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Abstract

In this thesis we take a closer look at the generalized autoregressive con-
ditional heteroscedasticity (GARCH) model, which models the variance of the
error term in particular stochastic time series. The standard procedure for
estimating the model parameters is the maximum likelihood (ML) estima-
tion method. We instead use machine learning to estimate parameters of a
GARCH(1, 1) model for a specific dataset and find that a machine learning
model is able to find the ML estimator when it exists. We conclude that ma-
chine learning is a good alternative to the ML estimation method and that it
has the potential to better predict data.
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1 Introduction

Financial markets react nervously to world’s events. Times of economic crises, en-
vironmental changes, political disorders, wars and other stress periods have huge
impact on financial assets prices. They cause asset prices to fluctuate very much,
making it harder to accurately model the time series that predict these values.
It was up to roughly three decades ago that conventional time series and economet-
ric models assumed constant variance of the errors in their models. Yet they found
out that the variance changed over time. Hence “a theory for dynamic volatilities
[was] needed; this is the role that is filled by the ARCH models and their many ex-
tensions” [4]. One of these extensions is the Generalized Autoregressive Conditional
Heteroscedasticity (GARCH) model, introduced by Tim Bollerslev in 1986. The goal
of this thesis is to take a closer look at the GARCH model and estimate its pa-
rameters through machine learning. The thesis will be divided into several sections,
starting with a short introduction on financial markets. Here we present the assump-
tions we make on the market and the empirical regularities that tend to occur. Next
we present the probabilistic and measure-theoretic notions underlying the GARCH
model, after which we describe the model itself. The subsequent section discusses
the basic ideas of machine learning and lays the theoretical foundation for the type
of machine learning model used in the empirical example in section 6. Finally, we
finish with the discussion, summarizing and reviewing the work we have done.

2 Financial Framework

The following part gives some background on finance, a branch where the GARCH
model is extensively used. We describe the financial market, the assumptions we
make on the market and what empirical regularities tend to occur. If the reader is
familiar with finance, he/she can proceed to the next section.

Financial theories are subjective. In other words, there are no proven laws
in finance, but rather ideas that try to explain how the market works [1].

There are several financial markets. The ones we deal with throughout this thesis
are the financial asset markets. Financial asset markets allow investors to buy and
sell assets. Assets are resources with economic value, which change over time. If
an asset is priced Pt at time t it is highly likely that the price will be different
at time Pt+k for k > 0. This difference in price makes it possible for investors to
make a profit, provided they buy and sell at the right moments. We thus say that
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investors buy or sell assets because of the expected return. The return Rt at time t
is the percentage indicating the gain/loss of the asset’s price since time t− 1. More
precisely:

Rt =
Pt − Pt−1

Pt−1

.

Due to practical reasons, log returns are used. The log return is defined as follows:

rt = log(Rt) = log(
Pt
Pt−1

). (1)

As asset prices change over time, investors can make a profit by buying and
selling at the right moment. We assume that the market fully reflects available
information. This is known as the efficient market hypothesis (EFM). The EFM
makes the following predictions about the market:

• The price is always right. The current asset price fully reflects available infor-
mation and any new information will be taken into account and readjust the
price before investors can trade on it, i.e. an efficient market adjusts its prices
quickly and correctly.

• Investors cannot beat the market. This is also known as the no arbitrage
condition and simply means that you cannot make a profit without taking
risk.

Remark. Due to the no arbitrage condition, the expected return on an asset is zero.
More precisely: µt := E[rt] = 0 for all t.

Furthermore, returns are impossible to predict and can be very volatile. Hence
it is hard for investors to make money without taking risks. The volatility of an
asset is used as a measure for risk, because it is “a statistical measure of dispersion
of returns” [6]. Otherwise said, when an asset has a high volatility, its value can
change dramatically over a small period of time. On the contrary, when an asset has
a low volatility, the chances of a dramatical change are far less likely. This means
that the value of an asset will not fluctuate that much. Therefore we generally say:
the higher the volatility, the riskier the asset.

The advantage of knowing about risks is that we can change our behavior
to avoid them. [...] we must take risks to achieve rewards but not all risks
are equally rewarded. Both the risk and the rewards are in the future,
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so it is the expectation of loss that is balanced against the expectation of
reward [4].

We assume that, when balancing the expectation of loss against the expectation of
reward, investors are rational, risk averse and thus have rational expectations. The
expected reward can be based on a lot of different information. This can be informa-
tion about a company’s earnings / creditors / economic stability, financial press or
anything else that may provide insights in future price evolvements. New informa-
tion causes investors to reassess asset values and causes changes in asset prices. To
illustrate the effect of new information, we will have a look at the Volkswagen stock
price between 21st of August and 8th of October 2015 (see Fig. 1).
At the 18th of September you see a sudden drop in the stock price. This drop was
due to the scandal known as the Volkswagen emissions scandal, which was revealed
on the 18th of September.

Remark. Figure 1 shows a dramatic drop in stock price, but not all new informa-
tion causes such fluctuations. This example is chosen because the impact of new
information is clearly visible.

Figure 1: Volkswagen stock price between 21st of August and 8th of October 2015.

In the preceding part, we have described the point of view we take regarding the
financial market. We end this section by stating empirical regularities, called stylized
facts, for which (G)ARCH models are designed [4].
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• Returns are almost unpredictable. (unpredictability)

• Returns have large numbers of extreme values. (fat tails)

• Both the extreme and quiet periods are clustered in time. (volatility clustering)

As we keep in mind the financial framework, we now continue introducing the
mathematics behind the GARCH model.

3 Mathematical framework

The GARCH model is used for modeling the variance of the error in particular
stochastic time series. Besides the mathematical specification of the model, there
are fundamental mathematical notions underlying the model. These mathematical
notions are mostly probabilistic and measure-theoretic and are presented in the cur-
rent section.

The mathematics we need in order to fully understand our model can be abstract.
To make it more intuitively we will use an analogy throughout this section. The
analogy consists of flipping coins on discrete time intervals (you can also think of
heads to coincide with the asset value going up and tails with the asset value going
down). Heads will be denoted by ’H’ and we use ’T’ for tails. The first notion we
introduce is the notion of a sigma algebra.

Definition 3.1. A σ-algebra F on a sample space Ω is a family of subsets of Ω that
satisfy the following conditions:

(i) Ω ∈ F ,

(ii) A ∈ F =⇒ Ac ∈ F , (closed under complements)

(iii) (A)i∈N ⊆ F =⇒
⋃
i∈NAi ∈ F . (closed under countable unions)

From this point onwards we use the convention that F denotes a σ-algebra on the
sample space Ω. The pair (Ω,F) is called a measurable space and we refer to sets in
F as events.

Remark. A σ-algebra always contains the empty set ∅. (This follows from 3.1(i)
and 3.1(ii).) We define the information set at t = 0 to be the empty set: F0 = ∅.

6



Definition 3.2. Given a measurable space (Ω,F), a filtration is a sequence of σ-
algebras {Ft}t∈N such that

F0 ⊂ F1 ⊂ ... ⊂ Fk ⊂ ... ⊂ F . (2)

All the history and possible events up to time t are encapsulated in the σ-algebra
Ft. We therefore refer to Ft as the information set at time t. In the case of our
analogy, at time k we have the following:

• The sample space Ω represents a series of k coin flips:

Ω = {ω = (ω1, ω2, ..., ωk) : ωi ∈ {H,T}}.

• The σ-algebra F contains all possible subsets of Ω.

Now suppose we flip a coin once. This will give us F1 = {∅, {H}, {T},Ω}.
Additionally, suppose that we lose 1 EUR if a we flip heads and gain 2 EUR if we
flip tails. More specifically, let us define the following function that maps events to
possible profits or losses:

f : Ω→ {−1, 2}.

If we look at f−1((−∞, 0)), we find the event that coincides with losing money,
namely H. Similarly, f−1((0,∞)) coincides with T, the event of making money. This
is an example of a measurable function.

Definition 3.3. A function f : Ω → R is measurable with respect to the σ-algebra
F [F-measurable] if the pre-image of every interval is in F . Precisely if:

f−1((a, b)) ≡ {ω ∈ Ω : f(a) ≤ f(ω) ≤ f(b)} ∈ F for a, b ∈ R, a < b.

Note that the probability density function always is a measurable function. For
this we define the concept of a probability measure.

Definition 3.4. A probability measure P on a sample space Ω is a measurable
function P : Ω→ [0, 1] defined on a σ-algebra F satisfying

(i) P(∅) = 0 and P(Ω) = 1 (normalization)

and for any countable family of pairwise disjoint sets (A)i∈N ⊂ F :
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(ii) P(
⋃
i∈NAi) =

∑
i∈NP(Ai). (σ-additivity)

Definition 3.5. A probability space is a triple (Ω,F ,P), with P a probability mea-
sure on a sample space Ω with σ-algebra F .

Definition 3.6. A random variable on a probability space (Ω,F ,P) is function
X : Ω→ R that is F -measurable.

Definition 3.7. A stochastic process adapted to the filtration is a family of random
variables {Xi}i∈N such that Xn is Fn-measurable for each n ∈ N.

For reasons of completeness we give the following definitions.

Definition 3.8. Let (Ω,F ,P) denote a probability space. The conditional expecta-
tion of a discrete random variable X given F is the random variable:

E[X|F ] : Ω→ R,

defined by:

E[X|F ](ω) = E[X|B] if ω ∈ B ∈ F

=
∑
α∈B

X(α)P({α}|B).

Definition 3.9 (Markov). A stochastic process {Xi}i∈N adapted to the filtration is
Markovian if there exists a function g such that:

E[Xt|Ft−1] = g(Xt−1).

We have now given the underlying theoretical mathematical basis for the GARCH
process. Therefore, we are now ready to introduce the GARCH process itself, which
we do in the forthcoming section.

4 The GARCH(p, q) process

Following up the last section, we are now ready to introduce the GARCH(p, q) pro-
cess. This section will define the GARCH(p, q) model and present a more in-depth
study on the GARCH(1, 1) model. We will use the convention that {Ft}t∈N denotes
a filtration on the probability space (Ω,F ,P) as defined in 3.2 and that Ft indicates
the information set at time t.
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About three decades ago, conventional time series and econometric models as-
sumed constant variance of the error terms in the models. Yet they found that the
variance changed over time. Hence a theory for dynamic volatility was needed. It was
in 1982 that Robert Engle introduced the Autoregressive Conditional Heteroscedas-
ticity (ARCH) model. The ARCH model allowed conditional variance to change over
time as a function of past squared errors. These errors are innovations in a linear
regression:

εt = yt − µt. (3)

The ARCH model was then generalized by Bollerslev in 1986, allowing “a longer
memory and a more flexible lag structure” [2]. This resulted in the Generalized
Autoregressive Conditional Heteroscedasticity (GARCH) model, which is formally
defined as follows:

Definition 4.1. Let (εt) denote a stochastic process adapted to the filtration {Ft}t∈N.
The process (εt) follows a GARCH(p, q) process if εt is conditionally normally dis-
tributed with mean zero and variance σ2

t . More specifically, for t ≥ max{p, q} the
process is given by:

εt|Ft−1 ∼ N (0, σ2
t ), (4)

σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j, (5)

where p ≥ 0, q > 0 and parameter restrictions:

α0 > 0, αi ≥ 0, βj ≥ 0,

i = 1, ..., q j = 1, ..., p.

Furthermore we assume that the initial conditions are given by ε0 = 0 and σ0 = 1.

Remark. By assuming the conditional distribution to be Gaussian, we follow the
convention of Engle [3]. Nevertheless, it is possible to apply other distributions as
well. Notice that the GARCH process is Markov by definition and that in this case
(4) is defined by:

E[εt|Ft−1] =

∫
R
εt

1√
2πσt

e
− ε2t

2σ2t dεt

=

∫
R
εt

1√
2π(α0 +

∑q
i=1 αiε

2
t−i +

∑p
j=1 βjσ

2
t−j)

e
− 1

2

ε2t
(α0+

∑q
i=1

αiε
2
t−i+

∑p
j=1

βjσ
2
t−j)dεt.
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The conditional variance specified by a GARCH model is thus a weighted average
of past squared errors and conditional variances. The restrictions on the parameters
ensure strong positivity of the conditional variance (5). Methods for obtaining and
optimizing these weights are discussed in section 5.

In general, the GARCH models are suitable to model financial time series be-
cause they properly reflect the stylized facts that characterize these series (section
2). Section 6 describes two empirical examples using a GARCH(1, 1) model. The
reason we choose this model is because is a simple but useful model. Intuitively the
conditional variance of a GARCH(1, 1) model is a weighted average of the long run
variance, the last variance and the new information, measured by the last squared
innovation. Let εt denote a GARCH process as defined in 4.1. Taking p = q = 1 we
find that for t > 1 the GARCH(1, 1) process is given by (4) and:

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1, (6)

where α0 > 0, α1, β1 ≥ 0 and the initial conditions ε0 = 0 and σ0 = 1.

We proceed by introducing some mathematics based on [2] that allows us to
analyze the appropriateness of the GARCH(1, 1) model. Firstly we give the neces-
sary and sufficient conditions for the existence of the second and fourth moment.
Respectively, these are given by:

α1 + β1 < 1,

3α2
1 + 2α1β1 + β2

1 < 1.

If these conditions are fulfilled, the second and fourth moment are given by:

E(ε2
t ) =

α0

1− α1 − β1

,

E(ε4
t ) =

3α2
0(1 + α1 + β1)

(1− α1 − β1)(1− β2
1 − 2α1β1 − 3α2

1)
.

Using these moments, we find a measure that can indicate fat tails. This measure
for “tailedness” is called kurtosis and is given by:

κ =
E(ε4

t )

[E(ε2
t )]

2
=

3(1 + α1 + β1)(1− α1 − β1)

1− β2
1 − 2α1β1 − 3α2

1

. (7)
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Distributions with a kurtosis greater than 3 indicate fat tails and are called lep-
tokurtic distributions.

Besides fat tails, the GARCH model should reflect unpredictability and volatility
clustering. These can be shown by looking at autocorrelations. Consequently, we
define the autocorrelation function, which describes the correlation of a random
variable with itself at different points in time.

Definition 4.2. Let {Xi}i∈N be a stochastic process adapted to the filtration {Ft}t∈N
with mean µt and variance σ2

t . The autocorrelation between time i and j is then
given by:

ρ(Xi, Xj) =
E[(Xi − µi)(Xj − µj)]

σiσj
. (8)

“Predictability may show up as significant autocorrelations in returns, and volatil-
ity clustering will show up as significant autocorrelations in squared or absolute re-
turns. [...] autocorrelations bigger than 0.033 in absolute value would be significant
at a 5% level” [4].

Before we continue to the empirical examples, the following section will introduce
the basic ideas of machine learning. Some machine learning models allow us to esti-
mate/obtain parameters of a GARCH model. One of these models will be explained
in the following section, whereafter the respective model is applied in an empirical
example in section 6.

5 Parameter optimization

Optimizing and obtaining parameters of a GARCH model can be done in several
ways. One of these ways is through machine learning. In this section we discuss the
basic ideas of machine learning and lay the theoretical foundation for the type of
machine learning model used in the empirical example in section 6.

Machine learning is a part of data science. “Data science is the exploration
and quantitive analysis of all available structured and unstructured data to develop
understanding, extract knowledge and formulate actionable results” [edX course]1.
Machine learning is the exploration of data and algorithms such that the machine
can learn from the data and make predictions on the data. The building of a machine
learning model involves [edX course]:

1I’ve taken a course on machine learning from edX, this taught me the basics of machine learning
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1. Finding data sources.

2. Acquiring data.

3. Cleaning and transforming data.

4. Understanding relationships in the data.

5. Delivering value from the data.

The building of a machine learning model is an iterative process. We do not go
deeply into this process, though the next section does contain two empirical exam-
ples whereby we briefly go through these steps.

When estimating GARCH parameters, we apply a regression model. A regression
model is a form of supervised machine learning and is used to perform a predictive
analysis. This form of machine learning requires a dataset of which the true out-
comes, called labels, are known. The model is calibrated on this known data, after
which the model is used to make predictions on new data. More formally:
Given dataset D with elements (xi1, xi2, ..., xip, yi) for i = 1, 2, ..., n, where the indi-
vidual regressions are given by:

yi = η1xi1 + η2xi2 + ...+ ηpxip + εi. (9)

We find that the regression model for n datapoints is given by the following:

Y = Xη + ε, (10)

where

Y =


y1

y2
...
yn

 ,X =


x11 x12 · · · x1p

x21 x22 · · · x2p
...

...
. . .

...
xn1 xn2 · · · xnp

 ,η =


η1

η2
...
ηn

 and ε =


ε1
ε2
...
εn

 .

Remark. Note that the residuals εk are different from the innovations εk defined
the previous section.

The residuals are the differences between model’s predicted labels ŷi and the
true labels yi. The key to optimizing a model, is finding (estimated) parameters
that minimize the sum of squared residuals (SSR). This method is also known as
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ordinary least squares (OLS) method. The estimator η̂ that minimizes the SSR is
the least square estimate (LSE) of η. Let the regression model be defined as in (9)
and (10). Under the assumption that XTX has full rank and hence is invertible, the
least square estimate of η is then given by:

η̂ = (XTX)−1XTY. (11)

Remark. In the case of a Gaussian distribution, the least squares estimate is iden-
tical to the maximum likelihood estimate (MLE).

In machine learning, the LSE is obtained through training our model. By training
we mean that the computer uses an algorithm to find the weights that fit the data
well. This can be done using OLS. When training a model, we firstly split the data
D into two nonempty disjoint sets A and B. The n individual regressions are split
up over two sets, resulting in two smaller regression models. Formally, this is done
as follows:

Let Ā ⊂ {1, 2, ..., n} and B̄ = {1, 2, ..., n}\Ā with |Ā| = k and |B̄| = n − k.
Then we define:

A = {(xj1, xj2, ..., xjp, yj) : yj = η1xj1 + η2xj2 + ...+ ηpxjp + εj for j ∈ Ā},
B = D\A = {(xl1, xl2, ..., xlp, yl) : yl = η1xl1 + η2xl2 + ...+ ηpxlp + εl for l ∈ B̄}.

Our initial regression model is now split into two smaller regression models.
Similar to (10), we define respectively the regression model with k and n − k
datapoints:

YA = XAη + εA,

YB = XBη + εB.

Remark. In general we use more data to train the model than to evaluate the model,
so we assume k ≥ n − k. Furthermore, the residuals are generally assumed to be
Gaussian with mean 0 and constant variance σ2.

Without loss of generalization, we set A to be our training dataset and B as our
testing dataset. The parameter weights are determined by training our regression
model on A. More specifically, we obtain a LSE by the following:

η̂ = (XT
AXA)−1XT

AYA.
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Subsequently, the regression model is evaluated against the testing dataset B, re-
sulting in a vector of predicted labels. The predicted labels are computed as follows:

ŶB = XBη̂.

We then find the residual vector:

εB = YB − ŶB,

with the individual residuals equal to:

εl = yl − ŷl for l ∈ B̄.

These residuals allow us to evaluate our model. If a model is a good fit for
the data, then the residuals should be randomly distributed. Furthermore, we can
evaluate the model using the following statistics:

• The mean absolute error (MAE); a measure of how close the predicted values
are to the true labels. It is given by:

MAE =
1

n− k
∑

l∈B̄ |εl|. (12)

• The root mean squared error (RMSE); a measure for the error in the model.
It is given by:

RSME =

√
1

n− k
∑

l∈B̄ ε
2
l . (13)

• The relative absolute error (RAE); a measure of the errors in the prediction
relative to the deviations of the mean of the true labels.

RAE =

∑
l∈B̄ εl∑

l∈B̄(yl − ȳ)
, (14)

where ȳ = 1
n−k

∑
l∈B̄ yl.

• The relative squared error (RSE); a measure of the sum of squared residuals
(SSR) relative to the sum of total squares (SST ).

RSE =
SSR
SST

, (15)

where SSR =
∑

l∈B̄ ε
2
l and SST =

∑
l∈B̄(yl − ȳ)2.
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• The coefficient of determination (CoD); a measure that indicates how well the
model fits the data. In statistics, the CoD is denoted by R2 and it is defined
by:

R2 = 1− SSR
SST

= 1− RSE. (16)

Remark. The RSE can also be described as the variance of the model relative to
the variance of the data.

For all statistics mentioned above, except the CoD, we apply the following rule
for evaluation: the lower the better. This implies that the CoD of a model is better
when it is closer to 1. A perfect model therefore has a CoD equal to 1 (and thus a
RSE of 0). A model with a CoD of 0 indicates that the model is random and does
not fit the data even the tiniest bit.

Last but not least, we can train and evaluate a model using cross validation.
Cross validation is a method in which the data is divided into n subsets called folds.
The model is then trained on n−1 folds and is evaluated on the remaining fold. This
is repeated n times using each fold exactly once as testing fold, allowing us to identify
possible disparities in the training and testing datasets. Furthermore, the training
and evaluating is done in the same way as described above and thus generates the
same set of statistics. Additionally, cross validation reports the mean and standard
deviation over the evaluation measures of the n folds. A model will fit the data well
if it generates similar measures across all folds with a small range of mean values
and low standard deviations.

We now have all tools to build, train and evaluate a model. In the next section we
describe an empirical example where we use machine learning to find the parameters
of a GARCH(1, 1) model applied to a specific dataset.

6 An empirical example

We now combine the knowledge of all previous sections by describing some empirical
examples. We will look at two (or three) different datasets whereon we apply machine
learning to find the parameters of a GARCH(1, 1) model such that it fits the data
well. The first dataset contains data from a simulated GARCH(1, 1) model and the
second dataset contains historical prices of an asset. For each dataset, we will go
through the machine learning process, after which we discuss the related results. We
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then proceed to the Discussion section, where we summarize and review the work we
have done.

Example. 1.1
In this example we look at a dataset acquired through a simulation in Matlab. We
have simulated a GARCH(1,1) model with known parameters α0 = 0.04, α1 = 0.3
and β1 = 0.6. The relevant code is given in Listing 1.

1 Mdl = garch ( ’ Constant ’ , 0 . 04 , ’GARCH, 0 . 6 , ’ARCH’ , 0 . 3 ) ;
2 [V,Y] = s imulate (Mdl , 10000 , ’Numpaths ’ , 1) ;

Listing 1: Matlab code.

Figure 2: Workflow of example 1.1.
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The resulting dataset exists out of an arbitrary amount of data. In this case the
dataset contains n = 10000 innovations (Y ) and variances (V ) of a GARCH(1, 1)
model defined by (4) and (6), where (6) is specified by:

σ2
t = 0.04 + 0.3ε2

t−1 + 0.6σ2
t−1.

This generated data will be used in order to check whether we can retrieve the
previously mentioned parameter weights of the GARCH(1,1) model through machine
learning. The associated workflow is presented in Figure 2. Furthermore, Figure 3
shows the simulated variances σ2

t for t = 1, ..., 10000.

Figure 3: Simulated Variances.

As the dataset consists out of the true innovations and true variances, there is
not much cleaning and transforming left to do. However, we do need the squared
innovations. Furthermore, when estimating GARCH(1,1) parameters, we look for a
linear relationship in the data. Therefore, we select the relevant columns needed for
a linear regression. We select the columns containing the squared innovations, the
variances and the new variances. Following (10), the regression model is defined by:

σ2
1

σ2
2
...
σ2
n

 =


1 ε2

0 σ2
0

1 ε2
1 σ2

1
...

...
1 ε2

n−1 σ2
n−1


α0

α1

β1

 +


ε1
ε2
...
εn

 . (17)

The data is split into two equally sized sets, the training dataset and the testing
dataset, and is trained using a regression model specified by (17). We obtain an
estimate for (α0, α1, β1)T by using OLS (see section 5). The results of the training
are depicted in Table 1 and the predicted labels can be found in the appendix in
Figure 6. Notice that the estimated parameters are approximately the same as the
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true parameters and that the scored labels are very close to the new variance. In
other words, our machine learning model seems to perfectly fit the data. Besides the
fact that the estimated parameter weights are significantly close to the real param-
eter weights, we can strengthen the idea of a good fit by looking at the evaluation
measures in Table 2 and in the cross validation results in Table 3. Table 2 shows low
evaluation measures and a CoD near to 1. When taking a look at Table 3, we find
similar measures across all folds, with a small range of mean values and low standard
deviations. Furthermore 9 out of 10 folds have a CoD of 1, which implies a perfect
fit. We hence conclude that our model is a good fit for the data and that a machine
learning model is able to find the MLE if a theoretical optimum is present.

Example. 1.2
In the previous example, the dataset featured the innovations as well as the variances
and we knew that the process followed a GARCH(1, 1) with known parameters. In
general however, even if we suspect that a process is GARCH, we do not know the
true variances. Therefore, they have to be estimated. Example 2 will apply machine
learning at a real financial dataset in order to find parameters for a GARCH(1, 1)
model such that it fits the data well. Before looking at this example however, we
want to know whether a machine learning model is able to find parameters that
fit the data well when we know for sure that it is GARCH but that the variances
are unknown. We take the same squared innovations as in example 1.1 and as we
assume that the innovations are conditionally normally distributed (4), we estimate
the variances by taking the unbiased sample variance:

σ̂2
t =

1

N − 1

N−1∑
i=0

ε2
t−i. (18)

By estimating the variance, the σ2
t ’s become different than those in example 1.1.

This in turn changes the initial weights belonging to the generated data. Using trial
and error, we took a sample size of N = 100. The training and evaluation results can
be found respectively in Table 4 and 5. The model has small errors and a CoD of
0.9964, implying a near to perfect fit. We thus conclude that even when the variances
are unknown and have to be estimated, machine learning is able to find parameters
such that it fits the data well.
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True parameters Estimated parameters
α0 0.04 0.039999
α1 0.3 0.299999
β1 0.6 0.600004

Moments and Kurtosis
α1 + β1 0.9 0.900003
3α2

1 + 2α1β1 + β2
1 0.99 0.990004

κ 57 57.022329

Table 1: Training results ex. 1.1.

Evaluation results
MAE 0.000106
RMSE 0.006391
RAE 0.0005
RSE 0.000137
CoD 0.999863

Table 2: Evaluation results ex. 1.1.

Fold number MAE RMSE RAE RSE CoD
0 0.000048 0.000056 0.000219 0 1
1 0.000046 0.00005 0.000223 0 1
2 0.00041 0.012781 0.002042 0.001501 0.998499
3 0.000047 0.000054 0.000191 0 1
4 0.000048 0.00006 0.000239 0 1
5 0.000047 0.000057 0.000197 0 1
6 0.000049 0.000082 0.000198 0 1
7 0.000047 0.000053 0.000206 0 1
8 0.000047 0.000051 0.000225 0 1
9 0.000047 0.000053 0.000239 0 1
Mean 0.000084 0.00133 0.000398 0.00015 0.99985
Standard Deviation 0.000115 0.004024 0.000578 0.000475 0.000475

Table 3: Cross validation evaluation results ex. 1.1.
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Estimated parameters for N = 100
α0 0.002763
α1 0.002625
β1 0.988881

Moments and Kurtosis
α1 + β1 0.991506
3α2

1 + 2α1β1 + β2
1 0.983098

κ 3.002446

Table 4: Training results ex. 1.2.

Evaluation results for N = 100
MAE 0.005175
RMSE 0.013079
RAE 0.037819
RSE 0.003589
CoD 0.996411

Table 5: Evaluation results ex. 1.2.

In the previous examples we looked at a dataset of which we knew that it followed
a GARCH model. In the first example, the dataset featured the true innovations as
well as the true variances. The second example featured the true innovations and
used estimated variances. The first model retrieved the initial parameters almost
flawlessly and the second model found other parameters that were able to fit the
data well. Both models were concluded to be a good fit for the data.

Now that we have concluded that machine learning is able to retrieve the true
parameters of a GARCH(1, 1) model with known parameters and that it can fit the
data well even when the variances have to be estimated, we next concentrate on an
example concerning a real financial dataset. The following dataset will require esti-
mates for the variance and more cleaning and transforming of the data. Additional
figures associated to this example can be found in the Appendix and they will be
referred to when needed.
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Figure 4: Workflow of example 2.21



Example. 2
In this example we look at the daily returns on the closing values of the AEX. We
will apply machine learning to try to find parameters for the GARCH(1,1) model
such that it fits the data well. The workflow for this example is presented in Figure 4.

The dataset we use contains the daily data of the AEX between 1992 and 2015
and consists out of the following features: Date, Open, High, Low, Close, Volume,
Adj. Close. Of these features, we only need the ’Close’ values because they allow
us to calculate the daily returns (1). Using (3) and the fact that returns are almost
unpredictable (see section 2), we find that:

εt = rt.

In other words, we find that the innovations are equal to the returns and hence the
squared innovations are equal to the squared returns. Furthermore, as the variances
are unknown, we will need to estimate them from our data. Remember that the
innovations are assumed to be conditionally normally distributed (4). Therefore, we
estimate the variances by taking the unbiased sample variance as defined in (18) with
a sample size of N = 25. The size of the sample is chosen by trial and error.
After cleaning and transforming the data (see Listing 2), we end up with a dataset
that contains the squared innovations, the estimated variances and the new variances.
Analogously to example 1.1, a regression model equivalent to (17) is applied to this
data. The training and evaluation results are depicted respectively in Table 6 and
7. Notice that the RAE is quite high, which implies that the errors in the prediction
are relatively large. This can also be seen when comparing the new variances to the
associated predicted labels in Figure 7. Despite these differences however, we have a
CoD of approximately 0.91, implying a pretty good fit. About 90% of the data can
be explained by our model. Taking a closer look at the cross evaluation results (see
Table 8) reveals more about where these errors came from. Namely from fold 5 and
6.2 We see that most folds have more or less the same evaluation results, but that
those in fold 5 and 6 are significantly different. They have far higher error values than
the other folds, some even 2-9 times higher, and a CoD of respectively 0.23 and 0.06.
The reason these are so significantly different, could originate from the economic
circumstances belonging to the period these folds cover. When we for instance take
a closer look at our initial data (see Fig. 5), we see two rather big drops between
“Jan 1 ’00” and “Jan 1 ’10”. It is possible that the period around these drops were
covered by fold 5 and 6 and that they were so substantially different that our model

2Remember that the training and evaluation datasets were equal of size. Hence folds 0-4 were
used for training and that 5-9 were used for evaluation.
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Figure 5: AEX Closing values 1992 and 2015.

could not yet explain this particular data. In turn, this would then cause higher error
statistics. However, in order to better understand the origin of the errors, the data
and the results should be examined more carefully. Unfortunately, this is outside
the scope of this thesis. Further explanations for the model to not completely be
able to explain the data include erroneous estimated variances and/or an underlying
probability distribution that is non-Gaussian. Feasible ways to improve our model
are discussed in the following section.

Summarizing the previous example, we created a regression model for data of a
GARCH(1,1) model with unknown parameters. The estimated parameters were able
to explain approximately 90% of the data and the model is therefore considered to be
a reasonable good fit. The remaining, unexplained 10% is possibly due to economic
circumstances, but this should be examined more carefully. Furthermore it is also
possible that our model makes the wrong assumptions concerning the variances or
the underlying probability distribution and therefore is not able to explain the data
better than it already does. We will now continue to the discussion, where we
summarize and review the work we have done in this thesis and suggest possible
future work.
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Estimated parameters for N = 25
α0 0.000042
α1 0.004498
β1 0.894212

Moments and Kurtosis
α1 + β1 0.89871
3α2

1 + 2α1β1 + β2
1 0.807720

κ 3.000631

Table 6: Training results ex. 2.

Evaluation results
MAE 0.000037
RMSE 0.000098
RAE 0.234893
RSE 0.088352
CoD 0.911648

Table 7: Evaluation results ex. 2.

Fold number MAE RMSE RAE RSE CoD
0 0.000042 0.000197 0.124095 0.013007 0.986993
1 0.000042 0.000194 0.111238 0.012674 0.987326
2 0.00006 0.000331 0.129891 0.027524 0.972476
3 0.000036 0.000155 0.118837 0.011788 0.988212
4 0.000031 0.000111 0.143316 0.01186 0.01186
5 0.000065 0.000911 0.272315 0.765646 0.234354
6 0.000064 0.000976 0.312885 0.937289 0.062711
7 0.000056 0.000271 0.111049 0.015018 0.984982
8 0.000039 0.00016 0.122133 0.012437 0.987563
9 0.000043 0.000201 0.115911 0.013487 0.986513
Mean 0.000048 0.000351 0.156167 0.182073 0.817927
Standard Deviation 0.000012 0.000319 0.073153 0.355144 0.355144

Table 8: Cross validation evaluation results ex. 2.
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7 Discussion

In this thesis we have presented the theoretical basis of the GARCH and machine
learning (linear) regression model, whereafter we applied machine learning to esti-
mate the parameters of a GARCH(1,1) model. The standard procedure for esti-
mating these parameters however, is the maximum likelihood (ML) procedure. The
estimates are ML estimates if the underlying probability density function (pdf) is
Gaussian and are called quasi-ML if this is not the case. The pdf is generally as-
sumed to be Gaussian, which we did as well, but assuming the wrong pdf can cause
errors. Furthermore, we have seen that when a random variable exactly follows a
GARCH(1,1) process as defined by (4) and (6), a machine learning model is able to
find the ML estimator. So when there is a theoretical optimum, a machine learn-
ing model can find it (example 1.1). We also found that when the true variance
is unknown and has to be estimated, a machine learning model is still able to find
estimated parameters such that it fits the data well (example 1.2).
The problem with most data however, is that the underlying pdf is not always known
and therefore a theoretical optimum cannot be found using (quasi) ML procedures.
As we have assumed a Gaussian pdf throughout this thesis, we might be able to
find a better estimator in example 2 by assuming a different pdf. Other possible
improvements can possibly be accomplished by tweaking some parameters (e.g. the
number of samples used for estimating the variance) or by applying a different ma-
chine learning model. The linear model that we used is just one out of several. To
give an example of an alternative model, there are machine learning models that use
so-called Support Vector Machines (SVMs) and “The benefits of the SVM in regres-
sion (also known as a support vector regressor; SVR) lies in not assuming that there
is a probability density function (pdf) over the return series [...]” [5]. Therefore,
these models can give better estimates when the underlying pdf is unknown or not
Gaussian [5]. Future work could include applying one of these models, more tweaking
of parameters and/or doing a more in-depth study on the data, possibly leading to
a better understanding of the data. This in turn could cause a practitioner to make
correcter assumptions on the model, which could eventually lead to better results.
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Appendix

1 de f azureml main ( frame1 ) :
2 import pandas as pd
3 import os . path
4 from math import l og
5

6 # what a s s e t w i l l we be l ook ing at ?
7 # cons t ruc t dataframe from txt− f i l e ( from yahoo f i n a n c e )
8 a s s e t = ’ aex ’
9 pathName = ”/ Users / math i j sde l epper /Documents/MATLAB”

10 f i leName = a s s e t+” . txt ”
11 f i l e P a t h = os . path . j o i n (pathName , f i leName )
12 frame1 = pd . r ead c sv ( f i l e P a t h )
13

14 # a l l we need are the c l o s i n g va lue s
15 # data from yahoo f i n a n c e i s l i s t e d ( top−bottem ) from recent
16 # to l e s s r e c en t . There fore we r e v e r s e the l i s t .
17 frame1 = frame1 [ ’ Close ’ ]
18 l i j s t j e = frame1 . t o l i s t ( )
19 l i j s t j e . r e v e r s e ( )
20 frame1 = pd . DataFrame ( l i j s t j e )
21

22 # c r e a t e dataframe with r e tu rn s
23 frame1 [ ’ Returns ’ ] = [ 1 . 0 ] ∗ l en ( frame1 )
24

25 f o r x in range ( l en ( frame1 )−1) :
26 Return = frame1 [ 0 ] [ x+1]/ frame1 [ 0 ] [ x ]
27 l o g r e t u r n = log ( Return )
28 frame1 [ ’ Returns ’ ] [ x ] = l o g r e t u r n
29

30 # c r e a t e dataframe with squared r e tu rn s
31 frame1 [ ’ Squared Returns ’ ] = frame1 [ ’ Returns ’ ]∗∗2
32

33 # c r e a t e dataframe with (new) var iance where the var iance i s
34 # a sample var iance ( from a normal d i s t r i b u t i o n ) from a
35 # sample with 25 e lements .
36 frame1 [ ’ Variance ’ ] = [ 0 . 0 ] ∗ l en ( frame1 )
37 frame1 [ ’ New Variance ’ ] = frame1 [ ’ Variance ’ ]
38

39 N = 25
40 i = 0
41 f o r x in range ( l en ( frame1 ) − 1) :
42 i f (x>N) :
43 whi le ( i < N) :
44 frame1 [ ’ Variance ’ ] [ x ] += frame1 [ ’ Squared Returns ’ ] [ x−i ]
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45 i += 1
46 frame1 [ ’ Variance ’ ] [ x ] = frame1 [ ’ Variance ’ ] [ x ] / (N−1)
47 i = 0
48

49

50 f o r x in range ( l en ( frame1 ) − 2) :
51 frame1 [ ’ New Variance ’ ] [ x ] = frame1 [ ’ Variance ’ ] [ x+1]
52

53 # c r e a t e . csv f i l e s f o r matlab / azure ml
54 r e t u r n l i s t = frame1 [ ’ Returns ’ ]
55 s q u a r e d r e t u r n l i s t = frame1 [ ’ Squared Returns ’ ]
56 v a r i a n c e l i s t = frame1 [ ’ Variance ’ ]
57 n e w v a r i a n c e l i s t = frame1 [ ’ New Variance ’ ]
58

59 everyth ing = [ s q u a r e d r e t u r n l i s t , v a r i a n c e l i s t , n e w v a r i a n c e l i s t ]
60 d a t a f r a m e f u l l = pd . concat ( everyth ing , a x i s = 1)
61

62 d a t a f r a m e f u l l = d a t a f r a m e f u l l . drop ( d a t a f r a m e f u l l . index [ : ( N+1) ] )
63

64 r e t u r n l i s t . t o c s v ( ’ r e t u r n l i s t ’+a s s e t+’ . csv ’ , index = False , header
= True )

65 s q u a r e d r e t u r n l i s t . t o c s v ( ’ s q u a r e d r e t u r n l i s t ’+a s s e t+’ . csv ’ , index =
False , header = True )

66 v a r i a n c e l i s t . t o c s v ( ’ v a r i a n c e l i s t ’+a s s e t+’ . csv ’ , index = False ,
header = True )

67 n e w v a r i a n c e l i s t . t o c s v ( ’ n e w v a r i a n c e l i s t ’+a s s e t+’ . csv ’ , index =
False , header = True )

68 d a t a f r a m e f u l l . t o c s v ( a s s e t+’ in fo f rom python . csv ’ , index = False ,
header = True )

69

70 re turn frame1

Listing 2: Joined Execute Python Scripts Example 2.
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Figure 6: Part of the predicted labels ex. 1.1.
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Figure 7: Part of the predicted labels ex. 2.
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