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Abstract

In this thesis we investigate whether bitmap compression techniques
could be useful data structures to represent vertex sets, for treewidth
algorithms on large graphs. We consider bitmap compression techniques
Roaring Bitmap and EWAH, and compare them with two more commonly
used graph data structures: the bitmap and the array of integers. We
investigate the behaviour of the data structures in two experiments. In
the first, we investigate their computation time and memory consumption
of typical vertex sets in the computation of separated components. In the
second, we compare their performance on the Minimal Minimum Degree
algorithm. We find that the array of integers representation performs
best. However, as typical vertex sets that the data structures have to deal
with get denser and more diverse, we observe that Roaring Bitmap starts
to perform better.
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1 Introduction

Developments in technology lead to rapid growth in the aggregation and ap-
plication of data. This gives rise to the need for efficient algorithms that are
able to handle large data sets. A fruitful approach to model large amounts of
data makes use of a graph (a.k.a. ”network”) representation. Graphs are useful
tools to model all kinds relational data. They find applications from biology
(protein interactions) [37] and social sciences (relations between people) [21] to
linguistics (co-occurence of words) [12].

Many computational problems on graphs have been shown to be NP-hard.
This means that it is not possible to find algorithms that run in polynomial
time with respect to the size of the problem, unless P = NP . Instead, we often
have to rely on exponential time algorithms, which generally do not scale well to
large problem instances. A lot a research is dedicated to making these problems
tractable. One such approach makes use the treewidth of a graph. Intuitively,
treewidth says something about how closely a graph resembles a tree. Formally
there are multiple ways to characterize treewidth [8, 9], the most commonly
used being the tree decomposition. Having a tree decomposition of a graph of
small width can lead to efficient algorithms that make use of bottom-up dynamic
programming. They run exponentially with respect to treewidth, while running
polynomially or often even linearly with respect to the problem size. It has for
example been shown that for a graph G of treewidth k, it can be determined in
O(nk+1) time whether a graph H of size n has a subgraph that is isomorphic
to G [31]. This means that for graphs of small treewidth this problem becomes
efficiently solvable. Some other famous problems that become efficiently solvable
for graphs of small treewidth are Hamiltonian Circuit, Independent Set, and
Vertex Cover.

Many different algorithms that compute the treewidth of a graph have been
proposed, see 2.1 for a concise overview. The difficulty of computing treewidth
is clearly shown by the fact that it is rare for state of the art exact algorithms to
solve problem instances larger than 1000 vertices [19]. This has led to the search
for heuristic algorithms that find good upper bounds on the treewidth. This
approach is based on the idea that the time saved on constructing an optimal
tree decomposition, could be better spent on other parts of the problem.

Many such algorithms need to represent partial graphs, which is usually
done by representing the corresponding vertices. Especially algorithms based on
dynamic programming on separators and connected components can make heavy
use of vertex sets [11, 36]. Efficient ways to represent and perform operations
on them could be a way to improve those algorithms in both memory and time
consumption.

One commonly used approach of storing vertex sets is to make use of bitmaps,
which store information as a sequence of bits. Bitmaps also happen to find em-
ployment in storing large amounts of data in databases, and a lot of research
has been done to find efficient bitmap compression techniques [14, 38]. In a
database, data structures have to consume little memory, while still allowing
for fast query operations. These operations often require simple logical oper-
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ations, such as intersections and unions between sets. Since these operations
also find frequent use in treewidth algorithms, bitmap compression techniques
might also prove useful for treewidth algorithms.

The main goal of the thesis will be to investigate bitmap compression tech-
niques for treewidth algorithms, in their performance for large graphs. Hope-
fully this can improve implementations of algorithms such that they are able
to handle larger and more diverse graph instances, making them more widely
usable.

The bitmap compression techniques we consider are EWAH and Roaring
Bitmap. We use these techniques because Wang et al. [38] studied both the
memory consumption and time efficiency for a large number of bitmap compres-
sion techniques. They compared them with inverted list compression techniques,
with respect to their performance on space overhead, decompression time, in-
tersection time, and union time. For the bitmap compression techniques they
found that Roaring Bitmaps performed best, followed by EWAH. Since graph
algorithms often make use of simple set operations, we expect that their results
give an indication of what works well in our experiments. We compare Roaring
Bitmaps and EWAH with the data structures that are commonly used in con-
text of graphs, namely the array of integers and the regular bitmap. Note that
the array of integers is closely related to inverted list compression techniques,
since the latter is basically a compression of the first.

One of the reasons for this research is to further improve the HBT algorithm
by prof. Tamaki [35], which is a heuristic treewidth algorithm that makes use
of dynamic programming. We base most of the research on this algorithm,
with the aim that the results might provide improvements on this particular
algorithm. Still, it is important to note that the result are also applicable and
can possibly be extended to other algorithms.

Since HBT is quite a complicated algorithm, implementing all the data struc-
tures is costly. For this reason we develop the so-called Benchmark Experiment,
that simulates the most time-consuming operation in HBT, as well as the typical
vertex sets that it has to store. In this experiment we investigate the computa-
tion of the components separated by the set of separators. To make sure that
we get a broader insight in how the data structures deal with such a task, we
compare them in two different algorithms in the Benchmark Experiment. The
first makes use of a regular Breadth First Search algorithm, the second one com-
putes the separated components by making use of many logical operations. We
compare the data structure/algorithm pairs on four measures: the time it takes
to compute the separated components, the memory required to store the graph,
the set of separators, and the set of components that the separator separate.
This way we not only get a sense of which data structures are efficient time
wise, we also get a sense of which data structures are efficient in storing typical
vertex sets.

In a second experiment we compare the data structures when they are im-
plemented in the Minimal Minimum Degree algorithm (MMD Algorithm) [5].
This algorithm computes a minimal triangulation of a graph in a greedy fashion,
by making use of the computation of separated components. Note that obtain-
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ing a tree decomposition from a triangulated graph is a trivial operation. We
compare the data structures on the time it takes to complete the algorithm, the
memory required to store the resulting triangulated graph, and an indication
of the maximum memory required. We use this second experiment to observe
how the data structures operate in a serious treewidth problem. Furthermore,
we expect that it also tells us something about the predictive behavior of the
Benchmark Experiment. The idea is that if the data structure performs well
in the Benchmark Experiment, it is also likely to perform well in the MMD
Experiment. More generally, such data structures are likely to perform well in
algorithms that make use of component computations or have to store large
amounts of vertex sets, such as the HBT algorithm.

Treewidth algorithms often operate on graphs of small treewidth. Since they
run exponentially in treewidth, they would otherwise not lead to efficient algo-
rithms. Graph of small treewidth are usually sparse and have a large clustering
coefficient [18]. For this reason we will construct a benchmark for experimenting
with treewidth algorithms. This benchmark consists of random partial 40-trees,
which are graphs with treewidth at most 40.

This thesis starts with a literature study, which explains the context of our
experiments. Then we describe the data structures, graphs, and experiments
in more detail in the methodology. We continue with describing the outcome
of the experiments and finally get to our conclusions and the discussion of our
results.

2 Literature study

2.1 Treewidth

Treewidth is one of the most well studied graph parameters. The term was
first introduced by Robertson and Seymour in their study on graph minors [32].
Though a number of equivalent definitions had already been shown to exist [8].
The most common and useful definition of treewidth is by a tree decomposition
[32].

Definition 2.1 (Tree decomposition). Let G = (V,E) be a graph. A tree
decomposition of G is a tree T , such that each node in T has a ’bag’ associated
with it containing one or more vertices in G, such that:

� Each v ∈ V (G) is contained in at least one bag.

� For each edge (v, w) ∈ E(G) there is at least one bag containing both v
and w.

� All the bags containing a vertex form a connected subtree in T .

The width of a tree decomposition is the size of its largest bag minus one.
The treewidth of a graph is the minimal width over all tree decompositions. For
an example of a graph and a tree decomposition of width two, see Figure 1.
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Figure 1: A graph (top) and an optimal tree decomposition (bottom) [1]

Other ways to define treewidth are based on graph triangulations, perfect
elimination orderings, among many others. For details see [9] and [8].

Treewidth is such an effective graph parameter for FPT algorithms because
it often enables efficient dynamic programming algorithms. These algorithms
are of the following form: first compute a tree decomposition of the graph, then
solve the problem using dynamic programming on the tree decomposition [4].
The reason this approach is successful comes from the fact that for each bag in
the tree decomposition, the nodes corresponding to that bag form a separator
in the original graph G.

Definition 2.2 (Separator). Let G be a graph. Then a separator is a vertex
set S, such that G \ S is disconnected.

Definition 2.3 (Minimal separator). Let G be a graph and S be a separator.
We say that S is an a-b separator if vertices a and b are separated by S. This
means that a and b are connected in G, but not in G\S. A separator is minimal
if and only if ∃a, b ∈ G such that S is an a-b separator and ∀s ∈ S we have that
S \ {s} does not separate a and b.

So if we remove all vertices in a bag B from G, denoted as G \ B, we get
two separated subgraphs, also know as connected components and separated
components. It is important to note that the open neighborhood of such a
separated component is a minimal separator, as we will be computing these
minimal separators in the MMD Algorithm. For problems which are FPT in
treewidth, we can usually first solve the problem on these separated subgraphs
and then combine the solutions with a function that only depends on the vertices
in B.
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To get a bit more familiar with treewidth, let’s consider a tree, which actu-
ally is the same as a graph with treewidth 1. Many tree algorithms use the fact
that a single node separates the graph in multiple subgraphs. Recursively com-
bining the results of these subgraphs in the separating nodes, lead to bottom
up dynamic programming algorithms.

Generally, when considering algorithms that are FPT in treewidth and we
have a tree decomposition of treewidth k, this leads to algorithms that runs
exponentially in the size of the bag and polynomially, and often even linearly,
in the size of the graph. This leads to algorithms with worst case running time
of O∗(f(k)), where f(k) is some exponential function of treewidth k.

2.2 Treewidth algorithms

Computing treewidth has been shown to be a NP-complete problem [2]. So there
is little hope of finding algorithms that run in polynomial time. Theoretically,
the fastest algorithm found thus far run in time O∗(1.7347n) [20], and time

linear in graph size and kO(k3) in treewidth [7]. Experimentally, state of the
art exact treewidth algorithms are able to solve problem instances up to size
1000 within about 100 seconds, as seen in the 2017 PACE challenge for exact
treewidth [19].

Another field is the finding of good heuristic treewidth algorithms. These
algorithms do not find optimal solutions, but instead look for a decent approxi-
mation and require lower running time. This approach is based on the idea that
the time saved on constructing an optimal tree decomposition, could be spent
more effectively on different parts of the problem. Broadly speaking, there are
two main branches of heuristic treewidth algorithms [9]. The first approach
constructs a perfect elimination ordering, often leading to greedy algorithms,
while the second approach makes use of separators.

2.2.1 Elimination ordering

It is possible to triangulate a graph based on any ordering of the vertices [9]. The
idea is that if we form each vertex into a clique with all its neighbors that are
after it in the ordering, we get a triangulation of the graph. It has been shown
that a triangulated - or chordal - graph has a treewidth of the size of the largest
clique minus one [9]. This gives rise to algorithms that compute treewidth by
constructing the so-called elimination ordering in some smart way, such that
the corresponding triangulated graph has a small largest clique and thus a small
treewidth.

Definition 2.4 (Chordal graph). A graph G is chordal, or triangulated, if and
only if every cycle in G of size ≥ 4 has a chord, connecting two non adjacent
vertices of the cycle.

An effective approach is to make use of a greedy heuristic. This goes as
follows. Recursively select a vertex from the graph, based on some criteria,
then fill its neighborhood into a clique and remove the vertex from the graph.
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Different vertex selection criteria have been proposed. Two examples are the
Minimum Degree heuristic (MD) [30], which chooses a vertex of lowest degree,
and the Minimum Fill In heuristic [24], which chooses a vertex such that a
minimum amount of edges have to be added.

Other approaches make use of multiple variants of local search; see [15] for an
example that uses Tabu search. The QuickBB algorithm searches the space of
perfect elimination orderings by making use of a branch and bound scheme [22].
Note that a perfect elimination ordering indicates that it is the case that each
vertex forms a clique with all its neighbors that are after it in the elimination
ordering.

2.2.2 Separators

The second key approach makes use of separators. One approach finds minimal
separators and forms them into a clique, this way building a triangulation of
the graph [10]. The Minimum Separator Vertex Sets heuristic [25] uses a top
down decomposition approach. It starts with a simple tree decomposition and
recursively replaces the largest bag with smaller ones by making use of minimum
separators in that bag. Ben Strasser’s second place submission to the PACE
2017 heuristic treewidth competition is a recent example of such a top down
approach [19]. It decomposes the graph with a graph bisection algorithm that
makes use of maximum flow [33].

Another promising recent approach uses dynamic programming to recur-
sively split the graph in components, separated by some separator, after which
the tree decompositions of the components are glued together. This approach
won the first place prize in the PACE 2017 competition [19]. An example of
this approach is the heuristic version of [34], which iteratively improves an upper
bound by considering a subset of the minimal separators. The HBT algorithm
is another example [35], which heuristically uses the Bouchitté and Todinca
algorithm [11].

Especially the algorithms that make use of dynamic programming have to
store large amounts of vertex sets. These vertex sets range from very sparse,
when representing separators, to very dense, when representing the separated
components. When dealing with large graphs this gives rise to the need for
efficient data structures to store them. As mentioned, this is one of the main
reasons that we look into bitmap compression techniques.

2.2.3 Elimination ordering and separators

There are even algorithms that combine the two approaches. We will discuss
one such approach we will be using in this thesis. The algorithm is called
the Minimal Minimum Degree algorithm (MMD) [5]. It is based on the MD
heuristic, described above, and gives a triangulation of the graph. The idea of
the MMD algorithm is that we run the MD heuristic. But when we eliminate a
vertex v, so when we fill the neighborhood of v into a clique and remove it from
the graph, we do not fill the neighborhood into a clique. Instead we consider
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Figure 2: Bitmap compression techniques [14]

minimal separators of the graph inside the neighborhood of v and form only
form them into cliques, before eliminating the vertex. It turns out that MMD
adds fewer edges than MD to get to a triangulation.

2.3 Bitmap compression

Bitmaps, or bit sets, are a way to store information as a sequence of bits.
They can be used to implement simple set data structures, for example sets
of numbers, character traits, or in our case, vertex sets. The i-th bit of the
bitmap is ’true’ if the set contains the item or value corresponding to that bit.
Otherwise the i-th bit is ’false’. Bitmap operations can be very efficient, since
implementations can make use of parallel computing in the processor: 64-bit
computers are able to perform 64 bitwise operations simultaneously.

Because bitmaps are an efficient way to store large amounts of information
they have attracted attention in the field of databases. Databases need to store
large amounts of information and support fast query operations. To improve
memory consumption and speed of operations, numerous bitmap compression
methods have been proposed to improve bitmaps. See Figure 2 for overview of
different compression techniques and [38] and [14] for two surveys of the field. In
what follows we briefly describe the main characteristics of bitmap compression
techniques.

The approach first proposed is called run length encoding (RLE). RLE looks
for runs of consecutive bits containing only ones or only zeros, and replaces them
with a marker that indicates which value is being repeated, and how many
repetitions there are. For example the sequence 1111000000, which contains
four ones and then six zeros, can become 4160. See [3] for an example.

Most methods try to make use of the efficient parallel computing offered by
bitmaps. The first to propose this technique used chunks of bytes for encod-
ing, leading to Byte-aligned Bitmap Compression (BBC) [23]. Extending the
chunks to 32 or 64 bits, however, quickly led to faster operations. This gave rise
to Word-aligned bitmap compression techniques, such as WAH, EWAH, and
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Figure 3: Example of WAH encoding. Top: the original bit set. Middle: the
division into groups. Bottom: the encoding (three literals, one fill group com-
pression).

Figure 4: Example of EWAH encoding. Top: the original bit set. Middle: the
division into groups. Bottom: the encoding (two marker words and two literal
words).

CONCISE [40, 27, 16].
WAH stands for Word Aligned Hybrid [40]. It encodes sequences of 31 bits

(63 bits for WAH 64) into groups. There are two types of groups. The first bit
of a group indicates of which type it is. 0 indicates a ‘literal group‘, meaning
that the 31 bits are a mix of ones and zeros. Literal groups are not encoded.
1 indicates a ‘fill group‘, meaning that the 31 bits are all ones or all zeros.
The number of repeating fill groups is encoded as follows. The first bit is 1,
indicating the fill group. The second bit indicates whether the bits are all one
(1) or all zero (0). The next 30 bits indicate how many repeating fill groups we
have. See Figure 3 for an example of WAH encoding.

Enhanced WAH [27], or EWAH, works in similar fashion. It divides an
uncompressed bitmap into 32-bit (or 64-bit) groups. It encodes a sequence of p
fill groups and q literal groups into one marker word followed by q literal words.
The literal words are again stored in the original form. The marker word stores
the following information. The first bit indicates the type of fill group (ones
or zeros), bits 2-17 represent p, bits 18-32 represent q. An example of EWAH
encoding is shown in Figure 4.

In 2016 a different approach was introduced, called Roaring Bitmap (Roar-
ing) [13]. Roaring uses a hybrid data structure. It divides the original bitmap
into chunks of size 216 and distinguishes between dense and sparse chunks. The
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Figure 5: Example of Roaring encoding. Top: original bit set. Second row:
division into chunks. Third row: Roaring. Bottom: RoaringRun.

threshold between dense and sparse lies at 212 1-bits. Dense chunks are encoded
as the original bitmap. Sparse chunks indicate the location of the 1-bits as an
array of Short numbers, by storing integer i for the i-th bit.

To reduce memory usage, Roaring has an option to include a third kind of
chunk. These chunks are represented by RLE. If Roaring makes use of this
option, called run optimization, chunks are transformed to RLE chunks if this
reduces memory usage. Figure 5 shows an example with adjusted chunk size
and threshold value. Note that RLE is only performed in the case that memory
is reduced, in this case the amount of Short numbers that has to be stored is
reduced by one.

3 Methodology

In this section we describe the methods we use. We start with describing the
data structures in more detail. Secondly we explain how we construct the graphs
we will perform the experiments on. Then we discuss the setup of the benchmark
experiment and the MMD experiment. Finally we devote a couple of words to
how we perform the measurements.

3.1 Data structures

The goal of our research is to look into data structures that can be used to rep-
resent vertex sets in graphs. As mentioned earlier, Wang et al. [38] found that
Roaring Bitmaps performed best, followed by EWAH when they investigated the
memory consumption and time efficiency for basic logical operations for a large
number of bitmap compression techniques. Since we believe that these results
are likely to translate to graph algorithms, we use Roaring Bitmaps and EWAH
for our experiments. We compared them with two more commonly used vertex
set representations, arrays of integers and a regular bitmap implementation.

In this section we discuss the implementation details of the data structures
and say something about their memory consumption. At the end of this section
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we say something about the functions used to optimize performance of the data
structures and how we made sure that these data are compared in fair fashion.

3.1.1 Sorted arrays of Integer numbers

Sorted arrays of Integer numbers, from here on indicated with ’Ints’, store a
vertex set simply as a sorted set of the vertex IDs in an array of Integer numbers.
Storing the third, fifth, and eighth vertex would be represented by the array
[3, 5, 8]. Note that this means that the array has length three, so there are no
unassigned array elements. In Java this is instantiated by ’new int[3]’.

The memory required to store Ints consists of some memory for the object,
an array in this case, combined with 32 bits for each vertex in the set. Since the
memory required to store a single vertex is relatively large, Ints are inefficient
for storing large vertex sets. For example, when we want to store the full vertex
set of a graph with size a million, Ints would have to store 32 million bits. As
a comparison, a bitmap would only need a million bits, one bit for each vertex.

On the other hand, for small vertex sets Ints have the advantage over (com-
pressed) bitmaps that it only has to store the vertices and does not have to
allocate any memory for vertices not present in the vertex set. This makes Ints
efficient in storing small vertex sets. For storing the empty vertex set, Ints would
only have to allocate memory for the empty array. While a bitmap would still
have to store a bit for each vertex in the graph, as well as the bitmap object.
For a graph with size a million and leaving object overhead out of account, this
would result in a difference of a million bits for a bitmap and 0 bits for Ints.

3.1.2 Uncompressed bitmaps

Uncompressed bitmaps - from here on simple denoted as bitmaps - store a vertex
set as set of bits. Each vertex is allocated to a single bit. So a bitmap contains
a number of bits equal to the number of vertices in the graph. Bitmaps excel at
storing random data of medium density. However, for storing highly structured
data, bitmaps are not an efficient data structure. For example, when considering
a vertex set that consists of a single vertex, it is not efficient to store all vertices
that are not present for a graph of size a million. In such cases Ints or bitmap
compression techniques are expected to be more efficient.

The implementation for uncompressed bitmaps that we use is called XBitSet.
This implementation is developed by Prof. Tamaki and extends Java’s Bitset
implementation. The reason that we use this implementation is due to the fact
that a couple of algorithms that we use are based on algorithms provided by
Prof. Tamaki which were implemented in XBitSet.

An XBitSet is stored as an array of Long numbers (64 bits). The memory
used by this implementation is composed of the overhead to store the array and
64 bits for each long number.
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3.1.3 EWAH

Of all the data structures under consideration, EWAH benefits the most from
structure in the data. For data that does not contain stretches of ones or zeros
that that are at least size 32 (or 64), it performs strictly worse than a regular
bitmap. However, for data that contains large stretches of ones and zeros,
EWAH can lead to significant improvements over bitmap.

We use the JavaEWAH implementation by Lemire et al. [29]. In this imple-
mentation EWAH is also stored as an array of Long numbers. So the blocks are
of size 64. Note that there is also a version available for blocks of size 32. The
authors note that this implementation is more efficient memory wise, but less
efficient time wise. For this reason, we chose to work with the version in which
blocks have a size of 64.

Similarly to bitmap the memory consumption is built up from the array and
the Long numbers. An important thing to note is that EWAH uses dynamic
memory allocation. It does not store the zeros that appear after the vertex with
the largest ID. If a vertex with an even larger ID is added, the range of the
EWAH data structure is extended to deal with this. All methods on EWAH
run efficiently with this.

3.1.4 Roaring Bitmap

Roaring seems to be the data structure that is most widely applicable. Because
it handles chunks of different density differently, it is able to handle both very
sparse and dense graphs, as well as graphs of medium density. Roaring stores a
vertex set as an array of objects. Each of these objects corresponds to a chunk.
Depending on the density of the chunk, it is either a bitmap or an array of
Short numbers. When we use RoaringRun, a chunk can also be represented
as a run length encoding. Because Roaring stores the vertex set as an array
of objects - each chunk is an object, it requires relatively a lot of memory for
object overhead.

We use the implementation by Lemire et al. [28], which uses chunks of size
216. So each each chunk is able to store up to 216 = 65.536 vertices. If the
chunk is stored as an array of Shorts or as RLE, the chunk is stored as an array
of Short numbers. If the chunk is stored as a bitmap, it is stored as an array of
Long numbers.

It is important to note that each chunk only stores values 0 to 216 − 1. The
other information is deduced from the chunk the value is in. This means that if
we would want to store the vertex with ID 100.000 in a chunk that is represented
as an array of Shorts, the number 34.464 would be stored in the second chunk.
The fact that this number resides in the second chunk provides the information
that we have to add 216 to 34.464 to get the vertex ID.

We also consider a number of special cases of Roaring. First of all, we con-
sidered Roaring both with and without run optimization. We indicate Roaring
without run optimization with ’Roaring’ and Roaring with run optimization
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with ’RoaringRun’. We also experiment with Roaring using different chunk
sizes. We use chunk sizes of 210, 212, 214, and 216. The corresponding imple-
mentations of Roaring are indicated with Roaring10, ..., Roaring16, and Roar-
ingRun10, ..., RoaringRun16.

Note that in certain situations, regular Roaring can also make use of a chunk
that is represented with RLE. This only happens when a chunk is completely
full, so when all vertices are present in the set.

It was not straightforward to adapt Roaring to handle different chunk sizes.
The code was hardwired to contain the numbers 16 and 216. We had to figure
out which of these had to be adjusted and which had to be kept as they were.
In total, adjustments were made to about six different classes.

After spending about four weeks on getting Roaring fully adjusted, we still
did not manage to get all teething problems fixed. One large problem that still
remains is that for RoaringX - where X is the variable that indicates the chunk
length - we are not able to handle graphs that are larger than 22X . For example
for Roaring10 220 = 1.048.576. This is due to the fact that original Roaring
is only meant to deal with Java unsigned integers, so its maximal reach is 232.
This should be able to be improved up to at least graph sizes of 216+X , for
RoaringX, since the amount of chunks that can be represented by RoaringX
should not be influenced by X. Each type of Roaring should be able to contain
216 chunks. However, we changed this value 16 to be equal to X and with
the limited amount of time in mind we decided not to fully optimize this and
continue with the experiments. Because of this Roaring10 is not able to the
handle the largest graphs under consideration.

Another thing to note is that for Roaring16 the chunks that are represented
by an array of Shorts or RLE are fully optimized. This is because the numbers
are represented by Shorts and the maximum value that a number in such a chunk
can represent corresponds to the maximum value of a Short (216). However, for
Roaring10 the maximum number that has to be represented is 210, which is way
less than the maximum number of a Short. So it structurally deals with quite
a lot of unused stored memory. Perhaps a custom data type, which is able to
represent numbers of up to 210, could result in a further improvement of Roaring
with a small chunk size. Note that chunks that were represented with a bitmap
did not see this problem, as the bitmaps were easily adopted to have the proper
length (2X for RoaringX). In any case it is important to keep in mind that in
some respects Roaring16 is more optimized than the version with smaller chunk
size.

3.1.5 Checks on data structures

Before we were able to start the experiments, we had to make sure that the
data structures function properly and at their best performance. So we checked
whether each of the data structures gave the same outcome for the experiments
and we checked that binary operations between two sets gave the same outcomes.
We also made sure that we use the most efficient way to iterate through vertex
sets, since that is the action that the data structures have to perform frequently.
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We verified that the data structures gave similar outcomes in the Benchmark
Experiment by checking that the computed separated components coincided.
For the MMD Experiment we checked that the number of edges that we added
to construct the triangulated graph coincided.

For the second and third of these checks we constructed lists of random
numbers of size 100 to 1.000.000. We tested the binary operations that we use
in the experiments, which are AND, ANDNOT, and OR. We concluded that all
data structures gave the same results after the logical operations of two sets.

For iterating through a set we did the following tests. For Ints we used a
simple for loop. For XBitSet we tested the functions for (i in set) and a for
loop in combination with nextSetBit(). These gave similar results, we used the
second option. For EWAH we tested the for loop in combination with getFirst-
SetBit() and the iterators IntIteratorImpl(), intIterator(). Since the iterator
intIterator() performed best, we used it. For Roaring we performed these test
for Roaring16. We tested the for loop with the function nextValue(), the iter-
ator getIntIterator(), and the function forEach(new IntConsumer() public void
accept(int v) ;). Since the iterator getIntIterator() performed best, we use it.

It is important to note that the above experiment was not meant to give
decisive evidence to use one type of sets of iterator over the other. It was meant
as a quick check of what performed best in this situation. Since the sets we are
dealing with in the experiments are unordered as well, we expect them to give a
decent indication of what works well. But if you plan on using the data structure
yourself, we recommend performing your own experiments for deciding on a set
iterator.

Finally we performed a preliminary check for Roaring, in which we made
sure that the amount of chunks was correct. For example, for a graph of size
40,000, Roaring16 would have a single chunk, while Roaring14 would have three
chunks. These checks succeeded.

3.2 Graphs

In this section we discuss the graphs that we use for our experiments. The most
important trait of the graphs is that treewidth could be a useful tool on them.
For this reason we chose sparse graphs. Initially, we wanted to use three different
sets of graphs and perform the experiments on all three of them. These were
the instances of the 2017 PACE heuristic treewidth track, random Erdős–Rényi
graphs, and random partial k-trees. In the end we decided only to use random
partial k-trees, which we will describe in section 3.2.1.

The Erdős–Rényi random graphs turned out not to be useful for our pur-
poses, since they have a huge treewidth. When using the Minimum Degree al-
gorithm the width of the computed tree decomposition turned out to be about a
third of the graph size. This made it not only not representative for our intents
and purposes, it also resulted in large computation times. For graphs of size
64,000, the Minimum Degree algorithm took about a day to compute a tree
decomposition.
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The instances of the 2017 PACE heuristic treewidth track are very relevant
for comparing the performance of different treewidth algorithms. They consist
of graphs from a range of problems where treewidth algorithms can be useful,
such as SAT problems and road networks. All PACE 2017 graphs have been
cleaned in the following way. Vertices of degree one are removed and for vertices
of degree two its neighbors are connected and then it is removed. This is done
because these subgraphs result in trivial partial tree decompositions. Finally
only the largest connected component is kept. The graphs range in cardinality
between 82 and 4.732.056 and in number of edges between 146 and 18.105.276.

Despite the fact that it would definitely be worthwhile to investigate the
performance of the data structures on these graphs, we decided to go for partial
k-trees, or PKTs. The reason for this is that PKTs are very consistent in the
way they behave. This makes it easier to see trends in the behaviour of the data
structures. It would be interesting to compare the results on the PKTs with the
results on the PACE instances. However, computation time was an important
factor. So we chose to value the fact that we could include larger graphs over
the fact that we could compare the different graphs instances, in line with the
goal of the project to consider huge graphs.

3.2.1 Partial k-trees

A k-tree is a graph that is constructed as follows. It starts as a complete graph
of size k + 1 and each additional vertex v that is added gets connected to each
member of a clique in the graph of size k. A partial k-tree is a subgraph of
a k-tree. K-trees have a treewidth of k. This can easily be shown, because
the tree decomposition that consists of bags which correspond to the maximal
cliques has a width of k. Partial k-trees have a treewidth less than or equal to
k. For a treewidth of width k the same tree decomposition can be considered.

To construct the PKTs we first construct the backbone of the k-tree, which
corresponds to the structure of how the maximal cliques are connected. This
way, each vertex in the backbone represents a k + 1 clique in the k-tree. To
construct this backbone we create a spanning tree of a complete graph of size
n − k using Wilson’s algorithm. Wilson’s algorithm [39] recursively does the
following: start at a random vertex that has not been visited yet and perform a
random walk until it reaches a vertex that has been visited. Connecting these
random walks results in a spanning tree of the graph. Remember that in our
case we compute the random spanning tree for a complete graph.

We then basically connect the cliques according to the spanning tree, as if
we create a k-tree, but we do this partially. This means that we only add a
fraction of the edges. We start at the root of the tree with a clique of size k+1.
To add a neighboring partial clique in the spanning tree we do the following.
We add a new vertex to the graph and for each of the vertices in the neighboring
partial clique we create an edge between that vertex and the new vertex with
probability p.

We construct PKTs for the following parameters k = 40 , p = 0.075, n ∈
{96, ⌊96∗1.1⌋, ⌊⌊96∗1.1⌋∗1.1⌋, ..., 4.817.330}. We chose this value for k because
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the treewidth is limited this way, but the graphs are still quite complex. This
way they are still able to represent large variety of problems. However, for many
treewidth computations, a treewidth of 40 can already be too large. So when
using these benchmark graphs, it could be worthwhile to consider a lower value
for k.

We then chose the value of p such that the graph turned out to be relatively
sparse. We cleaned the PKTs similarly to the PACE instances, such that the
graphs did not contain vertices of degree one or two and consisted of a single
connected component. For large values of p we found that, after cleaning the
graph, the amount of vertices that remained did not differ much. For this
value of p we found a significant drop in the number of vertices that remained,
indicating that many edges are crucial to sustain the cleaned graph. So for this
value of p, the graph was in some way close to sparse as can be.

This resulted in graphs of size 77 up to 3.298.946, with the amount of edges
being about a factor six larger than the number of vertices. Note that these
graphs are smaller than the parameter n used for their construction, due to the
cleaning of the graph. Also note that for both experiments we use a subset of
the constructed partial k-trees.

3.3 Benchmark Experiment

In the Benchmark Experiment we try to mimic the most important operations
in both HBT and MMD. In both algorithms the most heavy computations are
to compute minimal separators in a separator. To do this they basically com-
pute the components that the separator separates, these components are called
separated components. The open neighborhood of such a separated component
is the minimal separator that the algorithms use.

To mimic this operation we do the following. We start with a set of separa-
tors, which we obtain from the Minimum Degree heuristic. For these separators
we compute the separated components. We can then measure the amount of
time these computations take and the amount of memory is needed to store
the graphs, separators, and separated components. This way we get a sense of
which data structures are quick for this operation and which data structures are
efficient for storing different types of vertex sets.

3.3.1 Separators

In this section we will describe how we obtain the set of separators to perform
the Benchmark experiment with. To compute the set of separators we make
use of the Minimum Degree heuristic (MD) [30], as introduced in section 2.1.
We compute a tree decomposition T of the graph with MD. Then we know that
the vertex set that corresponds to each of the bags in T is a separator of the
graph, a general property of tree decompositions. We use these vertex sets as
separators for our experiment.

As a quick recap, Minimum Degree heuristic recursively selects the vertex
from the graph that has the lowest degree. The neighborhood of the selected
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vertex is filled into a clique and then the vertex is removed from the graph.
See Algorithm 1. Constructing the tree decomposition is straightforward: each
eliminated vertex with its neighborhood at the time of deletion forms a bag.

In 2019 Cummings et al. [17] showed that an O(nm) algorithm exists for the
Minimum Degree heuristic. Our implementation, however, makes use of a more
straightforward approach and runs in O(n3). It is based on an implementation
of a different treewidth heuristic, Minimum Average Fill, provided by Prof.
Tamaki. We changed the heuristic and did several adjustments to improve the
running time and memory efficiency, such that it is able to effectively deal with
large graphs. Note that we clearly specify which vertex we pick at each step of
the algorithm, namely the one with least amount of neighbors and lowest ID.
This allows for reproducibility of the experiment.

Algorithm 1: Minimum Degree heuristic

Result: An elimination ordering for graph G
G′ ← G;
order ← order vertices by degree and ID;
while order is not empty do

v ← the first vertex in order;
remove v from order;
add v to elimination ordering;
fill N(v) into clique in G′;
remove v from G′;
foreach neighbor n ∈ N(v) do

update order;
end

end

The first adjustment that we made to improve performance was with re-
spect to the data structure used to represent (partial) graphs. In the original
implementation XBitSet was used as data structure. This led to problems with
having the graph in memory. An adjacency array of bitmaps for a graph with
a million vertices already needs to store 102∗6 = 1012 bits, or about 125 GB. So
for our purposes we changed it to an Ints representation, in which each vertex
has an array of Integers representing its neighbors.

The algorithms keeps track of the ordering, the order in which the vertices
are to be eliminated. The data structure of the ordering needs to be efficient with
respect to the fact that after each elimination the ordering of the neighboring
vertices needs to be updated and the next vertex has to be selected. In the
original implementation the ordering was represented by an unordered ArrayList
of sets of vertices, in which the vertices were grouped by degree. This turned
out to be quite slow for large graphs, because each time that a vertex has to be
selected for elimination, the algorithm had to search for the lowest vertex ID in
these unordered sets.

For the first attempt to improve the ordering we used an array of XBitSets.
For each of the degrees that vertices had during run time we created an XBit-
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Set, in which value ’1’ at position x of the yth XBitSet indicated that vertex
vx had degree y. This implementation was quite fast. It did not have to search
in unordered arrays anymore; instead, it could efficiently find the first bit with
value ’1’, using the function ’nextSetBit()’. Updating the ordering was effi-
cient as well, with the constant time ‘get‘ and ‘set‘ functions of the Java Bitset
implementation.

When Erdős–Rényi random graphs were still part the plan, however, this
approach led to memory problems. Because for these graphs the size of the
largest bag of the tree decomposition typically turned out to be about a third
of the graph size. So a graph of size |V (G)| = 106 would need an ordering
consisting of, say, 3 ∗ 105 bitmaps of size 106 resulting in a need to store 3 ∗ 1011
bits, or about 37 GB. We tried improving the memory requirements, by deleting
the unused bitmaps every now and then, trading some speed for more efficient
memory. This showed an improvement, but this was not enough to make this
approach feasible for large Erdős–Rényi random graphs. It is interesting to note
that for the PKTs, this would not have been a problem. For the largest PKTs
the size of the largest bags turned out to be around 0.1% to 1% of the graph
size, resulting in an ordering of a size of at most about 13 GB.

Because at the time we still wanted to use random graphs as well, we imple-
mented a third version of the ordering, trading in some speed for better memory
efficiency. We used a sorted array of arrays of Integers, where the ith array con-
tains all vertex IDs with degree i. Obtaining the first ranked vertex of a specific
degree becomes a simple lookup, since it’s the first element of the array.

In the experiment we take a selection of the separators that we obtained.
We perform 15 runs and in each run we take 20 different separators, randomly
selected without repetition. Note that this means that for the smallest graphs
it turns out to be the case that we use some separators multiple times, thus
these results are less accurate compared to the results for the larger graphs.
However, since the focus of the thesis is on huge graphs this would not pose a
large problem.

3.3.2 Algorithms

After having obtained the separators, we can move on to describing the algo-
rithms that we use in the Benchmark Experiment. The algorithms compute
the separated components that are the result of removing the separator from
the graph. Or in other words: suppose we remove the vertices in the separator
from the graph, which mutually disconnected subgraphs do we end up with?
This means that we have to search the entire graph to determine which vertex
belongs to which separated components.

We want to compare the data structures at their best performance. To do
this we search the space using two different algorithms. The first algorithm that
we use is a simple Breadth First Search algorithm (BFS), which keeps track of
which vertices have been visited and to which separated component they belong.
The second algorithm does something similar, but instead of keeping track of
the vertices that have been visited, it constructs the separated components
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with logical operations. It basically takes the union of the partial separated
component with the neighborhoods of the vertices it encounters. This algorithm
is denoted as the Parallel Algorithm. First we discuss BFS in a bit more detail,
then the Parallel Algorithm.

BFS keeps track of which vertices have been visited and from which vertex
they were reached. It does this by labeling the vertices: vertices that belong to
the same separated components get the same label. This labeling algorithm is
shown in Algorithm 2. Note that BFS has a worst case running time of O(m),
since each edge has to be visited by the algorithm. We implemented the queue
as a Java LinkedList of Integers. Once we have this labeling, constructing
the separated components is straightforward. We construct the vertex sets,
consisting of all the vertices with the same labeling.

Algorithm 2: Breadth First Search Algorithm

Result: A labeling of the vertices, such that the vertices that belong to
the same separated component have the same label.

mark all vertices with 0;
mark all vertices in the separator with −1;
m← 1;
foreach vertex v that has not been marked do

mark v with m;
add v to queue;
while queue is not empty do

w ← queue.poll();
foreach Vertex x in N(w) do

if x is marked with 0 then
mark x with m;
add x to queue;

end

end

end
m← m+ 1;

end

The Parallel Algorithm does not take the intermediate step of computing
a labeling for each vertex. Instead it computes the components directly. The
algorithm is shown in Algorithm 3. Remember that N [v] indicates the closed
the neighborhood of v, meaning that v is included in the set. N(v) indicates
the open neighborhood of v, meaning that v is not included in the set.

Note that the Parallel Algorithm is built upon logical operations, such as the
union between sets and the subtraction of one set from another. Since this is
different compared to BFS, which mainly relies on iterating through the vertex
sets, we expect different results.

The worst case running time of the Parallel Algorithm turns out to depend
on the data structure. Each vertex has to be ’scanned’ and for each vertex the
union has to be computed with ’comp’. This operation can be performed in
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O(nsmall) time for XBitSet, where nsmall is the cardinality of the smallest of
the two sets, since setting each bit is a constant time operation. So for XBitSet
we have that for each vertex we have to perform an amount of operations of at
most the amount its neighbors, so the algorithms runs in O(m).

For Ints taking the union between two sets is an O(n1+n2) operation, where
n1 and n2 are the lengths of the sets. So for Ints the algorithm runs in O(n2).

For Roaring the time complexity is a bit more complicated, since different
chunks are represented differently. The union of two bitmap chunks is similar
to the XBitSet case. The union of a bitmap chunk and an array of Integers
chunk is also fast, since we can iterate over the array and simply set the values
we encounter to true in the bitmap chunk. The union of two array of Integers
chunks is the same as for Ints, except that the maximum cardinality of the
outcome is limited. For RoaringX, where X is variable, the outcome cardinality
can be no larger than 2X−4, so for Roaring16 this would be 212. Because of
this last term we have a running time of O(n2) for Roaring. This results also
holds when we include chunks that are represented with RLE, since they can
be transposed to either a bitmap or array of Integers chunk in O(n) time.

For EWAH the union operations are not straightforward as well. The com-
pression has to be interpreted by reading the marker words. Some parts can be
easily skipped over, for example when one of the sets contains stretches of fill
words (long stretches of ones or zeros). Other parts require computation similar
to that of regular bitmaps, when two literal words (which contain both ones
and zeros) have to be combined. At the end the new set has to be compressed.
Since the compression has a worst case scenario of O(n) the worst case running
time for EWAH is O(n2) as well.

Algorithm 3: Parallel Algorithm

Result: the separated components (comps), which are separated by
separator S.

foreach vertex v that has not been visited do
comp← N [v];
toScan← N(v) \ S;
while toScan is not empty do

compOld← comp;
foreach Vertex w in toScan do

comp← comp
⋃

N(w);
end
toScan← comp \ compOld \ S;

end
comp← comp \ S;
mark vertices in comp as visited;

end

We made sure that both algorithms gave the same results for each data
structure. We did this by running the algorithms for each data structure, casting
the outcomes to Strings, and verifying equality of the Strings.
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Initially, we wanted to include a third algorithm to the experiment, namely
the Depth First Search algorithm (DFS). However, we decided not to do this for
two reasons. First of all, we found that the running time of DFS was roughly
equal to the running time of BFS for each of the data structures. This makes
sense because both algorithms basically iterate through the neighborhood of
each vertex, so the basic operations are similar. Secondly, we ran into a problem
for using Roaring on large graphs. The need to keep all the iterators in memory
turned out to be too much, resulting in stack overflow errors. The problem
was that for some separators one of the separated components comprises almost
the entire graph. Thus keeping an iterator for each vertex in the separated
component in memory is about equal to keeping the entire graph in memory.
And keeping the entire graph in memory twice turned out to be too much when
running the experiments on my laptop with 8 GB RAM. Because we wanted to
be able to perform preliminary experiments on my laptop, combined with the
fact that using both BFS and DFS did not contribute a lot to the research, we
decided to only use BFS.

Note that there are many options for different algorithms to consider. One
could for example investigate the behavior of an algorithm that combines ele-
ments of BFS and the Parallel Algorithm, that uses BFS but does not label the
vertices but instead performs the union operation to construct the components.
And many other algorithms can be considered. However, we decided to go with
these two algorithms. BFS is widely used and the Parallel Algorithm turned out
to be most efficient for the operation for small to medium-sized graphs using
XBitSet.

3.4 MMD Experiment

The goal of the experiments on the benchmark is to be able to quantitatively
compare performance of different data structures. To investigate whether these
results translate to real world algorithms we also implement the data structures
in the Minimal Minimum Degree algorithm [5].

Initially we did not want to perform the experiments on MMD, but instead
we wanted to work with the HBT algorithm. There are two reasons we chose not
to pursue this path. The first is that HBT has difficulty scaling to large graphs.
Graphs of size 100.000 already seem to lie out of reach for HBT. Because we
want to investigate the behavior of data structures for huge graphs HBT did
not seem suited. We could try to improve HBT up to a point where it would
be able to handle huge graphs. However, we would have no guarantee that this
would succeed. The second reason was that implementing the data structures
in HBT would be quite time consuming.

Both these problems seemed to be more manageable for MMD. At the same
time, the core operations of MMD and HBT resemble each other closely, since
the bottleneck for both algorithms is that they have to computes the open neigh-
borhoods of separated components. Because of this MMD seemed like a decent
replacement algorithm for HBT, so we decided to run the second experiment
with MMD.
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3.4.1 MMD

The MMD algorithm is closely linked to the Minimum Degree Algorithm, which
is shown in Algorithm 1. MMD gives a triangulation of the graph in question.
At each iteration it eliminates a vertex and forms its so-called substars into
cliques, see Definition 3.2. A key difference with MD is that MMD produces
a minimal triangulation. Also, it introduces at most the same amount of fill
edges, because it computes a minimal triangulation which is a subgraph of the
triangulation computed by MD [5].

Definition 3.1 (Minimal triangulation). Let G be a graph. A triangulation
G′ of G is a graph, such that G′ includes all vertices and edges in G and has
enough added edges such that G′ is chordal. We say that a graph G′ is aminimal
triangulation if and only if removing any of the added edges from G′ leads to
the fact that G′ is no longer chordal.

MMD is shown in Algorithm 4. Note that we keep track of two different
fill graphs. In the elimination graph G′ the neighborhood of vertices are filled
into a clique when they are eliminated. This is basically the same graph that
MD works with. Note that we select the vertex to eliminate next from G′. In
fill graph H we construct the triangulation. In H we do not form the entire
neighborhoods in cliques, but instead the computed substars. It is important
to note that the substars that are formed into cliques in H are computed in G′.

Definition 3.2 (Substars). Suppose we are eliminating vertex v in fill graph
G′. For each separated component C of G′ \ N [v], we have that the open
neighborhood of C is a substar of v.

If it is the case that for a vertex in H, each of its substars is a clique, then
vertex is called LB-Simplicial. If all the vertices in a graph are LB-Simplicial,
the graph is triangulated, or chordal [26]. Remember that a chordal graph has
treewidth of width equal to its largest clique minus one. Constructing a tree
decomposition of G from this chordal graph H turns out to be trivial, if we
simply take all maximal cliques in H as bags.

Algorithm 4: Minimal Minimum Degree Algorithm (MMD)

Result: a minimal triangulation H of graph G.
G′ ← G;
run MD on G′ - whenever a vertex v is eliminated, compute the
substars of v in G′ and form them into cliques in H;

while H is not chordal do
G′ ← H ;
remove all LB-Simplicial vertices from G′;
run MD on G′ - whenever a vertex v is eliminated, compute the
substars of v in G′ and form them into cliques in H;

end

Note that in some cases a second round of the algorithm is needed to obtain
a minimal triangulation, in our experiments we observed that this is the case for
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large graphs. If this is the case, we let fill graph G′ be equal to H and remove
all the LB-Simplicial vertices from G′. This means that in the second round the
algorithm deals with a graph that is much smaller than the original graph. Also
note that in practice the steps of checking whether H is chordal and removing
the LB-Simplicial vertices of G′ are not performed consecutively, as it might
seem. Instead these steps are performed simultaneously. This way we have to
check whether the vertices are LB-Simplicial only once.

MMD differs from MD in three main aspects. Firstly, in what happens when
a vertex is eliminated. Secondly, in the fact that for large graphs it often needs
more than one iteration of the algorithm to terminate. Finally, in the fact that
MMD is guaranteed to give a minimal triangulation, while MD does not.

The authors of MMD have shown that MMD adds at most as many fill edges
as MD and they observed that the relative improvement with respect to MD is
small. In our experiments we found similar results. MMD never added more fill
edges than MD. We also found that for small graphs MMD does not lead to an
improvement. For large graphs it does lead to an improvement of up to 0.3%,
where larger graphs see a larger improvement. Since MMD is way more time
consuming than MD and the improvement in the number of fill edges is small,
we believe that MMD is unlikely to find application in practice. However, the
authors of MMD note that it can be useful in helping to further understand
why MD gives triangulations, which are so close to minimal.

At the latest hour, we unfortunately found a bug in our implementation of
MMD: MMD does not always terminate, while it is supposed to. We were not
able to correct this mistake, because we discovered it too late, due to the fact
that earlier we wrongly believed that MMD is not guaranteed to terminate.
While running the experiments, we found that the algorithm did not terminate
twice: once for the largest graph size and once for the second largest graph size.
We dealt with this by not including these problem instances to our results. So
in the end we only used graphs for which our implementation did terminate.

Fortunately, the bug is small and does not influence the results. It turned out
that when the algorithm did not terminate, it was stuck in an infinite loop with
a couple of vertices that had no neighbors in elimination graph G′. The problem
is that our implementation handles these vertices incorrectly: it considers them
to be not LB-Simplicial, while they clearly are. This means that this bug can
easily be fixed and that for the cases that the algorithm did terminate, the bug
does not seem to have an impact on the correctness of MMD. So we do not have
any indication that our results are in some way incorrect.

Note that we expect the first experiment to provide good predictions for the
second experiment. We believe this because the separators that we use in the
first experiment are quite similar to the separators in the second experiment,
since both have a strong connection to the MD algorithm. In the part of MD in
which we eliminate vertices, the separators are exactly the same. Only in the
part in which we decide whether the graph is chordal we find that the separators
are somewhat different, though we still believe that they are quite similar.

In the following section we will suggest a couple of improvements to MMD. Of
course, these improvements will lead to a larger difference between performance
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of the data structures between the first and second experiment. However, we
believe that since the basic operations are still relatively the same, this should
not be too large of a bother. In the results section we will see how this plays
out.

3.4.2 Improvements to MMD

A straightforward implementation of MMD turns out to be quite costly time
wise. It turns out that the main time-consuming operations are the substar
computations. Note that these operations are performed twice in the algorithm,
so they have to be computed twice for each vertex. First, when computing
the substars in elimination graph G′, then when checking whether graph H is
chordal.

Checking whether H is chordal turns out to be the most time consuming.
This makes sense, because the separated components that need to be computed
are on average larger than is the case in G′. This is due to the fact that vertices
that are already eliminated inG′ are no longer included in separated components
of vertices that follow.

These time heavy computations run in time O(n2m), since for each vertex
we have to search through each edge and in the worst case scenario we have to
perform n rounds, eliminating only a single vertex in each round. We will later
see that this term dominates the running time of MMD in our experiments.
Note that O(n2m) is larger than the worst case running time of MD, which is
O(n3).

Since the goal of this thesis is to compare the data structures on large graph
instances, we made an effort to improve MMD such that it is able to handle
larger graphs. In the end we made three noteworthy heuristical improvements
to the substar computations, which we will describe below.

3.4.3 Shallow BFS

The first improvement tries whether it is possible not having to search the entire
separated components to determine the substars. To do this it performs a BFS
up to a certain depth in the neighborhood of v. We called this method Shallow
BFS.

Suppose we have a vertex v and we want to compute the substars of v.
Shallow BFS starts at a vertex v0 in the second neighborhood of the vertex
in question - see Definition 3.3 - and searches the component separated by the
neighborhood of v, to which v0 belongs. If all the neighbors of v are found in the
BFS, we know that there is a separated component such that the neighborhood
of this component contains all the neighbors of v. This means that all neighbors
of v form a substar, which means that in the algorithm all neighbors of v have
to be formed into a clique. If this is the case, we do not have to search the entire
separated component, so we can save computation time.

Definition 3.3 (Second neighborhood). Given a vertex v. The second neigh-
borhood of v is the set of vertices, such that for each vertex w in the set, there
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exists a path from w to v of length 2, while no such path exists of length smaller
than 2.

Note that it is important that the search does not start in a vertex in N [v].
It could be the case that this vertex is part of multiple substars. If this is the
case and we would start in such a vertex, we would be searching two different
separated components, so we would not be able to conclude on the fact that the
entire neighborhood of v is in a single substar.

When implementing this method we performed some small experiments on
the best depth of the Shallow BFS and found that for our purposes the depth of
five suited best. This turned out to be the best trade-off between computation
time spent in the shallow BFS and success rate of method. Here the success
rate is defined as the fraction of times in which we found that the neighborhood
of v is in a single substar.

In practice we found significant improvements. In the part of the algorithm
in which we eliminate the vertices, this method succeeds in about 96% of cases.
When we check whether H is chordal, the method succeeds in about 66% of
cases. We found that both of these percentages are independent of graph size.

3.4.4 Checking for Cliques

After having implemented Shallow BFS, we came to the following insight. When
Shallow BFS succeeds in the section of the algorithm in which H is chordal, all
neighbors of the vertex are reached and they form a clique. Every time that this
is the case we know that the entire neighborhood of v is a clique. So instead
of doing the Shallow BFS, we can also simply check if all neighbors of v form a
clique. We call this method Checking For Cliques.

It turns out that checking whether N(v) is a clique is a strict improvement
over Shallow BFS. Since it captures all the cases that Shallow BFS captures
and it includes cases that Shallow BFS does not capture. When, for example,
Shallow BFS does not have a large enough depth or when it starts to searching
in the wrong separated component, it could fail to come to the conclusion that
the entire neighborhood of v is a clique. Checking For Cliques turns out to
succeed in about 67% of the cases. Note that it does not only capture more
cases, it is also an large improvement with respect to time consumption, since
performing Shallow BFS is relatively costly.

So we implement Shallow BFS in the part of the algorithm in which we
eliminate vertices, and we implement Checking for Cliques in the part of the
algorithm in which we checked whether H is chordal. We see the improvements
in performance with respect to the original algorithm in Table 1. MMD0 in-
dicates MMD without improvements and MMD1 indicates MMD with adding
Shallow BFS and Checking for Cliques.

There are two important things to note. First of all that these are prelim-
inary experiments. To obtain these results we performed a single run of the
algorithm. This means that these outcomes are not meant to give solid indica-
tions of how well each implementation performs at a certain graph size. More
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Graph size MMD0 MMD1 MMD2

682 278 158 157
1.003 324 181 171
1.474 633 364 433
2.133 1.509 419 422
3.183 2.337 926 923
4.563 4.330 1.525 1.597
6.721 10.529 4.533 3.304
9.886 23.115 6.935 6.361
14.426 58.755 17.274 13.370
21.087 146.815 39.164 21.832
30.857 372.037 90.518 59.606
45.365 891.912 209.955 158.249
66.137 2.238.599 526.406 294.061
97.128 NA 1.297.731 546.222
142.175 NA 3.128.211 726.473
207.543 NA 7.463.027 1.878.815
304.512 NA 14.808.751 3.991.300
445.092 NA 33.811.409 5.042.758

Table 1: The computation time (ms) of different implementations of MMD with
respect to the graph size (number of vertices). MMD0 uses none of the improve-
ments described above. MMD1 uses of Shallow BFS and Checking for Cliques.
MMD2 uses Shallow BFS, Checking for Cliques, and Separating Substars. Note
that NA indicates that we did not perform those experiments due to the large
computation time.

experiments are needed for more definite conclusions on this. However, since
the difference between the implementations are large, we can make conclusions
for which implementation to use in our experiments. Secondly, we only com-
pare MMD0 and MMD1 up to a graph size of 66.137. This gives a clear enough
indication that MMD1 outperforms MMD0. So we conclude Shallow BFS and
Checking for Cliques are improvements to MMD.

3.4.5 Separating Substars

After implementing Shallow BFS and Checking for Cliques, we found that the
large majority of computation time - about 90% - took place in the part of the
algorithm which decides whether fill graph H is chordal. More specifically, in
performing the substar computation such that the entire separated components
has to be searched. The last improvement we made focuses on improving this
part of the algorithm.

During the algorithm we are constantly computing minimal separators, namely
the substars. The main idea of the method, called Separating Substars, is that
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we make use of a subset of these separators, in such a way that we do not have
to search the separated components in their entirety. The set of Separating
Substars is defined as follows.

Definition 3.4 (Set of Separating Substars). Let H be a graph and A be the
set of substars computed up to that point, in the process of determining whether
H is chordal. Then, a set of Separating Substars is a subset of A.

We make use of these Separating Substars in the following manner. Suppose
we are computing a separated component Cv for vertex v and we encounter a
Separating Substar Sw, that we computed earlier for vertex w. We can use the
fact that Sw is a graph separator, to deduce that we can reach all the vertices
that lie behind Sw in Cv.

To make sure that this always holds, we have to pose a restriction on the
Separating Substars: they cannot overlap with the neighborhood of the vertex
v. In other words: Sw cannot overlap with N [v]. With this restriction in place,
we know that Sw lies completely inside Cv. Since we are able to reach each
vertex in Cv with regular component computation, we know now that we are
able to reach all the vertices in Sw and all the vertices that lie behind Sw. This
means that, as soon as we reach Sw, we no longer have to compute the vertices
in Sw and behind Sw. So we only have to continue the computation of the
separated component on the side of Sw, we reached it from.

When we implemented the method of Separating Substars, we had to make
sure that we knew from which side we reach them. Again, suppose we have a
vertex v and we are computing a substar Sv, with a connected component Cv

associated with it. If we decide to make Sv a Separating Substar, we compute
and store the two neighborhood sets of Sv: N1 = N(Sv)

⋂
Cv and N2 = VH \

(Cv

⋃
Sv). Here VH denotes the set of all vertices of graph H. At a later stage

in the algorithm, when we are computing a substar for a different vertex and
we encounter a vertex s that is in Sv, we figure out whether we reached s from
N1 or N2. Suppose, without loss of generality, that we reached s from a vertex
in N1. Then we continue searching in each vertex of N1 and do not continue
searching in any of the vertices in Sv. This way, we do not reach any vertices
that lie behind Sv. An important detail is that this also guaranties that we
reach every vertex that lies on the side of Sv, we reach it from. So no vertices
are missed which could be a part of the substar we are computing.

The idea is shown in Figure 6, where we compare MMD with and without
making use of Separating Substars. Note that when using Separating Substars
(bottom) we only need to search through C1 and N1, which is less than the
entire separated component we need to search through when we do not use
Separating Substars (top).

When implementing this method, there are a couple decisions one has to
make. The main problem of interest was which Separating Substars to use. The
most important decision we had to make is whether to consider a fixed set of
Separating Substars, irrespective of the vertex under consideration, or let the
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Figure 6: MMD with Separating Substars. Sv is the substar we are trying to
compute. In the top figure, Cv is the corresponding separated component. In
the bottom, Sw indicates a Separating Substar, with correspondingly N1 and
N2, and C1 and C2 indicate regular parts of the separated component.

set of Separating Substars depend on the vertex. The first of these options came
to mind first, so we went with that. However, the second option is definitely
worthwhile to investigate further. We will first describe the implementation that
we used for the experiments and then devote a couple of words to the second
option.

When considering a fixed set of Separating Substars, an important decisions
that we had to make was whether to make room for Separating Substars to
overlap with each other. The upside of allowing some kind of overlap is that
it could lead to a smaller portion of the graph which has to be searched, since
more Separating Substars can be used simultaneously. The downside would be
that we would have to decide what would happen if we would reach overlapping
Separating Substars. Since this is not straightforward we decided to go for the
option of not letting Separating Substars overlap. Though it could definitely be
interesting further research to investigate whether it could be worthwhile to let
them overlap.

So we decided to aim for a fixed set of Separating Substars, which cannot
overlap. Now the question becomes which substars do we choose to become
Separating Substars. It turns out that this is quite important question, since
we found that in our experiments the amounts of Separating Substars were quite
small and the computation time depended relatively strongly on the selection
of Separating Substars. In the final configuration we found that for graphs up
to size 7000 we only had a single Separating Substar, graphs of size 20,000 had
about four, graphs of size a hundred thousand about nine, and graphs of size
300.000 about 28. Though note that we optimized the choices of substars for
graphs of size 50.000.

The reason that we turned out to have so few Separating Substars is due
to the fact that they cannot overlap. We found that for our experiments the
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Separating Substars have a typical size of about 40. Since the graphs that we
consider are partial 40-trees, this comes down to about the size of the treewidth
of the graphs. This hypothesises a relation between the number of Separating
Substars that can be used and the treewidth of the graph. Perhaps this method
turns out to be more successful for graphs of even lower treewidth. It would be
interesting to observe its behaviour on, for example, random partial 10-trees.

Because of the limited amount of Separating Substars that we could use, we
spent quite some effort on optimizing the substars chosen to become Separating
Substars. First of all we decided not to use the substars which are a clique with
the entire neighborhood of the vertex in question. We did not have any infor-
mation available about these substars, except that they were a clique with the
neighborhood of the vertex in question. So it would require extra computation
to tell whether these substars could make good Separating Substars. Also, these
substars turned out to have a relatively large probability to reside at the edge of
the graph, so they don’t separate that much. So we decided to use substars that
we encountered when the neighborhood of the vertex was not a clique; when
we had to perform the full computations to determine whether the vertex was
LB-Simplicial.

We found that we obtained good results if we chose the substars in such a
way that they separate a decent portion of the graph. We did some preliminary
experimentation for graphs of size up to 50.000 to decide what ’a decent portion’
meant in this case. We found that results were best when we did not compare the
amount of vertices that the substar separates with the total amount of vertices
in the graph. Instead, it gave better results to compare with the amount of
vertices encountered in the combined substar computations of the vertex in
question. This way we try to consider vertices which lie somewhat neatly in
between two other separators.

When performing experiments we found that the algorithm performed best
when the substar separates between 4% and 90% of the vertices, that we en-
countered in the combined substar computations of that vertex. It is important
to note that these results are based on preliminary research and are not conclu-
sive. We did not fully optimize this and differences were quite small. So when
implementing this approach it could be worthwhile to further optimize this.
Note that we did not expect that the selection of substars to become Separating
Substars would have a large influence on the relative performance of the data
structures, so there was no need for far-reaching optimization.

Using Separating Substars gave a significant speed up, as can be seen in Table
1. Note, first of all, that MMD2 outperforms MMD1. Especially for large graphs
the difference becomes quite large. So making use of Separating Substars seems
to be an improvement for the algorithm. It is also interesting to note the manner
in which the implementations scale. Both MMD0 and MMD1 seem to scale quite
consistently. When comparing consecutive graph sizes the factor in which the
computation time is multiplied seems relatively constant. However, for MMD2
this scaling behavior appears to be less consistent. Sometimes the computation
time grows a lot and sometimes it grows a little. This has to do with the
fact that the computation time depends on the Separating Substars used. This
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means that we can expect a relatively large variance in the computation time
when performing the experiments.

In our experiments we apply all suggested improvements. Shallow BFS,
Checking for Cliques, and Separating Substars. Note however, that we only
apply Separating Substars in the first round of the algorithm. Because in the
second round we have to deal with a low number of vertices and for a low number
of vertices applying separating substars does not lead to an improvement, as can
be seen in Table 1.

3.4.6 Separating Substars that depend on the vertex

As mentioned earlier, we also discovered a different approach that might be
fruitful. Instead of working with a fixed set of Separating Substars, let the set
of Separating Substars depend on the vertex under consideration. There are
multiple approaches to consider. The approach that we investigated was to
use a tree decomposition of some kind. Note that we did not implement these
methods. They are mentioned for possible future exploration.

The most obvious candidate tree decomposition is to use the tree decom-
position provided by MD, in the part of the algorithm in which vertices are
eliminated. The upside of using this tree decomposition is that we have already
constructed it in the MMD Algorithm. Note, however, that it could also be
worthwhile to investigate different tree decompositions.

In the tree decomposition that MD provides, bags consists of a vertex and
its neighborhood at the time of eliminating v. It is important to understand
that this tree decomposition is a tree decomposition of H. MD computes a tree
decomposition for both G and the fill graph G′. Since the edges of H are a
subset of the edges in G′, we know that the tree decomposition is also a tree
decomposition of H.

We can use the MD tree decomposition to limit the area of H that has
to be searched, based on the idea that each bag in the tree decomposition is
a separator of H. Similarly to in the description of the Separating Substars,
we can use the fact that we encounter a separator to know that we can reach
all vertices that find themselves behind it. So we can basically stop searching
whenever we reach a bag that is sufficiently far away from the vertex under
consideration.

In the tree decomposition, we consider the first bags that do not contain any
of the vertices in N [v], as the separators. Since these separators do not overlap
with N [v], we have a similar situation as in our implementation. Since we know
that the separators lie completely inside the separated components, we know
that all vertices in the separated components can be reached and that we do
not miss out on any vertices in the substars.

We can use that fact that we know beforehand which separator we will
encounter, to implement this technique in a smart way. Instead of considering
the entire graph and stop searching further beyond the separators, as we did
with the Separating Substars, we could try the following. We could create
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the subgraph, induced by the bags that contain vertices in N [v], together with
the bags that we use as separators. Note that it is important that we form the
separators into cliques. This way, when we search through the induced subgraph,
we make sure that we do not miss out on any relevant vertices; all vertices in
the substar can be reached by performing the component computation on the
induced subgraph.

The second approach is a bit more ambitious. The idea is that it further
limits the induced subgraph that has to be searched, to only include the vertices
of those bags which contain vertex v. It is based on the following result.

Proposition 1. Let TD be a tree decomposition of graph H such that the
intersection of every pair of adjacent bags is a clique. Let v be the vertex under
consideration, Bv the set of bags in TD containing v, and Uv the union of the
bags in Bv. Then: v is LB-Simplicial in H if and only if v is LB-simplicial in
H[Uv].

To prove this result we first suppose that v is LB-simplicial in H. We need
to show that v is LB-Simplicial in H[Uv]. Let C be a connected component
of H[U \NH(v)] and C ′ the connected component of H \NH(v) that contains
C. If C is empty we are done, then there is no neighborhood that has to be a
clique. So suppose C is not empty. Let w be a vertex in NH(C ′). We need to
show that w is adjacent to a vertex in C.

Suppose w is not adjacent to a vertex in C, but instead to a vertex x in
C ′ \C. Let D be the connected component of C ′ \C to which x belongs. Since
C ′ is connected, we have that NH(D)∩C is non-empty; let y be a vertex in this
intersection. Since NH(D) is a clique (see next paragraph) and contains w and
y, w is adjacent to y. Therefore w belongs to NH(U)(C). Therefore, we have
NH(C ′) = NH[U ](C). Since v is LB-simplicial in H, NH[U ](C) = NH(C ′) is a
clique in H and hence in H[U ]. This shows that v is LB-simplicial in H[U ].

Proof that NH(D) is a clique: Bv forms a subtree of TD. Let TT be the set
of subtrees of TD that result from removing Bv from TD. For each component
D of G\U , there is a subtree T in TT such that no other subtree in TT contains
a bag intersecting D. Let X be a bag of T and Y a bag in Bv such that X and
Y are adjacent to each other in TD. Then, we have NG(D) ⊆ X ∩ Y . And,
since X ∩ Y is a clique, NG(D) is a clique.

Suppose now that v is LB-simplicial in H[U ]. We need to show that v is
LB-Simplicial in H. Let C be a connected component of H \ NH(v) and let
C ′ = C ∩ U . If C ′ is empty, then C is a connected component of H \ U and
hence NH(C) is a clique by the property of TD. If C ′ is non-empty, then we have
NH(C) = NH[U ](C

′) by an argument similar to the above and hence NH(C) is
a clique from the assumption that v is LB-simplicial in H[U ]. Therefore, v is
LB-simplicial in H and that concludes the proof.

It is important to note, however, that having a tree decomposition, such
that the intersection of every pair of adjacent bags is a clique is not trivial. A
tree decomposition probably has to be computed specifically for this purpose.
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However, it could be worthwhile to investigate this option. If such a tree decom-
position is computed easily, it could lead to improvements, since the amount of
vertices that has to be searched to determine whether a vertex is LB-Simplicial
is relatively small.

3.5 Performing the measurements

In this section we describe the way in which we perform the time and memory
measurements, but first we will say something about the hardware and software
used to perform the experiments.

3.5.1 Hardware and software

We perform the experiments on the Gemini server of Utrecht University, which
runs Scientific Linux 7.9 on DELL PowerEdge R730 (2x) and R640 (3x). For
our experiments we used 20 GB of RAM. As we will later see that this only
limited XBitSet. The other data structures performed well with this amount of
memory available. As noted earlier we implemented the experiments in Java.
To perform the experiments the server used Java’s ’openjdk version 1.8.0 292’.

3.5.2 Time measurements

For measuring time we used the Java ’system.nanoTime’ function, which returns
the elapsed time since some fixed moment in the past in nanoseconds. The
elapsed time - or wall time - of a part of the program can be calculated by
doing a time measurement before and after it and subtracting the one from
the other. So this is basically the time it takes to perform the operation in
real world time at the surface of the Earth. Even though ’system.nanoTime’
is not accurate in its last decimals, we we still preferred this function over
the alternative ’System.currentTimeMilis()’. The reason was that the second
function too often gave an elapsed time of zero for the smallest graphs in the
Benchmark Experiment.

An alternative that we considered was, instead of measuring real world time,
to measure the CPU time. CPU time basically comes down to the amount of
computations that the CPU has to perform. The upside of using CPU time
over wall time is that it gets less influenced by other processes running on the
computer. However, we did not manage to get this up and running on the
university server on which we performed to measurements.

The server did not always perform the time measurements consistently. It
could, for example, pause the computation for some time or be influenced by
different processes. We made sure that we were able to overcome large measure-
ment errors due to the server. To do this we delete the outliers from our time
measurements using the Interquartile Range method. This methods considers
data points as outliers if they are either smaller than Q1 − 3/2 ∗ IQR or larger
than Q3+3/2∗IQR. Here Q1 and Q3 are defined as the first and third quartile,
which means that a quarter of the data points is lower (or higher) than Q1 (or
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Q3), and IQR = Q3 −Q1 is the Interquartile Range. In the results section we
will elaborate further on this.

3.5.3 Memory measurements

We considered three approaches to measure memory. The most straightforward
way is to make use of the built-in memory functions to calculate the free memory,
the amount of RAM memory that is available to the program. In Java this can
be done with Runtime.freeMemory(). The memory used to store an object
can be computed by comparing the free memory before and after creating the
object.

The second approach we considered makes use of profiling tools to measure
the memory. Such tools have specific methods to calculate the memory of
objects. However, when counting large amounts of objects these tool might give
incorrect results. As objects can share a part of their memory, this approach
could lead to overcounting memory usage.

The third approach computes a theoretic amount of memory that has to be
used. This would mean that an Integer would be stored with 32 bits plus some
overhead, and a bitmap of size 100 with 100 bits plus some overhead. Since this
gives a way to control how much memory is spent on object overhead, this could
lead to a fairly platform independent measure for memory usage. However, this
approach would also introduce decisions we would have to make about how
much memory we assign to certain objects, thus introducing arbitrariness. This
approach also has the problem of dealing with memory sharing.

Since the approach of using the free memory available to the program seems
to give the most stable and reproducible results, we decided to use it. However,
before we could get stable measurements we had to overcome a problem. When
using the free memory approach it is important to make sure that we do not
measure too many objects. Think, for example, of the Integers that are created
when iterating over an array. So to properly measure the memory consumption
we need to run the garbage collector before performing the measurement. We
had to make sure that the garbage collector behaves as expected and that it
runs properly before each measurement.

At first this was clearly not the case. The garbage collector did not run
consistently when called for. Because of this the outcome of the measurement
would depend on whether and how the garbage collection was performed. We
dealt with this by implementing a function which forces the garbage collector
to execute. The function is shown in Figure 7. The idea behind the function
is that we create such a large object that it can’t be ignored by the garbage
collector. Because we create the object with a Weak Reference (from package
java.lang.ref.WeakReference), we make it ripe to be deleted. And because we
check that it actually is deleted before performing the measurements, we make
sure that the garbage collector has run before executing the measurement. Note
that if it is not deleted the program will terminate. Since this has never hap-
pened, the method seems to function consistently.

It is important to note that, because we always forced the garbage collector

34



Figure 7: Java function to force the garbage collector. Note that runtime is a
Runtime object.

to run, we had to make sure to reference the object we wanted to measure
somewhere in the program after the garbage collector had run. Otherwise it
could get garbage collected itself and then we would not be able to measure it.

Another important note that we have to make is that creating a similar
object in a different programming language can lead to different memory con-
sumption, since overhead for creating objects can be different. An important
assumption that we made is that these results generally translate to implemen-
tations in other languages, so that our results are at least somewhat independent
of the programming language used.

4 Results

In this section we discuss the results that we obtained after running the ex-
periments. We start with the Benchmark Experiment and then discuss the
MMD Experiment. Unfortunately, we were not able to include different shapes
for each data combination of data structure and algorithm, since that did not
consistently leave room to show the standard deviations. For this reason the
different combinations are indicated in color, so the figures have to printed in
color. If no color printer is available we advice to study the figures on a computer
screen.

4.1 Benchmark Experiment

We performed the Benchmark Experiment in the following configuration. Re-
member that the graphs that we considered were random partial 40-trees, with
the probability of an edge p = 0.075, as described in section 3.2.1. For the
Benchmark Experiment the smallest graph that we used consisted of 80 vertices
and the largest graph consisted of 3.298.946 vertices. The number of edges of
these graphs are about a factor six larger than the amount of vertices.

The data structures that we considered were Ints, XBitSet, EWAH, and
Roaring. We considered the following implementations of Roaring: Roaring10,
Roaring12, Roaring14, Roaring16, RoaringRun12, and RoaringRun16. Remem-
ber that the number of Roaring indicates the chunk size of that version: for
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Roaring14 the chunk size is 214. Also remember that ’RoaringRun’ indicates
the use of run optimization, and that simply using ’Roaring’ indicates not using
it. We figured that these versions of Roaring would give a good indication of
the behaviour of Roaring. Adding more versions would enlarge the computation
time too much.

We perform the experiments for two different algorithms, the BFS Algorithm
and the Parallel Algorithm. We implemented the BFS Algorithm for each of the
data structures. We did not implement the Parallel Algorithm for Roaring10
and Roaring14. After performing preliminary experiments, we found that the
Parallel Algorithm performed worse than the BFS Algorithm for Roaring on
large graphs. For this reason we figured that adding Roaring10 and Roaring14
would not lead to many new insights. So to save computation time, we did not
include Roaring10 and Roaring14 in combination with the Parallel Algorithm.
So in the end we implemented the Parallel Algorithm for Ints, XBitSet, EWAH,
Roaring12, Roaring16, RoaringRun12, and RoaringRun16. It is important to
note that we performed the experiment for Ints with the Parallel Algorithm at a
later moment in time then the other experiments. We will further discuss this in
section 4.1.4. For each data structure ’name data structureP ’ denotes that it
makes use of the Parallel Algorithm and ’name data structureB’ denotes that
it makes use of the BFS Algorithm. So for example we have XBitSetP and
XBitSetB.

In the experiment we compared the data structures on four measures. The
time it takes to compute the separated components and the memory that is
needed to store the graph, the separators, and the separated components.

For each combination of graph, data structure, and algorithm we performed
the following 15 sub experiments. By using 15 repetitions of the experiment we
are able to say something about the measurement variance. In each of the 15
experiments we randomly selected 20 separators, without replacement, and for
each of the separators we computed the separated components. Remember that
these separators correspond to bags in the tree decomposition generated by the
MD algorithm. Note that for the next sub experiment the same separator could
be used. This means that for the smallest graphs that separators are likely to
be used multiple times, so the outcomes for these experiments do not accurately
reflect the actual distribution. However, since the focus of the thesis is on large
graphs and the number of bags in the tree decomposition is typically around
70% of the graph size - so quite large - we figured that this would not be too
large of a problem for our purposes.

An important thing to note is that the memory measurements are deter-
ministic in nature. Every time we perform the measurements we get exactly
the same results. On the other hand, time measurements are not deterministic.
Other processes on the server have an influence on the time it takes to perform
our computations. So the uncertainty of the time measurements is not only
due to the fact that we have a different set of separators, it is also due to the
behaviour of the server.

To implement the experiments, we made as much use of an abstract class as
we could, to let the different data structures share as much code as possible. We
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were able to perform most of the experiment and all the measurements in this
class. Only a few functions had to be implemented separately for each of the
data structures. These were functions as a cast from the set of integers to the
data structure and performing the part of the algorithm in which we computed
the separated components.

In total it took about 18 days to perform the Benchmark Experiment on the
server. In the coming sections we will first describe the reasoning of why we
got rid of the outliers for the time computations. Then we discuss how each of
the data structures perform based on the algorithm used. Note that in these
sections we only discuss the differences between the different implementations of
the data structures. If we find no differences in one of the measures, for example
the memory needed to store the graph, we postpone the discussion to the next
section, in which we compare the best versions of the data structures with each
other. Finally, we dedicate a couple of words to the time behaviour of the data
structures, implemented in the Parallel Algorithm.

4.1.1 Outliers for time measurements

To get a sense of what happens with the time measurements we consider Figure
8, 9, 10, and 11. Here we see the boxplots for the time measurements for
EWAWB, IntsB, Roaring16B, and XBitSetP. In these boxplots the horizontal
bar at the bottom corresponds to Q1−3/2∗IQR, the bar above that corresponds
to Q1, then Q2, Q3, and Q3 + 3/2 ∗ IQR. Outliers, which are outside of the
region [Q1 − 3/2 ∗ IQR,Q3 + 3/2 ∗ IQR], are indicated with the open circles.
Note that in the boxplots the x-axis denotes the graph ID, here ’1’ denotes for
the smallest graph, ’m’ denotes for the m-smallest graph, and so on. The y-axis
indicates the measured values, which are scaled to the mean of the measured
values. So for each graph the average outcome equals 1.

The first thing that strikes our attention is that small graphs can have huge
outliers, for each of the data structures used. For EWAH and XBitSet they
get as large as respectively a factor 10 and 7 larger than the mean. These
outliers probably arise when the server pauses the computation for a moment.
For computations times - which are typically about 1 ms long for these graphs -
these pauses can have a significant influence. We also observe that there seem to
be more outliers that are too large, than too small. This could also be explained
by the fact that the server does not always perform stable measurements. For
these reasons we decided to eliminate the outliers.

Secondly, we observe that the interval [Q1, Q3] seems to be fairly consistent
not that large. In most cases Q1 and Q3 are all off from the mean by a factor
five to twenty percent. This indicates that measurements are quite stable, as we
will later also see, when we plot the mean values with standard deviation with
respect to the graph size.

For EWAHB and XBitSetP it is a bit harder to see, but for Roaring16B and
IntsB the following is more clear. There does not seem to be a clear pattern
in the boxplots. Some have a median that is higher than half way up the box,
some have median that is lower than half way up the box. The same holds
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Figure 8: Boxplot for the time measurements for EWAHB, scaled to an average
value of one.

Figure 9: Boxplot for the time measurements for IntsB, scaled to an average
value of one.
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Figure 10: Boxplot for the time measurements for Roaring16B, scaled to an
average value of one.

Figure 11: Boxplot for the time measurements for XBitSet, scaled to an average
value of one.
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for the whiskers. Sometimes they extend longer to the top sometimes to the
bottom. From this information we can conclude that there does not seem to be
a underlying distribution that is skewed according to which the measurements
behave themselves. So this could be a signal that perhaps a normal distribution
would describe the measurements quite well. However, we decided not to dive
further into the statistical behaviour of the data points. To further conclude on
this, more analysis would be necessary.

4.1.2 XBitSet

In this section we discuss the results for XBitSet. But before we do so, we
have to note that we likely did not use the optimal implementation for our
experiments. We instantiated each XBitSet with the function XBitSet(G(N)),
creating bitmap with length equal to the graph size G(N). Instead, we could
have used XBitSet(), which uses dynamic memory allocation. This means that
when the bitmap is instantiated it is as long as its largest ’1’-value. If at a later
moment a ’1’-value is added that is larger than its largest value, the XBitSet is
extended. Note that if the largest value is at some point set to ’0’, the bitmap
retains its size. So the size of the XBitSet in this case, is the largest value that
it has ever contained.

Especially for storing small vertex sets, implementing XBitSet() could lead
an improvement over XBitSet(G(N)). In many such cases a significant stretch
of 0’s at the end would not have to be stored, thus consuming less memory. Time
wise it would probably also lead to an improvement, since iterating through a
set and performing logical operations will take less time for shorter bitmaps.
Though it should be noted that some operations might also take longer, be-
cause bitmaps might have to be enlarged during an operation. However, in our
experiments we expect improved performance when making use of XBitSet().
We expect this because the most time-consuming operations take place with
relatively small vertex sets, namely sets of neighbors in the graph.

To get an indication of the improvement we could expect, we measured
the difference it could maximally make to implement the experiments with
XBitSet() instead of XBitSet(G(N)). To do this we compared the combined
length of all the bitmaps to store the graph. We found that XBitSet() needed
about 81% less bitmap length. So this maximally corresponds to an improve-
ment of a factor up to as low as 81% for both the memory consumption to store
the graph and the run time. When storing the separators and the separated
components we also often have to store small vertex set. So we also expect to
see improvements in these measures.

However, to fairly compare the other implementation with the others data
structures, we would have to perform all the experiments again. The server
performance is not constant over time; it varies with possible updates performed
and other processes running. So if we would only perform the experiments for
XBitSet() and compare them to the other results, we would be comparing apples
to oranges for the time measurements. Because the experiments took quite a
long time to compute we decided not to redo the experiments. However, it is
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Figure 12: Time performance with respect to graph size for XBitSet. Note that
XBitSet denotes the BFS algorithm and that XBitSetP denotes the Parallel
Algorithm. Also note that the vertical bars show the standard deviation of the
measurements.

important that we reflect on the fact that optimal results for running time and
storing the graph can be improved by a factor of up to as low as 81%.

On to the results that we found while making use of XBitSet(G(N)). We
did not find differences between the algorithms for the memory used. This
makes sense because each vertex set that is stored corresponds to exactly the
same amount of memory, namely a bitmap with length G(N).

A large limitation of XBitSet is that it takes a lot of memory to store the
graph. This is due to the fact that storing a graph with bitmaps scales quadrat-
ically in the graph size. Because when adding a vertex we do not only have to
store another bitmap. It is also the case that each bitmap that we have to store
becomes longer. Note that this is also true for the XBitSet() implementation.
Because of this we were only able to perform the experiments for graphs up to
a size of 229.060.

In Figure 12 we see the time performance of the two algorithms for XBitSet.
It is easy to see that XBitSetP outperforms XBitSetB for all graph sizes, except
for the smallest graph, where we are not able to tell due to the large variance.
Note that the variance for the other measurements is quite low, supporting our
conclusion.

However, when we consider scaling behavior, we have to conclude something
different. We see that for the larger graphs the difference between the two
algorithms becomes smaller. The largest difference between the two seems to be
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Figure 13: Time performance with respect to graph size for EWAH.

at a graph size of about 1000, when it is almost a factor 4. But for largest graph
we only see a difference of a factor of about 1.4. So we have to conclude that
XBitSetB scales better to large graphs than XBitSetP. If we would extrapolate
these results to even larger graphs, we expect XBitSetB to outperform XBitSetP
at some point. However, it seems unlikely that XBitSet is an efficient data
structure for such graphs, since it is not memory efficient for large graphs.

From these results we can conclude that XBitSet is quite efficient with han-
dling logical operations. So when using XBitSet it can be worthwhile to consider
these kinds of operations, when making a decision of which algorithm to use or
how to implement it. However, for larger graphs BFS seems to be perform-
ing relatively better, indicating that for huge graphs many logical operations
become relatively costly.

4.1.3 EWAH

For EWAH we see the time performance of the two algorithms depicted in Figure
13. Note that, because the Parallel Algorithm turned out to be relatively slow
for EWAH, we only implemented Parallel for EWAH for graphs up to a size of
229.060. We can clearly see that EWAHB outperforms EWAHP. Note that the
difference becomes larger for larger graphs sizes, so EWAHB also seems to scale
better than EWAHP.

Similarly to XBitSet, we found for EWAH that the memory needed to store
the graphs and the separators does not depend on the algorithm used. However,
for the separated components we do see a difference. In Figure 14 we see that
EWAHB structurally outperforms EWAHP. Even though the variance is rela-
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Figure 14: Memory consumption for storing the separated components with
respect to graph size for EWAH.

tively large, we observe that for each measurement EWAHB performs better, as
expected. The observed effect is quite large, since the difference of the outcomes
can be as large as a factor 3.

This cannot be explained by dynamic memory allocation alone, since EWAH
can store a stretch of zeros at the end very efficiently, with one marker word
and one literal word. So with only two Long numbers - or 128 bits, way less
than the observed differences. We conjecture that this has something to do
with the specific EWAH implementation, which perhaps trades in some memory
optimization for increased speed of logical operations. Further investigation
would be needed to fully explain this.

Note that the standard deviation is quite large for storing the separated
components. For a discussion about this, we refer to the end of section 4.1.7.

4.1.4 Ints

At first, we did not perform the IntsP experiment due to the fact that it per-
formed too poorly. However, at a later stage we realized that it would be
interesting to show its behaviour, because it could tell us something about the
relative performance of the data structures in the Parallel Algorithm. This,
in turn, provides us with new insights about the data structures. Because we
performed the IntsP experiment at a later moment in time, it is important to
note that the results relative to the other data structures might be somewhat
off, due to variability in the server performance.

The time performance of Ints is shown in figure 15. We clearly see that
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Figure 15: Time performance with respect to graph size for Ints.

IntsB outperforms IntsP for each graph size and that it scales better to large
graphs. The reason that this is the case is that logical operations for Ints are
quite inefficient, especially when vertex sets get dense, as is the case in the
Parallel Algorithm. In that algorithm we grow the separated component, by
adding the neighborhoods of vertices to it. So the sets starts out small, but
for large separated components they get very large. Especially for these large
components we have that the operation of adding the neighborhoods to the
components is inefficient for Ints.

Consider the case that we have two vertex sets and we want to compute
their union. A bitmap can simply flip all the bits from ’0’ to ’1’ for each of the
vertices that need to be added, which is a constant time operation we have to
perform as many times as the size of the smallest set. For Ints, however, we have
to create a new array and repeatedly figure out which vertex is the smallest and
then copy it to a new array. This operation has running time of O(n1 + n2),
where n1 and n2 are the lengths of the vertex sets. For large vertex sets this
operation becomes costly.

For memory consumption, we observed that for Ints the choice of algorithm
does not have an influence, since the memory only depends on the integers which
are stored. These integers only depend on the set they represent, not on the
path taken to obtain that set.

4.1.5 Roaring10B to Roaring16B

For Roaring we conducted a large number of experiments. We start with the
comparison between Roaring10B, Roaring12B, Roaring14B, and Roaring16B.
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Figure 16: Time to compute the separated components with respect to graph
size for Roaring10B, Roaring12B, Roaring14B, and Roaring16B.

Then we will discuss the behaviour of Roaring12B, Roaring12P, RoaringRun12B,
RoaringRun12P, Roaring16B, Roaring16P, RoaringRun16B and RoaringRun16P.

The time measurements for the versions of RoaringB are shown in Figure
16. The first thing to note is that, as mentioned earlier, we do not perform the
experiments for Roaring10B for the largest graphs, due to the teething problems
of our implementation of the different versions of Roaring.

What stands out is that the differences between the different versions of
RoaringB are quite small, especially for the small and largest graphs. For the
smallest graphs this makes a lot of sense. Up to the graph size of 210 = 1024,
these versions of Roaring behave relatively the same in the BFS Algorithm. Up
to this graph size, each version of Roaring consists of a single chunk. Also,
practically all of the vertex sets that BFS has to deal with - namely the neigh-
borhood sets of the vertices - are quite small and thus represented as arrays
of integers. This explains the fact that up to a graph size of 1024 we observe
roughly the same results.

As graphs grow larger than the size of 1024, first Roaring10B gets a little
bit slower than the competitors, and then, for even larger graphs, Roaring12B
follows, followed by Roaring14B. Note that we start to observe this divergence
behaviour at a graph size of 2X for RoaringX. This corresponds to the moment
that they start to consist of more than one chunk. At the same time we observe
that as Roaring12B starts to slow down, it starts to grow closer to the time
efficiency of Roaring10B. The same holds for Roaring14B and later for Roar-
ing16B. We see that the time performances start to converge for the largest
graphs. So it seems that Roaring16B is the most time efficient data structure,
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Figure 17: Memory required to store the graphs with respect to graph size for
Roaring10B, Roaring12B, Roaring14B, and Roaring16B.

for the largest range of graph sizes. However, we also observe that the scaling
behavior to huge graphs seems similar for the different versions of RoaringB.

To repeat, we observe that all versions of RoaringB seem to slow down, as
soon as we reach the threshold at which they start consisting of more than one
chunk, and that their behavior converges for large graphs. Before we explain this
convergence behavior for large graphs, let us consider the memory consumption
for storing the graphs and separators, shown in figures 17 and 18. In both figures
we observe exactly the same behavior. Different versions of RoaringB have the
same results for small graphs. Then we observe that first Roaring10B starts
to perform relatively poorly, followed by Roaring12B and Roaring14B. Finally,
the behavior converges for the largest graphs. So again, Roaring16B seems to
perform best if we consider the entire range of graph sizes.

The reason that we observe this behaviour for large graphs has to do with
the fact that we are dealing with small vertex sets. This leads to the fact that
for large graphs more and more chunks are not instantiated, since chunks are
only instantiated if at least one value in that chunk is present. It is important
to note that this effect is larger for versions of Roaring with smaller chunk size,
since more chunks will not be instantiated. This explains the convergence for
large graphs. So what we basically observe is that the time it takes to iterate
through a set and the memory required to store a set seems to depend on the
number of instantiated chunks.

To get a better understanding of this behaviour, we explain this with an
example that compares Roaring12B with Roaring16B. Suppose we either have
to store a set of small vertices, such as a separator or the neighborhood of a
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Figure 18: Memory required to store the separators with respect to graph size
for Roaring10B, Roaring12B, Roaring14B, and Roaring16B.

vertex, or that we have to iterate through a small vertex set. Say that the
vertex set under consideration consists of 10 vertices, with random vertex IDs.
Now suppose that we have a graph size of 1000, then it is the case that both
Roaring12B and Roaring16B have a single chunk containing all 10 vertices. Now
suppose we have a graph of size 6000. Since this is larger than 212, Roaring12B
is likely to store the vertex set over two different chunks, while Roaring16B still
stores it in a single chunk. In this scenario, when we store the vertex set or iterate
through the neighborhood, we have to consider two chunks for Roaring12B
and only one chunk for Roaring16B. We believe that such cases lead to the
better performance on medium sized graphs that we observed for Roaring16B
as compared to Roaring12B. Now consider a graph of size 10.000.000. Since
Roaring16B can consist of up to 153 chunks and Roaring12B can consist of
up to 2442 chunks for a graph of this size, both Roaring16B and Roaring12B
are likely to consist of 10 chunks, one chunk for each vertex that it has to
represent. This explains that for such a graph size Roaring16B and Roaring12B
are expected to behave similarly.

Let us now describe the memory requirements to store the separated compo-
nents. Consider Figure 19 and 20, the latter without standard deviation shown.
Again, for a discussion about the standard deviations, we refer to section 4.1.7.
Interestingly, we observe the opposite happening of the measurements of the
time and memory for graphs and separators. Again, we observe that for small
graphs the different versions of RoaringB behave similarly. Though now we ob-
serve that as graphs get larger, when at some point Roaring10B diverges from
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Figure 19: Memory required to store the separated components with respect to
graph size for Roaring10B, Roaring12B, Roaring14B, and Roaring16B.

the others, it leads to an improvement. The same holds for Roaring12B and
Roaring14B.

Instead of having 2X as the inflection point for RoaringX, we observe that
these inflection point corresponds to 2X−4. This means that the inflection point
indicates that besides sparse chunks, also dense chunks can from there on be
present. This makes a lot of sense. Since separated components are often very
dense vertex sets, representing them as arrays of integers is not efficient. We
observe that in these cases having the option to represent them as bitmaps leads
to improvements.

Note that the data points have a second inflection point, which appears at
2X for RoaringX. Especially for Roaring16B we notice a clear straight line up
starting form the first until the second inflection point, indicating the fact the
memory consumption for storing the separated components does not grow in
this interval. After the second inflection point, the memory consumed starts to
grow again. The reason for the growth is that for graphs larger than the second
inflection point, we have that vertex sets have to be represented by more than
one chunk. We can explain the lack of growth in between the two inflection
points, by the fact that the dominant factor in the memory consumption for
storing the separated components is storing dense chunks. We know this because
bitmaps chunks have a constant size, namely the size of an entire chunk. The fact
that this constant size is observed in each data point in the interval, indicates
that the memory required for the other data sets is not very relevant.

These observations make sense when taking the distribution of component
sizes into account, since we have that a very large portion of the components
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Figure 20: Memory required to store the separated components with respect to
graph size for Roaring10B, Roaring12B, Roaring14B, and Roaring16B, without
standard deviation.

is almost the empty set, a large portion is almost the full set, and there is not
much in between. So we find that storing almost empty sets does not take a lot
of memory and that storing the bitmap chunks is the dominant factor.

Another interesting thing to notice, is that when the interval between the
two inflection points starts for Roaring16B, we see that Roaring16B consumes a
factor 4 more memory than Roaring14B. This is due to the fact that the bitmap
that Roaring16B stores is a factor four larger than the bitmap that Roaring14B
stores. This is simply due to the fact that the chunk sizes differ between the two
versions, so the memory required to store the bitmap difference as well. Note
that the same idea holds for the different versions of RoaringB, though it is not
as clearly visible.

So for small to medium-sized graphs we observe that Roaring10B performs
best. For graphs that are larger than about a size of 4000, we see that Roar-
ing12B is starting to outperform Roaring10B. Similarly, for the largest graphs
we see that Roaring14B is starting to outperform Roaring12B. It seems that for
relatively large graphs having a larger chunk size is advantageous. Note that
this also becomes apparent when considering the slope of the data points. Fol-
lowing this reasoning, we can expect Roaring16B to at some point outperform
Roaring14B, though this does not become clear from our experiments and it is
not sure whether such large graph sizes will become tractable in the near future.

The fact that RoaringB with large chunk sizes outperforms their smaller
chunk size counterparts, is interesting behavior. While RoaringB with small
chunk sizes has to store more chunks and so has more overhead, it is also the case
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that for relatively large graphs and dense vertex sets it has a larger probability of
representing the chunk with RLE, which happens only if the chunk is completely
full.

We are not sure about the following reason, but it could be the case that it
does turn out to be the overhead that determines the behavior. Suppose that we
have many chunks that are completely full, then each of these chunks has to be
represented by RLE and importantly, each of these chunks has overhead. Then,
it can become an advantage for Roaring with large chunk sizes to represent
fewer such chunks. For example, for a completely full set for a graph size of a
million, Roaring10B would have to store about a thousand RLE chunks, while
Roaring12B we have to store about 250, and Roaring14B about 60. Again, we
is not sure that this explains the behavior, but we know that this is a factor
that we have to take into account for very dense vertex sets.

4.1.6 Roaring, RoaringRun, and the Parallel Algorithm

Here we discuss the comparison between Roaring12, RoaringRun12, Roaring16,
and RoaringRun16, both implement with the BFS Algorithm and the Paral-
lel Algorithm. In Figure 21 and 22 we see the time behaviour of the variants
we investigated of respectively Roaring12 and Roaring16. The first thing that
should be noted, is that in both figures and irrespective of the algorithm used,
the data points that correspond to Roaring and RoaringRun basically overlap.
So it seems to be the case that there is no difference between Roaring and Roar-
ingRun in the Benchmark Experiment for the time to compute the separated
components.

This behavior makes sense, because the vertex sets that the algorithms are
working with correspond to the neighborhood of vertices. The vertices have a
low number of neighbors and converting sparse and unstructured sets to RLE
does not to lead to improvements in memory consumption. The fact that these
vertex sets are not converted to RLE chunks basically means that we get more
or less the same computations for Roaring and RoaringRun and this is what we
see.

The second thing that stands out is that in both figures we see that for large
graphs RoaringB outperforms RoaringP, and considering that slope we see that
the difference only grows as the graphs get larger. We see that Roaring16B
continuously outperforms Roaring16P. We also see that there is a slight the
window in which Roaring12P seems to outperform Roaring12B, for graphs sizes
between 800 and 5000. Note that for these graphs Roaring12P also outperforms
Roaring16B and Roaring16P, as shown in Figure 23.

There are a couple of interesting things to note in the performance of Roar-
ingP. First of all that while RoaringB seems to scale quite steadily, this is not
the case for RoaringP. For small graphs RoaringP starts with a relatively steep
slope, then at some point the computation time regresses as the graph sizes
increase, and then it continues a relatively steep slope. To understand this we
need to understand what happens in Roaring. When we look at that the inflec-
tion point of Roaring12P, after which the computation time will decrease as the
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Figure 21: Time performance with respect to graph size for Roaring12B, Roar-
ing12P, RoaringRun12B, and RoaringRun12P.

Figure 22: Time performance with respect to graph size for Roaring16B, Roar-
ing16P, RoaringRun16B, and RoaringRun16P.
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Figure 23: Time performance with respect to graph size for Roaring12B, Roar-
ing12P, Roaring16B, and Roaring16P.

graph sizes increases, we see that this corresponds to a graph size of 28 = 256.
For Roaring16P the inflection point corresponds to a graph size of 212 = 4096.
In both these cases this corresponds to the graph size, such that chunks can from
there on out not only be sparse - and thus represented as arrays of integers, but
also dense - and thus represented as bitmaps.

This leads to the situation that the separated components that we are com-
puting, which frequently have a size in the order of the graph size, will no longer
always be represented by sparse chunks. Chunks that make up the dense sepa-
rated components will be represented by bitmaps, after they become larger than
this inflection point (2X−4 for RoaringX). As we discussed earlier, performing
logical operations on bitmaps is generally faster than performing logical op-
erations on arrays of integers. As long as one of the chunks is a bitmap the
operations can be very efficient. Of course combining two bitmaps is efficient
as well. But note that this is also the case when we combine an array with
a bitmap. Then we can iterate over the array of integers and simply set each
value that we encounter to ’1’ in the bitmap, which is efficient. So the fact that
the separated component can be represented by a bitmap for these graph sizes,
leads to better performance for logical operations, which explains the regression
in computation time for RoaringP. Note that this behaviour would make it in-
teresting to further investigate the running time of Roaring10P and Roaring14P.
Unfortunately, this lies outside of the scope of this project.

The reason that we see that RoaringP scales worse to larger graphs than
RoaringB is similar to the behaviour that we saw for the other data structures.
For huge graphs it does not seem efficient to perform many logical operations.
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Figure 24: Memory consumption of the separated components with respect to
graph size for Roaring16B, Roaring16P, RoaringRun16B, and RoaringRun16P.

For huge graphs it simply seems more competitive to use the BFS algorithm,
which iterates through all the vertices.

Similarly to XBitSet and EWAH we found that the memory needed to store
the graphs and the separators is the same, irrespective of the algorithm and
whether we use Roaring or RoaringRun. For the memory requirements for the
separated components we consider Figure 24 and 25. Because the large overlap
for Roaring12 we also consider Figure 26, where we see the results for Roaring12
shown without the standard deviation.

The first thing that should be noted is that for both RoaringRun16 and Roar-
ingRun12 the results do not depend on the algorithm used. We also observe
that RoaringRun16 and RoaringRun12 seem to outperform their counterparts,
which do not make use of run optimization. Finally, we observe that the algo-
rithm used makes a difference, when we compare Roaring16B with Roaring16P
and Roaring12B with Roaring12P.

The reason that we see these differences is not due to the following effect,
though it is important to be noted. A chunk is only instantiated when it contains
at least one vertex. If this is the case there will be overhead generated to store
the chunk. And because the Parallel Algorithm adds and removes vertices from
the set, more chunks will be instantiated than will be the case for BFS. This
would lead to a larger memory consumption for RoaringP than for Roaring B.
In fact we see this effect explains that Roaring12B outperforms Roaring12P
for some graphs of small size. It also explains that RoaringRun12B seems to
outperform RoaringRun12P slightly for some graphs, though the reverse seems
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Figure 25: Memory consumption of the separated components with respect to
graph size for Roaring12B, Roaring12P, RoaringRun12B, and RoaringRun12P.

Figure 26: Memory consumption of the separated components with respect to
graph size for Roaring12B, Roaring12P, RoaringRun12B, and RoaringRun12P,
without standard deviation.
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never to be the case.
However, especially for large graphs we see that RoaringP seems to outper-

form RoaringB. This is due to the fact that if a chunk is completely full it will
be converted to RLE. For the same reason that the Parallel Algorithm instanti-
ates more chunks, we see that the Parallel Algorithm also generates more RLE
chunks. Note that a chunk can be converted to RLE at some point. If, at a
later moment, a vertex is removed from that chunk, it will remain a RLE chunk.
Since separated components can turn out to be close to the complete set, stor-
ing chunks for these vertex sets as RLE greatly outperforms storing them as
bitmaps.

As mentioned, we see that RoaringRun seems to outperform regular Roaring
with respect to storing the separated components. This is in the nature of
RoaringRun, since it only transforms chunks if it needs to reduced memory
consumption. The fact that the difference can turn out to be so large is, similar
to the reasoning above, due to the fact that storing almost full bitmap chunks
can easily be improved using RLE. When using RLE storing a stretch of ones
or zeros is done with two Short numbers, the first indicating the start of the
sequence in the second indicating that a sequence ends. Storing two Short
numbers takes 32 bits, which roughly corresponds to the bitmap of length 32.
So if a typical stretch of ones or zeros is larger than 32 RLE is expected to be
an improvement over bitmaps. Note that this turns out to be frequently the
case for separated components which almost contain the entire graph. That is
why we see the relatively good performance of RoaringRun.

The final thing that strikes our attention is that the difference between
RoaringRun16 and Roaring16 seems to be significantly larger than between
RoaringRun12 and Roaring12, especially when considering large graphs. To
dive into this we consider Figure 27, which shows Roaring12B, RoaringRun12B,
Roaring16B, and RoaringRun16B. First of all we observe that RoaringRun16B
performs best, then RoaringRun12B, Roaring12B, and Roaring16B.

Now let us focus our attention on the difference between RoaringRun12B
and RoaringRun16B. We see that up until a graph size of about 10,000 Roar-
ingRun12B sometimes perform slightly better, though differences are minimal
to non-existent, and for graphs larger we see that RoaringRun16B starts to
perform significantly better, up to a factor 10 for the largest graph. We try
to explain this by the fact that most separated components are either almost
completely full or completely empty. For example, there are separated compo-
nents consisting of a single vertex, while others consist of all vertices except for
the separator. For these separated components it is the case that almost all
chunks are either (almost) completely full or (almost) completely empty. For
the largest graph, RoaringRun16 has to store 3298946/216 = 51 chunks, while
RoaringRun12 has to store 3298946/212 = 806 chunks. For storing an almost
completely full or empty chunk, the chunk overhead counts for a large amount
of the memory consumption. Since this is up to a factor 16 larger for Roar-
ingRun12, we conjecture that it explains the difference. Though note that we
are not a completely sure that this effect explains the behaviour in its entirety.
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Figure 27: Memory consumption of the separated components with respect to
graph size for Roaring12B, RoaringRun12B, Roaring16B, and RoaringRun16B.

4.1.7 Best implementation of each data structure

In this section we compare the data structures with each other. To do this we
consider the data structures at their best performance. So we consider data
structure/algorithm pairs that performed best and the best version of Roaring.
This comes down to comparing XBitSetP, IntsB, EWAHB, and RoaringRun16B.

Figure 28 shows the time performance of the data structures. We ob-
serve that for large graphs we have IntsB performs best, followed by EWAHB,
RoaringRun16B, and XBitSetP. Moreover, we observed that IntsB outperforms
EWAHB and RoaringRun16B for each graph size. Though note, that for the
largest graphs EWAHB seems to grow at a slower rate than IntsB, suggesting
that at some graph size, EWAHB might become competitive with or even exceed
the performance of IntsB. For small graphs we see that XBitSetP outperforms
the others. Though it is also clear that XBitSetP seems to scale the worst to
larger graphs. Finally, it is interesting to note that for all graph sizes EWAHB
seems to outperform RoaringRun16B, except for the region of graph sizes be-
tween 2000 and 8000, in which we observe that RoaringRun16B and EWAHB
seem to perform similarly.

The impressive performance of XBitSet for small graphs is very notable.
Since many problems can be described as small graphs, XBitSet can be the
data structure of choice for many problems. The reason that it performs so well
has to do with the fact that it is very efficient in performing logical operations
on sets. However, XBitSet does not seem to scale well to large graphs. In those
cases having to store or iterate through all stretches of zeros becomes quite
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Figure 28: Time measurement for XBitSetP, IntsB, EWAHB, and Roar-
ingRun16B.

costly.
Note, that if we would have implemented XBitSet in the way in which it

could have performed better by up to as low as 81% as its current run time, it
would not significantly alter our observations. We would see that the range of
graphs in which XBitSet performs best would be a little larger, though for large
graphs its scaling behaviour would still be the worst.

Now let us turn to the discussion of why we observe that Ints performs so
well. When we compare IntsB with EWAHB and RoaringRun16B, it is impor-
tant to remember the discussion we had in section 3.1.5. There we discussed
the quickest way to iterate through a set. Since the BFS algorithm practically
does this for the neighborhood set of each vertex, iterating through these sets
turns out to be the largest factor that determines the running time.

In section 3.1.5 we found that the quickest way to iterate through sets for
EWAH and Roaring turned out to be to construct an iterator and then visit
each element of that iterator. When we consider Ints, we see that Ints already
practically has such an iterator, namely the set of Integer numbers itself. So it
turns out that EWAH and Roaring first have to perform an intermediate step,
before they can start the iteration, while Ints does not have to perform such an
intermediate step. Ints can start iterating right away. We conjecture that this
explains the better performance of Ints.

In this discussion, it is important to note that the vertex sets we are deal-
ing with, namely the neighborhood sets, are relatively small. It could be the
case that for iterating through larger, more dense vertex sets, Roaring and
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EWAH have some tricks up their sleeves to improve performance. Additional
experiments could be held to determine the performance in a wider variety of
circumstances. We are safe to conclude that for large and sparse graphs, Ints
seem to be a good data structure to perform the BFS algorithm.

Another way to look at the difference between Ints and Roaring, is that for
the sparse vertex sets that make up the neighborhood sets, it is the case that
each of the chunks in Roaring is represented as an array of integers. This means
that in these cases Roaring comes down to being practically the same as Ints,
except that it has extra baggage in the form of consisting of different chunks
and simply being a more complicated data structure. Because Roaring does not
seem to have any benefit to having this extra baggage, it makes sense that it
performs less well than Ints.

We believe that we also have to see the relative performance of EWAHB
and RoaringRun16B in the same light, as the comparison with Ints. Both
data structures first constructed an iterator, then they iterate through it. It
seems that for the vertex sets that we are dealing with, EWAHB outperforms
RoaringRun16B, especially for large graphs. Since Roaring basically only has
to unpack its sparse chunks, the fact that EWAH outperforms Roaring says
something about how efficient EWAH is in looping through its values.

Let us now turn our attention to the memory performance of the data struc-
tures. We consider Figure 29 and Figure 30 for their performance in respectively
storing the graphs and separators. First of all, note that these figures bear a
great resemblance to each other. The graph sizes for which one data structure
starts to outperform another are exactly the same in both figures. This makes
sense because graphs and the set of separators both consist of small vertex sets.
Note that a graph is stored by for each vertex storing the set of neighboring
vertices. Since in sparse graphs, vertices have a small number of neighbors,
these vertex sets are small.

In both figures we observe that Ints performs best for all graph sizes. We also
see that, while XBitSet performs well for small graphs, it scales worst to larger
graphs, somewhat similarly to what we observed for the time measurements. In-
terestingly, we observe that EWAH outperforms Roaring for the smallest graphs,
then for medium-sized graphs Roaring seems to outperform EWAH, and for the
largest graphs we see that EWAH outperforms Roaring again.

The fact that Ints performed best has to do with the size of the vertex sets.
Because these vertex sets are small, we see that Ints is a very good data struc-
ture for storing such sets. It is interesting to compare this with RoaringRun16B,
which stores the sets - possibly in different chunks - as an arrays of Short num-
bers. Suppose, however, that the graph is small enough that RoaringRun16B
only needs a single chunk to represent the vertex sets. In that case, the mem-
ory consumption of RoaringRun16B consists of a Short number for each vertex
plus overhead for one chunk. To compare this we Ints, we see that Ints needs a
Integer number for each vertex plus overhead for the array. The fact that we ob-
serve that RoaringRun16 consumes more memory than Ints, indicates that the
overhead for storing chunks for RoaringRun16 is relatively large. So from these
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Figure 29: Memory consumption of the graphs with respect to graph size for
XBitSetP, IntsB, EWAHB, and RoaringRun16B.

Figure 30: Memory consumption of the separators with respect to graph size
for XBitSetP, IntsB, EWAHB, and RoaringRun16B.
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observations we have to conclude that Roaring is not an efficient data structure
for storing very sparse sets, due to the large amount of chunk overhead. Though
note, that as vertex sets get denser, RoaringRun16B will be at an advantage.
Each extra vertex costs RoaringRun16B 16 bits to represent, compared to 32
bits for Ints.

The reason that Ints outperforms EWAH also has to do with the fact that
the vertex sets are sparse. Suppose we have a large and sparse vertex set,
then EWAH probably has to store two Long numbers for each vertex. The first
Long number corresponds to the marker word and indicates the stretch of zeros.
The second Long number stores the literal word, the bitmap of length 64 that
contains the vertex. So for large and sparse vertex sets, we expect EWAH to
need to store two Long numbers for each vertex, while Ints only has to store only
a single integer number for each vertex. So we expect that EWAH consumes
about a factor four more memory than Ints. When we look at the figures, this
roughly corresponds to what we observe.

Note that the tipping point, after which EWAH might have to store more
than one marker word for a vertex, lies at a distance between two vertices of
232 = 4.294.967.296, well beyond our reach. However, if we would have used the
32-bit version of EWAH, instead of the 64-bit version, this tipping point would
have been at a distance between two vertices of 216 = 65.536. This means that
in our experiments we would have encountered cases where the single vertex
represented by more than two numbers. Though note, that the 32-bit version of
EWAH stores the marker words and literal words as Integer numbers, instead
of Long numbers. This improves its memory performance by up to a factor two.
So if memory requirements are a bottleneck, it makes sense to consider 32-bit
EWAH, instead of 64-bit EWAH.

The comparison between XBitSet and Ints is quite straightforward. An
integer is represented by 32 bits, which would correspond to the bitmap of
length 32. So if the vertex density of the set is higher than 1/32 we have that
XBitSet performs better, otherwise we have that Ints performs better. We have
very sparse data sets, way sparser than a density of 1/32, that is why we observe
that Ints outperforms XBitSet. Since the amount of vertices that need to be
represented grows slower than the total amount of vertices in the graph, we also
observe that Ints scales better.

Comparing XBitSet with EWAH is quite interesting. For small graphs we
observe that XBitSet outperform EWAH. This makes a lot of sense, because
for small graphs EWAH is basically a worse version of XBitSet. In these cases
EWAH typically will consist of a single marker word, followed by a set of literal
words, which describes the entire vertex set. XBitSet will basically only have
to store these literal words. This explains that XBitSet outperforms EWAH for
small graphs. For large graphs we observe that the compression of EWAH is
way more efficient than storing the entire vertex sets as regular bitmaps.

Finally, we compare EWAH with RoaringRun16B. In both figures we observe
that EWAH performs best for the smallest graphs, RoaringRun16B is better for
medium-sized graphs and that EWAH performs better for large graphs. The
reason that EWAH starts to perform worse for medium-sized graphs, is that for
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larger graphs this less likely that either two vertices are in the same literal words
and two vertices are in neighboring literal words. In the first of these options
two fewer Long numbers have to be stored, in the second option one fewer Long
number has to be stored. This means that for larger graphs more Long numbers
have to be stored, so the memory consumption grows. For the largest graphs
we see that Roaring can starts to consist of more than one chunk. This simply
leads to more memory consumption. Especially in Figure 30 we can clearly
see that this starts to happen from a graph size larger than the chunk size of
RoaringRun16B, namely 216 = 65.536. This effect leads to our observations
that EWAH starts to outperform RoaringRun16 for the largest graphs.

One last thing to note in Figure 30 is the fact that the standard deviations of
the data structures behave quite differently. For Ints we see that the standard
deviation exists, purely due to the fact that the separators have different sizes,
which is relatively independent of the graph size. We observe that XBitSet does
not have any standard deviation, because it always stores the full set. For Roar-
ingRun16B we observed that for small and medium-sized graphs the standard
deviation is relatively small, while it gets larger for larger graphs. This probably
has to do with the fact that for large graphs the memory consumption depends
on how many chunks are instantiated, which is more subject to fluctuation for
larger graphs. Finally, for EWAH we see that the standard deviation starts
out small, but gets large relatively quickly. This probably has to do with the
fact that the amount of Long numbers that it needs to store is subject to the
distance in between those numbers, as described above.

When we compare Figure 28 with figures 29 and 30 we observe similarities.
Especially for large graphs we have that the best data structures in all figures
are ranked as follows: Ints, EWAH, RoaringRun16B, XBitSet. This gives an
preliminary indication that there exists a relation for data structures between
the memory required to store a set and the time it takes to iterate through that
set. This could be interesting to investigate further.

Now let us turn to the behavior of the data structures for storing the sepa-
rated components, which is shown in Figure 31, and without standard deviations
in 32. We will discuss the standard deviations after the relative results. The
first thing that strikes our attention is that Ints performs quite poorly. We also
observe that for the smallest graphs XBitSet performs best, but that it does
not scale well to large graphs. Surprisingly, we observed that EWAH and Roar-
ingRun16B behave quite similarly. For small graphs EWAH seems to be a little
bit better, for medium to large size graphs RoaringRun16B seems to be little
the better, and for the largest graph EWAH seems to be a bit better. However,
note that if we take variance into account the differences between EWAH and
RoaringRun16B appear to be not significant.

The reason that XBitSet scales poorly is exactly the same as for the other
memory measures. It needs to store the bitmap with the size of the number of
vertices in the graph. The reason that Ints scales so poorly is that Ints has to
store an Integer number for each vertex in the set. As separated components
can contain almost the entire graph, a lot of Integer numbers need to be stored.
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Figure 31: Memory consumption of the separated components with respect to
graph size for XBitSetP, IntsB, EWAHB, and RoaringRun16B.

Figure 32: Memory consumption of the separated components with respect to
graph size for XBitSetP, IntsB, EWAHB, and RoaringRun16B, without stan-
dard deviation shown.
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The strength of bitmap compression techniques really comes into play here.
When not only very sparse, but also very dense vertex sets have to be stored,
which is typical for separated components, EWAHB and RoaringRun16B seem
to perform relatively well. Especially when considering the scaling behavior, we
observe that the amount of memory consumed for storing the largest graphs is
only slightly more than the memory consumed for small graphs. This indicates
that we expect EWAHB and RoaringRun16B to be able to efficiently store even
larger graphs.

The fact that the results for EWAHB and RoaringRun16B behave so simi-
larly, is somewhat surprising. As we have already compared their behavior for
sparse vertex sets, we will discuss their behavior for dense vertex sets here. The
result that we observe turns out to be a mix of these results.

It is insightful to start the comparison with a large vertex set that is com-
pletely full. For EWAHB this is simply stored with one marker word and one
literal word, which represents the final word. So for EWAHB we have to store
two Long numbers: 128 bits. RoaringRun16B stores this with RLE chunks. One
such chunk consists of two shorts, indicating that the stretch of ones fills the
entire chunk. So Roaring needs to store 32 bits plus overhead for each chunk.

Now let us see what happens when we remove a single vertex. For EWAHB,
this generally means that it needs to store two extra Long numbers, since the
stretch of ones gets interrupted somewhere. So EWAHB needs to store 128
extra bits. For RoaringRun16B, the interrupted stretch of ones gets handled
more efficiently. One of the chunks gets altered, to contain two stretches of ones,
instead of one, and so RoaringRun16B needs to store two extra Short numbers.
So RoaringRun16B needs to store 32 extra bits.

So while EWAHB stores the full vertex set more efficiently, RoaringRun16B
seems able to better handle perturbations from the full vertex set. As men-
tioned, the observed differences between EWAHB and RoaringRun16B do not
seem significant. However, based on this reasoning we expect that as graphs get
even larger - and the stretches of ones correspondingly - that EWAHB will out-
perform RoaringRun16B, since the chunk overhead will weigh relatively heavy
on RoaringRun16B. The three largest graphs might start to capture this phe-
nomenon, though experiments with larger graphs are needed to either accept or
refute this idea.

Finally, some words about the large amount of standard deviation for these
measurements. During the experiment we kept track of the amount of sepa-
rated components that needed to be computed. We found that the amount of
separated components between different runs of the same experiment differed
by up to a factor 10. The reason for this is that when a separator resides at the
edge of the graph, it typically separates one or two separators. But when it has
a more central position, it can also separate a couple of separated components
of very small sizes, sometimes consisting of just a single vertex.

Note that this behavior can clearly be seen in the standard deviation of
XBitSetP, since XBitSetP always stores the full vertex set. The same behavior
explains the large standard deviation for EWAHB and RoaringRun16B. Note
that Ints does not have a standard deviation, since it basically as to store each
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Figure 33: Time needed to compute the separated components with respect to
graph size for Ints, XBitSetP, EWAHP, and RoaringRun12P, with the Parallel
Algorithm.

vertex that does not reside in separator. As we can see, this turns out to be a
relatively steady amount of vertices, similar to the observed standard deviation
for storing the separators.

4.1.8 Time performance in the Parallel Algorithm

In this section we discuss the results of the time measurements for each of the
data structures with the Parallel Algorithm. This way, we hopefully get some-
what of an indication of how well the data structures perform in computing
logical operations between vertex sets. Note, that we only include the time
measurements in this discussion, because they differ significantly from their
BFS counterparts and add new information. In this section we compare IntsP,
XBitSetP, EWAHP, RoaringRun12P, and RoaringRun16P. Note, again, that
the IntsP measurements can be somewhat off, due to the fact that those mea-
surements are performed at a later moment in time.

The results are shown in Figure 33. Note that the fact that we stopped
the EWAHP computation at a graph size of about 200,000 does not seem to
make sense. At the time we did this because EWAHB significantly outper-
formed EWAHP. Because this was less clear for Roaring, we decided to perform
the experiments fully for Roaring. In hindsight, it would also have been inter-
esting to see how EWAHP behaves for the largest graphs, especially since for
the larger graphs the relative performance with respect to RoaringRun12P and
RoaringRun16P seems to improve.
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We observe that for large graphs XBitSetP performs best, then RoaringRun16P
and RoaringRun12P, then EWAHP, and IntsP performs worst.

For small and medium size graphs we observe that RoaringRun16P performs
worse than for large graphs. This can be explained by the fact that for these
graph sizes - up to a graph size of 212 - RoaringRun16P only makes use of sparse
chunks. This means that all operations are between sets of Short numbers.
This explains that for these graph sizes the performance of RoaringRun16P
resembles the performance of IntsP. For graphs larger than 212 we observe that
RoaringRun16P also starts consisting of bitmap chunks, which are more efficient
in these kinds of operations.

We conjecture that the reason that RoaringRun12P and RoaringRun16P at
some point start to outperform EWAHP has to do with the fact that Roaring
is more efficient in performing logical operations on vertex sets of high density
than EWAH. At some point, as vertex sets get denser, EWAH will start to
consists of a single marker word, followed by basically only literal words. So it
will start to resemble an uncompressed bitmap. However, EWAH does have a
negative trait as compared to an uncompressed bitmap. When one of the words
gets to be completely full, it gets to be labeled as a fill word consisting of ones.
If this happens EWAH creates a new marker word to compress that fill word.
If the vertex sets get to be almost the full, as is often the case for separated
components, this means that EWAH has to convert almost each literal word to
a fill word. As EWAH has about G(N)/64 words, we believe that this process
will have a significant influence on its time performance. This can explain the
observed difference with RoaringP and XBitSetP.

The fact that XBitSetP performs best, is not only explained by the fact
that it is efficient in performing logical operations. In the Parallel Algorithm
we construct the separated components step by step, at each step adding the
neighborhood of another vertex. This means that the logical operations that we
perform typically happen between one vertex set of small size - the neighborhood
set of a vertex, and one vertex set that ranges from very small to very large -
the separated component we are constructing. If the vertex set gets large, it will
go through a phase of intermediate size. The fact that XBitSet is very efficient
for performing operations on random medium-sized sets, also explains the good
performance of XBitSetP.

4.2 MMD Experiment

In this section we will describe the results of the experiments of the data struc-
tures on the MMD Algorithm. Similar to the Benchmark Experiment, the
graphs that we considered are random partial 40-trees, with the probability
of an edge p = 0.075, as described in section 3.2.1. For the first experiment
the smallest graph that we used consisted of 79 vertices and the largest graph
consisted of 304.512 vertices.

The computation time for the MMD Experiment turned out to be signifi-
cantly longer than for the Benchmark Experiment. Therefore, we decided not
perform the MMD Experiment for each of the data structures, for which we per-
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formed the Benchmark Experiment. This way we were able to consider larger
graphs. Initially, we wanted to use the data structure/algorithm combinations
that performed best in the Benchmark Experiment. As described in section
4.1.7, these turned out to be IntsB, EWAHB, RoaringRun16B, and XBitSetP.
Note that only for XBitSet we have that the Parallel Algorithm performed best.
An important decision that we had to make, was that we decided to imple-
ment XBitSetB, instead of XBitSetP. The following paragraph describes our for
reasoning for this decision. Finally, to get more insight into the behavior of
Roaring, we also implemented Roaring16B and Roaring12B. Since we have that
each data structure is implemented with the BFS Algorithm, we will from here
on out drop the ’B’ to indicate this.

Before we describe the reason that we implemented XBitSet with the BFS Al-
gorithm, instead of the Parallel Algorithm, it is important to realize that regular
MMD - without any of the improvements that we made - can straightforwardly
be implemented with both the BFS and Parallel Algorithm. The computation
of separated components is a key procedure in MMD, used to compute the sub-
stars. This way, MMD decides which vertex sets have to be formed into cliques
and which vertices in fill graph H are LB-Simplicial. However, the computation
of the separated components turned out to be the most time-consuming part of
the algorithm. Therefore, we made a couple of improvements to it. Remember
that these improvements were called Shallow BFS, Checking for Cliques, and
Separating Substars, as described in section 3.4. These improvements made
it less trivial and a larger effort to implement the Parallel Algorithm. We do
believe that the Parallel Algorithm can be efficiently implemented with these
improvements. However, we observed that the data structures that scale well
to larger graphs seem to perform best with the BFS Algorithm and that this
is the main focus of this project. So we decided not to implement MMD with
the Parallel Algorithm. Note, that this probably puts XBitSet somewhat at a
disadvantage. However, based on our conclusions from the Benchmark Experi-
ment, we expect that this decision will not influence our conclusions, since the
main goal is to investigate the behaviour for large graphs and XBitSet did not
perform well for large graphs.

In the experiment we compared the data structures on three measures. The
time it takes to finish the algorithm, the memory consumption to store fill graph
H, and an indication of the maximum required memory during the algorithm.
Note that it is also interesting to consider the memory requirements to store
the original graph G. However, since the graphs coincide with the Benchmark
Experiment, we have already discussed these results. So for this discussion we
refer to section 4.1.7.

For each combination of graph and data structure we performed 15 sub
experiments. In each of these experiments we shuffled the vertex IDs randomly,
to include variance in the measurements. This way, the order in which the
vertices get eliminated is different each time, resulting in different memory and
time behaviour.

Similarly to the Benchmark Experiment, it is important to note that the
memory measurements are deterministic in nature. Repeating a measurement
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Figure 34: Boxplot for the time measurements for Roaring16, scaled to an
average value of one.

gives exactly the same results. Again, the time measurements are not determin-
istic, due to the behaviour of the server.

In the implementation of the experiments, we made as much use as possible
of an abstract class. This way we let the different data structures share as much
code as possible. We were able to perform a large part of the experiment and
all the measurements in this class. About 25 functions had to be implemented
separately for each of the data structures.

It took about 17 days to perform the MMD Experiment. In the coming
sections we will first describe the time measurements and then the memory
measurements. Similarly to the Benchmark Experiment, we first compare the
different versions of Roaring. Then we compare the best version of Roaring with
the other data structures.

4.2.1 Time measurements

Before we discuss the results, we first take a look at the boxplots of the time
measurements. For brevity we only consider Roaring16, Ints, XBitSet, and
EWAH in this discussion. The boxplots are shown in Figure 34, 35, 36, and 37.
Note that, similarly to the Benchmark experiment, the values in the boxplot
are scaled to the mean outcome, which leads to an average boxplot value of one,
and that the boxplots are ordered from left to right, such that the graph size
increases.

Similarly to the benchmark experiment, we observe that the typical size of
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Figure 35: Boxplot for the time measurements for Ints, scaled to an average
value of one.

Figure 36: Boxplot for the time measurements for EWAH, scaled to an average
value of one.
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Figure 37: Boxplot for the time measurements for XBitSet, scaled to an average
value of one.

Q1 and Q3 is off from the mean by about a factor five to twenty percent. This
behaviour seems to be independent of the graph size. This indicates that the
measurements are somewhat stable, as we will later see when we consider the
figures in which we compare the data structures.

It is important to note that the MMD experiment considers a smaller range
of graphs. This means that the smallest graphs in these boxplots correspond to a
larger computation time, when compared to the smallest graphs in the boxplots
of the Benchmark Experiment. This explains that we observe that the outliers
for the smallest graphs are less spectacularly large. For the smallest graph, the
largest outliers are for EWAH. They get as large as a factor 2.25 larger than
the mean. Note that this is considerably smaller than what we observed for
the Benchmark Experiment, where the outliers for the smallest graph were as
much as a factor 10 larger than the mean. Since we saw that the outliers for the
smallest graphs in the Benchmark Experiment were so large, we figured that
they probably came into existence due to the server behaviour, so we decided
to remove them. Since we do not observe such extreme outliers in the MMD
Experiment, we do not have a clear indication that these outliers need to be
removed.

However, we observe that the outliers seem to be independent of the graph
in question, because different data structures show outliers for different graphs.
For this reason, we believe that these outliers are not intrinsic to the problem
instances, but come into existence due to the server. This could also explain the
fact that - similarly to the Benchmark Experiment - we observe a much larger
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Figure 38: Time needed to perform MMD with respect to graph size for Roar-
ing12, Roaring16, and RoaringRun16.

portion outliers being too large, then too small. For these reasons we decided
to remove the outliers from the results.

The results for the different versions of Roaring are shown in Figure 38 and
39, the latter without standard deviation. The first thing that we observe is the
fact that Roaring16 and RoaringRun16 give practically the same results. Note
that we observed the same behaviour in the Benchmark Experiment, see Figure
22.

Secondly, we see that Roaring12 starts to perform slightly worse than Roar-
ing16 and RoaringRun16, starting from a graph size of about 7000. Again, we
observe the same behaviour for the Benchmark Experiment, as shown in Figure
16. Note that in the benchmark we started to observe a significant difference
starting at a graph size of about 5000, slightly earlier. This difference can be
explained by the fact that we have a larger standard deviation for Roaring in
the MMD Experiment, than in the Benchmark Experiment.

Finally, remember that in the Benchmark Experiment we observed that for
the largest graph sizes, the different versions of Roaring converged in their run-
ning time. In the MMD Experiment it seems that we start to see the same
behaviour, as would be expected, since the same principles hold. However, we
do not have enough evidence to conclude on this. Experiments with larger graph
sizes are needed to accept or reject this hypothesis.

The results for Ints, EWAH, XBitSet, and RoaringRun16 are shown in Figure
40 and 41, the latter without standard deviation. Note that we have shown the
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Figure 39: Time needed to perform MMD with respect to graph size for Roar-
ing12, Roaring16, and RoaringRun16, without standard deviation.

version of Roaring that performs best. Also note, that we did not perform
the experiment for XBitSet for the largest graphs. Since XBitSet performed
significantly worse for large graphs than its competitors, we decided to spend
more computation time on the EWAH, Ints, and Roaring. This way, we were
able to perform the experiment for larger graphs.

Again, we observe a couple of the same patterns as we saw in the Benchmark
Experiment. Ints seem to perform best, followed by EWAH and RoaringRun16,
which perform quite similarly, and XBitSet performs the worst. For XBitSet,
we see that for small graphs it does perform well, but that it scales worse than
the competitors.

It is important to note that XBitSet could probably be improved in two ways.
First of all, XBitSet performed better with the Parallel Algorithm. Secondly,
XBitSet could be implemented to make use of dynamic memory allocation, prob-
ably saving computation time. Since most of the computation time is spent to
check whether fill graph H is chordal and we know that H is denser than orig-
inal graph G, we expect that the improvement for using XBitSet() instead of
XBitSet(G(N)) will be smaller, than we expected for the Benchmark Experi-
ment. Still, these possible improvement will likely lead to better performance for
XBitSet. Though, for the largest graphs we expect this improvement not to be
large enough to be able to compete with the other data structures. Especially,
since we observed that in the Benchmark Experiment XBitSetP outperformed
XBitSetB most drastically for small graphs. For larger graphs the difference
seemed to shrink. Taking this into account, however, leads us to the believe
that XBitSet seems to be the fastest data structure for MMD on small graphs,
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Figure 40: Time needed to perform MMD with respect to graph size for Ints,
EWAH, XBitSet, and RoaringRun16.

Figure 41: Time needed to perform MMD with respect to graph size for Ints,
EWAH, XBitSet, and RoaringRun16, without standard deviation.
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Figure 42: Time needed to compute the separated components in the Bench-
mark Experiment with respect to graph size, for Ints, EWAH, XBitSet, and
RoaringRun16. Each of the data structures make use of the BFS Algorithm.

similarly to the Benchmark Experiment.
It is interesting to compare the results with the results for the Benchmark

Experiment, in which each algorithm uses the BFS Algorithm. We show this in
Figure 42. Note that, in style accordingly to the Benchmark Experiment, the
data structures are denoted as IntsB, XBitSetB, EWAHB, and RoaringRun16B.
We observe that the results seem to correspond quite nicely to each other. First
of all, we observe that the graph size at which RoaringRun16 and EWAH start
to outperform XBitSet corresponds to the MMD Experiment, namely for graphs
of size about 2500 to 3000.

However, we also observe two main differences. The first is that we seem
to observe a significant difference between the two experiments for the smallest
graphs. In the Benchmark Experiment we observe that the data structures
behave significantly different. This is not the case in the MMD Experiment.
There we observe that the differences between the data structures do not seem
significant. We also get an indication that Ints performs worst on small graphs
in the MMD Experiment, while we observe that in the Benchmark Experiment
Ints performs best for those graphs.

Before we explain this behaviour, we consider Figure 43, which indicates the
relative difference in the time performance between the Benchmark Experiment
with the BFS Algorithm and the MMD Algorithm. Here we observe that,
as noted, the relative performance for small graphs is relatively poor, since
we expect the MMD Algorithm to scale worse to larger graphs than the BFS
Algorithm. So we would expect a monotonically increasing function.

73



Figure 43: Relative time performance between the Benchmark Experiment with
the BFS Algorithm and the MMD Experiment, with respect to the graph size,
for Ints, EWAH, XBitSet, and RoaringRun16.

The reason that we observe this behavior has to do with the fact that in
the MMD Algorithm, a wider range of behaviour is included in the experiment.
The data structures do not only have to perform the part of the algorithm, in
which they compute substars. Also, setting up the algorithm is measured, as
well as the set up for round 2. In the set up, the elimination graph G′ and the
fill graph H have to be copied from the original graph G and cast to the data
structure in question. In this set up for round 2, this basically gets repeated for
those vertices that are not yet LB-Simplicial. Note that round 2 is a relatively
small procedure, since only a small fraction of the vertices turns out not to
be LB-Simplicial after round 1. For small graphs, the set up determines up
to 85% of the running time of the algorithm, as can be shown in Figure 44.
For large graphs, however, eliminating the vertices and checking for chordality
seems to be dominant in determining the running time. So we have that for
small graphs, the operation performed in the MMD Experiment are significantly
different from the operations of the Benchmark experiment. This explains that
for small graphs the two experiments give different results.

Note that Figure 44 does not give an indication of which data structure
performs best in these operations, since the data points are relative to the total
running time. Their absolute performance in is shown in Figure 45. Note that
for small graphs the results seem indecisive. For large graphs we observe that
Ints performs best, followed by EWAH, RoaringRun16, and XBitSet.

The second main difference that we observe between the MMD Experiment
and the Benchmark Experiment, has to do with the relative performance of
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Figure 44: Fraction of the running time that is spent in the part of MMD in
which we eliminate the vertices and check for chordality, for increasing graph
size. We consider Ints, EWAH, XBitSet, and RoaringRun16.

Figure 45: Running time that is spent on setting up the graphs, for increasing
graph size. We consider Ints, EWAH, XBitSet, and RoaringRun16.
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Figure 46: Fraction of time that is spent to check whether the graph is chordal,
for Ints, EWAH, XBitSet, and RoaringRun16.

the data structures. In Figure 43 we observe that relatively to Benchmark Ex-
periment Ints performs worst, followed by EWAH, XBitSet, and RoaringRun16
performs relatively best.

The fact that these difference are significant can be shown by comparing
Figure 42 with Figure 40. In the Benchmark Experiment we observe that EWAH
starts to outperform RoaringRun16, starting from a graph size of about 20.000.
However, in the MMD Experiment we do not observe this behavior. Instead,
we observed that for graphs of size of around 10,000, RoaringRun16 seems
to outperform EWAH. For large graphs in the MMD experiment, we do see
that the difference becomes smaller and then at some point EWAH starts to
outperform RoaringRun16 slightly. However, the evidence does not seem strong
enough to support the conclusion that EWAH scales better to large graphs than
RoaringRun16. Further research on larger graphs would be needed to verify this
behavior.

We conjecture that the difference between the data structures for the dif-
ferent experiments has to do with the graph density. Figure 46 shows that for
large graphs, the algorithms spends about 90% of the computation time to check
whether the graph is chordal. When we measured fill graph H, we found that
it contains an amount of edges of about a factor 2 larger than original graph G,
indicating that MMD adds that a lot of edges to triangulate the graph. This
means that in 90% of the time, the data structures have to deal with a graph
that is about twice as dense, than is the case in the Benchmark Algorithm. This
means that each data structures typically have to deal with data sets that are
about twice as dense.
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XBitSet seems to perform relatively well, as we would expect. XBitSet does
not need to store any extra information and it only has to iterate through extra
bits that are set to ’1’.

It is important to note that, even though the vertex sets are twice as dense,
we are still dealing with relatively sparse vertex sets. For EWAH, when con-
sidering large graphs, this means that each vertex set contains up to twice as
many marker and literal words. It has to contain twice as many vertices and
the larger graphs get, the more unlikely it is that those vertices reside in the
same or a neighboring literal word. This means that creating vertex set iter-
ators and iterating through them will take longer. Especially interpreting the
extra marker words can have a significant impact. Note however, that for small
graphs we observe that EWAH performs relatively well. This is because in this
case, it is likely that the extra vertex can be stored in an already existing literal
word. EWAH handles this efficiently.

For RoaringRun16 we observe the least of an impact. As long as Roar-
ingRun16 represents the vertex sets with a single chunk, so if the graph size is
smaller than 216 = 65.536, we have that that for each extra vertex we only have
to include an extra Short number in the chunk. Note that this only holds if
the vertex set is sparse enough to be represented by an array of integers, which
is the case for sparse graphs such as H. However, if new chunks have to be
created, their creation and iterating through them will cost extra computation
time. This will start happening for graphs larger than 216. This could explain
the fact that in Figure 40, RoaringRun16 seems to start performing somewhat
worse relatively to EWAH for the largest graphs. Note, that this effect could be
a factor that starts to have a significant impact on the performance of Roaring
as graphs grow even larger. We get an indication for this in the results of the
Benchmark Experiment, in which we observe that for the largest graphs EWAH
scales better than RoaringRun16.

We seem to observe that Ints is burdened most by this. For each extra
vertex, Ints needs to iterate through one extra Integer number, which seems
relatively costly. However, we believe that this is not true. We believe that
the relative performance between the experiments for the others is better, not
because they deal worse with more dense vertex sets, but because the others
perform relatively poorly in the Benchmark Experiment.

Another way to look at this is to, once again, consider Figure 42. Note
that the fact that the ratio between the number of edges and vertices is about
constant for all graphs, leads to the another insightful property of this figure.
Namely that the vertex sets that the data structures are dealing with, are denser
for small graphs and sparser for large graphs. Since vertices have about six
neighbors on average, this means that for a graph of size a hundred the typical
vertex set has a density of about six in a hundred. For a graph of size a million,
the typical vertex set density will be about six in a million. For Ints, this
sparsity does not have any influence on its performance, since it only has to
iterate through the set of integers and because we observe in Figure 42 that
Ints performs well for both large and small graphs, so for both sparse and dense
vertex sets. So we have to conclude that Ints performs well for relatively dense
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vertex sets as well.
It is also interesting to note how the other data structures are expected to be

effected by sparsity. XBitSet is bothered the most, since it has to iterate through
all the extra bits which are not present. EWAH and Roaring scale better with
more sparsity. EWAH simply skips the stretches of zeros, and Roaring behaves
similarly to Ints, as long as vertex sets are sparse enough and it does not need
to instantiate new chunks.

4.2.2 Memory measurements

In this section we describe the memory measurements. We start with comparing
the data structures in how well they perform in storing fill graph H, then we
will say something about the maximum amount of memory required during the
algorithm. Similarly to the Benchmark Experiment, we have that the memory
measurements are deterministic in nature. For this reason we decided not to
consider any data points as outliers.

When comparing the different of versions of Roaring, we did not observe
any significant differences to the results from the Benchmark Experiment. So
we skip right away to compare the behaviour of Ints, EWAH, XBitSet, and
RoaringRun16. We start with the discussion of memory required to store fill
graph H, as shown in Figure 47. We compare the results with the graph mea-
surements in the Benchmark Experiment, as shown in Figure 29. Note that
these are the same graphs that the MMD Experiment is performed on. Finally,
we also consider Figure 48, which shows the relatively performance of the data
structure in storing H and G. Remember that the main difference between G
and H is that the latter is more dense, by about a factor 2.

We observe that for large graphs Ints performs best, followed by respec-
tively RoaringRun16, EWAH, and XBitSet. We observe two main differences
in storing H, with respect to storing G.

The first thing that stands out is that XBitSet performs relatively well. For
a larger number of small graphs XBitSet seems to perform best. This is due
to the fact that the other data structures are negatively influenced by the fact
that H is more dense. For XBitSet this is not the case, since it simply stores
one bit for each vertex in the graph, irrespective of the amount of vertices in
the set. This can also clearly be seen in Figure 48, where the data points of
XBitSet have values close to one.

Note that it is surprising that these data points are not exactly equal to one.
We conjecture that this has to do with the measurement process. To make sure
that we did not measure all kinds of other objects, created during the algorithm,
we measured H by making a copy of it and subtracting the free memory before
from the free memory after its recreation. Perhaps this leads to a situation in
which we have that G is more efficient in memory sharing between the different
vertex sets than H is. However, we are not sure about this reasoning.

The second noteworthy difference with the measurement of G is that Roar-
ingRun16 performs relatively well. When storing G, we observed that Roar-
ingRun16 outperformed EWAH up to a graph size of about 300.000, after which
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Figure 47: Memory consumption to store H with respect to graph size, for
XBitSetP, IntsB, EWAHB, and RoaringRun16B.

Figure 48: Relative memory required for storing H and G, with respect to the
graph size, for Ints, EWAH, XBitSet, and RoaringRun16.
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EWAH started to outperform RoaringRun16. In storing H we observe that even
for graphs of size 300.000, RoaringRun16 still significantly outperforms EWAH.

The reasoning for this difference is the same as we saw with the relative
time performance in the MMD Experiment between EWAH and RoaringRun16.
There we observed that, since the vertex sets are sparse, there is a difference
between them in what happens when they have to store an extra vertex. As
graphs get larger, we observe that for EWAH it gets more like that it has to
store another marker and literal word for each added vertex. In these cases it
has to store two extra Long numbers, or 128 bits. This is also the reason that
for even larger graphs EWAH will probably to start to scale worse than Ints.

RoaringRun16 typically has to store one extra Short number, as long as it
is not the case that a new chunk needs to be instantiated. This means that
RoaringRun16 has to store an additional 16 bits. This explains the fact that
RoaringRun16 performs relatively well in the MMD Experiment. Though also
note that the fact that RoaringRun16 has to store twice as many vertices, only
results in a factor 1.2 more memory required. This indicates that the chunk
overhead consumes about 80% of the memory when storing G, and about 67%
of the memory for storing H. This leads us to believe that as graphs get larger,
the relative memory performance of Roaring will further improve.

Finally, we know that Ints has to store 32 extra bits for each extra vertex,
and we observe that this scales relatively poorly. This indicates that at some
density, higher than we observe here, XBitSet and RoaringRun16 will start to
outperform Ints. This corresponds to the observations that we made of the
measurements of the separated components in the Benchmark Experiment. For
these dense vertex sets, Ints performed significantly worse than the others.

To get an indication of the maximal amount of memory required, we had to
resort to sub optimal measurements. The measurement of the maximum mem-
ory would need to take place deep inside the BFS part of the algorithm, since
that is the moment that the most memory is needed. However, if we would per-
form the measurements in this part of the algorithm, we would need to perform
the memory measurement quite frequently to get a good indication of the maxi-
mum memory. However, we quickly found out that this would greatly influence
the time requirements of the experiment. When performing the measurements
about G(N) times, this would typically make the algorithm slower by a factor
10. When considering the Ints data structure, measuring the memory 10 times
for a graph of size 1000, still meant that the memory measurements consumed
about half of the computation time. Because we also want to be able to properly
distinguish between the data structures for graphs of size 1000, we decided to
go with the following approach.

First of all, we measured the maximum amount of memory only 20 times: 10
times in the part of the algorithm in which we eliminate vertices and 10 times in
the part of the algorithm in which we check whether the graph is chordal. We
also decided not to measure the actual maximum memory, since that would have
to be performed deep inside the BFS. Instead, we performed the measurements
right after the BFS. This way, we were able to measure the largest amount of
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Figure 49: Maximum memory consumption with respect to graph size, for XBit-
SetP, IntsB, EWAHB, and RoaringRun16B.

objects, that needed to be stored anywhere in the algorithm, outside of the
BFS. It also meant that the measurements did not influence the functioning of
the BFS. To make sure that the memory measurements did not influence the
time measurements, we subtracted the time it takes to perform the memory
measurements from the elapsed time.

It is important to note that the memory measurements are not optimized.
The neighborhood sets of the fill graph G′ remain after elimination, while they
could also be deleted. So we overestimate the maximum amount of memory
required at the specified location in the algorithm. However, we expect that
these measurements do give an indication of how the data structures perform
during the algorithm.

The results are shown in Figure 49. Note that these results are basically
the same as we observed in Figure 47, which shows the memory to store fill
graph H. We explain this by the fact that the largest memory requirement of
MMD is to store the graphs. MMD has to store both G′ and H, which are
both denser graphs than G. So in this measure we seem to capture the memory
needed to store both G′ and H, when they are relatively dense, so somewhere
at the end of round 1 of the algorithm. The claim that we capture both G′ and
H at a relatively dense time is supported by the fact that Figure 49 seem to
have more resemblance to Figure 47 - which shows the memory required to store
the relatively dense graph H, than with Figure 29 - which shows the memory
required to store the relatively sparse graph G.
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5 Conclusion and Discussion

The main goal of this project has been to investigate bitmap compression tech-
niques for treewidth algorithms on their performance on large graphs. The
bitmap compression techniques we considered were EWAH and Roaring Bitmaps.
We compare these bitmap compression techniques with the data structures that
are commonly used in context of graphs, namely the sorted array of Integer
numbers - denoted as Ints - and the regular, uncompressed bitmap. For the
latter we used prof. Tamaki his XBitSet implementation. For Roaring Bitmaps
we considered multiple implementations, which differed in their so-called chunk
size and whether they made use of RLE to represent chunks.

Another goal of the project was to investigate whether the use of these data
structures could improve the performance of prof. Tamaki his HBT algorithm.
Since HBT is quite a complicated algorithm, we did not implement the data
structures in HBT. Instead, we conducted two experiments, the Benchmark
Experiment and the MMD Experiment. Both experiments were performed on
randomly generated partial 40-trees.

In the Benchmark Experiment, we simulated the most time-consuming op-
eration in HBT, as well as the typical vertex sets that is has to store. We
investigated the computation of the components separated by a set of separa-
tors. The separators we used, corresponded to bags in the tree decomposition,
generated by the Minimum Degree Algorithm. To make sure that we got a
broader insight in how the data structures dealt with such a task, we compared
their performance in two different algorithms to compute the separated com-
ponents. The first made use of a regular Breadth First Search algorithm, the
second computed the separated components by making use of many logical op-
erations. We compared the data structure/algorithm pairs on four measures.
The time it takes to compute the separated components and the memory re-
quired to store the graph, the set of separators, and the set of components that
the separator separate. This way we not only obtained a sense of which data
structures are efficient time wise, we also get a sense of which data structures
are efficient for storing different types of vertex sets.

In the MMD Experiment, we compared the data structures when they were
implemented in the MDD algorithm [5]. MMD makes heavy use of the compu-
tation of so-called substars, the neighborhood of the components, separated by
a vertex with its neighborhood. Note that this operation corresponds closely to
the one we studied in the Benchmark Experiment. We compared the data struc-
tures on three measures: the time it takes to complete the algorithm, the amount
of memory to store the chordal graph, associated with the tree decomposition,
and an indication of the maximum memory required during the execution of the
algorithm. One of the main questions that we wanted to answer, was whether
the performance of the data structures in the Benchmark Experiment could give
an indication of their performance in a real world algorithm, that performs a
similar computation.

We will first recapitulate our findings on the different implementations of
Roaring, then our comparison between Roaring, EWAH, XBitSet, and Ints. We
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continue with a couple of words on the predictive behaviour of the Benchmark
Experiment, then briefly discuss the graphs that we used. Finally, we will close
with some recommendations for future work.

5.1 Roaring Bitmap

When comparing the different version of Roaring, we observed that RoaringRun16
- the version of Roaring with chunk size 216 and which makes use of run opti-
mization - performed best. Both in the Benchmark Experiment and the MMD
Experiment, we found that it either outperformed or had similar results as the
other versions for almost all of the measures. Only, RoaringRun16P - where
the P indicates that it is implemented in the Benchmark Experiment with the
Parallel Algorithm - performed poorly. This indicates that RoaringRun16 seems
to be the best version of Roaring for storing vertex sets of any kind and per-
forming a regular Breadth First Search. However, for performing many logical
operations - as in the Parallel Algorithm - RoaringRun16 does not perform well.

Interestingly, we found that Roaring12P and RoaringRun12P were able to
outperform RoaringRun16 in the time performance in the Benchmark Experi-
ment, for a small region of graphs. For graphs of size between 800 and 5000,
Roaring12P and RoaringRun12P outperformed both RoaringRun16B and Roar-
ingRun16P. This indicates that if many logical operations need to be performed
on small graphs, it could be worthwhile to consider a version of Roaring with
smaller chunk size. Here, the chunk size that performs best for a given graph
seems to depend on the graph size. We found that Roaring performed best
with the Parallel Algorithm for graph sizes, such that it frequently makes use of
bitmap containers and before more than one chunk is needed to represent the
vertex sets. So RoaringX - where X indicates the chunk size - performs best for
graph sizes between 2X−4 and 2X .

It is important to note that RoaringRun16 gave the same results as Roar-
ing16 for all measures in both experiments, except for one. For storing sparse
vertex sets they gave similar results, as well as for their time performances.
Only for storing the separated components in the Benchmark Experiment, Roar-
ingRun16 outperformed Roaring16. These separated components are frequently
almost completely full. This indicates that when very dense vertex sets need to
be stored on a large scale, RoaringRun16 is a better option than Roaring16. If
this is not the case, we did not observe a significant difference between Roar-
ingRun16 and Roaring16.

However, we do expect to observe another difference between RoaringRun16
and Roaring16, namely for performing logical operations between dense vertex
sets. In our experiments the vertex sets that the algorithms had to work with
largely corresponded to the neighborhood of vertices. The vertices have a low
number of neighbors. Since converting sparse and unstructured sets to run
length encoding does not to lead to improvements in memory consumption,
this did not happen. The fact that these vertex sets are not converted to RLE
chunks, basically meant that we get more or less the same computations for
Roaring and RoaringRun. Note that this fact also holds for the performance
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in the Parallel Algorithm in the Benchmark Experiment. During the Parallel
Algorithm, we did not convert the separated components to consist of RLE
chunks. To save time, we only did this afterwards. So we did not perform
any logical operations on RLE chunks. However, we do expect to observe a
difference in computation time for logical operations between bitmap chunks
and RLE chunks. It would be interesting to investigate this behaviour further.

The reason that we observed that Roaring16 and RoaringRun16 performed
best has to do with the fact that all versions of Roaring seemed to start behav-
ing relatively poorly, as soon as they reach the threshold at which they start
consisting of more than one chunk. So what we observed is that the time it
takes to iterate through a set and the memory required to store a set, seems to
depend on the number of instantiated chunks. For a similar reason we observed
that the behavior of different versions of Roaring converged for large graphs.
As graphs get larger, more and more chunks are not instantiated, since chunks
are only instantiated if at least one value in that chunk is present. Since we
have that this effect is larger for versions of Roaring with smaller chunk size,
this effect turns out to converge the results for the different versions of Roaring.
Though note, that this is largely due to the fact that we are dealing with very
sparse vertex sets. For dense vertex sets we could observe differently.

5.2 Roaring, EWAH, Ints and XBitSet

We start our discussion with the best performance of the data structures. Note
that by ’best performance’, we mean that we consider the best versions and
algorithms for each data structure in the Benchmark Experiment. Though
note that this also depends on the implementations that we used. Different
implementations could provide different results.

In both experiments the general picture of the best performance of the data
structures seemed to be about the same. For large and medium sized graphs,
Ints performed best, followed by both EWAH and Roaring, and XBitSet per-
formed worst. In the Benchmark Experiment, we observed that EWAH out-
performed Roaring, and in the MMD Experiment we observed oppositely. It is
also important to note that, for small graphs we found that XBitSet seemed to
perform best. Though, we also observed that XBitSet was not able to deal with
the largest graphs, due to the amount of memory needed to have the graphs in
memory.

We observed this pattern for nearly all investigated measures: the com-
putation time and the memory required for storing the graphs G and H, the
set of separators in the Benchmark Experiment, and the maximum amount of
memory consumed during the MMD Experiment. Note that each of these mem-
ory measures compare the data structure in their performance on sparse vertex
sets. For storing the separated components, which also included dense vertex
sets, we observed behaviour that broke with the pattern. Here, Ints performed
worst, followed by XBitSet, and both EWAH and Roaring seemed to perform
best. This is the first evidence that leads us to conclude that the choice of data
structure depends on the vertex sets, it has to represent.
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Now, let us first consider the time performance of the data structures in
combination with the different algorithms in the Benchmark Experiment. First
of all, Roaring, EWAH and Ints performed best with the BFS Algorithm and
XBitSet performed best with the Parallel Algorithm. It is interesting to explore
the behaviour of the data structure in combination with the Parallel Algorithm
a bit more, since we observed different behaviour than when we compared the
data structures at their best. We observed that Ints performed very poorly. The
others performed better, first EWAH, then Roaring, and XBitSet performed
best.

In the Parallel Algorithm, the running time is determined by the speed of
performing logical operations between vertex sets. These vertex sets range from
very sparse to very dense. For both in the Benchmark Experiment with the BFS
Algorithm and the MMD Experiment, however, we have that iterating through
the vertex sets, that correspond to the neighborhood of vertices, determines the
running time. Note that in these cases we were typically dealing with very sparse
vertex sets. This leads us to conclude, that besides the typical vertex sets that
the data structures have to deal with, also the typical operations that the data
structure have to perform are an important factor in determining which data
structure to use. Many logical operations on vertex sets of different density
give significantly different results, than iterating through sparse vertex sets.
This seems to be one of the key factors that determines which data structure
performs best.

We will now dive deeper into the behaviour of the data structures with
respect to the vertex sets the have to deal with. To do this we consider the
difference between the Benchmark Experiment with the BFS Algorithm and
the MMD Experiment. In the MMD Experiment the data structures had to
deal with the fill graph H, which turned out to be around a factor 2 denser
than the corresponding original graph G, which the data structures had to deal
with in the Benchmark Experiment. Note that both these graphs are still quite
sparse.

This led to some useful insights about how the data structures handles an
increase in density. For starters, we consider what this means for the memory
requirements. We observed that XBitSet dealt best with the increase in density,
then Roaring, and both EWAH and Ints performed relatively worst. XBitSet
was not affected much by this change in graph density, since it always deals with
a bitmap which has the size of the graph. Ints had to store one extra Integer
number for each extra vertex. Roaring had to store an extra Short number for
each extra vertex, and for large graphs it could had to instantiate extra chunks.
For large graphs EWAH typically had to store two extra Long numbers, one for
the marker word and one for the literal word. For smaller graphs EWAH turned
out to be more efficient, since it is frequently the case that two vertices reside
in the same literal word or two literal words are consecutive. Note, however,
that it is often the case that for small graphs, when almost all EWAH words
turn out to be literal words, EWAH turns out to be simply a more complicated
version of XBitSet.
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We observed similar patterns for the time measurements for iterating through
sets. For large graphs we observed that Ints and EWAH were effected most by
the change in density, then XBitSet, and RoaringRun16 was effected the least.
However, we noted that this relative difference for Ints was due to the fact that
it performed so well in the Benchmark Experiment. So we had to conclude that,
for iterating through vertex sets, Ints seems to scale well to denser graphs. For
small graph we got the same picture, except for the behaviour of EWAH. For
small graphs, we observed that EWAH dealt relatively well with the increase in
density.

So based on our results, what do we expect for large graphs as they get
even denser? First we discuss the memory required for storing the graph and
time performance for performing logical operations. We conjecture that Roar-
ingRun16 and XBitSet will start to perform relatively well, similarly to our ob-
servations. At some point RoaringRun16 will also start to make use of bitmap
chunks. In the current implementation this happens as chunks are filled for at
least 6.25%. It could be interesting to figure out if this percentage could be
optimized for specific purposes.

For the memory required, EWAH will, for up to a certain density, outperform
XBitSet. But at a certain density it will start to resemble the behaviour of
XBitSet, as it approaches the state of a single marker word followed by the
entire set in literal words. Only when vertex sets get very dense, EWAH will
start to perform well again. For performing logical operations, we expect EWAH
to perform relatively poorly. We already observed relatively poor performance
for EWAH and we believe that larger amounts of marker words will strengthen
this behaviour.

We conjecture that at some point, Ints will start to perform relatively worst.
In performing logical operations for vertex sets of different density, we observed
that it seems to be no match for the others. For storing the graphs, Ints needs
to store an Integer number for each extra vertex. As we observed in the mea-
surement for storing the separated components in the Benchmark Experiment,
for storing dense vertex sets this weighs heavily on Ints. However, there will be
a region of graph densities in which Ints scales better than EWAH, since EWAH
scales horribly when it has to store two Long Numbers for each extra vertex.

For time performance of iterating through vertex sets it is more difficult to
perform good predictions. Ints seems to be the most efficient for these opera-
tions. It has the upside that the vertex set density does not seem to have an
influence on the performance, only the size of the set has an influence. Since
both EWAH and RoaringRun16 make use of iterators, we conjecture that they
are not be able to overtake Ints. Though they might have some performance
tricks up their sleeves for denser graphs. We conjecture that XBitSet will per-
form better for dense sets, than for sparse, since it will be less bothered by the
large stretches of zeros. Though we advice more research for more profound
conclusions about this.
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5.2.1 Comparison with literature

Note that our results seem to be adequately in line with the results of Wang et
al. [38]. They compared multiple bitmap compression techniques, with respect
to their performance on space overhead, decompression time, intersection time,
and union time. Note that they also incorporated inverted list compression
techniques into their study. Unfortunately, they did not include our Ints data
structure, so it is somewhat difficult to compare those results with ours.

It is important to note is that Wang et al. performed the experiment with
sets that were typically denser than in our case. They were also somewhat
larger, as they performed their experiments for sets of size a million up to a
billion. The fact that they used denser sets is probably the reason that they
found that Roaring performed better than EWAH. For our case - as we made
use of very sparse sets - we observed that relative performance seemed to depend
on the graph density. Similarly to us, they found that Bitset performs poorly
for sparse graphs. For denser graphs, they found that Bitset performs better,
in accordance with our expectations.

They found that inverted list compression techniques were able to outper-
form bitmap compression techniques, for space overhead, decompression time,
and union time. We observed that Ints performed very well in our experi-
ments in storing and iterating through sets. However, we also observed that
Ints seemed to perform relatively poorly in logical operations, since we observed
that all other data structure performed better with the Parallel Algorithm in
the Benchmark Experiment. Of course, Ints is not one of the data structures
that they performed the experiments on. Still, as we suppose that these results
could partially translate to our experiment, these seemingly contradictory re-
sults are very interesting. We conjecture that this difference can be explained
by the fact that the typical size of the set, that the data structures have to
perform the union operation on, differs between the experiments. In the Par-
allel Algorithm vertex sets get very large, as the separated components get to
be nearly the full set. It would make sense that it because of these cases that
Ints starts to perform very poorly, since for nearly full sets Ints is expected to
get outperformed by regular bitmaps. The results from Wang et al. seem to
indicate that, when only sparse sets have to be unified, Ints could indeed be
able to perform relatively well. It would be interesting to learn more about the
performance of Ints in performing logical operations on sparse sets.

5.2.2 Performance in different operations

We will now try to give an indication of the behaviour of each data structure
separately, for storing vertex sets, iterating through sets, and performing logical
operations.

For Ints, we observed that it is very efficient in storing sparse vertex sets.
Though, as they get denser, Ints does not seem to scale that well. When many
nearly full vertex sets have to be stored, Ints performs very poorly. For iterating
through vertex sets, Ints seems to be very efficient and it seems to scale well.
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For performing logical operations, Ints seems a poor data structure, especially
when vertex sets get dense.

Ints are to be advised for sparse graphs of all sizes, as long as it is not the
case that many logical operations have to be performed, or many large vertex
sets have to be stored. As graphs get denser, Ints is expected to start performing
relatively worse.

We observed that XBitSet is inefficient for storing sparse vertex sets. How-
ever, as vertex sets get denser or if graphs are small, it is expected to perform
well. However, if large graphs get extremely dense, bitmap compression tech-
niques might, again, start to prevail over XBitSet. For iterating through vertex
sets the same conclusions hold as for storing vertex sets. For performing logical
operations, XBitSet seems to be a well performing data structure. As vertex sets
get denser, we expect the relative performance of XBitSet to further improve.

XBitSet is advised for small graphs and dense medium-sized graphs. In
particular when many logical operations have to be performed, XBitSet seems
to be a good data structure. However, for large sparse graphs, XBitSet is not
advised, since storing large and sparse vertex sets and iterating through them
scales relatively poorly.

EWAH seems to be efficient for storing very sparse and very dense vertex
sets, though Ints performs better for very sparse vertex sets. However, for
graphs of medium density it tends towards being a more complicated version of
XBitSet, without having extra benefits. For iterating through sparse vertex sets,
EWAH performs well. But, as graphs get denser, we observe that its relative
performance became worse. Logical operations are not EWAH his strength,
though it is not seem like a terrible data structure for it.

EWAH does not often seem to be the data structure of choice. Only when an
algorithm has to make use of both very sparse and very dense vertex sets, and
not many vertex sets in between, EWAH seems to perform best. For extremely
sparse vertex sets it seems to outperform Roaring, this is where EWAH could
find use.

We observed that Roaring seems to be efficient for storing vertex sets of
a wide variety. It handles both very sparse and very dense vertex sets well,
though Ints and EWAH outperform Roaring in storing very sparse vertex sets.
The strength of Roaring is that is also expected to efficiently handle graphs
of medium density, which it can represent as bitmap chunks. For iterating
through vertex sets it performs better than XBitSet, though Ints outperforms
Roaring. For very sparse vertex sets Roaring got outperformed by EWAH,
but Roaring seemed to be able to scale better to denser graphs. For logical
operations Roaring performed second best, after XBitSet.

Roaring is able to effectively handle vertex sets of different sparsity and it
is both efficient in iterating through sets and performing logical operations. So
if many different vertex sets are needed to be stored and different operations
are needed, Roaring seems to perform best. However, when mostly dealing with
very sparse vertex sets, Ints and EWAH outperform Roaring. For its versatility,
we advice Roaring, whenever Ints, EWAH, or XBitSet do not seem suited for
one the reasons mentioned above.
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We can now answer the question of which data structures are useful for
treewidth algorithms on large graphs. Since treewidth algorithm usually operate
on sparse graphs [18], we end up with large and sparse graphs. We have seen
that XBitSet does not perform well on large problem instances, since it runs
into memory problems for storing the graphs. The choice between the other
data structures depends on the vertex sets that the algorithm makes use of.
We believe that in most cases, as the graphs are sparse, we will have that the
typical vertex sets encountered are sparse as well. In these cases Ints seems
best. However, if an algorithm also makes use of vertex sets that are very dense
or both very sparse and very dense, as was the case for the Parallel Algorithm,
EWAH and Roaring perform best. If vertex sets can also have medium density,
Roaring is likely to yield the best results.

5.3 The Benchmark Experiment

We conducted the Benchmark Experiment in the hope that it would be able
to give good predictions about the behaviour of the data structures, in how
they would perform in the MMD Algorithm and the HBT Algorithm. Unfortu-
nately, we were unable to implement the data structures in the HBT Algorithm.
However, we will say something about our expectations for the HBT algorithm,
based on the relative performance between the Benchmark Experiment and the
MMD Experiment.

When we compared the performance of the data structures in the Benchmark
Experiment and the MMD Experiment, we observed that the results translated
quite nicely. For storing the graphs, separators, and computation time of the
algorithms we observed quite similar results. However, we did note a couple of
differences, which we attributed to the fact that the typical vertex sets which the
data structures have to deal with are a factor 2 denser in the MMD Experiment,
than in the Benchmark Experiment. Especially when comparing Roaring with
EWAH, we observed that this gave significantly different results.

On the bright side, the fact that the data structures had to deal with a
denser graph in MMD Experiment, sparked an interesting discussion about
the influence of vertex set density on the performance of the data structures.
However, the predictive behaviour of the Benchmark Experiment would have
been better, if the typical vertex sets that the data structures had to deal with,
would correspond more closely to those in the MMD Experiment. So if one
want to improve the predictive performance of the Benchmark Experiment, one
needs to carefully pay attention to the typical operations performed. Both
the typical vertex sets and typical operations upon them need to be mimicked
as well as possible. Since we observed that, besides this explained difference,
the results between the two experiments resembled each other quite nicely, we
have to conclude that such a Benchmark Experiment seems to be able to yield
predictive behaviour of a more complicated algorithm.

Since the substar computation also turns out to be the most time-consuming
operation in the HBT Algorithm, we expect that the results of the Benchmark
Experiment can also translate to the HBT Algorithm. Though note, that, for
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optimal results, the Benchmark Experiment would have to be somewhat ad-
justed to contain vertex sets of the proper size. We expect that the typical
vertex sizes encountered in the HBT Algorithm are somewhat similar to what
we encountered in both the Benchmark Experiment and the MMD Experiment.
Therefore, we expect that our conclusions on which data structure performs
best, translates to the HBT Algorithm. This means that for small graphs, we
expect XBitSet to perform best, and for medium-sized and large graphs, we
expect Ints to perform best.

It seems that the performance of the data structures has been mostly deter-
mined by how they dealt with four operations: storing sparse and dense vertex
sets, iterating through sparse vertex sets, and performing logical operations be-
tween a sparse vertex set and a vertex set that ranges from sparse to dense. One
could argue that, when investigating the MMD Algorithm one could simulate
these basic operations, instead of performing a relatively complicated experi-
ment, such as the Benchmark Experiment. Especially, since we found that in
the Benchmark Experiment it turned out that the data structures typically had
to deal with sparser vertex sets, than was the case in the MMD Algorithm. So
the Benchmark Experiment seems to be prone to simulating imprecise opera-
tions, if one is not careful about the typical operations required.

If it is clear which operations are needed for an experiment, a less compre-
hensive approach could very well be a more time efficient alternative. Something
like iterating through the neighborhood sets of vertices in a graph, could very
well be simulated. However, it is not always clear which operations are typical,
as operations can get more complicated. Take, for example, the union operation
in the Parallel Algorithm, which deals with a large range of vertex sets. In such
cases mimicking the operation correctly gets more complicated and could lead
to mistakes, since it is more difficult to determine which vertex sets are typical
for the operation. So it could be the case that we are measuring the wrong basic
operations and get to conclusions which turn out not to be useful.

When we use an experiment, that performs the most resource intensive op-
erations of an algorithm, we are more likely to compare the data structures
in how they operate in that algorithm; that we get the typical operations just
right. This way, we will be less likely to come to wrong conclusions. So a more
comprehensive benchmark experiment might take more work to implement, but
it also leads to more diligent results.

Still, performing the experiments on such an easier benchmark would make
it easier to investigate the behaviour of the data structures on a wider range
of vertex sets. This could give further insight in their behaviour and in which
situation which data structure perform best. This is definitely interesting fur-
ther research. Likewise, it would also be interesting to compare the predictive
behaviour of such an easier experiment with the predictive behaviour of our
Benchmark Experiment.
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5.4 Partial 40-trees

We performed both experiments on random partial 40-trees. As we observe,
this leads to quite steady scaling behaviour for the data structures. This way
we were able to nicely distinguish between the performance of the different data
structures. For this reason we can recommend using partial k-trees as graph for
performing experiments on graphs, when one wants to fix the treewidth.

There are three things to note about the graphs we used. First of all, the fact
that we decided to use partial 40-trees can be disputed. For some applications
a treewidth of 40 already seems quite high. So if one wants to perform exper-
iments, one could, for example, also decide to use partial 10-trees. Especially
when the running time of an algorithm depends on the treewidth, this makes
sense when one wants to scale to large graphs. Since we hypothesised that this
also holds for our implementation of MMD, this could also be an interesting
addition to our experiments.

Another decision that we made, was deciding on the graph density. It would
definitely be interesting to see how the data structures would perform on graphs
that are denser. We decided to have the focus of the project on as large graphs
as possible, this meant that we wanted graphs to be sparse. However, more
experiments with denser graphs could definitely be interesting.

Finally, it would also be interesting to compare the performance of the data
structures on the PACE instances of the 2017 Treewidth Track. The PACE
instances consist of various types of real world graphs, for which treewidth
computations are relevant. It would be interesting to see how our results relate
to the results on the PACE instances. This could also give further insight
in whether using random partial k-trees as benchmark graphs can give good
predictive results for real world graph problems.

5.5 Future work

There are a lot of possibilities to further our understanding and the performance
of bitmap compression techniques in the field of graph algorithms.

First of all, Roaring Bitmap is a new technique, that performs fairly well.
Moreover, it is the first technique in its kind. It could be interesting to look into
improving Roaring or let it serve as an inspiration for even better techniques.
Similarly as that Byte-aligned Bitmap Compression inspired a large range of
techniques, such as WAH and EWAH.

For specific situations, it could also be worthwhile to look into tweaking
Roaring to be more optimal for the situation at hand. One could, for example,
alter the chunk density at which a array of integers chunk is converted into a
bitmap chunk. Or, if it is likely that only small number of chunks are needed,
it could be worthwhile to consider using dynamic memory allocation for the
bitmap containers, thus saving space.

Something that we observed in the experiments, is that bitmap compression
techniques seem to perform well for vertex sets, which show a lot of structure. So
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if they either contain large stretches of ones or zeros. One could try to improve
structure in the vertex sets, by making use of vertex relabeling algorithms.
Usually vertices are labeled randomly. If, however, one could label the vertices
in such a way, that neighbouring vertices are somewhat grouped together, this
could lead to improved performance.

Consider, for example, the case that we would split the graph through the
middle, and we would give each vertex on one side of the split a label in the range
[0, G(N)/2− 1] and each other vertex a label in the range [G(N)/2, G(N)− 1].
Suppose now, that we would have to store a subgraph that either contains all
of the vertices in the first half, or none of them. In both cases all those vertices
could be represented very efficiently by bitmap compression techniques, since
they are very efficient in storing large stretches of ones or zeros. Note that both
Ints of XBitSet do not benefit from such a vertex relabeling.

It definitely the case that more efficient vertex relabeling algorithms exist
than the one describe above. However, it does explain the idea: if vertices are
labeled in a smart way, they can be represented and worked with more efficiently
by bitmap compression techniques. There have been many vertex relabeling
algorithm proposed. For a concise survey on the topic we refer to the survey of
Besta and Hoefler on ”Lossless Graph Compression and Space-Efficient Graph
Representations” [6].

Note that it could also be interesting to observe how the different versions
of Roaring would behave in combination with vertex relabeling algorithms. We
conjecture that smaller chunks could have a larger benefit of more structured
sets.

Besides considering bitmap compression techniques for graph algorithms, it
could also be interesting to investigate the behaviour of inverted list compression
techniques. Especially since we observed that Ints performed well for sparse and
large graphs and that Wang et al. found that inverted list compression tech-
niques are efficient for many operations. The performance of Ints could perhaps
be exceeded by considering different inverted list compression techniques.

Finally, as mentioned in our discussion of improving the performance of the
MMD Algorithm, it could be worthwhile to look into further improving the
substar computation. Both MMD and HBT make use of this procedure. Trying
to improve it, by making use of a tree decomposition to limit the area that needs
to be searched, could lead to better performance and improved scaling to larger
graphs.
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[10] Vincent Bouchitté, Dieter Kratsch, Haiko Müller, and Ioan Todinca. On
treewidth approximations. Discret. Appl. Math., 136(2-3):183–196, 2004.
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