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Abstract

Generalized Linear Models (GLMs) have been the standard tool in non-life
insurance pricing for the last few decades. The Giro APT working party [63]
states overlooked facts on the use of GLMs in the current highly competitive
market for motor insurance in the UK. This thesis describes the models currently
used in non-life insurance pricing and looks whether an extension of the GLM,
the Generalized Linear Mixed Model (GLMM) can solve some of the problems
occurring in this market.
In order to see how a competitive market behaves, we provide a definition of a
market with the necessary assumptions on its costs, conversion and consumer
behavior. Three markets are simulated to study how parameter choice, market
composition and the use of a mixed model effect market share, sales and profit
in a market with two insurers and fully economically rational customers.
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Chapter 1

Introduction

Insurance is the business of sharing risks among groups. In its simplest form
it is a group of people agreeing to mutual aid. An example can be found in
sharing risk within a village. If one house burns down, the rest of the village
agrees to rebuilt it. In modern times, insurance is facilitated by companies, the
insurers. Insurers provide coverage against certain risks agreed upon in advance
in exchange for a premium.
Insurance can be divided into two types, life and non-life. This thesis focuses
on non-life insurance. This can be defined as insurance against accidental or
financial risk. Examples of this are theft, fire damages and car insurance. A
main topic in insurance is the mathematically determination of the premiums
also called ’pricing’. This is done using models which assign relative risks to
different groups of customers. This thesis studies these models and investigates
whether a relatively new model can solve some of the problems occurring in the
competitive market today.

Background

Modeling insurance premiums is often done using a two-step approach. Instead
of estimating a full model, claim count and severity are modeled separately.
Their model outcome is then combined to form a relative risk. For the last
decades this has happened using generalized linear models (GLMs), these mod-
els are a generalization of the ordinary linear regression models used in linear
regression problems common to statistics.
The last few years however, the non-life insurance market has changed. Due to
the rise of the Internet and as a consequence the ease of entering an insurance
contract through that medium many contracts are entered through comparison
websites. This newly formed type of competition has changed the market and
due to the subjective process of choosing a GLM, premiums for different insur-
ers can therefore differ substantially due to these model choices.
An example of this can be seen on comparison websites. On the Dutch market
the quoted premiums can easily vary 2-3 fold for some types of motor insurance
(source: independer.nl). As the quoted premium relies heavily on the risk of
harm of the insured and less on the chosen insurer, these differences are remark-
able.
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The GIRO APT working party from the Institute and faculty of Actuaries in
the UK researched this phenomenon. They noted the big difference in quoted
premiums for customers and aim to provide evidence for discussion whether the
use of GLMs is still fit for purpose for non-life pricing. In their paper they raised
six different problems which can occur with use of the GLM in the highly com-
petitive UK market for motor insurance. In this market, comparison websites
take up a big part of all sales. To illustrate this, they state different features of
a price comparison market of which we adapted the following. The market has
a large number of buyers and sellers, provides homogeneous products. A cus-
tomer has perfect knowledge of the market and there is no attachment between
the buyers and sellers.
This study was the driving force behind this thesis. We will investigate whether
and how a newer model, called the Generalized Linear Mixed Model (GLMM)
can provide a possible solution to some of the overlook facts when using the
GLM. The problems when using GLMs in non-life insurance pricing stated by
the GIRO APT working party are [63]:

1. Either zero or full credibility is given to the data and there is no way to
do blending.

2. Prediction of a risk depends on data in other completely independent
segments.

3. Model predictions depend on the mixture of rating factors in the data.

4. Maximum likelihood estimate of prediction is lower than mean of predic-
tion distribution.

5. Link function could bias the model prediction and significantly change the
lower and upper bound of prediction.

6. Model diagnostics is only relevant in the segments where the model is
used.

This thesis will be loosely based on problems 1 and 2. The rest of the problems
could not be directly linked to the use of a GLMM.

Structure

This thesis will focus on the models used in pricing non-life insurance premi-
ums. Chapter 2 will focus on the models itself, their estimation and practical
aspects in application by the notion of ’expert judgement’ in their selection and
validation. Chapter 3 will provide a quantitative definition of the competitive
market with some assumptions. Further, it provides a way to simulate and com-
pare different model choices among insurers. Three different simulations will be
shown using two insurers forming a market. We will finish with a short view on
how GLMMs can solve some of the shortcomings stated above.
The appendix will provide some mathematical background and addresses some
practical issues which may come up when fitting GLMMs in the programming
language R as well as some R-code used throughout the text.
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Chapter 2

Linear models in pricing

The goal of this chapter is to show several commonly used methods to model
non-life insurance data in order to predict future claim counts and severity. We
will start with the actuarial use of these models to show
Linear models consist of predictors and responses. In these models, the relation-
ship between the predictors and the response is assumed linear and can therefore
be written as a linear equation. The content of this equation differs among the
models but for each model we can use a similar setup. In every section we first
define or derive the model and possible reasoning and incentives for use of the
model are motivated. After this, possible estimation and approximation tech-
niques are either provided or described.
The end of the chapter is dedicated to the application of the models in actuarial
science. Model building, testing and comparing are discussed as well as the no-
tion of ’expert judgement’ which has a big impact on the final choice of model
used in application.
Models will increase in complexity. Classical Linear Models (LM) are introduced
in the first section. Next we derive a generalized version in the Generalized Lin-
ear Model (GLM) followed by their extensions, the Linear Mixed Model (LMM)
and the Generalized Linear Mixed Model (GLMM).

2.1 Actuarial use of linear models

Non-life insurance pricing is the modeling of both claim count and severity. This
thesis will focus on claim count estimation using a Poisson distribution and the
severity will be modeled using a Gamma distribution. Even though many other
distributions can be used, these are the most commonly used in both academic
literature as in application across the market.

Claim count

Claim counts count the number of reported insurance claims relative to some
exposure. These can be given as claims per year or total claims for a given
customer. Counts are often modeled using a Poisson distribution across math-
ematics (e.g. in queuing theory). A random variable X is Poisson distributed
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X ∼ Pois(λ) if

f(k;λ) = P(X = k) =
λke−λ

k!

Claim severity

Each claim that arrives, arrives with a certain claim size also denoted as severity.
In this thesis, we assume that the size of a claim is independent of the time
it arrives. We focus on claim severity models which are best modeled using
the Gamma distribution. A random variable X is Gamma distributed X ∼
Gamma(α, β) if

f(x;α, β) =
βαxα−1

Γ(α)
e−βx

Calculating the premium

Before we discuss the models, we briefly discuss how they are used in actuarial
application. This thesis will consider three different premiums. The first is the
relative premium (or relative risk). This is the premium for a given risk class
relative to the intercept group. The second is the pure premium, a premium
which is the direct output of the combined models. The last is the quoted
premium, the premium the insurer brings to the market. The relative and pure
premium are calculated as the relative claim count multiplied by the relative
severity. This means that the output of the two models is multiplied. The exact
calculation using model output is given in 2.6.

2.2 Linear Models

Linear Models are the basic models used in linear regression. They are often used
due to their simplicity and effectiveness in many different regression problems.
The one dimensional version is defined as

y = β0 + β1x+ e. (2.1)

In this setting, x is often called the predictor and y the response variable. β0

and β1 are the regression parameters where β0 is also referred to as the inter-
cept. e is a noise/error term which will be further discussed below.
For one predictor variable x, this notation is often sufficient. When more predic-
tors are introduced a matrix based setup is more appropriate as it will ease com-
putational and notational effort. Let p be the number of parameters, β1, . . . , βp
the used parameters and n the number of observations yi. Then, we can rewrite
the expanded version of equation (2.1) for one observation as

yi = β1 + β2xi2 + β3xi3 + . . .+ βpxip + ei (2.2)

In matrix notation, we can rewrite the vectorized version as

Y = Xβ + e.
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If we assume there is an intercept in X such that xi1 = 1 the corresponding
matrix notation for the elements Y , X, β and e is

Y =

 y1

...
yn

 , X =


1 x12 x13 · · · x1p

1 x22 x23 · · · x2p

...
...

...
. . .

...
1 xn2 xn3 · · · xnp

 , β =

 β1

...
βp

 , e =

 e1

...
en

 .
Y is the response vector, β the predictor vector and X is in computational
application often referred to as the ’model matrix’.

2.2.1 Estimation

In application, the observed values of y do not exactly match the expected
modeled value E[Y ] = Xβ. As X and Y only share an approximately linear
relationship and possible errors can occur in the measurement. Hence, data
provides observed values ŷ1 . . . ŷn. Therefore, we need to compute an estimated
”best” fit for the observations. This requires a measure of fit. For this, we will
follow the notation and notion of Lp spaces from chapter 4 in [56] and chapter
1 in [45]. Different values of p can be used to minimize the difference (often
called distance or deviation) between y and ŷ. A first example is the L1-norm
(also called taxicab or Manhattan norm)

S1(y, ŷ) =

n∑
i=1

|yi − ŷi|

which minimizes the total summed absolute piecewise difference between the
theoretical and fitted values (y, ŷ) aiming to make the average deviation as
small as possible.
Another measure of fit is using the maximum or L∞-norm

S∞(y, ŷ) = max
i
|yi − ŷi|.

This norm aims on minimizing the biggest difference. Hence, eliminating outliers
as much as possible.
In general however, the L2-norm is used as it provides some nice advantages
such as differentiability and equivalence with maximum likelihood when data is
normally distributed. This norm is widespread in statistics and was introduced
by Gauss in the 19th century [57]. Using this norm will eventually lead to
the least squares regression method often used for linear regression. The norm
requires minimizing

S2(y, ŷ) =

n∑
i=1

(yi − ŷi)2

and thus to minimize the squared deviation over each of the observations.
In the simple case given by equation 2.1, usage of the least squares method
results in the following calculations. The optimal values for β0 and β1 for the
least squares regression can be found by deriving S2 with respect to β0 and β1.
Setting these derivatives equal to zero and solving the equations for β0 and β1

will result in an optimal value. The derivatives can be calculated as
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β̂0 = ȳ − β̂1x̄ (2.3)

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
(2.4)

where x̄ is the average over xi,
1
n

∑n
i=1 xi. The full computation of these values

can be found in [51] or other basic statistical texts.
In the case of the matrix notation, least square minimization requires minimiz-
ing S2(Y, Ŷ ) which can be rewritten as ||Y − Ŷ ||2. This has the direct solution

β̂ = (X ′X)−1X ′Y if X ′X is non-singular, calculated as the orthogonal projec-
tion of Y on the set X. Other possibilities for solving this are also available but
beyond the scope of this thesis (see [14] and [43]). In R, we rely on the function
lm(...) to solve problems of this nature. lm(...) uses a QR-decomposition of
the matrix X. Documentation on this function is available on CRAN and [6].

Common statistical assumptions

Assuming the model defined in (2.1), we can further investigate the ’noise’
parameter ei. We often assume that the parameters ei are i.i.d. with ei ∼
N(0, σ). Therefore in equation (2.3) it still holds that Eβi = βi. Moreover this
leads to yi ∼ N(µi, σ

2) and Cov(yi, yj) = 0 for i 6= j.
This can easily be extended to the matrix notation of the model by assuming
that Eei = 0, Var(ei) = σ2, Y ∼ N(µ,Σ) to be multivariate-normal (Σ is in
this case the diagonal matrix with value σ2). And moreover, Y,X and β are
defined as above. In this case, Maximum Likelihood Estimation (MLE) is used
as described in 2.3.3. For the LM, the MLE coincides with that of the minimized
least squares under the above assumption.

Extensions of the linear model

Other examples include partial least squares, generalized least squares and two
stage least squares. These examples can be found in many econometrics books
such as [60], [32] and [38]. A possible and well used extension is the weighted
least squares in which a weighing matrix W is introduced on the variance of Y .
This will result in EY = Xβ and Var(Y ) = σ2W−1. Which then leads to the

least squares regression solution given by β̂ = (X ′WX)−1X ′WY .

2.3 Generalized Linear Models

Linear Models provide excellent solutions to many applications across all of
science, they are however bound to two constraints as two assumptions are
made:

1. The components of Y are i.i.d normally distributed random variables with
constant variance σ2.

2. EY = µ and µ = Xβ

6



As in nature many things are normally distributed due to the central limit
theorem described in A.6 and LMs are therefore often sufficient. In actuar-
ial application however, Y is often not normally distributed with non-trivial
connection between the predictors and the response. Generalized linear mod-
els (GLMs) provide a solution for this. GLMs are a generalization of the linear
model. They differ as they do not require the data Yi to be normally distributed
and moreover, do not necessarily impose the rule that EY = Xβ. Instead, they
allow more freedom for the choice of distribution for Y and so-called link func-
tion g such that g(EY ) = η = Xβ. These generalizations can be summarized
as the following three assumptions:

1. The observations Yi have density according to a member of the exponential
dispersion family (2.3.1) and are identically independently distributed.

2. There is a linear predictor ηi such that ηi =
∑p
j=1 xijβj . η is linear in the

predictors βj with η = Xβ.

3. The link function g uniquely connects EYi = µi and ηi such that g(µi) =
ηi.

This section will focus on theoretical aspects of the GLM, we will start with a
discussion of the exponential dispersion family and the link function and finish
with the standard method used for estimation.

2.3.1 The exponential dispersion family

This family is defined in mathematical context in A.2. Here, we transform the
definition to the standard form used in GLM theory, and look at the Poisson
and Gamma distributions and state their properties.

Definition 2.1. The exponential dispersion family is a family of densities which
are of the following type:

fy(y; θ, φ) = exp

(
yθ − b(θ)
a(φ)

+ c(y;φ)

)
Here, φ > 0 is the the dispersion parameter, θ ∈ Θ is the parameter of the given
distribution and Θ ⊂ R is an open set containing θ. We have a function a which
allows for use of weights in the distribution. In general however, a(φ) = φ.
b : Θ → R is the cumulant function, and the function c is the normalization
factor not depending on θ.

For the Poisson distribution, if Y ∼ Pois(λ) then

P(Y = y) = e(−λ)λ
y

y!
= exp(y log(λ)− λ− log(y!))

with b(θ) = eθ, a(φ) = 1 and c(y;φ) = − log(y!)
Similarly for the Gamma distribution Y ∼ G(α, β) with

f(y;α, β) =
βαyα−1

Γ(α)
e−βy.
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Then after applying a logarithmic transformation

− log Γ(α) + α log β + (α− 1) log(y)− βy

which leads to a(φ) = φ = 1
α , θ = −β

α , b(θ) = − log(−θ). Thus c(y;φ) =
α logα+ (α− 1) log y − log(Γ(α)).

2.3.2 The link function

The link function is the function which connects the observable EY to the
linear predictor η. In linear regression models this is always the identity link
(g(µi) = µi = ηi). When using Gamma or Poisson distributions, this may be
less useful as these distributions only have values on the positive line R+. For
example, we may require that the mean needs to be strictly positive (as in claim
counts and severity). Hence, links that only take positive values may be more
appropriate. In general, the following link functions are considered [45]

1. identity:
η = µ

2. log:
η = log(µ)

3. logit :
η = log(µ/(1− µ))

4. probit:
η = Φ−1(µ)

where Φ(·) is the normal cumulative distribution function.

5. complementary log-log

η = log(log(1− µ))

6. reciprocal
η = µ−1

The canonical link

Every member of the exponential family has a canonical link function. This
is the link function for which the θ of the exponential family has the property
θ = g(µ) and thus

θ = Xβ.

In a pricing setting, the Poisson distribution has canonical link η = log(µ) and
the Gamma distribution has canonical link η = −µ−1. In application, due to
the high number of small claims the Gamma distribution is often fitted with
the log-link. In general, the canonical link is often preferred in modeling as it
leads to a more direct computation of parameters.
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The offset

As an addition to normal fixed effects βi, GLMs can be outfitted with an offset.
An offset is defined as an additional model variable with coefficient 1. If we
choose to include an offset ξ there is the modified model equation

η = Xβ + ξ.

This offset only scales ηi according to its value in i and can be seen as having
fixed value β which is indifferent of calculation [36].
The most common use of offsets is in exposure for Poisson counts with log-link
function. This has the corresponding equation

log(ηi) = βX + log(ξ).

Which is equivalent to the distributional notation

Yi ∼ Pois(ξeX
′
iβ)

Note that we also apply a logarithmic transformation to the offset itself as it
lies within the distribution.
Often, instead of claims counts, claim frequency is used. As claim frequency
equals the claim count divided by the exposure it is easy to see that claim fre-
quency modeling with weighted exposure is equivalent to claim count modeling
with log-linked exposure.

2.3.3 Estimation

In section 2.2 an optimal solution was found using an orthogonal projection on
the set Xβ. This is a unique property of the normal distribution, where the
maximum likelihood coincides with the least squares method. In the generalized
case maximum likelihood estimation (MLE) is required. For more details on
MLE and its properties see [51]. MLE requires the definition of the likelihood
function,

Definition 2.2 (Likelihood functions). Suppose that we have random variables
Y1, . . . Yn with joint density function f(Y |θ). Then we can define the likelihood
function of θ as

L(θ) = f(Y |θ)

Moreover, if the Yi are assumed to be i.i.d. then their joint density is the product
of the marginal densities and thus

L(θ) =

n∏
i=1

f(Yi|θ).

We define the log-likelihood as

log(L(θ)) = L(θ) =

n∑
i=1

log(f(Yi|θ))

9



Maximizing the likelihood function provides us with the MLE. In the case
of the exponential dispersion family, we have the function fy from 2.1.

fy(y; θ, φ) = exp

(
yθ − b(θ)
a(φ)

+ c(y;φ)

)
with likelihood function

L(β|Y ) =

n∏
i=1

exp

(
yiθ − b(θi)
ai(φ)

+ ci(yi;φ)

)
and corresponding log-likelihood function

L(Y |β) =

n∑
i=1

(
yiθ − b(θi)
ai(φ)

+ ci(yi;φ)

)
.

The MLE can be found by deriving the log-likelihood with respect to all the βj .
This requires conversion from θi and φ to βj . Notice that using the link function
and mean µ there is a connection from βj to θi. Moreover, φ is constant. And
thus there is the relationship

EYi = µi = b′(θi)

g(b′(θi)) = β0 + β1xi1 + . . .+ βkxik.

By using the chain rule, there is the relationship ∂
∂βj

= ∂
∂θi

∂θi
∂µi

∂µi

∂ηi

∂ηi
∂βj

. This has

the following derivative

∂L(Y ;β)

∂βj
=

n∑
i=1

(yi − µi)xij
ai(φ)b′′(θi)g′(µi)

Often, ai(φ) is defined as the weighed dispersion, in this case it is given as φ
wi

.
In our application, wi is often kept 1 for all i. In counts, we use an offset instead
of weighted GLM. In other applications however, weights may be preferred as
they can be directly inserted into the likelihood. Using the weights leads to a
more pleasant notation no longer directly depending on a and b

∂L(Y ;β)

∂βj
=

n∑
i=1

wi(yi − µi)xij
φV (µi)g′(µi)

where the variance function V (µi) = b′′(b
′−1(µi)) is the function which repre-

sents the relationship between the variance and the mean of a distribution in
the exponential family.

The IRLS algorithm

Estimation of GLMs is often done using the Iteratively Reweighted Least Squares
estimation algorithm. We only briefly state the result. For a more thorough
examination of the IRLS algorithm for GLMs, see [27], [45] or [48]. For more
info on the IRLS algorithm itself, [14] or [15] are recommended.
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The method used to calculate every iteration is called the Fisher scoring algo-
rithm [39]. This method focuses on solving the following equation in step t,
with corresponding vector β(t),

X ′WXβ(t) = X ′Wz

In this, the vector z has elements

zi =

p∑
k=1

xikβ
(t−1)
k + (yi − µi)

(
∂ηi
∂µi

)

where µi and ∂ηi/∂µi are evaluated at β(t−1). W is a diagonal matrix with

elements wii = 1
Var(Yi)

(
∂µi

∂ηi

)2

As this method requires costly matrix manipula-

tion, QR or SVD decompositions are used for the final solving of the next step
in the scoring algorithm. These methods however are beyond the scope of this
text. For a possible R implementation of the IRLS algorithm for GLM see [3].

2.4 Linear mixed models

Regular (Generalized) Linear Models do not account for possible structure in
the fitted data. Pricing data however, is in general highly structured. Policy-
holders hold contracts over multiple years, are grouped geographically and can
own multiple contracts. Mixed models are a method of accounting for structure
in our modeling process. The core idea lies in the fact that fixed models either
completely pool data together or use no pooling whatsoever. In a regression
setting, this will lead to either under- or over fitting of a model holding some
sort of structure. It can therefore be desirable to make distributional assump-
tions on some effects inside the model. One solution is using credibility theory
[21]. Another is by introducing a random effect which interacts with the fixed
effects and adds a covariance structure to the model. Linear models using both
fixed and random effects are called linear mixed models.
These models introduce random effects as a way to handle the variance-covariance
structure of Y . Besides the earlier used distributional assumption Y ∼ N(µ, σ2)
with fixed effects β and model matrix X we add random effects u with model
matrix Z. In general, u is chosen with mean zero and covariance matrix D
which is often diagonal and independent of the distribution on Y . This will lead
to distributional assumptions

Y = Xβ + Zu+ ε

u ∼ (0, D)

ε ∼ (0,Σ)

Note that where β is a fixed constant, u is random according to some distribu-
tion. Therefore, instead of giving the direct value of the mean and variance, we
denote them as conditional on u,

E[Y |u] = Xβ + Zu (2.5)

Var[Y |u] = Σ (2.6)
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Moreover, under the above distributional conditions for u and Y , Y ∼ (Xβ, V =
ZDZ ′ + Σ) as

EY = E[Xβ + Zu+ ε] = E[Xβ] + E[Zu] + E[ε] = Xβ

and

Var(Y ) = E[Var(Y |u)] + Var(E[Y |u])

= Σ + Var(Xβ + Zu)

= Σ + ZDZ ′.

For the calculation of the variance, the law of total variance is used in the first
step. The last step uses the assumption that Xβ and Z are constant in proba-
bility.
In general, the vector u is considered independently normal with mean 0, in-
dependent of Y . Therefore, D is a diagonal matrix and we can define the
distribution as the multivariate normal(

u
ε

)
∼ N

((
0
0

)
,

(
D 0
0 Σ

))
(2.7)

Which results normality in Y with the model Y ∼ N(Xβ, V ) and we see that
the fixed effects enter only the mean where the matrix Z and the variance of
the random effects only effect the variance of Y .

2.4.1 Estimation

In regular (generalized) linear models, only calculation of β was required. In
this case, we also need a fitted value for u. Even though LMMs are not the goal
of this thesis, their estimation and calculation will give an indication where the
problems occur when attempting to use these techniques in estimation of the
GLMM in the next section. The following results rely heavily on the normality in
the LMM for both the response Y as the random factor u in the MLE calculation.
Therefore, the methods are explained to some detail. We start by assuming that
the covariance parameter V is known beforehand. This will lead to a closed-form
estimation for β and u. Note that we first estimate β and use its estimation to
estimate u. Calculation and estimation in the case of an unknown covariance
parameter V can be found in [46].

Estimation of β

Estimation of β is the first step to estimating the LMM. Thus we will give a
thorough calculation. Suppose that Y is the response vector of size n then the
distribution

Y ∼ N(µ = Xβ, V )

has the density function for the non-degenerate multivariate normal distribution
[64]

f(y|µ, V ) =
1√

(2π)n|V |
exp[−1

2
(y − µ)′V −1(y − µ)]

12



Where |V | is the determinant of V . This distribution has log-likelihood estima-
tor

L(u, V ) =
1

2
(y − µ)′V −1(y − µ)− 1

2
log(|V |)− 1

2
n log 2π.

In order to find the derivative in µ and V , let µ be a function of a vector θ and
V be a function of an unrelated vector φ. Then

L(θ, φ) =
1

2
(y − µ(θ))′V (φ)−1(y − µ(θ))− 1

2
log(|V (φ)|)− 1

2
n log 2π

As φ and θ are assumed unrelated, we see that the former two parts equal 0 in
derivation w.r.t. θ. This will give the following calculation

∂

∂θ

1

2
(y − µ(θ))′V (φ)−1(y − µ(θ)) =

1

2

∂

∂θ
(y − µ(θ))′V −1(y − µ(θ))

=
∂µ′

∂θ
V −1(y − µ)

=
∂Xβ

∂β
V −1(y −Xβ)

As in the last step, θ = β because µ = Xβ and ∂Xβ
∂β = X we can state the MLE

for β as
β̂MLE = (XV −1X)−1XV −1y

Estimation of u

For the estimation of u, we resort to the estimated best linear unbiased predictor
(BLUP) for u as described in [30] and [46]. This estimator depends on the
estimated β in the previous tep. As the random effects are assumed to have
structure in variance, we estimate them depending on the observations in y.
Thus, we try to estimate u by estimating E[u|Y ]. Therefore we need to describe
a relationship between Y and u. This can be done by describing their covariance
structure. Setting up a multivariate normal distribution in the same manner as
above will provide such a structure.
In this case, for Y ∼ N(Xβ, V ), u ∼ N(0, D) there is covariance structure

Cov(Y, u) = Cov(Xβ + Zu+ ε, u)

= Cov(Xβ, u) + ZVar(u, u) + Cov(ε, u)

= ZD

And thus we have a multivariate normal distribution for (Y, u)′ defined as(
Y
u

)
∼ N

((
Xβ
0

)
,

(
V ZD
DZ ′ D

))
(2.8)

Which leads to the BLUP [46].

E[u|Y ] = DZ ′V −1(y −Xβ)

Other estimations can be made for u but as our focus lays in the calculations
for the GLMM, we refer the interested reader to [46], [29] and [1].
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2.5 Generalized linear mixed models

As linear mixed models provide an extension for the linear model. General-
ized linear mixed models (GLMMs) provide an extension for the GLM by the
addition of random factors. This extension is however not as seamless as the ex-
tension from the LM to the LMM by mismatch of distributions. In this section
we will look a the extension from the GLM and several estimation algorithms.

Extension from the GLM

The GLM above was defined as a generalization of the LM using three criteria.
Observations Yi have density belonging to the exponential dispersion family,
there is a linear observable ηi of the predictors βj with η = Xβ. Finally, there
is a link function g such that g(µ) = η. In the LMM example for identity
link and normal distribution in both the error and the random effects a direct
definition of the model could be given. As we now try to generalize this model,
we need to check if the model still holds under the three conditions defining the
GLM.
Note that in equations 2.5 and 2.6 we use the conditional mean and variance
for Y . In order to define these for the GLMM, we need to define the conditional
distribution for a density from the exponential dispersion family. Suppose that
f is the density of y according to the exponential dispersion family, then for
i.i.d. yi

yi|u ∼ fYi|u(yi|u)

fYi|u(yi|u) = exp

(
yiθi − b(θi)

φ
+ c(yi;φ)

)
u ∼ fU (u)

The first equation describes the conditional distribution of yi, the second the
density function of this distribution, the last is the distribution of the random
factors. This distribution can be assumed non-normal. In many applications
however, like in the LMM case, it is assumed to be normally distributed.
Let the mean of yi|u be defined as E[yi|u] = µi then for the exponential dis-
persion family, the following still holds: E[yi|u] = µi = b′(θi) and Var(yi|u) =
φV (µi) for the same variance function V as in the case for the GLM, V (µi) =
b′′(b

′−1(µi)). Then the piecewise model equation can be defined as

g(µi) = x′iβ + z′iu.

This definition follows all criteria imposed by the GLM and thus represents the
natural extension form the GLM [46].
The mean, variance and covariance of the marginal distribution yi can now be
calculated. Note that the model equation depends on choice of link-function g
and therefore no closed form solution exists.
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E[yi] = E[E[yi|u]]

= E[µi]

= E[g−1(x′iβ + z′iu)]

Var(yi) = Var(E[yi|u]) + E[Var(yi|u)]

= Var(µi) + E[φV (µi)]

= Var(g−1[x′iβ + z′iu]) + E[φV (g−1[x′iβ + z′iu])]

Cov(yi, yj) = Cov(E[yi|u],E[yj |u]) + E[Cov(yi, yj |u)]

= Cov(µi, µj)

= Cov(g−1[x′iβ + z′iu], g−1[x′jβ + z′ju])

These solutions give little to no insight in the behavior of the GLMM. If we add
the assumption that u ∼ N(0, Iσ2

u), the multivariate normal distribution with
zero covariance and variance σu > 0 depending on the vector u with log-link
g(µ) = log(µ) (as in most actuarial applications) then

log(E[yi]) = xiβ + σ2
u/2

Var(yi) = Var(exp[x′iβ + z′iu]) + E[φV (exp[x′iβ + z′iu])]

Cov(yi, yj) = Cov(exp[x′iβ + z′iu], exp[x′jβ + z′ju])

= exp[x′iβ + x′jβ]Cov(exp[z′iu], exp[z′ju])

= exp[x′iβ + x′jβ]
[
exp[σ2

u](exp[z′izjσ
2
u]− 1)

]
Note that by the moment generating function described in subsection A.1.4,
Mu(zi) = exp(σ2

u/2) for the normal distributed vector u. For Var(yi) no further
simplification will lead to more insight without assumptions on the distribution
of yi|u. In the covariance, zizj = 0 if i and j do not share a random factor and
1 otherwise. In the latter, we can define the correlation as

Corr(yi, yj) =
Cov(yi, yj)

σyiσyi

=
1√

(1 + ξ exp[−x′iβ])((1 + ξ exp[−x′jβ]))

for ξ = 1/(exp[3σ2
u/2]−exp[σ2

u/2]). This correlation can be used find interaction
between elements of y which were assumed i.i.d. in previous models. Therefore,
structure can now be found and investigated in underlying data.

2.5.1 Estimation

In the case of the LMM we could define a multivariate normal distribution
for Y . This resulted a likelihood estimation depending only on f(y, |µ, V ).
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In the GLMM case, the distribution for the random effects and that of the
response variable often differ. Thus no closed form estimation for β and u can
be calculated. To illustrate, a direct computation of the likelihood

L =

∫
fY |u(y|u)fU (u)du (2.9)

or, individually

L =

∫ n∏
i=1

fYi|u(yi|u)fU (u)du

For functions of the exponential family, this leads to a likelihood equation of
the form

L =

∫ n∏
i=1

exp

(
yiθi − b(θi)

φ
+ c(yi;φ)

)
1

σu
√

2π
exp

[
− (x− µ)2

2σ2
u

]
du

with corresponding log-likelihood

L = log

(∫ n∏
i=1

exp

(
yiθi − b(θi)

φ
+ c(yi;φ)

)
1

σu
√

2π
exp

[
− (x− µ)2

2σ2
u

]
du

)

For this equation, no analytical solution can be given. Therefore, numerical
approximation must be used to estimate the maximum likelihood.
As we require estimation of the likelihood, we need to resort to approximation.
We will discuss three different methods. One will focus on approximation of the
function itself, the second on the integral and the last uses Bayesian statistics
to approximate the likelihood. The Laplace and the Gauss-Hermite quadrature
approach will be given in full detail and briefly outline a Bayesian/Monte Carlo
approach and its (dis)advantages.

The Laplace method

The first (and default method used in glmer(...) for R) is the Laplace method
introduced by Laplace in 1774 and translated in [42]. This method is fully out-
lined in [58]. It uses a Taylor expansion of an exponential term. It approximates
integrals ∫

eh(u)du

in which u is a q-dimensional vector and h(u) is a sufficiently smooth function
with local maximum in its domain. Suppose that the function has a local
maximum in u0. We can define the second order Taylor expansion for in h in
u0 as

h(u) ≈ h(u0) +
1

2
(u− u0)′h′′(u0)(u− u0) (2.10)

Which provides a plug in approximation for the integral as∫
exp[h(u0) +

1

2
(u− u0)′h′′(u0)(u− u0)]du (2.11)
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Which, by the Laplace method has approximate function∫
eh(u)du ≈ exp[h(u0)](2π)q/2| − h′′(u0)|−1/2

In order to approximate the likelihood function, we need to rewrite the likelihood
to the form used by the Laplace approximation. Note that

L = log

∫
fY |u(y|u)fU (u)du

= log

∫
exp[log fY |u(y|u) + log fU (u)]du

And thus we can set h(u) = log fY |u(y|u) + log fU (u). In order to find (2.10) we
need to compute the second order derivative of h(u).
Firstly, when we assume u ∼ N(0, D) then u is multivariate normal and

log(fU ) = −1

2
u′D−1u− q

2
log(2π)− 1

2
log |D|

This function has first and second derivatives ∂ log fu
∂u = −D−1u respectively

∂2 log fu
∂u∂u′ = −D−1

The derivative of log fY |u(y|u) can be found by using the chain rule on the
exponential family, similar to the derivative found in subsection 2.3.3.

∂ log fY |u(y|u)

∂u
=

1

φ

∑
i

(
yi
∂θi
∂u
− ∂b(θi)

∂θi

∂θi
∂u

)
=

1

φ

∑
i

(yi − µi)
1

V (µi)

1

g′(µi)z′i

=
1

φ
Z ′W∆(y − µ)

in which W = [V (µi)g
′(µi)

2]−1 and ∆ = g′(µi) with functions V and g as
defined in subsection 2.5. In order to find u0 we need to solve

∂h(u)

∂u
=

1

φ
Z ′W∆(y − µ)−D−1u = 0

which is highly non-trivial as all factors involved except for y are functions of
u.
Second order derivative calculation follows as

∂2h(u)

∂u∂u′
=

∂

∂u′

(
1

φ
Z ′W∆(y − µ)−D−1u

)
(2.12)

=
1

φ

(
−Z ′W∆

∂µ

∂u′
+ Z ′

∂W∆

∂u′
(y − µ)−D−1

)
(2.13)

For calculative convenience we choose to ignore the second term in the last
equation. This as in the case of Poisson distributed Y it is valued 0 and in all
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other cases, it has expectation 0 as Ey = Eµ[46]. Thus we can formulate the
following approximation.

∂2h(u)

∂u∂u′
= − 1

φ
(Z ′WZD + I)D−1

Insertion into the log-likelihood gives

L ≈ log fY |u(y|u0)− 1

2
u′0D

−1u0 −
1

2
log |

(
1

φ
Z ′WZD + I

)
D−1|

Which has the following derivative in β

∂l

∂β
=
∂ log fY |u(y|u0)

∂β
+

∂

∂β

1

2
log |Z ′WZD/φ+ I| (2.14)

≈ 1

φ
X ′W∆(y − µ) (2.15)

Here, W is assumed to change negligibly in respect to β. This gives an estimate
of β and u by solving the equations

1

φ
X ′W∆(y − µ) = 0

1

φ
Z ′W∆(y − µ) = D−1u

Which is equivalent to solving the quasi-likelihood log fY |u(y|u0) − 1
2u
′ ∂ log fu

∂u
with a penalty in the second term.

Numerical quadrature

A second way to estimate the likelihood in equation (2.9) is by estimation of
the integral itself instead of its inner function. This method works using the
adaptive Gauss-Hermite quadrature (AGQ). It uses a weighted sum approxima-
tion of the clustered distribution of y. We describe the non-adaptive method
followed by the adaptive method and the approximation for the GLMM.

Non-adaptive Gauss-Hermite quadrature

Non-adaptive Gauss-Hermite quadrature is an approximation technique for in-
tegrals of the form ∫

h(z) exp(−z2)dz (2.16)

where h(z) is a function integrable on R and sufficiently smooth (at least twice
differentiable). The method uses a weighted sum of order Q to estimate the
integral in the following manner∫

h(z) exp(−z2)dz ≈
Q∑
i=1

wih(zi).
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Here, Q is the order of the approximation. zi are the zeros of the Q’th order
Hermite polynomial

HQ(z) = (−1)Q exp[z2]
dQ

dzQ
exp[−z2]

with corresponding weights

wi =
2Q−1Q!

√
π

Q2[HQ−1(zi)]2
.

For more information on Hermite polynomials and the Gauss-Hermite quadra-
ture formula see [18] and [33]. This method does not depend on the values in h
and is symmetric around 0. Therefore, the approximation is in general relatively
poor as h may have its weight elsewhere. Therefore, for the application in the
GLMM we will define an adaptive version.

Adaptive Gauss-Hermite quadrature

The adaptive version of the Gauss-Hermite quadrature (AGQ) uses a Gaussian
approach, in which a Gaussian function replaces the factor exp(−z2) with suit-
able changes in the weights and approximation points. We follow the outline
given by [44] and adapt it to the case of the GLMM.

Let φ(t;µ, σ) be the probability density function of the normal distribution
with mean µ and standard deviation σ. Define a function g(t) such that g(t) > 0,
is unimodal (i.e. has a unique mode) and is sufficiently smooth. The goal is
approximation of

∫
g(t)dt by transformation of the factors used to solve (2.16).

To achieve this, replace the Gauss-Hermite quadrature in (2.16) for the integral∫
f(t)φ(t;µ, σ)dt.

This requires a transformation of the sampling nodes zi to ti according to the
transformation from exp[zi] to φ(t;µ, σ) which equals

ti = µ+
√

2σzi.

Moreover as we want to sample the integral in te region of g(t), we can define

µ̂ as the mode of g(t) and σ̂ = 1/

√
ĵ for

ĵ = − ∂2

∂t2
log(g(t))

∣∣∣∣
t=µ̂

Define h(t) = g(t)
φ(t;µ̂,σ̂) then we can rewrite the integral for g(t) as∫

g(t)dt =

∫
h(t)φ(t; µ̂, σ̂))dt

Which after applying the transformed Gauss-Hermite quadrature equals∫
g(t)dt =

√
2σ̂

Q∑
i=1

w∗i g(µ̂+
√

2σ̂zi)
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for w∗i = wi exp(z2
i ).

In the case of the GLMM, we will show the implementation of a single
random effect. This effect can be seen as clustered into different groups. Every
cluster i has a random effect which is distributed as ui ∼ N(0, σ2). Thus we
need to determine the posterior mode of ui. This depends on the factors β, φ and
σ. We replace these by the current estimate (and in the first step a well chosen

value) β̂∗, φ̂∗ and σ̂∗. Then using these estimates, define ûi which maximizes

f(yi|ui)f(ui|σ̂∗) ∝ f(ui|yi).

Thus we can use ûi as the mode for ui and use the above Gauss-Hermite quadra-
ture to approximate

∫
fY |U (yi|ui)fU (ui)dui ≈

Q∑
l=1

w∗l

 ni∏
j=1

fY |U (yijz
∗
l )


in which ni is the size of the cluster i, yij is the j-th element of cluster i and we

have the adaptive weights w∗l =
√

2σ̂iwl exp(z2
l )φ(z∗l ; 0, 1) for z∗l = δ̂i +

√
2σ̂zl

where δ̂i is the approximation for σ−1ui ∼ N(0, 1). Moreover, we have linear
predictor x′ij + σz∗l for fY |U (yijz

∗
l ).

Multiplication of this sum leads to the approximated maximum likelihood. This
method leads to new current best estimates until convergence.

Bayesian approach

Even though this thesis is written in a frequentist’s view, Bayesian algorithms
provide a solid way to compute the GLMM. As both the random effects and the
response variable have explicit distributions, a Bayesian framework with prior
distributions on φ and D can lead to good approximations. As the Bayesian
framework is less restricted by design it can be of good use in simulation from a
posterior distribution. More information on Bayesian statistics and their role in
the GLMM can be found in [65] and its references and Chapters 13 and 14 from
[30]. For simulating Bayesian statistics in R, a combination of the glmmbugs

package [7] and the WinBUGS program for windows [11] is used in [30].

Method comparison

Among these methods, Laplace tends to behave poorly [16]. Even though
Laplace approximations are the easiest to fit, they use a large amount of ap-
proximations on a single value and can therefore in some cases provide a bad fit.
AGQ approximations give a significantly better fit but are restricted to only 2-3
nested random effects, where with nested we mean that additional random ef-
fects are modeled within another random effect. The use of crossed or high-level
nested effects is not possible. Moreover, Laplace and GHQ are only designed
for use on normally distributed random effects. Finally, Bayesian methods are
relatively slow (due to the high amount of simulations) and are technically chal-
lenging due to the Bayesian framework but provide great flexibility in more
exotic models.
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2.6 Choosing, building and comparing models

Up until now, the actual modeling of data has not been discussed. This section
will be dedicated to expert judgement which can be roughly described as ’choices
made by an expert in the field’. These choices involve which model is chosen,
how the model parameters are selected and what criteria are used to compare
different models and setups. We start with the choice between the above given
models. Then discuss best actuarial practice when building a model. Different
criteria and how they function in different models are discussed next. We finish
with a way to compare entirely different models in out of sample testing, a
special case of cross-validation.

2.6.1 Model choice

We start this subsection that it is known that a LM is a GLM with identity link
and normally distributed Y . Therefore, choice between LM and GLM is the
same as the choice between the different distributions within the exponential
dispersion family. This choice comes down to the distribution that best fits the
observed data in Y in both a statistical and explanatory sense. The same holds
for the choice of link function. We often resort to the log-link in non-life model-
ing as it best handles non-negative sparse data with many small values and few
very large ones. Some studies have been done on this subject, the interested
reader is referred to [24] and [31].
In our application we use the Poisson distribution for claim counts and Gamma
distribution for severity, the choice of model is centered around the choice of
parameter.

Model building, parameter inclusion

As any model building, the first step in setting up a GL(M)M model is always
data exploration. The researcher should and is often encouraged to thoroughly
explore the data. With exploration is in this case meant looking for structure
(which will be especially important when fitting GLMMs) and finding correla-
tion between parameters in the data. Knowing the way data is structured and
finding possible correlation is crucial to fitting the correct model.
Setting up a GL(M)M requires more than decisions based on only the data. In
actuarial and other applications, experience and explanatory value of the pa-
rameters are just as important. The reason for this is that the researcher will
need to explain why he chose certain parameters in the model, other than just
their explanatory value according to some criterion. This is important as he
can be held accountable for the calculation of the risks in the portfolio. A good
example of probable misspecification is an investigation done by the Dutch Con-
sumentenbond [10]. In this investigation, adding a letter to the address resulted
in a higher premium, this means that on the address ”street 1” the client payed
significantly less than if he would live on ”street 1A”. In Dutch house num-
bering, a letter is the result of having multiple houses on the same numerical
address. This often happens with apartment complexes in urban areas. Data
may suggest that an address with a letter added to it, results in a higher claim
amount/severity. Adding a parameter ”Street address has a letter behind it” to
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the model may result in a higher premium for all houses with an added letter.
Therefore, even though this parameter may have good predictive power, it has
little explanatory power in the general case. One could use the parameter nested
in other geographical data. In that case this relationship only holds in the area
where it is actually the case instead of in an entire country. A random effect
approach as explained in the next paragraph could also detect structures and
dampen unwanted effects like this outside of the date where the effects manifest
itself.
Apart from the choice of parameters, the method in which the model is built up
can also vary. There are in general two approaches. The first is from the bot-
tom up, the second is a top down approach. The first starts as an empty model,
adding factors which are significant and add explanatory value according to the
researcher. Often, several approaches are used as correlation between factors
may disrupt this nested approach (as we add a factor in each step, we create a
new nested model). The second approach starts with a full model, factors are
then removed which show little to no predictive power. This is also done several
times as the order in which factors are removed may contaminate judgement.
An example is that a model with factors A and B which are heavily correlated,
then if A and B both reside in the model, their individual predictive power may
be not significant. Removing A or B may add to the predictive power for the
other. But naively doing solely this step once may remove the factor with the
most predictive power.
In general the first method is considered best practice. The reason behind this is
that the factors which reside in the final model can all be explained (if not they
would not have passed the above ’test’). Therefore, in applications GL(M)Ms
should be build from the ground up.
If we look at the common practice, we see that actuaries often start with a
set of parameters for which experience and expert judgement say should be in
the model and build the model from there. This can be called a hybrid but is
technically a bottom up approach as these parameters are rarely removed.

Fixed or random factors

After adding factors according to expert judgement and predictive power, one
needs to decide whether these should be considered fixed or random factors.
Choice of fixed or random effects for the LMM and GLMM are under a lot
debate. The most cited text [46] describes the following process:
”In endeavoring to decide whether a set of effects is fixed or random, the con-
text of the data, the manner in which they were gathered and the environment
from which they came are determining factors. In considering these points the
important question is: are the levels of the factor going to be considered a ran-
dom sample from a population of values which have a distribution? If ’yes’ then
the effects are to be considered as random effects; if ’no’ then, in contrast to
randomness, we think of the effects as fixed constants and so the effects are con-
sidered as fixed effects. ”
This choice is supported by several econometric texts such as [28].
Other econometric text take a different approach, [32] states: ”Again, the crucial
distinction between fixed and random effects is whether the unobserved individ-
ual effect embodies elements that are correlated with the regressors in the model,
not whether these effects are stochastic or not. ”
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And thus, they need not be drawn but show heavy correlation between subsets
(often called clusters) in the data.
The latest actuarial source [30] describes a more natural choice. They introduce
the notion of a multilevel model with clusters, sometimes called hierarchical
as data often has a hierarchical structure (e.g. aging cars or policyholders).
However, multilevel or mixed model is the preferred name as data needs not be
nested in different levels. Geographic data is an example of a structure which is
non-nested but structured (often in postal/zip codes). And thus in this thesis,
instead of choosing whether data comes from a random sample, known structure
of data will decide the use of randomness for a factor.
The most recent and complete text [23] supports the last definition. This text
is the most complete text on choice of effect to date. Thus we will follow this
text and [30] in the modeling of our data for the GLMM. We will select ran-
dom effects on basis of structures in the data. Even though there is no solid
mathematical background for the choice of effect, there is however a method
which tests whether a effect should not be randomized. This test is called the
Hausman test.

Hausman test

As choosing between a fixed or random effect is a combination between expert
judgement and theoretical considerations, the Hausman test can give some help
in detecting whether estimates in the fixed effects are similar to estimates in the
random effects. Suppose we define a fixed effect as β̂ and its random counterpart
as û. Then the Hausman test H is defined as

H = (û− β̂)′
[
Var(β̂)−Var(û)

]−1

(û− β̂)

H is assumed to be χ2 distributed with degrees of freedom equal to the number
of regressors in the model. If p < 0.05 we should reject the random effects model
in favor of the fixed effects model [37].
In the case that p > 0.05 no conclusion can be given and expert judgement
will have to decide to implement the random element or not. A possible R-
implementation has been given in Appendix B.1.

2.6.2 Scoring criteria

As building and fitting models is often more of an art than an exact science,
comparing models is up to the researcher who does the fitting. In general, three
questions come to mind. The first is: How well does my model fit? The second
question is: Does my model behave like I expect it? The last holds importance
especially in actuarial science: How well does my model predict the future? The
first one can be answered using various tests which will be covered in this subsec-
tion. We view each of these test and look at their applicability for the different
models. Five criteria will be covered, the first is the Root mean squared error
(RMSE) followed by the log-likelihood. After this the related AIC and BIC are
discussed. The deviance and anova tests are examined last. Many more tests
are used in different applications but we will only consider these 5.
The second and third question require expert judgement but are in applications
just as important as the first. An experienced researcher often knows how data
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should behave and does not stare blindly on the data in front of him as data can
be misleading. Answering the third question often comes down to doing out of
sample tests. These are discussed in a later subsection.
Before we can discuss criteria on which we can compare our models, we need
define the notion of ’nested’ in modeling. We say that a model A is nested in
model B if model A consists of all factors of model A plus an extra factor.

RMSE

The Root Mean Squared Error is an absolute test for error which works for both
nested and non-nested models. It is given by the root of the mean squared error
and equals √∑n

i=1(ŷi − y)2

n

This gives the mean error of prediction and can be of great help in the model-
ing process. The advantage is that it can quickly compare many different fits,
indifferent of model choice, nestedness and choice of parameters.

log-likelihood

As we are in the process of maximizing the log-likelihood, one can make the
argument that bigger is always better. Hence, a bigger log-likelihood will might
show a better fit. Using the linear models described above, one needs to re-
member that in calculation for the LM and GLM, one calculates an estimated
true likelihood where LMM and GLMM often provide asymptotic likelihoods
and therefore a likelihood test is not suited for testing between different models.
If two similar models are compared based on log-likelihood, the model with more
factors will most likely provide a better score. This may interfere with compar-
ison as more predictors do not necessarily provide a better fit. This problem is
partially solved in the next two tests.

AIC and BIC

To address the problem offered by comparison on log-likelihood, there is the
Akaika information criterion. This criterion gives a penalty on the number of
fitted parameters. And is therefore defined as

AIC = 2[−L(Y ; θ̂) + r]

where r is the number of fitted parameters and l the fitted likelihood.
The Bayesian information criterion adds the size of the model to the test. Thus
the BIC equals

BIC = 2[−L(Y ; θ̂) + r log(n)].

By many researchers, the BIC is preferred over the AIC as the size of the dataset
should be incorporated in the assessment of the fit.
In the case of mixed models, the use of AIC and BIC is not as clear. Usage up
until recently was based on [34] and [59]. For the LMM they define different
versions of the AIC. When the model contains random effects, the AIC cannot

24



be defined directly as the value of r is unclear. Questions arise as to which
likelihood to use, to see whether random effects are parameters and how to
count the degrees of freedom. Therefore, [59] focuses on this question and
determines that it is dependent on the focus of the research. They distinguish
between two types of research: inference concerning the population and that of
clusters. Note that these 2 different types of research coincide with the problem
of adding random effects as given in the paragraph on choice of fixed or random
factors. In the case of the LMM, conditional and marginal AIC criteria have
been set up. These are however not directly viable for use with the GLMM.
Therefore we focus on a newer article [52]. It is not the goal of this thesis to
give the full layout of this criterion. We will however state the definition of the
AIC and a small passage on the BIC.
In the case of the AIC we can define the conditional AIC (cAIC) for Poisson
distributed response yi|u ∼ Pois(λi) as

cAIC = −2 log(f(y|β̂, µ̂)) + 2Ψ

with

Ψ =

n∑
i=1

yi

(
θ̂i(y)− θ̂i(y−i, yi − 1)

)
where y−i is the vector of observed responses without the i-th observation yi
and yi is the i-th observation with yiθ̂i(y−i,yi−1) = 0 if yi = 0 by convention. It
is available in the package cAIC4 in R [5].
On BIC, the article states: ”The behaviour of other information based criteria
like the Bayesian information criterion, BIC, for the selection of random effects
in GLMMs needs further investigation.” Therefore we currently do not advice
GLMM selection based on BIC.
Questions then arise whether we can compare values for the AIC in GLM with
the AIC found for a fit in the GLMM. As show above, this is not advised. A
good overview can be found in [35] which discusses different flavors of the AIC
and other more exotic versions such as the DIC and the FIC and their possible
uses.

Deviance and Anova

The Deviance is defined as twice the difference between the log-likelihood of
the fitted model and the ’saturated’ model. The saturated model is the model
which perfectly fits the data. The test statistic used in this case is the χ2 test.
The glm(...) and glmer(...) functions in R output values for the deviance.
The glm(...) outputs 2, the null deviance which is the residual deviance for a
model with only a constant term and the residual deviance itself. This provides
an upper bound on the deviance. This deviance can be used to compare two
nested models and is equivalent to a log-likelihood statistic. As the deviance is
only used in nested models it, as a test can only say whether a certain factor
should be added to the model or not. It can provide no useful information on
non-nested models. In the case of the GLMM, the deviance is almost never
used as a test statistic, this as it provides problems in the definition of the
’saturated’ model. Comparison between models is therefor not useful and a
comparison between fixed and mixed models can not be given based on the
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Deviance.
The analysis of variance (Anova) test is a test to compare two nested models, it
shows the residual degrees of freedom and deviance for each model. It can also
show statistical tests which compare the reduction in deviance with the change
in degrees of freedom. This test is particularly useful to quickly see whether
adding an extra parameter significantly increases the model fit.

Other methods

Likelihood ratio tests are common in nested GLMM models. In the light of
coefficients of determination R2 tests which are common for LM and GLM,
these tend to be extremely hard in the case of GLMM. There is a package
available to build these, based on [47] in the MuMIn package for R [8].

Out of sample comparison of models

The best way to compare distinctively different models is by using cross-validation
or out of sample testing. These tests test the predictive capability of a model
when it is introduced to new data. Therefore, the test does not depend on the
used model itself. In general, two tests are used to test the predictive power of a
model, the RMSE as defined above and the Mean Absolute Deviation, which is
the test on the L1-norm defined earlier [16] [22]. Competitions such as Kaggle
[2] use more sophisticated methods as these are less easy to fool. Examples are
the normalized Gini coefficient [54] and the AUC (Area Under Curve) metric
[61]. These are however not always applicable to regression data.

2.7 Fitting GLMMs, practical aspects and trou-
bleshooting

In order to find the convergence behavior for the GLMM in the case for Laplace
and AGQ GLMMs we will start with a theoretical approach and then result to
examples and solutions for failing approximations in glmer. The cause for this
can often be found in the optimizers used, and assumptions made by these opti-
mizers. In statistical texts however, there is only little attention for optimizers.
Therefore we start with a view on optimizers in general and why they may fail.
Almost all statistical calculations contain some form of optimization. For exam-
ple, maximum likelihood estimation involves fitting the most plausible parame-
ters to a given dataset. Most of these solutions can be found in a closed-form
expression as in the calculation of the LM and GLM. In this case, software will
produce a good and stable estimation of the solution. For the GLMM, no closed
form solution can be given. Thus we need to result to numerical estimations
like the AGQ algorithm. These algorithms can fail for many reasons. The it-
eration might reach a singular gradient and be forced to stop or it reaches the
maximum number of iterations without any convergence. These problems are
often a result of failed constraints. These constraints can be statistical (positive
variance, positive definite covariance matrices etc.) or arise from the data used.
In statistics it holds that if the dataset is large enough and the model is well-
specified the maximum likelihood estimation is close to the true optimal param-
eters. Thus finding optima should not be that hard. Optimizers however are
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software and can easily get stuck in singularities, local optima or plateaus.
A lot of theory has been written on optimization. A good way to see why and
how optimizers get ’stuck’ and how to trick them into leaving these positions
can be found in heuristics. A good start on this subject is [55].
In R, a good and often used package for optimization is optimx [9]. This pack-
age has many different optimization tools and can be incorporated in glmer for
the calculation of the Laplace or AGQ approximation. As optimization requires
us to look at both our data and our model we will now look at how and why
Laplace and AGQ approximation can fail.

Laplace approximation failure

We now give a quick view on possible points of failure for the Laplace approx-
imation, these points are then shortly analyzed. It is beyond the scope of this
thesis to explore the full structure of these approximations.

1. The assumption that u ∼ N(0, D) may not hold for our chosen random
effect.

2. The approximation for the first order derivative may fail.

3. For the second order derivative, The assumption that the second term can
be ignored in (2.13) may be false in some cases.

4. The approximation of the second order derivative may fail.

5. The assumption that W varies negligibly with respect to β in (2.15) may
not be true in some cases. And thus, ignoring the factor may be wrong.

6. The approximation for the likelihood in the last step may fail.

The first assumption is important. Even though the GLMM can in theory
handle non-normally distributed random effects, the Laplace function can only
model normally distributed random effects. And thus, the model will not be
specified correctly. The second, fourth and sixth possible points of failure can
be traced back to the above discussion on optimizers.
In the case of the third point, the second term in (2.13) can be ignored for
Poisson distributed GLMMs and with expected value 0 it is assumed safe to
ignore the term in other cases. If the link function is chosen properly and the
variance function is relatively small, this point should in general not cause many
problems.
The same reasoning holds for the fifth point, as β has little influence on the
(co)variance structure of Y , it will not be of great influence on W and can
therefor safely be ignored in the approximation.
As we will see in subsection 2.7.1 points 1,2,4 and 6 will cause problems in the
GLMM fitting.

Adaptive Hermite-Gaussian Quadrature failure

For the AGQ we look at the algorithm in a similar fashion as for the Laplace,
we look at possible points which can cause trouble and shortly analyze them.
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1. As with the Laplace approximation, AGQ uses a normal transformation.
The effect however may not be normally distributed.

2. The maximization of the mode may fail in some occasions.

3. Solutions may depend heavily on starting values for β̂∗, φ̂∗ and σ̂∗.

The first point is the same as for the Laplace approximation. The assump-
tion of normality may not be true and thus our model may not be correctly
specified.
For the second point, as we assume a unimodal function g, in theory there are
no local optima. As we optimize however, due to the iteration and choice for
β̂∗, φ̂∗ and σ̂∗, solutions for the mode of g may stay away from the true mode
in some optimizers.
The same goes for solution 3 and 4. The algorithm relies heavily on the opti-
mization method.

2.7.1 Errors and failures in the glmer function

This subsection provides an overview of possible errors generated by the glmer

function, their origin and provides some solutions. This subsection is descrip-
tive, general example code can be found in Appendix B.2 or the corresponding
reference. Possible solutions will be given for each problem and if encountered
in Chapter 3 for our example dataset.
We consider two examples. The first is a scaling problem, the second is a con-
vergence problem.

Example 2.3. The first error is an error referring to scaling of variables. This
error occurs rather often, but can be fixed with relative ease without changing
the outcome of the model in a severe way.

Warning messages:

1: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :

Model failed to converge with max|grad| = 0.00133114 (tol = 0.001, component 1)

2: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :

Model is nearly unidentifiable: very large eigenvalue

- Rescale variables?;Model is nearly unidentifiable: large eigenvalue ratio

- Rescale variables?

Several approaches can be taken to remove the error. As it suggests rescaling
fixed variables, we can do this in multiple ways. The first is shrinking the fixed
effects xk to be closer to zero

x̃k = xk −min(x).

Another approach is to get rid of this error is to center the value as e.g. in [30].
Here, the fixed effect xk becomes

x̃k = xk −
1

n

n∑
i=1

xi.

A last approach is rescaling the effects using the scale function in R. This
method is preferred as it does not change the interacting between different
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effects. This method is similar to the first, but the scale function adjusts the
values to the standard deviation and is therefor equal to

x̃k =
xk −

∑n
i=1 xi

sd(x)
.

Standardizing the results using the standardize function as outlined in [35]
from the arm package [4] it can be shown that all three methods will give similar
fit. We will sketch a proof of this more theoretically in subsection 2.7.2.

These scaling examples can be fixed with relative ease, convergence problems
are in general harder to deal with. We start with an example and then work
towards a way to tackle these problems in a more general framework.

Example 2.4. Convergence errors are errors often giving output similar to

Warning messages:

1: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :

Model failed to converge with max|grad| = 0.00385383 (tol = 0.001, component 1)

Several things can be done to improve the convergence. The rescaling op-
tions mentioned above can help in order to try and solve these problems, in
general however it is advised to switch between several different optimizers to
find one that does meet the conditions on convergence. In appendix B.2.2 the
method to do this using the glmer function is fully outlined in R. This code
includes the sources for the code provided by Ben Bolker, author of the glmer

function. It should be noted that all optimizers find similar optima, but some
seem to converge quicker or have slightly different conditions for this conver-
gence such that they do not fail.
First we will look at the different options to view results given by glmer with
respect the convergence. These commands can give insight in convergence and
errors in the calculation.
Suppose we have fitted the model according to some data/distribution and have
the error above, the first step is to check for singularities in the random-effects
parameter estimates θ for which the lower bounds on the random parameters is
0. If the estimate is very close to zero (< 10−4) then this singularity can lead
to convergence issues and more often false positives.
The next step is checking the derivative calculus, the reason for this is that
glmer may in some cases fail to derive proper Jacobian and Hessian Matrices.
In this case, the package numDeriv may prove to give better approximations
of the derivatives. In some cases, this will give better approximations for the
Jacobian and Hessian matrices which may lead to better convergence but may
also worsen it.
Sometimes these subtle changes to the model do not work, in that case next to
trying different optimizers, we are left with one more option which is increasing
the number of iterations. This can be done in two ways. The first is allowing
glmer more iterations through the control command, the second is to use the
latest values as starting values and hoping that more iterations will lead to con-
vergence.
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2.7.2 Consistency of fit when rescaling and centering fixed
variables

In the previous examples, fixed effects were scaled and centered to assist conver-
gence in the numerical approximation. As our data contains many zeros, large
eigenvalues are common and can therefore provide scaling errors.
Even though scaling seems necessary, it is important to show that scaling fixed
effects does no change the fitted values. An example on the fit for scaled vari-
ables in the GLMM is given in appendix B.3. This example shows very similar
fits for the data. Next we look at the calculation for the fit using Laplace and
AGQ and see whether a change in X leads to a change in the fit ŷ. Suppose
that we have an n by p matrix X of predictors and rescale one fixed effect in
X. This is the same as transforming one column in X. Let µ̂j be the mean and
σ̂j the standard deviation of X ′j , a column of X. Define the scaling of elements

xi of X ′J as x̃i =
xi−µ̂j

σ̂j
. Suppose w.l.o.g. that j = 1 then we have the matrix

X̃ =


x1,1−µ̂
σ̂ x1,2 · · · x1,p

x2,1−µ̂
σ̂ x2,2 · · · x2,p

...
...

. . .
...

xn,1−µ̂
σ̂ xn,2 · · · xn,p


which itself is also a predictor matrix. Therefore, we only have to see whether
the fit ŷ differs when optimizing β and u in the Laplace and AGQ equations
when changing from X to X ′j . Note that the w.l.o.g. holds as we can change any
column of X and reorder them at will. Moreover, as any rescaling of a column
of X gives a new valid matrix X̃ by transitivity only the above case is required.
Another important notion is that there is no change in the values of y. There-
fore, no distributional changes happen when rescaling from X to X̃. Therefore,
no change in distribution occurs.

The Laplace case

As we saw in 2.5.1, the Laplace method resolves to solving the two equations in
β and u

1

φ
X ′W∆(y − µ) = 0 (2.17)

1

φ
Z ′W∆(y − µ) = D−1u (2.18)

with X the matrix of fixed effects, Z the matrix of random effects, W =
[V (µi)g

′(µi)
2]−1 and ∆ = g′(µi) for link function g and variance function

V (µi) = b′′(b
′−1(µi)). Note that µi = g−1(x′iβ+z′iu) and µ the vector (µ1, . . . , µn).

Therefore, X is an integral part of the calculation.
We therefore formulate the following proposition.

Proposition 2.1. Suppose we have matrices X and X̃ described above. Then
the fitted values ŷ and ˆ̃y differ only in approximation.
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For an exact proof of this, full detail on the above equations in Laplace
approximation should be given for all link functions and members of the expo-
nential family. In this case, however we restrict ourself to the linearity in X and
β in a sketch of a possible proof. Note that X is used in two different ways in
the equations to be solved. In the first, it is directly used in calculation, in the
second it is only used as input for µi.
Suppose we have an approximately optimal solution to (2.17) and (2.18). Then

we have optimal values ŷ, β̂, and û and therefore, an optimal value µ as function
of β̂ and û. The optimality of this solution will be the key to this proof. As, we
have near optimality, 2.17 and 2.18 will be approximately true.
Let X be replaced with X̃ in our optimal solution. Assume we lose optimality.
In equation (2.18), the change X → X̃ is only trough µi = g−1(x′iβ + z′iu).

Therefore, a transformation β̂ → ˆ̃
β is required to regain the original optimal µ̂i.

This transformation leads to previous optimal µ̂i in equation (2.17). Moreover,
the linear change in the first column of X (and therefore the first row of X ′) has
no effect as the equation equals 0 to the right. Thus the transformation X → X̃
has no difference except in approximation and thus our sketch is complete.

Possible changes in actual fitted values will probably be caused by the op-
timizer. As the errors suggest, optimizers tend to prefer scaled variables which
will not lead to large eigenvalues or big difference in fixed effect values. Thus,
it may even be true that as an optimizer performs better on a scaled effect, the
fitted values may be closer to the true optimal value y.

The AGQ case

In AGQ case, there is no straight forward calculation. Above, we showed the
following approximation

∫
fY |U (yi|ui)fU (ui)dui ≈

Q∑
l=1

w∗l

 ni∏
j=1

fY |U (yijz
∗
l )

 .

This was approximated by a linear predictor x′ij + σz∗l for fY |U (yijz
∗
l ). The

same reasoning as for the Laplace method applies. As the prediction is done
in a linear manner, a linear shift in one of the columns of X will result in a
linear adjustment for β to still achieve the same fit. And therefore, scaling and
centering has no result on the fit of the model in the AGQ case.

2.7.3 Actuarial application, from model output to pre-
mium

In the beginning of this chapter the calculation of a premium was shortly out-
lined. We will now give the complete method which is used in the next chapter.
In this thesis we use a pure premium, which is the combined pure premium of
the count and severity model. For a risk class we multiply the expected count
by the expected severity. The calculation of the fixed and mixed models slightly
differs, therefore both are treated separately.
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Premium calculation for a fixed model

Linear models are estimated by estimating the best β in the equation

Y = Xβ.

Which for a single observation comes down to estimating

yi = β1 + β2xi2 + β3xi3 + . . .+ βpxip + ei.

The estimated model provides the estimated optimal values for all βi. These
values can be used to predict estimated counts/severity for customers both inside
and outside the dataset (as in an out-of-sample test).
In application, all factors are categorical. Therefore, each category is assigned
its own value βi. This provides for direct building of risk classes.
Calculating the premium is then straightforward. As every observation yi in a
dataset falls in a risk class within the model, a relative count/severity can be
calculated in the following manner. For N the number of counts, the use of link
function g and observation i in a certain risk class we have

N = g−1(β̂1 + β̂2xi2 + β̂3xi3 + . . .+ β̂pxip).

Here, xij for fixed i is a binary vector linked to the risk class for observation i.
Similarly, for S the severity, h the used link function and observation i in a
certain risk class we have

S = h−1(β̂1 + β̂2x̃i2 + β̂3x̃i3 + . . .+ β̂px̃ip).

Note that the models for claim count and severity may involve different risk
classes. As the chosen variables for both may change, therefore x and x̃ can differ
for certain model choices. This will not pose a problem in the final calculation for
the premium which will be N ·S for every observation in a given dataset. In later
simulations however, we often choose the same parameters for an illustrative
example.
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Chapter 3

The competitive market

The highly competitive market for non-life insurance is a rather new phe-
nomenon. Even though comparison websites have existed for more than a decade
(independer.nl was founded in 1999, source: independer.nl), their influence has
only recently begun to grow. The exact size of this influence in the Netherlands
is currently unknown. In other markets, such as the UK motor insurance mar-
ket, comparison websites contribute to a large part of the market [63]. Thus,
investigating how competition may influence the market is worth investigating.
In the previous chapter different models were described which can be used to
price non-life insurance products using historical data and models were com-
pared on theoretical aspects.
This chapter will focus on simulating the competitive market using a dataset
and to illustrate the effect different pricing models have on policies that are sold
using a simulation exercise.
First we provide a quantitative definition of the insurance market for a single
product. This definition will be expanded by assumptions on the structure of
risk classes and contracts. Next, possible ways to simulate customer decision
making are discussed. A theoretical splitting and a credibility approach to using
the competitor’s quoted premium are provided. The chapter ends with a sample
simulation and several splitting and model choices.

3.1 The market

To define the competitive market, several assumptions are required. The market
itself however requires none. Throughout this chapter, focus lies on a single
product type (e.g. motor insurance, moped insurance)

Definition 3.1 (The non-life insurance market for a product class). For a type
of insurance product we define the market S as a set of risk classes and L as
the list of insurers acting on the market. The size of S is denoted by M , the
size of L by N . An element i ∈ S is a risk class. Every risk class i is a unique
combination of risk factors in the market. The list L is a list of insurer names
with Lj denoting the j’th insurer.

This definition allows for the introduction of pricing vectors next. These
vectors display the quoted premiums for every insurer acting on the market.
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Definition 3.2. Consider the market S from definition 3.1. Define the pricing
vector Pi as the vector of quoted premiums for risk class i. An element of Pi
is denoted by pij , the premium of the j’th insurer for the i’th risk class. If the
insurer does not list a premium, the price pij is denoted as ∞.

A possible example market with corresponding price vector can be motor
insurance in the Netherlands.

Example 3.3. Consider the product class ”motor insurance” in the Netherlands
for both third party and full physical damage. Let the input consists of vehicle
age, vehicle (sub)model and bonus-malus years. The set S then consists of all
possible combinations between these factors, excluding combinations which are
not possible (e.g. driver aged 18 with 20 bonus-malus years) and thus often,
M < |S|. Table 3.1 is an example of an ordered market S.

Riskclass Driver Age Vehicle Age Vehicle model Bonus-malus years
1 18 0 AAAA 0
2 18 0 AAAB 0
...

...
...

...
...

i 19 0 AAAA 0
...

...
...

...
...

M . . . . . . . . . . . .

Table 3.1: Structure of the market S

Any risk class in S is a combination of the factors in table 3.1. Therefore,
for every class given in table 3.1, we can define an example pricing vector

Pi = (pi1, pi2, pi3, . . . , piN ) = (100,∞, 250, . . . , 350)

Assumption 3.4 (Insurance policy content). Let the market be defined as in
Definition 3.1. Assume that for any class i ∈ S the insurance policies pij ∈ Pi
are similar in content. With similar in content we mean that contracts in Pi
cover the same damages and have equivalent terms and conditions.

Assumption 3.4 lets the price of the product be the only quantitatively dis-
crimination factor between policies. Therefore, only the pricing vector Pi is
needed to discriminate between insurers. To justify the direct mapping from
quoted premium to the risk classes one more assumption is required.

Assumption 3.5 (Equal costs). In this chapter, we assume that all the quoted
premiums in a set Pi have the same relative costs. Hence, the conversion from
risk to quoted premium is equivalent. Therefore the risk of harm is the only
driver for the price.

In order to make a proper comparison we require risk to be the only driver
for the quoted premium. If insurers have different conversion rates, the prices
cannot be compared as if they are relative risks and we can less easily incorporate
them in our pricing method.
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3.1.1 The customer

An insurance market S is observed by customers. These customers are some-
times referred to as agents in agent based modeling. In this thesis we will refer
to them as customers. For more information on agent based modeling and its
applications see [17]. To help us define and simulate customers, we make some
assumptions. First, they are assumed almost perfectly economically rational in
their choice of insurer. This states that a customer will always choose one of the
cheapest quoted premiums in Pi. In order to quantify customer choice, we want
to assign a probability distribution to the choice of premium by the customer.
This distribution has to respect the following assumption.

Assumption 3.6 (Customers prefer cheaper policies). We assume that cus-
tomers prefer cheaper (not necessarily the cheapest) quoted premiums. Suppose
there exists a random variable X with probability density PX . Then PX is as-
sumed to be decreasing in probability along the domain. To strengthen this, we
assume that the more expensive premiums are almost never converted i.e. the
distribution PX is light tailed.

Thus, customers prefer cheaper premiums over the more expensive ones.
Even though this last assumption is not as strict as one may want, expert
judgement will decide on whether a chosen distribution suits the behavior of
the customer in the observed market. In order to assign a probability distribu-
tion to the choice of policy we assume that the insurer has no historic data on
this choice. Therefore, assumptions need to be made on the distribution of the
choice of insurer per risk class or in general.

Possible distributions for policy choice of customers

Using the previous assumptions, we can suggest several distributions. We will
provide a few suggestions in this paragraph, the final choice will be a decision
based on the appropriateness of the fit, the ease of implementation and profes-
sional judgement. Derivation of means and variance can be found in appendix
C. Using assumptions 3.4 and 3.6 we can start by defining the first possible
distribution:

Definition 3.7 (Cut-off Uniform). Consider the risk class i ∈ S with quoted
premium vector Pi. We define the random variable X on Pi as follows

P(X = x) =

{
1
k if x is amongst the k cheapest premiums

0 else

Here, we can choose k anywhere between 1 and the number of insurers offering
an insurance (#Pij < ∞). Therefore we have a uniform distribution on the
lowest k quoted premiums in Pi. The mean of this distribution is EX = k+1

2
and variance Var(X) = 1

12 (k2 − 1).

We can choose to apply one scalar k to our entire portfolio S (in [63] they
decide that k ranges between 5 and 10) or we can make it risk class specific.
Hence we get a vector k = (k1, . . . , kM ) in which we choose a ki for every i ∈ S.
This can also be done in an automated way, one can for example take ki as
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the lowest 5 or 10 percent of the set Pi. If data is available, this scalar can be
chosen according to the distribution of sales from a comparison website.
Another possible distribution makes use of a finite geometric sum. The advan-
tage of this distribution is that it can scale according to the given rate factor
r.

Definition 3.8. Suppose we have class i ∈ S with quoted premium vector Pi of
size n = mi then we can define a discrete random variable X on P̃i, the ordered
quoted premium vector as

P(X = k; r, n) =
1− r
1− rn

· rk−1, for k = 1, . . . , n

Assuming again thatmi = n, we have the following mean EX = nrn+1−(n+1)rn+1
(1−r)(1−rn)

and variance Var(x) = r
(r−1)2 −

n2rn

(rn−1)2 .

Discussion

Before we look at the implementation of the above market, we discuss some of
the definitions and assumptions thus far. Many of these are debatable. Here
are some views on them and an explanation of the choices made.

• Market definition: One can argue that Definition 3.1 is too general. In my
opinion however it is left to the user to specify this in more detail. This
framework should provide sufficient flexibility even for a non-insurance
setting.

• Assumption 1 is rather strong. In general, not all insurance policies are
of similar content. We can decide to specify all possible input such that
any two policies in Pi would have matching content. This rigorous classi-
fication would however lead to an increase in size for the set S of distinct
classes and a large decrease in size for many of the sets Pi. And we would
then be left without sufficient policies to compare. Note however that not
all insurers have to provide policies in every risk class. Thus we decide
to choose a specification of the input which would lead to almost distinct
classes i which are large enough such that the elements pij can still be
compared.

• The definitions and assumptions on the side of the customer are highly
debatable. It is in general true that price is of big influence on the decision
in policy, there are however other (less easily quantifiable) influences that
play a big role in the decision. Examples of this are experience, exposure
(marketing etc.) and an undefined gut feeling. These are however difficult
to measure and generalize and are therefore beyond the scope of this thesis.
It may be an idea to introduce these into the model as noise, but this is
left for further research.

• We assume that no data on the market is available but there are however
alternatives. Full data on customer choice can be available but will almost
never appear. As only the owner of a comparison website and an insurer
can set this up together (Independer for example is owned by Achmea).
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Hence, it is a theoretically viable case. Another is a market where cus-
tomer choice is estimated by surveys, in this case there is a distribution
per risk class available.

3.2 Simulating the competitive market

After defining the market and assigning a probability distribution to the choice
of insurer by customers we need a solid and reproducible method to simulate the
market. This simulation can be using an existing or using a simulated dataset.
We will describe both methods. The former can be done using data from an
insurer or scientific source. The latter can be done using mathematical models
(e.g. Poisson for arrivals and Gamma for severity) and publicly available data
on the population (e.g. data from centraal bureau voor de statistiek (cbs.nl),
sociaal cultureel plan bureau (scp.nl) or verbond van verzekeraars (verzeker-
aars.nl) in the Netherlands).
Regardless of the way we acquire the dataset it will consist out of customers on
the rows (every row is a customer) and risk factors and claim data as columns.
In this simulation it is desirable that the amount of customers exceeds the num-
ber of risk classes resulting from the modeling choice. This is required for proper
model fit as well as assigning premiums to all the different pricing vectors. It
may be useful to remove factors in order to decrease the size of S and increase
the relative size of Pi. Hence, we will have a dataset similar to the one in table
3.2.
Here, ci represents the total claim amount of customer i

Customer Factor 1 . . . Claim Number Claim Amount
1 − . . . z1 c1
2 − . . . z2 c2
...

...
. . .

...
...

C . . . . . . zC cC

Table 3.2: Structure of the dataset representing the market

Splitting and calculation

As there exists clear structure in the used dataset, it can be split into subsets.
When splitting, one can make two choices. Whether all insurers are the same
size or some may differ and the choice whether they all serve the same market
segments. The first needs no explanation, with the seconde it is meant that an
insurer focuses on a certain market segment. An example is the dutch insurer
Promovendum who is aiming for the higher educated segment in the market.
No matter which method we choose, the overall mapping will be similar. Every
insurer will have a consumer portfolio in the form of table 3.1. This portfolio
can also be transformed to the risk-class setup defined in definition 3.1. In this
thesis we will only look at the size of the insurer, no distinction in segmentation
along the market is used.
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Calculating the quoted premiums and the sales

On each subset assigned to an insurer, a predictive model can be fitted using
models in the previous chapter. This model will provide the market with relative
premiums per risk class and thus per customer. According to our assumptions,
these relative premiums can be directly converted to the quoted premium for
class Pij .
Conversion can then be measured by using one of the probability distributions
mentioned above. In the case of a readjustment of the model, this process can
be repeated for different models, providing different quoted premiums Pij . This
can be the case in the following approach.

Incorporating the competitors price, a credibility approach

Due to the lack of data on the entire market and the risk of underpricing and
overpricing premiums an insurer may want to include quoted premiums by com-
petitors in its own model. A way to include these market prices is a credibility
approach. This approach is centered around using the quoted premiums ob-
served in the market in reweighing the quoted premiums of the own portfolio.
In application it will be rescaling according to a formula equal to a pricing equa-
tion with own price p, some market price pmarket, a parameter α and the new
price p̂ given by

p̂ = αp+ (1− α)pmarket

The choice of pmarket is non-trivial and for a great deal expert judgement. In
some cases, one may want to use the mean price, in others the median, mode
or a set place in the market. Mostly, this place is a strategic decision, expert
judgement assigns a market price pmarket. As an example, we can use a weighted
average of the premiums for pmarket. This weighted average is calculated in the
following form

pmarket =
1

N

N∑
i=1

1

p̃i

in which p̃ is the ordered pricing vector. This choice gives greater weight to the
lower priced premiums (where actual sales occur) and lower weight to higher
priced premiums which are rarely converted into contracts. Whether this choice
of market price is desired from a marketing point of view is left out of consid-
eration.
Choice of α is what drives the credibility approach. The original use is due to
the Buhlmann Straub model [20]. That model however, is originally meant to
be used inside a porfolio, leading to GLMM-like modeling of claim data. In that
case, α can be chosen as relying on variance within the model. In general this
method can not be applied to external premiums. Therefore expert judgement is
required in this scenario. Whether or not there exists a value α which optimizes
this equation in this scenario is currently unknown and beyond the scope of this
thesis. In other scenarios, where information on market share and customer be-
havior are available some information on the choice of α can probably be derived.
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Chapter 4

A simulation example, a
market with two insurers

This chapter provides an example on a competitive market with two insurers.
We will discuss three different simulations. In the first simulation, one insurer
uses an almost full model (includes all parameters in the model), where the other
uses only two parameters. This simulation is done to investigate how possible
under and over-fitting will influence the relative risks for both insurers.
In the next example, both insurers use the same model but the market is split
up in a 70/30 ratio. The purpose of this is to investigate how availability of
data influences the relative risks.
In the last simulation, the first insurer sticks with this model while the other uses
several GLMM approaches. We investigate how different GLMM approaches
affect the relative risks and compare sales conversion for a fully random model.

The Data

We will use a dataset which is large enough, contains sufficient claims and
parameters, is freely available and used in [49]. This dataset is from the former
Swedish insurance company ‘Wasa’, and concerns partial casco insurance for
motorcycles in the years 1994-1998. An overview of the set and the cuts given
in the book are given in Table 4.1. In this table, the rating factor and class show
how the data can be factorized (such that only categorical variables remain). A
short description and the size of each cut is also given. In our use of the dataset
contracts with zero exposure are removed and zone 7 is merged with zone 6 due
to the small exposure to claims which may lead to problems when splitting the
market. An overview of the data is given in Figure 4.1. In these figures, the
relative size of the class is given in black, the relative claim size is given in red
to give a quick view on where claims occur.
Quick data exploration shows that newer vehicles have relatively high damages
and vehicles older than 20 years take up a small portion of both the dataset
and the relative claims. The exposure spikes every half year which is probably
the moment most customers switch contracts. With respect to the ages, we see
maxima around 25 and 50 where the spike on age 50 which corresponds to a
single outlier. Also, men report relatively more claims than women and zone 4
(small towns and countryside) is the only zone with relatively more claims than
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Rating factor Class Class description Size

Geographic zone 1 Central and semi-central
parts of Sweden’s three
largest cities

7.678

2 Suburbs plus middle-sized
cities

4.227

3 Lesser towns, except those in
5 or 7

1.336

4 Small towns and country-
side, except 5–7

1.000

5 Northern towns 1.734
6 Northern countryside 1.402
7 Gotland (Sweden’s largest

island)
1.402

Engine Power 1 EV ratio -5 0.625
2 EV ratio 6–8 0.769
3 EV ratio 9–12 1.000
4 EV ratio 13–15 1.406
5 EV ratio 16–19 1.875
6 EV ratio 20–24 4.062
7 EV ratio 25– 6.873

Vehicle age 1 0–1 years 2.000
2 2–4 years 1.200
3 5– years 1.000

Bonus Malus 1 1–2 1.250
2 3–4 1.125
3 5–7 1.000

Table 4.1: Structure and class size used in the motorcycle insurance dataset
from [49]

customers.
In this thesis, bonus malus years will not be considered in the simulations. Bonus
Malus scales provide a direct bonus for drivers making no damages but provides
a punishment for those who make damages. This provides a new dynamic to
modeling and is therefore beyond the scope of this thesis. For info on bonus
malus modeling see [40].

The simulation setup

In every simulation, the dataset is split up in two subsets each representing an
insurer using random selection on the rows. In every simulation this process
is repeated multiple times to make the result less dependent on the sampling.
The first and second simulation will use 10 different market cuts, the last will
use 5 as the fitted GLMMs show some convergence issues. Every market cut
simulation has the following setup:

1. The dataset is split up into two insurers using random sampling on the
rows for the first insurer and assigning the rest of the rows to the second
insurer.

2. Both insurers calculate the relative risks with a GL(M)M and provide
relative risks for all the customers in the market.

3. Customers view the relative risks in the market and choose the cheapest.

In the last step, customers choose according to the Cut-off uniform distri-
bution for two insurers with k = 1 given in 3.7.
Each simulation run provides us with relative risks and customer choices. To
find the average risk and customer choice, the average relative risk for both in-
surers is considered. The customer choice is then reevaluated according to these
averages. This allows us to investigate both the relative risks and the customer
choice to see how the chosen market setup influences the relative risks and sales
for both insurers.
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Figure 4.1: Black: The relative size of the classes from Table 4.1. Red: The
relative claim size per class calculated as the portion of the total claim size per
class.

Testing profitability

For every simulation we check whether an insurer is profitable. With this check
there is the choice between two options. Use the reported claims in the data
or use a modeled approach on the entire dataset. As the existence of exposures
spanning multiple years makes the first approach inadequate for this data we
choose the second. We modeled a GLM best suited for this dataset. The relative
risks from this model are used as benchmark to see how well an insurer performs
and whether a market will be winning or loosing.

4.1 Over and under-fitting in an equal market

In the first simulation we investigate the effect of over and under-fitting in a
GLM. To illustrate this, the first insurer uses an almost full model. Both the
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count and the severity model use the parameters gender, zone, engine power,
age and vehicle age. The second insurer uses only zone and vehicle age in the
model.
A scatter plot shows the relative risks for both insurers in the way they are
presented to the customers. We can color them per parameter. These plots
are shown in Figure 4.2. On the bottom right corner the relative size of the
benchmark is represented. It can immediately be seen that the over-fitted model
used for the first insurer will acquire most of the sales as in the upper left
diagonal, the value for the second insurer is always higher than that for the
first. As the second insurer uses only two parameters it only brings 18 different
risk classes to the market. Moreover, there is a clear segregation in values for
zone as it is included in both models. As the factors appear diagonally it can
be seen that the factors of zone act the same in both models as expected. For
vehicle age as similar pattern emerges, both insurers value the older vehicles as
lower in risk than the newer vehicles. In the rest of the figures it can be seen
that the second insurer does not discriminate for these parameters and therefore
the first fully dominates the position of the colorings.
When looking at the coloring for the benchmark it shows that the benchmark
risks the contracts in a similar manner as would be expected of similar models.
Figure 4.3 provides a more detailed comparison of the benchmarked risk factors
and those for both insurers. The over-fitted model used by the first insurer
severely underestimates the risks. The second does in general however also
underestimate the risk where one may expect that under-fitting will lead to
higher relative risks. This underestimation may be due to three reasons. The
first is that the poorly chosen model underestimates the risks in general in an
under-fitting setting. The second may be that as the insurer estimates its model
on only half the dataset it estimates lower relative premiums when exposed to
less data. A third may lie in the averaging done in the simulation. A quick view
of the results however shows that the average risk for each run of the simulation
only slightly varies.

Testing profitability

Figure 4.3 suggests that these insurers will both reside in a loosing situation.
As 99% of the customers prefer the first over the second insurer we look at the
average revenue, cost and profit per policyholder. These values are shown in
Figure 4.4. The first insurer reports huge losses due to the underestimated risks.
The second insurer also reports losses. Possible reasons for this loss have been
stated in the above paragraph. As customer choice is based on the cheapest
premium there is an another reason. If the first insurer greatly underestimates
almost all of the risks then in the cases where the second insurer is cheaper it will
almost certain also be cheaper than the benchmark. This situation therefore
shows that over-fitting in this market leads to greatly underestimating risks
compared to the benchmark leading to not only a loss for the insurer causing
the underestimated risks but also for its competition.
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Figure 4.2: Scatter plots showing the relative risks colored per parameter in the
model combined with the relative risk for the benchmark.
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Figure 4.3: Relative risks for both insurers compared to the benchmark.
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Figure 4.4: Revenue, costs and profit per policyholder for both insurers when
compared to the benchmark.

44



4.2 An unequal market

The second simulation tests how market share effects the relative risks. The
previous simulation suggested that less market share may cause for lower rel-
ative risks. This simulation is set up to test this hypothesis. The first insurer
has 70% market share, the second has 30%. Both estimate their relative risks
according to the model setup identical to the benchmark. This provides us with
a comparison of a 30%/70%/100% subset of the market.
As with the previous simulation we look at the scatter plot with colored param-
eters and have the lower right plot reserved for the benchmark coloring. The
plots are shown in Figure 4.5. These plots show that both models provide sim-
ilar relative risks. The second insurer (having only a 30% market share) shows
lower relative risks for the higher priced policies where the first insurer shows
lower relative risk for the lower priced policies.
The location of the parameters show that vehicle age and zone are probably
driving the model as their relative risks are more closely grouped than engine
power, gender (which isn’t included in the model) and age. Moreover, for cus-
tomers in zone 5 and vehicle age group 20 to 99, the first insurer provides a lower
relative risk. Looking at the benchmark coloring, we see that it is consistent
with the two subsets as expected.
Figure 4.6 was made to see how both insurers stack up to the benchmark. As
in the previous simulation we see that the insurers provide often lower relative
risks than the benchmark. We see however (as with the comparison between the
insurers) that for the lower priced premiums, the benchmark is often cheaper.
We can therefore conclude that for this data and this model choice, that an
increase in availability of data leads to higher relative risks communicated to
the market. The exact reason for this is currently unknown.

Testing profitability

As in the previous example, Figure 4.6 suggests that both insurers will loose
against the market. Figure 4.7 clearly supports this theory. In this simulation
the second insurer is in general cheaper and therefore it takes up 95% of all
sales in the portfolio. The first insurer is only cheaper in the lower risk region
as shown in Figure 4.5 therefore its relative revenue and cost are both lower.
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Figure 4.5: Scatter plots showing the relative risks colored per parameter in the
model combined with the relative risk for the benchmark.
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Figure 4.6: Relative risks for both insurers compared to the benchmark.
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Figure 4.7: Revenue, costs and profit per policyholder for both insurers when
compared to the benchmark.
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4.3 GLM vs GLMM

The previous examples show how choice of number of parameters and insurer
size influence the relative risks for insurers in a competitive market. Considering
these effects on this dataset and model choice we let the second insurer switch
to a GLMM approach and see how this effects the relative risks and sales. As
GLMMs are known to have convergence issues as discussed in section 2.7 and
Appendix B.2.2 we decide to only do 5 runs per simulation. The market is split
up in two subsets of equal size. The first insurer chooses a simplified version of
the model in the previous simulation. This model includes zone, engine power
and vehicle age. The second insurer starts with an identical model to the first
and then randomizes several effects. We consider four different model, one with
random zone, one with random engine power, one with random vehicle age and
a full random model considering all these factors as random effects. As we use
a different model approach, we first view the relative risks per parameter before
looking at the difference in relative risk presented to the customers. The factors
for the models are shown in Figure 4.8. In this figures, the differently shaped
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Figure 4.8: Estimated relative effects for the different GL(M)Ms for the second
insurer.

and colored dots represent the different models, the lines show the trend in the
relative effects. For each model, the intercept has relative effect 1, therefore it is
plotted on the the dotted line. Note that as the GLMM assumes a distribution
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on the random effect, the expected value for the random effect is taken as the
effect in the figure. We see that for vehicle age and zone, the random model and
the GLM coincide in their model estimates. Therefore, adding random effects
for these parameters will not influence the model outcome. For engine power
however, the models vary a lot. This data seems to be structured in some sense.
Therefore we see that the random engine power model takes values closest to
the relative effect 1. The full random model is the next closest, followed by the
other models who provide more extreme estimations.
Knowing how the different models act, we decide to compare the full GLMM
and the GLM as we expect these to vary the most. As in Figure 4.9 we create
a scatter plot for the first insurer using the GLM and the second insurer using
a full GLMM approach. The GLM approach for the second insurer perfectly
coincides with that for the first as their model and data split are similar, there-
fore it will not be displayed.
Comparing this figure with Figure 4.8, we see that as the GLM and the GLMM
coincide for relative effects smaller than 1 represented by the lower priced rela-
tive risks. Therefore, the first insurer using a GLM approach will have a small
advantage on sales in that section. For the higher priced relative risks however,
the second insurer using a GLMM approach will have smaller relative risks by
the dampened effect of the GLMM model estimation.
For the factors, only zone shows a clear trend in grouping different effects. Zone
5 and 6 prefer the fixed model whereas the rest prefer the random model. The
rest of the factors seem oblivious of the random choice.
Figure 4.10 shows the relative risks compared to the benchmark, here the same
trend is seen but the second insurer also provides relatively high premiums
compared to the benchmark in the lower regions.

Testing profitability

Lastly we also test the profitability, when comparing the GLM to the full GLMM
we see that the second insurer acquires an 89% market share. Its revenue per
customer is higher than it is for the first insurer but so are its costs. As in the
previous three examples, the overall market is loosing. Keeping in mind that
the insurer using the GLMM has sales in the higher priced part of the market,
it is not strange that its revenue, cost and loss are also larger.
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Figure 4.9: Scatter plots of the relative risks colored per parameter in the model
combined with the relative size of the benchmark.
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Figure 4.10: Relative risks for both insurers compared to the benchmark.
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Figure 4.11: Revenue, costs and profit per policyholder for both insurers.
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Chapter 5

Conclusion and further
research

Pricing non-life insurance premiums is as much an art as it is statistical practice.
Experience and explainability are for most practitioners as important as the sta-
tistical significance when building a model. Therefore, pricing these products
most of all requires experience. This does not only hold for the model itself but
also for the choice between random or fixed models.
Generalized Linear Mixed Models provide a good alternative for Generalized
Linear Models. As seen in the theory and the third simulation, estimated factors
are closer to the intercept leading to less variance in relative risks. Less vari-
ance in the effects with a minimal cost in model accuracy is certainly desirable.
There are however many practical issues with calculation and understanding
of the model output. From a viewpoint that a model should be as simple as
possible but not simpler, GLMMs may fail to meet this criterion when compar-
ing their understandability and performance with the GLM. Any practitioner
should ask themselves whether the increase in complexity makes up for the (of-
ten) minimal increase in model performance.
In a competitive market the choice of model can heavily effect the profitability
of both insurers acting on that market in this setup. Over-fitting can lead to a
loosing market for both insurers. This can be due to choosing relatively many
factors in a GLM approach or less availability of data. Surprisingly we saw that
on the used dataset, when using the same model an insurer with much less data
will quote lower premiums leading to a dominant place on the market. Even
though more data should provide a better fit, less data can lead to more sales. A
GLMM approach seems to outperform the GLM approach currently employed
by market due to less extreme quoted premiums. Therefore, in the region with
higher relative risks more sales are made.
With respect to the questions raised by Giro APT [63], a GLMM approach will
directly lead to credibility and blending as supposed by the working party it-
self. A GLMM approach can help decrease the fact that the prediction of a risk
depends on data in other completely independent segments as the GLMM ac-
counts for structure in the data. The rest of the questions raised do not seem to
be directly related to a GLMM based solution but require either different model
setups or machine learning solutions where relative risks are updated according
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to market movements and future expected mixture of the market.

Further research

With respect to further research, a Bayesian or Monte Carlo Markov Chain ap-
proximation may lead to more stability, better convergence and more flexibility
in the model setup for GLMMs. Bayesian frameworks can however be techni-
cally challenging and require a different approach than the usual frequentist’s
view used by most statisticians. Another price to pay will be the longer running
time of the process.
Above used simulation can be done on another dataset to see if the relationship
between the increase in available data and relative risk hold for different situa-
tions. If so, a theoretical explanation may be found within either the GLM or
its use on pricing data.
Apart from the GLMM, other regression and classification models often used in
statistical learning may be tested in this context. It may be that they outper-
form a GL(M)M with less computation time or better convergence.
With respect to the competitive market, more complicated simulations can be
done. Multiple insurers, dynamic customers and marketing strategies can all be
build on top of this framework. Seeing how customers or insurers act on a more
realistic market could provide different insights in the dynamics of the market.
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Appendix A

Non-Life insurance
mathematics

A.1 Fundamental probability and statistics

Throughout this appendix we assume the reader has knowledge of probability
theory and some knowledge of measure theory. For an introductory book into
probability theory see Dekking [26], for books introducing measure theory see
either Shilling [53], Spreij [56] or Billingsby [13]. Throughout this text, we will
follow the notation used by Spreij.
As we only have to deal with probability spaces in this context, we restrict ourself
to use of probability spaces (Ω,F ,P). Moreover, we only state definitions and
results needed by models and estimation and approximation techniques used in
this thesis.

A.1.1 Probability and measures

Suppose we have the probability space (Ω,F ,P), which consists of a non-empty
set Ω, with σ−algebra F and probability measure P. We can define the Borel
sets of R as follows:

Definition A.1. The Borel sets B = B(R) are the smallest σ−algebra generated
by all the open sets O of R.

Random variables on these sets can be defined as follows

Definition A.2. A mappingX : Ω→ R is called a random variable ifX−1(B) ∈
F for all B ∈ B

As we do not want to go into the measure theoretical details too much, it is
safe to assume that these definitions work in a similar fashion for products of
measure spaces. In this text only finite such products are considered therefore
we can almost directly translate these results to so called random vectors.
Having constructed these foundations, we can start by defining distribution
functions. Define a measure µ : B → [0, 1] as µ(B) = P(X−1[B]). Now as these
sets B are generated by open subsets of R we see that µ((−∞, x]) = P(X ≤ x).
And thus a distribution function F can be defined.
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Definition A.3. A distribution function F is a function F : R→ [0, 1] defined
as F (x) = µ((−∞, x]) = P(X ≤ x)

A.1.2 Integration of random variables

The Lebesgue integral is a way of integrating random variables and evaluating
the distribution function F . We will however, not make any distinction between
discrete or continuous distributions as it limits our handling of cases which are
neither discrete nor continuous.
Later on we will define the Stieltjes and Riemann integrals and show how and
when these coincide with our Lebesgue integral.

Definition A.4. Let f be a function, then we can define the Lebesgue integral
of f with respect to the measure µ as∫

fdµ.

We need this definition to show that the expectation of a random variable
is a Lebesgue integral. And moreover, can be given as such without making
assumptions on any properties of the underlying distribution. Hence, if we
change the definition of A.4 to the space (Ω,F ,P) then a random variable X,

E(X) =

∫
Ω

XdP,

which is well defined if P(|X|) < ∞. This definition is nicer than the one
given by either the sum or the Riemann integral. It is however, quite easy to
show that they are the same.

Lemma A.1. Suppose we have a countable set Ω = {ω1, ω2, . . .} and we have a
sequence of real numbers pj ∈ [0, 1] for j ∈ N such that their summation equals
1. Now, define F = σ(Ω), then we can define the function P : Ω → [0, 1] as
follows

P (A) =
∑

j:ωj∈A
pj =

∑
j∈N

pj1wj
(A)

Hence, this function is a probability measure on the space (Ω, cf). Now we
can define a random variable X such that X =

∑∞
0 xi1Xi

. And hence, it has
Lebesgue integral ∫

Ω

XdP =

∫
Ω

∞∑
0

xi1XidP

Which in this case equals
∑
j xjP(X = xj) which is the familiar expression of

our expectation. Hence, the Lebesgue integral expectation is the same as the
expectation of a discrete random variable.

Now forward to the continuous case. We state Example 4.28 from [56].
Here, λ(·) is the Lebesgue measure and we have a Borel measureable function
h : R→ R with h ∈ L1(Ω,F ,P).
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Lemma A.2. Suppose there exists f ≥ 0, Borel-measurable such that for all
B ∈ B one has P(X ∈ B) = λ(1Bf), in which case it is said that X has a density
f . Then, provided that the expectation is well defined, we see that we have

Eh(X) =

∫
R

h(x)f(x)dx,

which is the familiar formula for the expectation of h(X).

Moments of X can be constructed as

EXk =

∫
R
xkdP

Therefore we can define the usual moments of X.

Definition A.5. By usage of the above moment, we can define the following
important functions for a random variable X.

• We can define the mean or first moment of X by

µX = EX

• The variance of X can be given by

σ2
X = V ar(X) = E(X − EX2)2 = (EX)2 − EX2

• The standard deviation of X is given by

σX = V ar(X)−1/2

• The coefficient of variation of X is given by

V co(X) =
σX
EX

for EX > 0

• We can define the skewness of X by

ςX =
E(X − EX)3

σ3
X

Stieltjes and Riemann Integrals

Riemann integrals are the go-to way in applied mathematics, we can derive these
from the Lebesgue version. From that, we can also define the Riemann-Stieltjes
and Lebesgue-Stieltjes integrals.

Lemma A.3. Suppose that f is Borel measurable and it is Lebesgue integrable
on a finite interval [a, b]. Then the Lebesgue integral must coincide with the
Riemann integral if it exists. Moreover, if f is continuous then it is Riemann
integrable on the interval [a, b].
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This difference seems quite small, but consider the following example. Sup-
pose we have a function defined as 0 on Q∩[a, b] and 1 on R∩[a, b]. This function
has Lebesgue integral 1, but is not Riemann integrable. Hence, Lebesgue inte-
grals allow us to deal with more general cases.
Next up are the Riemann-Stieltjes integrals, which are Lebesgue measures with
respect to the measure bestowed by the distribution functions F. For this we
need the Fundamental theorem of calculus given by

Theorem A.4 (Generalized fundamental theorem of calculus). Let f : R→ R
be measurable such that

∫
K
|f |dλ < ∞ for every compact K ⊂ R. Define for

any a ∈ R the function F : [a,∞) → R such that F (x) =
∫

(a,x]
fdλ. Then

outside of a null-set N (A set of Lebesgue measure zero), F is differentiable and
F ′(x) = f(x), for all x 6∈ N .

This theorem may seem somewhat technical, however it leads to the well
know fact that the distribution function F can in some cases be seen as the
primitive function of f while integrating. And thus in these cases∫ b

a

f(y)dy = F (b)− F (a)

Moreover, using theorem A.4, for distribution functions F such that µ((a, b]) =
F (b)− F (a) we can define the Reimann-Stieltjes integral as

Definition A.6. Suppose that f is bounded and Lebesgue measurable on A =
(a, b], then we can define the Riemann-Stieltjes integral as∫

A

f(x)dF (x) =

∫
A

fdµ

Hence, the Riemann-Stieltjes integral is a version of the Lebesgue integral
over the real line.

A.1.3 Useful theorems and inequalities

Theorem A.5 (Strong law of large numbers [56]). Let X1, X2, . . . be i.i.d.
random variables with mean µ and finite variance σ2. Then

lim
n→∞

1

n

n∑
i=1

Xi = µ a.s.

Theorem A.6 (Central Limit Theorem[56]). Suppose that we have X1, . . . , Xn

i.i.d. random variables with mean µ, positive, finite variance σ2 Then the clas-
sical Central Limit Theorem states

1

σ
√
n

n∑
j=1

(Xj − µ)
W→ N (0, 1)

Lemma A.7 (Hölder’s ineqaulity [56] ). Let p, q ∈ [0,∞], f ∈ Lp(s,Σ, µ) and
g ∈ Lq(s,Σ, µ). If 1

p + 1
q = 1, then fg ∈ L1(s,Σ, µ) and ||fg||1 ≤ ||f ||p||g||q

Lemma A.8 (Markov’s inequality [56]). Suppose we have a real valued random
variable X and an increasing function g : R→ [0,∞] Then

Eg(X) ≥ g(c)P(X ≥ c)
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A.1.4 Moment generating functions

Having defined the usual probabilistic tools, we can define a tool which will
appear to be quite useful when identifying the properties of certain random
variables. We will cover moment generating functions as used in [62].
A different way of finding the properties of a random variable X is through mo-
ment generating functions. They have the upside of being easier to handle and
evaluate but have the big downside of requiring an exponentially fast decaying
tail of the distribution.
It is however a nice tool with some really nice properties. We can define it as
follows

Definition A.7. Let µ be a probability measure on (R,B). Its moment gener-
ating function M(s) : A→ R is defined by

M(s) =

∫
R
esxµ(dx)

Now, we define a subset A to be the set on which M(s) exists. To be
more precise, it is the interval (−s0, s0), such that M(s) exists for all s ∈ A.
It turns out that M(s) is finite, if it has finite bounds. Hence, we can proof
using the Markov inequality given by A.8 that for bounded tails, the M(s) is
finite and thus exists. Moreover, we can rewrite our function to the usual sense
m(s) = EesX .
We need to now need to show two properties of this interval, first that if the
existence holds on the boundary of the interval, it holds on its interior. Second,
we need to show that we can pick the boundary such that finite tails lead to a
finite value for m(s).

Lemma A.9. Suppose that we have a value s0 such that m(s0) < ∞. Then
m(s0) <∞ for all s ∈ [−s0, s0].

Proof. We will use the convexity of the exponential function combined with
monotonicity of the integral. As we look at values s ∈ (−s0, s0), we can say
that s = (1− 2λ)s0 for λ ∈ [0, 1].
Thus we can write

esX = e(1−2λ)s0X

≤ (1− 2λ)es0X <∞

Hence, we have finite values of m(s) for s ∈ [−s0, s0]

Knowing this, we can move to the final theorem.

Theorem A.10. Assume we have a probability measure µ on (R,B) with ran-
dom variable X then the moment generating function M(s) is finite and exists
if and only if

P(X > x) ≤ ce−γx

for some c, γ > 0
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Proof. (⇒) Suppose m(γ) < ∞ for some γ > 0. Then by Markov’s inequality
we have that

P(X > x) = P(etX > etx) ≤ e−txEetX = m(t)e−tx

Now, this is allowed as Markov’s inequality works for any increasing function
g(t) by A.8. Now define c = m(γ) and we are done.
(⇐) Assume that there exist c, γ > 0 such that P(X > x) ≤ ce−γx. Then
according to ex. 5.11 of [56] we can write that for any nonnegative random
variable Y it holds that for α > 0.

EY α = α

∫ ∞
0

yα−1(1− F (y))dy = α

∫ ∞
0

yα−1P(Y > y)dy

Now as our expression esX > 0 we can put Y = esX and with α = 1 obtain

EesX =

∫ ∞
0

P(esX > y)dy

Using this formula, we can obtain that using a property of the exponential
function that

EesX =

∫ ∞
0

P(esX > y)dy

≤ 1 +

∫ ∞
1

P(esX > y)dy

≤ 1 +

∫ ∞
1

cy−γ/sdy

Which is finite for any 0 < s < γ by A.9.

As we have established existence for the mgf, we can now look at some of
its properties. The first lemma follows from the existence of all the moment
generating functions in the interval (−s0, s0).

Lemma A.11. Assume that the moment generating function M(s) of a random
variable X exists on the interval (so, s0) then for s ∈ (so, s0) M(s) has a power
expansion of the form

M(s) =
∑
k≥0

sk

k!
EXk

Proof. Our proof is mostly based on the above lemma. Lemma A.9 implies that
the M(s) is finite, and thus EesX is finite. This also implies finiteness of E|X|k
for all k ∈ N as |xk| < e|sx| for large enough x. Hence, by this bound, we see
that by dominated convergence in the expansion we have the result.

As an analytic result (see for example Gevolg 4.35,[12]) we see that the
moment generating function is infinitely differentiable on its domain. Moreover,
these derivatives at the origin for k ∈ N\{0} are given by

dk

dsk
M(s)|s=0 = EXk
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Hence, the moment generating function gives us exactly the moments we need.
And can thus help us tremendously in determining variance and skweness of
many (light-tailed) distributions. We now state one more lemma for which the
proofs can be found in section 30 of Billingsley[13]. It mainly states that the
distribution F of X is uniquely determined by its moments (and thus moment
generating function).

Lemma A.12. Consider a random variable X, with finite M(s) on some in-
terval (−s0, s0).

(a) The distribution function F of X is completely determined by its moment
generating function M(s)

(b) If X ≥ 0 a.e. Then the distribution function F of X is completely determined
by M(s) independent of the finite constraint.

Moreover, we see that the moment generating function carries some similar
properties as the characteristic functions known to measure theory.

Lemma A.13. Assume that for a random variables X,Y the mgf M(s) exists
for s ∈ (−s0, s0) then, we have the following properties.

1. If X and Y are independent MaX+bY (s) = MX(as) ·MY (bs)

2. Let X and Y be independent random variables. Define Z to be the random
variable which equals X with probability p and Y with probability 1-p. Then
we have that the mgf of Z is given by

MZ(s) = pM(s) + (1− p)M(s)

A.2 The exponential family

The exponential family plays a key role in the modeling of non-life mathematics.
It is an essential part of the GL(M)M and requires a proper definition. There-
fore, we will define it in a measure theoretic fashion. We will use [19] for the
definition and the results with an update to modern notation. Original credits
are given to [50], [25] and [41].

Definition A.8 (Standard exponential family). Let µ be a σ-finite measrue on
the Borel subsets of Rk. Let

N = Nµ = {θ :

∫
eθxµ(dx) <∞}

And define a function λ(θ) as

λ(θ) =

∫
eθxµ(dx)

With λ(θ) =∞ if the integral is infinite. Next if we let

Ψ(θ) = log λ(θ)

And define the function pθ(x) = exp(θx−Ψ(θ)). Then the family of probability
densities given by {pθ : θ ∈ Θ} for Θ ⊂ N is called the k-dimensional standard
exponential family.
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The distributions pθ(A) =
∫
A
pθ(x)µ(dx) is called the standard exponential

family. N is the natural parameter space, Ψ is the log Laplace transform (con-
form [64]) and θ is the canonical parameter.
Convexity of the parameter space N and function Ψ is needed to allow use the
mgf on this family. And we can use A.11 to build distributions in the exponen-
tial family.

Theorem A.14. N is a convex set and Ψ is a convex function on N .

Proof. Convexity of N follows from the definition, as it is an open set. Let
θ1, θ2 ∈ N then by Hölder’s inequality A.7 we have that for some α ∈ (0, 1):

exp(ψ(αθ1 + (1− α)θ2)) =

∫
exp (ψ(αθ1 + (1− α)θ2)x)µ(dx)

=

∫
exp (θ1x)

α · exp(θ2x)1−αµ(dx)

≤ exp(αΨ(θ1) + (1− α)Ψ(θ2))

For the convex set n we can use A.11 to show that the interval (−s0, s0)
exists in all k dimensions (by convexity). Hence, if we choose µ as the Lebesgue-
measure restricted to Ω, we can define a probability measure Pθ(dx) = pΨ(x; θ)µ(dx).
And hence, our function pθ(x; θ) ia a probability distribution, following the def-
inition p(x; θ) = exp (θx−Ψ(θ) + k(x)) where k(x) is the carrier measure fol-
lowing from the chosen probability measure Pθ. Thus we can define the moment
generating function

mθ(x) = exp(Ψ(θ + x)−Ψ(θ))

From which, we can now generate with an extra parameter φ

p(x; θ, φ) = exp((θx− ψ(θ))/φ+ k(x, φ)) (A.1)

Which leads to the known notation for exponential families.

Using the differentiability and the moments of Ψ, we see that Ex = ψ′(θ)
and Var(y) = φψ′′(θ). The full proof is shown in [19] Chapter 2.
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Appendix B

R-code

B.1 Hausman Test

## Code from: http://stackoverflow.com/questions/23630214/hausmans-specification-test-for-glmer-from-lme4

phtest_glmer <- function (glmerMod, glmMod, ...) { ## changed function call

coef.wi <- coef(glmMod)

coef.re <- fixef(glmerMod) ## changed coef() to fixef() for glmer

vcov.wi <- vcov(glmMod)

vcov.re <- vcov(glmerMod)

names.wi <- names(coef.wi)

names.re <- names(coef.re)

coef.h <- names.re[names.re %in% names.wi]

dbeta <- coef.wi[coef.h] - coef.re[coef.h]

df <- length(dbeta)

dvcov <- vcov.re[coef.h, coef.h] - vcov.wi[coef.h, coef.h]

stat <- abs(t(dbeta) %*% as.matrix(solve(dvcov)) %*% dbeta) ## added as.matrix()

pval <- pchisq(stat, df = df, lower.tail = FALSE)

names(stat) <- "chisq"

parameter <- df

names(parameter) <- "df"

alternative <- "one model is inconsistent"

res <- list(statistic = stat, p.value = pval, parameter = parameter,

method = "Hausman Test", alternative = alternative,

data.name=deparse(getCall(glmerMod)$data)) ## changed

class(res) <- "htest"

return(res)

}

B.2 Errors and failures in the glmer function

B.2.1 Example 2.3

Code for shrinking, centering and rescaling fixed effects. Here the data is de-
noted by data and a predictor is denoted by fixed_effect.

# Shrinking the fixed effect
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data$fixed_effect_small <- data$fixed_effect-min(data$fixed_effect)

# Centering the fixed effect manually:

data$fixed_effect_centered <- data$fixed_effect-mean(data$fixed_effect)

# Centering the fixed effect automatically:

data$fixed_effect_centered2 <- scale(data$fixed_effect, center=TRUE, scale = FALSE)

# Centering and scaling the fixed effect manually:

data$fixed_effect_scaled <- (data$fixed_effect-mean(data$fixed_effect))/sd(countData$fixed_effect)

# Centering and schaling the fixed effect automatically:

data$fixed_effect_centered2 <- scale(data$fixed_effect, center=TRUE, scale = TRUE)

B.2.2 Example 2.4

We now present first the code given in example 2.4 followed by a way to use a
different optimizer and a way to try them all (beware of the long running time).
We define the model as follows. Suppose we have some data with effects
effect_1,. . . ,effect_N and a response variable denoted by response which
is assumed to be Poisson distributed with offset exposure then we can define
our model to be of the form

glmmfit <- glmer(response ~ effect_i + (1 | effect_j) + offset(log(exposure)), data=data, formula=poisson(link="log"))

which is a standard Laplace approximation of our data. Then we can find
singularities and new derivatives with the following R-code

## Code to check for singularities and poor derivatives

library(numDeriv)

# Find singularity

glmmfit_theta <- getME(glmmfit, "theta")

glmmfit_lower <- getME(glmmfit, "lower")

min(glmmfit_theta[glmmfit_lower == 0])

# Recalculate the derivatives

derivs_1 <- glmmfit@optinfo$derivs # extract derivatives

# solve the equation for the Hessian and gradient

glmmfit_derivs_new <- with(derivs_1, solve(Hessian, gradient))

# compares the minima of the derivatives.

# In essence reproduces the value given by the error

max(pmin(abs(glmmfit_derivs_new), abs(derivs_1$gradient)))

# Repeat the calculations with numDeriv

# Only calculates deviance function hwen updating

glmmfit_devFunOnly<- update(glmmfit, devFunOnly=TRUE)

# Substract effect parameters

glmmfit_pars <- unlist(getME(glmmfit, c("theta", "fixef")))

derivs_2 <- list(gradient = grad(glmmfit_devFunOnly, glmmfit_pars),

Hessian = hessian(glmmfit_devFunOnly, glmmfit_pars)) # Retrieve new gradient and Hessian

# solve the equation for the Hessian and gradient

glmmfit_numDeriv <- with(derivs_2, solve(Hessian, gradient))

max(pmin(abs(glmmfit_numDeriv), abs(derivs_2$gradient))) # test new value

## Create new starting point for the model with more iterations
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new_start <- getME(glmmfit, c("theta", "fixef"))

glmmfit_new <- update(glmmfit, start=new_start,

control=glmerControl(optCtrl=list(maxfun=2e4)))

Choice of optimizer functions

In the spirit of: ”If all else fails, change optimizer” we here state a script which
switches optimizers for glmer. This code is due to Ben Bolker and given on
Stackoverflow. Notable to mention is the explained version given by Rstudio.

## Code to switch optimizers when using the glmer function.

# Credits go to http://stackoverflow.com/questions/23478792/

# warning-messages-when-trying-to-run-glmer-in-r

# and https://rstudio-pubs-static.s3.amazonaws.com/

# 33653_57fc7b8e5d484c909b615d8633c01d51.html

# Contrary to these sources, we load the function allFit

# from the afex package in R

# Loading the needed packages

library(afex) # Contains the allFit Function

library(optimx) # Contains some optimizers

library(nloptr) # Contains some more optimizers

# Start at the old solution

new_start <- getME(glmmfit, c("theta", "fixef"))

# Manual calculation with the "obyqa" optimizer

glmmfit_2 <- update(glmmfit, start = new_start,

control=glmerControl(optimizer="bobyqa",

optCtrl = list(maxfun=2e4)))

# Rescaling, choice of scaled parameters has to be done

# manually

data_scaled <- data

# cols_scaled needs to be chosen as set of columns

data_scaled[, cols_scaled] <- scale(data_scaled[, cols_scaled])

glmmfit_scaled <- update(glmmfit,data=data_scaled)

# Automated version using allFit

glmmfit_all <- allFit(glmmfit_scaled)

check_ok <- sapply(glmmfit_all, is, "merMod")

glmmfit_all_ok <- glmmfit_all[check_ok]

# Pull out the warnings

lapply(glmmfit_all_ok,function(x) x@optinfo$conv$lme4$messages)
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# Check log-likelihood and AIC

summary(sapply(glmmfit_all_ok,logLik),digits=6)

summary(sapply(glmmfit_all_ok,AIC),digits=6)

# Optional: Make a ggplot of all the optimizers

library(ggplot2)

library(reshape2)

library(plyr)

glmmfit_fixef <- t(sapply(glmmfit_all_ok,fixef))

glmmfit_fixef_melt <- melt(glmmfit_fixef)

glmmfit_models <- levels(glmmfit_fixef_melt$Var1)

(gplot1 <- ggplot(glmmfit_fixef_melt,aes(x=value,y=Var1,colour=Var1))+

geom_point()+

facet_wrap(~Var2,scale="free")+

scale_y_discrete(breaks=models,

labels=abbreviate(glmmfit_models,6)))

# Calculate coefficients of variation of the fixed-effect

# parameter estimates:

summary(unlist(daply(glmmfit_fixef_melt,"Var2",summarise,

sd(value)/abs(mean(value)))))

B.3 Rescaling fixed effects from 2.7.2

Here, we give example code, in which we use the dataset and fitted values from
[30] chapter 16.

####### File for testing the effect of scaling and centering on gl(m)m fits

library(lme4)

wc <- read.table("http://instruction.bus.wisc.edu/jfrees/

jfreesbooks/PredictiveModelingVol1/files/chapter-16/CountsWorkers.txt",header=T)

glmmfitnAGQ <- glmer(count ~ year

+ (1|riskclass)

+ offset(log(payroll)),family = poisson(link = "log"),

data = wc, nAGQ=25)

# Compare these fits to the scaled and centered version for ’year’

wcScaled <- cbind(wc, yearScaled=scale(wc$year))

wcCentrd <- cbind(wc, yearCentrd=scale(wc$year, scale=FALSE))

# Rerun the glmm/glm fits

glmmfitnAGQSc <- glmer(count ~ year + (1|riskclass)
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+ offset(log(payroll)),family = poisson(link = "log"),

data = wcScaled, nAGQ=25)

glmmfitnAGQCt <- glmer(count ~ yearCentrd

+ (1|riskclass)

+ offset(log(payroll)),family = poisson(link = "log"),

data = wcCentrd,nAGQ = 25)

# Build the predictions

predictionTableGlmmnAGQ <- cbind(glmmfitnAGQ=predict(glmmfit, type="response"),

glmmfitnAGQSc=predict(glmmfitSc, type="response"),

glmmfitnAGQCt=predict(glmmfitCt, type="response")

)

## Output:

head(predictionTableGlmmnAGQ)

# glmmfitnAGQ glmmfitnAGQSc glmmfitnAGQCt

# 1 2.361078 2.361080 2.361078

# 2 2.499743 2.499745 2.499743

# 3 3.264530 3.264532 3.264530

# 4 3.545302 3.545303 3.545302

# 5 2.669812 2.669812 2.669813

# 6 2.560298 2.560297 2.560298

# Calculate the total squared error

avgDiffGlmmnAGQ <- c(sum((predictionTableGlmmnAGQ[, 2]-predictionTableGlmmnAGQ[, 1])^2),

sum((predictionTableGlmmnAGQ[, 3]-predictionTableGlmmnAGQ[, 1])^2))

## Output:

print(avgDiffGlmmnAGQ)

# [1] 9.925802e-08 1.206280e-08
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Appendix C

Appendix to chapter 3

Customer choice distributions, mean and variance

The variance derivation for the uniform case:

Var(X) = EX2 − (EX)2

=
1

k

k∑
i=1

i2 − (k + 1)2

4

=
k2

3
+
k

2
+

1

6
− (k + 1)2

4

=
1

12
(k2 − 1)
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The mean and variance derivation for the finite geometric case:

EX =

n∑
k=1

kP(X = k)

=

n∑
k=1

k
1− r
1− rn

· rk−1

=
1− r

r − rn+1

n∑
k=1

krk

=
1− r
1− rn

1− (n+ 1)rn + nrn+1

(1− r)2

=
nrn+1 − (n+ 1)rn + 1

(1− r)(1− rn)

Var(X) = EX2 − (EX)2

=
n∑
k=1

k2P(X = k)− (EX)2

=
1− r

r − rn+1

n∑
k=1

k2rk − (EX)2

=
1− r
1− rn

1 + r − (n+ 1)2rn + (2n2 + 2n− 1)rn+1 − n2zn+2

(1− r)3
− (EX)2

=
r

(r − 1)2
− n2rn

(rn − 1)2

68



Bibliography

[1] Linear mixed models. https://www.statistics.ma.tum.de/fileadmin/

w00bdb/www/czado/lec10.pdf, 2004.

[2] Claim prediction challenge (allstate). https://www.kaggle.com/c/

ClaimPredictionChallenge/data, 2011.

[3] Generalized linear models, abridged. https://github.com/bwlewis/GLM,
2011.

[4] arm: Data analysis using regression and multilevel/hierarchical models.
https://cran.r-project.org/web/packages/arm/, 2015.

[5] caic4: Conditional akaike information criterion for lme4. https://cran.

r-project.org/web/packages/cAIC4/, 2015.

[6] Fitting linear models. https://stat.ethz.ch/R-manual/R-patched/

library/stats/html/lm.html, 2015.

[7] glmmbugs: Generalised linear mixed models and spatial models with win-
bugs, brugs, or openbugs. https://cran.r-project.org/web/packages/
glmmBUGS/index.html, 2015.

[8] Mumin: Multi-model inference. https://cran.r-project.org/web/

packages/MuMIn/, 2015.

[9] optimx: A replacement and extension of the optim() function. https:

//cran.r-project.org/web/packages/optimx/, 2015.

[10] Premies verzekeringen verschillen tot op huisnummer.
http://www.consumentenbond.nl/actueel/nieuws/2015/

verzekeringspremies-verschillen-tot-op-huisnummer/, 2015.

[11] winbugs. http://www.mrc-bsu.cam.ac.uk/software/bugs/

the-bugs-project-winbugs/, 2015.

[12] Erik P Ban. Dictaat functies en reeksen. 2014.

[13] Patrick Billingsley. Probability and measure. wiley series in probability and
mathematical statistics. 1995.

[14] Ake Björck. Numerical methods for least squares problems. Siam, 1996.
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[20] Hans Bühlmann. Experience rating and credibility. Astin Bulletin,
4(03):199–207, 1967.
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