parameters and H are approximately constant and can be taken as
such, where again the relative error introduced by this is� O(1). For evolution
well outside the horizon, the mode freezes out so ignoring this tail contribution
contributes a relative error of � O(1).

Actually, this last part is not entirely true. The perturbations freeze out,
so the expectation value of moments of the perturbations goes rapidly to a
constant, and therefore the sum total of all terms at a given order in slow-roll
go rapidly to a constant. However, when singling out any one term, it might be
that it has a divergence, which is then necessarily cancelled by the divergence
from a different term; these two terms must contain the exact same product of
slow-roll parameters to be able to cancel out.

4.3 Power spectrum

The power spectrum is simply given by the expectation value of the operator
R(k, τ)R(k′, τ) on the vacuum state. Using Wick’s theorem, this is equal to the
contraction between the two R fields (eq. (4.45)), such that

〈R(k1)R(k2)〉(τ) = (2π)3u(k, τ)u∗(k′, τ)δ(3)(k + k′), (4.46)

and from this and eq. (3.67) the power spectrum is given by

PR(k; τ) = (2π)−22k3u(k, τ)u∗(k, τ). (4.47)

The products of the mode functions are

u(k, τ)u∗(k, τ ′) =
H2

4εk3
(1 + ikτ)(1− ikτ ′)e−ik(τ−τ ′). (4.48)

To take the limit for τ ↑ 0, the slow-roll parameters (and H) are taken at the
time of horizon crossing for mode k, as discussed. If also τ = τ ′ then this reduces
to

u(k, τ)u∗(k, τ) =
H2
∗

4ε∗k3
(1− k2τ2), (4.49)

1Early times, relative to the given mode: −kτ � 1
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which converges nicely in the limit τ ↑ 0. The result for the power spectrum of
the canonical scalar field is therefore given by

P ∗R =
H2
∗

8π2ε∗
, (4.50)

which agrees with the result from literature, eq. (3.70), when units of MPl are
reintroduced.

4.4 Bispectrum

From this point onwards, the subscript ‘I’ will be dropped from the interaction
picture fields; any field that is time dependent in this section is necessarily
in the interaction picture, so there is no confusion caused by simplifying the
notation. We will work in conformal time for fields for the rest of this section,
but the slow-roll parameters are kept in terms of (normal) time, so as to apply
the freeze-out reasoning that allows the approximate calculation, explained in
section 4.2.1. The goal is to calculate the bispectrum up to second order in
slow-roll from eq. (4.10), now in conformal time, with derivatives to conformal
time denoted by primes, Q′ := ∂τQ,〈
R(k1)R(k2)R(k3)

〉
(τ) =

η

4
〈0| [Q ?Q](k1, τ)Q(k2, τ)Q(k3, τ) |0〉+ 2 perm.

+ i

∫ τ

−∞
dτ ′a(τ ′) 〈0| [HI,3(τ ′),Q(k1, τ)Q(k2, τ)Q(k3, τ)] |0〉

+O
(
R8, ε3

)
,

(4.51)

with

HI,3 = −
∫

d3x

(
aε2QQ′2 + aε2Q(∂Q)2 − 2ε2Q′(∂Q)(∂χ)

+
a2εη̇

2
Q2Q′ + ε3

2a
(∂Q)(∂χ)∂2χ+

ε3

4a
(∂2Q)(∂χ)2

)
,

(4.52)

χ = a∂−2Q′. (4.53)

Being explicit about all the arguments to the functions in the Hamiltonian gives
the precise but also more cluttered expression, with t′ being short for t′ = t(τ ′),

HI,3(τ ′) = −
∫

d3~x

(
a(τ ′)ε(t′)2Q(~x, τ ′)Q′(~x, τ ′)2 + a(τ ′)ε(t′)2Q(~x, τ ′)(~∂Q(~x, τ ′))2

− 2ε(t′)2Q′(~x, τ ′)(~∂Q(~x, τ ′))(~∂χ(~x, τ ′)) +
a(τ ′)2ε(t′)η̇(t′)

2
Q(~x, τ ′)2Q′(~x, τ ′)

+
ε(t′)3

2a(τ ′)
(~∂Q(~x, τ ′))(~∂χ(~x, τ ′))~∂2χ(~x, τ ′) +

ε(t′)3

4a(τ ′)
(~∂2Q(~x, τ ′))(~∂χ(~x, τ ′))2

)
,

(4.54)

χ(~x, τ ′) = a(τ ′)~∂−2Q′(~x, τ ′). (4.55)

The principal calculation can be split into two parts. The first part is to calculate
the vacuum expectation value of a product of fields, after which the result of the
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first line in eq. (4.51) is obtained. The second part is to calculate the integral
over fields as in the second line in eq. (4.51); vacuum expectation values also
need to be calculated for this, using the same technique as in the first part. The
calculation will therefore proceed in this order, first calculating expectation
values and then moving on to the integral.

Maldacena [20] was the first to have calculated the bispectrum of the ca-
nonical scalar field using the described method and does so at leading order,
O
(
ε2
)
, by performing another field shift to further simplify the ε2-terms in the

S3 action and ignoring any terms that are higher-order in slow roll. The literat-
ure result quoted in eq. (3.90) is the result of this calculation. We will not use
this additional field shift; we will start by showing the calculation for a general
term in S3, until we can go no further by keeping it general, after which the
εη̇-term will be considered as an example of how to perform the calculation for a
term in S3. This example is sufficiently rich that it can be followed to calculate
any term in S3 and also could be used to recover the result from literature (by
using the additional field shift, or calculating each term on the first line of S3).
Furthermore, this term gives problems with convergence not found in any of the
other terms in S3, which turn out to be caused (or rather: compensated for)
by neglecting boundary terms in time when deriving S3. The conclusion will
be that when calculating the bispectrum up to higher order in slow-roll, care
should be taken to include boundary terms in time, which have been neglected
in deriving S3. The significance of boundary terms in time was also noted by
Arroja and Tanaka [3].

4.4.1 Non-integral term

Applying Wick’s theorem to the first expectation value (that is, the first line
of eq. (4.51) and ignoring for a moment the two permutations) means all terms
that are not fully contracted vanish between the vacuum and what remains is

η

4(2π)3

∫
d3q 〈0| Q(q, τ)Q(k1 − q, τ)Q(k2, τ)Q(k3, τ) |0〉 =

η

4(2π)3

∫
d3q

[
•(q, τ ; k1 − q, τ) •(k2, τ ; k3, τ) + •(q, τ ; k2, τ) •(k1 − q, τ ; k3, τ)

+ •(q, τ ; k3, τ) •(k1 − q, τ ; k2, τ)

]
.

(4.56)

Filling in the contractions and then performing the integral over the internal
momentum, q, which works on the delta functions gives for the three terms

η

4(2π)3

∫
d3q •(q, τ ; k1 − q, τ) •(k2, τ ; k3, τ) =

η

4

(∫ d3q

(2π)3
u(q, τ)u∗(q, τ)

)
u(k2, τ)u∗(k3, τ)(2π)3δ(3)(k1)(2π)3δ(3)(k2 + k3),

(4.57)

59



4.4. BISPECTRUM CHAPTER 4. (BI)SPECTRUM

η

4(2π)3

∫
d3q •(q, τ ; k2, τ) •(k1 − q, τ ; k3, τ) =

η

4
u(k2, τ)u∗(k2, τ)u(k1 + k2, τ)u∗(k3, τ)(2π)3δ(3)(k1 + k2 + k3)

=
η

4
u(k2, τ)u∗(k2, τ)u(k1 + k2, τ)u∗(k1 + k2, τ)(2π)3δ(3)(k1 + k2 + k3),

(4.58)

η

4(2π)3

∫
d3q •(q, τ ; k3, τ) •(k1 − q, τ ; k2, τ) =

η

4
u(k2, τ)u∗(k2, τ)u(k1 + k2, τ)u∗(k1 + k2, τ)(2π)3δ(3)(k1 + k2 + k3).

(4.59)

Note how eqs. (4.58) and (4.59) are the same. This could have been seen im-
mediately from eq. (4.56) by the symmetry q → k1 − q of the internal mo-
mentum integral. The first term, eq. (4.57), has two delta-conditions on the
momentum configuration, reducing this contribution from a two-dimensional to
a one-dimensional ‘shape’. In addition, this contribution only happens when
one of the momenta is exactly 0. This is not detectable and arguably not phys-
ical. Throwing away these terms is equivalent to taking normal ordered operator
products. In all three results the final momentum conservation (2π)3δ(3)(k1 +
k2 + k3) arises, as expected.

Result

The expression for the first expectation value has been reduced to

η

2
u(k2, τ)u∗(k2, τ)u(k1 + k2, τ)u∗(k1 + k2, τ)(2π)3δ(3)(k1 + k2 + k3). (4.60)

The products of two mode functions at the same time, as seen when calculating
the power spectrum, is given by

u(k, τ)u∗(k, τ) =
H2
∗

4ε∗k3
(1− k2τ2). (4.61)

The time-dependent result is therefore

η

2

H4
∗

16ε2∗k
3
2k

3
3

(1− k2
2τ

2)(1− k2
3τ

2)(2π)3δ(3)(k1 + k2 + k3) + 2 perm. (4.62)

As τ ↑ 0, this converges nicely to

η

2

H4
∗

16ε2∗k
3
1k

3
2k

3
3

(k3
1 + k3

2 + k3
3)(2π)3δ(3)(k1 + k2 + k3). (4.63)

Relating this to the shape function via its definition, eq. (3.68), and using the
result for PR, eq. (3.70) or (4.50), now evaluated at horizon crossing rather than
at a pivot (so, we’re cheating a little bit here in terms of full scale dependence),
gives

S(k1, k2, k3) =
η

8

k3
1 + k3

2 + k3
3

k1k2k3
. (4.64)

This is the local shape, with f local
NL = 5

18η, and the result matches that from
literature, eq. (3.90).
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4.4.2 Integral terms

The integral that needs to be calculated from eq. (4.51), now written in con-
formal time, is

i

∫ τ

−∞
dτ ′a(τ ′) 〈0| [HI,3(τ ′),Q(k1, τ)Q(k2, τ)Q(k3, τ)] |0〉 . (4.65)

Each term in HI,3(τ ′) is of third order in Q. Each Q can come with with zero
or one time derivatives on it and with minus one, zero, one, or two spatial
derivatives2 on it. Schematically, the terms inside HI,3(τ ′) can be denoted by

β(τ ′)

∫
d3xD1Q(x, τ ′)D2Q(x, τ ′)D3Q(x, τ ′), (4.66)

with Di differential operators of powers of space and time, and β(τ ′) a time-
dependent prefactor. Note that there are no x-dependent prefactors, because
the only dependence on x comes directly from Q. Going to Fourier space for
spatial coordinates, the products of Q fields become convolutions:

β(τ ′)

(2π)9

∫
d3x

∫
d3k

∫
d3p

∫
d3q D̂1Q(k − q − p, τ ′)D̂2Q(q, τ ′)D̂3Q(p, τ ′)eikx,

(4.67)
where the Fourier transformed differential operators, D̂i, are related to Di by
replacing

~∂ni →
(
i~ki
)n
, ∀n ∈ Z

∂τ ′ → ∂τ ′ .

Note that for odd negative n the spatial substitution should be interpreted as
(ik)nk̂. For convenience of notation, the vector arrows on momenta are often
omitted when it’s clear from the context what is meant. The integral over x
gives ∫

d3x eikx = (2π)3δ(3)(k). (4.68)

The contraction eq. (4.45) can be extended to the situation with D̂ operators
working on the fields as

D̂iQ(ki, τ
′)•D̂jQ(kj , τ

′)• = (2π)3D̂iu(ki, τ
′)D̂ju

∗(kj , τ
′) δ(3)(ki + kj). (4.69)

4.4.3 Momentum conservation

We are now in a position to work out the momentum conservation in a very
general manner. Suppose that we have a term from HI with n fields and we are
looking at the expectation value of a product of m fields. First, an important
observation is that the convolution of the term inside HI can be chosen so as
to have exactly one internal momentum on each field, except for on one field
which carries all internal momenta, because of associativity of ?, giving:

β(τ ′)

(2π)3n

∫
d3x

∫
d3q1 e

iq1x

∫
d3q2 · · · d3qn

[
D̂1Q

(
q1 −

n∑
i=2

qi, τ
′
)
D̂2Q(q2, τ

′) · · · D̂nQ(qn, τ
′)
]
.

(4.70)

2The inverse laplacian, ∂−2, is counted as minus two spatial derivatives.
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For this part, we find it convenient to denote terms by the momentum they
carry, as each Q comes with its own unique momentum.

A note on total derivatives

We can make one powerful observation now: if, instead of only having separate
derivatives Di on each field, there is a total spatial derivative,

β(τ ′)

∫
d3x

∂

∂xi

(
D1Q(x, τ ′)D2Q(x, τ ′)D3Q(x, τ ′)

)
, (4.71)

then the total derivative of x becomes a total pre-factor of q1 in:

β(τ ′)

(2π)3n

∫
d3x

∫
d3q1 iq1e

iq1x

∫
d3q2 · · · d3qn

[
D̂1Q

(
q1 −

n∑
i=2

qi, τ
′
)
D̂2Q(q2, τ

′) · · · D̂nQ(qn, τ
′)
]
.

(4.72)

and then performing the integral over d3x gives δ(3)(q1), therefore the entire
term is seen to be 0 (assuming the q1 = 0 Fourier coëfficient is finite). The con-
clusion is that any spatial boundary terms in the (full) action do not contribute
to the (bi)spectrum at the one-integral level, which is a nice consistency check;
spatial boundary terms should vanish anyway from requiring the fields to be
square-integrable quantities such that Fourier theory can be applied with finite
Fourier coëfficients (the exception being the Fourier delta-function).

Contractions

A contraction between any two terms, pi and pj , causes one momentum to
be substituted for the other, pi = −pj , because of the resulting delta-function
δ(3)(pi + pj). If a contraction is made between any external momenta, ki and
kj , then these momenta will be constrained to be exactly opposite each other,
by δ(3)(ki + kj), resulting in a momentum configuration of dimension one less,
which does not give a physical contribution. Another way to look at is is that
the operators should be taken to be normal ordered, as has been mentioned,
in which case the contraction between two external momenta is a contraction
within a normal ordered group, thus this gives exactly zero. Therefore, each
external momentum should be contracted with an internal momentum. This
means that each contraction contains at least one internal momentum; if pi is
the internal momentum then the contraction becomes

1

(2π)3

∫
d3pi (. . .)D̂iQ(pi)

•D̂jQ(pj)
• = (. . .)D̂iu(−pj)D̂ju

∗(pj) (4.73)

where each pi is replaced by −pj , also inside the terms in the (. . .), which
represents all other terms not displayed. We have also suppressed writing the
time argument, τ or τ ′. If pi is not the internal momentum, then pj is, and the
same formula holds, but then with momenta swapped.

Suppose that n = m, such as for the bispectrum calculation being performed,
then there is an internal momentum for each external momentum and thus there
are only contractions between an internal and an external momentum, and not

62



4.4. BISPECTRUM CHAPTER 4. (BI)SPECTRUM

between two internal momenta. Then each internal momentum is replaced by
the negative of an external momentum, and q1 is replaced by

∑
ki, after which

the delta function from eq. (4.68) becomes the momentum conservation,

(2π)3δ(3)
( m∑
i=1

ki

)
, (4.74)

all the momentum integrals have been performed, and each term like eq. (4.66)
is reduced to a product of mode functions. The result when internal momenta
are to the left of external momenta is:

(2π)3δ(3)
( m∑
i=1

ki

)
× β(τ ′)

∑
σ∈Sym({1,...,m})

D̃1u(kσ(1), τ
′) · · · D̃mu(kσ(m), τ

′) · u∗(k1, τ) · · ·u∗(km, τ),

(4.75)

and the result when internal momenta are to the right of external momenta is:

(2π)3δ(3)
( m∑
i=1

ki

)
× β(τ ′)u(k1, τ) · · ·u(km, τ)

∑
σ∈Sym({1,...,m})

D̃1u
∗(kσ(1), τ

′) · · · D̃mu
∗(kσ(m), τ

′),
(4.76)

where each occurrence of the internal momentum qi inside the operator D̂i has
been replaced by −kσ(i) to yield D̃i; note that for q1, which was taken to be
‘special’, the replacement should either happen before replacing q1 → q1−

∑
ki,

or the full expression appears inside D̂1 needs to be replaced (q1 −
∑
ki →

−kσ(1)). Now that the momentum conservation has been established, it’s useful

to consider stripped correlators for the rest, such that the (2π)3δ(3)
(∑

ki
)

factor
is dropped from the remaining calculations.
For each term in HI,m we have the expression that gives its contribution to the
m-point function:

u(k1, τ) · · ·u(km, τ)i

∫ τ

−∞
dτ ′a(τ ′)β(τ ′)

∑
σ

D̃1u
∗(kσ(1), τ

′) · · · D̃mu
∗(kσ(m), τ

′),

− u∗(k1, τ) · · ·u∗(km, τ)i

∫ τ

−∞
dτ ′a(τ ′)β(τ ′)

∑
σ

D̃1u(kσ(1), τ
′) · · · D̃mu(kσ(m), τ

′).

(4.77)

4.4.4 Example: εη̇-contribution

The calculation will now proceed for the stripped correlator for the bispectrum,
m = 3, and for the εη̇-term in HI,3, with β = − 1

2a
2εη̇, D1 = D2 = 1, D3 = ∂τ ′ ,
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such that in this case D̃i = Di, and the expression is

− iε∗η̇∗
2

u(k1, τ)u(k2, τ)u(k3, τ)

∫ τ

−∞
dτ ′a(τ ′)3

×
∑
σ

u∗(kσ(1), τ
′)u∗(kσ(2), τ

′)∂τ ′u
∗(kσ(3), τ

′)

+
iε∗η̇∗

2
u∗(k1, τ)u∗(k2, τ)u∗(k3, τ)

∫ τ

−∞
dτ ′a(τ ′)3

×
∑
σ

u(kσ(1), τ
′)u(kσ(2), τ

′)∂τ ′u(kσ(3), τ
′).

(4.78)

The slow-roll parameters have been taken outside of the integral by evaluating
them at horizon crossing. For this, we need to add the assumption that η̇ is a
slowly varying function of time; when this cannot be assumed, then the contri-
bution must be calculated by specifying η̇ as a function of time and calculating
the integral with η̇ kept inside.

Filling in the mode functions

For this term, the symmetry of k reduces the sum over σ: it’s only significant
which ki is associated to the mode with the derivative acting on it (D3). We
can calculate the expression for the time derivative associated to k3 and write
‘+2 perm.’ to denote the three different permutations that arise, for instance,
(k1, k2, k3), (k3, k1, k2), and (k2, k3, k1); the σ-permutations between the mo-
menta in the first two slots can be taken into account by an overall factor of 2.
Using a(τ ′)H(τ ′) = −1/τ ′ + O(ε) to write a in terms of τ ′, eq. (4.40) for the
mode function,

u(k, τ) =
iH√
4εk3

(1 + ikτ)e−ikτ ,

and its derivative,

∂τ ′u(k, τ ′) =
iH√
4εk3

k2τ ′e−ikτ
′
, (4.79)

where H and ε are taken to be constant for this solution of the mode function3,
evaluating all slow-roll quantities on the horizon (both from u(τ) and u(τ ′))
and finally taking the limit for τ ↑ 0 for the piece before the integral4 gives for
eq. (4.78):

iη̇∗H
3
∗k

2
3

64ε2∗k
3
1k

3
2k

3
3

[ ∫ τ

−∞
dτ ′

1

τ ′2
(1− ik1τ

′)(1− ik2τ
′)eiKτ

′

−
∫ τ

−∞
dτ ′

1

τ ′2
(1 + ik1τ

′)(1 + ik2τ
′)e−iKτ

′
]

+ 2 perm.

(4.80)

3It would also be inaccurate to add the derivatives of H and ε, because the mode functions
used here are themselves approximations which require ε and η to be constant to be correct,
so any higher order in slow-roll terms would need to be derived directly from the equations of
motion.

4The limit for τ ↑ 0 can be done separately for the piece before the integral and for the
integral in this case; in general, lim a(t)b(t) = lim a(t) · lim b(t) if both exists.
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Hartle-Hawking vacuum

The integrals should be regularised to give strong dampening when Kτ ′ � −1,
or equivalently when |Kτ ′| � 1 (because τ ′ < 0), in order to have the expect-
ation value be for the vacuum of the interacting theory, rather than the free
theory. This is the Hartle-Hawking prescription for the vacuum, as mentioned,
which also validates the procedure of taking the slow-roll parameters outside of
the integral. The exponential inside the integral should give exponential damp-
ing in this limit, which can be achieved by skewing the integration domain into
the imaginary plane via

τ ′ → τ ′(1± iε), (4.81)

where − is for the integral coming from the anti-time-ordered exponential, writ-
ten in the first line in eq. (4.80), and + for the integral coming from the time-
ordered exponential, written in the second line. Taking the limit ε ↓ 0 after the
integral gives for the +-contour

lim
ε↓0

1

1 + iε

∫ τ

−∞
dτ ′ (1−εk1τ

′+ik1τ
′)(1−εk2τ

′+ik2τ
′)
k2

3

τ ′2
e−iKτ

′
e−ε|Kτ

′|, (4.82)

which has the desired exponential damping, and the prefactor comes from

dτ ′

τ ′2
→ dτ ′

(1 + iε)τ ′2
. (4.83)

Applying this regularisation does not give additional terms and it does not
modify existing terms, other than sending any boundary terms on τ ′ = −∞ to
zero (which was the goal of the regularisation). Therefore, calculating the unreg-
ularised expression with neglected boundary terms is equivalent to calculating
the regularised integral.

The rest of the calculation will proceed using the unregularised form and
boundary terms at −∞ will be discarded. At this point, it can also be seen
that the two integrals in eq. (4.80) are complex conjugates, so in fact only one
needs to be calculated and regularised, after which the other one directly follows
by complex conjugation. Because the first (−-contour) is subtracted from the
other (+-contour), the complex conjugate is not even directly needed, as it is
equivalent to taking the imaginary part: z − z∗ = 2i=(z).

Solving the time integrals

There are three different types of integrals in eq. (4.80) that need to be solved:

I1(τ) =

∫ τ

−∞
dτ ′ e−iKτ

′
, (4.84)

I2(τ) =

∫ τ

−∞
dτ ′

1

τ ′
e−iKτ

′
, (4.85)

I3(τ) =

∫ τ

−∞
dτ ′

1

τ ′2
e−iKτ

′
. (4.86)

The first can be solved directly and with regularisation applied becomes:

I1(τ) =

[
ie−iKτ

′

K

]τ
−∞

−→ ie−iKτ

K
. (4.87)
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The second is proportional to a named integral called the ‘Exponential Integral’,
Ei,

Ei(x) = −
∫ ∞
−x

e−t

t
dt, (4.88)

or its complex equivalent,

E1(z) =

∫ ∞
z

e−t

t
dt. (4.89)

This function has a branch cut, typically chosen to be (−∞, 0) over which it
jumps by iπ when going from the upper-half plane to the lower-half plane. The
integral can be rewritten to match the desired form:

iKτ ′ = t ⇔ τ ′ = −it/K, (4.90)

E1(z) = −
∫ −iz/K
−i∞/K

e−iKτ
′

τ ′
dτ ′. (4.91)

The function E1 is holomorphic on its domain (C without the branch cut) and
therefore the complex equivalent of the fundamental theorem of calculus applies,
with E1 an antiderivative for the integrand, such that

I2(τ) =

∫ τ

−∞
dτ ′

1

τ ′
e−iKτ

′
= − (E1(iKτ)− E1(−iK∞)) . (4.92)

The exponential integral has the limit

lim
z→±i∞

E1(z) = ±iπ, (4.93)

but this is not even needed here because of the applied regularisation, giving
the result

I2(τ) = −E1(iKτ) + iπ −→ −E1(iKτ). (4.94)

The third integral, I3, can be reduced to the second case:

I3(τ) =

∫ τ

−∞
dτ ′

1

τ ′2
e−iKτ

′
=

[
−e−iKτ ′

τ ′

]τ
−∞

− iK
∫ τ

−∞
dτ ′

e−iKτ
′

τ ′

=

[
−e−iKτ ′

τ ′

]τ
−∞

− iKI2(τ)

−→ −e−iKτ

τ
+ iK E1(iKτ).

(4.95)

Expressing eq. (4.80) in terms of these integrals, using the + contour as the
base (which gives an overall minus sign), gives:

η̇∗H
3
∗k

2
3

32ε2∗k
3
1k

3
2k

3
3

=
[
−k1k2 I1(τ) + i(k1 + k2)I2(τ) + I3(τ)

]
+ 2 perm. (4.96)

Filling in the solutions to the integrals then gives

η̇∗H
3
∗k

2
3

32ε2∗k
3
1k

3
2k

3
3

=
[
−k1k2

ie−iKτ

K
+
−e−iKτ

τ
+ ik3 E1(iKτ)

]
+ 2 perm. (4.97)
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To take the imaginary part, the analytic series expansion for E1 can be used; it
is given by

E1(z) = −γ − log z −
∞∑
j=1

(−z)j

jj!
, (4.98)

where γ is the Euler-Mascheroni constant, valid for all z not on the negative
real axis. Using this, the limit for τ approaching 0 is

lim
τ↑0

E1(iKτ) = −γ − log |Kτ |+ i
π

2
. (4.99)

Taking the imaginary part of the E1-term,

={iE1(iKτ)} → −γ − log |Kτ |, (4.100)

so the final time-dependent expression for the bispectrum contribution of the
εη̇-term is

η̇∗H
3
∗k

2
3

32ε2∗k
3
1k

3
2k

3
3

(
−k1k2

cos(Kτ)

K
+

sin(Kτ)

τ
−k3γ−k3 log |Kτ |

)
+2 perm. (4.101)

4.4.5 Issue with convergence

Taking the limit of eq. (4.101) for τ ↑ 0 gives

η̇∗H
3
∗k

2
3

32ε2∗k
3
1k

3
2k

3
3

(
−k1k2

K
+K − k3γ − k3 log |Kτ |

)
+ 2 perm. (4.102)

We see that this term has a problem with convergence, as limτ↑0 log |Kτ | = −∞.
There should be another εη̇-term in the action that can be taken together with
this one to give a convergent result. There is a boundary term in time that
was neglected by Maldacena [20] when deriving the S3 action (via integration
by parts) that also gives an εη̇ term. This term was pointed out by Arroja and
Tanaka [3], who also note that boundary terms in time can offer non-negligible
contributions, as seen in this explicit example. When adding this boundary
term to the action,

Sboundary =

∫
d4x ∂t

(
−εηa

3

2
R2Ṙ

)
, (4.103)

this gives an exactly equal but opposite contribution for εη̇, such that the ‘cor-
rect’ S3 action does not contain an εη̇-term.

Slow-roll corrections to the mode functions

We also investigated if slow-roll corrections to the mode functions, u(k, τ), can
produce εη̇-terms in the bispectrum, but this cannot be the case. The slow-roll
parameters appear in the corrections to u (so in the corrections to R) only via
the combinations given by eq. (A.10). These would then by multiplied by the
slow-roll parameters in front of terms in the S3 action (eq. 3.41), which would
give at the lowest order corrections of O

(
ε4
)
, whereas εη̇ is O

(
ε2
)
. We conclude

that the slow-roll combination εη̇ does not contribute to the bispectrum.
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5.1 Summary

In this thesis, we started with a quick introduction to the CMB, after which
inflation was introduced. The (arguably) simplest model for inflation, the ca-
nonical scalar field with slow-roll potential, was discussed in detail: we showed
how the inflaton coupled to gravity reproduces a period of (isotropic) inflation
and how quantum fluctuations of the inflaton, also called perturbations, can re-
produce the CMB anisotropies. The primary observables, the power spectrum,
bispectrum, and quantities derived from these, of the CMB were defined for
the scalar field and theoretical results from literature were given, along with
their values from measurement data. The definitions of the observables can be
straight-forwardly extended to different single-field models of inflation. One of
the most important theoretical results of inflation in general is that there exist
quantities (modes) that are conserved when outside the Hubble horizon, which
allows perturbations from inflation to be directly related to observed anisotrop-
ies in the CMB. The CMB is statistically homogeneous and isotropic and has a
nearly scale-invariant power spectrum, which directly reduces the physical de-
grees of freedom in the power spectrum and bispectrum. The slow-roll scalar
field critically also reproduces a near scale-invariant power spectrum.

After this review of literature results, we set out to calculate the contribution
of self-interactions of the scalar field to the bispectrum. These contributions are
subleading, as the leading-order bispectrum comes directly from coupling to
gravity, and have not been the subject of literature review in a general setting;
specific examples, such as for resonating potentials with a fixed form, have been
studied in detail. We calculated the leading-order power spectrum and for the
bispectrum the contribution of the εη̇-term from the cubic action (S3), using
general slow-roll assumptions, in the formalism laid out by Maldacena [20]. The
calculation was performed in a generic way, such that it doubles as a general
review of n-point function calculations in this formalism, and can be directly
applied to any term in the S3 action.

We find a log |Kτ | divergence, as τ ↑ 0, for the εη̇-term which cannot be the
final result, as this would mean that the mode does not freeze out. There is a
boundary term in time that exactly cancels the εη̇-term[3]. After investigating
slow-roll corrections to the mode function u(k, τ), we find that these cannot
produce εη̇-corrections to the bispecturm. We conclude that the slow-roll com-
bination εη̇ does not contribute to the bispectrum.

5.2 Beyond the canonical scalar field

The canonical scalar field is the simplest model of inflation, but there are many
other models, both single-field and multi-field, that can offer inflation compat-
ible with current data. Furthermore, there are two ‘issues’ with the simplest
model that may prove it to be false:

1. The non-Guassianities produced are very small, of order O(ε), which
are not detectable from measurement. Any positive detection of non-
Gaussianity in the bispectrum would falsify the simplest model of infla-
tion.

2. From the Lyth bound[19] and its generalisations (e.g. [17][7]), any positive
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detection of tensor modes (gravitational waves) would strongly disfavour
most single scalar field models. Detection of gravitational waves in the
CMB would force φ to become super-planckian (φ > MPl), which makes
it problematic to have the single scalar field model as the effective field
theory of some quantum gravity model.

These are at least two good motivations to look at more general models of
single-field inflation, possibly allowing for multiple fields to be present with one
field determining the background evolution (called ’single-clock’). The effective
field theory of inflation, formulated by Cheung et al. [12], generalises the canon-
ical scalar field to single-clock models and can express all such models in one
formalism. Scalar perturbations arise naturally as Goldstone bosons from the
broken time diffeomorphisms, because the background evolution spontaneously
breaks Lorentz invariance. Using the effective field theory of inflation can give
very general results about classes of single-clock models. For instance, a reduced
speed of sound, cs < 1, directly gives enhanced non-Gaussianity[12] (larger fNL).
Another result is that it allows a generalisation of the Lyth bound to models
beyond the canonical scalar field[7]. A third result is that, by reasoning about
the various energy scales during inflation using this theory, predictions may be
made what kind of effects ‘new’ physics near the Hubble scale may have on
observations[6].

The generality of the method of bispectrum calculation that we used here
means that it can be used also in the effective field theory of inflation to calculate
bispectrum contributions. It would be interesting to investigate in this general
setting if we can derive new relations between observable quantities, such that
restrictions from measurements on the quantities can be combined to give tighter
bounds and possible even rule out classes of inflation models. The extension of
the Lyth bound[17] is an example of such an endeavour, which uses both the
spectral index, ns, and the tensor-to-scalar ratio, r, to tighten the Lyth bound.
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Appendix A

Conformal time and
slow-roll

In this appendix the expression of the conformal time, τ , in terms of aH and the
slow-roll parameters is derived. The starting point is the definition of conformal
time

dτ =
dt

a
, (A.1)

which can be integrated to give

τ − τ0 =

∫ t

t0

dt

a
=

∫ a

a0

da

a2H
=

[
−1

a
· 1

H

]a
a0

−
∫ a

a0

da
Ḣ

aH2

dt

da
, (A.2)

using first da = aH dt and then partially integrating a−2. Choose (τ0, a0) such
that the a0-boundary term on the right cancels against τ0, giving

τ =
−1

aH
+

∫ a

a0

da
ε

a2H
. (A.3)

This is a recursive expression for τ , where at each step the integral

Iτ,n =

∫ a

a0

da
1

a2

fn
H
, (A.4)

needs to be solved for the function fn that is given by the previous iteration,
with f0 = 1 and f1 = ε. Following the same steps as for τ gives a recurisve
relation for Iτ ,

Iτ,n =

[
−1

a
· fn
H

]a
a0

+

∫ a

a0

da
εfn + ḟn/H

a2H
. (A.5)

Therefore, the problem can be written as the solution of a recursive relation:

τ − τ0 = Iτ,0, (A.6)

Iτ,n =

[
−1

aH
· fn
]a
a0

+ Iτ,n+1, (A.7)

fn+1 = εfn + ḟn/H, (A.8)

f0 = 1. (A.9)
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APPENDIX A. CONFORMAL TIME AND SLOW-ROLL

The function fn is a polynomial in slow-roll parameters of exactly order n. This
can be seen by how the tower of slow-roll parameters {pn} is defined when using
Hubble slow-roll parameters:

pn+1 =
ṗn
pnH

⇔ pnpn+1 = ṗn/H, p0 = ε.

Therefore, each Iτ,n starts at order n in slow-roll and the series expression for τ
can be truncated after the desired precision in slow-roll is reached. The freedom
to choose (τ0, a0) can again be used to cancel all a0-boundary terms in the
truncation. The expression for τ , expressed up to third order, is:

τ =
−1

aH

(
1 + ε+ ε2 + εη + ε3 + 2ε2η + εη2 + εηξ +O

(
ε4
))
. (A.10)
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