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Abstract

In this thesis we study models of partial combinatory algebras and we aim to
construct new examples. Mainly, the sets of representable functions of these
models and their connections to topology are explored. One famous example
is Scott’s Graph model, which can simulate the untyped lambda calculus.
Using a theorem by Jaap van Oosten, we study an extension of this Graph
Model in which the complement function is representable. This new model is
decidable. Relations with other models yield two more decidable extensions,
with interesting categorical properties. Additionally, a model is constructed
that has a connection to the Cantor topology, and a model is made using the
power set of another model.
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Chapter 1

Introduction

Realizability was first conceptualised by Stephen Cole Kleene in 1945 [10].
He constructed a method to assign numbers to mathematical statements in
such a way that tells something about the truth of that statement. It gave
a classical interpretation of Bouer’s Intuitionism, yet was not quite like it.
Other mathematicians started looking for similar systems, and the field of
realizability was born.

One of the various constructions of realizability is that of the partial combina-
tory algebra (pca), which was first formally defined by Feferman [5]. It uses
combinatory logic to define a structure on a variety of different sets. Mod-
els by Kleene could be seen as examples of this type of construction, using
Gödel numbering or a system of maps between natural numbers. The recent
rise of computer science highlights another interesting property of pca’s, the
fact that they can be used as register machines. They can simulate recursive
functions using a representation of the natural numbers within the system.
But what is central to the importance of the pca in the field of realizability
might be the discovery of a certain topos. It started with Martin Hyland,
who together with others detailed the construction of the effective topos.
This structure was akin to Kleene’s original system of realizability, and by
its topos-theoretic aspects generated concepts of truth in higher function
spaces. Later studies by John Longley yielded a more general construction
of toposes, using as its base a partial combinatory algebra. A pca could
be used to construct a realizability topos in two steps, which retained the
interesting properties of the underlying model.
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In chapter 2, an overview of preliminary information about partial combina-
tory algebras is given. This thesis treats with three fundamental examples of
pca’s. Mainly Scott’s Graph model, defined on the power set of the natural
numbers. But also Kleene’s second model on the set of functions on the natu-
ral numbers, and the universal domain model. All three of them have a tight
connection with topology, meaning the set of representable functions is the
same as the set of continuous functions of a specific topology. These funda-
mental pca’s are also strongly linked. Each one can be modelled in the other
two using what is known as applicative morphisms. In Bauer’s thesis [1],
specific applicative morphisms are defined that have additional properties.
One pair forms a retraction and one an inclusion. Pca’s can never realize
all functions between its elements. In Van Oosten’s book [16], a method is
detailed to construct a new pca from an old one that adds a function to the
set of representable functions. This new extension can be seen as the least
pca to do this.

In chapter 3, we will consider the construction of toposes from pca’s. Ap-
plicative morphisms give rise to functors, and sometimes even geometric mor-
phisms between their realizability toposes. A brief overview of this method
of constructing toposes and functors will be given.

In chapter 4, we will study various constructions of new models. By adding
the complement function to Scott’s Graph model, I find an extension that un-
like its predecessor is decidable. This means that one can check whether two
elements are equal. I also further study the relation between Scott’s Graph
model and various different topologies. Two other extensions, of Kleene’s
second model and of the universal domain model, are found. The applicative
morphisms between the original pca’s can be lifted to function as applicative
morphisms between the extensions. This means they are all decidable. The
diagrams that are created in this system of extensions form pull-back squares.
Neither Scott’s Graph model nor its extension with the complement function
have a set of realizable functions that is the same as the set of functions
continuous in the Cantor topology. I construct a new pca called the Double
Graph Model that does have this property. This pca can be modelled within
Kleene’s second model. From any pca, we can also construct a new one on its
power set, which has interesting properties. At the end, I briefly discuss the
possible implementation of the system of extensions within a computer. In
the same way, extensions can be found on the recursive sub-pca’s which have
the same properties. We end the thesis with some conclusions in chapter 5.
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Chapter 2

Partial Combinatory Algebras

2.1 Basic definitions and concepts

In this section we introduce the main concept of this thesis, Partial Combina-
tory Algebras, which were first defined by Feferman [5]. These structures use
combinatory logic and can be used to model different structures from various
fields. We will look at representability and decidability, which are a basic
concepts of computability. We will discuss the basic examples of a partial
computable algebra and look at the connection between representability and
topology.

2.1.1 Basics

One way to look at pca’s is by considering them as a computer. It has a set
of elements and a set of programs that can act on these elements. But unlike
with computers, these two sets are the same. Any element can be seen as
both a program and an input. How these programs act on the elements is
coded with a specific type of map. We get a basic type of structure.

Definition 2.1.1. A partial applicative structure (PAS) is a set A together
with a partial map, A× A ⇀ A.

The result of this map on the input (a, b) we write as ab. We see ab as the
result of a being applied to b. So a is the program, b the input and ab the
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output. Since the map need not be total, there is a possibility that ab is
undefined. We write that fact as ab ↑. If ab is defined we write ab ↓. When
using the map multiple times, we will use left association, so for instance
ac(bc) means the same thing as (ac)(bc).

With this map, we can construct much more complex operations then just
letting one element act on the other. We can do that using terms.
If we take a set V containing an infinite number of variables and a pas A, we
can define the set of terms E(A) as the smallest set such that:

- V ⊆ E(A)
- A ⊆ E(A)
- s, t ∈ E(A)⇒ (st) ∈ E(A)

When writing terms, we again use left association. So a term might look
like x1a(bx3a)c with a, b, c ∈ A and x1, x3 ∈ V . Now we need a way for the
terms to be related to elements of A. When a term does not contain any
variables from V , we call it closed. In that case, it is just some combination
of elements of A, which itself can be seen as an element of A if their appli-
cation is defined. This way of comparing terms with elements of A we write
as t ↓ a, which says that the term t denotes the element a ∈ A. The rules
for this are:

- a ↓ a for all a ∈ A
- st ↓ a if and only if there are b, c ∈ A such that s ↓ b, t ↓ c and a = bc.

We can see from this definition, that each term can denote at most one
element of A. However, it is possible for two closed terms s, t to denote the
same element. If that is the case, we will consider them equal, s = t. This
makes closed terms indistinguishable from the elements they denote.
With s, t closed terms, we can also define equivalence as s ' t meaning, if
s ↓ (there is an a ∈ A such that s ↓ a) then s = t. We can extend that
notation to all terms by saying that s ' t if for any substitution of variables
with elements of A, the resulting closed terms are equivalent. We can write
such a substitution as t[s/x] meaning substitute within term t the variable
x with term s.

With the construction of terms, we have a set of all possible maps we can cre-
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ate by using variables, constants and the application map. For a non-closed
term t, we write t(x0, ..., xn) as the term/map over the variables {x0, ...xn}.
We do need all free variables of the term to be included in the variables used
by the map.
We can see those maps as the computable functions within the confines of
our definitions. However, these maps are not always easy to write. It would
be handy if a term could be represented by a single element, like how in pro-
gramming a computation can be represented by a single number. We write
that as follows:

Definition 2.1.2. A term t(x0, ..., xn) is represented by a ∈ A if for all
a0, a1, ..., an ∈ A we have:
- aa0a1...an−1 ↓
- if t[a0/x0, a1/x1, ..., an/xn] ↓ then aa0a1...an = t[a0/x0, a1/x1, ..., an/xn]

We can now define what it means to be a partial combinatory algebra.

Definition 2.1.3. A partial combinatory algebra (pca) is a pas A which is
combinatory complete, meaning that every term t(x0, ..., xn) is represented
by some a ∈ A.

Traditionally, we do not except the fact that representations might be defined
on a wider range then the terms that they represent. However, by a result
by Faber [3] we know that any pca defined in this sense is isomorphic to a
pca in the more traditional sense. Another way to define a pca is by using
combinators. There is a definition which asks the pas to have two specific
elements. The following theorem describing this definition is by Feferman.

Theorem 2.1.4. A pas A is a pca if and only if there are elements k, s ∈ A
such that for all a, b, c ∈ A we have:
1) kab = a
2) sab ↓
3) If ac(bc) ↓ then sabc = ac(bc)

Proof: If A is a pca, then by taking the term t(x1, x2) = x1 we see that by
combinatory completeness, there is an element k ∈ A such that 1) is satisfied.
For 2) we can use the term t(x1, x2, x3) = x1x3(x2x3) which by combinatory
completeness yields an element s ∈ A such that 2) holds.
For the converse, let A be a pas with k, s satisfying point 1 and 2. We will
construct every term using this k and s as follows:
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Definition 2.1.5. For every term t ∈ E(A) and variable x ∈ V we define
〈x〉t with induction on E(A):
-〈x〉x = skk
-〈x〉t = kt if t = b ∈ A or t = y ∈ V with y 6= x
-〈x〉t1t2 = s(〈x〉t1)(〈x〉t2)

Note that for every a ∈ A we have that skka = ka(ka) = a, so it gives
the identity map. We denote it as i := skk. If we look at the defini-
tion, we see that 〈x〉t does not have x as a variable. Specifically, if we
have a term t(x0, ..., xn), then we have that 〈x0〉t runs over the variables
(x1, ..., xn) and for all a0, a1, ..., an ∈ A we get that if t(a0, a1, ..., an) ↓
then (〈x0〉t)(a1, ..., an)a0 = t(a0, a1, ..., an). Hence, inductively we find that
〈x0〉(...(〈xn−1〉(〈xn〉t))..) represents t. So the pas is combinatory complete,
hence a pca.

�

2.1.2 Pairing and decidability

We have seen that any pca has elements k and s acting as defined in theo-
rem 2.1.4. These elements are not necessarily unique, so it is important to
choose specific elements before we can use them. We can use combinatory
completeness to construct more elements, which we can use to compute in-
teresting things from within the structure and show the representability of
certain functions. In this subsection we will discuss some of them.

Remember that in the proof of the previous theorem, we use the nota-
tion 〈x〉t to transform the term into an element which represents it. To
simplify the notation, we will write using left association, 〈x0x1...xn〉t :=
〈x0〉(...(〈xn−1〉(〈xn〉t))..)

Now, consider any pca A with some choice of k and s. First we define
the elements which can be used for the concepts of truth and false written
as T and F and called the Booleans. We desire that there is a term t such
that for all a, b we have tTab = a and tFab = b. A possible choice for this
taking t = i, T = k = 〈xy〉x and F = 〈xy〉. We also have for all closed terms
a, b a term t such that tT = a and tF = b. Simply take t = 〈x〉xab. This is
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often called the ’if .. then a else b’ term. For the following results, we fix the
choice of Booleans as given above.

Now we can define a pairing on A by taking p := 〈xyz〉zxy, p0 := 〈w〉wT
and p1 := 〈w〉wF . With these we can code two elements a, b ∈ A as one and
we have a way to reconstruct the original from these elements. The pairing
is done using p to create pab = 〈z〉zab. With this element we have that
p0(pab) = pabT = Tab = a and p1(pab) = pabF = Fab = b. The element p
is also called the pairing element and p0 and p1 the projection elements.
We extend this concept to code any number of elements. Define inductively
for all natural numbers n the pairing maps jn : An → A by taking:

j1(a) = a

jn(a1, ..., an) = pa1j
n−1(a2, ..., an)

It is also possible to study the natural numbers within any (non-trivial) pca.
We do that by representing the numbers as numerals.

Definition 2.1.6. In a pca A, the Curry numerals are inductively defined
as:
0 = i and for all n ≥ 0: (n+ 1) = pFn.

One can code any partial recursive function using these numerals. This is
for instance discussed in [16]. A consequence of this is that we can encode
the set of finite sequences. Let a0, a1, ..., an−1 be a finite sequence, we define
[a0, a1, ..., an−1] ∈ A inductively:

[] := p00

[a0, a1, ..., an−1] = pnjn(a0, ..., an−1) if n > 0

It is possible to find elements that can compute from this coding several
attributes. For instance the length of the sequence, a specific part of the
sequence or the code of the concatenation of two sequence. These things will
be useful later.
With Booleans, we can define what it means for certain objects to be decid-
able.

Definition 2.1.7. We call a subset B ⊆ A decidable if there is an element
a ∈ A such that for all b ∈ A, ab = T if b ∈ B and ab = F if b /∈ B.
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We can see that if B and C are both decidable, then so are B∪C and B∩C.
Take b and c the representations of the decidability of B and C respectively,
then 〈x〉bxT (cx) and 〈x〉bx(cx)F represent B ∪ C and B ∩ C respectively.

We can define the decidability of relations in a similar way. The most com-
mon relation studied in pca’s is the most simple one, equality. In general, it
is not possible to effectively check whether two elements are the same.

Definition 2.1.8. A pca A is called decidable if there is an element d such
that for all a, b ∈ A we have dab = T if a = b and dab = F if a 6= b.

2.1.3 Examples

The simplest example of a pca is one on the singleton set {∗}. All elements
are the same and we have the applicative structure of ∗∗ = ∗. We write this
pca as I and call it the trivial pca. All pca’s besides this one are a great deal
more interesting. Here are some results:

Proposition 2.1.9. Let A be a non-trivial pca, then:
1) If k and s are as usual, than k 6= s
2) A is not commutative
3) A is not associative
4) A is infinite

Proof:
1) If k = s, then i = skk = kkk = k. Hence for all a ∈ A we have
a = iia = kka = k, so A is trivial. This leads to a contradiction.
2) If A were commutative, then i = skk = kks = k. So by 1) we have that
A is trivial.
3) If A were associative, then for all a ∈ A we have a = kak = (kkk)ak =
k(kk)ak = (kk)k = k, so A is trivial.
4) We have that s 6= i, so sn 6= sm for all natural numbers n 6= m. So there
must be infinitely many elements.

�

The best known non-trivial pca is Kleene’s first model, also written as K1.
It is the structure on the natural numbers N that uses the coding of partial
recursive function. The application is defined by (a, b) 7→ φa(b).
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Lastly, we can look at substructures of pca’s.

Definition 2.1.10. Let B be a pca. A pca A is a sub-pca of B if it is a
subset of B, the application on that subset is the same as in B and a choice
of k and s for B is contained in A.

2.1.4 Topologies and representability

Take a non-trivial pca A. We have that for any n the closed terms can never
describe all partial maps from An to A. This is because the cardinality of
the set of all total maps is always higher than the amount of elements within
A. So we say that not all maps are representable.

Definition 2.1.11. Let A be a pas. A partial map f : An ⇀ A is repre-
sentable if there is an element a ∈ A satisfying for all b0, b1, ..., bn−1 ∈ A, if
f(b1, ..., bn−1) ↓ then ab1b2...bn−1 = f(b1, ..., bn−1).

If we are working within a pca, there will always be a natural way to look
at the set of representable functions, since we can look at the recursive con-
struction of the terms. But for some pca’s there is another easier way to
characterize the set of representable functions. In some cases we can use
topologies. A quick reminder of the definition of a topology. A topology on
a set X is a set of opens T ⊂ P(X) which contains ∅ and X and which is
closed under finite intersections and all unions. Examples are the indiscrete
topology {∅, X} and the discrete topology P(X). For U ∈ T we call U open
and X − U closed. A basis of a topology T is a subset B ⊆ T such that
the closure of that set under finite intersections and arbitrary unions is the
topology T itself. A map f : X → Y is continuous according to the topolo-
gies TX on X and TY on Y if for each U ∈ TY (open), f−1(U) ∈ TX .
Now for its connection with pca’s. Let A be a pas. A topology on a pas is
a topology on the underlying set of the pas. Such topologies can have the
following properties:

Definition 2.1.12. A topology T on a pas A is a repcon topology if all
representable endomaps on A are continuous on their domain.
A topology T on a pas A is a conrep topology if all continuous endomaps in
T are representable in A.
If a topology T on a pas A is both repcon and conrep, and A is also a pca,
then we call (A, T ) a pca-topology pair.
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For any pca, there are always two examples of repcon topologies, the dis-
crete and the indiscrete topologies. Of the other repcon topologies, we can
distinguish a special type.

Definition 2.1.13. A repcon topology T on A is said to be minimal if it is
not indiscrete and for any repcon topology R on A such that R ⊂ T either
R = T or R = Tindiscrete.

Note that in the definitions of representability, repcon and conrep topologies
do not require the pas to be a pca. This is since these properties may arise
before combinatory completeness has been established. These properties may
even help in proving it.

The definitions of conrep and repcon only use endomaps, but we can look
at maps on higher dimensions. We call a topology n-conrep if all contin-
uous n dimensional maps are representable and n-repcon if vice versa. We
call it full-conrep if it is n-conrep for all n and full-repcon if n-repcon for all n.

Results:
1) For a pas A, if the application map is continuous by a certain topology,
then that topology is full-repcon w.r.t. A. This can be seen by noting that
constant maps and identity maps are continuous by any topology. So any
closed term is a composition of continuous maps.
2) For a pca A, if a topology is conrep (1-conrep) and 2-repcon w.r.t. A, it
is full-conrep. This can be seen by using composition with the pairing maps.

2.2 Three pca’s

Apart from the trivial pca and Kleene’s first model, there are a lot more in-
teresting yet fairly basic pca’s. In this chapter, we will discuss three different
main examples that are often discussed in literature and have a fundamental
role in this thesis, and all three of them form a pca-topology pair with some
topology. The results in this chapter are discussed in [16] and [1].
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2.2.1 Scott’s Graph model

The first pca we will discuss is by D.S. Scott [14]. It is denoted by P and is
defined on the set of subsets P(ω). The application map is constructed as
follows. Firstly, we take a coding of pairs in N. We write 〈a, b〉 as the number
representing the code of two natural numbers a and b. A choice of code can
be 〈a, b〉 := (a2 + b2 + 3a+ b)/2. Secondly, we code the finite subsets of N as
follows: each p ⊂ N finite is linked to the natural number Σn∈p2

n. Take en
to be the finite subset belonging to number n. We define the application as
follows, for two sets A,B ∈ P(ω):

AB = {m : ∃n(en ⊂ B, 〈n,m〉 ∈ A)}

This gives us a pas on P(ω). We still need to establish if this is a pca. To
do this, we study its relation to the Sierpinski product topology on the set.
This topology is defined on {0, 1}N as the product of the Sierpinski topology
{∅, {1}, {0, 1}} on {0, 1}. Using the traditional bijection between {0, 1}N and
P(ω) we get a topology on the latter set.
This topology has a basis of open sets of the form Up := {B : p ⊂ B}
where p ⊂ N is finite. We also have that for finite p, Up =

⋂
x∈p U{x} a

finite intersection of other opens. So we can say that {U{x} : x ∈ N} gives
a simpler basis of the Sierpinski product topology. Now for its connection
with our pas.

Lemma 2.2.1. The application map p : P × P → P is continuous in the
Sierpinski product topology.

Proof: Take x a natural number. p−1(U{x}) = {(A,B) : x ∈ A · B} =
{(A,B) : ∃n, (en ⊂ B, 〈n, x〉 ∈ A)} =

⋃
n{Uen × U{〈n,x〉}} which is a union of

opens. So p is continuous.

�

Now we can derive from this that the maps k : (a, b) 7→ a and s : (a, b, c) 7→
a · c · (b · c) on P(ω) are continuous in the Sierpinski product topology. So in
general, what does it mean to be continuous in this topology?

Lemma 2.2.2. A map F : P(ω) → P(ω) is continuous in the Sierpinski
product topology if and only if for all A ⊂ N we have F (A) :=

⋃
{F (p) : p ⊂

A, p finite}.
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Proof: For two basis elements Up and Uq of the topology, with p and q finite,
we have Up ∩ Uq = Up∩q which is another element of the basis. So we can
write any open V as the union of basic opens.
Assume F is continuous and take A ⊂ N. Then A =

⋃
{p : p ⊂ A, p finite}.

Denote V n
1 = {B : n ∈ F (B)} which is open, so it can be written as the

union of basic opens V n
1 =

⋃
i∈Ii Upni . Fix an n.

If n ∈ F (A), then A ∈ V n
1 , so there is an i such that A ∈ Upni , hence pni ⊂ A

and n ∈ F (pni ). On the other hand, if there is a finite p ⊂ A such that
n ∈ F (p), then p ∈ V n

1 so p ∈ Upni for some i. So pni ⊂ p ⊂ A, hence
A ∈ V n

1 , meaning n ∈ F (A). We can conclude that F (A) :=
⋃
{F (p) : p ⊂

A, p finite}.
Now assume the contrary: for F we have that for all A, F (A) :=

⋃
{F (p) :

p ⊂ A, p finite} (which is always possibly since F (p) is in P(ω) and hence
any union is in P(ω)). Take a natural number n. We can see that {A :
n ∈ F (A)} = {A : n ∈

⋃
{F (p) : p ⊂ A, p finite}} =

⋃
{{A : p ⊂ A} :

p finite, n ∈ F (p)} = {Up : p finite, n ∈ F (p)} which is a countable union of
open sets, hence itself open. So F is continuous.

�

Lemma 2.2.3. All continuous maps F : P(ω)k → P(ω) are representable.

Proof: For any continuous map F : P(ω)→ P(ω) in the Sierpinski product
topology, we can define the set Graph(F ) := {〈n,m〉 : m ∈ F (en)}. For such
a set we have that Graph(F ) ·A = {m : ∃n(en ⊂ A, 〈n,m〉 ∈ Graph(F ))} =
{m : ∃n(en ⊂ A,m ∈ F (en))} =

⋃
{F (en) : en ⊂ A} =

⋃
{F (p) : p ⊂

A, p finite} = F (A). Hence F (A) = Graph(F ) · (A) for all A.
For F : P(ω)k → P(ω) continuous with arbitrary k, define Graph(F ) :=
{〈n1, 〈n2, 〈....〈nk,m〉..〉〉〉 : m ∈ F (en1 × ... × enk

)}. Then for X1, .., Xk ∈ P
you can see with induction that Graph(F )·X1 ·...·Xk = {〈n2, 〈....〈nk,m〉...〉〉 :
∃n1, (en1 ⊂ X1,m ∈ F (en1× ...×enk

)} = {m : ∃n1, ..., nk, (en1 ⊂ X1, ..., enk
⊂

Xk,m ∈ F (en1 × ...× enk
))} = {F (p1, ..., pk) : p1 ⊂ X1, ..., pk ⊂ Xn finite} =

F (X1, ..., Xk).

�

So we can conclude that we can find elements k and s satisfying theorem
2.1.4, so P is a pca.
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An interesting property of this pca is that it is total, meaning the application
map is total. With the retraction Λ : P→ PP given by Λ(a) = (b 7→ ab) and
the section Graph : PP → P together with the natural pairing, it is possible
to model the untyped lambda calculus in this pca. This is a construction of
effective computable total functions without hierarchy.

2.2.2 Kleene’s second model

The second pca we will discuss in this section is Kleene’s second model K2

on the set NN. It forms a pair with the traditional topology of that space,
which can be described as the infinite product of the discrete topology on N.
For each finite sequence σ = (k1, ..., kn) of elements in NN, it has an open
Uσ = {α ∈ NN : σ v α}, the set of sequences starting with σ. These opens
form a basis of the topology.

We use a coding of finite sequences into natural numbers denoted by 〈α1, ..., αn〉
or seq(α). Denote for an infinte sequence α, ᾱn = 〈α(1), ..., α(n)〉 and let
〈n〉 ∗ α be the sequence given by:

(〈n〉 ∗ α)(x) =

{
n if x = 0
α(x− 1) otherwise

For each α ∈ NN we define a map Fα : NN → N which sends β 7→ k if there
is an n such that α(β̄n) = k + 1 and for all m < n, α(β̄n) = 0. If no such k
exists, the function is undefined. The functions of this form are precisely the
functions which are continuous according to the previously defined topology
(and the discrete topology on N).
We define the application on NN as follows, if for all n, Fα(〈n〉 ∗ β) ↓, then
αβ ↓, else αβ ↑. If it is defined, then:

αβ(n) = Fα(〈n〉 ∗ β)

This application map gives us a pas on NN. It is easy to see that any map by
this application map is continuous by the previously defined topology. The
converse is a bit more tricky.

Theorem 2.2.4. Any continuous partial function F : NN ×NN ⇀ NN is
representable by this pas.
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Proof: Take F such a function. Define for all natural numbers n and k,
V k
n := {(α, β) ∈ NN ×NN : F (α, β)(n) = k}. We define an element γ ∈ NN

inductively as follows, using the coding of finite sequences into natural num-
bers. Let γ(〈〉) = 0 and for all finite sequences σ and τ and all natural
numbers n:

γ(〈〈〉〉 ∗ σ) = 1

γ(〈〈n〉 ∗ σ〉 ∗ τ) =

{
1 if ¬∃k : Uσ × Uτ ⊆ V k

n

k + 2 if Uσ × Uτ ⊆ V k
n

Note that for k 6= m, V k
n ∩ V m

n = ∅. So for σ and τ there is at most one k
such that Uσ × Uτ ⊆ V k

n . Since F is continuous, and {δ : δ(n) = k} is open,
we have that V k

n is open. Hence for every (α, β) ∈ V k
n there are σ and τ such

that (α, β) ∈ Uσ × Uτ ⊆ V k
n . So we find that γαβ = (((k + 2)− 1)− 1) = k

by our application.

�

Corollary 2.2.5. The defined pas is a pca.

Proof: By the previous lemma we have found that the topology is both
1-conrep (by adding a useless first argument) and 2-conrep. So an element
k as in theorem 2.1.4 can be found. Since we can easily define continuous
pairing functions, which are then representable, we can conclude that the pas
is full-repcon. With the application being continuous, we can say that the
function abc 7→ ac(bc) is continuous. Using pairing we can represent it. So
NN with the application is a pca.

�

2.2.3 Universal domain model

The last main example of a pca looks at the theory of domains and is dis-
covered by Scott [13]. Consider a partial order D. A directed subset X ⊆ D
is a non-empty set with the property that for all x, y ∈ X there is a z ∈ X
with x ≤ z and y ≤ z. A bounded subset B ⊆ D is a set such that there is a
z ∈ D where for all x ∈ B, x ≤ z. z is also called a bound for B. For a subset
X ⊆ D, a least upper bound

∨
X is the smallest possible bound (which does
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not always exist). We say that D is directed complete, if directed subsets
have a least upper bound. D is bounded complete if all bounded sets have a
least upper bound.

Assume D is directed complete. We call a ∈ D compact if for each di-
rected subset X ⊆ D such that a ≤

∨
X, there is a b ∈ X such that a ≤ b.

Let K(D) be the set of compact elements.

Definition 2.2.6. A domain D is a partially ordered set which is directed
complete and bounded complete with a countable subset B ⊆ K(D) such
that ∀a ∈ D : a =

∨
{x ∈ B : x ≤ a}.

On a domain D, we have a structure called the Scott topology, which is the
topology with opens U ⊆ D such that:
1) ∀x ∈ U,∀y ≥ x : y ∈ U
2) For each directed subset X ⊆ D,

∨
X ∈ U ⇒ X ∩ U 6= ∅

This topology has a basis of opens formed by the sets ↑ a := {x ∈ D : a ≤ x}
with a compact. For D a domain, we denote [D → D] for the set of con-
tinuous endomaps. An embedding-projection pair between two domains D
and E is a pair (i, p) of continuous maps with i : D → E an embedding and
p : E → D a projection such that p ◦ i = 1D and i ◦ p ≤ 1E.

As discussed in [1] there is a domain U called the universal domain which
has the property that for each domain D there is an embedding projection
pair (iD, pD) from D to U. Combining this with the fact that [U → U] is
also a domain, we have an embedding projection pair (i[U→U], p[U→U]) from
[U → U] to U. We can hence define the applicative structure U ×U → U
by sending x, y → (p[U→U](x))(y). This gives us a structure that is provably
a pca.

We can give a concrete example of U. We look at the Cantor topology
on P(ω) = {0, 1}N, which is the product of the discrete topology on {0, 1}.
So a basis is formed by the open sets: U q

p := {U ⊆ P(ω) : p ∈ U, q ∩U = ∅},
where p and q are finite.
The set of Cantor open subsets of P(ω), excluding the complete set, gives an
example of the universal domain model. The order is defined by inclusion and
the compact elements of this set are precisely the clopens, the open subsets
for which the complement is also open. We can write it as U = O(2N)− 2N.
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2.3 Applicative morphisms and assemblies

In this section, we study ways in which we can relate pca’s with each other,
and structures like assemblies and predicates that can be defined on pca’s.
The results in this chapter are discussed in [16].

2.3.1 Applicative morphisms

In order to compare different pca’s we need a way to relate them. We do this
using applicative morphisms, which allow us to establish that one model can
be simulated within another model.

Definition 2.3.1. Let A,B be two pca’s. An applicative morphism γ : A →
B is a map from A to P∗(B) := (P(B) − {∅}) such that there is an r ∈ B
where for all a, a′ ∈ A, b ∈ γ(a) and b′ ∈ γ(a′) we have that if aa′ ↓ then
rbb′ ↓ and rbb′ ∈ γ(aa′).

We say that the r in the definition realizes γ. If we have two applicative
morphisms γ, δ : A → B then we write γ � δ if there is a t such that for all
a ∈ A with b ∈ γ(a) we have tb ↓ and tb ∈ δ(a). We say that γ and δ are
isomorphic if both γ � δ and δ � γ, we write that as γ ∼ δ.
If we have two applicative morphisms γ : A → B and δ : B → C then we
can compose them creating the morphism δ ◦ γ where a 7→

⋃
b∈γ(a) δ(b). If r

realizes γ and t realizes δ, then 〈x〉t(rx) realizes δ ◦ γ.
There are some possible properties an applicative morphism can have:

Definition 2.3.2. Let γ : A → B be an applicative morphism.
1) γ is discrete if for all a, a′ ∈ A with a 6= a′ we have γ(a) ∩ γ(a′) = ∅.
2) γ is single-valued if for all a ∈ A, γ(a) only has one element.
3) γ is projective if it is isomorphic to a single-valued morphism.
4) γ is decidable if there is a d ∈ A called the decider such that for all
b ∈ γ(TA) and b′ ∈ γ(FA) we have db = TB and db′ = FB. Here TA and FA
are the Booleans of A, and TB and FB the Booleans of B.
5) γ is computationally dense if there is an m ∈ B such that: ∀b ∈ B,∃a ∈
A,∀a′ ∈ A : bγ(a′) ↓⇒ (aa′ ↓ ∧mγ(aa′) = bγ(a′))

Examples:
1) For any pca A, we have an identity pca idA : A → A given by a 7→ {a}.
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Its realizer is ι.
2) If we have two pca’s A ⊆ B, the morphism ι : A → B sending a 7→ {a} is
applicative.
3) We have a unique applicative morphism from any pca A to the trivial
pca I. Conversely, for any non-empty subset A ⊆ A, we have an applicative
morphism I → A with ∗ 7→ A.
4) For any pca A, there is an applicative morphism K1 → A sending n to
{n} in A, where {n} is the n-th Curry numeral.

If an applicative morphism is computationally dense, then it is also decid-
able. There is an easier method to check whether an applicative morphisms
is computationally dense, by P. Johnstone [9]:

Theorem 2.3.3. An applicative morphism γ : A → B is computationally
dense if and only if there is a function g : B → A and an element r ∈ B such
that for all b ∈ B and c ∈ γ(g(b)) we have rc = b.

2.3.2 Extensions of pca’s

We have seen that a partial map f : A⇀ A may not always be representable.
However, it may be possible to describe it by using an applicative morphism.

Definition 2.3.4. Let γ : A → B be an applicative morphism and f : A⇀
A a partial map. f is representable w.r.t. γ if there is a t ∈ B such that for
all a ∈ dom(f) and all b ∈ γ(a) we have tb ↓ and tb ∈ γ(f(b)).

So it says that f is representable in the way that γ maps A into B. With
this, we have the following fundamental theorem by [16].

Theorem 2.3.5. For every pca A and every partial map f : A ⇀ A there
exists a pca A[f ] with the same underlying set as A, such that:
1) f is representable w.r.t. the decidable applicative morphism ιf : A → A[f ]
given by a 7→ {a}.
2) For every decidable applicative morphism γ : A → B such that f is repre-
sentable by γ, there is a unique decidable applicative morphism γf : A[f ]→ B
such that γf ◦ ιf = γ. Moreover, if δ : A[f ] → B such that δ ◦ ιf ∼ γ then
δ ∼ γf .
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This theorem constructs a new pca from the old one, which can be seen as
the best pca to both represent f and any function representable by the old
pca. We call A[f ] an extension of A.
The proof is written out in [16]. Here we will just discuss the construction
of the application map on A[f ]. If a is the code for a = [a1, a2, ..., an−1] and
if i < n, denote a<i := [a1, a2, ..., ai−1] and i≤a := [ai, ai+1, ..., an−1]. If a =
[a1, a2, ..., an−1] and b = [b1, b2, ..., bm−1] let a ∗ b = [a1, ..., an−1, b1, ..., bm−1].
Let N ∈ A such that with the Booleans T and F in A we have NT = F and
NF = T . We define a new application ·f on the underlying set of A. For
a, b ∈ A we define an f-dialogue between a and b as the code of a sequence
u = [u1, ..., un−1] such that:

∀i < n,∃vi ∈ A : (a([b] ∗ u<i) = pFvi) ∧ f(vi) = ui

We define a ·f b to be c if there is an f -dialogue u between a and b such that
a([b]∗u) = pTc. This c is unique if it exists. If it doesn’t exist the application
is not defined.

Corollary 2.3.6. Let A be a pca.
1) If f is representable with respect to A then A[f ] ' A.
2) For f, g to partial endomaps on A, we have A[f ][g] ' A[g][f ].
3) Every total pca is isomorphic to a non-total one.
4) The applicative morphism ιf : A → A[f ] as constructed in the previous
theorem is computationally dense.

Proof: 1) Let i be the identity morphism of A. Then f is representable
w.r.t. i, so there is a decidable applicative morphism if : A[f ] → A such
that if ◦ γf = i. So indeed, A[f ] ' A.
2) Same method as in 1 to prove the existence of compatible decidable ap-
plicative morphisms between A[f ][g] and A[g][f ].
3) Use 1 on a total pca A. The result is a non-total isomorphic pca A[f ].
4) Simple consequence of theorem 2.3.3, by considering the map g : A[f ]→ A
with a 7→ a, and the element i.

We can also look at partial functions in more than one variable. Using
the coding of sequences, we can observe when such functions are represented
by an applicative morphism. It is possible to extend 2.3.5 to also include
these multivalued functions. This can be done by using the pairing functions
which are representable in the space, to transform f into a function with one
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variable and apply the theorem on that endofunction. This new space will
represent f and be optimal in the same way as in the theorem.

2.3.3 Assemblies

In this section, we look at collections of sets on pca’s which can be related
to each other in the same way as applicative morphisms relate pca’s to each
other.

Definition 2.3.7. Let A be a pca. An assembly on A is a set X together
with a map E : X → P∗(A).
A modest set is an assembly (X,E) such that for all x, y ∈ X with x 6= y we
have E(x) ∩ E(y) = ∅.

Given an applicative morphism γ : A → B, we immediately have an assembly
(A, γ) on B. If γ is discrete, then (A, γ) is a modest set.
Assemblies do not necessarily use the structure of a pca, only the underlying
sets. The computable effects can be studied when looking at morphisms
between them.

Definition 2.3.8. A morphism between two assemblies f : (X,E)→ (Y, F )
is a map f : X → Y such that there is an element a ∈ A with the property
that for all x ∈ X and b ∈ E(x) we have ab ↓ and ab ∈ F (f(x)).

Such an element a is also called a tracking of the morphism. For any assembly
(X,E) we have the identity morphism tracked by i.
Note that for two applicative morphisms γ, δ : A → B such that γ � δ, we
have a morphism between (A, γ) and (A, δ) given by the identity function
on A and which has as its tracking the element that represents γ � δ.

2.3.4 Heyting pre-algebras and Predicates

Predicates are use to look at pca’s in a more abstract manner. They are Heyt-
ing pre-algebras which give rise to the construction of realizability toposes
discussed in chapter 3.

Definition 2.3.9. A preorder (P,≤) is a set P together with a binary rela-
tion ≤ which is reflexive and transitive.
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A preorder may have a top element > and bottom element ⊥ such that for
all a ∈ P we have a ≤ > and ⊥ ≤ a. For each preorder (P,≤) we can define
an equivalence relation a ∼= b⇔ (a ≤ b & b ≤ a). We get a new preorder on
the set of equivalence classes P/ ∼= with the relation [a] ≤ [b] ⇔ a ≤ b. We
get a partial order (P/ ∼=,≤) called the poset reflection of (P,≤).
By adding operation we can construct the following structure:

Definition 2.3.10. A Heyting pre-algebra is a preorder (P,≤) with a top
and a bottom element together with three binary operations ∧, ∨ and ⇒
such that for all a, b, c ∈ P :
1) a ≤ (b ∧ c)⇔ (a ≤ b& b ≤ c)
2) (a ∨ b) ≤ c⇔ (a ≤ c& b ≤ c)
3) (a ∧ b) ≤ c⇔ a ≤ b⇒ c

Note that the poset reflection of a Heyting pre-algebra is again a Heyting
pre-algebra.

Definition 2.3.11. Let A be a pas and X a set. A P(A)-valued predicate
on X is a function φ : X → P(A)

Note here that A need not be a pca and the resulting sets φ(x) can be empty.
If a ∈ φ(x), then we call a a realizer of φ(x).
Like with applicative morphisms we can relate two P(A)-valued predicates
φ and ψ on X, to each other by writing φ ≤ ψ if there is an a ∈ A such that
for all x ∈ X and all b ∈ φ(x) we have ab ↓ and ab ∈ ψ(x). In this case we
say that φ ≤ ψ is realized by a. We get the following result:

Proposition 2.3.12. If A is a pca and X a set. The relation ≤ from above
make the set of P(A)-valued predicates on X into a Heyting pre-algebra.

Proof: Note that φ ≤ φ is realized by i. If φ ≤ ψ is realized by a and ψ ≤ χ
is realized by b, then 〈x〉b(ax) realizes φ ≤ χ. So it forms a preorder.
To prove that it forms a Heyting algebra, define the following predicates and
operations. Take > and ⊥ to be predicates such that >(x) = A and ⊥(x) = ∅
for all x ∈ X. For all predicates φ and ψ define:
(φ ∧ ψ)(x) = {pab : a ∈ φ(x), b ∈ ψ(x)}
(φ ∨ ψ)(x) = {pTa : a ∈ φ(x)} ∪ {pFa : a ∈ ψ(x)}
(φ⇒ ψ)(x) = {a ∈ A : ∀b ∈ ψ(x), (ab ↓, abψ(x))}
To finish the proof, we need to check the following things:
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χ ≤ (φ ∧ ψ)⇔ (χ ≤ φ, χ ≤ ψ)
(φ ∨ ψ) ≤ χ⇔ (φ ≤ χ, ψ ≤ χ)
(φ ∧ ψ) ≤ χ⇔ φ ≤ ψ ⇒ χ
These facts can be proven by manipulating realizers.

�

2.4 Comparing pca’s

The pca’s discussed in chapter 2.2 have important applicative morphisms
that relate them to each other. Some of these morphisms form interesting
pairs making an applicative retraction and an applicative inclusion. The
results in this chapter are discussed in [1].

2.4.1 Kleene’s second and Scott’s graph model

We can define an applicative retraction between K2 and P.
Remember that the code of a finite sequence a is denoted by seq(a). We
define a map ι : K2 → P as α 7→ {seq(a) : a ∈ N∗, a v α}, the set of all
finite initial sequences of α encoded as natural numbers. Let P′ := im(ι)
and look at the map p : P′ × P′ → P defined by (ι(α), ι(β)) 7→ ι(αβ) if αβ
is defined, and (ι(α), ι(β)) 7→ ∅ otherwise. This map is continuous on the
Sierpinski product topology, so it can be represented in P by some element
p. Hence, ι is an applicative morphism as a map a 7→ {ι(a)}.
Take TK2 and FK2 to be the Booleans of Kleene’s second model, and TP and
FP the Booleans of Scott’s Graph model. Note that since TK2 6= FK2 , there
are a, b ∈ N∗ such that a v TK2 , b v FK2 , ¬(b v TK2) and ¬(a v FK2). We
define a map d : P × P → P sending A 7→ {x : seq(a) ∈ A, x ∈ TP} ∪ {y :
seq(b) ∈ A, x ∈ FP}. This map sends ι(TK2) to TP and ι(FK2) to FP. It
is also continuous, so it has a representation which acts as a decider for ι.
Hence ι is decidable.

We define another morphism δ : P → K2 sending A to {α : {n : ∃i, α(i) =
n + 1} = A}, the set of all sequences whose non-zero value coincide with
the set of successors of A. We use successors since we want the image of the
empty set to be non-empty. To see that this is an applicative morphism, we
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need a realizer ρ in Kleene’s second model such that for all A,B, α ∈ δ(A)
and β ∈ δ(B) we have ραβ ∈ δ(AB).
Let ρ : K2 ×K2 → K2 be the map such that ρ(α, β) sends 〈n,m〉 (coding of
pairs) to n + 1 if there is an i < m and a j such that β(i) = 1 + 〈n, j〉 and
for all x ∈ ej there is a k < m such that α(k) = x. If not, it sends 〈n,m〉 to
0. This map is continuous, since the i < m and k < m conditions make sure
that only finite initial sequences are used as a reference in its construction.
If α ∈ δ(A) and β ∈ δ(B), all non-zero values of ρ(α, β) are equal to x + 1
for some x ∈ AB. So ρ(α, β) ∈ δ(AB), hence δ is an applicative morphism.
Let x ∈ TP − FP and y ∈ FP − TP (it is easy to see that there is a choice of
T and F such that they exist). We define the map d : K2 ×K2 → K2 which
sends α to TK2 if there is a k such that α(k) = x + 1, or to FK2 if there is
a k such that α(k) = y + 1. Let it be undefined if either none or both of
the above conditions are satisfied. This map sends α ∈ δ(TP) to TK2 and
α ∈ δ(FP) to FK2 . This map is also continuous on its domain, and hence it
has a representation which acts as a decider for δ. So δ is decidable.

A property of these applicative morphisms is that they form an applicative
retraction ι a δ. This means that δ ◦ ι ∼ 1K2 and ι ◦ δ � 1P. The proof of
this fact is briefly sketched in Bauer’s thesis [1].

2.4.2 Universal domain model and Scott’s graph model

In this section we will look at the relation between the Graph model P and
the Universal domain model U. We have seen that one way to represent U
is by looking at the Cantor open sets. U can be seen as the set of all opens
except the total set 2N. We have also seen that it forms a pca-topology pair
with the Scott topology, which has a basis of opens of the following form:
For every clopen U ⊆ 2N, ↑ U := {V ∈ U : U ⊂ V } is an open set.

First we look at what it means to be Cantor-clopen. We have seen that
basic opens in this topology are of the form U q

p with p and q inite. Note
that with a, b, c, d four finite sets, U b

a ∩ Ud
c = U b∩d

a∩c is another basic open. So
any Cantor-open set can be written as V :=

⋃
i∈I U

qi
pi

. Now it is not dif-
ficult to see that V is a clopen if and only if it can be written as a finite
union of that form. Since we can code the finite sets, we can conclude that
the set of clopens is countable. We use a numbering of clopens: denote Bn

as the n-th clopen. Define for each natural number n the following open
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Cn := U
{0,1,...,n−1}
{n} . Note that {Cn}n∈N gives a partition of 2N.

We can now define the following decidable applicative morphisms:

ζ : P→ U, A 7→
⋃
n∈A

Cn

η : U→ P, V 7→ {n ∈ N : Bn ⊂ V }

By Bauer ?? we know that these indeed are applicative morphisms and that
they form an applicative inclusion η a ζ, which means that η ◦ ζ ∼ 1P and
ζ ◦ η � 1U.

25



Chapter 3

Realizability toposes

In this chapter, we will discuss how every pca gives rise to a topos called a
realizability topos. These toposes function as models of realizability, trans-
lating concrete systems of computability to more general objects that repre-
sent effective computing in a more pure form. A detailed description of this
construction and its properties is given in Van Oosten’s book [16]. Hofman
gives a short version in his paper [6]. Here we will look at a brief summary
of category theory together with the core concepts of the construction of
realizability toposes and geometric morphisms. These will hopefully give a
general idea of how the structures found in chapter 4 can be lifted into the
topos-theoretic space.

3.1 Category theory basics

We start with the general concepts of category theory. Categories are struc-
tures of objects with arrows between them. Many mathematical structures
can be seen as examples of categories, including the structures that have been
previously defined in this thesis. We begin with the definition of a category.

Definition 3.1.1. A category C consists of and satisfies the following things:
1) It has a collection of objects, denoted ob(C).
2) It has a collection of morphisms (or arrows), denoted hom(C). Each
morphism goes from an object to another object, it has a source object and
a target object. For A,B ∈ ob(C), we write C(A,B) for the collection of
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morphisms from A to B. For f ∈ C(A,B) we write f : A→ B.
3) For all A,B,C ∈ ob(C) we have a map C(A,B) × C(B,C) → C(A,C)
which is called the composition of morphisms. For f : A→ B and g : B → C,
we write the result of the composition as f ◦ g.
4) It must satisfy associativity, meaning for all f : A → B, g : B → C and
h : C → D we have (h ◦ g) ◦ f = h ◦ (g ◦ f).
5) For each A ∈ ob(C) there is a morphism 1A ∈ C(A,A) called the identity
morphism of A such that for all B ∈ ob(C), f ∈ C(A,B) and g ∈ C(B,A)
we have f ◦ 1A = f and 1A ◦ g = g.

Examples:
1) The most general example is the category of sets SET. Here the objects
are all possible sets, and the morphisms are the maps between sets. Compo-
sition is simply composition of maps.
2) We have the category of pca’s PCA, where the objects are pca’s and the
morphisms are applicative morphisms.
3) The category of assemblies (ASS), and its sub-category of the modest sets
(MOD) with morphisms as in definition 2.3.8.
4) The category of Heyting algebras, which has as morphisms the maps that
preserve the structure of ≤,∧,∨, ⇒, > and ⊥.

For each category C we can define the dual category Cop which has the
same objects, but the source and the target of the morphisms are switched.
So Cop(A,B) = C(B,A) and the arguments in composition are switched.

Definition 3.1.2. Let C,D be two categories. A functor F from C to D
maps each object A ∈ ob(C) to an object F (A) ∈ ob(D) and each morphism
f ∈ C(A,B) to a morphism F (f) ∈ D(F (A), F (B)) such that the identity
morphism and the composition of morphisms is preserved.

Definition 3.1.3. Let C be a category. A pull-back square in C is a com-
mutative diagram:

X
f−−−−−→ Y

g

y
yh

Z
k−−−−−→ W

with the property that for every object A and every pair of maps fA : A→ Y
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and gA : A→ Z such that h ◦ fA = k ◦ gA, there is a unique map p : A→ X
satisfying f ◦ p = fA and g ◦ p = gA.

One can also see a pull-back square as a diagram that satisfies what is some-
times called the universal property. In other words, X together with f and
g are optimal in commuting with the rest of the diagram. We find another
example of this universal property in finite products:

Definition 3.1.4. Let C be a category and X1, ..., Xn a collection of objects.
An object X together with morphisms πi : X → Xi is called the product of
X1, ..., Xn (sometimes written as X1 × ... × Xn), if for any other object Y
with morphisms fi : Y → Xi, there must be a morphism g : Y → X such
that πi ◦ g = fi for all i.

A category is said to have finite products, if for all X1, ..., Xn, X1 × ...×Xn

exists. We can compare functors with each other by looking at the following
structure.

Definition 3.1.5. Let C and D be two categories, with F andG two functors
from C to D. A natural transformation η from F to G is a family of mor-
phisms where for each X ∈ ob(C) there is a morphism from D(F (X), G(X))
denoted as ηX . These morphisms must satisfy the property that for every
morphism f : X → Y in C we have G(f) ◦ ηX = ηY ◦ F (f).

For the purposes of realizability, we need to look at a special kind of category.

Definition 3.1.6. A preorder enriched category is a category C which has
for all objects a, b ∈ ob(C) a preorder on C(A,B). This preorder must be
preserved under composition.

Examples of preorder enriched categories:
1) The category Preord of pre-ordered sets with order preserving maps be-
tween them.
2) The category Heytpre of Heyting pre-algebras, which has as morphisms
the maps that after poset reflection (taking the same equivalence) form a
Heyting morphisms. For all objects F,G we let Heytpre(F,G) be ordered
pointwise.

Two objects or morphisms might act the same way, while not being the
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same. For instance, a morphism f : A→ B is called an isomorphism if there
is a morphism g : B → A such that f ◦ g = 1B and g ◦ f = 1A. If such a
morphism exists, we call A and B isomorphic.
Two morphisms f, g : A→ B are said to be isomorphic if there are isomor-
phisms h : A→ A and k : B → B such that f = k ◦ g ◦ h.
Many structures in Category theory have a pseudo-form, where properties
are true up to isomorphisms. We discuss two examples.

Definition 3.1.7. Let C and D be two preorder enriched categories. A
pseudo-functor F : C → D maps each object A ∈ ob(C) to an object
F (A) ∈ ob(D) and each morphism f ∈ C(A,B) to a morphism F (f) ∈
D(F (A), F (B)) such that the identity morphisms and composition are pre-
served up to isomorphism.

Definition 3.1.8. Let C be a category. A pseudo pull-back square in C is a
diagram which commutes up to isomorphism:

X
f−−−−−→ Y

g

y
yh

Z
k−−−−−→ W

with the property that for every object A and every pair of maps fA : A→ Y
and gA : A → Z such that h ◦ fA ∼ k ◦ gA, there is map p : A → X unique
up to isomorphism satisfying f ◦ p ∼ fA and g ◦ p ∼ gA.

3.2 Triposes

The construction of realizability toposes is generally done in two steps. The
first step is the construction of what is called a tripos. It is short for ’topos-
representing indexed pre-ordered set’. It is seen as the step in which one
introduces a pre-order to the pca. In general, a tripos is defined as follows:

Definition 3.2.1. Let C be a category with finite products. A tripos P is
a pseudofunctor from P : Cop → Heytpre such that:
1) For every morphism f , we have a left and a right adjoint for P(f). We
write them as ∃f and ∀f .
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2) (Beck-Chevalley condition) For each pull-back square with maps h ◦ f =
k ◦ g we have that ∀f ◦P(g) is isomorphic to P(h) ◦ ∃k.
3) For each object X there are objects π(X) ∈ ob(C) and ∈X∈ P(X×π(X))
(the membership predicate) such that: For all Y ∈ ob(C) and φ ∈ P(X × Y )
such that within P(X × Y ) (which is a Heyting pre-algebra), we have that
∈X is isomorphic to P(1X × {φ}) for some morphism {φ} : Y → π(X).

Now we look at how a pca can be used to construct a tripos. We use the
natural structure of P(A)-valued predicates defined before to construct a
structure on this powerset.
Given a pca A, we have seen that for any set X the set P(A)X of P(A)-
valued predicates together with the relation ≤ forms a Heyting pre-algebra.
From a function f : X → Y we can construct the map f ∗ : P(A)Y → P(A)X

using composition with f . This preserves the Heyting pre-algebra structure
on the sets. The map has both adjoints ∃f and ∀f which for φ a predicate,
are given by:
(∃fφ)(y) = {a ∈ A : ∃x ∈ X, (f(x) = y ∧ a ∈ φ(x))} =

⋃
x,f(x)=y φ(x)

(∀fφ)(y) = {a ∈ A : ∀b ∈ A,∀x ∈ X(f(x) = y ⇒ ab ↓ ∧ab ∈ φ(x))} =⋂
f(x)=y(> ⇒ φ)(x)

We can conclude that this gives a tripos. We call it the realizability tripos
of A. We denote it by T(A).

3.3 Tripos to Topos

From A we have constructed the tripos T(A). From this tripos, we can fur-
ther construct the realizability topos RT (A). This can be seen as a sort f
equivalence relation on the tripos.
To make notation a little bit clearer we will write ≤Yy for the relation ≤ de-
fined on the predicates on the set Y . The subscript describes which variables
are used. So for instance for two predicates φ, ψ on X, φ(x) ≤Xx ψ(x) just
means ∀x ∈ X,φ(x) ≤ ψ(x), or simply φ ≤ ψ.
Now we define RT (A).

The objects of RT (A) are pairs (X,∼X) with X a set and ∼X a map
X ×X → P(A), (x, y) 7→ (x ∼X y) satisfying:
1) (x ∼X y) ≤X×X(x,y) (y ∼X x)
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2) (x ∼X y ∧ y ∼X z) ≤X×X×X(x,y,z) (x ∼X z).

A functional relation between (X,∼X) and (Y,∼Y ) is a predicate F : X ×
Y → P(A) such that:
1) (F (x, y)) ≤X×Y(x,y) (x ∼X x ∧ y ∼Y y)

2) (F (x, y) ∧ x ∼X x′ ∧ y ∼Y y′) ≤X×X×Y×Y(x,x′,y,y′) (F (x′, y′))

3) (F (x, y) ∧ F (x, y′)) ≤X×Y×Y(x,y,y′) (y ∼Y y′)
4) (x ∼X x) ≤Xx (∃yF (x, y))

A morphism in RT (A) between (X,∼X) and (Y,∼Y ) is an equivalence class
of functional relations between (X,∼X) and (Y,∼Y ), where F and G are
equivalent if F (x, y) ≤X×Y(x,y) G(x, y) and G(x, y) ≤X×Y(x,y) F (x, y).

This category is called a topos, since it satisfies the properties of a topos.
The standard example of a realizability topos is RT (K1), which is also called
the effective topos. This structure is particularly interesting since it simulates
Kleene’s original model of realizability.

3.4 Geometric morphisms

Just like pca’s can be related to each other using applicative morphisms, so
can realizability toposes be related to each other using geometric morphisms.
Each applicative morphism gives rise to a geometric morphism between the
realizability components.

Lemma 3.4.1. Every applicative morphism γ : A → B induces a func-
tor of triposes γ∗ : T(A) → T(B) sending the predicate α to

⋃
a∈α γ(a).

This functor can be extended to a functor between the realizability toposes
RT (A)→ RT (B)

Specifically, with Φ : T(A) → T(B) a functor between triposes constructed
by pca’s as above, we get an induced functor Φ′ : RT (B) → RT (A) which
sends (X,∼X) ∈ ob(RT (B)) to (X,Φ+

X×X(∼X)) in RT (A) and F : (X,∼X
)→ (Y,∼y) to Φ+

X×Y (F ) : (X,Φ+
X×X(∼X))→ (Y,Φ+

Y×Y (∼Y )).
There are more powerful functions one can find between realizability toposes.
An example is a geometric morphism. They contain functorsboth ways with
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additional properties and arise naturally from applicative morphisms in some
cases.

Definition 3.4.2. For two toposes E and F , a geometric morphism f : E →
F consists of a pair of adjoint functors f ∗ a f∗ with f∗ : E → F the direct
image and f ∗ : F → E the inverse image. Moreover, f ∗ is required to
preserve limits.

Not always can an applicative morphism be used to construct a geometric
morphism. In [4], a survey is given of possible cases. But the most general
result is given in [7]:

Theorem 3.4.3. An applicative morphism γ : A → B induces a geometric
morphism RT (B)→ RT (A) if and only if it is computationally dense.

Examples:
1) γ : A → A[f ] from 2.3.5 induces a geometric morphism.
2) ι, δ, η and ζ from chapter 2.4 induce functors on the realizability toposes.
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Chapter 4

Construction of models

To further our understanding of partial combinatory algebras and realizabil-
ity toposes, we study the three fundamental pca’s from before and look at
new models in their vicinity. There are several ways to construct new mod-
els. One can use theorem 2.3.5 on a familiar pca, one can construct a pca
from scratch or one can use the structure of a known pca to construct some-
thing else. We will see examples of these three methods. In section 4.1, we
will study an extension of Scott’s Graph Model. In section 4.2 extensions
of the other two fundamental models are constructed using their relation to
the Graph Model. Section 4.3 details the construction of a new model which
forms a pca-topology pair with the Cantor topology. A general construction
of a pca on the power set of another pca is given in 4.4. Lastly, we discuss
some of these new models in the light of recursive sub-pca’s.

4.1 Further studies on the Graph model

We have seen that the programs coded in Scott’s Graph model P uses checks
whether certain finite sets are included. When a set A is applied to a set
B, we have that within A there lies the instructions to add elements to the
result if certain finite sets are in B. This makes it so it has a natural relation
with the Sierpinski product topology {∅, {1}, {0, 1}}N.
However, this application has a asymmetric feel to it. One cannot check
whether certain finite sets are excluded. By introducing the complement
function to the pca using theorem 2.3.5 we do get a pca that can do those
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checks. This new pca P[C] is interesting in various ways. Firstly, unlike
its predecessor it is decidable, which will be established in the first section.
Secondly, the Cantor topology on P(ω) is conrep to this new pca. In the
second section, we will discuss this result among other topological properties
of P and P[C].

4.1.1 The extension P[C]

Let C : P(ω) → P(ω) be the complement function, sending A to Ac :=
(N − A). This map is not representable in P. To see this, we use the fact
that P forms a pca-topology pair with the Sierpinski product topology. Note
that in that topology, for any finite non-empty set p, ∅ /∈ Up. These Up form
a basis of the topology, so if ∅ ∈ U with U open, then U = P(ω). Now take
a finite non-empty p. We see that N ∈ Up, so ∅ ∈ C−1(Up). But Up 6= ∅,
so C−1(Up) 6= P(ω). We can conclude that C−1(Up) is not open, so C is not
continuous in the Sierpinski product topology. Since all representable maps
are continuous, C is not representable.

We can use theorem 2.3.5 to construct P[C]. This new pca can be seen
as the ’best’ pca that represents both C and all functions representable in
P. Since C is not representable within P, we must conclude that P[C] is not
isomorphic to P.
One of the properties that P lacked was decidability. Look at the map
DP : P(ω) × P(ω) → P(ω) which sends D(x, y) to TP if x = y and to FP

if not. If P were decidable, this map would be representable, yet it is not
continuous so it cannot be. In the case of the extension however, things have
changed.

Theorem 4.1.1. P[C] is decidable.

Before we go to the proof, we will look at what kinds of maps are repre-
sentable within the new pca. Let A ·B denote the application in P [C]. The
following things can be defined using the construction of P [C]:
Let A ◦ B := {m : ∃n(en ⊂ B, 〈n,m〉 ∈ A)}. This is the application within
the original pca P. In P [C] it has a representation r such that r·A·B = A◦B.
Let c be such that c · A = C(A) = A−1 and denote T and F as the boolean
true and false of this space satisfying for all a, b: T · a · b = a and F · a · b = b.
Lastly, we define the interesting operation A ∗ B := A ◦ (c · B) = {m :
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∃n(en∩B = ∅, 〈n,m〉 ∈ A)}, which can be represented by s = 〈xy〉r ·x ·(c ·y).

This last operation is interesting, since it specifically checks the absence
of certain finite sets. We have seen what it means for a certain subset A of
a pca to be decidable. It can sometimes be unwieldy to handle a proof of
the decidability of certain sets, which is why the following lemma gives us a
handy tool.

Lemma 4.1.2. There is a representable map sending ∅ to F and {0} to T .

Proof: Define the following set: N := {〈1, 〈2, x〉〉 : x ∈ T} ∪ {〈0, 〈1, x〉〉 :
x ∈ F}. With this set, define the term n := 〈x〉r · (r · N · x) · (c · x) =
〈x〉s · (r ·N · x) · x = 〈x〉(N ◦ x) ∗ x.
Since e0 ⊂ ∅, e1 = {0} /∈ ∅ and e2 ∩ ∅ = ∅, we have that n · ∅ = (N ◦ ∅) ∗ ∅ =
{〈1, x〉 : x ∈ F} ∗ ∅ = F .
Since e0 = ∅ ⊂ {0}, e1 = {0}, e1 ∩ {0} 6= ∅ and e2 ∩ {0} = {1} ∩ {0} = ∅,
so n · {0} = (N ◦ {0}) ∗ {0} = ({〈2, x〉 : x ∈ T} ∪ {〈1, x〉 : x ∈ F}) ∗ {0} =
({〈2, x〉 : x ∈ T}∗{0})∪({〈1, x〉 : x ∈ F}∗{0}) = T ∪∅ = T . So n represents
the desired map.

�

We will henceforth denote the representer of the map in this lemma by n.
Note that a map which does the opposite (sending F to ∅ and T to {0}) is
true simply by the definition of Booleans. Denote n′ as the representer of
this opposite map. So with this lemma, we can simplify the condition for a
set to be decidable. For A ⊆ P[C], A is decidable if and only if the following
map is representable:

x 7→
{
{0} if x ∈ A
∅ otherwise

We call this function the zero-map of A. We have already seen that finite
intersections of decidable sets are also decidable. A representation of the
decidability of the intersection of two decidable sets in terms of zero-maps is
v := 〈xy〉(nx(ny)∅), for which v{0}{0} = {0} and v∅{0} = v{0}∅ = v∅∅ = ∅.
The map C gives us another property on decidability.

Lemma 4.1.3. Let A be decidable. Then C(A) = Ac is decidable.
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Proof: Let a represent the zero-map of A. Note that {〈1, 0〉} ∗ ∅ = {0} and
{〈1, 0〉}∗{0} = ∅, so with w := 〈xy〉r·{〈1, 0〉}·(c·(x·y)) = 〈xy〉{〈1, 0〉}∗(x·y)
we get that w · a = 〈y〉{〈1, 0〉} ∗ (a · x) represents the zero map of Ac. So Ac

is decidable.

�

Take w as above. Now we have all tools to prove the main result:

Proof theorem 4.1.1: Note that e2x = {x}. Define P := {〈2x, 〈2x, 0〉〉 :
x ∈ N}. Then for any set A and B, we have P ◦ A = {〈2x, 0〉 : x ∈ A},
so P ◦ A ◦ B is ∅ if B ∩ A = ∅, and {0} otherwise. Hence with s :=
〈xy〉r · (r · P · x) · y = 〈xy〉P ◦ x ◦ y, we have that s · A = 〈y〉P ◦ A ◦ y
characterizes the set {B : B ∩ A 6= ∅}
We can take the inverse using the previous lemma: with w as before, we find
that w · (s · A) characterizes {B : B ∩ A 6= ∅}c = {B : B ∩ A = ∅} = P(Ac).
So we have that w · (s · (c · A)) = w · (s · Ac) characterizes P(A).
We also have that c · w · (s · A) = C(w · (s · A)) characterizes C(P(Ac)) =
{B : A ⊂ B}.
Using intersection (with v) we see that P(A) ∩ C(P(Ac)) = {A} is char-
acterized by v · (w · (s · (c · A))) · (c · w · (s · A)). So if we define d :=
〈xy〉n · (v · (w · (s · (c · x))) · (c · w · (s · x)) · y) we get the following:
Take A and B two sets. Then d·A·B = n·(v·(w·(s·(c·A)))·(c·w·(s·A))·B) =
n · χ{A}(B), where χ{A} denotes the deciding map for {A}. Meaning it is T
if B ∈ {A} and it is F if B /∈ {A}.
We can conclude that d is a decider, and hence P[C] is decidable.

�

4.1.2 Topologies on P and P[C]

Let us look at the topologies on these pca’s. We have already seen that
the Sierpinski product topology forms a pca-topology pair with P. We can
however, consider another topology we will call the inclusion topology on
P(ω). Here U is open if for all V ∈ U and W ⊂ V we have W ∈ U . Note
that {P(S) : S ⊂ N} gives a basis of this topology.

Lemma 4.1.4. The inclusion topology on P(ω) is a repcon topology for P.
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Proof: Let A ∈ P(ω). We consider the map f : X 7→ (A · X). Take
U = P(S) an element in the basis of the inclusion topology. We have that
f−1(U) = {B : A · B ∈ U} = {B : A · B ⊂ S} = {B : {m : ∃n(en ⊂
B, 〈n,m〉 ∈ A)} ⊂ S} = {B : ∀n, (en ⊂ B → (∀m, 〈n,m〉 ∈ A → m ∈ S))}.
For V ∈ f−1(U) and W ⊂ V . We have that for all n with en ⊂ W ⇒ en ⊂ V
so for those n we have (∀m, 〈n,m〉 ∈ A→ m ∈ S). Hence W ∈ f−1(U). We
can conclude that f−1(U) is open.

�

Theorem 4.1.5. P has precisely two minimal repcon topologies; the Sier-
pinski product topology and the inclusion topology.

Proof: Let T be a repcon topology on P containing at least one open U
which is not ∅ or P(ω). We consider two separate cases:
Case 1: Assume ∅ /∈ U . Take a set C ∈ U , a finite set p and a natural
number n such that en = p. Define the following set A := {〈n,m〉 : m ∈ C}
and consider the map f : X 7→ (A · X). Since T is a repcon topology, f is
continuous, hence f−1(U) is open. f−1(U) = {B : A · B ∈ U} = {B : {m :
∃k, (ek ⊂ B, 〈k,m〉 ∈ A)} ∈ U} = {B : {m : p ⊂ B,m ∈ C} ∈ U}. Since
∅ /∈ U we get that f−1(U) = {B : p ⊂ B} = Up. Hence Up is open in T . This
is for all finite sets p. We can conclude that all opens from the Sierpinski
product topology are open in T .
Case 2: Assume ∅ ∈ U . Take C ∈ (P(ω)−U) and S ∈ P(ω). We are going to
prove that P(S) is open in T . Define the set A := {〈2n,m〉 : n /∈ S,m ∈ C}.
Note that e2n = {n}. So for B a set, we have that if B ∈ P(S), then for all
n /∈ S we have e2n is not a subset of B, so A · B = ∅. If B /∈ P(S), then
there is an element n ∈ B with n /∈ S. This means e2n ⊂ B and A ·B = C.
We can conclude that f−1(U) = P(S). So all opens in the inclusion topology
are opens in T .
We can conclude that any repcon topology which is not indiscrete must either
contain the Sierpinski product topology or the inclusion topology.

�

Corollary 4.1.6. The only repcon topologies for P[C] are the trivial ones.

Proof: Consider T a non-trivial topology repcon w.r.t. P(ω)[C]. Hence it
has an open U which is not ∅ or P(ω).
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Now we have that since the complement function is representable, both U and
U c are open. So T contains an open with ∅ and one without it. So by theorem
4.1.5 and the fact that all representable functions of P are representable
here, we have that T contains both the Sierpinski product topology and the
Inclusion topology. So for any S ∈ P(ω), both P(S) and C(P(N − S)) are
open. Hence {S} = P(S)∩C(P(N− S)) is open. We must conclude that T
is the discrete topology, leading to a contradiction.

�

Now we look at the Cantor topology (P(ω))Cantor with basic opens of the
form U q

p . Since not all maps continuous by the Sierpinski product topology
are continuous by the Cantor topology, we see that the Cantor topology is
not repcon to P. Added to that, since C is continuous in this topology, we
can already conclude that the Cantor topology is not conrep with P. But
the Cantor topology does have some relation with P[C].

Lemma 4.1.7. The Cantor topology is a conrep topology for the pca P[C]

Proof: We use the same notation as in section 4.1.1. We denote · the
operation in the pca P(ω)[C] and ◦ the operation in the Graph model P(ω).
Let r be such that r ·a · b = a◦ b (by applicative morphism ιC). Let c be such
that c · a = ac (by representability of C). Define s := 〈xy〉(r · x · (c · y)) =
〈xy〉(x ◦ C(y)).
Take F : P(ω) → P(ω) a continuous partial map. Since it is continuous,
we have that for all n, {A ∈ dom(F ) : n ∈ F (A)} is open in dom(f), hence
there is an open set V n

1 containing that set but not intersecting any elements

in {A ∈ dom(F ) : n /∈ F (A)}. So we can write V n
1 as

⋃
i∈In U

qni
pni

with In an
index set and for each i ∈ In finite sets pni and qni . Define the following set,
W1 := {〈a, 〈b, k〉〉 : k ∈ N, ∃i, j ∈ Ik(pki = ea, q

k
i = eb)}. With this, we have

that z := 〈x〉s · (r ·W1 · x) · x represents F . Let us check this last fact:
Take A ∈ dom(F ), then z · A = s · (r ·W1 · A) · A = s · (W1 ◦ A) · A. Now,
W1 ◦ A = {m : ∃n(en ⊂ A, 〈n,m〉 ∈ W1)} = {〈b, k〉 : ∃a(ea ⊂ A,∃i, j ∈
Ik(p

k
i = ea, q

k
i = eb))} = {〈b, k〉 : ∃i, j ∈ Ik(pki ⊂ A, qki = eb)}.

So s·(W1◦A)·A = {m : ∃n(A∩en = ∅, 〈n,m〉 ∈ (W1◦A))} = {k : ∃b(A∩eb =
∅,∃i, j ∈ Ik(p

k
i ⊂ A, qki = eb))} = {k : ∃i, j ∈ Ik(p

k
i ⊂ A,A ∩ qki = ∅))} =

{k : A ∈ W k
1 } = {k : k ∈ F (A)} = F (A). So we have that for A ∈ dom(f),

z · A = F (A).
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We can conclude that any continuous partial map F : P(ω) → P(ω) is
representable in A[C].

�

The Cantor topology does not form a pca-topology pair with P[C], which
is a result by corollary 4.1.6. So we can ask ourselves, is their a pca with
which the Cantor topology does form such a pair? We will discuss this in
section 4.3. For the section, we will study how the extension of P into P[C]
translates to other two related pca’s.

4.2 System of extensions

In this chapter, we will use the results in Bauer’s thesis [1] discussed in section
2.4, to compare the extension P[C] of the Scott Graph model with extensions
of both Kleene’s second model and the universal domain model. These will
form a system of extensions consisting of pull-back squares.

4.2.1 An extension of K2

By theorem 2.3.5 we have a decidable single-valued applicative morphism
γp : P → P[C], given by a 7→ {a}. We will now study an extension of K2,
which is related to P[C].
We define the map S : K2 → K2 which sends α to the sequence:

S(α)(n) =

{
n+ 1 if ∀k, α(k) 6= n+ 1
0 otherwise

Remember that K2 forms a pca-topology pair with the traditional topology
on NN. S is not continuous in this topology, since for instance S−1(U〈1〉)
with U〈1〉 = {α : α(0) = 1} is not open. So it does not have a representation.
Hence, extending K2 with S yields new pca K2[S] not isomorphic to the old
one. There is a single-valued decidable applicative morphism γk : K2 → K2[S]
given by α 7→ {α}.

Remember the applicative retraction ι a δ between K2 and P. By con-
catenation, we get a decidable applicative morphism γk ◦ δ : P → K2[S]
given by A 7→ δ(A). We have the following result.

39



Lemma 4.2.1. C is representable with respect to γk ◦ δ.

Proof: Take a set A ∈ P and a sequence α ∈ δ(A). We have that S(α)(n) 6=
0 is true precisely when ∀k, α(k) 6= n+1, which in turn is true precisely when
n /∈ A (by definition of δ). So S(α)(n) 6= 0⇔ ∀k, α(k) 6= n + 1⇔ n /∈ A⇔
n ∈ Ac. Hence ∃k, S(α)(k) = n + 1 if and only if n ∈ Ac. We can conclude
that S(α) ∈ δ(Ac) = γk ◦ δ(Ac) which means that C is representable with
respect to γk ◦ δ.

�

γp has been created using theorem 2.3.5 which has some extra properties to
be exploited. We can use the result of the theorem together with the fact
stated in the last lemma to conclude that there is a decidable applicative
morphism δ′ : P[C] → K2[S] such that δ′ ◦ γp = γk ◦ δ. We can easily see
that δ′ acts the same way as δ on the underlying sets.
Now look at the single-valued decidable applicative morphism γp ◦ ι : K2 →
P[C] sending α to ι(α). We have a similar result.

Lemma 4.2.2. S is representable w.r.t. γp ◦ ι.

Proof: For all n we define:
Mn := {A : ∃a ∈ N∗, (∃i < length(a), a(i) = n+ 1)∧ seq(a) ∈ A}. Here, a(i)
stands for the i-th component of the finite sequence a. Mn is a union of the
opens U{seq(a)} (where the finite sequences a range over those that somewhere
contain n + 1). So it is open in the Sierpinski product topology. Now we
have for α ∈ K2, ι(α) ∈ C(Mn)⇔ ∀k, α(k) 6= n+ 1.
For a ∈ N∗ define La := {A : ∀b ∈ N∗, b v a⇒ seq(b) ∈ A} which is an open
since it is also a union of opens of the form U{seq(b)}. It is the collection of
sets which contains all encoded initial segments of a. Let Nn :=

⋃
a∈Mn

La,
which is again an open set in the Sierpinski product topology. This set is the
collection of sets which contains at least one encoded finite sequence with
n+ 1 somewhere, together with all its encoded initial sequences. So we have
that for α ∈ K2, ι(α) ∈ Nn ⇔ ∃k, α(k) = n+ 1.
Let Q denote the set of elements x ∈ N for which there is a b ∈ N∗ with
seq(b) = x. If such a b exists, it is unique. Let x ∈ Q and let b be the unique
finite sequence such that seq(b) = x. Then x ∈ ι(S(α))⇔ b v S(α)⇔ ∀k <
length(b) : ((b(k) = 0∧∃n, α(n) = k+1)∨(b(k) = k+1∧∀n, α(n) 6= k+1))⇔
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∀k < length(b) : ((b(k) = 0 ∧ ι(α) ∈ Nk) ∨ (b(k) = k + 1 ∧ ι(α) ∈ C(Mk)).
So there are opens Vx and Wx in the Sierpinski product topology such that
x ∈ ι(S(α))⇔ ι(α) ∈ Vx ∩ C(Wx). We define the following map:
g : P[C]→ P[C] given by A 7→ {2x : x ∈ Q,A ∈ Vx} ∪ {2x+ 1 : x ∈ Q,A ∈
Wx}. This map is continuous in the Sierpinski product topology, so it has a
representation in P and hence also in P[C].

Also define the map h : P[C] → P[C] defined by A 7→ {x : A ∈ U{2x+1}
{2x} }.

This map is continuous in the Cantor topology, so it has a representation in
P[C]. We can conclude that h ◦ g is representable in P[C]. By construction,
we have that if A ∈ ι(α) then x ∈ h ◦ g(A) if and only if (2x) ∈ g(A) and
(2x + 1) /∈ g(A), which is precisely when x ∈ Q, A ∈ Vx and A ∈ C(Wx),
meaning x is in the O with {O} = ι(S(α)). If x ∈ O, then x ∈ h ◦ g(A) by
construction. So the representable map h ◦ g represents S with respect to
γp ◦ ι.

�

We have found that γp ◦ ι : K2 → P[C] is a single-valued decidable applica-
tive morphism which represents S. So by theorem 2.3.5, there is a decidable
applicative morphism ι′ : K2[S]→ P[C] such that ι′ ◦ γk = γp ◦ ι. Note that
ι′ works the same way as ι on the underlying sets. In particular, we know it
to be single-valued.

Remarks:
(1) We again have a retraction ι′ a δ′ since we can use the three representing
elements for ι a δ and transpose them with γk and γp.
(2) Since ι′ is discrete and single-valued (injective) and δ′ is decidable, the
decidability of P[C] translates to K2[S]. This can also be concluded by ob-
serving that (α, β) 7→ |α − β| is continuous and we can check whether a
sequence is always zero.
(3) S effectively checks for all values n > 0 whether or not a function of
natural numbers has n in its image. Since α 7→ α+ 1 and α 7→ max(0, 1−α)
are both continuous, we have that the following function is realizable:

S ′(α)(n) =

{
1 if ∃k, α(k) = n
0 otherwise

This function is probably a more desirable substitute for our more mechani-
cally constructed S-function. Obviously, K2[S] ' K2[S

′].
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(4) K2[S] does not check how much times certain numbers occur in a se-
quence. So further extensions could include checking which values occur at
least two times.

A function that is more frequently studied is E : NN → N defined by
E(α) = 0 if ∃k, α(k) = 0 else E(α) = 1. We can see that if this opera-
tion can be effectively represented within the space, it could be possible to
effectively represent S.

4.2.2 An extension of U

For the universal domain model, we can find a similar extension. Remember
the applicative inclusion η a ζ and the sets Bn and Cn used to construct
the applicative morphisms. Consider the following partial map Z : U ⇀ U
which has as its domain the Cantor-clopen sets and sends these to their com-
plement. So it is the function V 7→ V c which is defined everywhere it can be
defined. Consider the Scott-open set ↑ U with U a non-empty clopen. Let
A ⊂ U be a clopen such that A 6= U . It is not difficult to see that such a
clopen exists. We have that Z−1(↑ U) ⊆ Z−1(A) but Z−1(↑ U) 6= Z−1(A).
So it is not upwards closed, hence not open in the Scott topology.

So we have that U[Z] is not isomorphic to U. We can consider γu : U →
U[Z]. We have the following results:

Lemma 4.2.3. C is representable w.r.t. γu ◦ ζ and S is representable w.r.t.
γp ◦ η.

Proof: Let A ⊂ N . Then ζ(A) =
⋃
n∈ACn and ζ(C(A)) =

⋃
n∈C(A)Cn =⋃

n/∈ACn. Now since the Cn’s form a partition, we can see that ζ(A) is a
clopen and Z(ζ(A)) = ζ(C(A)), which is what we wanted.

For the second statement, take S a clopen. ηS = {n : Bn ⊂ S} and
η(Z(S)) = {n : Bn ⊂ Z(S)} = {n : Bn ∩ S 6= ∅}. Now note the follow-
ing. If for some n, Bn ∩ S 6= ∅, then Bn ∩ S is a clopen. So there is an m
such that Bm = Bn ∩ S. Define the following set A := {〈2m, n〉 : Bm ⊂ Bn},
then we have with ∗ the application in P represented in P[C] that:
Bn ∩ S 6= ∅ ⇔ ∃m,Bm ⊂ Bn ∧ Bm ⊂ S ⇔ ∃m,m ∈ ηS ∧ 〈2m, n〉 ∈ A. So
A ∗ (ηS) = (ηZ(S))c. Hence Z is indeed representable w.r.t. η.
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So there is a decidable applicative morphism ζ ′ : P[C] → U[Z] such that
ζ ′◦γp = γu◦ζ and there is a decidable applicative morphism η′ : U[Z]→ P[C]
such that η′ ◦ γu = γp ◦ η. This gives us the full system of extensions:

K2
←−
−→ P ←−

−→ U
↓ ↓ ↓
K2[S] ←−

−→ P[C] ←−
−→ U[Z]

By translating the representers of the applicative inclusion η a ζ via the
gamma functions, we can see that we have another applicative inclusion
η′ a ζ ′.

4.2.3 Pull-back squares

The diagrams that were found in the first two parts of this section have an
interesting property.

Theorem 4.2.4. The commutative diagram

K2
ι−−−−−→ P

γk ↓ ↓ γp
K2[S]

ι′−−−−−→ P[C]

is a pull-back square and a pseudo-pullback square.

Proof: Let A be a pca which has both an applicative morphism to P and
to K2[S]. We call those morphisms αp and αk respectively. We assume
γp ◦ αp ∼ ι′ ◦ αk.
We define the following morphism α : A → K2. Take n to be a representation
of δ ◦ ι ≺ 1K2 . For x ∈ A, define α(x) := {ny : ∃z ∈ αp(x), y ∈ δ(z)}. So
ι ◦ α(x) = αp(x) ∩ im(ι).
We first prove that α is an applicative morphism. Take x, y ∈ A such that
xy ↓. Since δ ◦ αp is applicative, there is an element a ∈ K2 such that ∀x′ ∈
δ ◦αp(x) and ∀y′ ∈ δ ◦αp(y) we have ax′y′ ∈ δ ◦αp(xy). So n(ax′y′) ∈ α(xy).
We can effectively send any a ∈ α(x) to an x′ ∈ δ ◦ αp(x) using 1K2 ≺ δ ◦ ι.
We can conclude that α is applicative.
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Note that ι′ ◦ γk ◦ α = γp ◦ ι ◦ α = γp ◦ αp ∩ im(ι′). Using representations of
ι′, γp ◦ αp ∼ ι′ ◦ αk, δ′ and δ′ ◦ ι′ ∼ 1K2[S] (in that order) we can prove that
γk ◦ α ∼ αk. Hence we can conclude that it is a pseudo-pullback square.
You can easily see that it is also a pullback square. Just use the proof above
with the new assumption γp◦αp = ι′◦γk. The defined α is still an applicative
morphism, and the definition of α immediately implies γk ◦ α = αk. So it is
a pullback square.

�

We only used that δ ◦ ι ∼ 1K2 and δ′ ◦ ι′ ∼ 1K2[S]. Hence, since η ◦ ζ ∼ 1P

and η′ ◦ ζ ′ ∼ 1P[C] we can also conclude in the same way that:

Corollary 4.2.5. The commutative diagram

P
ζ−−−−−→ U

γu ↓ ↓ γp
P[C]

ζ′−−−−−→ U[Z]

is a pull-back square and a pseudo-pullback square.

4.3 Double Graph model

In section 4.1.2, we have established that neither P nor P[C] forms a pca-
topology pair with the Cantor topology. But there does exist a pca on P(ω)
all representable maps are Cantor continuous, and all continuous maps are
representable. In this chapter we will construct such a pca, named the Double
Graph Model.

4.3.1 Definition

We define the following coding that is going to be used in the construction
of a pas. Take 〈., .〉 the usual pairing on the natural numbers. Then de-
fine for a, b, i, x ∈ N the following functions from N4 to N: 〈a, b, i, x〉1 :=
2 ∗ 〈〈a, b〉, 〈i, x〉〉 and 〈a, b, i, x〉2 := 2 ∗ 〈〈a, b〉, 〈i, x〉〉 + 1. Note that by con-
struction, both functions are injective and their range is different. So each
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input and choice of function gives us a unique value. We can use these func-
tions to code four natural numbers and one binary value into one natural
number. Now we construct two fundamental relations. For each x ∈ N,
define two relations on P(ω)2 by:

Ix(A,B) := ∃p, q, i : (B ⊂ U eq
ep & 〈p, q, i, x〉1 ∈ A)

IIx(A,B) := ∃p, q, i : (B ⊂ U eq
ep & 〈p, q, i, x〉2 ∈ A)

The similarities with Scott’s Graph model should become apparent. The
relations gives us a way to code within A a way to check whether B is within
certain opens from the basis of the Cantor topology. We now define the
following partial application map (. · .) : P(ω)×P(ω) ⇀ P(ω). For A and B
two sets in P(ω), we say:

(A ·B ↓)⇔ ∀x ∈ N : (Ix(A,B) ∨ IIx(A,B)) ∧ ¬(Ix(A,B) ∧ IIx(A,B))

So we have that for all x, one of the two relations must be true but not both
at the same time. We finish of the definition of the map by defining for A
and B,

(A ·B ↓)⇒ A ·B = {x ∈ N : Ix(A,B)}
Note that by the definition of the domain of the application map, we also
have that A ·B ↓ implies A ·B = {x ∈ N : IIx(A,B)}c. So if the application
is defined, we can check both x ∈ A · B and its negation by looking if B is
in certain Cantor opens.

To see the connection between this application map and the Cantor topology,
consider the following. Take a partial map F : P(ω) ⇀ P(ω) which is
continuous in the Cantor topology. By the definition of the topology, we
have that for all x, the sets V 1

x := {A ∈ dom(F ) : x ∈ F (A)} and V 2
x :=

{A ∈ dom(F ) : x /∈ F (A)} = (dom(F )− V 1
x ) must both be open in dom(F ).

Hence there are opens W 1
x and W 2

x in the Cantor topology such that V 1
x =

W 1
x ∩ dom(F ) and V 2

x = W 2
x ∩ dom(F ). With these W ’s, we can define an

extension F ′ of F , where:

dom(F ′) :=
⋂
x∈N

((W 1
x ∪W 2

x )− (W 1
x ∩W 2

x ))

And for all A ∈ dom(F ′) we have:

F ′(A) := {x ∈ N : A ∈ (W 1
x −W 2

x )} = {x ∈ N : A /∈ (W 2
x −W 1

x )}
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Note that the domain of F ′ is bigger than the domain of F since for all x,
dom(F ) = V 1

x ∪ V 2
x ⊂ ((W 1

x ∪W 2
x ) − (W 1

x ∩W 2
x )). Also, for A ∈ dom(F ),

F (A) = {x : A ∈ V x
1 } ⊂ {x : A ∈ (W 1

x −W 2
x )} = F ′(A) = {x : A /∈ (W 2

x −
W 1
x )} ⊂ {x : x /∈ V 2

x } = F (A) since V 1
x ⊂ (W 1

x −W 2
x ) and V 2

x ⊂ (W 2
x −W 1

x ).
So F (A) = F ′(A), hence F ′ is indeed an extension.
F ′ is defined only using the collection of opens W 1

x and W 2
x for all x. We

will call a map defined this way a coded-continuous map. We say that the
collection of opens W 1

x and W 2
x gives us the coding of this map. It should be

apparent that any endomap representable by our pas is a coded-continuous
map, where if A is representer the coding opens are given by W 1

x := {B :
Ix(A,B)} and W 2

x := {B : IIx(A,B)}. So the Cantor topology is repcon
to our pas. Below, we are going to prove a lemma which gives us that the
topology is also conrep.

4.3.2 Combinatory completeness of DP

Lemma: For any coded-continuous map F , there is an element A ∈ P(ω)
such that for all B ∈ P(ω): B ∈ dom(F )⇔ (A ·B) ↓⇔ F (B) = (A ·B).

Proof: Note that any open in the Cantor topology can be written as a
countable union of opens of the form U q

p = {A : p ∈ A, q ∩ A = ∅}, with
p and q finite. For p finite, denote f(p) as the unique number such that
ef(p) = p (Where en is the n-th finite set). Take for all x the opens W 1

x and
W 2
x as the sets that code F . Since all W -s are open, we can write them

as follows: for all x we have a choice of sets Ix, Jx, and for all i ∈ Ix and
j ∈ Jx a choice of finite sets pxi , q

x
i , kxj and rxj such that W 1

x =
⋃
i∈Ix U

qxi
pxi

and

W 2
x =

⋃
j∈Jx U

rxj
kxj

. With those, define A ∈ P(ω) as:

A := {〈f(pxi ), f(qxi ), i, x〉1 : x, i ∈ Ix} ∪ {〈f(kxj ), f(rxj ), j, x〉1 : x, j ∈ Jx}

With this set, it should be apparent from the definition of the application map
that (A ·B) ↓ if and only if for all x, B ∈ ((W 1

x ∪W 2
x )− (W 1

x ∩W 2
x )) and that

if that is the case, (A ·B) = {x : B ∈ (W 1
x −W 2

x )} = {x : B /∈ (W 2
x −W 1

x )}.
So this A represents F in the sense of the lemma.

�
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We can conclude that the Cantor topology is conrep w.r.t. our pas. We now
just want to see if the pas is also a pca. We need to look at multi-valued
maps. Consider a partial continuous map F : P(ω)n → P(ω). The same way
as before, we can say that they are coded-continuous if they are coded using
opens W 1

x and W 2
x in P(ω)n for all x. Knowing the opens, the construction

of the map is the same as before. An open in P(ω)n can be written as a
countable union of opens of the form U b1

a1
× ...× U bn

an . Meaning you can code
the opens within the sets. We will prove that maps with two and three
variables are representable.

Lemma 4.3.1. For any coded-continuous map F : P(ω)2 → P(ω) there is
an R such that for all A1, A2 we have:
(I) R · A1 ↓
(II) F (A1, A2) ↓⇒ F (A1, A2) = R · A1 · A2

(III) R · A1 · A2 ↓⇒ R · A1 · A2 = F (A1, A2)

Proof: For two natural numbers a and b, define U b
a := U eb

ea . Let for all x,

W 1
x and W 2

x be the opens that code the map. So W 1
x =

⋃
i∈Ix U

bxi
axi
× U qxi

pxi
and

W 2
x =

⋃
j∈Jx U

dxj
cxj
× U

rxj
kxj

for some choice of sets Ix, Jx and natural numbers

axi , b
x
i , p

x
i , q

x
i , c

x
j , d

x
j , k

x
j and rxj . We define the representer as follows, starting

with a core set:
K0 := {〈axi , bxi , i, 〈pxi , qxi , i, x〉1〉1 : x ∈ N, i ∈ Ix}
∪{〈cxj , dxj , j, 〈kxj , rxj , j, x〉2〉1 : x ∈ N, j ∈ Jx}.
We need to add elements to the core such that the first application always
yields a result. Note that K0 consists of elements of the form 〈a, b, i, y〉1,
and for such an y, there are no c, d, j with (c, d, j) 6= (a, b, i) such that
〈c, d, j, y〉1 ∈ K0. This implies the command to add y to K0 · B if B ∈ U eb

ea .
But if B /∈ U eb

ea , K0 ·B ↑. We need to add elements to K0 to create a new set
K1 such that IIy(K1, B) is true if and only if B is not in U eb

ea .
Let K1 be the smallest set containing all elements of K0 such that for all
〈a, b, i, y〉1 ∈ K0 we have:
(1) For all x ∈ ea, 〈0, 2x, i, y〉2 ∈ K1.
(2) For all x ∈ eb, 〈2x, 0, i, y〉2 ∈ K1.
Note that with this K1 and such an y, that for all B either but not both
Iy(K1, B) and IIy(K1, B) are true. Also note Iy(K1, B) is true if and only if
B ∈ U eb

ea .
We still have unmentioned y-s, for which we neither have Iy(K1, B) nor
IIy(K1, B) is true for any B. For those we want to add 〈0, 0, 0, y〉2 which
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basically asserts IIy(K1, B) for all B. So let R be as follows:
R := K1 ∪ {〈0, 0, 0, y〉2 : ∀a, b, i, (〈a, b, i, y〉1 /∈ K1 ∧ 〈a, b, i, y〉2 /∈ K)}
Now for this R, we have that for all y and B, either but not both Iy(R,B)
or IIy(R,B) is true. So R · A1 ↓ is defined for all A1. By looking at the
definition of K1, we see that (II) is also true. So R represents F .

�

Note that the map K : P(ω)2 → P(ω) sending (A1, A2) to A1 is a total
continuous map. Hence it is coded-continuous. So it can be represented.

Lemma 4.3.2. For any coded-continuous map F : P(ω)3 → P(ω) there is
an R such that for all A1, A2, A3 we have:
(I) R · A1 · A2 ↓
(II) F (A1, A2, A3) ↓⇒ R · A1 · A2 · A3 = F (A1, A2, A3)

Proof: Let for all x, W 1
x and W 2

x be the defining opens. So W 1
x =

⋃
i∈Ix U

bxi
axi
×

U
qxi
pxi
× Uwx

i
vxi

and W 2
x =

⋃
j∈Jx U

dxj
cxj
× U rxj

kxj
× U lxj

hxj
. We define the representer as

follows, starting with its core:
K0 := {〈axi , bxi , i, 〈pxi , qxi , i, 〈vxi , wxi , i, x〉1〉1〉1 : x ∈ N, i ∈ Ix}∪
{〈cxj , dxj , j, 〈kxj , rxj , j, 〈hxj , lxj , j, x〉2〉1〉1 : x ∈ N, j ∈ Jx}.
The core now contains all the data of the map F . Like before we want to
add elements to make (I) true. We work backwards. Note that K0 consists
of elements of the form 〈a, b, i, 〈c, d, i, y〉1〉1, and there is at most one such
element for each y. Let K1 be the smallest set containing K0 such that for
all 〈a, b, i, 〈c, d, i, y〉1〉1 ∈ K0:
(1) For all x ∈ ec, 〈a, b, i, 〈0, 2x, i, y〉2〉1 ∈ K1.
(2) For all x ∈ ed, 〈a, b, i, 〈2x, 0, i, y〉2〉1 ∈ K1.
This implies that in the second application step ’K1 · A1 · A2’, that if A1 ∈
U b
a and K1 · A1 ↓ we have that either but not both Iy(K1 · A1, A2) and

IIy(K1 · A1, A2) are true, and A2 ∈ Ud
c ⇔ Iy(K1 · A1, A2). Now, such a K1

consists of elements of the form 〈a, b, i, z〉1 which are unique for each z. Each
of these elements z is equal to some z = 〈c, d, i, y〉v with v ∈ {1, 2}. So we
can define the following set: Let K2 be the smallest set containing K1 such
that for all 〈a, b, i, z〉1 ∈ K1, z = 〈c, d, i, y〉v:
(1) 〈a, b, i, 〈0, 0, i, y〉2〉2 ∈ K2.
(2) For all x ∈ ea, 〈0, 2x, i, z〉2 ∈ K2 and 〈0, 2x, i, 〈0, 0, i, y〉2〉1 ∈ K2.
(3) For all x ∈ eb, 〈2x, 0, i, z〉2 ∈ K2 and 〈2x, 0, i, 〈0, 0, i, y〉2〉1 ∈ K2.
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This looks a bit different than before since we have to make sure that such
an y always gets mentioned in the second step, making either Iy(K1 ·A1, A2)
or IIy(K1 · A1, A2) true if K · A1 ↓. Now all mentioned elements in the first
and second step have a ’complete domain’ (Either but not both Iy or IIy is
true for all y). We have that if (I) is true, then (II) is true.
We still have to add the unmentioned elements. First for the second step, let
R0 be as follows:
R0 := K2 ∪ {〈0, 0, 0, 〈0, 0, 0, y〉2〉1 : ∀a, b, ..., w〈a, b, i, 〈c, d, j, y〉v〉w /∈ K1}
Then define R := R0 ∪ {〈0, 0, 0, y〉2 : ∀a, b, i, v, 〈a, b, i, y〉v /∈ R0}
This R represents F .

�

Now, if the map S : P(ω)3 → P(ω) sending (A,B,C) to (A · C · (B · C))
is continuous, it has a coded-continuous extension and we can conclude that
this application gives a pca. First to prove that the application map is
continuous, we can make that statement a bit stronger.

Lemma 4.3.3. The application map p : P(ω)2 → P(ω), (A,B) 7→ (A ·B) is
coded-continuous.

Proof: Note that with (A,B) in the domain of p, we have that for all x,
Ix(A,B)⇔ ¬IIx(A,B) and Ix(A,B)∨ IIx(A,B). Take x a natural number.
Define W 1

x := {(A.B) : Ix(A,B)} =
⋃
p,q,i U{〈p,q,i,x〉1} × U

eq
ep and W 2

x :=

{(A,B) : IIx(A,B)} =
⋃
p,q,i U{〈p,q,i,x〉2} × U

eq
ep . These are obviously opens.

With these we have that:
V x
1 := {(A,B) ∈ dom(p) : x ∈ p(A,B)} = {(A,B) : I.x ∧ ¬II.x ∧ ∀y :

((I.x∧¬II.x)∨(II.y∧¬I.y))} = (W 1
x −W 2

x )∩
⋂
y((W

1
y −W 2

y )∪(W 2
y −W 1

y )).

The same way we get that V 2
x := {(A,B) ∈ dom(p) : x /∈ p(A,B)} =

(W 2
x −W 1

x ) ∩
⋂
y((W

1
y −W 2

y ) ∪ (W 2
y −W 1

y )).
So p is coded-continuous.

�

Theorem 4.3.4. P(ω) with the defined application is a pca.

Proof: We have already seen that K : (a, b) 7→ a is representable with this
application by lemma 4.3.1. Now for S : (a, b, c) 7→ (a · c · (b · c)). Note that
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we can decompose this map into:
(a, b, c) 7→ (a, b, a, c) 7→ (a · b, a, c) 7→ (a · b, a · c) 7→ (a · c · (a · c)).
We see that all these maps are continuous, so S is continuous. We can
conclude that it has a coded-continuous extension, hence by lemma 4.3.2 we
know it is represented. By theorem 2.1.4 we now know the pas is a pca.

�

We call this pca the double graph model. The fact that the Cantor topology
forms a pca-topology pair with this model is now an immediate result. Note
that since the application map is continuous, the Cantor topology also is
full-repcon and full-conrep to this pca.

4.3.3 From DP to K2

In this section, we will see that there is a decidable single-valued applicative
morphism form DP to K2.
First note that we can find another basis for the topology on NN, given by the
sets of the form Ui,n = {α : α(i) = n}. We have that Uσ =

⋂
0≤i<length(σ) Ui,σi

and Ui,n =
⋃
x0
...
⋃
xn−1

U(x1,...,xn−1,n), so it is indeed another basis.

Define the following single-valued morphism κ : DP→ K2 where:

κ(A)(x) =

{
1 if x ∈ A
0 if x /∈ A

TakeK′2 := im(κ) and define the map r : K′2×K′2 → K2 where (κ(A), κ(B)) 7→
κ(A ∗B) if A ∗B ↓, otherwise leave it undefined. Here ∗ denotes application
in DP. Let l : DP×DP→ K2 be the map which sends (A,B) to κ(A ∗ B)
if defined. When we look at the definition of ∗, we can see that for A and B
with A ∗B ↓, we have that:
l(A,B) ∈ Ux,y ⇔ κ(A ∗ B)(x) = y ⇔ (y = 0 ∧ x /∈ A ∗ B) ∨ (y = 1 ∧ x ∈
A ∗ B) ⇔ (y = 0 ∧ (A,B) ∈

⋃
n,m,i U{〈n,m,i,x〉2} × U em

en ) ∨ (y = 1 ∧ (A,B) ∈⋃
n,m,i U{〈n,m,i,x〉1} × U em

en ). So l−1(Ux,y) is open in the domain of l. Let

Vx,y be the Cantor open set such that Vx,y ∩ dom(l) = l(Ux,y)
−1. Then

Vx,y =
⋃
i∈I U

qi
pi
× U si

ri
for some I, pi etc. Note that for i ∈ I we have:

(A,B) ∈ U qi
pi
×U si

ri
⇔ (κ(A), κ(B)) ∈ (

⋂
x∈pi Ux,1 ×K2)∩ (

⋂
x∈qi Ux,0 ×K2)∩

(
⋂
x∈ri K2 × Ux,1) ∩ (

⋂
x∈si K2 × Ux,0).
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This is an open set. So r−1(Ux,y) is a finite union of opens, hence itself also
open. We can conclude that r is continuous and hence has a representation
in K2. So κ is an applicative morphism.

�

This also means that DP can be modelled in P.

4.4 Power set of a pca

Many structures defined on pca’s work with subsets of its underlying set,
like assemblies, the decidability of sets or images of representable functions.
Given some pca, there is a way to construct a model on its set of all non-
empty subsets. This new pca gives us more information about these set-like
structures.

If A is a pca, we define a pas on P∗(A) := (P(A) − {∅}) in the following
way. Remember the coding of sequences: [u0, ..., un−1] = pnjn(u0, ..., un−1)
(where jn can be represented by an element pn). We define a map M :
P∗(A) → P∗(A), where for A ∈ P∗(A) we take M(A) := {[a0, a1, ..., an−1] :
n > 0, a0, ..., an−1 ∈ A} ⊆ A, which is the encoding of finite non-empty
sequences of elements from A. We define an application a follows: For all
A,B ∈ P∗(A), AB ↓ if there are a ∈ A and b ∈ M(B) such that ab ↓. If
AB ↓, then:

AB := {ab : a ∈ A, b ∈M(B), ab ↓}

We have a few functions with which we can study and alter finite sequences:
ls[] = 0, ls[a0, ..., an−1] = n
bs[u0, ..., un−1]i = ui if i < n.
cs[u0, ..., un−1]ij = [ui, ..., uj−1] if i ≥ 0, j ≤ n and i < j
We can hence find an element v := 〈x〉bx0 such that v[u0, ..., un−1] = u0. To
study and alter numerals we have S giving successors, P giving predecessors
and Z checking whether the numeral is zero and giving Booleans accordingly.
So for all 0 ≤ i < j we can find an element s(i,j) such that s(i,j)[u0, ..., un] =
[ui, ..., uj−1] if n ≥ j. For j > 1, we can design it in such a way that
s(i,j)[u0, ..., un−1] = [u0] if j > n (this can be achieved using ls, P , Z and
s(0,0)). We do not really care what happens when n = 0. In the same way, we
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can also take for all i ≥ 0 an element ei such that ei[u0, ..., un−1] = umin(i,n−1).

Now we have all the tools to prove the pas is a pca. We take the set
K := {〈x〉k(vx)}. Then for A,B ∈ P∗(A) we have K · A · B = {k(fa) :
a ∈ M(A), k(va) ↓} · B = {ka : a ∈ A} · B = {kab : a ∈ A, b ∈ M(B)} = A.
So K acts as the k in theorem 2.1.4.
Now for the s in theorem 2.1.4, which is more difficult. For all n and all
0 ≤ m0 < m1 < ... < mn we take the element:
tn(m0,...,mn)

:= 〈xyz〉vx(s(0,m0)z)(pn(e0y(s(m0,m1)z))...(en−1y(s(mn−1,mn)z)).

Note that for A,B,C ∈ P∗(A) and x ∈ M(A), y ∈ M(B), z ∈ M(C) we
have that tn(m0,...,mn)

xyz gives us an element of the form a′c′d′ with a′ ∈ A,

c′ ∈ M(C) and d′ ∈ M(BC). Hence tn(m0,...,mn)
xyz ∈ AC(BC). We define

S := {tn(m0,...,mn)
: n > 0, 0 < m0 < m1 < ... < mn}. Since for any X, the

sequences in M(X) can be of arbitrary length, it is easy to see that SABC
gives us all the applications of the form described above. So if AC(BC) ↓,
then SABC = AC(BC). Hence K and S satisfy theorem 2.1.4. We can
conclude that the pas is a pca. We denote this pca by P∗(A).

Remarks:
1) There is an applicative morphism γ : A → P∗(A) given by a 7→ {a} and
represented by r := {〈xy〉vx(vy)}.
2) Let f : An ⇀ A be a partial map represented by r, take
R := {〈x0, ..., xn−1〉r(vx0)...(vxn−1)}. Then for A0, ..., An−1 ∈ P∗(A) we have
R · A0 · ... · An−1 = f(A0, ..., An−1), the image of f over A0 × ...× An−1.
3) Any morphism of assemblies can be seen as a partial map f : P∗(A) →
P∗(A) which is representable.

We will look at some interesting applicative morphisms.

Consider Kleene’s first model K1, and let all notations of sequences, operators
and M map be borrowed from that model. We can create P∗(K1). The un-
derlying set of this model is almost the same as the underlying set of Scott’s
Graph Model. There is an applicative morphism γ : P∗(K1) → P sending
A 7→ {M(A)}. We define its representation. Let R be the set containing all
elements of the following form:
Let n > 0, 0 < m1 < ... < mn, a0, ..., an−1, b0, ..., bmn ∈ N. Now take x :=
[a0, ..., an−1], y := [b0, ..., bmn ]. If φa0([b0, ..., bm1 ]) ↓,...,φan−1([bmn−1 , ..., bmn ]) ↓,
then we include 〈2x, 〈2y, [φa0([b0, ..., bm1 ]), ..., φan−1([bmn−1 , ..., bmn ])]〉〉 in R.
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Note that sequential notation is borrowed from K1, while the pairing no-
tation is the one from P. So the sequential coding from K1 is coded into R.
Now, for A,B ∈ P(K1)

∗, X ∈ γ(A) and Y ∈ γ(B), we have X = M(A)
and Y = M(B). Then R · A · B in P is always defined, and consists
of [φa0([b0, ..., bm1 ]), ..., φan−1([bmn−1 , ..., bmn ])] such that [a0, ..., an−1] ∈ X =
M(A) and [b0, ..., bmn ] ∈ Y = M(B). These are precisely all combination
such that a0, ..., an−1 ∈ A and [b0, ..., bm1 ], ..., [bmn−1 , ..., bmn ] ∈ M(B). So we
get M(AB). We can conclude that R · A ·B ∈ {M(AB)} = γ(AB).

Another applicative morphism flows from a more traditional structure on
the powerset of a pca A. We can define a partial applicative structure on
P∗(A) as follows:
For all A,B ∈ P∗(A), let A · B ↓ if for all a ∈ A and b ∈ B we have ab ↓. If
that is the case, we define

A ·B = {ab : a ∈ A, b ∈ B}

We denote this pas by O(A). This is not a pca, but it does satisfy the con-
ditions of what is called an order-pca. This is a pas with an order defined
on its set, satisfying a condition of combinatory completeness in which terms
only need to be represented by a representable map which is always smaller
than that term (we will not need to go further into this definition). In this
case, the order is given by the inclusion of sets. Useful facts about O(A) are
laid out in [16].
Though we have not explored the concepts of order-pca’s, we can consider ap-
plicative morphisms from these structures to normal pca’s. They are defined
the same way, needing some representing element in the target pca. There
is an applicative morphism from δ : O(A) → P∗(A) defined as A 7→ {A}.
Define a term in P∗(A) as R := {〈xy〉vx(vy)}. For all A,B ∈ O(A) such
that A · B ↓ in O(A), and for all X ∈ δ(A), Y ∈ δ(B) we have that if
RXY ↓, then RXY = RAB = {〈y〉va(vy) : a ∈ M(A)}B = {〈y〉a(vy) : a ∈
A}B = {a(vb) : a ∈ A, b ∈ M(B), a(vb) ↓} = {ab : a ∈ A, b ∈ B, ab ↓}.
Since A · B ↓, we have that ab ↓ for all a ∈ A and b ∈ B. So RXY ↓ and
RXY = A ·B ∈ {A ·B} = δ(A ·B). We can conclude that δ is an applicative
morphism. An applicative morphism the other way has not yet been found.
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4.5 Recursive subsystem

We have seen many examples of pca’s, though their complexity might hinder
implementation in the real world. There are for instance some infinitely com-
plex sets which are impossible to code into computers. It is therefore handy
to look at the recursive parts of pca’s. Preliminary results are discussed in
Bauer’s thesis [1].

4.5.1 Sub-pca’s

We consider the set of recursive functions on the natural numbers. This is
the smallest set which contains the constant functions, the successor func-
tion and the projection functions, and is closed under composition, primitive
recursion and µ-recursion.

We can look at the set of total recursive functions in one variable, which
form a subset of NN. This is the same set on which Kleene’s second model
acts. It has been established that in K2, we can actually find total recursive
functions k and s that act as in theorem 2.1.4 (mainly µ-recursion is used).
So the total recursive endofunctions with application borrowed from K2 form
a sub-pca K#

2 .

We can do the same for Scott’s Graph model. We consider a subset A of
the natural numbers to be recursive if there is some recursive endofunction
f satisfying f−1({x ∈ N : x > 0}) = A. The set of recursive sets borrowing
the application map from P form a sub-pca P#.

Lastly, we can consider a Cantor-open set x ∈ U to be computable if the set
of all clopens contained in x is itself recursively enumerable. The embedding-
projection pair used to define the applicative structure on U can be chosen
to be computable, making the subset of computable opens into a sub-pca
U#.

4.5.2 Relative representability

We have considered three pca’s, each with an interesting sub-pca. It is pos-
sible to now consider what we can represent relative to these subsystems.
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Given two pca’s A′ ⊂ A, we call a function f : An → A relative representable
w.r.t. A′ if it is representable in A and has a representing element from A′.
We do the same to define relative representability for applicative morphisms
and relations between applicative morphisms, by demanding their represent-
ing elements to be in the sub-pca. It has for instance been established in
[1] that the applicative retraction between P and K2, and the applicative in-
clusion between P and U are both representable relative to their sub-pca’s,
meaning that the morphisms are relative representable and the applicative
retraction and inclusion relations too.

Consider two pca’s A′ ⊆ A with inclusion ι : A′ → A and a map f : A → A
which is not necessarily representable. Now we look at both γf : A → A[f ]
and γ′f : A′ → A′[f ], which are both given by the identity function. Since
f is representable w.r.t. γf , it is representable w.r.t. γf ◦ ι. ι is obviously
decidable, so we can conclude that there is a decidable applicative morphism
ιf : A′[f ] → A[f ] such that ιf ◦ γ′f = γf ◦ ι. By looking at the specific
definitions of the maps, we can see that ιf is also an inclusion. Hence, A′[f ]
is a sub-pca of A[f ]. So, even in A[f ], f can be represented with an element
from A′[f ]. Also, since γf is represented by i ∈ A′[f ], we can say it is rela-
tively representable by that sub-pca. γ′f can be considered as the applicative
morphism γf limited with its domain limited to A′.

We can now look at our system of extensions and see in what extend it
carries this relative representability. As discussed, the original applicative
retraction and inclusion are relative representable, and so are the morphisms
towards the extensions. If we look back at the proofs in 4.2 about the rep-
resentability of S, C and Z w.r.t. to the applicative morphisms, we see that
they only use representations which are also valid in the sub-pca’s and only
use recursive constructions. Hence we get a system of extensions on the
sub-pca’s forming pull-back squares like in the original models:

K#
2

←−
−→ P# ←−

−→ U#

↓ ↓ ↓
K#

2 [S] ←−
−→ P#[C] ←−

−→ U#[Z]
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Chapter 5

Conclusion

Many pca’s have been studied in order to further understand concepts of
realizability. As of now, a full picture of what this topic entails has yet to be
found. But one need not always look at the big picture. Sometimes, it may
be nice to just look at the little things.

This thesis adds some new pca’s to the fold. Scott’s Graph Model, a struc-
ture with the capabilities to simulate the untyped lambda calculus, can be
extended to be made decidable. We get the least pca to represent the com-
plement function and simulate the Graph Model.

Relations with other famous models can be used to find more extensions.
Decidable applicative morphisms could be lifted to these extensions, mak-
ing full use of the properties in theorem 2.3.5. The complement function
induces an image checking function in Kleene’s second model, and a partial
complement function in the universal domain model. So non-representable
functions can have ’siblings’ acting similarly in other related pca’s.

To fully understand the possibilities of simulation within a pca, one can
sometimes find a topology to describe the set of representable functions.
This is possible for the three fundamental pca’s described above, but not
always. And not all topologies describe the set of representable functions for
some pca. We can however construct a pca for the Cantor topology. Can it
be done for others?

Some of the models could be implemented within a computer, which could
yield real life applications. But further research must be done. It is my hope
that many people will study this increasingly interesting field.
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Table of symbols

N Set of natural numbers.
A,B,C, ... Non-unique instances of sets
Ac (N− A), the complement of the set A
A,B, C... Non-unique instances of pca’s
k, s Elements of a pca satisfying theorem 2.1.4
X∗ Set of finite sequences with elements from X
P(X) Power set of X
P∗(X) Power set of X excluding the empty set.
XY Set of functions from Y to X
T(A) Realizability tripos of the pca A
RT (A) Realizability topos of the pca A
I The trivial pca
K1 Kleene’s first model
P Scott’s Graph Model
K2 Kleene’s second model
U Universal domain model
A[f ] Pca extended with the map f
DP Double graph model
P∗(A) Power set of the pca A
O(A) order-pca on the powerset of the pca A
a v α The sequence α starts with the finite sequence a.
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