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Abstract

The aim of this thesis is to determine the data requirements and feasibility of data-
driven top-down stress testing for credit loss rates. To that end, we use the Adaptive
Lasso method to simultaneously select and estimate parsimonious linear models from
a very large set of potential model specifications. Adaptive Lasso is a penalized
regression method which can accurately and uniquely select substantially relevant
predictors and has attractive asymptotic properties. The selected models are able to
give accurate forecasts in baseline and severely adverse macro-economic scenarios for
the United States. We find that the loan data needs to be divided into a minimum of
five categories to adequately capture the link between the macro-economy and credit
loss rates. For reliable forecasts, roughly 20 years of credit loss data is required, or
at least one complete business cycle must be present in the data.
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Chapter 1

Introduction

Setting The continued recurrence of financial crises in the economic history around
the world is astounding, especially since most of them seem to follow a similar pat-
tern. Typically, debt and risk gradually accumulate until a sudden panic starts on
the markets and a recession ensues. What is even more surprising is that financial
authorities have had little power in preventing these busts or reducing their impact,
despite their repetitive nature. The most recent economic crisis led to outrage in so-
ciety concerning the ineffectiveness of risk management and the incapability of banks
to protect themselves against adverse events. A central theme was the inability of
regulators and risk managers to predict the economic crisis.

Economic crises have a high cost because of their long-lasting negative impact, not
only on the economy but also on people’s pensions and livelihoods. Therefore, it is
important to learn from past mistakes. The complexity of markets and the macro-
economic system, currently make it impossible to predict what exactly triggers the
occurrence of a crisis or how it will propagate through the economic system. But
generally we are able to identify the risk factors driving the boom-bust behavior of
the economy. This allows us to construct sensible what-if scenarios in a so-called
stress test, which has become an indispensable tool in risk management. It can be
described as an assessment of the impact that adverse macro-economic scenarios
have on the portfolio of a bank or on general financial stability.

For stress testing we need to model the link between macro-economic developments
and banking variables in order to determine the impact of extreme scenarios on bank
profitability. The most frequently used approach is bottom-up, where predictions
about future profits or losses are made on the most disaggregated level of the port-
folio. Because bottom-up methods are generally data-intensive and make it difficult
to identify the exact drivers of losses, top-down methods that make predictions on
an aggregated level of the portfolio can complement this approach. The advantage
of using a top-down model is that it is quick, flexible, and the availability of highly
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granular data is not essential. Furthermore, parsimonious models can be used to
gain insight in the propagation mechanism of macro-economic shocks to profits and
losses and can give longterm forecasts. This makes top-down modeling a promising
and attractive direction for the development of new stress testing methods.

Contribution Until now, it is unclear whether it is even possible to capture the
macro-link in a parsimonious top-down model that makes accurate and reliable pre-
dictions. Neither does there exist a consensus on the ideal model specification.
In this report we show that precise predictions conditional on a macro-economic
scenario can be obtained using a completely data-driven approach to construct par-
simonious top-down models for credit loss rates of individual banks. This method
can even be used to produce accurate predictions for forecasting horizons of more
than five years.

The ultimate goals of this research project are closely related to the desire of
Rabobank to further improve its own top-down stress testing framework. The main
contribution of this thesis is twofold. First of all, we identify potential pitfalls and
limitations related to top-down modeling of credit loss rates. Secondly, the tech-
niques and methods that we employ, can aid in the model selection process. We
show that it is possible to use automated feature selection methods to discover the
most relevant predictors. In this report we pay special attention to the minimal
data requirements and the required granularity of the training data.

Currently, there exists little research that considers the effects of aggregation on
the prediction accuracy of top-down models. We find that more granular loan data
greatly improves the predictive strength of our top-down stress testing method,
since the specificity of macro-economic developments and the composition of the
loan portfolio can be taken into account. The results for different loan categories
in the portfolio strongly indicate that at least one crisis scenario in the training
data is necessary to accurately capture the macro-link. This is not surprising, since
data-driven top-down models can only learn from historical events present in the
data. Or to put it differently, a data-driven top-down model can only predict the
response for stress scenarios that are similar to historical data.

By approaching the top-down model from a statistical learning perspective, we in-
troduce, implement, and test a completely novel approach for model selection of
credit loss rates. This is done by regarding the model as a description of the learned
relationships in the historical data. We use Adaptive Lasso as an automated feature
selection procedure to generate hypotheses about the link between macro-economic
developments and credit loss rates for specific loan segments. Such an hypothesis is
in the form of a linear model specification. What is remarkable about Lasso methods
is their ability to produce sparse estimates for coefficients in a linear model. This
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means that coefficients of non-relevant predictors are shrunk to zero. The technique
can even be used when there are more predictors than observations, making it a
method that can select the most relevant predictors from a large set of candidates.
A favorable attribute of the Adaptive Lasso method is that it produces models that
can be assessed by expert judgment. We evaluate the selected models from an eco-
nomical perspective and use them to predict future credit loss rates conditional on a
macro-economic scenario. Our tests show that the predictive strength of the model
selected by the Adaptive Lasso method outperforms the currently used methods.

The final part of this report is devoted to a discussion of methods that can reduce
the potentially stringent conditions on the minimum amount of training data or
alternatively, the limitations on the stress scenario. If the requirement for completely
data-driven methods is relaxed, expert judgment can be used to supplement the
training data. The advantage of the new machine-learning perspective on macro-
economic modeling of credit loss rates is that it gives a suitable framework to learn
from past events in a data-driven manner. In the future, this framework could also
allow us to incorporate expert judgment and learn from events in other economic
systems.

Structure The remainder of this report is structured as follows. The thesis is
divided in the parts Background, Data, Model, Results, and Conclusion & Discus-
sion. The Background starts off with Chapter 2, which gives introductions to stress
testing, macro-economics, capital planing, and statistical learning. The aim is to fa-
miliarize the reader with important concepts and terminology of this thesis. Chapter
3 continues with definitions of the research problems and the formulation of precise
research questions. In Chapter 4, we give a concise overview of current advances in
the literature regarding top-down stress testing and statistical learning for financial
applications.

The Data part consists of two chapters which discuss the data that was used for this
research project. For the United States there exists a large publicly available data-
set containing structured information on financial statements of commercial banks.
Chapter 5 introduces and describes macro-economic and bank-data from the United
States and discusses the structure and availability of key banking variables. How-
ever, the available bank-data is intended for regulatory purposes. In Chapter 6 we
discuss how the data-set can be filtered and adjusted to be suitable for econometric
modeling.

The Model part starts with an introduction to Adaptive Lasso in Chapter 7. We
derive theoretical results that show that Adaptive Lasso is approximately unbiased,
gives sparse and unique solutions, and has desirable convergence properties. Chapter
8 describes how this technique can be used to select models for credit loss rates. The

3



part concludes with a description of our evaluation methods in Chapter 9.

In the Results part we present the empirical results for the models selected by Adap-
tive Lasso and benchmark models. Chapter 10 deals with the prediction accuracy
of averaged loan categories, Chapter 11 shows the results for loan categories taking
individual effects into account, and in Chapter 12 we discuss the results for the
complete portfolio of individual banks.

In the Conclusion & Discussion part we combine the results to answer the initially
posed research questions. The reliability of the model, potential improvements on
the method, and future recommendations are discussed in Chapter 14. Subsequently,
we address possibilities for the extension of the domain by new learning methods in
Chapter 15.

We devoted part of the research project to a literature study, and relevant back-
ground information on time-series and regression techniques can be found in Ap-
pendices A and B, respectively. For the development of the theory behind the Lasso
method, background knowledge in convex optimization is required. An overview of
some key results is given in Appendix C.
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Background
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Chapter 2

Research Setting

The purpose of this chapter is to provide relevant background information about
the setting in which top-down stress testing for banks is used. To that end, we
start off with a discussion of stress testing and its link to capital planning. To moti-
vate the importance of modeling credit losses, we break down the impact of several
types of profits and losses on the total profitability of a bank during a stressed
scenario. To complete the survey of our research setting, we include a concise de-
scription of macro-economic modeling and associated challenges. A second objective
of this chapter is to introduce and motivate our modeling approach. We give an in-
troduction to statistical learning, and pay special attention to its application to
macro-economic modeling. We explain shortly why techniques from this particular
field are useful in the context of top-down stress testing.

2.1 Introduction to Top-Down Stress Testing

In this section we present a broad description of current stress testing methods. Two
commonly used approaches to the implementation of stress tests are bottom-up and
top-down methods. A Strengths Weaknesses Opportunities & Threats (SWOT)
analysis is a structured planning method to assess the strengths, weaknesses, op-
portunities and threats involved in a future project. We engage such an analysis to
evaluate the advantages and disadvantages of top down stress testing and motivate
why it is a useful tool.

Description A stress test is an assessment of the impact of an extreme but plau-
sible shock to the macro economy on the financial position of the banking sector as
a whole or on the condition of an individual bank. Since the global financial turmoil
of 2007-2009, stress testing has rapidly grown to be a highly valued tool in risk
management [21]. From the perspective of financial authorities such as European
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Banking Authority (EBA) or the Federal Reserve, stress testing is a method that
can be used to decrease the likelihood and impact of a crisis by testing the financial
system’s resilience to (global) macro-economic shocks. On the other hand, from
the perspective of an individual institution, stress testing can be useful in planning
processes by allowing specific adverse future events to be taken into account.

Stress scenarios A stress test starts with the selection of a suitable macro-
economic scenario which represents a relevant shock. It is typically described in
terms of leading macro-economic indicators such as the unemployment rate, gross do-
mestic product, and price indices. Generally, financial authorities construct macro-
economic scenarios that affect the banking sector as a whole. These types of scenar-
ios are driven by systemic risk factors. The effect of such a scenario, for instance a
sovereign default, a decline in house prices, or a sharp decrease in oil prices, is then
translated to a future time-series of selected macro-economic variables. Banks are
instructed to assess the impact of such a scenario on their capital position, Profit
and Loss (P&L) statement, and liquidity. The results are then used to assess the
quality of the portfolios of individual banks and the resilience of the financial system
to the shock.

Another type of risk factors are idiosyncratic risks. These represent those risks that
are specific to an individual bank. As such, it is assumed that there is no correlation
between the systemic and idiosyncratic risk factors. Examples are a rogue trader
causing significant losses in the trading book of a bank, or a failure of the IT systems.
Individual banks can also construct their own stress scenarios. Typically, this is done
by performing a so-called sensitivity analysis on the portfolio. This boils down to
determining which exposures of an institution have the highest risk and applying a
negative shock to those exposures. Generally speaking, a suitable scenario needs to
capture market-wide, bank-specific or idiosyncratic events that could have a negative
impact on the bank’s financial position1 [42].

For this research project we consider longterm systemic risks caused by macro-
economic busts. In particular, we focus on the type of scenarios that are prescribed
by the annual Federal Reserve stress testing exercise. Such a scenario is expressed
in terms of financial indicators such as the Gross Domestic Product (GDP), House
Price Index (HPI), or the interest rates. A detailed discussion of these scenarios is
provided in Chapter 5.

1Actually, there exists an alternative to scenario testing, namely reverse stress testing. In that
case, instead of evaluating the influence of specific circumstances, one takes the outcome of a
business failure as a given, and identifies circumstances under which this event may occur.
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Bottom-Up and Top-Down Historical data can be used to estimate the rela-
tionship between macro-economic scenarios and banking variables. Such a model
can then be used to obtain predictions of the response of these banking variables to
shocks in macro-economic variables. This is a typical approach to stress testing. As
was mentioned at the beginning of this section, there exist two distinct approaches to
scenario testing; bottom-up and top-down stress testing. In the bottom-up case, the
portfolio of the bank is completely disaggregated into sets of similar products. The
bank uses its internal models to apply the macro economic shock to each product
type. The predicted profits and losses are then aggregated to evaluate the capital
position and liquidity of the bank in the macro-scenario.

An alternative approach is the top-down stress testing methodology. For such a
method one uses historic time series of the portfolio on an aggregated level, to esti-
mate the relation between macro-economic variables and bank profitability. Conse-
quently, the granularity of the data is much lower. The estimated relation between
the macro-economic and aggregated banking variables is then used to predict future
losses.

Top-Down (SWOT) analysis The advantages and disadvantages of top-down
stress testing can be analyzed by employing a Strengths Weaknesses Opportuni-
ties & Threats (SWOT) analysis. Below, we summarize the strengths, weaknesses,
opportunities, and threats that are associated with top down stress testing.

• Strengths: Since top-down stress testing methods use data on an aggregated
level, the data requirements are substantially smaller than those for bottom-up
stress testing, which uses more granular data. Also, noisy data may have an
adverse effect on model estimation and aggregated data is generally less noisy
than granular data. Finally, since estimation is done at a high level of aggre-
gation, the amount of models that need to be maintained is limited compared
to the bottom up case. Therefore top-down tests are relatively inexpensive in
terms of labor-cost.

• Weaknesses: By analyzing an aggregated portfolio we lose the ability to cap-
ture the sensitivity of the portfolio to specific shocks. A more detailed evaluation
of a shock to the loan portfolio, assesses the sensitivity of many product types
to a macro economic shock and takes specific exposures into account.

• Opportunities: An ideal top-down stress testing method provides a parsimo-
nious description of the relation between an aggregate portfolio and the variables
in a stress scenario. A parsimonious model is easier to interpret than a complex
model. Such a sparse model may give the opportunity to analyze the results
and act upon them. Therefore, a top-down model may contribute significantly
to a broader understanding of how the resilience of an institution to a negative
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shock can be improved. Simpler models can be easier to generalize, and it might
allow us to use a top-down model for forecasts up to five years.

• Threats: A concentration of risk exposures in the portfolio can be detected by
means of a stress test. If the method is not granular enough, the concentration
of exposures on lower levels of aggregation can be overlooked, leading to less
precise or inaccurate results. The aggregate predictions represent a broad range
of possible outcomes on a more disaggregated level. Since this may confound
important implications of the stressed scenario, this can lead to overly optimistic
conclusions. Another threat is that we inadvertently use an estimated model
for extrapolation. In this case, a linear model may seem appropriate on the
training data, whereas the relation between the variable is non-linear in reality.
Especially for extreme shocks, a misspecified model can then leave us with
substantially misguided information.

To supplement the bottom-up stress tests that are already frequently in use, this
research project was initiated to assess the feasibility of the top-down approach and
to develop methods for its enhancement. From the analysis above we conclude that,
due to the loss of specificity in top-down methods, it is crucial to determine an
appropriate aggregation level of the portfolio, which adequately captures the impact
of the specified scenario. More explicitly, we want to determine an aggregation level
of a bank’s loan portfolio, such that it is suitable to estimate a model that forecasts
credit losses conditional on paths of exogenous macro-economic variables.

The price or loss processes of different products may be correlated in a way that
cannot be explained by a common dependency on the macro-economic variables.
Such correlations can be difficult to estimate, but for a top-down method these do
not have to be taken into account directly. Moreover, since the data requirements
are expected to be substantially smaller, a top-down test can be executed quicker
and it is easier to adapt it to changing circumstances. Lastly, top-down models
could produce accurate predictions further into the future than bottom-up methods.
Therefore, a top-down stress testing method is a great complement to bottom-up
procedures.

Stress Testing and Forecasting Forecasting is the process of analyzing trends
on past data to predict future events. A model used for a stress test is an example of
a forecasting model since it predicts future losses. On the other hand, it is assumed
that the future macro-economic developments, as specified by the stress scenario,
are known and hence the results are only predictions conditional on these scenarios.

The main advantage of stress testing is that it provides an assessment of a bank’s
financial position in adverse scenarios whose occurrence is not predicted or captured
by existing methods. In fact, economic developments are not just uncertain, we
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do not even know the range of possible scenarios that can occur. Therefore it
is extremely challenging, if not impossible, to predict such extreme but plausible
events beforehand2. However, a stress test allows us to assess the impact of adverse
events on the portfolio. As such, stress testing can be used to protect institutions
and the financial system against macro-economic shocks.

Macro-economic modeling has been a topic of much debate, since it is subject to
the so-called Lucas critique. It can be argued that it is naive to predict the effect of
changes in the economy based on historical relationships between highly aggregated
data. One can only predict future states by assuming that all circumstances remain
equal (i.e. the world does not change). However, for stress testing the Lucas critique
is a problem of lesser degree, because one of the assumptions of a stress test is
that the future is already (partially) known and all other relevant circumstances
remain equal. Caution should however be taken with the use of historical data for
estimation, which may not be representative of the current economic conditions and
regulations. Stress testing should therefore be understood as a complement to the
existing risk framework.

2.2 Macro Economics and Capital Planning

To gain a better understanding of the economic setting of the research project
we studied generally accepted theory regarding credit, debt, and macro-economics.
Although a thorough economic interpretation of fluctuations in bank profitability
reaches beyond the scope of this thesis, we give a succinct introduction.

Macro-economics deals with the structure, performance, and behavior of the econ-
omy as a whole. A key concept is the so-called business cycle, which describes
the phenomenon that aggregate economic activity tends to fluctuate over a certain
period of time. Typically, a business cycle consists of the prosperity, recession,
depression, and recovery phase. These phases can be characterized by economic
measures such as the unemployment rate, GDP growth, and interest rates.

Many of the underlying processes that have been identified by economists are said
to be of a pro-cyclical nature, meaning that they generate a positive feedback sys-

2In the 1920s Knight and Keynes theorized about the different nature of risk and uncertainty.
In 1989 Bausor formulated the concept as follows: "Sample spaces must contain all possible future
outcomes, including the "true" outcome, and this inclusivity must be known. No possibility can be
neglected, overlooked or unimagined. States of the world, however, are not ontologically existential.
Through effort and skill, they must be conjured up from the imagination, and imagination is always
vulnerable to fallibility. People constantly experience previously unimagined phenomena, and the
potential for surprise remains ubiquitous. Since sets of imagined possible outcomes cannot be known
to be complete, no standard for measuring the relative strength of beliefs exists, and distributing
weights so that their sum equals one-the construction of a probability measure-becomes invalid and
meaningless."
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tem. The behavior of these fluctuations in economic activity is generally unpre-
dictable since typically, economic contractions and expansions occur aperiodically,
have asymmetric impact, and are of variable duration [55]. The banking system has
an important role in the propagation of this cyclical behavior.

Traditionally, a bank was a place where commodities, money or coin could be stored
safely. This practice dates all the way back to ancient Mesopotamia where depositors
collected a token in exchange for their commodities which could be traded with third
parties and on which interest could be charged [50]. Today, commercial banks play
a central role in our economy. They regulate (electronic) money transactions, offer
insurances, manage investments, provide currency exchange services, price complex
financial products and so on. However, the core business of banking still is its role
as an intermediary between lenders and borrowers.

Banks play a crucial role in the macro-economy by supplying borrowers with credit.
They operate by transforming deposits into loans with different characteristics such
as size, maturity, and currency. They take margins on these transformations and
charge fees to turn a profit [12]. Arguably, the availability of credit and the amount
of debt is closely related to longterm macro-economic developments [55].

In its capacity as an intermediary, the bank manages its assets, liabilities and equity.
The ratios between assets, liabilities and equity need to comply with the regulations
of central banks and other financial authorities whilst generating profit for the bank
and its potential shareholders. Profits are generated by maintaining a margin on the
interest rate paid by debtors and collected from creditors and by charging fees for
other financial services. Losses are incurred by lower valuation of (trading) assets
and defaults on loans [12]. Default rates and asset values are susceptible to macro-
economic shocks.

In order to inform shareholders and regulators about the condition of the bank
and its profit results, most commercial banks regularly publish financial statements
such as the balance sheet and the Profit and Loss (P&L) statement. The latter
is a summary of the revenues, costs and expenses incurred during a certain period
of time. It typically contains items such as interest income, interest expense, non-
interest income, non-interest expense, operational costs, provisions, and taxes. Each
of these items can be further disaggregated into subcategories. Below we give a brief
description of the items that can typically be found on the P&L statement.

• Net Interest Income: Banks generate income by managing the spread between
interest rates paid on deposits and interest rates charged on loans. As an
intermediary, a bank transforms deposits into loans which typically have a longer
maturity than the deposits. This mismatch between assets and liabilities causes
interest rate risk to a bank, since a discrepancy between the interest charged and
received changes. Therefore bank profitability is sensitive to systemic shocks to
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the interest rates.
• Non-Interest Income: Non-interest income is important for banks to insulate

themselves against interest rate risks. This item consists of fees and commissions
which can be charged on brokerage services, insurance services, etc. Another
component of non-interest income are profits generated by trading activities
and gains from selling securities. Generally, the income from fees and commis-
sions is relatively stable and trading income is viewed as highly volatile and
unpredictable. The main risk factors for non-interest income are both systemic
and idiosyncratic.

• Provisions: Reserves for loan and lease losses that are kept on the balance sheet
are depleted as credit losses are incurred. These loss reserves are replenished by
provisions, which are deducted from the bank’s revenues. Provisions are subject
to the risk that the underlying securities of loans decreases in value and to the
risk that the borrower defaults. Provisions are affected by systemic shocks to
the macro-economy.

• Operational Costs: A bank is a business and therefore it has operational costs,
which includes staff costs, administrative costs, depreciation and amortization.
When an exogenous systemic negative shock to the entire banking sector oc-
curs, the regulations in the country that the bank operates in are important.
A flexible market allows a bank to efficiently reduce its labor costs and thus
increase its profitability. Risk factors include both systemic and idiosyncratic
risk.

• Taxes: Finally, taxes must be deducted from the profits. The amount of taxes
is determined by (inter)national laws and regulations.

In order to get a sense of the typical size of some items on the P&L statement, we
show some of the annual profits and losses for Rabobank between 2004 and 2014
in Figure 2.1. It can be seen that in the last decade the items net interest income,
non interest income, and credit losses have all been sufficiently large to significantly
impact the total profitability of Rabobank.

For this research project we decided to focus on predicting credit losses conditional
on macro scenarios. Since these are typically sensitive to long-term macro-economic
developments and shocks, it is an interesting item on the P&L statement. Further
research is necessary to develop methods for the stress testing of other items on the
P&L statement.

The capital position of a bank must be in compliance with rules set by financial
regulators. The change in an institution’s capital over a period of time depends on
the profits (losses) incurred during that period. Therefore, the forecasting of items
on the P&L statement conditional on macro-economic developments is meaningful
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Figure 2.1: Rabobank’s Profit & Loss Statement

for a stress test on the capital position of the bank. The item provisions appears
directly on the income statement as an expense. It is used to replenish the allowance
for loan and lease losses that is kept on the balance sheet. The amount of provisions
that is booked is calculated according to a scheme that takes into account the credit
losses in the preceding period, and the expected losses in the following period. We
assume from here on that provisions can be calculated directly from credit losses,
and focus solely on the modeling of credit loss rates [47].

The call for a sound capital planning process is a serious aspect of the Basel III
accord. This condition specifically requires a bank to assess the risks to which it
is exposed and to consider the potential impact on earnings and capital caused by
an economic downturn. According to Basel III, a robust stress testing framework
conservatively captures the change in risk factors in forward-looking scenarios. The
impact of a stress test should then reflect changes in income, loss, exposure, risk-
weighted assets and a change in capital needs [42]. To comply with these directions,
a diverse and repeatable stress testing framework needs to be incorporated into
banks’ capital planning processes.

Rabobank wishes to adopt such a forward looking approach to capital planning.
At Rabobank, a capital planning tool is currently being extended, which should
ideally include a module for top-down stress testing. This enables Rabobank to
quantitatively consider the potential impact of future events on its earnings and
its capital position. The main goal is to develop new methods than can predict
losses conditional on macro-economic scenarios up to five years into the future. The
methods for credit losses that were developed during our research project, can be
used in the development of such a broad framework that focuses on the assessment
of the capital position of Rabobank, given an adverse future scenario for the macro-
economy.
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2.3 Statistical Learning and the Lasso

Machine learning is a field of computer science that studies algorithms that can
be used to learn from data and make data-driven predictions. Originally, machine
learning was defined as ‘a field of study that gives computers the ability to learn
without explicitly being programmed’. Its aim is to build a model from example
inputs. The combined field of machine learning and statistics is often referred to as
statistical learning. With the rapid expansion of problems concerning large datasets,
statistical learning techniques have become exceedingly popular in a variety of fields
such as biology, business, and medicine.

Typically, statistical learning methods can be classified as either supervised or un-
supervised. Broadly speaking, supervised statistical learning tools are used to build
a model for estimating or predicting an output based on a set of inputs. As such,
supervised statistical learning is the process of extracting regularities from large and
complex data sets to learn about the environment and make predictions. When the
data is unsupervised, there is no output data, but relations and structures can still
be learned from such a data set. A top-down model that relates banks’ credit losses
to macro-economic scenarios surely falls into the supervised learning category.

So when can we say that a computer program is learning? A common definition is
that ‘it learns from experience E with respect to task T and performance measure
P, if its performance at tasks in T as measured by P, improves with experience E’.
In a typical statistical learning problem response variables y ∈ Y ⊆ Rn have to
be predicted from a set of feature variables x = (x1, . . . , xn) ∈ X ⊆ Rn×p. We
say that the labeled data (y1, x1), . . . , (yn, xn) ∈ Y × X are distributed according
to a density p(x, y) and we assume that this distribution never changes. The idea
is that the computer is presented with input data x ∈ X and output data y ∈ Y,
and automatically learns a mapping f(x)→ y. In this case the learning task is the
mapping f and the experience is the number of labeled data. A possible performance
measure is the sum of squared residuals

n∑
i=1

(f(xi)− yi)2 .

When f is a linear mapping, this performance measure corresponds to the well-
known Ordinary Least Squares (OLS) regression. The disadvantage of OLS is that
the structural form of the model needs to be specified in advance. A renowned
supervised learning algorithm that does not need a pre-specified model, is the Least
Absolute Shrinkage and Selection Operator (Lasso) method, which was introduced
by R. Tibshirani in 1996 [2]. It minimizes the sum of squared residuals, but adds a
penalty based on the absolute size of the coefficients of the linear model. In Chapter
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7 we shall proof that this methods sets coefficients to zero, resulting in a sparse and
parsimonious model.

The idea of the Lasso method is to minimize,

n∑
i=1

yi − p∑
j=1

xijβj

2

+ λ
p∑
j=1
|βj | (2.1)

where λ is a tuning parameter that controls the complexity of the resulting model. If
λ = 0, the problem reduces to OLS regression, and when λ =∞ all of the coefficients
will be set to zero. The key to a good solution is that there exists an optimal λ,
which balances the variance and bias of the model, resulting in low prediction errors.

This much acclaimed procedure possesses many favorable statistical properties3,
and allows for data-driven model discovery. Another fortunate attribute of the
method is that it can, unlike classical methods, estimate the coefficients β of a linear
model, when the number of predictors far exceeds the number of observations. It
can be shown that these predictions are unique, under very light conditions. Also,
feature selection for a statistical model can be fully automated using Lasso methods.
A slightly more involved version of Lasso is Adaptive Lasso, which can be shown
to give approximately unbiased estimates of β. Moreover, it possesses attractive
convergence properties. During the research project we chose an initial formulation
by determining potentially relevant predictors. We developed techniques based on
Adaptive Lasso to effectively model and predict credit loss rates in stressed scenarios
for banks.

The discussion of macro-economics and bank profitability in Section 2.2 suggests
that macro-economic data and credit loss rates are related in a complex way. In
fact, as Doornik and Hendry (2015) put it, we are dealing with inaccurate measure-
ments of non-stationary and high-dimensional systems that are correlated, probably
non-linear and on top of that evolving in time. This makes model selection a highly
challenging exercise. For such complex systems all important predictors, their in-
teractions and non-linear dependencies need to be taken into account. Since the
correct model specification cannot be known in advance, the substantially relevant
effects need to be discovered in a data-driven way. Omitting relevant variables may
lead to erroneous conclusions, while over fitting a model can lead to spurious regres-
sion. Therefore, we risk selecting a significantly misspecified model [51]. However,
a sound statistical analysis requires a model which is adequately specified. To ad-
vance the model selection problem, we propose the use of Lasso methods to discover
a parsimonious model.

Machine learning is a fast-growing area of research, which has received much praise,
3The finite-sample and asymptotic properties of Lasso will be derived in Chapter 7
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but also a lot of criticism. Most of it is aimed at the large amount of false positives
that are detected in data sets [46]. In this case, accuracy is overrated by ignoring
the non-existing relations that were found by the procedure as well. A second aspect
of the critique is that machine learning algorithms give no insight in causality or
underlying mechanisms and hence can only give associations. This can be harmful
since a researcher that cannot explain which causes what, cannot be sure what may
cause the correlations in the model to break down. This has led researchers in some
fields to the conclusion that machine learning ’is not a big deal, just another tool’4.
What is meant by this, is that the results of machine-learning methods should not
be trusted blindly and need to be evaluated from a theoretical point of view.

For high-dimensional data problems with many predictors, machine learning meth-
ods are an important part of the toolbox. Lasso methods are highly valuable tools
because the discovered models can easily be evaluated from a theoretical point of
view. High-dimensional data problems can, for instance be encountered in macro-
economics. A major problem is that when statistical results cannot be validated
by scientific experiments, we must rely solely on statistical inference. Therefore,
statistical learning methods need to be equipped with measures of uncertainty, re-
liability and significance [25]. Another advantage of Lasso estimators is that some
of these measures can be derived, and much work is being put forward to improve
these measures. Importantly, for a top-down model the selected predictors from the
initially chosen set of candidates can be evaluated from an economic point of view.

4This was one of the conclusions of the panel discussion Large Data and Hypothesis-Driven
Science in the Era of Post-Genomic Biology with Bruce A. Beutler and Nobel-laureates J. Michael
Bishop, Moderator Stefan H.E. Kaufmann, Brian Schmidt and Jules A. Hofmann in Lindau on July
2, 2014.

17



18



Chapter 3

Research Questions

In the previous chapter we explained that the focus of this thesis is on the modeling
of credit losses for top-down stress testing purposes. We develop a top-down model
to assess the extend to which it can be used for the stress testing of credit losses.
In this chapter we formulate the research questions that we aim to resolve in this
report, and the main goals of our research project. To that end, we introduce
relevant notation and provide a description of the problem setting. We proceed with
precise statements concerning the research problems. We conclude by establishing
our research questions.

3.1 Assumptions and Definitions

From here on, we let time be indexed by t = 1, 2, . . . , nT at intervals of one quarter of
a year. The loan portfolio consists of many individual loans, which are organized in
loan categories. Loss rates on such categories are assumed to be uncorrelated, apart
from a common dependency on macro-economic developments and bank-specific
predictors.

Definition 3.1. (Loan Categories) The individual loans in a loan portfolio P are
aggregated in loan categories Pi with i = 1, . . . , nC , based on similarity in their
characteristics (such as maturity or type of underlying security). It holds that
Pj ∩ Pk = ∅, ∀ j 6= k ∈ {1, . . . , nC}.

In the general framework for bottom-up stress testing models, absolute credit losses
have three components. Firstly, a loss is only suffered when the borrower defaults.
Secondly, the maximal loss that the bank suffers is the exposure it has towards
the borrower. And finally, the amount that is lost in case of a default depends on
the value of the underlying security at that time. For instance, when a customer
receives a mortgage, the value of the house serves as a security to the bank. If the
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customer were to default, then part of the current value of the house R can still be
recovered. We use the well-known terms Probability of Default (PD), Exposure At
Default (EAD) and Loss Given Default (LGD), respectively, to describe the three
components of credit loss.

Since the size of loan portfolios changes over time and differs between institutions,
losses need to be made comparable to model them effectively. A natural way to
accomplish this is to focus on credit loss (CL) rates instead of absolute losses. PD,
LGD, and EAD are related to credit losses in the following way,

CL
EAD ∼ PD× LGD = PD× (1− R). (3.1)

On the other hand we have Net Charge Offs (NCO) rates, which can be interpreted
as a measure for the loss rate on each dollar that is lent out. We let NCOi,t denote
the net charge offs for one loan category Pi at time t. Charge Offs (CO) are the
amount of loans that is written off due to a default, and Recoveries (RC) are the
amount of the defaulted loans that is recovered. Lastly, Total Loans (TL) is the
total amount of outstanding loans.

Definition 3.2. (Net Charge Off Rates) NCO rates on a loan category Pi ∈ P are
a function of Charge Offs (CO), Recoveries (RC), and Total Loans (TL). It can be
calculated as follows,

NCOi,t = COi,t − RCi,t
TLi,t

. (3.2)

From 3.2 it follows that we can only obtain NCO rates for discrete time intervals
since we need to estimate this rate by charge offs and recoveries that are accumulated
over time. To illustrate this we present the average of the accumulative CO, RC,
and their difference for all commercial banks in the United States in Figure 3.1. The
NCO rate can be obtained by dividing the difference between the charge offs and
recoveries by the total outstanding amount of loans.
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Figure 3.1: Average quarterly charge offs and recoveries for all US banks in 2014.
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Alternatively, we can interpret NCOi,t as a continuous process representing the
annual net percent loss at time t on the total of outstanding loans within loan
category Pi ∈ P. But for this research project, we define NCOi,t as the average
NCO rate in the time interval (t − 1, t], and calculate the rate in each quarter t
by using accumulated charge offs and recoveries in equation 3.2. In Chapter 6 we
discuss possible issues with obtaining discrete-time estimates for the NCO rate from
reported Charge Offs, Recoveries, and Total Loans regulatory data.

Where bottom-up stress testing methods typically estimate PD,LGD and their cor-
relations to model losses for individual loans, we suggest to model Net Charge Offs
(NCO) rates for an entire loan category Pi directly. First we note that equation 3.2,
can be rewritten as,

NCOi,t = COi,t

TLi,t

(
1− RCi,t

COi,t

)
. (3.3)

The relative amount of charge offs compared to the total outstanding loans can be
interpreted as a default rate di for each dollar. Similarly, we can define ri as a re-
covery rate for each outstanding dollar in loan category Pi. An intuitive formulation
of equation 3.3 is therefore,

NCOi,t = di(1− ri). (3.4)

The NCO rates as defined in equation 3.2 can thus be interpreted as an aggregated,
top-down version of the credit loss rates in equation 3.11. In Chapter 4 we discuss
common practices with respect to top-down stress testing, and it turns out that in
current literature it is common to model Net Charge Offs (NCO) rates instead of
absolute credit losses in the top-down setting.

Typically, net charge off rates are presented as a percentage. Theoretically, the
rate should be between 0% and 100%, because the bank cannot lose more than the
exposure it has towards the borrower and the recovered amount should not exceed
this exposure. Due to the processes within the bank that are involved with writing
off debt and recovering loans, rates below 0% and above 100% do occur in practice.

The goal of top-down stress testing is to make forward predictions for NCO rates,
conditional on macro-economic scenarios, keeping all other circumstances constant.
The forecasting or stress horizon is the period for which these predictions are made.

Definition 3.3. (Stress horizon) The stress testing horizon h is the number of
quarters for which a forecast of the NCO rate conditional on a stress scenario is
given.

Typical values for the stress horizon are in the range of 4 to 20 quarters. Following
1For a comprehensive example of this principle see Wang (2013) [41]
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stress testing practices in the United States, we will focus on forecast horizons of
9 quarters in particular. The optionality to forecast even further ahead is one of
the most attractive features of top-down compared to bottom-up stress testing. For
Rabobank this is an important consideration and therefore we also take long-term
forecast of up to 5 years into account.

Definition 3.4. (Macro Stress Scenarios) Let Mt denote a (p × 1)-vector of the
values at time t of macro economic variables that are included in the stress scenario.
The scenario Mt,t+h = (Mt,Mt+1, . . . ,Mt+h) is a discrete description at regular
(quarterly) intervals of the future state of the macro-economy in an adverse event.

For the prediction of loan loss rates for individual banks, specific characteristics of
the bank in question may also be relevant in explaining variation in NCO rates for
individual banks. Furthermore, the use of NCO rate data for multiple banks may
help to separate losses due to idiosyncratic risk factors from those due to systemic
macro-economic developments. Estimating individual effects might help us control
for factors that are independent of macro-economic variables. To that end, we
denote banks by bj : j = 1, . . . , nB and let Bj,t be a (q × 1)-vector of (relevant)
bank-characteristics of bank bj at time t. From here on, we let NCOi,j,t denote the
NCO rate at time t for bank bj and loan category Pi.

In summary, we want to make accurate predictions for future net charge off rates
NCOi,j,t, . . .NCOi,j,t+h on loan categories Pi ∈ P, for bank bj , given a macro eco-
nomic scenarioMt,t+h, until forecasting horizon h. A very general form of a top-down
model could be,

NCOi,j,t+h ∼ fi,j(Mt,t+h, Bt,NCOi,j,t) + εi,j,t+h, (3.5)

where fi,j is a function of unknown form for loan category Pi, and εi,j,t is an error
term with unknown structural form. Note that there are no future paths for bank
characteristic variables given in stress scenarios and therefore fi,j is a function of Bt
and not of the path Bt, . . . Bt+h.

In a stress test we assume, that all circumstances remain equal over the stress
horizon, with the exception of the macro-economic stress variables whose values are
known. This simplifies the task of predicting future NCO rates, since no paths need
to be generated for other risk factors. For model estimation, we would like to control
for these independent risk factors. Since we are interested in the opportunities of
stress testing for an individual bank and NCO rates differ among banks, we would
like to uncover a relation between bank characteristics and credit losses. These
bank-specific variables may be able to explain heterogeneity in NCO data.

We note that, there exists no theoretical models that link changes in the macro-
economy to aggregated NCO rates. The macro-economy and the financial system
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are both extremely large and highly complex systems whose dynamics are not well
understood [51, 46]. The challenge is therefore the discovery of a link between
macro-economic developments and bank profitability, preferably using a large set of
data. To determine whether top-down stress testing is feasible and to which extend
it can be used for real applications, we make assumptions about fi,j in equation
3.5 and show that we can construct a model that can produce accurate long-term
predictions.

3.1.1 Mathematical Notation

In the remainder of this thesis we use the following notation. The number of pre-
dictor variables is p, and the number of observations is denoted by n. We let Y be
a (n× 1) vector of response variables. The design matrix X is an (n× p)-matrix of
predictor variables. We let Xi represent the ith row of X. Furthermore, we let || · ||2
and ||·||1 denote the L2 and L1 norm, respectively. The L2 and L1 norm of an (p×1)
vector β can alternatively be denoted by

∑p
j=1 β

2
j and

∑p
j=1 |βj |, respectively. For

the derivation of Lasso results in following chapters, we assume that the columns of
X are centered and scaled to have mean 0 and variance 1, unless noted otherwise.

3.2 Research Questions

Each of our research questions serves as a stepping stone towards a general method
for top down estimation and prediction for stress testing. The resulting top-down
model is used to explore the opportunities and assess the reliability of top-down stress
testing. We identify several aspects of this exercise, and for each aspect we give a
short introduction to the problem and conclude with the formulation of research
questions. For the remainder of this section, we assume that an adverse macro-
economic stress scenario Mt,t+h is given, and unless noted otherwise, we consider a
fixed loan category Pi and drop the subscript i from our notation.

3.2.1 Predicting Average Net Charge Off Rates

We consider the average NCO rate for all commercial banks. That is, we calculate,

NCOav
t =

∑nB
j=1 (COj,t − RCj,t)∑nb

j=1 TLj,t
. (3.6)

We know that the macro-economy affects banks’ revenues and losses, but we do not
know the exact relation between macro- and bank-variables such as NCO rates.
Where theoretical models are available for the bottom-up case, there exists no
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theory-based model for top-down models. It is reasonable to expect that the macro-
economic effect on NCO rates may be of a nonlinear nature [51]. Because we are
interested in prediction of NCO rates in extreme but plausible events, we need to
consider nonlinear models, since linear approximations typically do not perform well
for stress scenarios.

Considering many of such nonlinear transformations and interactions between macro-
economic variables quickly leads to a staggering amount of potential predictors.
Therefore we want to use Adaptive Lasso to select the substantially relevant trans-
formations. Recall from the previous section that a stress scenario is specified in
discrete time until some forecasting horizon h. Let Ft be the natural filtration of
the real-world probability space. We assume that the expected future NCO rates
conditional on Mt,t+h can be obtained by estimating α, β, and f in the following
way,

E[NCOav
i,t+h|Ft,Mt,t+h] = α+ βf(Mt,t+h), (3.7)

where the function f performs linear and non-linear transformations on the macro-
economic data and β is a vector of coefficients. Since we do not know beforehand
whether the NCO rate process is auto-regressive, we consider both the inclusion and
exclusion of auto-regressive error terms. Applying Adaptive Lasso to estimate the
model in 3.7, allows us to answer our first set of research questions:

i Can we use automated feature selection by employing Lasso methods to iden-
tify the model specification?

ii Can we construct a model that gives accurate predictions for NCO rates con-
ditional on exogenous macro-economic paths?

iii Do we need to consider auto-regressive model specifications?

The macro-economic effects that we want to capture in a top-down model are of a
longterm nature. Since we use historic data to learn regularities about the connec-
tion between NCO rates and the macro-economy, we require a large amount of data.
The predictions of the average model in a stress scenarios can be evaluated. Since we
assume that the loan portfolio can be disaggregated into nC loan categories, we can
make predictions for NCO rates NCOav

i,t for i = 1, . . . , nC . The range of the relevant
historical macro-economic data compared to the range of the macro-economic vari-
ables in the stress scenario differs per category. By applying our method to average
NCO rates on different loan categories Pi, we shed light on the following research
questions:

i What are the minimal data requirements for top-down modeling?
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ii How do data limitations affect the prediction accuracy?

3.2.2 Predicting Net Charge Off Rates with Individual Effects

The main objective of the aggregate estimation exercise is to develop a method (or
model) that can be used to discover the relation between credit losses and macro-
economic developments. Since we are particularly interested in systemic effects that
impact the loan portfolio, it can be convenient to separate idiosyncratic effects that
are suffered by individual banks due to the specific circumstances of that bank, from
systemic risk drivers. That way, we can control for other influential circumstances
and obtain forecasts, where all other conditions remain the same.

We considered the losses for multiple banks at once in the average model. Another
option is to use panel data models2.

A distinction can be made between bank-specific variables that evolve over time
such as the capital ratio, and those that are more or less constant over time such as
geographical location. We let Bj,t be time-dependent bank-specific variables. When
we use panel data, we assume that for banks j = 1, . . . , nB,

E[NCOi,j,t+h|Ft,Mt,t+h] = αi,j + ci,j (βf(Mt,t+h) + γBj,t) , (3.8)

where f is a function that performs non-linear transformations on the macro-economic
data. Using this model, we consider the following research question:

i Can bank-specific variables help explain variability in the credit losses between
banks?

ii If we assume that γ = 0, can we then obtain accurate predictions for NCOi,j,t+h?
Or, is the inclusion of bank-specific effects necessary?

3.2.3 Forecasting NCO Rates for Individual Banks

From the SWOT analysis of the advantages and disadvantages of top down stress
testing in Section 2.1, we concluded that it is prudent to strike some middle ground
between bottom-up and top-down methods, in the sense that we select loan cate-
gories Pi ∈ P which allow us to capture the specificity of a macro economic shock
and aggregate the predictions. Moreover, the specific composition of an individual
bank’s portfolio may play an important role in the development of its NCO rates in
a stress scenario. For instance, it is typically so that the losses on credit card loans

2In Appendix B we give a concise review of modeling with longitudinal data (also known as
panel data).
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are much higher than losses suffered on real estate loans. Therefore, a bank with
a larger share of credit card loans in its portfolio can have higher loss rates than a
bank with a relatively large share of real estate loans in its portfolio.

Essentially, this tells us that it is necessary that we determine a level of aggregation
which is suitable for the prediction of the response of credit losses to shocks on se-
lected macro economic variables. After a model for the estimation and prediction of
NCO rates of an arbitrary loan category is found, the next step is to disaggregate
the total loan portfolio in such a way that sensitivity to shocks and accuracy of the
prediction is preserved, whilst keeping the model parsimonious and reducing noise.
For the selection of the aggregation level of the top-down model the availability of
(publicly) available bank data should be considered. Discovering the ideal aggrega-
tion level comes down to finding an optimal combination of top-down and bottom-up
methods, as was previously discussed in Section 2.1.

We assume that the loan categories can be organized in a hierarchical structure. We
consider three levels of this structure which are referred to as aggregation levels A1,
A2, and A3, where A1 is the lowest and A3 is the highest level in the hierarchy. Each
level consists of aggregated loan categories such that for all loan categories a1 ∈ A1
we have that a1 ⊆ a2 for some a2 ∈ A2 and for all a2 ∈ A2 there exists some a3 ∈ A3
such that a2 ⊆ a3.

For each aggregation level we can predict NCO rates for an individual bank, using
the methods developed in the previous two sections, by combining the predictions
for different loan categories. This can be done by taking a weighted average of the
rates for the different categories,

NCOtot
j,t+h(Ak) =

∑
ai∈Ak

NCOai,j,t+h
TLai,j,t
TLtot

j,t

, (3.9)

for k = 1, 2, 3.

This final method gives predictions for individual banks’ credit loss rates conditional
on a macro-economic scenario. The results of this model allow us to answer the
following research questions.

i What is the influence of the granularity of the NCO data on the accuracy of
top-down models?

ii What prediction accuracy can be obtained by a top-down stress tests on the
loan portfolio of an individual bank?

iii What stress horizons are feasible for top-down stress testing?
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3.2.4 Delimitations

The methods described in the previous section lead to a complete top-down model.
We use this method to gain a better understanding of the possibilities and limitations
of top-down stress testing. The models that we use are not yet directly applicable
for Rabobank, because the results of the presented models are determined on data
from the United States and the reliability of the method and resulting models needs
to be evaluated further. The following topics are only discussed briefly or will be
addressed in the discussion part of this report.

Once we have obtained a model to predict the NCO rates for loan categories in the
aggregate bank loan portfolio, or individual banks’ loan portfolios, what remains
is to test its accuracy and reliability. The use of real observations is troublesome,
especially for individual banks, since the noise in the observations or the effect of
idiosyncratic events may be substantial. Moreover, there is only one sample of
the macro-economic path and we cannot test the resulting model by a controlled
experiment. This makes the evaluation of any model more challenging.

Part of a lack in reliability of the predictions might be due to the input of a stress
scenario that is too dissimilar from the macro-economic developments in the training
data. Note that stress testing is not a tool to predict the future, but rather a method
that gives expectations of the NCO rates, based on the knowledge of today. Let D
be the range, or domain, of the data on which a model for the prediction of NCO
rates is estimated. The domain of a model can be specified as a function of the
training data. Assume the training data is given by response variable y ∈ RnT and
predictors x ∈ RnT×p. A possible definition of the domain is,

D = {d ∈ Rn| min
1≤i≤nT

xi,j ≤ dj ≤ max
1≤i≤nT

xi,j , dj , ∀j = 1, . . . , p}. (3.10)

For each top-down method a suitable input domain for stress scenarios should be
defined. Furthermore, the user needs to be aware of the implications of using more
extreme scenarios for prediction in a stress test. This boils down to determining the
effect of limiting the range of the estimation data in each dimension. Extrapolating
a model poses risks, since the data contains no information about the relationship
between macro and bank variables outside of the domain.

It could happen that, especially when there is little available data, that the response
of NCO rates can only be reliably predicted for a very limited amount of stress
scenarios. Since easily accessible bank data is scarce in Europe and the Netherlands,
options to extend the range of macro scenarios for which we can predict NCO rates
need to be explored. In particular, it would be interesting to investigate whether we
can use functions fUS learned on data from the United States to help discover fEU.
Another option is the quantitative incorporation of expert judgment.
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Because there was a limited amount of data available for the European case, we only
considered the prediction of NCO rates on data from banks in the United States. In
the discussion part of this thesis we present recommendations based on this research
project for the continued improvement of top-down methods for Rabobank.

The above discussion can be summarized by the following remaining questions:

i How can we measure the accuracy or reliability of a stress test?
ii Can we obtain reliable confidence intervals for the predictions of a top-down

stress testing model?
iii Can the domain of a top-down model be extended?

3.3 Summary

We contribute to the extension of Rabobank’s top-down stress testing framework
by determining what can be expected from such an exercise. We model NCO rates,
which are closely related to credit losses, in three steps. First we consider averaged
NCO rates across banks for different loan categories. Then we use a panel data
model to incorporate individual effects and scaling factors. Lastly, the individual
NCO rate models for loan categories are aggregated to produce models for the total
loan portfolio. In all models we consider linear and non-linear transformations of
the macro-economic data.

We employ statistical learning methods to predict future NCO rates, conditional on
future developments of the macro-economy in the United States. We focus on stress
horizons of nine quarters, but also take long-term stress horizons of five years ahead
into account. Since the macro-economic paths are assumed to be known, the task is
to discover the relation between NCOs and stressed scenarios. The resulting model
is then used to determine a feasible range for the prediction accuracy of top-down
models and assess the effects of aggregation and the limitations set by the scope
of the training data. We try to capture the heterogeneity in different banks’ NCO
rates by considering the loan composition, individual effects, and scaling factors.
Furthermore, we show that Adaptive Lasso can be used to automatically obtain a
parsimonious linear model specification, that gives accurate predictions. The model
is compared to linear and auto-regressive benchmark models to show its superior
forecasting ability. Part of the thesis discussion is intended to indicate how the
method we use to answer the research questions can be exploited by Rabobank.
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Chapter 4

Literature

The literature on top-down stress testing credit losses is relatively scarce. However,
the recent global financial crisis, after which the Federal Reserve initiated obligatory
stress tests for large financial institutions, sparked a renewed interest in top-down
stress testing and related methods. Since nobody saw the financial turmoil coming,
more attention was focused on methods that help to protect the financial system
against severely adverse events.

We give a detailed overview of some existing techniques for top-down stress test-
ing credit losses1. In this chapter we discuss the methods and results of several
compelling and recently published articles. We pay special attention to the issue of
variable selection. The current literature is divided on the topic of variable selec-
tion and we shall include an overview of some literature regarding this topic in this
chapter. We contribute to this discussion with the results of our research based on
automated feature selection by Adaptive Lasso.

4.1 Credit Losses for Top Down Stress Testing

Stress testing financial institution’s profitability or capital condition requires an
impact analysis of a stress scenario on the institution’s entire portfolio. Most papers
that deal with top-down stress testing construct large comprehensive models, based
on publicly available data, that predict the capital condition of commercial banks
in an adverse scenario. Hence, the focus of these papers is not directly on the
prediction of credit losses, but rather on the forecasting of profits and losses on the
entire portfolio.

As we mentioned in Section 3.1, it is common to use the NCO rates as a measure for
1For a comprehensive overview of stress testing literature we refer to the the first part of the

book "Stress Testing the Banking System" by Quagliariello (2009) [21]. For a discussion of top-down
stress test approaches for other P&L items we recommend Duane et al. (2013) [35].
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credit losses in top-down stress testing. The papers that we discuss below, model the
annualized NCO rate process. The models are estimated on regulatory data from the
Federal Financial Institutions Examination Council (FFIEC). A great advantage of
using NCO data to model credit losses, is that detailed CO, RC, and TL time-series
are publicly available for all commercial banks in the United States for several loan
categories. In thesis we consider the same data set, which will be discussed further
in Chapters 5 and 6.

In their 2012 paper [30] Guerrieri and Welch found that models for P&L items that
include macro variables can perform significantly better than a random walk. That
is, a model which only takes the current value of an item and an error term into
account. In their analysis, they use 22 years of data. They define the following
model for each banking measure, or Profit and Loss item P&Lj and each macro
variable Mi,

P&Lij,t = α+ βP&Lij,t−1 +
4∑

k=1
γiM

i
t−k + εt,

where εt is a random variable with mean 0, constant variance, and no auto-correlation.
The average forecast of each measure is then constructed by taking the unweighted
average of the forecasts of that measure across models,

P&Lj,t+h =
N∑
i=1

P̂&L
i

j,t+h
N

.

It turns out that this model significantly outperforms a random walk model for net
charge offs, and it is concluded that macro variables help explain variation in NCO
rates.

Another major contribution is given by Hirtle et al. in their 2014 paper [47]. The
results of this paper are enticing, since they offer a thorough set of techniques to
make capital projections for institutions in stress scenarios. Hirtle et al. use sim-
ple econometric models in a top-down framework to estimate the capital gap of
the whole banking industry. The model that is employed to estimate the macro-
economic impact on disaggregated credit losses for individual institutions is chosen
by including variables in an auto-regressive model with exogenous variables, based
on economical and statistical significance. They use 24 years of data for a panel of
200 banks, and for the NCO rates they disaggregate the loan portfolio and hence
the NCOs into 15 subcategories. For each category they estimate,

NCOj,t = α+ β1NCOj,t−1 + β2Mt + β3Bj,t + εj,t,

where Mt is a vector of macro-variables, Bj,t is a vector of bank-specific variables
for each bank j = 1, . . . , nb, and εj,t is a normally distributed error term.
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Other compelling contributions are by Covas et al.(2014) [43] and Coffinet and Lin
(2010) [22]. The former use quantile regression2 for panel data to account for non-
linear dynamics and create asymmetric confidence bands of bank losses. The latter
show that macro variables are also relevant for the prediction of French banks’ prof-
itability. It turns out that, while most models predict relatively low levels of stress
in the banking sector, the quantile approach predicts higher stress levels for the
quantiles of the NCO rate distribution.

Our modeling approach is most closely related to that of Kapinos and Mitnik (2015),
who use a combination of principle component analysis and Lasso variable selection
on a panel of banks to discover the relation between disaggregated P&L items and
macro-economic variables that are frequently used in stress testing scenarios. The
allure of their method is that Lasso is an automated model selection procedure,
allowing for great flexibility in the choice and detail of stress scenarios. Furthermore,
the Lasso method shrinks the coefficients of many predictors to zero. One of the most
striking properties of this approach is that it allows us to consider more predictors
than we have observations. The attractive statistical properties of (Adaptive) Lasso
will be discussed thoroughly in Chapter 7.

Kapinos and Mitnik (2015) use a panel of 156 banks for which they remove variation
associated with the lag of the response variable by using the following regression,

NCOi,t = α+ βNCOi,t−1 + ÑCOi,t.

They construct a pool of candidate variables Kt based on transformations of macro
variables in their stress test scenario. They proceed by selecting a set Z of relevant
macro-economic variables fromK by using the Lasso method (with dimensions based
on the number of observations n and the number of selected variables). Subsequently,
they derive the first m principle components of Z and denote these by fmt . The
effects of these principle components are removed by a regression, and the procedure
is repeated for bank-specific variables [54].

4.2 Feature Selection for Top Down Stress Testing

We have presented some existing methods which can be used for the prediction of
NCO rates in stress scenarios. The macro-economic and bank-specific variables that
were selected by other researchers, may serve as a guideline for the features that we
consider. A disadvantage of the current literature is that the availability of results
concerning the evaluation of methods in terms of in-sample and especially in terms
of out-of-sample performance is limited.

2Quantile regression is a technique to estimate all quantiles of a probability distribution. See [1]
for more information.
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Guerrieri and Welch (2012) model aggregated NCO rates and find that gross domes-
tic product, unemployment rate and the house price index give the best performance
vis-à-vis prediction accuracy [30]. Hirtle et al. (2014) disaggregate the net charge
offs in 15 categories, such as "First Lien Residential Real Estate Loans" or "Credit
Card Loans". The explanatory variables that were selected differ per category and
are given by change in unemployment, home price growth, home price growth if it is
negative (zero otherwise), commercial property price growth, commercial property
price growth if it is negative (zero otherwise), and a time trend [47]. Variables were
selected based on economic significance and measures of in-sample performance.
Other considerations include consistency with economic theory and previous em-
pirical work. An example is that theory and research suggest that loss rates on
mortgages rise in a convex way as property prices decline. Therefore they include
the nonlinear transformations of the commercial property and house price index.

Kapinos and Mitnik (2015) use automated selection and principle component anal-
ysis to select the ultimate specification of their model for NCO rates for all loans
and leases. The macro-economic variables that they consider are squares, cubes,
and lags of variables that are specified in the stress tests designed by the Federal
Reserve3. It turns out that the Lasso method does not select financial indicators
such as yields and interest rates for the NCO model. They also select bank specific
variables such as the percentage of consumer loans, the amount of past due loans,
and the value of held-to-maturity securities [54].

A contribution of this thesis is that we include a discussion on the influence of ag-
gregating or disaggregating the loan portfolio for the estimation and forecasting of
net charge off rates. This gives a new dimension to the modeling of credit loss rates.
Our results also show that there are (transformations of) macro-economic variables
that can be relevant for the prediction of NCO rates that are not included in the
models used in current literature. We provide an evaluation of the strengths and
weaknesses of the chosen method and compare several modeling options based on
their predictive strength. We could not find publications with a thorough evaluation
of the performance of top-down stress testing models for credit losses. Furthermore,
we shed light on the limitations of (top-down) stress testing and propose new con-
cepts that can alleviate these limitations. This can open the path for a top-down
stress method of this type that is applicable to Rabobank.

4.3 Automated Feature Selection

There exist many strategies for the construction and subsequent selection of models.
Depending on the application, some of these strategies might be more suitable than

3The Federal Reserve stress test scenario will be discussed in more detail in Chapter 5.
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others. The issue that we want to raise here is the matter of the advantages and
disadvantages of automated feature selection techniques as in [54], compared to a
more classical approach of selecting a model based on expert opinion or theoretical
relations as in [47]. For the bottom-up approach one considers effects on a micro-
level and theoretical models are imperative. But the exact specification and workings
of the macro-economy are not well understood, making it challenging to construct
top-down models for credit losses. We pay special attention to literature on feature
selection for macro-economic top-down applications.

In Section 4.2 we have seen that in most of the existing papers on top down stress
testing features are selected based on expert opinion and a variety of statistical in-
sample criteria. Kapinos and Mitnik (2015), on the other hand, use an automated
feature selection procedure [54] and use the Lasso method. We follow their approach,
in the sense that we use Adaptive Lasso as an automated supervised learning method
to find a suitable model for the prediction of NCO rates conditional on macro-
economic developments. In this thesis we motivate the advantages of using the
adaptive Lasso to automatically select relevant features in design matrices based
on typical macro-economic stress scenarios. We take the approach of Kapinos and
Mitnik [54] one step further and consider even more predictors than they did. We
use Adaptive Lasso to simultaneously select and estimate a parsimonious model from
a large set of data. A major advantage of such an approach is that our method can
easily be adapted to be suitable for different stress scenarios.

Much ink has been spent on the topic of automated selection procedures. We sum-
marize the discussion in the Elements of Statistical Learning [19]. In a classical
research setting, a researcher has conjectured an hypothesis, designs an experiment,
and uses statistical methods to test the hypothesis. In the case of automated feature
selection, the data itself is used to discover a hypothesis. Using such a discovered
hypothesis directly, may lead to overly optimistic results, due to over-fitting and
selection bias. To circumvent bias and over-fitting, the dataset must ideally be split
in a training, validation, and test set. The training set is then used to learn the
features and estimate the model. The validation set is used to determine the pre-
diction error for model selection. And finally, the test set is used to determine the
generalization error of the chosen model.

An example of statistical learning, as described above, in macro-economic modeling
is given in an article by Epprecht et al. (2013), who show that Lasso methods are
superior to classical models in forecasting Gross Domestic Product (GDP) in the
United States [36]. Doornik & Hendry (2015) describe how our statistical reach, in
relation to macro-economics specifically, can be extended to the discovery of new
knowledge by machine learning methods with automated feature selection proce-
dures such as Lasso [51]. In Chapter 8 we detail how we apply their approach to the
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top-down stress testing estimation problem that is central to this thesis.

An interesting paper that uses Lasso to identify determinants of retirement in Den-
mark is by Kallestrub-Lamb et al. (2013) [38]. Kock and Teräsvirta (2014) show how
automated selection methods can be used to forecast macro-economic variables in
the 2007-2009 crisis [48]. For an comprehensive overview of sparse high-dimensional
models in economics we refer to Fan et al. [27]. The application of Lasso methods
to macro-economic data is relatively scarce in literature. Another contribution of
this research project to existing literature is the establishment of a new application
for Adaptive Lasso methods.
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Part II

Data
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Chapter 5

Available Data

Our main research goal is to assess the effectiveness of the prediction of NCO rates
conditional on exogenous paths of macro-economic variables. To that end, we wish
to disaggregate the loan portfolio of an individual bank or the averaged loan portfolio
of all banks, to a suitable level of granularity to capture the impact of specific stress
scenarios. Subsequently, we require a model for NCO rates conditional on macro-
economic indicators for each loan category in the chosen aggregation level. It can be
constructive to include bank-specific variables that characterize an individual bank
to explain heterogeneity of NCO rates between banks.

Based on the literature study on top-down stress testing, we speculate that it is
prudent to use sufficiently long time-series on disaggregated loan loss data. Contrary
to the availability of data for European banks, there exists a large publicly accessible
data source for banks in the United States. In this chapter we specify which data is
available for a stress testing exercise across commercial banks in the United States.
We consider disaggregated net charge off data, macro-economic data, and other
bank-specific data.

5.1 Net Charge Offs

The primary data-sources for banking variables in the United States, including NCO
rates, are the publicly available call reports1. All banks with offices in the United
States are obligated to file a detailed call report of their income statement and
balance sheet to the Federal Financial Institutions Examination Council (FFIEC).
These call reports contain accounting fields, specified by the FFIEC or Federal
Reserve. A major advantage of this dataset is that the reported values of different

1Call report data from 1976 to 2010 can be retrieved from https://www.chicagofed.org/
banking/financial-institution-reports/commercial-bank-data. Call report data starting
from 2011Q1 can be found at https://cdr.ffiec.gov/public/
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banks are comparable.

The call reports contain, among other items, disaggregated reported values for
Charge Offs (CO), Recoveries (RC), and Total Loans (TL) for all banks2. By equa-
tion 3.2 these can be used to calculate the NCO rates for several loan categories.
This data is available for a large number of banks; the amount of unique commercial
bank identification numbers in the call reports between 1990 Q2 and 2015 Q2 is
17803.

The charge offs and recoveries reported in the first quarter refer to those that are
incurred during the first three months of the year. In Table 5.1 below we see the
time periods for each quarter of the year. The TL value is quoted twice in the call
reports, based on the quarterly average or the end-of-period value.

Table 5.1: Quarterly Data
Q1 January 1st - March 31st

Q2 April 1st - June 30th

Q3 July 1st - September 30th

Q4 October 1st - December 31st

We use equation 3.2 to construct time-series of NCOi,j,t rates for each loan category
Pi ∈ P and each bank j ∈ {1, . . . , nB}. We consider t = 1, . . . , nT , where the first
time-point refers to 1991 Q1 and nT denotes 2014 Q4. In Figure 5.1 the structure of
loan categories as reported on the call report of the 2014 Q4 forms is displayed. In
Chapter 6 we discuss the dataset and the changes in this loan structure over time.

2Aggregated net charge off data can be found at http://www.federalreserve.gov/releases/
chargeoff/chgallnsa.htm
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Figure 5.1: Aggregation of the loan portfolio in Federal Reserve call reports for 2014
Q4. Information was extracted by analyzing the publicly available FFIEC data.

5.2 Macro-Economic Variables

Large banking institutions in the United States are required to perform annual stress
tests under the Dodd-Frank Act and submit the results to the supervising authority;
the Federal Reserve. Consistent with the approach in the literature, we consider all
macro-economic variables that are provided by the Federal Reserve in their Dodd-
Frank Act Stress Testing (DFAST) stress test scenarios as a starting point.

The Federal Reserve uses 16 domestic variables and 12 international macro-economic
indicators to describe baseline, adverse, and severely adverse stress scenarios for
financial institutions. The domestic indicators that they consider are quarterly time-
series of the GDP, inflation, household’s disposable income, yields, interest rates,
stock prices, house prices, commercial property prices, and the volatility on the
markets. International variables include GDP growth, inflation and exchange rates
for the Euro area, developing Asia, Japan, and the United Kingdom. Shortly, we will
discuss the meaning of these stress indicators. The stress horizon that the Federal
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Reserve sets for its stress testd is 9 quarters, where typical stress horizons are usually
between 8 and 20 quarters.

The Federal Reserve stress test scenarios are designed to stress capital ratios in
specified adverse scenarios. For such an exercise, one not only stresses credit losses,
but other P&L items as well. For the prediction of net charge off rates conditional
on a macro-economic scenario, we do not consider financial indicators such as yields
and interest rates here. Instead, we focus on the Federal Reserve indicators that
are associated with real economic growth and price indices. This approach is in
agreement with the top-down stress testing literature, as was discussed in Chapter
4.

We give a brief description of these macro-economic variables and the source of the
data below.

1. The level of house prices in the United States can be measured by the House
Price Index (HPI). We use the seasonally adjusted Standard & Poor/Case-
Shiller U.S. National Home Price Index, with ticker CSUSHPISA from the
FRED database3. This index tracks the value of single-family house prices in
the United States.

2. The value of commercial property can be represented by the Commercial Prop-
erty Price Index (CPPI), which is published by the National Council of Real
Estate Investment Fiduciaries (NCREIF) and can be found on the website of
NCREIF. We calculate the index from the reported quarterly returns on com-
mercial property by increasing the level with percentages equal to the return
for each quarter.

3. The Dow Jones Industrial Average (DJIA) represents overall market perfor-
mance. It is calculated as a scaled and weighted average of stock values of 30
large publicly traded companies that are perceived as being representative of
the industrial sector. We use data that is available at the online Yahoo financial
database under the ticker D̂JI.

4. The Chicago Board Options Exchange Market Volatility Index (VIX) is a pop-
ular index that tracks implied volatility for S&P 500 options. In this thesis we
use the CBOE volatility index, available online in the FRED database, it can
be found with the ticker VIXCLS.

5. In order to represent inflation we use the Consumer Price Index (CPI). The
CPI is a measure of the change in the prices of goods and services paid by
urban consumers. We use the seasonally adjusted consumer price index for all
urban consumers, with ticker CPIAUCSL, from the FRED database.

3Many financial and economic time series can be retrieved from the publicly available FRED
database: https://research.stlouisfed.org/.
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6. Disposable Income (DI) is frequently used as a measure to gauge overall eco-
nomic performance. It represents the amount of available money that house-
holds have for saving and spending after taxes have been taken into account. As
a measure we take seasonally adjusted real disposable income rates per capita,
from the FRED database, which can be found with ticker A229RX0Q048SBEA.

7. The Gross Domestic Product (GDP) is the leading macro-economic indicator
and is often used to gauge the performance of a country’s economy. It represents
the total amount of goods and services produced in a certain period of time
and as such, it can be interpreted as a measure of the size of the economy. The
data we use are the seasonally adjusted rates for real gross domestic product
in the FRED database, under the ticker GDPC1.

8. The Unemployment Rate (UR) represents the portion of the population that is
currently unemployed, but actively seeking employment. The unemployment
rate is generally seen as a lagging indicator that confirms longterm market
trends. We use the seasonally adjusted unemployment rate, which is also avail-
able in the FRED database and can be found with ticker UNRATE.

In Figure 5.2 the time-series for all these indicators between 1991 Q1 and 2014 Q4
are displayed. We apply transformations to the macro-economic time-series so that
the data is approximately stationary. We say that a process xt is weakly stationary
when,

i E[xt] = µ, ∀t,
ii Var(xt) = σ2

x, ∀t,
iii cov(xt, xt−s) = σs, ∀t, s.

Most econometric modeling techniques require stationary predictor and response
variables. Stationarity in econometric time-series modeling is discussed further in
Appendix A. The time-series for CPPI, GDP, DJIA, DI, CPI, and HPI are adjusted
by taking the logarithm of the values and then differencing the series. This is a
common and frequently used method to transform non-stationary data. Since UR
and VIX are already roughly stationary, these variables are not transformed. From
here on, we shall only refer to the (approximately) stationary time-series of the
macro-economic variables.

Often, reported values for macro-economic indicators are adjusted at a future date,
when more accurate data has become available. The data as it was known at an
earlier point of time is called vintage data. In forecasting exercises, this vintage data
usually gives more reliable estimates of the model’s prediction accuracy. However,
in a stress test we assume that the future as specified by the stress scenario is known
exactly, and therefore we choose not to use vintage data. The data in Figure 5.2 is
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Figure 5.2: Non-financial, domestic macro-economic variables that are used in the
Federal Reserve’s stress test scenarios. Data was collected from the FRED database,
Yahoo Financial Database and the NCREIF website. The shaded areas represent
the recession periods as determined by the National Bureau of Economic Research
(NBER).
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of the 2015 Q1 vintage point.

In our final model we want to make use of indicator functions as in Hirtle et al. [47].
Such a function for a macro variable M1

t can be denote as 1{M1
t >m} and is equal to

one ifM1
t > m and zero otherwise. Such functions can capture convex behavior. For

Unemployment Rate in the United States, the Federal Reserve publishes the Natural
Rate of Unemployment (NROU), which can be found under the ticker NROU on
the Federal Reserve website. The natural rate of unemployment is supposed to
measure the expected Unemployment Rate excluding cyclical factors. Or rather,
the rate of unemployment as if there were no boom and bust periods. We use this
rate to construct the indicator function 1{URt>NROUt}, which indicates whether the
unemployment rate is higher than expected at time t.

Indicators for the other macro-economic variables that we consider are constructed
by evaluating whether its value is larger than zero. For the VIX, we compare the
series to its long-term mean, where we can also use the future data in the stress
scenario for the averaging since it is assumed that the macro-economic future is
known, and only the bank losses need to be estimated.

5.3 Bank-Specific Variables

One of our research goals is to learn the role of bank heterogeneity and banking
variables in the estimation and prediction of NCO rates. The literature study showed
that the composition of the loan portfolio can play a crucial part in determining an
individual bank’s credit loss rate. But there might be other relevant bank-specific
factors that influence the NCO rate. In this section, we discuss which variables we
include in our model to estimate possible structural individual effects.

Therefore, we first want to determine potentially relevant bank-specific characteris-
tics or variables for the prediction of banks’ NCO rates. Net charge offs do not only
vary over time as a function of the macro-economic variables in the stress scenario,
but they may also vary across banks. A panel data model allows us to capture
heterogeneity between banks, or to differentiate between the impact of an economic
shock on credit losses based on banking variables.

Broadly speaking, the impact of a macro-economic stress scenario on an individ-
ual bank depends on how a bank manages its assets, liabilities and equity. Other
variables such as geographical location, risk appetite, capitalization or variables as-
sociated with idiosyncratic effects, may also explain some of the variance in NCO
rates for individual banks. Depending on the application of the stress test, it can
be more informative to only take system wide events into account. However, the
severity of the impact of a systemic shock can depend on the quality of the loan
portfolio or management thereof.
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As bank-specific explanatory variables Bt, we consider the variables that are given
by the CAMEL criteria, which are displayed in Table 5.2. These are widely ac-
cepted measures for the assessment of the quality of a bank [31]. Additionally,
CAMEL is a frequently used international bank rating system employed by super-
visory institutions and researchers. The CAMEL measure includes statistics on the
capitalization, asset quality, management quality, profitability and liquidity. Hirtle
and Lopez (1999) [4] found that past CAMEL ratings gave useful insight into current
bank conditions. The effect of past ratings was significant up to 12 quarters.

In Table 5.2 financial measures that can be indicative of the CAMELS criteria are
given in the second column. The third columns gives a definition of these financial
measures in terms of accounting fields that can be extracted from the call reports
that we introduced in Section 5.1. Detailed information about the derivations of
these time-series from the call reports is provided in Table D.2 in Appendix D.

Table 5.2: CAMEL criteria

Description Financial Measure1 Definition

Capital Adequacy Capital Ratio Total Capital / Total Assets
Asset Quality Provision Rate Loan Loss Provision/ Total Loans
Management Quality Non-Interest Profit Non-Interest Expense / Operating Income
Earnings Return on Equity Net Income / Total Capital

Net Interest Margin Net Interest Income / Total Assets
Liquidity Total Liquid Assets Sum of liquid assets
Size Total Loans, Loan growth Total Loans, Total Loans (% change)

1 The CAMEL(S) criteria are expressed in terms of financial ratios. The ratios that are presented here, were derived
from V. Behbood (2012) [29]. We also consider loan size and loan growth as financial measures for ’size’.

We extend the CAMEL criteria with measures that represent the size and growth
of the loan portfolio. We refer to this extended version as CAMELS criteria. These
variables potentially help explain the variance among NCO rates of individual banks.
We discard asset quality from the set of measures, since NCO rates themselves can
be used as a measure for the quality of assets.

44



Chapter 6

Data Handling

The Federal Reserve dataset, consisting of quarterly call reports for commercial
banks poses challenges when it is used for modeling, because the framework was
primarily designed for regulatory purposes and not for data analysis. A second
aspect to take into account is that effects caused by decision-making within banks,
are present in the data. This makes a sound handling of the data an important task.
In this chapter we describe how the data was collected, selected, and adjusted to
optimize the dataset. Furthermore, we consider the problem of disaggregating the
loan portfolio into categories Pi ∈ P of loan portfolios, based on data-availability.

6.1 Forming Consistent Time-series

Defining variables, which are derived from accounting fields on the call reports,
correctly and consistently over time is a daunting task, because definitions and
reporting rules have occasionally changed considerably. For the construction of a
consistently defined time-series we also need to consider the handling of irregularities
due to mergers between banks and other problematic observations, such as negative
Net Charge Offs rates. Below we discuss our adjustments to the data and the
selection criteria we used to circumvent irregularities in the data. Our approach
closely follows that of Kashyap and Stein, and De Haan et al. [6, 56].

6.1.1 Extracting Loan Categories and Aggregation Levels

We downloaded the call reports for all banks with domestic offices in the United
States for each quarter from 1990 Q2 to 2015 Q2. Each call report consists of
a few thousand accounting fields, which can be found on the balance sheet, P&L
statement, or other financial statements1. The Federal Reserve Bank of Chicago

1The call report form for 2014 Q4 can be found at: http://www.ffiec.gov/pdf/FFIEC_forms/
FFIEC031_201412_f.pdf
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also provides a data dictionary on its website2, which contains definitions, changes
in these definitions, and general information about the reporting structure of each
item. As a general rule, we only consider variables on the call reports which are
similarly defined between 1990 Q2 and 2015 Q2.

According to the Federal Reserve’s data dictionary, some of the time-series for loan
categories are not available for the entire period 1990 Q2 to 2015 Q2. For other
categories their definitions have changed during this period. Consistently defined
time series can be constructed for a maximum of 12 loan categories in the following
way. First, we consider the lowest level of aggregation of the loan structure of 2015
Q2, which is identical to the hierarchy displayed in Figure 5.1. If a category was
not specified for the entire period, or its definition has changed during this time,
we move up one level. We iterate this process until all categories are consistently
defined. The resulting ordering of loan portfolios is displayed in Figure 6.1.
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Figure 6.1: Consistent Loan Categories in Call Reports 1990 Q2 to 2015 Q2.

Depending on the type of bank either a FFIEC/031 or FFIEC/0413 is filed quarterly.
The former call report is filled out by banks with both domestic and foreign offices
whereas the latter is filled out by banks with domestic offices only. In the FFIEC/031
reporting form a distinction is made between time-series on a consolidated basis4

2http://www.federalreserve.gov/apps/mdrm/data-dictionary
3Until 2000 Q4: FFIEC/032, FFIEC/033 and FFIEC/034 reports.
4A consolidated basis means that the reported values in the accounting fields are given for the
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and time-series for accounting fields on a domestic basis. This is the case for some
fields regarding loan and deposit data. They are referred to as the RCFD and the
RCON series, respectively.

Generally, banks with foreign offices provide data on a consolidated basis only. For
banks with no foreign offices, it can be assumed that the RCON en RCFD series are
identical [56]. Because we are interested in determining the effect of the develop-
ments in the macro-economy of the United States, it is sensible to consider domestic
loan variables. We follow De Haan et al. [56] and use the RCON series for loan and
deposit data. For the bank-specific variables in Section 5 domestic values are not
published by commercial banks with foreign offices. Therefore we use the RCFD
series for all other variables.

A detailed description of the selected loan categories Pi ∈ P and the code, with
which their respective time-series can be extracted from the call reports, is provided
in Table D.3 in Appendix D.

We use the data in Figure 6.1 to construct aggregation levels A1, A2, and A3 for the
estimation and prediction of NCO rates. The levels that we consider are constructed
considering the categorization in the call reports, economical and statistical similar-
ity between categories, and the typical relative size of the loan category compared
to the total loan portfolio. NCO rates for combined loan categories can be easily ob-
tained by recalculation with equation 3.9. Intuitively, higher aggregation levels may
reduce the amount of noise that is due to idiosyncratic events or other unexplained
effects. On the other hand, it may obscure the effect that macro-economic develop-
ments have on specific parts of the loan portfolio. Also it reduces the specificity in
rates for individual banks that we obtain by taking differences in loan composition
into account.

The aggregation levels are displayed in Table 6.2. We will use these levels to discover
and estimate models that predict NCO rates conditional on macro-economic vari-
ables. The forecasts can be combined to obtain predictions for the credit loss rates
of individual banks. This procedure will be introduced and explained in Section 8.3.

The highest level of aggregation, or A3 consists solely of the loan category Total
Loans. The middle aggregation level A2 is made up of Consumer (CON), Commer-
cial Real Estate (CRE), Residential Real Estate (RRE), Commercial & Industrial
(C&I) & Leases on Financial Receivables (LEASE), and Other (OTHER) loans.
The lowest level of aggregation consists of the loan categories Consumer (CON),
Non-farm Non-Residential (NFNR), Multi-Family (MF), Construction & Land De-
velopment (CLD), Home Equity Lines of Credit (HELOC), Closed-End Residential
Real Estate (RES), Agriculture (AGRI), Farmland (FARM), Commercial & Indus-

combination of the domestic and foreign portfolios.
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trial (C&I), Leases on Financial Receivables (LEASE), and Other (OTHER) loans.
Note that the definition of OTHER loans is different for aggregation levels A2 and
A1.
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Figure 6.2: The aggregation levels A3, A2, and A1 are displayed from left to right.
Note that Farmland Loans are actually categorized under real estate in the call
reports, but in level A2 we consider it as a part of the category Other.

6.1.2 Accounting for Mergers

Mergers occur frequently in the banking industry. Since a merger involves the trans-
fer of a large part of the loan portfolio of one id-number to another, mergers may
lead to a significant distortion of the balance sheet and income statement data that
is reported to the FFIEC in the quarter of the merger and the subsequent period [6,
56].

48



Merger data was extracted from the website of the Federal Reserve Bank of Chicago5.
In order to avoid irregularities or inconsistencies in the time-series on the individual
bank level due to mergers, we follow [56] by applying the following screens to our
data. The fields non-survivor id, survivor id, and merger dates in the merger data
file, were used to perform the first screen listed below.

1. Banks involved in a merger are dropped from the observations in the quarter
of the merger and the following quarter.

2. Observation t of bank j is dropped if the loan growth is more than five standard
deviations away from the cross-sectional mean growth.

3. Observation t of bank j is only included when the previous two loan growth
variables are available.

The first screen drops observations for merging banks. It is also possible that a
large transfer of assets takes place, but both reporting banks continue to exist. The
second screen filters out those observations for which a large transfer of assets has
taken place. The last screen filters out observations of loan portfolios that have
recently undergone a substantial change in size.

6.1.3 A Closer Look at NCO Time-Series

Commercial banks file their call reports under a FFIEC id-number, which we can use
to obtain its financial report for each quarter from the total set of reports. This is a
convenient way to construct individual banks’ time-series. However, the distinction
between commercial banks and the identification numbers has some issues that we
must keep in mind.

Some banks, for example Rabobank North America, have filed call reports under
several id-numbers. Thus, the reported values of the accounting fields of these banks
typically do not correspond to the values that can be found in quarterly reports.
Also, especially for id-numbers that report a relatively small amount of assets, it
occurs that there are substantial changes between the reported data in consecutive
quarters. Keep in mind that this may be a source of irregularities that can have an
adverse effect on any estimation procedure. Another aspect is that the call reports
are filed by commercial banks only, and therefore investment banks are not included.
Hence, the available time-series for some large banks such as Morgan Stanley, which
was an investment bank before 2007, are relatively short and were not included
previously.

Besides the effect of these irregularities, the differences in mean, variance and shape
5Files can be downloaded from: https://www.chicagofed.org/banking/

financial-institution-reports/merger-data
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of the NCO rate series can differ greatly between banks. In order to capture the
systemic macro-economic relation, we consider NCO data of multiple banks at once.
For our first method, we therefore use averaged time-series for the NCO rate. Our
second method uses a panel data model, to separate the bank-individual effects from
the systemic effects.

Recall that average NCO rates refer to the NCO rate of all the loan portfolios of
reporting banks combined. We construct averaged time-series by loan category, by
adding the CO, RC, and TL for all commercial banks that report to the FFIEC, and
subsequently, we calculate the rate. The resulting time-series for the NCO rate is
displayed in Figure 6.3, for some loan categories that can be found in the hierarchy
in Figure 6.1.
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Figure 6.3: Average Net Charge Offs rates for the loan categories Total Loans, C&I,
RRE, and NFNR as reported on the call reports. The shaded areas represent the
recession periods as determined by the NBER.

Note that the loan categories Total Loans and Commercial & Industrial (C&I) Loans
display three clear peaks in the period 1991 Q1 to 2014 Q4. These seem to coincide
roughly follow the recession periods. The categories Residential Real Estate (RRE)
and Non-farm Non-Residential (NFNR) were stressed one and two times, respec-
tively. The main idea of stress testing a loan portfolio on a disaggregated level is
to link the macro-economic variables displayed in Figure 5.2 to disaggregated NCO
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rates, displayed in Figure 6.3.

6.1.4 Other Irregularities in the Data

The NCO rates that are derived from the call reports using equation 3.2 are approx-
imations to the actual rate at that time. The main issue with this is that recoveries
on loans that were charged off, appear on the call reports in other quarters then the
charge off itself. This may result in negative NCO rates for some quarters. Negative
rates are encountered even when the charge offs, recoveries, and loans are averaged
over all commercial banks in the data set. Since other costs are involved when loans
are written off, NCO rates above 100% can also occur.

Another issue is that a bank’s loan portfolio is finite and therefore there can be quite
some variability on the charge offs, recoveries or loan total over a relatively short
time period. For smaller loan portfolios it can happen that there are no credit losses
at all in some quarters, which is of course not representative of the true value of
the NCO rate. This issue is alleviated by only considering the 100 banks with the
largest loan portfolios. Including smaller loan portfolios in the estimation procedure,
requires methods that can handle many zero observations.

Other irregularities that we encountered were that some values were not reported or
that negative values were reported in accounting fields that should be positive, such
as capital. In a few cases, some of the financial ratios of the CAMEL(S) criteria in
Table 5.2 rendered extremely unlikely values. When the values for financial ratios
were extraordinarily high, we classified the observation as non-representative and
excluded it from the panel. Below we list the additional screens that we applied to
the data. Observation t of bank j is excluded when:

i The NCO rate exceeds 100%.
ii The capital ratio exceeds 50%.
iii The return on equity exceeds 100% or is lower than −100%.
iv One of the CAMEL(S) criteria or the NCO rate is not reported.
v The value for accounting field that should be positive, is negative.

The first screen is applied because NCO rates higher than 100% are theoretically
speaking not sensible, since the bank cannot lose more than it has loaned out. The
second and third screen are applied to avoid including observations of special banks
that report extreme capital ratios or return on equity. If our model is not able
to fully explain such variations, this can have a large impact on our estimation.
Understanding this type of behavior is not integral to the prediction of credit loss
rates for large banks. The amount of observations that are removed due to these two
screens for the 100 largest observations over the quarters of data that were included
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in our training set was 6. The last screen is applied to ensure that all observations in
the panel are complete, which is necessary for the selection and estimation procedure.

6.2 Filtering Time-series

After the application of the screens proposed in Sections 6.1.2 and 6.1.4 the dataset
is not directly suitable for econometric modeling purposes. The purpose of this
section is to explain other adjustments that we made to the data.

The charge offs and recoveries on loans and leases are reported as year-to-date on
the call reports. Following Hirtle et al. [47] and Kapinos et al. [54], we consider
annualized net charge off rates. These can be retrieved from the data by taking
the difference of charge offs and recoveries with their value in the previous quarter,
except for call reports in the first quarter. Annualized rates are then obtained by
multiplying equation 3.2 with 4 · 100%. This can be written down as follows,

NCOt = 4 · (COt − COt−1)− (RCt − RCt−1)
TLt

· 100% if t is in quarter 2, 3, or 4,

NCOt = 4 · COt − RCt
TLt

· 100% if t is in quarter 1.

The NCO rate data that can be obtained in this fashion contains substantial effects
caused by decision-making in reporting, especially for individual banks. We observe
that the rates can vary a great deal between quarters. Possibly this happens because
there is no guidance as to when the charge offs (CO) an recoveries (RC) should
appear on the income statement. Harris et al. (2015) [53] note that seasonality may
affect quarterly data, concerning credit losses, both for accounting and economic
reasons. An example is given by [3], in which it is shown that loan loss provisions
are often delayed to the last fiscal quarter, when the audit usually occurs. Harris et
al. propose to average the data by,

x′t = 1
4 (xt + xt−1 + xt−2 + xt−3) , (6.1)

to circumvent issues arising from the reporting error on the actual loss rate.

However, since x′t in equation 6.1 is the average of the NCO rates in the previous 4
quarters, the NCO rate becomes a lagging variable. We propose to use a centered
moving average instead and define for a time series of length nT

x′t = 1
8xt−2 + 1

4xt−1 + 1
4xt + 1

4xt+1 + 1
8xt+2, for t = 3, . . . , nT − 2, (6.2)

and exclude the first and last two observations of the time-series. Note that for
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a viable application to Rabobank, we would like to use a more advanced filtering
method to remove the seasonality and reporting errors during the fiscal year. Firstly,
because discarding four data points is costly, and secondly because this method is
quite crude and could eliminate important information in the data.

In econometric modeling it is often assumed that time-series can be decomposed
into four components: trend, cycle, seasonality, and white noise. This is commonly
referred to as classical decomposition, and the general idea is presented in appendix
A. The seasonal averaging in equation 6.2 is a simple method to estimate the trend-
cycle in the NCO rate data. Ideally, it removes seasonality, seasonal reporting errors,
and other noise factors from the data. For our top-down stress test model, we are
mostly interested in the variation over a time span of 8-20 quarters, and since we
are interested in long-term effects we analyze the trend-cycle component instead
of the reported data. The result of a five-point moving average transformation is
illustrated on averaged NCO rates on farmland loans in Figure 6.4.

Even after applying the screens that were described in Sections 6.1.2 and 6.1.4,
some of the NCO rates were negative, both on the aggregate and individual level.
This is likely due to the discrepancy between the reporting dates for charge offs and
recoveries on a loan which has gone into default. An advantage of the seasonal-
averaging filter is that it reduces the amount of negative rates greatly. An example
of this can be observed in Figure 6.4.

1996 2002 2008 2014
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0.2
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Figure 6.4: Seasonally averaged and reported net charge off rates for the loan cate-
gory "Loans secured by Farmland" on the average banking level.
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Chapter 7

Adaptive Lasso

For the prediction of credit loss rates in top-down stress testing, we propose the use
of the Adaptive Lasso method. This method allows us to construct a flexible esti-
mation procedure, which selects explanatory variables automatically from an initial
set of predictors, where the number of predictors may even exceed the number of
observations. The complexity and size of the set of initial predictors depends on the
specification of the stress scenario that serves as input, and (non-linear) transforma-
tions that are applied to these macro-economic variables. The construction of this
set of initial predictors and the application of Adaptive Lasso to the forecasting of
NCO rates will be discussed in Chapter 8.

In this chapter we present the main theory behind Adaptive Lasso. We motivate the
use of Adaptive Lasso by proving that it has many enticing finite-sample, asymptotic
and computational properties. It has been shown that, in many cases, the Lasso
method produces biased results, and only satisfies favorable convergence properties
under stringent conditions. This is surely an undesirable result. Therefore, we follow
Zou (2006) [16], and propose the Adaptive Lasso procedure instead. Adaptive Lasso
retains the attractive features of the Lasso method, but it has the added bonus that
it satisfies certain desirable convergence properties.

The remainder of this chapter is organized as follows. We start off with a short
introduction to data-driven model discovery for NCO rates in Section 7.1. We
continue with the introduction of Lasso as a special type of penalized regression,
and develop some intuition as to how it works in Section 7.2. We proceed with
the derivation of sparsity and continuity properties in Section 7.3. Subsequently, in
Sections 7.5 and 7.4 we derive properties regarding unicity and convergence of Lasso
and Adaptive Lasso. We present an application of the Lasso to variable screening
in Section 7.6.1. This application will be used for a non-linear model which will be
introduced in the next chapter. Lastly, in Section 7.6.2 we discuss the extension of
Adaptive Lasso to panel data models. We conclude with a summary of the main
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results of this chapter in Section 7.7.

7.1 Data-driven Model Discovery

In Chapter 3 we suggested to separate the modeling of NCO rates of an individual
bank, conditional on a macro-economic scenario into three distinct problems. First,
we model the relationship between average NCO rates and macro-economic devel-
opments. The main model that we consider is a simple linear model of the form,

NCOav
t = Xtβ + εt, (7.1)

where εt are i.i.d. (independent identically distributed) random variables with mean
zero. We let X be a large (n × p) design matrix consisting of potentially relevant
predictors. In the second step we include bank-specific variables in a panel data
model. The predictions of the models for single loan categories are aggregated to
obtain forecasts for the NCO rates of an individual bank. A detailed discussion of
these models is given in Chapter 8.

The modeling of credit loss rates conditional on the macro-economy can be ap-
proached from a statistical point of view or from a machine learning perspective. In
the last case, we consider how we can discover, implement, and evaluate hypotheses
generated by an automated selection procedure for modeling purposes and predic-
tion. In this chapter we show that, Adaptive Lasso can be used to discover which
transformations of macro-economic variables describe the regularities in the behav-
ior of NCO rates in historical data best. Moreover, the coefficients of such a model
can be estimated simultaneously.

The Adaptive Lasso procedure is an example of a supervised learning algorithm.
Doornik & Hendry (2015) argue that automated selection procedures, such as Adap-
tive Lasso, can be productive when done correctly, especially in cases where the
correct model cannot be known in advance and must therefore be discovered by a
data-driven method. This is precisely the case for a model in top-down stress test-
ing. Note that it remains to be seen whether there even exists a correct model for
the relation between macro-economic developments and credit losses. In order to
avoid misspecification or spurious regression when considering a large quantity of
explanatory variables, the following subproblems must be resolved [51].

i Initial formulation: All potentially relevant variables and transformations
thereof should be included in a set of candidate predictors, so that the true
model can be discovered from the initial formulation.

ii Selection problem: Variables that are relevant need to be retained and ef-
fects that do not matter need to be discarded. This requires an appropriate
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selection procedure.
iii Computational problem: One needs a design of an approach which can handle

the selection problem for the hefty amount of candidate variables in the initial
formulation.

iv Evaluation problem: This concluding step consists of several methods. It
should be checked whether the model is well-specified, which can be done by
testing the residuals and assumptions of the model. Moreover, the discov-
ered model should be economically reasonable and interpretable. In our case
especially, the procedure should yield a high prediction accuracy on a test set.

In this chapter we focus on the issue of selecting a suitable design matrix X. To
that end, we introduce Adaptive Lasso as an appropriate method for the selection
and computational problems in data-driven model discovery. We develop the theory
of the NCO rate models and the set-up of the top-down stress testing method and
consider the implementation of the first three steps for our top-down stress testing
method in Chapter 8. The evaluation problem will be addressed in Chapter 9.

7.2 Penalized Regression and the Lasso

Optimal model selection is still an unresolved problem in statistics, and there exist
several commonly used approaches for this task. A very popular method is to use
expert opinions or findings in previous theoretical or empirical literature as a starting
point for a model. Variables are included or excluded from the model based on
economic and statistical significance. There exist many methods to check whether
the model fits the data well, and out-of-sample analysis can be employed to test
the model’s predictive strength. On the other hand, we have automated selection
procedures, which generate hypotheses about the model and are tested based on
out-of-sample prediction accuracy. Methods in this last category are an increasingly
popular approach to model selection. Examples of automated methods include the
use of unsupervised and supervised learning algorithms such as neural networks and
penalized regression.

Especially when there are many potential predictors, it can be challenging to select
an adequate model using traditional methods. The main issues are concerned with
determining which variables and interactions to include in the model. The difficulty
arises from the fact that as the number of predictors in the model increases, the
bias decreases but its variance increases. If a model is used to forecast, we wish to
minimize the overall prediction error, which is often referred to as optimizing the
bias-variance trade-off 1.

1For the interested reader we discuss the bias-variance trade-off further in Appendix B.
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Intuitively, the bias-variance trade-off can be interpreted as follows. As the complex-
ity of a model increases, for instance by including more variables, complex structures
in the data can be picked up more easily, which reduces the bias. On the other hand,
coefficient estimates suffer from an increased variance due to the inclusion of more
variables, and therefore the variance of the resulting model increases. This problem
is often referred to as over-fitting. The variance induced by a high number of vari-
ables that are included in the model, may be controlled by introducing regularization
on the coefficients.

The Lasso method is a regularization technique, which is the name for a set of meth-
ods that can be used to resolve an ill-posed problem or to prevent over-fitting. A
popular regularization technique is penalized regression, where a penalty is added to
an objective function. For example, the objective in linear regression is the minimiza-
tion of the sum of squared residuals, whereas the objective in Maximum Likelihood
Estimation (MLE) is the maximization of the likelihood function2. The penalty typ-
ically increases as more variables are included in the model, thus prioritizing more
relevant predictors over lesser important ones.

A popular method to estimate the coefficients β for a linear model of the form,

Y = Xβ + ε

is the renowned Ordinary Least Squares (OLS) method. It minimizes the squared
residuals, ||Y −Xβ||22, and has a closed-form solution,

β̂ = arg min
β

1
2n

n∑
i=1

(yi −Xiβ)2 = (X>X)−1X>Y.

When p > n, we have that X>X is singular, and therefore a unique solution does not
exist3. If however, we assume that the solution is sparse in the sense of Definition
7.1 below, then β has coefficients which have value zero, and it may still be possible
to identify the correct model β. Under which conditions β is uniquely identifiable,
will be addressed in Section 7.5.

Definition 7.1. (Sparsity) A model β of p coefficients is sparse when the set of
active predictors S = {j : βj 6= 0, j = 1, . . . , p} is less than p (i.e. |S| < p).

For the modeling of complex structures such as the impact of the macro-economy
on credit losses, a true model might not exist or be too complex to estimate when
only a limited amount of data is available. When the number of observations simply

2The likelihood function is explained in Appendix B.
3See Appendix B for a derivation and a more detailed discussion of OLS solutions and their

assumptions and limitations.

60



cannot be increased, no model can be adequately estimated without the sparsity
assumption. Moreover, if a top-down model is used in the context of stress testing,
a parsimonious model which can easily be interpreted is even a requirement. In
what follows, we therefore assume that the true model β0 is sparse.

A good and sparse estimator for the coefficient parameter β can be obtained by best
subset selection. Such a model can be identified by adding a penalty based on the
cardinality of the active set. This penalty is also referred to as the L0 penalty, and
the resulting estimator is given by,

β̂L0 = arg min
β

1
2n

n∑
i=1

(yi −Xiβ)2 + λ|{j : βj 6= 0}|, (7.2)

where λ is a tuning parameter, controlling the sparsity or complexity of the model
β̂L0. This estimator is referred to as a least squares L0-penalized estimator. The
number of models that are considered using this method, is of the order 2p (since each
variable is either included or excluded from the model). Unfortunately this results
in a non-convex optimization problem, which is even an NP hard programming
problem [34]. Therefore, solving equation 7.2 is computationally infeasible even
for moderate n and p. Note that model selection based on the well-known Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC) criteria is a
type of maximum likelihood L0 penalized regression [34].

Definition 7.2. (Penalized Regression) Let J be a penalty function and f(β) the
objective loss function for the model β. The sparse penalized estimator β̂ is given
by

β̂ = arg min
β

1
2nf(β) +

p∑
j=1

Jλj (|β|), (7.3)

where λ is a tuning or regularization parameter.

Note that when f is the negative log-likelihood, equation 7.3 corresponds to pe-
nalized maximum likelihood estimation. When f is the L2-loss or sum of squared
residuals, equation 7.3 becomes penalized least squares regression. From here on,
we shall focus on minimizing the squared residuals for linear models, so we consider
f(β) = ||Y −Xβ||2.

Although the L0-norm penalized regression is computationally infeasible, we can
apply other penalty functions J(·) to the sum of squared residuals. There is variety
of other penalties that can be used, most notably the L1 norm, better known as the
Lasso penalty. Some other frequently used penalty functions are displayed in Table
7.1 below. In the next section we shall focus on establishing what a good penalty
function is.
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Table 7.1: Penalty Functions
Name Function Jλ,α(β)
Lasso λ||β||1 = λ

∑p
j=1 |βj |

Ridge α||β||2 = α
∑p
j=1 β

2
j

Elastic Net λ||β||1 + α||β||2 =
∑p
j=1

(
λ|βj |+ αβ2

j

)
Bridge λ||β||q =

∑p
j=1 |βj |q, q > 0

SCAD


λ||β||1 if ||β||1 < λ

− ||β||
2
1−2aλ||β||1+λ2

2(a−1) if ||β||1 > aλ
(a+1)λ2

2 if λ < ||β||1 ≤ aλ

Recently, as the amount of available data has risen dramatically, the Lasso penalty
has become an increasingly popular topic of interest in statistics, automated feature
selection methods and many other applications. The Lasso penalizes the absolute
size of coefficients and in the process shrinks some of the model’s coefficients to
zero, which results in a parsimonious model. For the selection problem that we
encounter in top-down stress testing, this is an attractive property. A linear model
with few predictors can easily be evaluated and interpreted from an economic view-
point. Another great advantage of the Lasso estimator, compared to non-penalized
estimators, is that models with more features than observations, (i.e. when p > n)
can be estimated. In this case, the solution is sparse.

Definition 7.3. (Lasso estimator) A Lasso estimator β̂lasso is a solution to the
following minimization problem

arg min
β

1
2n

n∑
i=1

(yi −Xiβ)2 subject to
p∑
j=1
|βj | ≤ t. (7.4)

Where the bound t is a tuning parameter controlling the sparsity of the design
matrix.

Lemma 7.4 shows that the Lasso estimator in Definition 7.3 is equivalent to the
penalized regression with the Lasso penalty that we familiarized ourselves with in
Definition 7.2. That is, we show that the constrained and unconstrained minimiza-
tion problems are equivalent. Note that when t < 0 the solution to equation 7.4
does not exist, in which case we say that the minimization problem is infeasible.

Lemma 7.4. (Lagrange Dual) Assume that the minimization problem in definition
7.3 is strictly feasible, then its solution is equivalent to,

arg min
β

1
2n

n∑
i=1

(yi −Xiβ)2 + λ||β||1. (7.5)
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Proof. For the proof we refer to Appendix C.

Since
∑p
j=1 |βj | is the L1-norm of the parameter vector, Lasso regression is also often

referred to as L1-penalized regression.

Figure 7.1: Estimation for lasso and ridge regression 4

Figure 7.1 illustrates the intuition behind Lasso and ridge regression in the case of
two potential predictors. The constrained regions are given by |β1| + |β2| ≤ t and
β2

1 +β2
2 ≤ t2 for the lasso and ridge penalty5 respectively, and are represented by the

blue areas in the figure. The optimal solution to 7.3 lies within the blue constraint
region. The OLS solution is displayed by β̂ and the ellipses represent the sums of
squared residuals for values of β.

Proposition 7.5 states that when the OLS solution lies outside of the constrained
region, the Lasso solutions are found at the intersection of the shaded areas with
the ellipses. If β̂ were to lie in the shaded areas, then the solution to the penalized
regression and OLS regression would be the same. Intuitively, the angular shape of
the Lasso constrained region renders sparse results, whereas the smooth shape of the
ridge constraint region does not. We remark that in Figure 7.1, estimates for large
values of β1 and β2 are also shrunk because they have to be within the constraint
region. In the following section we will proof that penalized regression results in a
sparse estimator under the condition that its penalty function is non-differentiable
at the origin.

Proposition 7.5 (Lasso Boundary Solution). If

t < t0 := min
β
{||β||1 : X>Xβ = X>Y }, (7.6)

4Image was taken from The Elements of Statistical Learning [19], figure 3.11.
5Ridge regression can be similarly defined in its primal and dual problem as Lasso regression.
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then for a solution β̂ it holds that
∑p
j=1 |βj | = t. When t ≥ t0 then some OLS

estimate is the solution.

Proof. For the proof we refer to Appendix F.

7.3 Sparsity and Continuity in Penalized Regression

Although the focus of this report is on the Adaptive Lasso penalty, we look at a
broader range of penalty functions in this section to motivate its use. In the previ-
ous section we have discussed the Lasso as a special case of penalized regression. A
sensible follow-up question is why (Adaptive) Lasso is a suitable penalty function.
Fan & Li (2001) conjecture that a good penalty function possesses the three prop-
erties listed below [9]. Their definition of a good penalty function has been widely
used, for instance in [16], and [19].

1. Approximate Unbiasedness: Suppose the true unknown parameter β0
j , j ∈

{1, . . . , p} for a true predictor is large. The resulting penalized regression es-
timator β̂pen

j should be nearly unbiased for such a large parameter, in order
to avoid extra modeling bias. This means that if β̂pen

i is estimated on data
generated from the linear model Xβ0 + ε0, it should hold that,

Eβ0 [β̂pen
j − β0

j ] ≈ 0, (7.7)

for large β0
j . So that Xβ0 ≈ Xβ̂pen.

2. Sparsity: The penalty function should result in an estimator that sets small
estimates of coefficients to zero. Let Ŝ = {j : β̂pen

j 6= 0}, then sparsity implies
that |Ŝ| < p. This naturally reduces model complexity, which typically has a
positive effect on our ability to interpret the resulting model.

3. Continuity: The estimator β̂pen should be continuous for the input data to
prevent modeling instability.

The remainder of this section is dedicated to deriving and understanding the condi-
tions on J(·), which ensure that the resulting estimator of the penalized regression
satisfies the above three properties. The last two conditions are outlined in Theorem
7.6.

Theorem 7.6. A non-negative, non-decreasing, and convex penalty function that
is non-differentiable at the origin and continuous on (0,∞) results in a sparse and
continuous estimator.

Proof. An outline of the proof is given in appendix F. Note that, the result also
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holds for non-convex penalty functions. The proof of this results can be found in
[17].

Corollary 7.7. The Lasso penalty function gives sparse and continuous solutions.

Proof. The Lasso penalty is non-negative, non-decreasing, and convex6. Theorem
7.6 states that if the penalty function is non-differentiable at zero, it should result
in a sparse solution. Since the Lasso penalty is non-differentiable at the origin and
it is continuous on (0,∞), it produces sparse and continuous results.

Theorem 7.8. A sufficient condition for an approximately unbiased estimator is
that the penalty function is bounded by a constant.

Proof. We refer to Fan and Li (2001) [9] for the proof.

The SCAD penalty is the only function in Table 7.1 that is bounded by a constant,
and it can be shown that it produces an approximately unbiased estimator [17].
Although the Lasso method is a procedure that gives sparse and continuous results,
the bias of the method is generally thought to be a problem.
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Figure 7.2: Penalty functions for λ = 0.5, α = 0.5 and a = 5.

Theorem 7.6 indicates that a suitable penalty function is typically continuous and
non-decreasing on (0,∞), singular at the origin, and bounded by a constant. In
figure 7.2 the penalty some of the functions in Table 7.1 are displayed. This figure
shows that only the SCAD penalty is bounded by a constant. However, it is also
clear from Figure 7.2 that the SCAD penalty function is not convex. It is surely
not as computationally efficient as the Lasso. Although the Lasso penalty is not

6Convexity of the Lasso penalty will be shown in Lemma 7.15 in Section 7.5.
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bounded by a constant, Adaptive Lasso, which will be introduced in Section 7.4,
does give approximately unbiased estimates for the coefficients.

In what follows, we discuss the approximate unbiasedness of penalized estimators.
We first derive some intermediate results, and show that the minimization problem
in Definition 7.2 for the L2 loss function can be written in a more convenient form.

Lemma 7.9. Let β̂ be a minimizer of
∑n
i=1 (yi −Xiβ)2, then minimizing

1
2n

n∑
i=1

(yi −Xiβ)2 +
p∑
j=1

Jλj (βj), (7.8)

is equivalent to minimizing

Q(β) = 1
2n(β − β̂)>X>X(β − β̂) +

p∑
j=1

Jλj (βj), (7.9)

with respect to β.

Proof. For the proof of this lemma we refer to Appendix F.

To better understand the bias problem, we look at thresholding rules, which are
methods to iteratively update the coefficients for each coordinate of the penalized
regression estimator. To that end, we first need the intermediate result in Lemma
7.10.

Lemma 7.10. Let f(x) = g(x)+
∑p
j=1 hj(xj), where g(x) is convex and continuously

differentiable, and hj(x) are convex functions. Then

f(x+ cej) ≥ f(x), for all c, j ⇔ f(x) = min
β∈Rp

f(β), (7.10)

where ej ∈ Rp is the jth standard basis vector.

Proof. For the proof we refer to Appendix F.

By Lemma 7.10, the global minimum of the constrained Lasso problem is found if
and only if it is optimized along each axis. In the next chapter a cyclical coordinate
descent algorithm will be introduced, that solves the penalized regression problem
for convex penalty functions, by optimizing along each direction iteratively until
the process converges. The convergence properties of convex optimization, will be
stated there. But here we use this property to derive so-called thresholding rules
and shrinkage factors for different types of penalties. We derive these to illustrate
the bias of ridge and Lasso estimates.
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To simplify the results, we only show the derivation of the thresholding rules for
the case that Î = X>X is the identity matrix (X is orthonormal). The following
results are only used to demonstrate the behavior of thresholding and shrinkage in
penalized regression. First we look at the effect of optimizing the ridge penalized
regression in one direction, keeping all other coordinates fixed. To that end, we fix
βk for k 6= j, and let

βridge
j = arg min

βj

1
2n

n∑
i=1

(yi −Xiβ)2 +
p∑
j=1

β2
j . (7.11)

Setting the derivative of Q(β) in Lemma 7.9 to zero, we derive the shrinkage factor
for ridge penalized regression. We write,

0 = ∂Q(βridge)
∂βridge

j

=
p∑

k=1
Îjk(βridge

k − β̂k) + 2λβj

=⇒ (β̂ridge
j − β̂j) + 2λβridge

j = 0

=⇒ β̂ridge
j = 1

1 + 2λβ̂.

From this, we conclude that optimizing the ridge estimator in direction j results in
a shrinkage of the OLS estimate by a factor 1

1+2λ . The shrinkage effect as a function
of β is displayed in Figure 7.3c.

In a similar way we derive the soft thresholding rule for the Lasso penalty. We write,

0 = ∂Q(β)
∂βj

=
p∑

k=1
Îjk(βk − β̂k) + λ sgn(βj)

=⇒ (β̂lasso
j − β̂j) + λ sgn(β̂lasso

j ) = 0

=⇒ sgn(β̂lasso
j )

(
|β̂lasso
j |+ λ

)
− β̂j = 0

=⇒ β̂lasso
j =


0 if |β̂j | ≤ λ(

1− λ
|β̂j |

)
β̂j otherwise

=⇒ β̂lasso
j = sgn(β̂j)(|β̂j | − λ)+,

where we set the derivative ofQ(β) to zero component-wise in the second implication.
The transformation by the soft-thresholding rule of the initial estimate β̂, which can
be obtained by the OLS method for orthonormal design matrix X, is displayed in
Figure 7.3b.
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Best subset selection, or L0 penalized regression, which we mentioned in equation
7.2 for orthonormal designs coincides with the so-called hard thresholding rule, which
is given by [9]:

β̂L0
j = β̂1{|β̂j |>λ}. (7.12)

In Figure 7.3a the effect of this transformations of the initial β̂ estimate is displayed.
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Figure 7.3: Transformations of the unbiased estimator β̂OLS, for the hard-
thresholding rule, the soft-thresholding rule, and ridge shrinkage. These thresh-
olding rules are implied by the L0, Lasso, and ridge penalty respectively.

We see that, although Lasso renders continuous and sparse results, this comes at a
price of shifting the OLS estimator by a constant λ [9]. The introduction of such
a bias in the orthonormal case, suggests that the Lasso procedure can give biased
estimates. A proof of the bias of Lasso is given in Zou (2006) [16]. In the following
section we introduce Adaptive Lasso, which retains the favorable properties but
adaptively chooses weights for coefficients to reduce bias.

7.4 The Oracle Properties of Adaptive Lasso

The literature on Lasso and penalized regression is vast. Besides the sparsity and
continuity properties that we have discussed so far, the asymptotic properties of
automated selection procedures are also a flourishing topic of research. A substantial
amount of effort is being put forward to derive robust measures for the errors of an
Adaptive Lasso estimator. The least squares L0 estimator β̂L0 in equation 7.2 is
thought to be a good estimator because it enjoys the oracle properties [34]. In
this section, we give a precise definition of such an oracle estimator, and show
that Adaptive Lasso also possesses these desirable properties. The oracle properties
ensure that variable selection is consistent, and that the estimator β̂ asymptotically
converges to the true coefficients, at the same rate as if the true parameters were
known in advance.
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Before we proceed, we establish some useful notation for asymptotic results. Recall
that S0 is the active set of the true underlying model. In the asymptotic setting we
consider the Lasso estimator

β̂(n) = arg min
β

1
2n ||Y

(n) −X(n)β||22 + λn||β||1, (7.13)

and let n → ∞. Let δ be the procedure used to obtain the estimator β̂(n)(δ).
We denote the active set of variables of this estimator by S(n) = {j = 1, . . . , p :
β̂

(n)
j (δ) 6= 0}, and let β0

S0 denote the nonzero coefficients of β0. Similarly, β̂(n)
S(n)(δ)

represents the nonzero coefficients of β̂(n)(δ). Lastly, we let Σ0 be the covariance
matrix for the true subset model.

Definition 7.11. (Oracle Properties) Let Ŝ(n) and (β̂(δ) be the active set and
the model estimate obtained by a procedure δ on n observations. We say that a
procedure δ satisfies the oracle properties when:

i It selects variables consistently,

lim
n→∞

P(S(n) = S0) = 1. (7.14)

ii It has the asymptotic distribution as if the true active set was known in
advance, √

n
(
β̂(n)(δ)S0 − β0

S0

)
d→ N

(
0,Σ0

)
. (7.15)

The first oracle property ensures that precisely those predictors in the true model are
selected as n goes to infinity. The second oracle property tells us that asymptotically,
the procedure performs as well as if the variables in the active set were known in
advance.

A large portion of the research dedicated to Lasso techniques is focused on deriving
necessary and sufficient conditions for the Lasso procedure and variants thereof
to have the oracle properties. Whether the Lasso procedure possesses the oracle
properties has been a topic of debate, see for instance [18] [15] [28] [32]. It turns out
that it satisfies the oracle properties under non-trivial conditions on the underlying
model. A thorough overview of the conditions that are used to prove oracle results
for Lasso can be found in S. van de Geer & P. Bühlmann (2009) [18]. Zou(2006)
gives scenarios for which the Lasso selection cannot be consistent [16]. In the same
paper he proposes the use of the Adaptive Lasso.

In the Lasso procedure all coefficients are penalized by the same tuning parameter
λ and thus receive the same weight, independent of their size. As a result, large
coefficients contribute relatively more to the Lasso penalty, which can lead to biased
results [16]. Note that our observation from Figure 7.1 that large coefficients are
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shrunk towards zero corresponds to this result. The Adaptive Lasso in Definition
7.12 allows each coefficient to have a different, adaptively chosen weight.

Definition 7.12. (Adaptive Lasso) Suppose β̂init is a root-n consistent estimator7

for β0. Then the Adaptive Lasso estimator β(n) is given by

β̂(n) = arg minβ||Y (n) −X(n)β||22 + λn

p∑
j=1

ŵj |βj |, (7.16)

where ŵ = |β̂init|−γ an adaptive weight vector.

The parameter γ in the definition of the weights for Adaptive Lasso, can be chosen
so that the prediction error of the procedure is minimized. In Section 8.1.3 in the
next chapter, we show how this optimal value of γ can be computed.

It can still be argued that a L0 penalty as in equation 7.2 is more natural than the
L1 penalty, since it directly penalizes the inclusion of extra parameters. The main
advantage of a L0 penalty is that it satisfies the oracle properties in Definition 7.11.
It turns out that the Adaptive Lasso method enjoys the oracle properties under far
less stringent conditions than Lasso. Recall that σ2 denotes the variance of the i.i.d.
random variables ε = (ε1, . . . , εn) with mean zero in the linear model,

yi = Xiβ
0 + εi.

We assume that 1
nX

(n)>X(n) → C, where C is a positive definite matrix. Now
without loss of generality, we let S0 = {1, . . . , p0}, where 1, . . . , p0 are the true
predictors. We rewrite,

C =
(
C11 C12
C21 C22

)
, (7.17)

where C11 is a p0 × p0 matrix representing the covariance matrix of the true active
set of predictor variables.

Theorem 7.13. Let λn/
√
n → 0 and λnn

(γ−1)/2 → ∞, then the adaptive lasso
estimates in Definition 7.12 satisfy the oracle properties,

i limn→∞ P(S(n) = S0) = 1,

ii
√
n
(
β̂

(n)
S0

(δ)− β0
S0

)
d→ N

(
0, σ2 × C−1

11

)
Proof. For the proof of this theorem we refer to Zou (2006) [16]. In Appendix F we
give an outline of the proof. We note that the consistency in variable selection also
holds for Lasso and that the results for Adaptive Lasso hold for fixed p. Huang et

7A
√

(n)-consistent estimator β̂ satisfies β̂(n) − β0 = Op(n).
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al. (2008) show that the results for Adaptive Lasso hold for the high-dimensional
case, where p� n under some extra conditions [14].

We now know that the adaptive lasso is an asymptotically consistent selection and
estimation procedure for some

√
n-consistent initial estimator β̂init. Unfortunately,

the choice of β̂init is still somewhat of an open problem. Zou (2006) suggests that
the ridge regression estimator can be an adequate choice [16] in the p > n case. The
use of Lasso estimators for β̂init can also be found in literature and is advocated by
Bühlmann and Geer for high-dimensional settings in [26]. For this research project
we considered βtextinit = βtextlasso.

The Adaptive Lasso estimator satisfies the same properties with regard to sparsity
and continuity as does the Lasso [16]. The Adaptive Lasso penalty is non-decreasing,
non-negative, non-differentiable at zero, and also convex. Hence by Theorem 7.6 it
produces sparse and continuous results. The Adaptive Lasso estimates are approxi-
mately unbiased by Theorem 7.13.

To exemplify this, we demonstrate the behavior of the thresholding rule for the
Adaptive Lasso in the case that X is orthonormal, as we did for Lasso in the previous
section. This exercise is intended to illustrate the difference with the Lasso and the
influence of the parameter γ in the weight function. Applying the same approach
as in section 7.3, we can derive the associated thresholding function,

β̂alasso
j = sgn(β̂j)

(
|β̂j | −

λ

|β̂j |γ

)+

, (7.18)

where β̂ is a consistent and unbiased estimator, for instance βOLS. In Figure ??
below, we observe that the thresholding function of the Adaptive Lasso penalty
renders approximately unbiased results, because the difference β̂alasso

j and β̂j goes to
zero as β →∞. Convergence of the threshold function to the OLS solution is faster
when γ is larger.

7.5 Existence and Uniqueness of Lasso Solutions

In this section we give explicit proofs for the existence and uniqueness of Lasso
estimators. All results can easily be adapted for Adaptive Lasso, but for simplicity
in notation we show the results for Lasso instead. We use theory from convex
optimization to prove the existence of the Lasso estimator and derive conditions
under which it is unique. The Lasso problem belongs to the category of convex
optimization problems without equality constraints. It can be shown8 that the

8See Appendix C for an introduction to convex optimization theory and the derivation of the
KKT conditions.
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Figure 7.4: Transformations of the OLS estimate for the Adaptive Lasso thresholding
function.

solution to the constrained Lasso problem in equation 7.4 satisfies the Karush-Kuhn-
Tucker (KKT) conditions in Definition 7.14 below. Moreover, from optimization
theory we know that a solution β̂ to the Lasso problem in equation 7.4 is optimal if
and only if it satisfies these KKT conditions.

Definition 7.14. (KKT conditions for Lasso) The KKT conditions for the Lasso
problem are given by

i Stationarity: X>(Y −Xβ̂) = λs, where

sj ∈


{1} β̂j > 0,
[−1, 1] β̂j = 0,
{−1} β̂j < 0.

ii Complementary Slackness: λ[
∑p
j=1 |βj | − t] = 0

iii Primal Feasibility:
∑p
j=1 |βj | ≤ t

iv Dual Feasibility: λ ≥ 0

The KKT conditions play a crucial part in some of the theorems that are discussed in
this section. Another important concept is convexity. In Lemma 7.15 we specifically
state some results with respect to norms and convexity, which are essential to the
proofs of the theorems in the remainder of this section.

Lemma 7.15. (Convexity) We say that a function h is convex when

h(αx1 + (1− α)x2) ≤ αh(x1) + (1− α)h(x2), (7.19)

for α ∈ [0, 1] and strictly convex if 7.19 has strict inequality for α ∈ (0, 1). The
following statements hold:

72



i A strictly convex function f has at most one minimization point.
ii A convex function f on a closed and bounded set C has at least one minimiza-

tion point.
iii If h is a strictly convex function and f is a convex function, then f + h is a

strictly convex function.
iv The function h(β) = ||β||1 is convex.
v The function h(Xβ) = ||Y −Xβ||22 is strictly convex and the function h(β) =
||Y −Xβ||22 convex.

vi If the columns of X are linearly independent h(β) = ||Y − Xβ||22 is strictly
convex in β.

Proof. The proof of this lemma can be found in Appendix F.

Theorem 7.16 (Existence). The solution to the Lasso problem,

arg min
β

1
2n

n∑
i=1

(yi −Xiβ)2 + λ||β||1. (7.20)

is either unique or there exist infinitely many solutions. If the columns of X are
linearly independent, then the solution is unique.

Proof. We know that f(β) = ||Y − Xβ||22 is a convex function by lemma 7.15 (5).
Since the set {β ∈ Rp : ||β||1 ≤ t} is closed and bounded, a solution to the lasso
problem is guaranteed to exist by lemma 7.15(2). Moreover, if the columns of X
are linearly independent f(β) is strictly convex by 7.15(6), the objective in equation
7.20 is strictly convex by 7.15(3), and hence the solution is unique by 7.15(1).

We have established that there exists at least one solution. We show that if there
exist more than one solution, than there exist uncountably many solutions. Let
f(β) = 1

2n ||Y − Xβ||
2
2 + λ||β||1, and suppose there exist two solutions β̂(1) 6= β̂(2),

then f(β̂(1)) = f(β̂(2)). Since the constraint region ||β||1 ≤ t is convex we have that
αβ̂(1) + (1− α)β̂(2), for 0 < α < 1, is in the feasible set. By convexity of f we may
write

f(αβ̂(1) + (1− α)β̂(2)) ≤ αf(β̂(1)) + (1− α)f(β̂(2)) = f(β̂(1)). (7.21)

The inequality is actually an equality, because otherwise f(αβ̂(1) + (1 − α)β̂(2)) <
f(β̂(1)) contradicts the fact that f(β̂(1)) is a minimal solution. It follows that αβ̂(1)+
(1− α)β̂(2) is also a minimal solution. Since α ∈ [0, 1] there are uncountably many
solutions.
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Theorem 7.16 shows that the Lasso estimator is guaranteed to exist. Moreover,
if the columns of X are linearly independent then the solution is unique. This
sufficient condition for uniqueness can be made less stringent, so that Lasso solutions
for problems involving design matrices with more predictors than observations (i.e.
p > n) can also be uniquely determined. Before we continue with the condition for
uniqueness of the Lasso solution, we first establish another important result, which
guarantees that the predictions that the model renders are unique in theorem 7.17.

Theorem 7.17 (Unique Predictions). The predictions of Lasso estimators are al-
ways unique.

Proof. To proof the result we show that if the Lasso minimization problem has two
solutions β̂(1) and β̂(2) then Xβ̂(1) = Xβ̂(2). We argue by contradiction. Let

c∗ = ||Y −Xβ̂(1)||22 + λ||β̂(1)||1 = ||Y −Xβ̂(2)||22 + λ||β̂(2)||1. (7.22)

For any 0 < α < 1 we may write

||Y −X
(
αβ̂(1) + (1− α)β̂(2)

)
||22 + λ||αβ̂(1) + (1− α)β̂(2)||1 < αc∗ + (1− α)c∗ = c∗,

(7.23)
where the strict inequality follows from the fact that ||Y −Xβ||22 is a strictly convex
function of Xβ, and ||β||1 a convex function. But then the solution αβ̂(1) + (1 −
α)β̂(2)) gives a value less than c∗. This contradicts the fact that β̂(1) and β̂(2)

are Lasso solutions. The inequality in equation 7.23 is an equality if and only if
Xβ̂(1) = Xβ̂(2). Hence the Lasso predictions are unique.

Theorem 7.17 shows us that the Lasso produces unique predictions for any matrix
X. However, we would like to know under what conditions the solution itself is
unique. From a modeling perspective, uniqueness is a useful property, since there is
no ambiguity concerning the model specification, which makes model interpretation
easier. Moreover, it shows us that the Lasso procedure can distinguish between many
subtly different models. Since we want to use Adaptive Lasso to simultaneously
select and estimate a parsimonious model from a large set of candidate predictors,
this is a very useful property. In Theorem 7.16 we proved that the uniqueness
of the Lasso estimator is unique in the case when the columns of X are linearly
independent. Surely, linear independence does not hold for the case p > n. In
Theorem 7.18 below we show that uniqueness can be established under far less
stringent conditions.

Theorem 7.18 (Uniqueness). Let X ∈ Rn×p and λ > 0. Consider

arg min
β∈Rp

||Y − βX||22 + λ||β||1. (7.24)
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Define E = {j = {1, . . . , p} : X>(Y −Xβ̂) = λ} and let XE denote the matrix of the
columns of X that are in E. If XE has full column rank then the solution β̂ ∈ Rp

to 7.24 is unique and has at most min(n, p) nonzero components.

Proof. Recall the stationarity condition of the KKT conditions, X>(Y −Xβ̂) = λs.
Since Xβ̂ is unique by theorem 7.17, it follows that s, and hence E is uniquely
determined.

Note that for j /∈ E it holds that |sj | < 1, which implies that β̂j = 0. Therefore, E
contains the set of active variables, and β̂−E = 0. For any solution β̂ we must have,
again by the KKT conditions,

X>E (Y −XE β̂) = λsE . (7.25)

A particular solution of this system of linear equations is given by

β̂E = (X>EXE)†(X>EY − λsE), (7.26)

where † denotes the Moore-Penrose pseudo-inverse. The general form of the solution
is given by,

β̂E = (X>EXE)†(X>EY − λsE) + η, (7.27)

where η ∈ ker(X>EXE) = ker(XE).

From here, it is straight-forward to see that the solution β̂ is unique if and only if
ker(XE) = {0} (recall that XE is uniquely determined). It follows that if XE has
full column rank then the lasso solution is unique and satisfies

β̂E = (X>EXE)−1(X>EY − λsE), β̂−E = 0. (7.28)

The fact that XE has full column rank implies that |E| ≤ min(n, p).

Actually, it can be shown that except for y ∈ Rn in a set of measure zero it holds
that ∀j ∈ E, β̂j 6= 0 [39]. It follows that S = E and the conditions of theorem
7.18 are not only sufficient but also almost everywhere necessary. What remains is
to consider conditions under which XE has full column rank. This is trivially true
in the case that X itself has full column rank. Theorem 7.21 below demonstrates
conditions under which XE has full column rank.

Definition 7.19. (Affine Span) The affine span of vectors X1, . . . Xp, is given byα1X1 + . . . , αpXp : α ∈ Rp,
p∑
j=1

αj = 1

 . (7.29)
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Definition 7.20. (General Position) We say that X1, . . . , Xp ∈ Rn are in general
position when for all k < min(n, p), i1, . . . , ik+1 ∈ {1, . . . , p}, and σ1, . . . , σk+1 ∈
{−1, 1} the affine span of σ1Xi1 , . . . σk+1Xik+1 contains no elements of {±Xi : i 6=
i1, . . . , ik+1}.

Theorem 7.21. If the columns of X are in general position, then XE has full
column rank.

Proof. For the proof we refer to Tibshirani (2013) [39].

The condition that the columns of X need to be in general position for uniqueness
of the lasso solution, is very weak and can even hold for design matrices X with
p � n. These are very fortunate results for the (Adaptive) Lasso method. In fact,
the solutions are only non-unique when the columns are not in general position,
which is the case when exact collinearity exists in relatively small sets of variables.
Theorem 7.22 below gives a condition on the continuity of the distribution of X that
also ensures unique solutions.

Theorem 7.22. If the entries of X are drawn from a continuous probability distri-
bution on Rn×p, with respect to the Lebesgue measure, then the solution β̂ ∈ Rp to
7.24 is unique.

Proof. It can be shown that if the entries of X are drawn from a continuous distri-
bution on Rn×p then the columns are in general position, for a proof we refer to [39].
By Theorem 7.21 this implies that XE has full column rank. Theorem 7.18 finishes
the proof.

7.6 Other Applications of Adaptive Lasso

In this section we describe two applications of Lasso that can be used for more
advanced models. In Section 7.6.1 we demonstrate that Adaptive Lasso can be used
as a variable screening method that retains substantially relevant predictors. The
application of Adaptive Lasso to panel data models will be discussed in Section 7.6.2

7.6.1 Variable Screening

In the previous sections we have demonstrated that the Adaptive Lasso method has
many desirable properties for variable selection and modeling. In this section we
discuss the option of using (Adaptive) Lasso for variable screening. This application
refers to a method that reduces the dimensionality of the design matrix. In the
following chapter we will use this option for one of our benchmark models.
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Variable screening is particularly useful for high-dimensional modeling, where typi-
cally p > n. Most statistical methods cannot produce estimates under such circum-
stances. A reduced design matrix may also allow the option of using other variable
selection methods, which would otherwise be computationally infeasible. For large
design matrices where p� n it can therefore be useful to perform variable screening
on the design matrix. To that end, we want to find predictors whose coefficients |βj |
are substantially relevant.

Definition 7.23. (Substantially Relevant Predictors) Recall that the columns of X
are standardized, so that they have equal mean and variance. The set of substantially
relevant predictors in the true model is given by,

SC0 = {j : |β0
j | ≥ C, j = 1, . . . , p}, (7.30)

for some C > 0.

Let β̂(λ∗) be the Adaptive Lasso estimator for the optimal value of the tuning
parameter. How this value can be obtained computationally will be discussed in
8.1.3 in the next chapter. It can be shown that ||β̂(λ∗) − β0||q → 0 in probability
by using Theorem 7.13. It can then be derived that for all fixed 0 < C <∞ it holds
that

P(Ŝ(λ∗) ⊇ SC0 )→ 1 as n→∞. (7.31)

We refer to Bühlman and Geer (2011) [25] for a thorough derivation of these results.
Lemma 7.24 below implies that if we perform (Adaptive) Lasso regression with an
appropriate value of λ, we select a superset of the true active set SC0 with high
probability. By the sparsity property of the Lasso estimator, it holds that |ŜC | ≤
min(n, p), hence the name variable screening.

Lemma 7.24. Assume that

||β̂(λ)− β0||1 ≤ a, (7.32)

with high probability. Then for C > a we have that

Ŝ(λ) ⊇ SC0 , (7.33)

with high probability.
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Proof. Let j ∈ SC0 then |β0
j | ≥ C by definition of SC0 . Then

||β̂(λ)− β0||1 ≤ a < C

=⇒ |β̂j(λ)− β0
j | < C

=⇒ β̂j(λ) 6= 0
=⇒ j ∈ Ŝ(λ).

All equalities and inequalities hold with high probability.

Variable screening can be useful in numerous applications. Bühlman and Geer (2011)
advocate the use of the Lasso estimator with λ sufficiently close to zero and for
dimension reduction purposes [25].

7.6.2 Application of Adaptive Lasso to Panel Data

Thus far, we have only considered the (Adaptive) Lasso for regression problems
with only a time-dimension. However, panel data9 is increasingly important in
econometric modeling. For the estimation of individual bank-effects in a top-down
model for credit loss rates, we consider a panel data model. Since we have time-series
of NCO rates for 100 commercial banks in the United States, we might be able to
understand for which individual characteristics we need to control in the prediction
of rates.

We consider a simple panel data model for nT observations and nB individuals of
the form,

yj,t = αj +Xtβ + Zj,tγ + εj,t, j = 1, . . . , nB, t = 1, . . . , nT , (7.34)

where Xt is an nT × p matrix of predictors and Zj,t an individual specific nT × q
matrix of individual effects. The Adaptive Lasso estimator for such a model is given
by,

arg min
β,γ

nB∑
j=1

nT∑
i=1

yi − p∑
k=1

Xi,kβj −
q∑
j=1

Zi,k,jγj

2

+ λ1

p∑
j=1

|βj |
ŵXj

+ λ2

m∑
j=1

|γj |
ŵZj

, (7.35)

where λ1 and λ2 are tuning parameters for the cross-sectional and time dimensions,
respectively. The weight vectors ŵX and ŵZ are given by |βinit|−ω and |γinit|−ω, for
some

√
n consistent estimator (βinit, γinit).

Although a thorough discussion of the application of the Lasso method to different
9For a brief introduction to panel data estimation in linear regression, see Appendix B.
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types of panel data models is beyond the scope of this thesis, we do include a concise
overview of some of the more advanced possibilities for the sake of completeness.
Clifford and Souza (2014) propose the use of the Adaptive Lasso method to estimate
spatial autoregressive models with exogenous predictor variables[49]. Such a model
is of the form,

yt = W (1)yt +W (2)Xtβ + εt, , t = 1, . . . , n. (7.36)

And the adaptive Lasso minimization problem becomes,

arg min
W (1),W (2),β

n∑
t=1
||yt −W (1)yt +W (2)Xtβ||22 + λ

n∑
i,j

w1,ij
|ŵinit

1,ij |
+ w2,ij
|ŵinit

2,ij |
. (7.37)

They derive an oracle inequality and asymptotic consistency properties for this
Adaptive Lasso estimator. In their study they apply the estimator to model the
dependency between world-wide stock market data, with positive results.

Another effort in applying the adaptive Lasso to panel data with time-varying (or
cross-sectional varying) effects is given in [37]. They use well-known Lasso variants
such as the grouped and fused Lasso to model the time-varying behavior of coeffi-
cients. Both methods are applicable to feature selection for panel data, but none of
the research focuses on the simultaneous estimation of the coefficients of exogenous
variables and cross-sectional dependencies. Since the subject of this research project
is the assessment of the feasibility of top-down stress testing with Adaptive Lasso,
we do not consider time-varying coefficients or correlation structures.

7.7 Summary

We have shown that Adaptive Lasso can automatically select and estimate coeffi-
cients from large design matrices with more potential predictors than observations.
The selected model is parsimonious and approximately unbiased. Furthermore, the
solutions are unique under very flexible conditions. An important property is that
variables are selected consistently and the asymptotic distribution of the estimates
is as good as if the true model were known in advance. Adaptive Lasso can also be
used as a variable screening method that retains substantially relevant predictors
with high probability. Lastly, it can be applied to the estimation and selection of
panel data models.

Adaptive Lasso is an attractive method for the selection and estimation of top-down
models for stress testing. We will use Adaptive Lasso for linear model selection and
estimation, as a variable selection method, and in a panel data setting. The models
that we construct using Adaptive Lasso are discussed in the following chapter. How
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we use these models to answer the research questions in Chapter 3, will be discussed
in Chapter 9.
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Chapter 8

Top-Down Models

The aim of this chapter is to present and explain the method that we use to develop a
top-down model for stress testing credit loss rates for individual banks. The purpose
of this model is to assess the opportunities of such an exercise regarding prediction
accuracy for individual banks, the uses of the inclusion of bank-specific effects, and
the aggregation level of the loan portfolio. To that end, we first introduce our
modeling approach for the estimation and prediction of NCO rates for averaged
loan categories in Section 8.1. We continue with the estimation of NCO rates for
fixed loan categories on the individual bank level in Section 8.2, and conclude with
methods to aggregate the results for a complete loan portfolio in Section 8.3.

8.1 Averaged NCO Rates by Loan Category

Data-driven model selection consists of obtaining an appropriate initial formulation,
and solving the selection, computation, and evaluations problems. In this section
we will explain how we implemented the first three steps to learn an appropriate
model that can forecast NCO rates conditional on paths of the macro-economy using
data-driven methods only. The evaluation of top-down stress testing models will be
discussed further in Chapter 9.

The main idea of this research project is to use Adaptive Lasso to generate a hy-
pothesis regarding the model specification of NCO rates, that can be used to predict
NCO rates conditional on macro-economic (stress) scenarios, keeping all other cir-
cumstances constant. In this section we consider averaged NCO rates, as in equation
3.6, split by loan category. We use Adaptive Lasso both to discover and estimate
the model specification for each loan category. Furthermore, we use it as a variable
screening method to select substantially relevant predictors, for an auto-regressive
model.

The resulting models are used to explore the opportunities and challenges of using
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top-down stress testing as a complement to bottom-up testing. The predictions
of our model allow us to explore the feasibility and limitations of top-down stress
testing credit loss rates conditional on paths of the macro-economy. In Section 9.1
we discuss how these models can be used to assess whether Adaptive Lasso can be
used to find a parsimonious model, what we can expect of the prediction accuracy
of a top-down model, whether auto-regressive effects need to be included, and what
the data requirements for top-down stress testing are.

8.1.1 Initial Formulation

In the first step of the data-driven model discovery, the aim is to derive an initial
specification of a design matrix X, containing relevant macro-economic variables
and transformations thereof. This matrix must be constructed in such a way that
all key relevant indicators are included, ensuring that the initial model satisfies the
requirements for valid inference that are posed by Doornik and Hendry (2015) [51].
In Section 8.2 we will elaborate on the cross-sectional dimension of the design matrix,
which is necessary for the prediction of NCO rates using individual effects, described
in Section 3.2.2.

Since we assume that the stress scenario for which we want to predict the NCO
rates on loans is given in terms of the variables in the 2014 Federal Reserve stress
testing exercise, our initial formulation should at least contain these predictors and
transformations thereof. Note that an automated selection method can easily be
adapted to include other types of scenarios. It can also be repeated for each quarter,
and can adapt to changing circumstances and relations in the macro-economy.

Ideally, we would like to include all significantly relevant transformations of the base
predictors in the design matrix. Of course, there are many economically reasonable
initial design matrices that we can create. The difficulty in selecting an appropriate
initial formulation lies in the fact that we do not want to include too many transfor-
mations and interactions of variables to avoid the risk of selecting variables whose
relevance cannot be generalized outside the scope of the training data. But we still
want to make sure that all relevant variables are included.

Admittedly, the choice for the initial formulation is somewhat arbitrary and further
research is needed to establish what kind of initial design matrix is best suited for the
top-down stress testing problem, for instance by using the judgment of experts in the
field of macro-economics1. For our initial formulation, we attempted to specifically
take the interpretability of the discovered model into account. A combination of
economic, mathematical, and empirical considerations has led to our initial design

1An empirical analysis of the impact of the design matrix on the resulting model would require
an extra set of data to compare the accuracy of different designs.
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matrix.

8.1.1.1 Economic Considerations

Recall the variables of the stress scenario that were introduced in Chapter 5, Com-
mercial Property Price Index (CPPI), Gross Domestic Product (GDP), Dow Jones
Industrial Average (DJIA), Disposable Income (DI), House Price Index (HPI), Con-
sumer Price Index (CPI), Chicago Board Options Exchange Market Volatility Index
(VIX), Unemployment Rate (UR), and the change in unemployment rate (DUR).
We shall from here on refer to these variables as the set of base predictors.

We used our economic intuition and published studies to determine potentially rel-
evant transformations of the base predictors. Customarily, the design matrix for
the prediction problem in top-down stress testing, is given in terms of independent
explanatory variables, which are used to predict the target variable, or dependent
variable. Lags of the independent and target variables are occasionally considered
in time-series regressions. For top-down stress testing most studies include an auto-
regressive term of the response variable. Research that adopts nonlinear transfor-
mations of explanatory variables, such as squares, cubes and interactions are much
more scarce. Only Kapinos and Mitnik (2015) [54] use these transformations in the
context of top-down stress testing. Nonlinearities around zero are used by Hirtle
et al. (2014) [47] by including dummy variables. This allows the model to capture
convex relations between the predictor and target variables. In this sense our re-
search presents a novel approach to the top-down stress testing exercise. Although
our search for a correct specification is far from exhaustive, we consider far more
potential design matrices than any previous top-down stress testing study to our
knowledge.

Since the macro-economy may impact NCO rates in a nonlinear manner, we want
to consider nonlinear transformations of the base predictors. To capture this be-
havior we consider lags, indicators, squares, cubes, and interactions between macro-
economic predictors. An intuitive interpretation of the relevance of including these
transformations can be as follows.

The response of NCO rates to macro-economic shocks is not necessarily immediate
and can last for more than one quarter. The effect can be delayed, or only present
when the macro-economic shocks are persistent over time. Hence, we also consider
lags of the base predictors, and their average value over the last four quarters. The
value or change of a base predictor may indicate the beginning of an economic
downturn, or it can be a response. For instance, it is not clear whether a change of
the value in a price index is the cause or a consequence of a change in net charge
off rates, or perhaps both. Furthermore, the behavior of economic agents is affected
by the overall business climate. The response of NCO rates to macro-economic
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shocks can therefore depend on the value of indicator functions such as 1{DURt>0} or
1{URt>NROU}2. When such indicator functions interact with other base predictors,
we may be able to capture nonlinear (or convex) behaviors around zero or the
natural rate of unemployment. Moreover, NCO rates may not respond linearly to
increasingly large macro-economic shocks. Squares or cubes of macro variables may
offer a better description of the relation between these shocks and NCO rates. Also,
complicated interactions between different aspects of the macro-economy may be
captured by the inclusion of interactions between (transformed) base predictors.

Table 8.1 summarizes the transformations of the base predictors that we considered.
We also took interactions (products) between these (transformed) variables into
account. This approach is supported by methods that were used in the literature,
for instance in Kapinos and Mitnik (2015) and Doornik and Hendry (2015) [54, 51].

Table 8.1: Transformations of Macro-Economic Stress Series

Type of Effect Transformation

Non-Linearity f square(xt) = x2
t

f cube(xt) = x3
t

Conditioning1 f ind.(xt) = 1{xt>0}
fneg.ind.(xt) = 1{xt<0}.

Lag f lag i(xt) = xt−i i = 1, 2, 3, 4
Persistence faverage(xt) = xt = 1

4 (xt + xt−1 + xt−2 + xt−3)
1 For the URt series we compare with the NROUt series instead of 0 in the
indicator function. For the VIXt series we use 1{VIX>mean(VIX)}.

8.1.1.2 Mathematical Considerations

Naturally, adding interactions results in a significant augmentation of the size of
the design matrix. If we use the Adaptive Lasso method for variable selection, we
would like to construct the initial formulation design matrix in such a way that its
columns are in general position. Then, by Theorem 7.21 and Definition 7.20, there is
a unique solution to the (Adaptive) Lasso minimization problem, even when p� n.
We remark that collinearity may exist in the design matrix. Adaptive Lasso can
distinguish between different specifications as long as the columns of X remain in
general position.

In order to control for the size of our initial formulation and to preserve uniqueness
of the solutions, we want to exclude transformed base predictors if they are in the
affine span of other (transformed) base predictors. Testing whether the columns of
the initial formulation are in general position is beyond the scope of this thesis, but

2Recall that NROU represents the natural rate of unemployment.
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we do present some mathematical considerations.

First off, if we include lags 1, . . . , 4 for a variable xt, then faverage(xt) lies in the
affine span of these variables since,

faverage(xt) = 1
4(xt + xt−1 + xt−2 + xt−3), (8.1)

by Definition 7.19. We conclude that, if lags 0, 1, 2 and 4 of a base predictor are
included, than they are in the affine span of the averaged base predictor and the
columns of the design matrix are no longer in general position.

Differences such as, DURt = URt − URt−1 and lags such as, URt and URt−1 are
typically in general position, since none of the variables lies in the affine span of
the other two. This can be seen as follows. Let f lag 0(xt) and f lag 1(x) be linearly
independent (nT ×1) vectors with f lag 0(x) 6= 0 and f lag 1(x) 6= 0. Then there exists
no α ∈ R such that,

α(±xt)− (1− α)(±xt−1) = xt − xt−1, (8.2)

for all t = 1, . . . , nT . We conclude that DURt, URt, and URt−1 are typically in
general position.

The same is true for positive and negative indicator functions, since there exists no
α ∈ R such that,

α(±1{xt>0}xt) + (1− α)(±1{xt<0}xt) = xt,

for all t = 1, . . . , nT .

We conclude that Adaptive Lasso can be unique when differences of base predictors
are included and when positive and negative indicators of base predictors are in-
cluded. In a sense, this is a remarkable result because it says that Adaptive Lasso
can distinguish between different specifications of collinear predictors. Equation 8.1
indicates that care must be taken with the inclusion of both lags and averaged base
predictors, since this does not preserve uniqueness.

Another consideration is that the convergence properties of Adaptive Lasso are more
favorable for smaller p [14]3. Therefore, although Adaptive Lasso can handle large
initial formulations, it would be prudent to use more specific economic knowledge
of the NCO rate process to limit the amount of transformed predictors.

3The proof of Theorem 7.13 holds point-wise for fixed p [16]. Extra conditions on the design
matrix are required to proof the oracle properties for the p > n case. Derivation of confidence
intervals is therefore limited to the n < p case.
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8.1.1.3 Design Matrix and Empirical Considerations

The initial formulation that is at the basis of our experiment is presented in Table
8.2. Including the lags, squares, cubes, base interactions, and indicator interactions
from this table results in a large design matrix. Since there are 9 base predictors,
there are 9×3 = 27 lagged variables, 9×5 = 45 averaged lagged variables, 9×8 = 72
squares, and 9×8 = 72 cubes. The number of base interactions is equal to 8×

∑8
i=1 i.

For the number of transformed predictors we find that it equals 9×3×3 = 81, and for
the number of averaged transformed predictors we have 9×5×3 = 135. This brings
the total number of indicator interactions to 3×(9×2)×81+3×(9×2)×135 = 11664.

Table 8.2: Initial Formulation

Name Function

lags f lag
1 (xt) = xt−lag lag = 0, 1, 2
f lag

2 (xt) = xt−lag lag = 0, 1, 2, 3, 4
Squares f lag

3 (xt) = x2
t−lag lag = 0, 1, 2

f lag
4 (xt) = x2

t−lag lag = 0, 1, 2, 3, 4
Cubes f lag

5 (xt) = x3
t−lag lag = 0, 1, 2

f lag
6 (xt) = x3

t−lag lag = 0, 1, 2, 3, 4
Transformed g1(yt) = fj(yt) j = 1, 3, 5

g2(yt) = fj(yt) j = 2, 4, 6
Base interactions f lag1

i (xt)f lag2
j (yt) lag1, lag2 = 0, 1, i, j = 1, . . . , 6, xt 6= yt

Indicator interactions1
1{xt−lag>0}g1(yt) lag = 0, 1, xt 6= yt
1{xt−lag>0}g2(yt) lag = 0, 1, xt 6= yt
1{xt−lag<0}g1(yt) lag = 0, 1, xt 6= yt
1{xt−lag<0}g2(yt) lag = 0, 1, xt 6= yt
1{xt−lag>0}xt−lagg1(yt) lag = 0, 1, xt 6= yt
1{xt−lag>0}xt−lagg2(yt) lag = 0, 1, xt 6= yt

1 For the URt series we compare with the NROUt series instead of 0 in the indicator function. For the
VIXt series we compare with the series 1

t−1
∑t−1

i=1 VIXi instead of 0 in the indicator function.

The amount of predictor variables in the design matrix is extremely high, and we
have that p � n. The idea of (Adaptive) Lasso, is that it will only select a par-
simonious model consisting of the most relevant variables. To empirically test our
initial formulation we generated samples for simple models present in the initial for-
mulation and added normally distributed noise. Furthermore, we tested the initial
formulation for sample paths of an auto-regressive model. That is, we generated
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sample paths of the following simple models,

yt = DURt + εt, (8.3)
yt = εt, (8.4)
yt = yt−1 + DURt + εt, (8.5)

where εt ∼ N (0, σ2). We assessed which variables were selected by Adaptive Lasso,
based on the generated data. The results of this small experiment are displayed in
Table 8.3.

Table 8.3: Initial Formulation Test Results

model nr. of samples error size1 selected variables frequency2

Equation 8.3 65 10% DURt 10/10
Equation 8.3 65 25% DURt 3/10
Equation 8.3 96 25% DURt 8/10
Equation 8.4 65 none 10/10
Equation 8.5 65 10% DURt−lag 5/10

interactions with DURt 6/10
other 0/10

1 Percentage of the range of the data without error.
2 Number of times the variable was selected, compared to the total number of tests.

In the first experiment, The Adaptive Lasso method was able to retrieve the correct
variables from the design matrix, provided that the noise was kept relatively low
compared to the strength of the signal. When the noise is larger, more samples
are needed for reliable variable selection. For the second experiment, no variables
were selected. And in the final experiment, where the true model was not present
in the data, Adaptive Lasso selected a variety of interactions with lags of averaged
values of DURt and interactions of these averaged values with other predictors.
These experiments suggest that the initial design as described in Table 8.2 can
select the correct model with relatively high probability for data generated from
simple specifications. A second empirical consideration is that we repeated part
of our analysis for a much simpler initial formulation, including only lags, fewer
indicator functions, squares, and a limited amount of interactions. This resulted in
a design matrix with ∼ 500 predictor variables. The resulting models were similar
in the sense that their economic interpretation was comparable to that of the full
initial design, and the typical number of selected variables was low (≈ 5), but the
predictions were slightly less accurate than those for the model based on the full
design4.

4For future research it would be interesting to thoroughly assess the limitations and opportunities
of the specification of the initial formulation.
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8.1.2 Selection Problem

For the selection problem there are two main considerations. In the first place,
relevant macro-economic predictors and transformations that influence average NCO
rates should be selected from the set of candidate predictor variables in the initial
formulation. And secondly, we want to determine whether we should assume a linear
or auto-regressive model structure for the top-down modeling of NCO rates on loan
categories. In this section we consider averaged NCO rates on loan categories Pi ∈ P
but we drop the subscript i from our notation.

Most papers about top-down stress testing, consider an auto-regressive model with
exogenous predictors, which we shall refer to as an ARX-model. Such a model is of
the form,

NCOt = α+Xtβ +
p∑
i=1

φiNCOt−i + εt, (8.6)

with p ∈ N and εt are i.i.d random variables with mean zero and variance σ2. For
a proper introduction to time-series modeling, we refer to Appendix A. Although
the NCO rate processes for different loan categories in Figure 6.3 indeed seem to
be of an auto-regressive nature, perhaps this behavior can also be explained by a
dependency on the macro-economy, which also behaves auto-regressively. This last
option is more favorable, since it can give more accurate predictions when we assume
that the future state of the macro-economy is known, which is the case in a stress
testing context.

During the research project, we considered two model types for the dependency of
NCO rates on macro-economic variables, a linear and an auto-regressive model. For
the linear model we used Adaptive Lasso to select variables and estimate coefficients
in one step. For a model with auto-regressive effects we used Adaptive Lasso as a
variable screening method to select substantially relevant predictors. In a second
step we estimated the coefficients of an auto-regressive model. The aim of this second
approach is to determine whether an auto-regressive model is more appropriate for
top-down models of credit loss rates than a linear model. Because one of the aims
of this research project is to investigate the possibility of predicting rates for stress
horizons far beyond 9 quarters, we take a closer look at linear models.

8.1.2.1 Linear Model

Our main model for NCO rates is of the form,

NCOav
t = α+Xtβ + εt, (8.7)
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where εt is a white noise process with mean zero and constant variance σ2 and X is
the design matrix described by the initial formulation in Section 8.1.1. The linear
model assumes that the deterministic part of the NCO rates is completely determined
by the predictor variables in the design matrix, and the remaining random part
ε = (ε1, . . . , εnT ) are i.i.d. random variables with mean zero. We use the Adaptive
Lasso method to obtain a sparse estimate β̂alasso. We use the Lasso estimator to
determine the weight vector ŵ = |β̂init|−γ of Adaptive Lasso.

Adaptive Lasso shrinks coefficients that are less relevant to zero, thus reducing
model complexity and yielding a sparse model. In the previous chapter, we have
shown that the solution is sparse, continuous and approximately unbiased. We also
proved that the estimates are unique when the column of the design matrix are in
general position by Lemma 7.21. Moreover the adaptive Lasso procedure possesses
the oracle properties by Theorem 7.13. The method can adequately select the true
model parameters from a large set of potentially relevant predictor variables, and
gives asymptotically unbiased estimates at the same time. A major advantage of
this model, is that it can be easily adapted for different kinds of stress scenarios
and changes in the market, and it is completely automated. Moreover, it gives a
parsimonious description of the movements of NCO rates conditional on exogenous
paths of the macro-economy. These models can be verified and interpreted from a
theoretical perspective.

8.1.2.2 Autoregressive Moving Average Model

There is a large amount of possible predictor variables in the initial formulation,
from which we want to select a parsimonious and relevant set that gives accurate
predictions. Here, we use Adaptive Lasso as a variable screening method. By Lemma
7.24 substantially relevant predictors are selected with high probability. We shall
refer to this set by Xscreen. Subsequently, we estimate an auto-regressive model with
exogenous predictors Xscreen.

Recall that most models that we encountered in the literature use an auto-regressive
model of the form,

NCOt = α+ βXscreen
t + NCOt−1 + εt, (8.8)

where εt are i.i.d. random variables with mean zero and variance σ2. The term
NCOt−1 is an auto-regressive term, taking into account the previous values of the
NCO rate5. In practice it will be difficult to determine the amount of autocorrela-
tion that is due to a dependency on autocorrelated macro-economic variables, and

5See Appendix A for an introduction to auto-regressive models and overall background informa-
tion of time-series modeling.
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autocorrelation of the NCOt process itself. Another major drawback of this model
is that β̂ can only be interpreted conditional on the previous state of the NCO rates.

Our approach is to model the error terms as an auto-regressive moving average
process directly. We refer to such a model as a RegARMA(p, q) model. It can be
written as follows,

Yt = α+ βXscreen
t + ηt (8.9)

ηt =
p∑
i=1

φiηt−i +
q∑
i=1

θiεt−i + εt,

where εt are i.i.d. random variables with mean zero and variance σ2. The parameters
φi and θi represent the coefficients of the auto-regressive lags and the moving average
terms, respectively. The number of autoregressive lags p and the number of moving
average terms q is chosen by selecting the model with the lowest value of the Bayesian
Information Criterion (BIC),

BIC = k · log(n)− 2 log(L), (8.10)

where k is the number of estimated parameters in the model and L is the likelihood
function6.

A linear model with ARMA errors can be selected and estimated in one step by
an adjusted version of Adaptive Lasso [33]. Our approach estimates the model in
two steps. First the exogenous predictors are selected by Adaptive Lasso variable
screening, and then the coefficients of the RegARMA(p,q) are estimated. Because
the adjusted version of Adaptive Lasso is not computationally efficient, we decided
to use the second approach for our research project.

8.1.3 Computational Problem

Convex minimization problems can be solved efficiently with coordinate descent
algorithms[25]. Conveniently, the lasso minimization problem in definition 7.3 is a
convex problem. In this section we discuss how the Adaptive Lasso estimator can
be computed.

8.1.3.1 Data Centering

For Adaptive Lasso methods, we assume that the data in the design matrix is cen-
tered and scaled. All predictors are standardized before estimation by computing

6For background on model selection criteria such as BIC and likelihood functions we refer to
Appendix B.
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for each column X(j), j = 1, . . . , p,

X
(j)
scaled =

X(j) − 1
n

∑n
i=1Xi,j

sd(X(j))
, (8.11)

where sd(X(j)) denotes the standard deviation of X(j). Scaling is necessary to
ensure that the relative size of the predictor variables does not influence the penalty
function.

8.1.3.2 Cyclical Coordinate Descent

Solutions to convex minimization problems can be obtained with cyclical coordinate
descent algorithms. The idea is to minimize a convex objective function along each
coordinate iteratively. To obtain the Lasso estimator, we want to find β ∈ Rp that
minimizes equation 7.4 and satisfies the constraint. We use a cyclical coordinate
descent algorithm that minimizes the convex unconstrained problem along dimen-
sions j = 1, . . . , p iteratively. Lemma 8.1 shows that the cyclical coordinate descent
algorithm converges to the global minimum of the Lasso objective function. Below
we describe the algorithm in more detail.

Assume that λ > 0 is fixed and write,

f(β) = 1
2n ||Y −Xβ||

2
2 + λ||β||1. (8.12)

Note that f(β) is a convex function by Lemma 7.15. We start with an initial
estimator β(0), and calculate for k = 1, 2, . . .,

β
(k)
1 = arg min

β1

f(β1, β
(k−1)
2 , . . . , β(k−1)

p )

β
(k)
2 = arg min

β2

f(β(k)
1 , β2, . . . , β

(k−1)
p )

...

β(k)
p = arg min

βp

f(β(k)
1 , β

(k)
2 , . . . , βp).

That, is we minimize the objective function along each dimension. The process is
repeated until ||β(k) − β(k−1)|| < ε, for some ε sufficiently small. The minimum in
one coordinate direction is found by a line search. When the coordinate directions
are computed cyclically throughout the procedure, we speak of a cyclical coordinate
descent algorithm.

The convergence of coordinate descent algorithms for differentiable convex opti-
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mization problems are well established[11]. The Lasso cost function however, is not
differentiable at zero. Lemma 8.1 below states that coordinate descent also converges
for the Lasso minimization problem.

Lemma 8.1. (Coordinate Descent for Lasso) The value of β for which,

1
2n ||Y −Xβ||

2
2 + λ||β||1, (8.13)

obtains it global minimum can be computed by coordinate descent.

Proof. For the proof of this result we refer to [20].

This shows that we can solve the Lasso minimization problem for fixed λ > 0. Thus,
we have an estimator β̂(λ) as a function of λ. Below we describe how a suitable λ
can be chosen along a so-called regularization path.

8.1.3.3 Cross-Validating the Tuning Parameter

For the computation of Lasso estimates we use the R-package glmnet [44]7. At
the moment of writing, this is one of the fastest algorithms available to compute
Lasso estimates. The package uses a cyclical coordinate descent algorithm along a
regularization path of the tuning parameter λ.

In the literature on Lasso algorithms, there exist several suggested methods to find
the optimal λ. In this section we describe the method that is used in the glmnet
package. This algorithm calculates the solutions to the Lasso minimization along a
regularization path for λ, which is determined by first selecting a tuning parame-
ter λmax sufficiently large, such that β̂ = 0. The minimal tuning parameter of the
regularization path is then calculated by λmin = ελmax. The sequence of the regular-
ization path is constructed by taking K values of λ ∈ [λmin, λmax] on the logarithmic
scale [44]. In our case, ε = 0.001 and K = 100.

Via the cyclical coordinate descent algorithm, the minimization problem is solved
for each λ on the regularization path described above. The optimal value for the
tuning parameter is determined by 10-fold cross-validation.

For each λ on the regularization path, we can determine the so-called cross-validation
error of the Lasso estimate. We calculate this error by separating the estimation
data into ten samples (or folds) of equal size. That is, we separate nT observations
in ten equal sets, and let Y (k) and X(k) denote the observations in the kth sample.
We retain the sample k for validation. We then use the nine remaining samples to

7The Statistics and Machine Learning Toolbox in Matlab also has an excellent algorithm avail-
able, which has an option to use parallel computing.
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compute the Lasso estimator β̂(−k). Where the subscript (−k) indicates that the
estimator is calculated on all training data accept the kth sample that was retained
for validation.

For all λ on the regularization path, the mean square prediction error is computed
on the kth validation sample,

MSEk(λ) = ||Y (k)−X(k) ˆβ(−k)||22. (8.14)

This procedure is then repeated for each sample k = 1, . . . , 10, which allows us to
compute the cross-validation error,

CV(λ) =
10∑
k=1

MSEk(λ). (8.15)

The optimal tuning parameter λ∗ is that value of λ for which the cross-validation
error is minimal,

λ∗ = arg min
λ

CV(λ). (8.16)

The Lasso solution can now be obtained by solving,

β̂lasso = arg min
β

1
2n ||Y −Xβ||

2
2 + λ∗||β||1. (8.17)

8.1.3.4 Computation of the Adaptive Lasso

As discussed in the previous paragraph, there are several fast packages, based on
coordinate descent algorithms, available that solve the Lasso minimization problem.
However, we would like to minimize Adaptive Lasso problems. By Proposition 8.2
we can use existing procedures for standard Lasso estimation to obtain Adaptive
Lasso estimators.

Proposition 8.2. Let ŵj be the weights used for Adaptive Lasso. We define β∗j =
βjŵj and rescale X∗ij = Xi,j/ŵj for all j = 1, . . . , p. Then minimizing,

n∑
i=1

yi − p∑
j=1

βjXij

2

+ λ
p∑
j=1
|βj |ŵj , (8.18)

is equivalent to minimizing,

n∑
i=1

yi − p∑
j=1

β∗jX
∗
ij

2

+ λ
p∑
j=1
|β∗j |, (8.19)
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Proof. Since ŵj is non-negative, plugging β∗j = βjŵj andX∗ij = Xij/ŵj into equation
8.18 yields equation 8.19.

Remarkably, Adaptive Lasso estimators can be obtained by an adaptive rescaling
of the predictor variables. The Adaptive Lasso estimator β̂alasso can be computed
by rescaling X by ŵ = |β̂lasso|−γ as in Proposition 8.2. Then the Lasso algorithm
can be used on the scaled design matrix to obtain a solution β̂lasso∗. It follows
that β̂alasso = β̂lasso∗/ŵ. An algorithm that can be used to compute Adaptive
Lasso estimators for λ and γ with minimal cross-validation errors can be found in
Algorithm 2 in Appendix C.

In this case, the optimal value for the tuning parameter λ can be obtained by
determining which λ on the regularization path gives the lowest cross-validation
error for Adaptive Lasso predictions. Moreover, the optimal value for γ can also
be determined by cross-validation. An algorithm that computes the Adaptive Lasso
estimator for (λopt, γopt), is explained in pseudo-code in Algorithm 2 in Section C.3.

8.2 NCO Rates with Individual Effects

In the previous section we described and motivated the method that we use to
estimate the impact of macro-economic developments on NCO rates of averaged
loan categories. In this section we consider a panel data model with bank-specific
effects, as explained in Section 3.2.2. For the prediction of Net Charge Offs rates
for individual banks, we would like to capture the variability in the cross-sectional
dimension. To that end, we first want to assess whether bank-specific variables help
explain NCO rates on loan categories for individual banks. Furthermore, we want to
determine whether scaling factors for individual banks can help explain variability
between NCO rates on loan categories for individual banks.

8.2.1 Initial Formulation

For the macro-economic dimension of individual bank NCO rate estimation, we
consider the initial formulation of Section 8.1.1, and refer to it as Mt.

For the cross-sectional dimension of the design matrix we consider the CAMELS
criteria in Table 5.2, which are used to assess the condition of financial institutions.
Recall that the CAMELS criteria are given by the following eight financial measures,
capital ratio, provision rate, non-interest profit, return on equity, net interest margin,
total liquid assets, total loans, and loan growth. Recall that since NCO rates and the
provision rate are linked directly through some provisioning scheme [47], we choose
to discard provision rate as an explanatory variable. From here on, we denote the
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time-series of these criteria at time t, for banks bj : j = 1, . . . , nB by Bj,t. Assume
that we have NCO rates and CAMELS data for nB banks over nT quarters, then B
is an (nB×nT ×8) matrix, since there are 8 bank-specific variables in the CAMELS
criteria.

An important goal of the individual estimation exercise is to determine whether
bank-specific variables should be included in a top-down stress testing model for
credit losses on loan categories. A model that better describes the behavior of
individual banks’ NCO rates, could make better predictions conditional on macro-
economic paths keeping other circumstance constant, because it allows us to control
for some of these remaining circumstances. Here, we do not include (non-linear)
transformations and interactions with bank-specific variables. A carefully chosen
specification of the bank-specific dimension of the top-down stress testing estimation
problem could be an interesting topic for future research.

8.2.2 Selection Problem

Because we have three-dimensional data, which includes both bank-specific variables
for a large number of banks and transformed macro-economic variables, a panel
data model could be an appropriate choice. In such a model the estimation of the
coefficients of macro-economic predictors and those of bank-specific predictors is
performed simultaneously. With the inclusion of bank-specific CAMELS criteria
Bj,t, we assume that the NCO rates of banks bj : j = 1, . . . , nB satisfy the following
panel data model specification,

NCOj,t = αj,t + cj,t (Mtβ +Bj,tγ + εt) , (8.20)

where the errors εt are i.i.d. random variables with mean zero. Note that the above
model is for loan category Pi ∈ P, where we drop the subscript i from the notation
for NCOi,j,t, αi,j,t, and ci,j,t. We refer to αj,t and cj,t as individual scaling factors.

To simplify the estimation problem, we assume that the time-series for the different
bank NCO rate processes are not correlated, except for their common dependency
on macro-economic variables. Moreover, we assume that the rates of different loan
categories for the same bank are not correlated, except for their common dependency
on the macro-economy and bank-specific variables. Another important assumption
is that the coefficients of the (transformed) variables are time-independent. These
assumptions are implicit in all top-down models that we encountered in our literature
study. Under these assumptions, the model specification is given by equation

NCOj,t = αj + cj (Mtβ +Bj,tγ + εt) , (8.21)
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The future values of the bank-specific variables are, unlike the macro-economic pre-
dictors, not assumed to be known at the time of prediction. Therefore it might
be prudent to apply a lag of length h to Bt. However, this reduces the length of
the time-series available for estimation significantly. This has a particular adverse
effect on the estimation, since the data at the beginning of the time-series contains
important information about the developments in the economically stressed period
between 1991 Q1 and 1993 Q4, as can be observed in Figure 6.3. Hence, we do not
adjust the data for the lag length, but take the CAMELS criteria as a constant for
our predictions. In other words, when we use the estimated model (α̂j , ĉj , β̂, γ̂) for
prediction, we freeze the values of the bank-specific predictors. That is, we calculate,

NCOj,t+h = α̂j + ĉj
(
Mt+hβ̂ + γ̂Bt

)
+ εj,t+h, (8.22)

where the errors εj,t are i.i.d. random variables with mean zero.

To select and estimate the model for an arbitrary loan category, we minimize the
following Adaptive Lasso problem,

nT∑
t=1

nB∑
j=1

(NCOj,t − αj − cjXj,tβj − cjBj,tγ)2 + λ1||wMβ||1 + λ2||wBγ||1, (8.23)

where the weight vectors wM and wB are given by

ŵM = |βlasso|−ω, ŵB = |γlasso|−ω, (8.24)

where ω is a parameter controlling the weights.

Alternatively, excluding bank-specific predictors, we only consider individual scaling
factors in the model,

NCOj,t = αj + cj (Mtβ + εt) . (8.25)

In this case, we obtain the estimator β̂ by using the model for averaged loans in
Section 8.1.

8.2.3 Computational Problem

We describe how the computational methods in Section 8.1.3 can be used for the
estimation of the models in this section. First, we estimate αj and cj for banks
bj : j = 1, . . . , nB by normalizing and rescaling the NCO data for the time-series of
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each bank in the test set,

α̂j = mean(NCOj)
ĉj = sd(NCOj) (8.26)

NCOj = NCOj − αj
cj

.

The panel data model with bank-specific effects in equation 8.22 can then be esti-
mated by applying the Adaptive Lasso method in the previous section to the matrix,

X =



M1,1 · · · M1,p B1,1,1 · · · B1,1,9
M2,1 · · · M2,p B1,2,1 · · · B1,2,9
...

...
...

...
...

...
M96,1 · · · M96,p B1,96,1 · · · B1,96,9
M1,1 · · · M1,p B2,1,1 · · · B2,1,9
M2,1 · · · M2,p B2,2,1 · · · B2,2,9
...

...
...

...
...

...
M96,1 · · · M96,p B2,96,1 · · · B2,96,9

...
...

...
...

M96,1 · · · M96,p B100,96,1 · · · B100,96,9



, (8.27)

with response variable

y = (NCO1,1, . . .NCO1,96,NCO2,1, . . . ,NCO2,96, . . .NCO100,96)> . (8.28)

The tuning parameters λ1 and λ2 can be estimated by using cross-validation. For
instance, this can be done by re-weighting the coefficients for the CAMELS criteria
according to the scheme described in Proposition 8.2. The cross-validation technique
can then be used to determine the optimal value for λ1 and λ2. Note that this min-
imization problem has two tuning parameters, and both need to be optimized using
cross-validation. Although the problem is still convex and can be solved efficiently,
the cross-validation technique to determine the optimal value of tuning parameters
is rather slow. For simplicity and a reduction in computation time, we solved the
minimization problem for λ1 = λ2 only.

We need to pay attention to the cross-validation procedure. Recall that the cross
validation technique to determine the optimal λ, splits the sample into k = 10 equal
parts. The model is estimated on k−1 parts and the mean square error is determined
on the kth part. The tuning parameter is chosen such that the mean square error
is smallest on the k folds.

For panel data, the creation of folds becomes more complicated than for a linear
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model. If we construct folds in the cross-sectional dimension, the tuning parameter
is chosen so that the cross-sectional mean square error of prediction is optimal.
If we construct the folds in the time-dimension the focus of the cross-validation
is on future predictions. To estimate whether the CAMELS criteria help explain
cross-sectional variability, we create folds for cross-validation by splitting the time-
series for banks into k folds. For prediction of NCO rates given macro-economic
developments, we create folds for cross-validation by splitting the data into k folds
in the time-dimension.

8.3 NCO Rates for Individual Banks

In the previous section we described how bank-specific estimates for NCO rates on
specific loan categories can be obtained with and without individual effects. Here
we describe how the predictions for different loan categories can be aggregated to
determine the NCO rate on the total loan portfolio of an individual bank.

Recall the aggregation levels that we introduced in Table 6.2. In Section 8.2.2 we
showed two ways to obtain forecasts of NCO rates for loan categories at aggrega-
tion levels A1, A2, and A3. Individual scaling factors can be obtained by equation
8.26. These can be used to scale the predictions for averaged loan categories, which
are obtained by estimating β̂alasso for the models in equations 8.7 and 8.9. These
estimators are then used in equation 8.25. The second approach involves obtaining
forecasts for the estimated panel data model in equation 8.22.

When we have obtained predictions for all loan categories at one of the aggregation
levels, we want to combine these to give a forecast for the NCO rate for the complete
loan portfolio of an individual. A simple method to aggregate NCO predictions for
different categories is to add the predicted values as follows. Let a be the number
of categories at the aggregation level of the predictions, and s ∈ {1, . . . , h}, where
h is the stress horizon. Then the predicted total NCO rate is a weighted average of
the predicted rate per loan category and banks bj : j = 1, . . . , nB,

N̂CO
tot
j,t+s =

a∑
i=1

N̂COi,j,t+s
TLi,j,t
TLtot

j,t

. (8.29)

Because we assume that the loan composition of the individual remains the same
over the stress horizon, we use the ratios of the loan categories at the time that the
forecast is made.
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Chapter 9

Evaluation of the Method

The main purpose of the method that we developed is to establish the feasibility of
using a top-down model for stress testing. A second aspect is to determine what
can be expected of such a model in terms of prediction accuracy. Finally, if the
method is to be used to perform stress tests, the validity and explanatory power of
the model is to be tested.

For the evaluation of a top-down stress testing model, it is important to understand
the strengths and weaknesses of the model, and ultimately, for their practical use,
the predictions of the model need to be equipped with a measure of uncertainty.
These measures depend on the application of the stress test results. In particular,
the intention is to assess the opportunities, challenges and limitations for top-down
stress testing for Rabobank. Note that this means that the model on data from the
United States might not be representative of the relevant features of a large Dutch
bank such as the Rabobank.

An assessment of the quality of the model is crucial for automated feature selection
procedures in particular, since these models are prone to increase model risk. In
the automated model selection scheme of Section 7.1, the evaluation problem is the
final step in completing the procedure for automated feature selection.

When a dataset is used to find a suitable hypothesis or model, we can not use the
same data to test the validity, error margins or statistical significance of such a
hypothesis. Therefore we use measures that assess the prediction accuracy on true
out-of-sample test data. The data in the test set cannot be used for any part of the
estimation procedure. To that end, the NCO rate data from 1991 Q1 to 2014 Q4,
96 quarters in total, is divided in a training and a test set for each loan category
and all banks, where the financial crisis of 2007-2009 is included in the test set. This
allows us to assess the prediction accuracy of the model, in a period where both a
recession and a boom take place. The training set consists of the first 65 quarters
(1991 Q1 to 2007 Q1) and the test set contains the last 31 quarters (2007 Q2 to
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2014 Q4) of NCO rate data.

9.1 Average Predictions

For the evaluation of predictions on averaged loan categories, we take several criteria
into account. The first is economic significance of the selected variables, the second is
prediction accuracy of the estimated model, and lastly we check whether the model
explains the internal variation in the data and satisfies the assumptions of the model.
We compare the results for the Adaptive Lasso and the RegARMA model, and we
use a simple model to benchmark the results.

9.1.1 Benchmarks

We introduce a benchmark model so that the results of both the linear Adaptive
Lasso and the RegARMA model can be compared to a basic model, which is compa-
rable to current top-down modeling practices. Our benchmark model is based on the
model that is used in Hirtle et al.(2014)[47]. Unfortunately, we cannot directly use
their model specification as a benchmark, because the model features were selected
based on the same data that we used from 1991 Q1 to 2013 Q3, and therefore we
cannot compare its out-of-sample performance to the results of our model.

To circumvent this, we replicate part of their approach to the modeling of NCO rates.
We construct a much smaller and simpler design matrix than the initial formulation
of Section 8.1.1, and similar to the variables that were considered in [47]. We start
with the macro-economic variables that are specified in the Federal Reserve’s stress
testing exercise, and focus on the set of base predictors. We include the following
indicator functions to capture nonlinear behavior around zero or convexity,

1{URt>NROUt}URt, 1{GDPt<0}GDPt,
1{HPIt<0}HPIt, 1{CPPIt<0}CPPIt,
1{INFt<0}INFt, 1{DJIt<0}DJIt,
1{DURt>0}DURt, 1{VIXt>mean(VIX)}VIXt,
1{DIt<0}DIt.

These 18 variables make up the benchmark design matrix, which we shall refer to
as Xsmall.

The goal is to include those variables from the predictor set that are statistically
significant, and result in the lowest value for the Bayesian Information Criterion
(BIC), resulting in a predictor matrix Xmin(BIC). The structural form of the model

100



is taken to be linear1,

NCOi,t = αi + βX
min(BIC)
t + εi,t, (9.1)

where εi,t are white noise.

We use a computationally-intensive greedy backward elimination algorithm, which
is displayed in Algorithm 1, to find the model with the lowest BIC value for each
loan category, and select it as our benchmark model. This means that we start with
a model which includes all the macro-economic predictor variables in Xsmall. Then
we remove that predictor variable whose removal leads to the greatest decline of the
BIC score if it improves (lowers) the score with respect to the model with one extra
variable included. This process is iterated until removal of another variables leads
to an increase in the BIC score. The resulting model is of the form of equation 9.1
and serves as a benchmark for the linear Adaptive Lasso and RegARMA models.

Data: design matrix X of size n× p, response variable y of size n× 1
Result: benchmark model β

initialize;
estimate linear/arma/regarma model using y and X;
bic.init ←− bic value of the model;
bic ←− bic.init;
removed ←− []

while min(bic) < bic.init do
X ←− X without column removed;
bic ←− zeros(size(X, 2));
foreach column i of X do

β ←− model for y and X without column i;
bic(i) ←− bic value of β;

end
removed ←− index of min(bic);

end
β ←− estimated model for y and X

Algorithm 1: Backward Elimination

It is convenient to compare a model’s performance against a lagging model, which
gives the current NCO rate as a prediction for the stress horizon. The lagging model

1The linear model serves as a benchmark to Adaptive Lasso, which is estimated on a much
larger design matrix. As a benchmark to the literature, we also considered an auto-regressive
model specification as in Hirtle et al. [47]. Empirically, we observed that the prediction accuracy
for an auto-regressive structure was generally comparable to that of the linear form.
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is defined as,
NCOt+h = NCOt. (9.2)

Finally, we compare the predictions of the adaptive Lasso, RegARMA, and bench-
mark model with the predictions of a null model, which is given by,

NCOt+h = 1
t

t∑
j=1

NCOj . (9.3)

9.1.2 Selected Variables

We use a data-driven approach to select a model for the prediction of NCO rates
on specific loan categories. An important part of the evaluation of the discovered
model is to verify that the selected variables are economically significant, and that
the signs of the coefficients are interpretable from an economical perspective.

In a completely data-driven modeling process there is the danger of spurious regres-
sion. That is, we are at risk of including variables into our model that correlate
with the target (or outcome) variable within the training set, but are not related in
general. If this is the case, then the prediction accuracy of the method is greatly
reduced because the model cannot be generalized beyond the scope of the training
set. Therefore a hybrid approach of automated selected features and a check for
economical significance based on expert opinion is a prudent course of action.

9.1.3 Prediction Accuracy

The prediction accuracy of the model is determined by estimating the model on
the training set and determining its prediction Mean Absolute Error (MAE) and
Mean Square Error (MSE) on the test set. Let f denote a model that predicts
response variables yi from predictors xi. In our case f represents either the linear
Adaptive Lasso, RegARMA, or benchmark model. The prediction error statistics
are calculated as follows:

MAE = 1
n

n∑
i=1
|f(xi)− yi|, (9.4)

MSE = 1
n

n∑
i=1

(f(xi)− yi)2. (9.5)

Models whose predictions are close to the observed value and thus have low values
for MSE and MAE, are generally preferred, because of their superior predictive
performance. It can be argued however, that for a model which is intended for stress
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testing, where severe but plausible scenarios are considered, is mainly intended as a
warning system and not used for exact predictions.

When we want to compare the prediction accuracy for different individual banks,
the NCO rates can be on a different scale. In such cases, we compute the normalized
mean absolute prediction error and normalized square prediction eror to compare
the prediction errors for different institutions. These measures are given by,

NMAE = MAE
max(NCO)−min(NCO) , (9.6)

NMSE = MSE
max(NCO)−min(NCO) . (9.7)

Evaluating the prediction accuracy on the test set resembles the application and
purpose of stress testing most closely, but it leaves us with only one test sample for
the procedure. Since we are particularly interested in the prediction accuracy for a
forecast horizon h = 9, we also test prediction accuracy by constructing 9-quarters-
ahead forecasts. A typical technique is the rolling window forecasting method, where
the model is estimated on n data points. The 9-quarters-ahead forecast for t = ti is
obtained by estimating the model on the time points t = (ti − h − n), . . . , (ti − h),
and then evaluating the resulting model on ti.

Figure 6.3 indicates that, in our case, much information is lost when we do not use
the first data-points that are available. Therefore we use, what we call, an extending
estimation window. This means that the forecast for h = 9 at time ti is obtained by
estimating the model on t = 1, . . . , (ti−h) and evaluating the resulting model on ti.
We again use the MAE and the MSE as measures for the prediction accuracy.

The predictions of the null model can be used to calculate the following statistic for
each of our models.

R2
efron(f) = 1−

∑t+h
i=t+1(f(xi)− yi)2∑m
i=1(null(xi)− yi)2 , (9.8)

where f is the model that maps predictors xi to the response variable yi, for which
we calculate R2

efron. This statistic is also known as Efron’s pseudo R2. It represents
the improvement in terms of explained variation, of the prediction accuracy of the
discovered model with respect to the null model. Negative values indicated that the
predictive strength of the model f is worse than that of the null model.

9.1.4 Stress Identification

Besides the prediction of the exact NCO rates for each loan category, it is equally
important to be able to predict stress from the macro-economic data. We say that
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a loan category Pi suffers from stress at time t if it exceeds a certain threshold T .
We consider three thresholds for stress identification. We let threshold T1 be the
mean of the NCO series, T2 the mean plus one times the standard deviation of the
time-series, and T3 the mean plus two times the standard deviation. This results in
the following stress criteria,

T1 : NCOi,t > NCOi,

T2 : NCOi,t > NCOi + sd(NCOi),
T3 : NCOi,t > NCOi + 2sd(NCOi).

Of course, the mean and standard deviation are calculated based on the data in the
training data only. For the predictions of a model f , we use the same threshold
to determine whether or not the model predicts stress. Using this threshold, we
can construct the number of observations correctly identified or true positives (TP),
incorrectly identified or false positives (FP), correctly rejected or true negatives
(TN), and incorrectly rejected or false negatives (FN) that the model f produces.

The prediction accuracy of stress identification can be evaluated by considering the
following measures.

• Sensitivity or true positive rate is given by TP/(TP+FN) and specifies the ratio
of positives that are correctly identified as such.

• Specificity or true negative rate is given by TN/(TN + FP) and specifies the
ratio of negatives that are correctly identified as such.

• Accuracy is given by (TP + TN)(TP + FP + TN + FN) indicates the ratio of
correctly categorized positives and negatives.

• Precision or the positive predictive values is given by TP/(TP+FP) and indi-
cates the ratio of correctly identified positives with respect to the total number
of identified positives.

• F1 is the harmonic mean of the sensitivity and the precision and is given by
2TP/(2TP + FP + FN).

• R2
count is calculated as follows,

R2
count = number correct− f

total− f , (9.9)

where f is the count of the most frequent outcome. This measure can be seen as
an adjusted version of the accuracy. By deducting the most frequent outcome
from the resulting ratio, one corrects for the effect that a model which always
predicts this outcome scores high on accuracy.

104



9.1.5 Residual Analysis

We further follow the suggested steps in Doornik & Hendry (2015) to test whether
the automatically selected models are well-specified [51]. To check whether a model
is well-specified, Doornik & Hendry (2015) asses whether the assumptions of linear
regression hold2. These assumptions can be classified as follows3.

1. The relation between the response variable y and the predictor variables is
linear and additive. This means that,

(a) the expected value of the response variable is a straight-line function of
each predictor variable, holding all others fixed,

(b) the slope of that line does not depend on the values of other variables,
(c) the effects of different independent variables on the expected value of

the dependent variable is additive.
2. The errors εt of the model are statistically independent.
3. The errors are homoskedastic,

(a) versus time
(b) versus predictions
(c) versus any predictor variable

4. The errors are normally distributed. This assumption is actually not necessary
for linear regression, it only ensures that the OLS method is the best linear
unbiased estimator4.

Linearity and additivity are tested by plotting observed versus predicted values. The
data in this plot should be a straight line. The presence of heteroskedasticity can
be detected by assessing plots of residuals versus predicted values and time versus
residuals. We test for statistical independence of the errors by the Durbin-Watson
test for serial autocorrelation, and analysis of the residual auto-correlation plot. The
presence of arch-effects is tested by Engle’s arch-test on the residuals. We test for
normality of the error distribution with the Anderson-Darling test.

Note that a top-down stress testing model is primarily designed to determine how
the NCO rates respond to macro-economic development. Modeling the complete be-
havior of the NCO rates provides aid in decomposing the time-series in a part deter-
mined by macro-economic developments, bank-characteristics, and (auto-regressive)
noise.

2The assumptions in linear regression are discussed thoroughly in Appendix B.
3We follow the approach on Professor R.F. Nau’s homepage, which can be found at: http:

//people.duke.edu/~rnau/testing.htm.
4For a more detailed description of the assumptions in linear regression, we refer to Appendix

B.
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9.2 Predictions with Individual Effects

For the evaluation of the models for loan categories Pi, i = 1, . . . , nC and banks
bj : j = 1, . . . , nB, our main focus is again on the prediction accuracy. This is still
primarily motivated by the objectives of stress testing. To adequately determine
the feasibility and possible scope of a top-down model for stress-testing, our aim
is to develop methods that accurately predict NCO rates conditional on exogenous
paths of macro-economic variables. Prediction accuracy can be measured either in
the cross-sectional or the time dimension. Since the top-down model is intended
to predict future responses, our focus lies on the latter. For the training set, we
consider the 100 largest observations of loan portfolios in a certain category in the
65 quarters of our training data. The remaining 31 quarters are used as a test set.

We determine the prediction accuracy as we did in Section 9.1 on the realized NCO
rates for a small panel of banks. We are mainly interested in the possibilities of
stress testing applied to individual banks’ portfolios. To that end, we want to assess
prediction accuracy for NCO rates of banks with large loan portfolios, comparable
to the size of Rabobank’s loan portfolio5. An advantage is that these large loan
portfolios are expected to be less affected by random or idiosyncratic fluctuation in
credit losses.

The panel consists of the 4 largest banks in the US, listed in Table 9.1 with the size of
their loan portfolio6. For this panel of banks, we derive the out-of-sample statistics
that were described in the previous Section9.1, to compare the performance of the
models.

The second aspect of the individual model is to gain results on the ability of bank-
specific CAMELS criteria to explain variability in NCO rates for individual bank
loan portfolios. A panel data model is selected with the help of Adaptive Lasso.
The inclusion or exclusion of bank-specific variables by the Adaptive Lasso method
is in itself an indication of the relevance of these variables, since we know by Lemma
7.24 that the Lasso method selects the substantially relevant variables in a data-set.
Therefore, we assess whether the CAMELS criteria explain variability in the cross-
sectional dimension, by checking whether they are selected by Adaptive Lasso on
the training set of the data.

5The current size of the credit portfolio of Rabobank is 434 billion euro [52].
6Morgan Stanley and Goldman Sachs were excluded from the validation panel, because they

have only been commercial banks since 2008. Before they were so-called investment banks and
hence, they did not traditionally have a large deposit and loan portfolio. Also, no bank data is
available for those banks from 1991-2007.
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Table 9.1: Bank panel used for Testing1

Bank Name Total Loans2

JP Morgan Chase 546,788
Bank of America 746,142
Citigroup 343,161
Wells Fargo 797,284
Morgan Stanley 42,502
Goldman Sachs 35,219
HSBC NA 69,955
Bank of New York Mellon 17,535

1 The amount of total loans was derived from the
2014 Q4 call report data.
2 Reported values are in millions of dollars.

9.3 Top-Down Model for Individual Banks

When we have obtained models for all loan categories on each aggregation level, we
aggregate the results to obtain prediction for individual banks.

For the evaluation of the individual portfolio model we consider the same test set of
banks as we did for the models that include individual effects. We derive the same
measures for the predictive strength of the model, as we did for the averaged models.
In a stress testing exercise, it is typically assumed that all conditions remain equal,
and only the macro-economic variables change according to the stress scenario. But
when we make predictions for total NCO rates, the actual composition of the loan
portfolio might change over period of the stress horizon. Therefore we recalculate
the total NCO rate under the assumption that the composition does not change, to
fairly compare the predicted rates with the realized rates.

Depending on the aggregation level the loan portfolio consists of a categories that
are estimated. To recalculate the total predicted NCO rate at time t+ s, under the
loan composition at time t+ s, we compute

NCOtot
t+s =

a∑
i=1

NCOi,t+s
TLi,t+s
TLtot

t+s
. (9.10)

The results for different levels of aggregation are compared based on their prediction
accuracy and stress identification on NCO rates for the loan portfolios of the bank
listed in Table 9.1. Note that because we only have one sample of the macro-economy,
and the observed charge-offs and recoveries for individual banks are subject to other
processes that were not included in the model, that this method of testing the
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predictive strength of the model comes with some uncertainty. However, it may give
us an indication of the reliability of the top-down model and to which extend it can
be used for stress testing.

For the interpretation of all results we keep in mind the loan composition of the
Big Four banks in the United States. From Table 9.2 we observe that Closed-
End Residential Real Estate, Commercial & Industrial, Consumer, and Other are
typically the largest loan categories.

Table 9.2: Composition of the Loan Portfolio for the Bank Panel

Loan Category JP Morgan Chase Bank of America Citigroup Wells Fargo

Home Equity Lines of Credit (HELOC) 10.7% 9.8% 5.3% 8.9%
Closed-End Residential Real Estate (RES) 25.8% 27% 25.8% 30.8%
Construction & Land Development (CLD) 0.9% 1.2% 0.4% 2.3%
Multi-Family (MF) 9.0% 0.7% 0.7% 1.5%
Non-farm Non-Residential (NFNR) 4.9% 6.0% 1.9% 11.4%
Farmland (FARM) 0.0% 0.2% 0.0% 0.3%
Commercial & Industrial (C&I) 16.2% 20.3% 10.5% 18.4%
Agriculture (AGRI) 0.1% 0.2% 0.1% 0.7%
Consumer (CON) 16.4% 22% 32.7% 13.4%
Leases on Financial Receivables (LEASE) − − − −
Depository Institutions (DEP) 1.0% 0.2% 2.8% 1.4%
Other (OTHER) 11.3% 7.2% 15.4% 7.6%
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Part IV

Results
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Chapter 10

Average NCO Rates

The top-down model for NCOs on the average loan portfolio of commercial banks in
the United States was developed to assess the feasibility of top-down stress testing in
general, and to determine whether Adaptive Lasso is able to discover an appropriate
model.

Recall that the Adaptive Lasso model for an averaged loan category Pi is given by,

NCOav
i,t = Xtβ̂

alasso + εi,t,

where εi,t is a white noise process, and β̂alasso a sparse estimator of the coefficients
of the linear model.

The RegARMA model is given by,

NCOav
i,t = Xscreen

t β̂ + ηi,t

ηt =
p∑
j=1

φi,jηi,t−j +
q∑
j=1

θi,jεi,t−j + εi,t,

where εi,t are i.i.d. random variables with mean zero, and Xscreen
t consist of those

columns of X for which β̂alasso has non-zero coefficients and p and q are chosen to
minimize the BIC value.

Furthermore, recall that the results are benchmarked against a simple linear model,
a null model, and a lagging model. We evaluate the results of the Adaptive Lasso,
RegARMA, and linear benchmark model based on the economic interpretability
of the automatically selected features in Section 10.1.1, the prediction accuracy
based on out-of-sample criteria in Section 10.1.2, the ability to identify stress in
Section 10.1.3, and the distribution of the residuals in Section 10.1.4. The results
are presented for all loan categories at aggregation level A1. From the comparison
of the results for different loan categories we draw conclusions about minimal data
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requirements for top-down stress testing.

Recall the research questions that we posed in Chapter 3,

i Can we use automated feature selection by employing Lasso methods to iden-
tify the model specification?

ii Can we construct a model that gives accurate predictions for NCO rates con-
ditional on exogenous macro-economic paths?

iii What are the minimal data requirements for top-down modeling?
iv How do data limitations affect the prediction accuracy?
v Do we need to consider auto-regressive model specifications?

In Section 10.1 we present the results and evaluation of the top-down models for
average NCO rates per loan category. We use these results to answer the research
questions in Section 10.2.

10.1 Model Results

In this section we present the results of the top-down models for average NCO rates
of all commercial banks with domestic offices in the United States that we presented
in Section 8.1.2. In Section 10.1 we evaluate the results of the average models in the
way that was described in Section 9.1.

10.1.1 Selected Variables

The training set consists of the first 65 observations of NCO rates. The variables
that were selected for the loan category Commercial & Industrial on the training set
are presented in Table 10.1.

Table 10.1: Adaptive Lasso Selected Variables for NCO Rates on Commercial &
Industrial

Selected Variables Coefficient1

1{GDPt<0}VIX2
t−2 +0.0462

DURt +0.4766
1{VIXt>mean(VIX)}HPI2t−4 +0.0920
1{CPPIt>0}UR3

t−4 −0.1060
1 Coefficients are calculated based on normal-
ized predictor variables and estimated on the
training set.
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It can be argued that the selected variables for the loan category Commercial &
Industrial in Table 10.1 are economically significant. An interpretation can be as
follows.

i If the GDP growth is negative, then the increase in NCO rates is proportional
to the square of VIX, 2 quarters ago. The interpretation seems to be straight-
forward, since it suggests that as the economy is declining, the volatility on
the stock markets in the previous quarters, is a measure for the severity of
the increase in credit loss rates.

ii The average change in UR in the past year is proportional to the NCO rate.
This variable is the most influential of the selected predictor variables, which
corresponds to findings in literature, such as the CLASS model of Hirtle et
al. [47].

iii If the level of VIX is above average, then the increase in NCO rates is propor-
tional to the average squared change in HPI, one year ago. The significance
of this predictor seem less unequivocal than the first two. A possible interpre-
tation of the predictor 1{VIXt>mean(VIX)}HPI2t−4 can be that the level of the
change in house prices, is indicative of the severity of defaults and losses on
Commercial & Industrial if the volatility on the stock markets is above aver-
age. A smaller change in house prices has less impact on the default rates.
The estimated effect of this predictor variable is, however relatively small.

iv If CPPI is increasing, the change in NCO rates is negatively related to the
yearly average UR in the previous year. The last predictor, 1{CPPIt>0}UR3

t−4,
with negative coefficient, could suggest that rising commercial property prices
indicate a recovery of the economy leading to a decline in NCO rates propor-
tional to past unemployment rates.

Of course, other explanations are possible. The above description is a mere indica-
tion of a possible interpretation of the selected variables. A thorough discussion of
the potential meaning of the discovered predictor variables is well beyond the scope
of this thesis, and requires solid economical background knowledge1. The variables
that were selected by Adaptive Lasso for the other loan categories, can be found in
Table 10.2.

1For the interested reader we recommend the book "Business Cycle Economics" by Todd Knoop
[55] for an introduction to macro-economic theory.
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Table 10.2: Selected variables on average NCOs

Loan Category Selected Variables Coefficient2

Loans to Depository Institutions 1{CPPIt<0}INF3
t +0.1105

Residential Real Estate1
1{HPIt<0}HPIt−2 −0.3091
1{URt>NROUt}URtUR

3
t−3 +0.0894

1{URt>NROUt}URtHPIt−4 −0.0339
1{HPIt<0}HPItVIX

2
t−4 −0.1019

HELOC1
1{HPIt<0}DURt−2 −0.6080
1{HPIt−1<0}CPPI2t−4 +0.2010
1{URt>NROU}URUR2

t−4 +0.2207

Construction and Land Development 1{CPPIt<0}UR3
t +0.1909

1{CPPIt<0}INFt +0.1430
1{CPPIt<0}CPPItUR

3
t −1.557

1{CPPIt−1<0}INF2
t−2 +0.5004

Multi-Family Properties 1{HPIt<0}UR3
t +0.1859

1{CPPIt−1<0}INF2
t−2 +0.2961

Nonfarm Nonresidential 1{VIXt<mean(VIX)}UR3
t +0.0510

1{CPPIt<0}UR2
t +0.2083

1{CPPIt<0}CPPItUR
3
t −0.0350

1{CPPIt−1<0}INF2
t−2 +0.1805

Farmland1 UR3
t +0.0689

Commercial & Industrial 1{GDP<0}VIX2
t−2 +0.0462

DURt +0.4766
1{VIXt>mean(VIX)}HPI2t−4 +0.0920
1{CPPIt>0}UR3

t−4 −0.1060
Consumer Loans3

1{DURt−1>0}INFt−1 −0.0040
1{VIXt>mean(VIX)}INF2

t−4 +0.1881
1{CPPIt<0}DURt +0.1992
1{DURt<0}DURtINF

3
t +0.1011

1{DIt−1<0}DURt−2 +0.0438
1{DJIt<0}DJItDJI2t−3 +0.0134
1{URt>NROUt}CPPIt−2 +0.0207

Agricultural Loans 1{VIXt−1>MEAN(VIX)}HPI3t−2 +0.0976
1{DURt>0}CPPI3t−4 +0.0572

Leases and Financing Receivables 1{HPIt>0}HPItVIXt−1 +1.174
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Loan Category Selected Variables Coefficient2

DJItURt−1 −0.1796
VIXt +0.0795
URt−4 −0.1252
1{DIt>0}DURt +0.2741
1{GDPt−1<0}VIX3

t +1.380
1{CPPIt−1<0}DURt−2 +0.9257
1{DJIt<0}DJItINFt−4 −0.1812
1{CPPIt<0}HPI2t−4 +1.692
1{DIt<0}DItHPI

3
t−4 +0.0230

Other Loans 1{HPIt<0}HPItINFt −0.1218
1{DURt>0}INF2

t−3 +0.0889
1{VIXt>mean(VIX)}VIXtINF

2
t−4 +0.0604

Commercial Real Estate Loans 1{VIXt<mean(VIX)}UR3
t +0.2201

1{CPPIt<0}UR3
t +0.8435

1{CPPIt<0}CPPItUR
3
t −0.8802

1{CPPIt−1<0}INF2
t−2 +0.4755

1{HPIt<0}VIX3
t−4 −0.9105

Residential Real Estate Loans1
1{HPIt−1<0}HPIt−2 −0.4315
1{HPIt<0}HPItVIXt−4 −0.0392
1{URt>NROUt}URtHPIt−4 −0.0305
1{HPIt−1<0}CPPI2t−4 +0.0340
1{URt>NROUt}URtUR

3
t−4 −0.1262

Real Estate Loans 1{CPPIt−1<0}INF2
t−2 +0.1995

1{HPIt<0}VIX3
t−4 +0.1681

Total Loans1 DURt +0.1289
1{HPIt<0}HPItURt−2 −0.1829
1{HPIt<0}VIX2

t−3 −0.3156
1{HPIt<0}DURt−4 +0.0194

1 Variables were selected on the full sample (training and test data combined).
2 Coefficients were calculated based on normalized predictor variables.
3 Series were detrended prior to the Adaptive Lasso procedure.

We shall not discuss the interpretation of the selected model specifications for all
loan categories here. But we do note that for NCO rates on the categories Closed-
End Residential Real Estate (RES) and Home Equity Lines of Credit (HELOC)
no variables were selected on the training set. From the loan composition of the
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Big Four banks in our test panel of banks in Table 9.2, we can observe that these
categories make up a large part of a typical loan portfolio. Therefore, it is surely
undesirable not to have a top-down model for NCOs on these loan categories. To
understand these results better we therefore present the selected model specification
on the full sample for loan categories that are not modeled well. For HELOC and
RES it turns out that the most relevant predictors, with the highest normalized
coefficients, involve interactions and transformations of HPI. From Figure 5.2 it is
clear that the house price index follows an extreme path during the time of our test
sample. In particular, HPI was negative only once in our training sample, which
goes from 1991 Q1 to 2006 Q2. It is therefore not surprising that Adaptive Lasso
cannot pick up these trends from the training data alone.

It is remarkable that Adaptive Lasso is able to select parsimonious models for NCO
rates on different loan categories from a set of more than 10000 complex interactions
and transformations of predictors. Surely, it is fascinating to observe that sensible,
economically interpretable and simple linear models can be obtained automatically.
These hypothesis generated by Adaptive Lasso are such that a modeler can pass
expert judgment to the selected models and can make adjustments to them if it is
needed. In the next section we shall see that these models can also give accurate
predictions in a stress scenario.

10.1.2 Prediction Accuracy

As discussed in Chapter 9 we measure prediction accuracy by determining the Mean
Square Error (MSE), Mean Absolute Error (MAE), and R2

efron of the predictions.
The latter is a measure for the amount of variability in the predicted values that
is explained by a model, as compared to the null model. The predictive strength
of the models can be understood intuitively by analyzing plots of observed versus
predicted values. Therefore, we also show the actual, fitted, and predicted values
in a plot. With actual values we refer to the NCO rate time-series that are filtered
according to equation 6.2. Lastly, we look at the results for longer stress horizons.

10.1.2.1 Prediction Plots

In Figures 10.1, 10.2, 10.3, 10.4, 10.5, and 10.6 a comparative plot for the Adaptive
Lasso, RegARMA, and linear benchmark model is displayed for the 9-quarters-ahead
predictions of NCO rates on all loan categories that are in the lowest aggregation
level A1. Recall that the 9-quarters-ahead predictions are obtained by applying an
extending window. That is, the dotted line in these figures represents the predicted
values based on a model estimated on training data up to 9 quarters before the time
of prediction. The results will be discussed for each loan category separately.
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Figure 10.1: 9 quarters ahead forecasts for C&I and RES Loans
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Figure 10.2: 9 quarters ahead forecasts for CON and CLD Loans
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Figure 10.3: 9 quarters ahead forecasts for LEASE and NFNR.
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Figure 10.4: 9 quarters ahead forecasts for Construction & Land Development and
HELOC Loans
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Figure 10.5: 9 quarters ahead forecasts for Agricultural and Other Loans
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Figure 10.6: 9 quarters ahead forecasts for FARM and DEP Loans.
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For NCO rates on Commercial & Industrial in Figures 10.1a, 10.1c, and 10.1e the
9-quarters ahead predictions starting from 2008 Q1 resemble the actual NCO rates
best for the RegARMA model. Although the fit for the Adaptive Lasso model is
slightly worse for low rates, it captures the peak around 2009 very adequately. The
9-quarters-ahead predictions of the linear benchmark model do not seem to capture
the behavior of the NCO rates well.

None of the models capture the behavior of NCO rates on Closed-End Residential
Real Estate (RES) loans well, as can be seen from Figures 10.1b, 10.1d, and 10.1f.
We remark that the results for the linear benchmark model are better than those
of the Adaptive Lasso and RegARMA models, but they are not adequate. As we
mentioned in our discussion of the selected variables for RES this is not surprising,
because the training data for this loan category is too limited. It cannot be expected
that a completely data-driven method will capture this effect on such a training
sample.

In Figure 10.2 we observe that NCO rates on Consumer (CON) loans there is a lin-
ear time-trend. In the estimation procedure this was taken into account. However,
especially the drop in the predictions of the RegARMA and benchmark model indi-
cate that this issue needs to be addressed further. We do note that the benchmark
model is the only model that is incapable of capturing the peak in NCO rates for
CON loans. For Multi-Family (MF) NCO rates all models overshoot the peak in
rates. Adaptive Lasso seems to have the better overall fit.

The results for LEASE in Figure 10.3 show that Adaptive Lasso captures the NCO
rate best, and the linear benchmark has the worst performance. For Non-farm Non-
Residential (NFNR) the differences are difficult to determine from the plot. The
9-quarter ahead predictions for Construction & Land Development (CLD) in Figure
10.4 indicate that the NCO rate is predicted accurately by all models, but the fit
is better for the benchmark model, because the Adaptive Lasso and RegARMA
model overshoot the peak in rates. The predictions for Home Equity Lines of Credit
(HELOC) loans have a similar interpretation as those for Closed-End Residential
Real Estate (RES) loans. This can be explained in the same fashion.

None of the models gives accurate prediction for the loan categories Agriculture
(AGRI), Farmland (FARM), and Depository Institutions (DEP) in Figures 10.6
and 10.5. This can be explained by more irregular behavior of the NCO rates on
these loan categories. Fortunately, these categories comprise only a small part of a
typical loan portfolio, as can be seen from Table 9.2. Lastly, the 9-quarter-ahead
predictions for NCO rates on Other (OTHER) loans is not optimal for any of the
models. However, the Adaptive Lasso and benchmark model give quite adequate
results, taking into account the irregular behavior of the NCO rates in the training
set.
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Overall, we conclude that the parsimonious models selected and estimated by Adap-
tive Lasso give accurate predictions, provided that the scenario in the test set is
not too dissimilar from the training data, and regularities in the training data can
be discovered. Furthermore, RegARMA gives very reasonable results, despite the
fact that it was estimated in two steps. Both the Adaptive Lasso and RegARMA
models appear to have better overall performance than the benchmark model. But
even the prediction accuracy of the benchmark model suggests that NCO rates are
predictable from macro-economic variables. We note that where Adaptive Lasso has
the smallest prediction error, the fitted values on the training set appear to be better
for the RegARMA and benchmark models.

10.1.2.2 Prediction Error Measures

To draw conclusions about the prediction accuracy of top-down models for stress
testing, we take a closer look at some of the measures we considered in Section 9.1.3.
In Table 10.3 the prediction error, in terms of MSE and MAE, and R2

efron of each
model is compared on 9-quarters-ahead predictions for all loan categories. As an
extra column the error for the null model is calculated.

Table 10.3: Prediction Errors 9 quarters ahead
Adaptive Lasso RegARMA Benchmark Null

MSE MAE R2
efron MSE MAE R2

efron MSE MAE R2
efron MSE MAE

HELOC 3.33 1.63 −0.08 3.14 1.59 −0.02 2.74 1.35 0.11 3.09 1.51
RES 1.27 0.94 −0.06 1.23 0.95 −0.03 0.89 0.73 0.25 1.20 0.91
CLD 3.62 1.41 0.64 3.32 1.29 0.67 1.41 1.06 0.86 10.13 2.58
MF 0.37 0.39 −0.12 0.82 0.58 −1.48 0.72 0.66 −1.17 0.33 0.47
NFNR 0.09 0.25 0.59 0.11 0.27 0.50 0.42 0.53 −0.85 0.23 0.38
C&I 0.16 0.33 0.69 0.15 0.27 0.71 0.67 0.66 −0.32 0.51 0.57
LEASE 8.97 2.41 0.63 16.56 2.98 0.33 20.47 3.94 0.17 24.54 3.97
CON 1.76 1.14 0.63 3.35 1.39 0.30 5.06 1.89 −0.05 4.82 1.76
OTHER 0.88 0.62 0.25 0.95 0.68 0.19 0.92 0.76 0.22 1.17 0.81
AGRI 0.11 0.23 −0.69 0.11 0.22 −0.62 0.12 0.28 −0.83 0.07 0.19
FARM 0.05 0.18 0.02 0.05 0.18 0.02 0.03 0.13 0.42 0.05 0.18
DEP 0.01 0.10 −0.51 0.02 0.11 −1.40 0.61 0.50 −66.75 0.01 0.09

The results seem to favor the Adaptive Lasso method. We shall elaborate on this
further, but first we confine our discussion. First off, we shall exclude the categories
Multi-Family, Agriculture and Depository Institutions from our discussion, because
for these loan categories the null model outperforms all models under consideration.
In Figures 10.2b, 10.2d, and 10.2f, we observe that all methods tend to overshoot the
peak in NCO rates for MF loans, which leads to a relatively high MSE and even leads
to a negative R2

efron. Indicating that the null model explains more of the variability
in the NCO rate than all the other models. Note that especially Agriculture and
Depository Institutions display irregular behavior and constitute only a small part
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of the loan composition of the banks in our test panel by the results in Table 9.2.

Second, we exclude the categories Home Equity Lines of Credit and Closed-End
Residential Real Estate from our discussion. Since the values for the home price
index during the recession period in our test data is far beyond the range of this
index in our training data, none of the models is able to capture the response of
the NCO rates to a satisfactory degree. Furthermore, we remark that from Table
10.2 we can observe that transformations of the home price index are selected on
the full sample (training and test sample combined). We also remark here that,
for these loan categories, a 9-quarter lagging model, outperforms all models under
consideration, including the null model.

For the remaining categories, we see that Adaptive Lasso gives the most accurate
predictions for the loan categories Non-farm Non-Residential, Consumer, Leases
on Financial Receivables, and Other with an R2

efron of 0.59, 0.63, 0.63, and 0.25
respectively. Note that this measures indicates the percentage of variability in the
data is explained by the model, as compared to the null model. RegARMA has an
R2

efron value of 0.71 for Commercial & Industrial, but is closely followed by Adaptive
Lasso with 0.69. The benchmark model explains more of the variation in the data
compared to the null model for the categories Farmland and Construction & Land
Development, with an R2

efron of 0.42 and 0.86. Note that for the latter category both
Adaptive Lasso and RegARMA have satisfactory power with R2

efron of 0.64 and 0.67
respectively.

Taking into account that for most banks the loan categories Closed-End Residential
Real Estate, Commercial & Industrial, Non-farm Non-Residential, and Consumer
are the largest components of the loan portfolio by the results in Table 9.2, we con-
clude that Adaptive Lasso is the best model to predict NCO rates on the average loan
portfolio of commercial banks in the United States conditional on macro-economic
paths 9-quarters-ahead, for the period 2007-2014. We note here that Adaptive Lasso
is closely followed by the RegARMA model in terms of predictive strength.

10.1.2.3 Longer Stress Horizons

The next step is to evaluate our method for predictions of more than 9 quarters
ahead. Therefore, we also evaluate the performance of our models on the complete
test set, which consists of averaged NCO rate data from 2007 Q1 to 2014 Q4. This
represents the purposes of stress testing most closely.

In Figures 10.7a and 10.7b, we compare the 9-quarters-ahead predictions of the
Adaptive Lasso model on the last 31 quarters (nearly 8 years) of our data-set. The
predicted values are based on a model that was estimated on the training set, which
consists of the first 65 quarters of our data-set. We conclude that the results for
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9-quarters-ahead forecasts and the results on a test set of nearly 8 years have com-
parable predictive strength for the loan category Commercial & Industrial during
the 2007-2009 crisis and the recovery that followed. Actually, since the dotted line
in Figure 10.7b is closer to the reported values than the dotted line in Figure 10.7a,
the prediction accuracy on the test set is slightly better than the 9-quarters-ahead
predictions. This suggests that, with Adaptive Lasso, it is possible to extend the
stress horizon far beyond 9 quarters.
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Figure 10.7: Comparison of Adaptive Lasso Results for Commercial & Industrial for
9-quarters-ahead Predictions and the Test Set.

Table 10.4 shows the prediction accuracy of all models on the test set. The results
for all loan categories on the test set are very similar to those for the 9-quarter-
ahead forecasts in Table 10.3. With the exception of the categories Multi-Family
and Non-farm Non-Residential, which have much higher and lower prediction errors
respectively. Remarkably, the predictive strength of Adaptive Lasso does not de-
crease when the stress horizon is extended. On the stress test set, Adaptive Lasso
remains the model with the most accurate predictions, followed by the RegARMA
model. Although these accuracies were obtained from only one sample, the results
indicate that stress horizons up to five years are feasible in top-down stress testing.
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Table 10.4: Prediction Errors on the Stress Test Set
Adaptive Lasso RegARMA Benchmark Null

MSE MAE R2
efron MSE MAE R2

efron MSE MAE R2
efron MSE MAE

HELOC 3.13 1.56 0.00 3.12 1.56 0.00 3.41 1.64 −0.09 3.12 1.56
RES 1.17 0.89 0.00 1.17 0.89 0.00 1.03 0.85 0.11 1.17 0.89
CLD 5.24 1.69 0.43 7.42 2.17 0.19 1.30 0.98 0.86 9.18 2.29
MF 0.08 0.22 0.71 0.08 0.22 0.73 0.69 0.70 −1.44 0.28 0.40
NFNR 0.20 0.31 0.03 0.32 0.45 −0.62 0.40 0.50 −0.98 0.20 0.35
C&I 0.10 0.23 0.77 0.16 0.27 0.63 0.81 0.57 −0.89 0.43 0.49
LEASE 7.87 1.96 0.62 10.48 2.09 0.50 11.62 2.80 0.44 20.76 3.50
CON 1.49 1.02 0.66 4.29 1.59 0.01 4.11 1.55 0.05 4.34 1.52
OTHER 0.75 0.56 0.26 0.96 0.65 0.04 0.62 0.64 0.38 1.00 0.67
AGRI 0.10 0.21 −0.69 0.13 0.25 −1.17 0.11 0.24 −0.86 0.06 0.17
FARM 0.05 0.16 0.00 0.05 0.17 0.00 0.03 0.12 0.45 0.05 0.17
DEP 0.01 0.10 −0.53 0.01 0.09 −0.31 0.54 0.55 −62.85 0.01 0.08

10.1.3 Stress Identification

In this section we test whether our method is capable of identifying stress events
from non-stress events. To that end, recall that we defined stress as follows. An
averaged loan category Pi is stressed at time t when,

NCOav
i,t ≥ mean(NCOav

i ) + i · sd(NCOav
i ), , i = 0, 1, 2. (10.1)

We thus consider three thresholds T1, T2, and T3. Using this definition we can deter-
mine whether the models can distinguish between stress and no stress for different
thresholding values. In Table 10.5 below we show the results for the loan category
Commercial & Industrial for forecasts on the stress test set. Adaptive Lasso and the
RegARMA model score better on all thresholds for all criteria than the benchmark
model and null model. The RegARMA model produces slightly better results than
the Adaptive Lasso model. The high amount of true positives and true negatives
for Adaptive Lasso we conclude that the top down model is able to forecast stress
to a high degree of accuracy on the test sample.

It is interesting to calculate the same scores on the 9-quarter-ahead predictions. In
Table 10.6 the results for the category Commercial & Industrial are displayed. A
key observation is that the specificity and sensitivity scores are remarkably high for
both the forecast on the test set and the 9-quarter ahead predictions, indicating that
it is indeed possible to use a top-down model to stress NCO rates on Commercial &
Industrial loans.

For the results of the specificity, sensitivity, accuracy, and R2
count for all other loan

categories we refer to Appendix E. In Table 10.7 the F1 scores for all averaged loan
categories predicted on the test set are displayed. Note that the zero scores for the F1
score at the third thresholding level for Non-farm Non-Residential loans is caused by
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Table 10.5: Stress Identification Results for 9-quarters-ahead Predictions of C&I
NCO

Adaptive Lasso RegARMA Benchmark Null

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

Specificity 0.92 0.92 0.92 0.94 1 0.93 0.83 0.83 0.83 1 1 1
Sensitivity 1 1 1 0.79 1 1 0.5 0.5 0.5 0 0 0
Accuracy 0.93 0.93 0.93 0.873 1 0.94 0.79 0.79 0.79 0.86 0.86 0.86
R2

count 0.71 0.88 0.67 0.71 1.00 0.67 0.42 0.70 0.29
F1 0.8 0.8 0.8 0.85 1 0.8 0.4 0.4 0.4 0 0 0
TP 10 7 6 11 8 4 12 7 2 0 0 0
FP 1 0 0 1 0 2 6 4 4 0 0 0
TN 16 17 17 16 23 25 11 19 23 17 23 27
FN 4 7 8 3 0 0 2 1 2 14 8 4

Table 10.6: Stress Identification Results for Forecasting C&I NCOs on the Test Set
Adaptive Lasso RegARMA Benchmark Null

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

Specificity 1 1 0.92 1 1 0.92 0.57 0.85 0.83 0.07 1 1
Sensitivity 0.71 0.88 1 0.71 1 1 0.64 0.75 0.5 0.07 0 0
Accuracy 0.86 0.96 0.93 0.86 1 0.93 0.61 0.82 0.79 0.07 0.71 0.86
R2

count 0.71 0.88 0.50 0.71 1.00 0.50 0.21 0.38 0.00
F1 0.83 0.93 0.8 0.83 1 0.8 0.62 0.71 0.4 0.07 0 0
TP 10 7 4 10 8 4 9 6 2 1 0 0
FP 0 0 2 0 0 2 6 3 4 13 0 0
TN 14 20 22 14 20 22 8 17 20 1 20 24
FN 4 1 0 4 0 0 5 2 2 13 8 4

the fact that there are no observations of stress levels above this threshold. We also
note that the categories Home Equity Lines of Credit and Closed-End Residential
Real Estate are stressed at each time point for all thresholds, due to the extremity
of the scenario for the house price index on the test sample.

A striking result is that where the benchmark model outperformed Adaptive Lasso
on the loan category Construction & Land Development based on MSE, here Adap-
tive Lasso actually seems to be a better indicator for stress for thresholds T1 and
T2. Since Adaptive Lasso has the highest F1 score for most categories and has the
highest average F1 score, we conclude that it predicts stress most accurately on our
test set.

10.1.4 Residual Analysis

In this section we look at the residuals of the estimation on the training set for the
loan category Commercial & Industrial, for the Adaptive Lasso, RegARMA, and
benchmark models. In the Figures 10.8, 10.9, and 10.10 the residuals analysis for the

128



Table 10.7: F1 Score for Stress Identification by Category on the Test Set

Adaptive Lasso RegARMA Benchmark

T1 T2 T3 T1 T2 T3 T1 T2 T3

HELOC 0.81 0.53 0.35 0.78 0.67 0.53 0.81 0.81 0.76
RES 0.73 0.56 0.14 0.76 0.56 0.35 0.92 0.90 0.87
CLD 0.76 0.90 0.83 0.84 0.90 0.78 0.88 0.83 0.83
MF 0.85 0.73 0.40 0.85 0.82 0.50 0.77 0.62 0.46
NFNR 0.91 0.56 0.00 0.91 0.71 0.00 0.78 0.72 0.00
C&I 0.83 0.93 0.80 0.83 1.00 0.80 0.62 0.82 0.44
LEASE 0.74 1.00 0.67 0.64 0.92 0.67 0.53 0.38 0.29
CON 0.83 0.84 0.57 0.59 0.64 0.50 0.67 0.39 0.20
OTHER 0.67 0.67 0.62 0.53 0.40 0.22 0.79 0.71 0.70
AGRI 0.21 0.00 0.00 0.11 0.20 0.00 0.08 0.00 0.00
FARM 0.54 0.25 0.00 0.50 0.24 0.29 0.86 0.77 0.67
DEP 0.12 0.00 0.29 0.00 0.00 0.88 0.00 0.00

adaptive Lasso, RegARMA, and the benchmark model respectively, are displayed.

For all models, the observed vs predicted plots show a strong linear dependency, as
is required for linear models. It must be noted that the variance for the Adaptive
Lasso model fit is notably larger. The residuals vs predicted plots show some odd
behavior for predicted values close to zero. For the residuals/predicted values plot we
need to keep in mind that the NCO rates are theoretically non-negative. If we could
precisely measure the NCO rates excluding other costs and regulatory considerations
associated with charging off loans, they should always be between 0% and 100%.
Therefore we can expect to see these distortions in the residuals.

The residuals for the Adaptive Lasso show some negative skew, where the RegARMA
and benchmark residuals look normally distributed. Furthermore, Adaptive Lasso
residuals are highly correlated. For the other models there appears to be a little
auto-correlation in the residuals.

For the loan category Commercial & Industrial, we present the results of the Anderson-
Darling Test, Engle’s Arch Test, and Durbin-Watson test in Table 10.8.

We observe that the null hypothesis of no serial correlation in the residuals is rejected
for all models at the 5% level. Normality could not be rejected for Adaptive Lasso
residuals. Since all models suffer from auto-correlated errors, none of the models
describe the complete average NCO rate process for Commercial & Industrial loans.
This can be troublesome because in a stress test we assume that all conditions
remain equal, but without a complete model specification we are not able to control
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Figure 10.8: Residual Analysis for adaptive lasso on C&I NCOs
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Figure 10.9: Residual Analysis for RegARMA model of C&I NCOs
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Figure 10.10: Residual Analysis for Benchmark model of C&I NCOs
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Table 10.8: C&I Residual Analysis

Adaptive Lasso RegArma Benchmark

AD-test 0.0758 0.9652 0.5610
Arch-test 0.0000 0.9321 0.6439
DW-test 0.0000 0.0047 0.0462

1 The p-values for conducting the Anderson-Darling (normality),
Engle’s Arch test (homoskedasticity), and Durbin-Watson (auto-
correlation) test on the residuals of the fitted model on the first
65 time points.

for those conditions.

Although this indicates that the Adaptive Lasso top-down model for average NCO
rates is not complete, this is not a surprising result. It is not clear whether a
complex process, such as loss rates can even be condensed to a simple top-down
model. This could also indicate that auto-regressive terms of the target variable
need to be included in the model. The fact that the residuals of the RegARMA
show little auto-correlation, suggest that a more advanced version of this model
could give an accurate description of the NCO rate process.

In our discussion we shall elaborate further on the extensions of our method that are
needed to make it a reliable top-down stress testing tool. For now, we focus mostly
on the main purpose of the model, namely to establish the feasibility and accuracy
of the prediction of NCOs in extreme but plausible scenarios for the macro-economy
using data-driven methods.

10.2 Answers to the Research Questions

Adaptive Lasso selected and estimated parsimonious liner model descriptions of the
data in training samples. It is able to reduce a design matrix consisting of over 10000
transformations of and interactions between macro-economic variables to a simple
model specification containing only 5 predictors on average. The regularities in the
training data are picked up efficiently and can be generalized on a test sample. It
outperforms auto-regressive and simple linear models on nearly all our measures of
prediction accuracy.

The models that we considered for the averaged NCO rates were all able to give
accurate forecasts of the rates in the recession and recovery period between 2007-
2014. Our results show that up to 70% of the variability in NCO rates can be
explained by a top-down model. For stress identification, nearly 90% accuracy can
be obtained. This suggests that it is feasible to use top-down models for stress
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testing.

The accuracy of the forecasts on a test sample of the macro-economy was very high,
and for some loan categories even better than for the 9-quarters-ahead predictions.
Since top-down models are very general and do not take into account very specific
scenarios, they can capture the general impact of macro-economic developments
on NCO rates. Our results strongly suggests that top-down models can be used
to forecast NCO rates in stress test scenarios of more than five years. Especially
Adaptive Lasso models were able to attain high accuracy.

For some averaged loan categories, the forecasts were not accurate when compared
to the actual NCO rates. The main reason is that data-driven methods only pick
up the regularities in the data on the training sample. If these regularities are not
representative of the general NCO rate process, non-sensible predictions occur. Fur-
thermore, when the scenario for a predictor variable that is relevant for forecasting
rates on a certain loan category, is much more extreme than the data in the training
data, forecasts are inaccurate. For reliable forecasts in stress testing, a minimum
of at least one business cycle in the data is required. Since one economic downturn
has specific characteristics, the general impact of a downturn can be captured better
when two cycles are present in the data. The prediction accuracy of Adaptive Lasso
on several loan categories suggests that the prediction error is smaller when two
down-turns are in the training data. Depending on the economic history this means
that approximately 20 years of data is necessary to estimate the impact of stress
scenarios on all loan categories.

The use of a completely data-driven method to obtain top-down models for NCO
rates thus sets limitations. Adaptive Lasso automatically summarizes the link be-
tween macro-economic developments and NCO rates in historic data. The resulting
model can then be used to assess the impact of stress scenarios that are in the same
range as the macro-economic variables in the training data. If the scenario is more
extreme than the macro-economic developments that a model was trained on, the
reliability of the forecasts cannot be guaranteed. Therefore a top-down model should
only be used for a limited range of stress scenarios.

The auto-correlation in the residuals of the fitted Adaptive Lasso model suggest
that it does not capture the complete NCO rate process. This suggest that an
auto-regressive model can be better suited for the top-down modeling of NCO rates.
However, the linear benchmark model showed the least auto-correlation in the resid-
uals. Therefore, it could also be that the Lasso has auto-correlated residuals because
it trades off between bias and variance when estimating the coefficients of a linear
model.
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Chapter 11

Individual Effects

In this chapter we present the results of the NCO rates model with individual effects.
Recall the model including bank-specific effects,

NCOi,j,t = αj + cj (Mtβ +Bj,tγ + εt) , (11.1)

The results of the Adaptive Lasso model with individual effects will be discussed in
Section 11.1. Recall the research questions that we aim to answer with this model
that were posed in Section 3.2.2,

i Can bank-specific variables help explain variability in the credit losses between
banks?

ii If we assume that γ = 0, can we then obtain accurate predictions for NCOi,j,t+h?
Or, is the inclusion of bank-specific effects necessary?

The findings in Section 11.1 will be used to answer these questions in Section 11.2.

11.1 Model Results

We present the results for loan categories Commercial & Industrial and Construction
& Land Development only. The first category is interesting because it has gone
through two business cycles during the training data, and the latter is chosen because
it is the only category for which one of the bank-specific CAMELS criteria in Table
5.2 was selected. All results were obtained by the Adaptive Lasso method for panel
data, that we described in Section 8.2.
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11.1.1 Selected Variables

For our 100 observations at 96 time points, Lasso only selected one of the CAMELS
criteria from Table 5.2 on the loan category Construction & Land Development. The
Adaptive Lasso models of NCO rates on the other loan categories did not contain
bank-specific predictors. The selected models were very similar to those for the
average NCO rates. The selected variables on the individual level are displayed in
Table 11.1 below.

Table 11.1: Selected Variables on the Individual Level

C&I CLD

Variable Sign Variable Sign

1{GDPt<0}VIX3
t−2 + 1{HPIt<0}HPI2t−4 +

DURt−1 + 1{CPPIt−1<0}INFt−3 +
1{VIXt>mean(VIX)}HPI2t−4 + 1{GDPt−1<0}INF2

t−2 +
1{GDPt−1<0}VIX2

t−2 + 1{URt>NROUt}URtDURt−3 +
1{DURt<0}URt−4 − Net Interest Margin −

A key observation is that indeed the model for Commercial & Industrial NCO rates
is very similar to those for the average model displayed in Table 10.1. The first three
selected variables are identical, save for a lagged averaged change in unemployment
rate. The predictor 1{GDPt−1<0}VIX2

t−2 is very similar to 1{GDPt<0}VIX3
t−2. The last

predictor indicates that when the unemployment rate is decreasing, then the change
in NCO rate is negatively related to the average unemployment rate one year ago.

The selected variables for Construction & Land Development are conditional on a
decrease in home prices, a decline in commercial property prices, a shrinking GDP,
and an above average unemployment rate. Conditional on these events, the NCO
rate is proportional to average home prices, inflation, and change in unemployment.
From the CAMELS criteria, the Net Interest Margin was selected. Indicating that
high margins on interest rates for individual banks are related to lower NCO rates.

Since the Net Interest Margin is highly correlated between banks, this could also
suggest that financial indicators could be relevant in a top-down model of NCO
rates. Therefore, it is prudent to include yields and interest rates in the initial
design in the future. The fact that for all other categories none of the CAMELS
criteria were selected by Adaptive Lasso indicates that these are not substantially
relevant in explaining the variation in NCO rates between banks.
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11.1.2 Prediction Accuracy

The predictions for NCO rates on Commercial & Industrial loans, based on the panel
data model selected by Adaptive Lasso for the ’Big Four’ commercial banks in the
United States are shown in Figure 11.1.
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Figure 11.1: Estimated and Forecasted NCO rates on Commercial & Industrial
Loans for Banks in the Test Panel.

We note that both the estimated and predicted NCO rates overestimate and under-
estimate the actual rates, depending on the bank. Since no bank-specific variables
were selected and only the individual scaling factors αj and cj were used, this is to
be expected. Since the dotted line seems to be able to capture the main movements
in the NCO rates, the panel data model gives reasonably accurate predictions.

In Figure 11.2 the results for the prediction for Construction & Land Development
NCO rates is displayed. The dotted line is not able to capture the bank-specific
response of the net charge off rates, despite the inclusion of the bank-specific Net
Interest Margin. Furthermore, the estimated NCO seems to be considerably biased.
This may be caused by the fact that we optimized the tuning parameter λ in the
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Adaptive Lasso estimation by minimizing the cross-validation error in the cross-
sectional dimension. Our observations so far suggest that although the panel data
model is able to predict the correct response of NCO rates generally, it is not very
accurate and cannot capture bank-specific effects.
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Figure 11.2: Estimated and predicted NCO rates on Construction & Land Devel-
opment Loans for selected banks. The model was selected and estimated on the
training data. The predictions are made a the vintage point of the beginning of the
test set.

In Table 11.2 the prediction accuracy and strength of the model for NCO rates is
displayed. The prediction accuracy differs greatly between the banks in our test
panel. Since there are no bank-specific variables that influence the shape of the
prediction, the accuracy depends greatly on how much the shape of the NCO rate
resembles that of the average bank. Note that the predicted values explain much of
the variation, as is indicated by a relatively high score of R2

efron for C&I NCOs.

We conclude that the (untransformed) CAMELS criteria in the Adaptive Lasso
model are not well-suited to model the cross-sectional dimension of NCO rates. Since
the individual scaling factors αj and cj are important, it remains an open problem
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why these factors differ among banks, and what could cause them to change over
time.

Table 11.2: Prediction Accuracy for C&I Individual on Test Set

MSE MAE R2
efron

C&I CLD C&I CLD C&I CLD

JP Morgan Chase 0.1175 2.1349 0.4195 1.0320 0.6247 -0.1396
Bank of America 0.0351 3.6864 0.2611 1.4260 0.5168 0.5014
Citigroup 1.3306 13.258 1.2906 2.5512 0.4214 0.0700
Wells Fargo 0.0656 0.8314 0.3584 0.7967 0.5309 0.7033
a Coefficients are calculated based on normalized predictor variables, estimated on the training set.

11.1.3 Stress Identification

Besides the actual predicted values, we also measured the models ability to detect
stress in the data. For stress threshold T2, the results are presented in Table 11.3.

Table 11.3: Stress Identification for C&I Individual

Spec. Sens. F1 Acc. R2
count

C&I CLD1 C&I CLD C&I CLD C&I CLD C&I CLD

JPMorgan Chase 0.96 0.88 0.83 1.00 0.83 0.77 0.94 0.90 0.67 0.40
Bank of America 0.96 1.00 0.83 0.53 0.83 0.70 0.94 0.77 0.67 0.53
Citigroup 1.00 0.94 0.35 0.47 0.52 0.61 0.65 0.71 0.35 0.40
Wells Fargo 0.96 1.0 0.71 0.73 0.77 0.84 0.85 0.90 0.57 0.73
1 The threshold for Construction & Land Development was taken to be half the standard deviation from the mean. Because
the peak in NCO rates for this loan category was much higher during the early nineties, relatively little stress is present
if we take one standard deviation to identify stress.

We note that the panel data model is still able to detect the stress response of the
NCO rates to macro-economic developments to a high degree. For Citigroup the
results are somewhat disappointing, but if we look at figure 11.1c we can see that
the shape of the NCO curve looks very dissimilar to those of the other banks. Since
we were not able to capture bank-specifics apart from the individual scaling factors,
it is to be expected that the accuracy for this time-series is not as good as for the
other banks.

Also note that the evaluation of the model, where we compare the predicted values
with observed values is not exactly comparable to the accuracy of a stress test.
In that case, we assume that all circumstances besides the macro-economy remain
equal. Therefore, the effects of idiosyncratic events are not predicted. The last
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peak in NCO rates of Construction & Land Development loans for Citigroup in
Figure 11.2 could be caused by such an idiosyncratic event, or by the specifics of the
Construction & Land Development portfolio. Therefore this does not necessarily
mean that the top-down model failed to identify the expected NCO rate conditional
on the macro-economy and keeping all other relevant factors constant.

11.2 Answers to the Research Questions

Adaptive Lasso did not select any of the CAMELS criteria in our panel data model
for NCO rates. Only for NCOs on Construction & Land Development loans, was
the Net Interest Margin selected. We interpret this result as an indication that
financial indicators related to yields and interest rates should be included in the
initial formulation in the future. We conclude that the inclusion of CAMELS criteria
in the design matrix cannot explain the heterogeneity in NCO rates of different
banks.

We found that individual scaling factors are able to explain much of the variability
between NCO rates for different banks. The mean and range of the NCO rate
data of banks in the United States differ greatly, but these difference appear to be
somewhat constant over time. To give better forecasts of individual banks NCO
rates on specific loan categories, it would be wise to develop methods to model these
scaling factors. In order to gain a better understanding of the process it is interesting
to discover the determinants of these factors. The fact that a model with individual
scaling factors seems to work best for a top-down model is striking. Glasserman and
Tangirala (2015) show that the bottom-up stress test results of the Federal Reserve’s
stress testing exercise are predictable. This is demonstrated by showing that the
results for different banks have been linearly related over the last few years.

The results of this chapter suggest that NCO rates for specific loan categories can be
forecasted accurately when individual scaling factors are taken into account. When
we are able to separate the system-wide impact of the macro-economy on NCO rates
from the idiosyncratic behavior of rates on specific loan portfolios, reliable top-down
stress test results can be obtained under the same conditions as for the averaged
case in the previous chapter.
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Chapter 12

Individual Banks

In the previous two results chapters we established that Adaptive Lasso is able to
accurately predict NCO rates. Individual effects on the NCO rates can best be
described by the bank-specific scaling factors αj and cj . The remaining variation
cannot be explained by the CAMELS criteria that we considered for the cross-
sectional dimension. Recall the model with individual scaling factors,

NCOi,j,t = αj + cj
(
Mtβ̂

alasso + εt
)
. (12.1)

The results are aggregated according to the method described in Section 8.3. The
aim of this chapter is to explore whether the resulting top-down model for credit
losses on the total loan portfolio for individual banks is feasible. Recall the research
questions of Section 3.2.3.

i What is the influence of the granularity of the NCO data on the accuracy of
top-down models?

ii What prediction accuracy can be obtained by a top-down stress tests on the
loan portfolio of an individual bank?

iii What stress horizons are feasible for top-down stress testing?

The results in Section 12.1 will be used to answer these research questions in Section
12.2.

12.1 Model Results

For the prediction of NCO rates for individual banks, an important consideration
is the composition of the loan portfolio. Since credit losses tend to differ greatly
between loan categories this signifies a large contribution towards improving the
predictions on the individual level. In this chapter we compare the three aggre-
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gation levels that we discussed in Section 8.3 and defined in Section 6.1.1. Since
the CAMELS criteria did not improve to the prediction accuracy of the top down
model, we consider the average 9-quarter-ahead predictions here. These predictions
are rescaled using the bank-specific scaling factors αj and cj , obtained by the method
described in equation 8.26.

12.1.1 Prediction Accuracy

In Figure 12.1 the results for the top level of aggregation are shown, compared
to the reported NCO values for the ’Big Four’ banks in the United States: JP
Morgan Chase, Bank of America, Citigroup, and Wells Fargo. The predictions are
not consistent, look noisy, and do not resemble the predicted values well. The top
level does not seem to be an appropriate choice for the prediction of NCO rates
conditional on macro-economic scenarios.
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Figure 12.1: Aggregate Loan Portfolio Results for the top level.

Figure 12.2 shows the results for aggregation level A2. The dotted 9-quarter-ahead
prediction resemble the reported values well, especially for JP Morgan Chase, Wells
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Fargo, and Bank of America.
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Figure 12.2: Aggregate Loan Portfolio Results for bank panel at level A2.

Finally, the results for the bottom aggregation level A1 are displayed in Figure 12.3.
Again, these seem to be very similar to the reported values. The results for Bank
of America and Wells Fargo are even closer to the reported values than at the A2
level. For the reported NCO rates for Citigroup, the errors seem to be much larger
than for the other banks in the panel.

The above comparison of the results for the four banks with the largest loan portfolio
in the United States suggest that the level A1 and A2 are both suitable for a top-
down model. It does seem however that the predictions are very sensitive to the
estimated scaling factors for the individual banks. If these top-down models were
to be used for a stress test, special attention needs to be paid to robust estimators
for these bank-specific scaling factors.

The results in terms of MSE, MAE, and R2
efron displayed in Table 12.1, make it

easier to compare the three aggregation levels. The MSE has the highest value for
level A3 for all banks in the test panel. The error is smallest for aggregation level
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Figure 12.3: Aggregate Loan Portfolio Results for the bank level at the bottom level
of aggregation.

A2 for JP Morgan Chase and Citigroup, where level A1 performs better on Bank
of America and Wells Fargo. Since R2

efron is negative for the banks for which A2
performs better, we conclude that the lowest level of aggregation is slightly better
during the crisis period in the test sample.

Table 12.1: Prediction Accuracy on Aggregate Loan Portfolios

MSE MAE R2
efron

A1 A2 A3 A1 A2 A3 A1 A2 A3

JP Morgan 1.29 1.25 3.38 0.88 0.85 1.26 -0.50 -0.44 -2.91
Bank of America 0.59 0.75 1.40 0.68 0.78 0.81 0.57 0.44 -0.04
Citigroup 14.3 13.8 13.4 2.79 2.67 2.90 -1.63 -1.54 -1.47
Wells Fargo 0.31 0.55 1.38 0.46 0.64 0.75 0.75 0.56 -0.11

Note that the results for JP Morgan Chase in terms of prediction accuracy are caused
by the overshooting of the actual NCOs before the peak at level A1 and after the
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peak at level A2. This is mainly caused by the rescaling that we used to obtain these
results. Look at the high peaks at the beginning of the NCO series for JP Morgan
Chase. These cause JP Morgan Chase to have relatively high scaling factors. For
the stress test it was assumed that these remained the same as in the training data.
Since we were not able to find variables to explain individual behavior we cannot
explain why NCO rates for JP Morgan Chase were higher at the economic downturn
in the early nineties than during the recession of 2007-2009.

12.1.2 Stress Identification

In terms of the correct identification of stress for the predictions we see a similar
pattern, when we compare A1, A2, and A3 as for the prediction accuracy. The
results in Table 12.2 indicate that A1 is best for Bank of America and Wells Fargo,
and A2 is best for JP Morgan Chase and Wells Fargo.

Table 12.2: Stress Identification on Aggregate Loan Portfolios

Specificity Sensitivity F1

A1 A2 A3 A1 A2 A3 A1 A2 A3

JP Morgan 0.79 0.83 0.75 0.75 1.00 1.00 0.50 0.67 0.57
Bank of America 0.60 0.70 0.20 0.89 0.78 0.50 0.84 0.80 0.51
Citigroup 0.45 0.5 0.65 0.75 0.75 0.38 0.48 0.50 0.33
Wells Fargo 0.77 0.85 0.23 0.87 0.80 0.40 0.84 0.83 0.39

The accuracy in terms of sensitivity, specificity, and F1 is high. An average F1 score
of 70% is attained for the lowest level of aggregation. This indicates that stress
events can be captured with high accuracy.

12.1.3 Results for Long Stress Horizons

Since the prediction accuracy on the test data is most closely related to the goals
and purposes of top-down stress testing, we show the results of the test panel on the
test set for the ’Big Four’.

The results are slightly too optimistic, in the sense that higher NCO should be
forecast, which is likely caused by the inability of the top-down model to capture
the movements in the NCO rate for Closed-End Residential Real Estate loans. The
same results can be obtained by using lagged values for Home Equity Lines of Credit
and Closed-End Residential Real Estate NCO rates. We show the results on the test
set for the bank in the test panel, for a model where these categories are incorporated
as lagged variables.
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Figure 12.4: Aggregate Loan Portfolio Results for the bank level at the bottom level
of aggregation on the test set.

From our research we found that including a proxy for Home Equity Lines of Credit
and Closed-End Residential Real Estate NCO rates, improves the prediction accu-
racy considerably. This suggest that a model is definitely needed that captures the
response of these loan categories to macro-economic developments. If the data of
the 2008/2009 financial would be included in the training set, it is likely that a
new peak in losses for Closed-End Residential Real Estate loans would be predicted
more accurately. This is also indicated by the selected variables on the entire dataset
presented in Table 10.2 in Appendix E.

Finally, we are able to identify to which extend our implementation of a top-down
model, tested on the 2008 financial crisis, resembles the realized stressed NCO rates.
Since the predictions for the banks in the test panel are on a different scale, we
calculated the normalized mean absolute prediction error (NMAE) and the normalize
mean square prediction error (NMSE).

The final results for the 9-quarters-ahead predictions, and the forecasts for the test
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Figure 12.5: Aggregate Loan Portfolio Results for the bank level at the bottom level
of aggregation on the test set with a proxy for residential real estate NCO rates.

set with and without adjustment using lags values are displayed in Table 12.3. We
observe that the results on the test set greatly improve when an adjustment is made
to compensate for the error introduced by the lack of fit of residential real estate
NCO rates. Furthermore, we see that the normalized mean absolute prediction error
is 22% for the 9-quarters-ahead predictions and 18% on the test set. This supports
the hypothesis that the stress horizon for top-down stress testing can be extended.
Furthermore from the accuracy score in Table 12.3 we conclude that the top-down
model that we developed accurately predicts stress for credit loss rates. Because our
top-down method can predict NCO rates and identify stress accurately we conclude
that top-down stress testing can be rewarding exercise and thus it is useful as a
complement to bottom-up methods.

Remarkably, we can predict NCO rates with high accuracy for a stress horizon
of nearly 8 years. A normalized mean square error of only 16% is obtained, using
only data-driven methods to discover macro-economic relations. Furthermore, stress
events are identified with more than 80% accuracy. These results are very promising
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Table 12.3: Top Down Results

9-quarters Test Adjusted Test

NMAE(%) 22 18 13
NMSE(%) 45 32 16
Accuracy(%) 73 77 81
Sensitivity(%) 84 40 66
Specificity(%) 66 99 90
F1(%) 72 57 72

for the further development of top-down methods.

12.2 Answers to the Research Questions

We compared the prediction accuracy for estimation of NCO rates on three different
aggregation levels. Our results strongly indicate that the loan portfolio must be
separated into a minimum of five distinct loan categories to capture the effect of
macro-economic shocks. We find that distinguishing between the widely-used cate-
gories Residential Real Estate, Commercial Real Estate, C&I, Consumer, and Other
Loans gives satisfactorily forecasts in a stress scenario. We note here, that further
disaggregation seems to have a favorable effect on overall prediction accuracy. If we
aggregate the portfolio into 12 categories, the error of our forecasts is only 16% and
stress is predicted with more than 80% accuracy. Therefore, we conclude that the
availability of granular data for estimation is key to reliable forecasts.

The stress horizon can be extended for more than five years, and high prediction ac-
curacy can still be obtained for protracted horizons. In fact, the predictive strength
does not even seem to be affected by lengthening the stress horizon. The scope of
the training data remains an important consideration. Because of the extremity
of the house price scenario during the most recent financial crisis, the house-price
scenario in our test set was much more extreme than in the training data. This had
a negative impact on our ability to capture the determinants of losses on real estate
loans. Since our method is completely data-driven and these behaviors cannot be
picked up from the training data, other inputs are required to give accurate forecasts
for such scenarios. For the United States, the limitations set by the domain of the
training data can be alleviated by using Adaptive Lasso on the complete data-set.
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Part V

Conclusion & Discussion
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Chapter 13

Conclusion

The focus of this report is on the development of methods to assess the impact of
stressed macro-economic scenarios on credit losses in the loan portfolio of individ-
ual banks. Some tools that are currently available for such an exercise are expert
opinions and data-intensive bottom-up stress tests. A top-down quantitative method
that can be used to quickly predict the response of the credit losses on the loan port-
folio of an individual bank, which can, for instance, be used to assess its financial
position conditional on any scenario is a great complement to its risk framework.

Financial crises in the past follow similar patterns. This suggests that we can learn
from past behavior to assess the propagation of sensible what-if scenarios to the loan
portfolio of a bank. However, an often heard claim is that each crisis is different and
unpredictable. The specific causes and propagation of a shock to the macro-economy
or the financial system can typically not be known beforehand. Where bottom-up
stress testing allows us to predict the response of credit losses to very specific shocks
for stress horizons of approximately two years, top-down stress testing gives us the
opportunity to give longer forecasts for more general scenarios. The macro-economy
and its effect on loan losses are complex processes. At the start of this research
project it was not clear whether a simple linear model would suffice to capture the
link between macro-economic variables and credit loss rates.

The models that we developed in this report provide compelling evidence to the
fact that a parsimonious linear top-down model can give accurate forecasts for the
credit loss rates of banks during recession and recovery scenarios. Remarkably, the
complex relation between the macro-economy and credit loss rates can be captured
in linear models which typically have only 2 − 5 predictors. The added bonus of
such a simple model is that it is easy to interpret, and can thus contribute to a
better understanding of macro-economic risks. Moreover, our simple models identify
stress with an accuracy of 81%, and have normalized prediction errors of 16% for
individual banks. A very favorable result is that our results suggests that these
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prediction accuracies can be obtained for stress horizons of five years or even longer.
The implication is that a top-down model is able to forecast the general impact of
stress scenarios for longterm planning.

We obtained these results on bank-data and macro-economic data from the United
States. For a top-down model it is prudent to consider averaged credit loss rates
over all banks. This way, we can adjust for bank-specific influences on credit loss
rates and idiosyncratic events, by only considering system-wide changes in credit
loss rates. It is important that the available data allows us to make this distinction.

To our knowledge there exists no publications of the effects of aggregation on pre-
diction accuracy of credit loss rates. In this report we showed the influence of using
granular loan data for estimation. That is, we compared the prediction errors and
accuracy on three different levels of aggregation. The results show that it is required
to consider at least five different loan categories. These can be described as Resi-
dential Real Estate, Commercial Real Estate, Commercial & Industrial, Consumer,
and Other Loans. We have shown that higher prediction accuracy can be obtained
by disaggregating further. This shows that the loan composition of an individual
bank is an important determinant of its credit loss rates.

The major contribution of this thesis to the development of stress testing methods,
is the introduction of a completely data-driven approach. We show that Adaptive
Lasso can be used to discover a parsimonious top-down model from a set containing
thousands of possible model specifications. This is particularly useful when theo-
retical models are not available, as is the case with top-down stress testing. We
considered many potentially relevant transformations of macro-economic variables
and their interactions in an initial formulation of the design matrix. We applied
Adaptive Lasso as a learning algorithm to select the most relevant predictors.

In this report we showed that the Adaptive Lasso procedure always gives sparse
solutions, is approximately unbiased, and has attractive convergence properties. Im-
portantly, it can distinguish between many different model specifications and gives
unique solutions, even when the number of potential predictors is much larger than
the number of observations. The predictive strength of Adaptive Lasso models was
much higher than that of benchmark models selected by classical methods. As far
as we know, this is the first application of Adaptive Lasso to bank data.

Our results indicate that Adaptive Lasso automatically picks up regularities in the
training data and searches for those variables that describe the behavior of credit
loss rates best. This results in a parsimonious description of the relation between
the macro-economy and credit loss rates. The fact that the method is completely
data-driven means that it only considers those events that are present in the training
data. In a sense, it gives us a summary of past events in terms of a linear model
specification. Important effects of the macro-economy can therefore not always be
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identified on a small data-sample. The results presented in this thesis suggest that
the link between macro-economic development and system-wide credit loss rates
generally follows a regular pattern, but at least one, and preferably two, economic
downturns are required for reliable forecasting. This suggests that roughly 20 years
of quarterly data is necessary for the development of top-down stress testing meth-
ods. Another option is to limit the scope of the stress scenarios used on a top-down
model.

Another consideration during the research project was the inclusion of bank-specific
variables to explain heterogeneity in NCO rates for different banks. We included
bank-specific criteria and transformations of macro-economic predictors in a panel
data model and used Adaptive Lasso to select the substantially relevant predictors.
Interestingly, the Net Interest Margin was selected as an indicator in one instance.
This suggests that interest rates and yields could be relevant predictors for credit
loss rates. To our knowledge none of the existing top-down stress testing model for
credit losses includes such predictors in its specification. For the remaining part,
none of the bank-specific criteria were selected. The macro-economic predictors that
were selected were very similar to those selected for the average loan case, which
further supports the robustness of Adaptive Lasso. Based on our findings we are of
the opinion that the adaptation of a panel data model is not worth the effort. But
note that our search for suitable bank-specific variables far from exhaustive.

The mean and range of credit loss rates differed among banks and captured the
variability between different banks well. This suggests that individual scaling factors
are an important part of a top-down model. It would be interesting to characterize
the determinants of the differences in mean and variance in credit loss rates for
different banks. This allows us to understand the underlying causes. Lastly, the
Adaptive Lasso model was compared to a model with the same predictors but with
auto-regressive error terms. The residuals of the fitted Adaptive Lasso model were
auto-correlated and those of the auto-regressive model were not. On the other hand,
the linear Adaptive Lasso model had higher prediction accuracy on the test sample.

Recommendations The models that we discovered and tested, are based on data
from the United States. The method that we used rendered simple top-down models,
which can be interpreted with ease, and give accurate longterm forecasts in stress
scenarios. This makes it attractive to pursue the adaptation of such methods for
banks in Europe and more specifically, in the Netherlands.

A closer look at our experiences gives insight in how such a simple top-down model
can be constructed. Our method is completely data-driven and obtains a parsi-
monious top-down model by learning from past data. Therefore, it can easily be
adapted to learn a model on a different economic system or for differently specified
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stress scenarios. The main issue is that a substantial amount of data is needed to
train a model which can give reliable longterm forecasts.

Our findings suggest that granular data on credit losses is needed. To that end, we
require historical credit loss rates for the loan categories Residential Real Estate,
Commercial Real Estate, Commercial & Industrial, Consumer, and Other. In order
to capture the link between the macro-economy and credit losses on these loan cat-
egories in a data-driven manner, we need to be able to identify regular behaviors.
To that end, quarterly data is required for a period of roughly 20 years, or it should
contain at least one complete business cycle. Because top-down stress testing re-
quires us to determine the systemic impact of stress scenarios, the credit loss rate
data need to be representative of the entire banking system. In conclusion, granular
quarterly data considering system-wide credit loss rates are needed for a period of
20 years.

Understandably, the above data requirements can be challenging for the near fu-
ture. Therefore, we recommend to consider using other inputs for the selection and
estimation of a top-down model. In the final chapter of this report we make some
suggestions as to how this can be done.
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Chapter 14

Discussion

The results in the previous part of the thesis indicate that a top-down stress testing
tool is feasible as long as the amount of estimation data is sufficient and the stress
scenarios that serve as input for the prediction of rates is not too extreme (as com-
pared to the macro-economic developments in the estimation data). In that case,
only five parsimonious linear top-down models for an aggregated loan portfolio are
sufficient to give accurate forecasts for credit loss rates in the stress scenario. Fur-
thermore, efficient methods using Adaptive Lasso are available to flexibly select an
appropriate model, which can be evaluated by experts. This is a promising result.

In this chapter we raise four distinct issues. First, we take the opportunity to give
an overview of possible improvements to our method that could lead to even better
results. We proceed by taking a critical look a the assumptions that we explicitly and
implicitly made in the modeling process. Then we raise some important questions
about the available evaluation methods for top-down macro-economic models. We
conclude with a discussion about the concerns associated with the domain of the
training data.

14.1 Improvements

Here we identify some possible improvements to our method, that gives the op-
portunity to use it as a top-down stress testing tool. Our suggestions concern the
range of the credit loss rates, the inclusion of financial macro-economic indicators,
the construction of confidence bands, and further research towards explaining bank
heterogeneity in NCO rates. But we start off, by considering the quality of the NCO
data.

Quality of the Data Since we are modeling NCO rates, which are the annual
percentage losses for each dollar that is loaned out in a certain loan category, the
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range of the response variables in our model should theoretically be between 0 −
100%. But due to the limitations set by the reporting method, negative rates do
occur in NCO data. Furthermore, unknown costs and decision-making processes are
involved with writing off debt in the banking book, as we discussed in Chapter 6.
Since these factors were unknown to us, we treated these effects as measurement
errors, and used a seasonal filter to remove them. The seasonal averaging approach
that we employed, is perhaps too crude. It uses 4 extra data-points and could
filter out relevant information. With a better understanding of the source of the
non-random signal due to regulatory and seasonal effects, a more advanced filtering
method can be employed.

Another consideration is that we used average NCO rates to capture the system-
wide impact of macro-economic shocks to credit loss rates. Although this approach
removes fluctuations due to circumstances unrelated to macro-economic develop-
ments, it requires a lot of data. Therefore, it could be worthwhile to consider other
methods to obtain observations of system-wide credit loss rates.

Range of NCOs The values of the actual NCO rate takes on values within a
certain range. When the range of the output of a model is limited to this range,
prediction accuracy can be greatly improved. The models that we developed can give
negative predictions for NCO rates. Furthermore, the residuals of our fitted models
showed some distortion for observed values close to zero. It would be prudent to
consider a transformation suitable for the modeling of percentage data.

A widely-used transformation that maps percentage data to the real line is the logit
transformation, given by

log
(

p

1− p

)
, (14.1)

where 0 ≤ p ≤ 1.In the case that the percent data fall in the range 0 to 10%
it is often recommended to use a square root transformation on the data instead.
Another frequently used method is to apply an arcsin transformation. The effects
of these transformations are displayed in Figure 14.1.

Our data mostly lies in the range 0−2.5%. We found that both transformation have
a distorting effect on the shape of the time-series. Therefore, we decided to model
the untransformed data. Further study is needed to find a suitable transformation,
which ensures positivity of the model’s predictions. This might also have a positive
influence on the distribution of the residuals.

The Macro-Economic Effect From our panel data model using bank-specific
effects we found some evidence that suggests that financial indicators such as interest
rates and bond yields should be included in the initial formulation. That way,
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Figure 14.1: Commonly used transformations that ensure that the response variable
is between 0 and 1.

Adaptive Lasso can select these variables if they are substantially relevant predictors
of NCO rates.

An important consideration is the down-scaling of the initial formulation. Although
our results indicate that Adaptive Lasso is capable of distinguishing between sub-
stantially relevant and unimportant variables, it would be prudent to only include
variables that are deemed economically significant. Macro-economic indicators,
transformations, or interactions that are very unlikely related to credit loss rates
can be removed from the initial formulation based on expert judgment and eco-
nomic theory. Furthermore, the linear models that are simultaneously selected and
estimated by Adaptive Lasso should be evaluated thoroughly from an economic point
of view.

The Individual Effect We used two approaches to include individual effects that
explain the variability in NCO rates between banks. First of all, we introduced in-
dividual scaling factors, to scale the predictions of our models based on the historic
mean and variance of NCO rates for individual banks. These scaling factors were cal-
culated for each loan category. An important consideration is the estimation method
of the bank-specific scaling factors which influence the level and range of NCO rates
for individual banks. Determining the underlying principle of these scaling factors,
could give further insight in the risk drivers of credit losses. Then, forecasts in
macro-economic stress scenarios can be scaled differently when characteristics of the
loan portfolio are adjusted.

As a second approach to capturing individual effects, we considered bank-specific
CAMELS criteria in a linear panel data model. Our results showed that these did
not explain the cross-sectional variation in NCO rates, and we concluded that a
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panel data model is not worth the effort. But our search for explanatory variables
was far from exhaustive, and it could be pursued further. If bank-specific variables
can explain the cross-sectional variation, this could be a step towards a complete
top-down model that describes all of the NCO rate behavior. Finally, the panel data
model could be improved by considering interactions between bank-specific variables
and the macro-economy. Note that a panel data model requires a lot of bank-specific
data. Since our results show that the individual scaling factors explain much of the
heterogeneity, it is much more important to investigates these factors further.

Confidence Bands For the practical use of a stress test it is necessary to give
some estimate of the reliability of the prediction by providing confidence bands.
However, for the models that we considered for this research project it is not easy to
determine accurate values for the confidence bands. Firstly, the necessary conditions
on the NCO rate process for inference using t-tests, F-tests, etc. are not satisfied.
And secondly, the degrees of freedom in an automatically selected model based on
cross-validation or BIC values cannot be determined.

For the Adaptive Lasso model in this report, there exists several suggestions in lit-
erature to calculate confidence bands. These methods are based on the convergence
rate of a procedure that possesses the oracle properties. However, these measures
can only be calculated in the n < p case. Therefore, to calculate confidence bands
the initial formulation should be reduced significantly or large amounts of data need
to be made available.

Another option to give a measure for reliability of the predictions is to use the
prediction error on a test sample. Unfortunately, this requires more data since we
need to split our data in a training and a test sample. As we have seen on our data-
set at least 20 years of data is already needed for the training sample. A solution
might be the use of cross-validation techniques.

14.2 Assumptions

To verify the possibility of using top-down models for stress testing credit loss rates
and in order to establish the extend of the accuracy of such methods, we developed a
top-down stress testing method. If such a top-down model were to be used for actual
stress testing, the assumptions that we made along the way need to be addressed.
These assumptions were explicitly and implicitly stated in this report and can be
summarized as follows.

Model Specification An important aspect of the model is its functional form.
For the Adaptive Lasso model in this report we assumed a linear model specification.
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We also considered a model with auto-regressive error terms and predictor variables
selected by Adaptive Lasso. The prediction error of this auto-regressive model, was
slightly higher than that of the linear Adaptive Lasso model. Because the in-sample
fit of the auto-regressive model was much better, it is worth considering.

In the auto-regressive model case, Adaptive Lasso methods can be used to simul-
taneously select and estimate both the macro-economic predictors and the lags of
the model. The issue with including lags and moving averages of error terms in a
specification for Adaptive Lasso, is that the minimization problem is no longer con-
vex. Hence finding the solution is significantly more computationally challenging.
Wu and Wang (2012) put forward an approximation scheme to efficiently select and
estimate such a model with Adaptive Lasso in [33].

Correlations For simplicity we assumed that the distribution of NCO rates and
the individual scaling factors remains the same over time. Based on the informa-
tion in our data-set this assumption is reasonable, but this gives no guarantees for
modeling in the future.

We cannot be sure that the measurement error in the data that we used is small.
A better understanding of how the NCO data is gathered, could alleviate this issue.
Neither are we certain whether there is correlation between NCO rates on differ-
ent loan categories besides a common dependency on the macro-economy. For a
panel data model we should consider whether there exists correlation between NCO
rates for individual banks, besides their common dependency on macro-economic
developments.

Adaptive Lasso In order to discover regularities in our data, we assumed that
the true model is sparse and used Adaptive Lasso. If the true model is not sparse,
no model can describe and predict the behavior of NCO rates conditional on macro-
economic paths.

Another considerations is the fact that we used γ = 1 for the weighting of Adaptive
Lasso. For future applications, it is wise to optimize this parameter of Adaptive
Lasso. For this thesis we used cross-validation techniques on the training sample
to select the tuning parameter λ with the smallest prediction error. But other and
perhaps better methods are available, which can be explored.

In the application of Adaptive Lasso to the linear panel data model, we used that
λ1 = λ2 for simplicity. In the future the optimal values for λ1 and λ2 should be
selected. Recall that for cross-validation the data is split into folds to determine the
prediction error on each of these folds. When cross-validation is used on panel data
to select tuning parameters, the creation of folds becomes more challenging. More
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research is needed to establish best practices.

Macro-Economic Modeling One of the main issues in macro-economic mod-
eling, and also in our top-down stress testing model, is that the assumptions for
regression are not satisfied for the estimation data. Most importantly, the observa-
tions are not independent and identically distributed (i.i.d.) samples. Moreover, it
is not likely that the measurement error of all variables is negligible. Or that the
processes involved are stationary and non-changing over time. This is one of the
realities of macro-economic modeling.

We do not expect that the NCO rates are completely determined by the values of
the macro-economic stress variables in our initial formulation. It is likely that other
(macro-economic) factors and idiosyncratic events have an impact on the NCO rates
for individual banks. These are not included in our model.

14.3 Evaluation of Top-Down Models

The extend of top-down stress testing was investigated by assessing the accuracy
of the Adaptive Lasso method on the financial crisis, recession and the following
recovery of the last eight years. We are aware that our results for prediction accuracy
and stress identification were obtained on only one test sample. Therefore, the
reliability of the prediction errors is uncertain. The major issue in macro-economic
modeling is however, that the possibilities for the evaluation of models are limited.
We have a few suggestions how more reliable estimates of prediction accuracy can
be obtained.

First, the response of NCO rates in a top-down model can be tested by using histori-
cal scenarios. A second option is to compare the forecasts of a top-down model with
those of bottom-up methods. Lastly, it can be tested on the stress test scenarios
that the Federal Reserve prescribes annually or on self-made stress scenarios. The
predicted response can then, for instance, be compared to the opinion of experts.

Although methods for evaluation are scarce, a more thorough approach to the testing
of top-down models is feasible. In our opinion it is necessary to acquire reliable
estimates of the predictive strength of a top-down model in order to use it as a
top-down stress testing tool.

14.4 The Domain of the Scenario

For NCO rates on loan categories which are explained by variables whose value dur-
ing the 2007-2009 crisis scenario was close to values attained in the training sample,
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the predicted rates are adequately estimated. In the results part of this report
we observed that the forecasts for the loan categories Closed-End Residential Real
Estate, Farmland, Home Equity Lines of Credit, and Agriculture are particularly in-
accurate. An obvious explanation for this is that the macro-economic developments
of the 2007-2009 crisis had not been observed before. In the data between 1990-2006
the house prices had nearly always increased, and therefore the effect of a decline in
house prices could not be captured accurately by any of our data-driven models.

A data-driven top-down model cannot magically predict the future and can only
use past data to estimate the relation between macro-economic changes and credit
losses. It is therefore important to realize what an extreme scenario is for a specific
loan category and how this impacts the reliability of the stress test results. In other
words, the model only shows how the NCO are related in the domain of the training
data, and does not necessarily give good predictions outside of this domain. It is
therefore useful to be aware of whether you are extrapolating beyond the boundaries
of the models too much. And it is prudent to quantify the domain of the macro-
economic variables in the training data. Then it can be determined whether the
range of the variables used in the stress scenario are in the domain of the training
data. When the scenario is too extreme, the forecasts are unreliable.

Because the data requirements for the development of data-driven top-down stress
testing methods are substantial, we took the opportunity to explore some options to
extend the domain of the model in other ways. In the next and final chapter of this
report we discuss some methods that can be adopted that use alternative inputs for
the construction of a top-down model.
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Chapter 15

Extending the Domain

For this research project, the aim was to assess the feasibility of designing an ad-
equate top-down stress testing method, to determine the prerequisites for such an
exercise, and to develop methods to implement it. A question that evolved natu-
rally in the course of the research project, was how to deal with small data-sets (i.e.
data-sets on which it is not feasible to estimate a complete top-down stress testing
model.). To that end, we searched for methods that can be used to generalize models
estimated on data of other economic systems. Our attention was directed to the use
of other inputs that can be used for the model selection and estimation procedure.

15.1 Alternative Input Data

A viable option is to extend the domain of a top-down model by quantifying the
input of expert judgments. Expert opinions can be used to give an idea of what
happens in the extremal points outside the scope of the training data. This allows
us to interpolate predictions between those of the expert inputs at the extreme and
those of the data-driven model. In this case the condition that a top-down model
should be data-driven needs to be relaxed.

Another possibility is to use data for the macro-economy on a smaller scale. For the
United States, we have seen that there is no observation of declining house prices
prior to the 2007 subprime-mortgage crisis in our data-set. This has consequences
for the ability of our model to learn the correct response to declining house prices,
which becomes clear when we look at the prediction accuracy for the loan categories
Residential Real Estate and Home Equity Lines of Credit (HELOC). But in some
states or cities, such a situation might have occurred previously. Based on the
response of credit losses in these regions, we might be able to estimate a model
on this partial data set. The important question here is, how this model can be
generalized to the entire nation-wide bank population.
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Another option is to use historic data. It is widely acknowledged that the older
the data is, the less representative of the current situation it is. Perhaps transfer
learning techniques may also be useful to learn from events that occurred in a time
that the market conditions were drastically different from the current situation. If we
are able to retain the relevant information from observations of different but similar
systems over time, location or scope, we can extend the domain of a top-down stress
testing model.

An interesting topic for further research is whether the restrictions on top-down
stress testing that are due to constraints imposed by the domain of the training
data can be alleviated by using data from other (related) systems. For instance,
can the knowledge that we derive from the markets in the United States, be used to
better understand the developments in European markets? There is little doubt, that
typically, experts indeed use knowledge of processes that they learned to understand
from foreign markets. It would be interesting to determine whether this process
can be replicated quantitatively. A new approach would be to borrow techniques
developed in the field of transfer learning.

15.2 Transfer Learning

This promising area of research focuses on the development of learning algorithms
that use labeled or unlabeled data from a system with a different distribution to
improve the learning curve of the program in another system. In the situation that
one has two datasets with sampled from different distribution but closely related,
and the data that one wants to predict is scarce, it would be convenient to employ
the data in the secondary dataset to improve the prediction accuracy. A classical
example of transfer learning is that when you have learned how to play the piano,
it will be much easier to learn to play the organ than if you had not obtained
that skill. The question is whether the same reasoning can be applied to machine
learning algorithms. As part of our discussion, we give a short introduction to some
techniques that may be used to transfer knowledge that was learned on a different
system, to enhance learning on the economic system.

Although transfer learning currently is an increasingly popular subject in machine-
learning contexts, the literature on the application of transfer learning to economic
models is scarce. In [24] data from heterogeneous sources is scaled in order to
make predictions in the target set based on data in a source domain. The economic
example of such a situation that is provided is the prediction of down-town housing
prices, using labeled data on suburban house prices. In [29] the call report data
from the U.S. is used in a transfer learning algorithm to predict bank failures in
Australia.
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In the context of supervised or regression learning, transfer learning strives to solve
the following problem. Consider two datasets containing labeled data, that were
sampled from different distributions. Let the target dataset be denoted by (X T ,YT ),
and the source dataset by (X S ,YS), where Y are the labels and X the features of
the model. For our case, we assume that both the domain and the learning tasks
differ. Hence if the target data is distributed according to pT (x, y) and the source
data as pS(x, y), it holds that pT (x, y) 6= pS(x, y). This type of transfer learning is
commonly referred to as inductive transfer learning.

One option is to transfer knowledge by boosting for regression transfer. The main
idea is to learn hypotheses for a model on the source data. Each hypothesis can be
seen as an expert. There are several schemes to combine these experts to construct
a model for the target data. Such schemes weight the hypothesis in such a way that
the prediction error on the labeled target data is minimized. This process is referred
to as boosting for regression transfer [23].

To give an impression of how transfer learning might be implemented we summarize
an introduction to another method that transfers knowledge for a regression learning
task. We consider an importance weighted inductive transfer learning method that
can be found in [45]. Here it is key to assess which data-points contribute positively
to the prediction accuracy on the target data and to discard data points that have
a negative influence.

The solution that importance weighted inductive transfer learning [45] proposes to
this problem is to estimate a measure of similarity between the source and target
distributions. We shall see that this comes down to estimating a so-called importance
weight function w(x, y) = pT (x,y)

pS(x,y) , which can be used to reweight the data in the
source domain,

pT (x, y) = w(x, y)pS(x, y). (15.1)

Note that for predictions ŷ, it holds that

ŷ = arg max
y

(p(y|x)p(x)) . (15.2)

Since we have two distributions in the inductive transfer learning setting we can
obtain two predictions ŷTS and ŷTS based on the target and source data, respectively.
By equation 15.2,

yTT = arg max
y

(pT (y|xT )pT (xT )),

yTS = arg max
y

(pS(y|xT )pS(xT )).

These prediction can differ, due to the difference of pT (x, y) and pS(x, y). The idea
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is to reweight the distribution pS with the weight function w(x, y). This can be
rewritten like this,

yT = arg max
y

(
w(y, xT )pS(y|xT )pS(xT )

)
= arg max

y

(
pT (y, xT )
pS(y,XT )p

S(y|xT )pS(xT )
)

= arg max
y

(
pT (y|xT )pT (xT )p

S(y|xT )pS(xT )
pS(y, xT )

)

= arg max
y

(
pT (y|xT )pT (xT )p

S(y|xT )pS(xT )
pS(y|xT )pS(xT )

)
= arg max

y

(
pT (y|xT )pT (xT )

)
.

From the above derivation it can be seen that this gives an unbiased estimator for yT .
Since the amount of target data is limited, the estimation of pT (y, xT ) is difficult, but
if there is a large quantity of source data it is feasible to estimate pS(y, xT ). With
the use of the weight function, the estimation procedure comes down to estimating
the weight function and pS(y, xT ). Note, that the weight function can be interpreted
as a measure of similarity between the distributions. For an example of how w(x, y)
can be estimated, we refer to [45].

In our research project we have shown that a top-down stress test is feasible for stress
scenarios that are within the scope of the domain of the training data. The avail-
able macro-economic and bank-specific data for the task of estimating a top-down
stress testing model on European or Dutch data is typically scarce. However, the
amount of data that is available from different but likely related economic systems is
much larger. There are several directions to go from here, one could consider using
bank- and macro economic data from geographically different regions in the world,
or employing data from the 1970s and 1980s, which are typically too differently dis-
tributed from the current data. Finally, it could be helpful to use detailed data on
a level where the impact of macro-economic developments is distinguishable.

Although some of the examples of the results that the transfer learning approach
yield are promising, it remains unknown whether this type of knowledge transfer
can work for credit losses of individual banks conditional on macro-economic stress
variables.

166



Part VI

Appendices

167





Appendix A

Time Series

In this appendix we give a short refresher of general theory about, and notation
that is used for, time-series. In particular, we introduce the convenient back-shift
operator that we used in Chapter 8. Furthermore we give definitions of the ARMA,
RegARMA, and the white noise processes that were mentioned. Finally, we discuss
some key aspects of seasonality and decomposition of time-series.

A time-series is a sequence . . . , Y−2, Y−1, Y0, Y1, Y2, . . . of random variables. The
series Yt is indexed by equally spaced time points t, where the implied ordering of
the variables is essential. Time-series are also commonly referred to as (stochastic)
processes1.

The study of time series involves both probabilistic and statistic methods. The
probabilistic part is the study of the probability distribution of sets of variables Yt
that will typically be dependent. The statistical part is to study the probability
distribution of the time-series given observations Y1, . . . , Yn. The resulting model
can be used to understand the underlying process or to make future predictions
Ŷn+1, Ŷn+2, . . . Ŷn+h [40].

For more convenient notation, we introduce the back-shift operator B. We let B
signify the transformation B(yt) = yt−1, where Bn(yt) = yt−n. Another useful
transformation is the polynomial lag operator which performs the following operation

φ(B)yt ≡ (1− φ1B − φ2B
2 − . . .− φpBp)yt

= yt − φ1B(yt)− . . .− φpBp(yt).

In order to estimate probability distributions of a process, we need to assume that
the time-series satisfy some structure. A commonly used structure is stationarity.

1Actually, the theory for discrete-time stochastic processes can be extended to continuous time.
For top down modeling for stress testing, we do not consider this option, since only discrete time
data is available.
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When the underlying structure of a stochastic process does not change over time, it is
called stationary. This is formulated more precise in Definition A.1 below. Another
important concept in time-series analysis is white noise, defined in Definition A.2.

Definition A.1. (Stationarity) Let FY be the cumulative distribution function of
the process Yt. Let t1, . . . , tk represent k equally spaced time-points. We say that
the time series Yt is strictly stationary when

FY (yt1 , . . . ytk) = FY (yt1+h, . . . ytk+h),

for all h ∈ N. We say that the time series Yt is weakly stationary when

i E[yt] = µ, ∀t,
ii Var(yt) = σ2

x, ∀t,
iii cov(yt, yt−s) = σs, ∀t, s.

Definition A.2. (White noise) We say that a series εt is white noise if,

i E[εt] = 0,
ii Var(εt) = σ2, ∀t,
iii cov(εt, εt−s) = 0, ∀s 6= 0.

We use the above definition to introduce auto-regressive (AR) and moving-average
(MA) processes. Let εt be a white noise process. An auto-regressive process of order
p is denoted by AR(p) and is defined by

Yt = c+
p∑
i=1

φiYt−i + εt,

where ε is a white noise error, c is a constant, and φi are the parameters of the
model.

A moving-average process Zt of order q is denoted by MA(q) and is defined as

Zt = µ+
q∑
i=0

θiεt−i,

where µ is the mean of the series, θi are the parameters fo the model, and εt−i are
white noise errors. Note that where shocks ε in an AR-model influences the values of
X infinitely into the future, for the MA(q) model the shock to Z is only propagated
for q time periods.

A process that has both AR-terms and MA-terms is usually referred to as an
ARMA(p, q) process. In Definition A.3 we give the precise statement.
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Definition A.3. (ARMA(p, q) process) Let εt be a white noise series. We say that
Yt is an ARMA(p, q) process when,

Yt = c+
p∑
i=1

φiYt−i +
q∑
i=1

θiεt−i + εt.

In terms of polynomial backshift operators the above equation can conveniently be
rewritten as,

φ(B)Yt = c+ θ(B)εt. (A.1)

In some settings there are exogenous variables that influence the time-series process.
Such processes can be modeled by using an auto-regressive moving-average model
with exogenous variables, which is denoted by ARMAX(p, q).

Definition A.4. (ARMAX(p, q) process) Let Yt is an ARMAX(p, q)-process with
exogenous predictors Xt if,

Yt = α+Xtβ +
p∑
i=1

φiYt−i +
q∑
i=1

θiεt−i + εt. (A.2)

In terms of the polynomial backshift operators, ARMAX(p, q) the model can be
written in the more compact form,

φ(B)Yt = Xtβ + θ(B)εt.

This can be rewritten to,

Yt = α+ β

φ(B)Xt + θ(B)
φ(B)εt.

Note that the AR-coefficients are both related to the covariates and the error term.
The coefficients therefore become difficult to interpret from an economic point of
view. Exogenous variables that influence the time-series process can also be included
in a linear model where the errors are an ARMA(p, q) process, we refer to such a
model as a RegARMA(p,q) model.

Definition A.5. (regARMA(p,q) process) A regARMA(p, q) process Yt is of the
form,

Yt = α+ βXt + ηt

ηt =
p∑
i=1

φiηt−i +
q∑
i=1

θiεt−i + εt.

171



In terms of polynomial backshift operators this becomes,

Yt = βXt + θ(B)
φ(B)εt. (A.3)

Notice how the coefficients for the covariates and the error terms are now separated.
This greatly simplifies the interpretation of the estimated model parameters. The
time-series models that we have discussed so far, decompose the time-series based
on predictability. It turns out that a decomposition into a deterministic and purely
indeterministic part is possible for any weakly stationary process.

Theorem A.6 (Wold’s Theorem). Let Xt be a weakly stationary process with EXt =
0, then

Xt =
∞∑
j=0

θjεt−j + ηt, (A.4)

where

i εt = Xt − E[Xt|Xt−1, Xt−2, . . .] is a white noise process,
ii ηt is a deterministic process,
iii

∑∞
j=0 |εj | <∞,

iv all the roots of θ(L) are on the unit circle, θj, and εs are unique.

Proof. The theorem can be found in most books on time-series analysis. We recom-
mend [57].

According to Wold’s decomposition theorem all weakly stationary processes can be
decomposed into a deterministic and a random part, justifying the model structures
discussed above. But not all processes are stationary.

The most common types of non-stationarity in time-series analysis occur due to
the presence of a linear trend or seasonality. A time-series may exhibit seasonality
in the sense that it has a regular pattern which is repeated over s time periods.
For example, for quarterly data it typically holds that s = 4 and for monthly data
s = 12. Trend and seasonality can be removed from a time series by applying
(seasonal) differencing, X ′t = ∇sXt = Xt −Xt−s for time-series with seasonality s.
To detrend a time-series we calculate X ′t = ∇Xt = Xt−Xt−1. Time-series are often
stationary after (seasonal) differencing, if this is not the case then more differencing
is generally required.

We can describe patterns in a time series using a simple method called classical
decomposition, which is an important technique for time-series analysis and seasonal
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adjustment in particular. The main idea is that one assumes that the time-series
can be decomposed in the following four parts [5]:

i The trend Tt describes long term movements of the mean.
ii The seasonality St relates to cyclical movements corresponding to calendar

dates.
iii Cycles Ct describe other cyclical fluctuations.
iv The residuals εt contain other random movements.

It is then assumed that these four elements can be combined either additively or
multiplicatively,

Xt = Tt + St + Ct + εt Xt = Tt · St · Ct · εt. (A.5)

Time-series decomposition is a frequently used component in texts concerning fore-
casting of business and (macro) economic data. Researchers are often interested in
separating the infamous business cycles and growth cycles that are visible in macro-
economic data from seasonal and random components. This allows them to study
the effects and interactions of business and growth cycles. Under the assumption
that classical decomposition can be applied to (macro-economic) processes, these
can be obtained by using filters or smoothing2.

2For a further discussion of classical decomposition for macro-economic time-series we recom-
mend [10].
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Appendix B

Linear Regression

In this appendix we derive the normal equations for least squares regression, show
why the number of predictors should be smaller than the number of observations in
linear regression, discuss the assumptions of ordinary least squares regression and
provide an introduction to the modeling of panel data in Section B.1. In the sub-
sequent section we focus on forecasting with linear regression models. In particular
we will discuss some measures for model evaluation, and we stress the importance
of finding a model that can be generalized beyond the training set of data. Two
measures that strive to perform this task are the AIC and BIC measures, which
were also introduced in Section B.2.

B.1 Ordinary Least Squares Regression

An important tool in time-series modeling in the presence of exogenous predictor
variables is linear regression. Some processes are determined by the paths of ex-
ogenous variables or predictors. Let Xt be a vector of observations of predictor
variables and Yt the value of the response variable at time t. Assume that we have
n observations of response-covariate pairs. A linear model for Yt is of the form,

Yt = α+Xtβ + εt, ∀ t = 1, . . . , n.

The α term can be included in the design matrixX, and then the vector β is extended
with β0. Therefore the constant term α is often dropped, which we shall do here
as well. A popular method to estimate the coefficients β for such a linear model
is Ordinary Least Squares (OLS) regression, which minimizes the sum of squared
residuals in a linear model of the form

Y = Xβ + ε, (B.1)
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where X is a (n× p)-matrix and Y is a vector of length n. The squared residuals of
the linear regression are given by,

ε>ε = (y −Xβ̂)T (y −Xβ̂)
= y>y − y>(Xβ̂)− (Xβ̂)>y + (Xβ̂)>(Xβ̂))
= y>y − 2(Xβ̂)>y + (Xβ̂)>(Xβ̂))
= y>y − 2(Xβ̂)>y + β̂>X>Xβ̂.

The minimum of these squared residuals is determined by deriving the first and
second order derivative of the above expansion. The derivatives are given by

∂

∂β
[ε>ε] = −2X>y + 2X>Xβ̂ (B.2)

∂2

∂β2 [ε>ε] = 2X>X. (B.3)

In order to determine the minimum we set the first derivative to zero, and we require
that the second derivative in equation B.3 is positive definite. From linear algebra
we know that X>X is positive definite if and only if X has full column rank. If this
is the case, then by setting equation B.2 to zero, we find that the OLS regression
has the closed-form solution

β̂ = (XTX)−1X>y. (B.4)

When p > n we know that X cannot have full column rank. Hence X>X is not
positive definite and therefore a unique solution to the least squares problem does
not exist. In fact, β̂ is not identifiable when X does not have full column rank. This
can easily be shown. If we assume that Xt does not have full column rank, then
without loss of generality we have that X1 = αX2. In this case no distinction exists
between,

y = β0 +
p∑

k=1
βkXk + ε, (B.5)

and
y = β0 + (β1α+ β2)X2 +

p∑
k=3

βkXk + ε. (B.6)

The Ordinary Least Squares regression is based on several assumptions on the un-
derlying data (y1, X1), . . . , (yn, Xn). Under some extra conditions the OLS method
can be shown to be unbiased and have minimum variance among all estimators. The
typical assumptions in ordinary least squares regression are:

i The model is linear in the parameters.
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ii The residuals are statistically independent, cov(εi, εj) = 0, ∀ i 6= j.
iii The independent variables are not too strongly collinear.
iv The measurement error is negligible.
v The expected value of the residuals is zero, E[ε] = 0.
vi The residuals have homoskedastic variance.
vii The residuals are normally distributed, i.e. ε ∼ N (0, σ2I).

The first four assumptions are necessary for any estimation procedure of the re-
gression parameters. The fifth assumption is a sufficient condition for the resulting
OLS-estimator β̂OLS to be unbiased. An estimator depends on the values of the
observations, if the expected value of the estimator is the actual parameter, we say
that it is unbiased,

Eβ̂OLS = E
[
(X>X)−1X>y

]
= (X>X)−1X>E[Xβ + ε]
= (X>X)−1X>Xβ

= β.

Under the sixth assumption, the famous Gauss-Markov theorem states that the
OLS estimator has the minimal variance of all linear unbiased estimators. The
normality of the residuals allows us to use t-test and F-test for inference. We discuss
some methods to test whether assumptions five to seven are satisfied. A thorough
discussion of the validity, advantages, and disadvantages of these tests is beyond the
scope of this research project, instead we give a quick overview of the tests that were
used in this report.

A popular method to test the null hypothesis that residuals are from a normal
distribution is the Anderson-Darling test. This test measures the distance between
the empirical distribution function and the hypothesized distribution function. The
test statistic can be calculated by,

A = n

∫ ∞
−∞

(Fn(x)− F (x))2

F (x)(1− F (x)) dF (x). (B.7)

The Anderson-Darling test-statistic measures the squared distance between the em-
pirical and hypothesized distribution but puts more weight on the tails of the dis-
tribution because it is divided by F (x)(1− F (x)). The value can be compared to a
critical value. When it is exceeded, the null hypothesis that the data belongs to the
distribution F , is rejected.

A frequently used test statistic for the null hypothesis that the residuals of a linear
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regression do not have serial correlation is the Durbin-Watson test,

d =
∑n
i=2(et − et−1)2∑n

i=2 e
2
t

. (B.8)

If the residuals are not correlated, then the value of the Durbin-Watson test statistic
is close to 2. The null hypothesis of no serial correlation can be tested by comparing
to lower and upper critical values, which can be calculated from the design matrix
X.

We can test for auto-regressive conditional heteroskedasticity (ARCH) in the residual
time series by using Engle’s test. To determine whether a residual time-series εt
contains ARCH-effects, the main idea is that a p-th order ARCH-model for εt can
be written as

σ2
t = E[ε2t |εt−1, . . . εt−p] = γ0 + γ1εt−1 + . . .+ γpεt−p. (B.9)

The null hypothesis of no ARCH-effects is tested by performing the auxiliary regres-
sion,

ε̂2t = γ0 + γ1ε̂
2
t−1, . . . , γpε̂

2
t−p. (B.10)

and calculating the following test statistic,

R2 = 1−
∑nT
t=1(ε̂i − εi)2∑nT
t=1(ε̄i − εi)2 . (B.11)

The test statistic is then given by, n ·R2, which can be shown to follow a χ2
p distri-

bution under the null hypothesis. Then if the test statistic exceeds critical values
the null hypothesis of no ARCH-effects can be rejected.

A panel data model combines time-series with a cross-sectional dimension. Lon-
gitudinal time-series analysis allows us to simultaneously estimate time-series on
data for different individuals, institutions, etc. We let the individuals be indexed by
j = 1, . . . , nB, and time be indexed by t = 1, . . . , nT . For a random effects model,
the analysis is based on a linear regression like this,

Yj,t = Xj,tβ + Zj,tγ + uj + εj,t. (B.12)

In the above equation the individual deterministic effect, or heterogeneity, is given
by Zj,tγ. This term represents individual-specific variables that are assumed to be
either constant or evolving over time. The term uj represents and individual random
effect.
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The fixed effects panel data model is given by,

Yj,t = αj +Xj,tβ + Zj,tγ + εj,t, (B.13)

To find a solution (α, β, γ) to the panel data model, given response-covariate pairs
(Yj,t, Xj,t, Zj,t), we need to solve,

arg min
β,γ

nB∑
i=1

nT∑
t=1

Yt − p∑
j=1

Xt,jβ − Zt,jγ

2

. (B.14)

We note that the same methods that are used for normal linear regression can be
employed to solve the panel data least squares minimization problem in equation
B.14.

B.2 Forecasting with Linear Regression

It is well known that forecasting errors increase typically increase when more vari-
ables are included in the model. When the complexity of a model increases, its bias
decreases, but in the mean while the variance in the estimation of its coefficients
increases. The aim in forecasting with linear regression is to optimize this trade-off
between bias and variance in such a way that the prediction error is minimal.

In order to gain a better understanding of the so-called bias-variance trade-off,
we again start with the classical setting. Assume that we have n observations
of response-covariate pairs, (y1, x1), . . . , (yn, xn), where yi ∈ R and xi ∈ Rp ∀i =
1, . . . , n. We consider a linear model of the form

Y = Xβ + ε, (B.15)

where Y = (y1, . . . , yn)>, X = (x1, . . . , xn) and ε = (ε1, . . . , εn)> is a vector of i.i.d.
random variables with mean 0 and constant variance σ2. In this typical regression
problem we want to find an estimator β̂ for the true model β0, which minimizes the
prediction error, which can be accomplished by minimizing the Mean Square Error
(MSE).

Let f(β̂) denote the predictions given by the estimated model, and f(β0) those of
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the true model. Then the mean square prediction error can be written as,

MSE(β̂) = E
[(
f(β̂)− f(β0)

)> (
f(β̂)− f(β0)

)]
+ σ2

= E
[
f(β̂)− f(β0)

]
E
[(
f(β̂)− f(β0)

)>]
+ Var

(
f(β̂)

)
+ σ2

=
∣∣∣∣∣∣Bias (f(β̂)

)∣∣∣∣∣∣2 + Var
(
f(β̂)

)
+ σ2.

From the above discussion we observe that the total mean squared prediction error
is the sum of the variance, the squared bias and a non-reducible error σ2, which
represents the randomness in the true model.

Especially when a model is designed with the purpose of forecasting, it needs to
be able to generalize the relations beyond the scope of the dataset. Therefore the
variables that are included in the model must be carefully chosen. Some frequently
used measures to compare and assess models based on the likelihood and the num-
ber of variables included in the model are the Akaike Information Criterion (AIC)
and Bayesian Information Criterion (BIC). We shall discuss measures after a quick
introduction to likelihood functions.

Suppose the errors in our linear model are normally distributed. In that case, the
likelihood for a model β is given by

L(β, σ2) =
n∏
i=1

1√
2πσ

exp
(
−1

2

(
yi −Xiβ

σ

)2)
(B.16)

The AIC is a measure for the quality of a model relative to another one, and is given
by

AIC = 2k − 2ln(L(β, σ2)), (B.17)

where k is the number of parameters in the model and L the maximum value of the
likelihood function of the model. The preferred model has the lowest AIC value.
Thus it penalizes the inclusion of more parameters whilst rewarding an increase in
the likelihood function. Hence the AIC finds a trade-off between goodness of fit and
generalizability.

Similar to AIC is Bayesian Information Criterion (BIC). It is given by

BIC = k · ln(n)− 2ln · (L), (B.18)

where n is the number of observations in the dataset, and L the likelihood.

Another approach for selecting a model with the best predictive performance is to
split a given data-set in a training and a test-sample. The model is then estimated
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on the training sample, and the predictive strength is tested on the prediction for
the remaining test sample. Depending on the application and the model, there exist
a myriad of adequate measures to determine the predictive strength of a model.

The (pseudo) R2
efron method is a measure for the proportion of the variability in

the response variables that is explained by the model. Let ŷi denote the predicted
responses. Then we have,

R2
efron =

∑n
i=1(yi − ŷi(β̂))2∑n
i=1(yi − ȳ)2 , (B.19)

R̄2 = 1− (1−R2) n− 1
n− p− 1 . (B.20)

Other measures to compare out-of-sample performance include Mean Absolute Error
(MAE), Mean Square Error (MSE) and Mean Absolute Percentage Error (MAPE).
They are calculated as follows.

MAE = 1
n

n∑
i=1
|ŷi − yi|, (B.21)

MSE = 1
n

n∑
i=1

(ŷi − yi)2, (B.22)

MAPE = 1
n

n∑
i=1

∣∣∣∣ ŷi − yiyi

∣∣∣∣ . (B.23)

In this appendix we have seen a small selection of techniques that are used in re-
gression and forecasting literature. Since many (introductory) statistics text books
cover these topics extensively, we decided to include most of the statements in this
appendix without proof.
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Appendix C

KKT Conditions

In this appendix, we give the key aspects of a derivation of the Karush-Kuhn-
Tucker (KKT) conditions for convex optimization problems, with an application
to L1 penalized regression. Therefore we will proof the KKT-conditions for Lasso
solutions that were given in Section 7.5. We shall also use central theorems from
optimization theory that can be used to show the equivalence of the unconstrained
and constrained Lasso problem (Lemma 7.4). Unless noted otherwise, the main
results in this appendix are based on [11] and [13].

C.1 Convex Optimization

Definition C.1. (Convex Optimization) Let objective function f , and inequal-
ity constraint functions gi, i = 1, . . . ,m be convex functions, equality constraints
hj(x), 1, . . . , p affine functions, and C ⊆ Rp a convex set. Then we say that,

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . , p

hi(x) = 0, i = 1, . . . ,m x ∈ C,

is a convex optimization problem.

The convex optimization problem above is referred to as the primal problem in
optimization theory. We assume that its domain D = dom(f) ∩pi=1 domgi(x) ∩mj=1
domhj(x) is non-empty and denote its optimal solution by p∗. A closely related
problem is the Lagrange dual problem.

Definition C.2. (Lagrange Dual Problem) The Lagrangian of the convex optimiza-
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tion problem is given by

L(x, λ, ν) = f(x) +
p∑
j=1

λjgj(x) +
m∑
i=1

νihi(x). (C.1)

The dual problem is given by

maximize φ(λ, ν) = inf
x∈C

L(x, λ, ν),

subject to λ ≥ 0

We denote the optimal solution to the Lagrange dual problem by d∗. The difference
with the primal solution, p∗ − d∗ is referred to as the duality gap.

Definition C.3. (Duality) A convex optimization problem satisfies weak duality
when d∗ ≤ p∗, and strong duality when d∗ = p∗

Strong duality is a very useful property, and can for instance be used to show the
equivalence of the constrained and unconstrained Lasso minimization problem. The
condition in Definition ?? below is a sufficient condition for strong duality of a
convex optimization problem. First we introduce the notation and concept of the
relative interior of a set.

Let aff C denote the affine hull of C (the set of all affine combinations of elements
in C). The relative interior relint C is given by

relint C = {x ∈ C|{y| ||y − x||2 ≤ r} ∩ aff C ⊆ C for some r > 0}. (C.2)

Definition C.4. (Slater’s Condition) For a given convex minimization problem,
there exists x ∈ relint C such that

gi(x) < 0, i = 1, . . . , p,
hj(x) = 0, j = 1, . . . ,m.

Theorem C.5. (Slater’s Theorem) Consider a convex optimization problem of the
form of Definition C.1. If Slater’s condition (Definition C.4) holds, then strong
duality holds.

Proof. The proof of this theorem can be found in [11].

Strong duality allows us to proof that the KKT-conditions hold for any solution of
the primal and dual problems. Below we show the intuition behind the derivation
of these conditions.
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When primal and dual solutions are attained and equal, we have that d∗ = p∗. Let
x∗ be a primal optimal point and (λ∗, ν∗) the corresponding dual optimal point.
Then we may write

f(x∗) = φ(λ∗, ν∗) (C.3)

= inf
x∈C

f(x) +
p∑
j=1

λ∗jgj(x) +
m∑
i=1

ν∗i hi(x)

 (C.4)

≤ f(x∗) +
p∑
j=1

λ∗jgj(x∗) +
m∑
i=1

ν∗i hi(x∗) (C.5)

≤ f(x∗). (C.6)

The first equality C.3 is the definition of strong duality and the second equality
C.4 holds by the definition of the Lagrangian dual. The inequality in C.5 follows
from the fact that taking the infimum of φ(x) over x is always less or equal than
the value of φ(x∗). Inequality C.6 follows from the fact that hi(x∗) = 0, λ∗j ≥ 0,
and gj(x∗) ≤ 0 for i = 1, . . . ,m and j = 1, . . . , p by Definitions C.1 and C.2. We
conclude that the inequality are in fact equalities by comparing the first and the last
line.

From the above discussion, it follows that
∑p
j=1 λ

∗
jgj(x∗) = 0. Since λ∗jgj(x∗) ≤ 0, ∀j

by the inequality constraint of the convex optimization problem, we know that
λ∗jgj(x∗) = 0, for all j = 1, . . . , p. This last expression is also commonly referred to
as the complementary slackness condition.

Since x∗ minimizes L(x, λ∗, ν∗) over x the derivative of L should be zero at x∗,

∇f(x∗) +
p∑
i=1

λ∗i∇gi(x∗) +
m∑
i=1

ν∗i∇h∗i (x∗) = 0. (C.7)

Equation C.7 is referred to as the stationarity condition.

Combining the complementary slackness and stationarity conditions with feasibility
conditions we obtain the KKT-conditions in Definition C.6 below.

Definition C.6. (KKT conditions) The Karush-Kuhn-Tucker conditions are given
by

1. Stationarity: ∇f(x∗) +
∑p
i=1 λ

∗
i∇gi(x∗) +

∑m
i=1 ν

∗
i∇h∗i (x∗) = 0

2. Complementary Slackness: λ∗jgj(x∗) = 0, j = 1, . . . , p
3. Primal Feasibility: gi(x∗) ≤ 0, hi(x∗) = 0, i = 1, . . . ,m
4. Dual Feasibility: λ∗j ≥ 0, j = 1, . . . , p.
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Theorem C.7. (KKT Optimality) For a problem that satisfies strong duality, we
have that x∗ and λ∗, ν∗ are primal and dual solutions if and only if x∗ and λ∗, ν∗
satisfy the KKT conditions.

Proof. We first show that the KKT-conditions are sufficient, then we show that they
are also necessary for primal and dual solutions to be equal.

• Sufficiency: Assume that x∗ and λ∗, ν∗ satisfy the KKT-conditions. Then

φ(λ∗, ν∗) = L(x∗, λ∗, ν∗) (by stationarity)

= f(x∗) +
p∑
j=1

λ∗jgj(x∗) +
m∑
i=1

ν∗i hi(x∗)

= f(x∗). (by complementary slackness, dual feasibility)

It follows that x∗ and λ∗, ν∗ are primal and dual optimal.
• Necessity: Assume that x∗ and λ∗, ν∗ are primal and dual optimal solutions.

Then equations C.3-C.6 show that the KKT conditions are satisfied.

C.2 Lasso constrained optimization

The Lasso optimization problem is given by

minimize ||Y −Xβ||22

subject to
p∑
i=1
|βj | − t ≤ 0, i = 1, . . . , p

β ∈ Rp.

The objective function ||Y − Xβ||2 is strictly convex (by Lemma 7.15) and dif-
ferentiable, the inequality constraint function

∑p
j=1 |βj | is convex and the equality

constraint functions are zero and hence affine. Therefore, the lasso problem is a
convex optimization problem as in Definition C.1.

The dual of the lasso problem is given by

d∗ = max
λ

φ(λ) = max
λ

inf
β

1
2 ||Y −Xβ||

2
2 + λ

 p∑
j=1
|βj | − t

 (C.8)

For t > 0 it is easy to see that the lasso problem satisfies Slater’s condition. Put
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β = 0 ∈ relintRp, which gives the desired result
∑p
j=1 |βj | − t < 0. Since the

lasso optimization problem satisfies Slater’s condition, it satisfies strong duality by
Theorem C.5. This allows us to proof the equivalence of the Lasso problem in its
primal and dual form.

Lemma C.8. (Lasso Lagrange Dual) Assume that the minimization problem in
Definition 7.3 is strictly feasible, then it is equivalent to

d∗ = arg min
β

1
2n

n∑
i=1

(yi −Xiβ)2 + λ∗||β||1. (C.9)

Proof. For the proof we refer to Appendix F.

By Theorem C.7 the lasso solution β∗ satisfies the KKT-conditions:

1. Stationarity: X>(Y −Xβ̂) = λs, where

s(x) ∈


{1} x > 0,
[−1, 1] x = 0,
{−1} x < 0.

2. Complementary Slackness: λ[
∑p
j=1 |βj | − t] = 0

3. Primal Feasibility:
∑p
j=1 |βj | ≤ a

4. Dual Feasibility: λ ≥ 0.

C.3 Computation of Adaptive Lasso

The solution to the adaptively weighted version of Lasso minimization problem can
be obtained by computing Lasso solutions for a scaled version of the design matrix
by Proposition 8.2. The values for the tuning parameters λ and γ are obtained by
finding the λ∗ and γ∗ with the minimal cross-validation error on the regularization
path, as described in Section 8.1.3. The algorithm that can be used to obtain
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Adaptive Lasso solution is described in Algorithm 2.

Data: design matrix X of size n× p, response variable y of size n× 1
Result: β(λmin, γmin) such that cross-validation error is minimal

initialize;
create folds 1, . . . , k;
create λ sequence λ1, . . . , λs;
create γ sequence γ1, . . . , γt;
create mean square error matrix of size k × s× t;

Find λ and γ such that the cross-validation error is minimal;
for i← 1 to s do

for j ← 1 to t do
for m← 1 to k do

Construct training and test data from folds;
Xtrain = X[−fold[m], ], Xtest = X[fold[m], ];
ytrain = y[−fold[m]], ytest = y[fold[m]];

compute βinit
train(λi, γj) with normalized Xtrain and ytrain;

weights ← 1/abs
(
βinit

train
(
abs

(
βinit

train
)
> 0

))γ ;
mse(i, j,m)← mse for Adaptive Lasso solution for fold m, λi and
γj ;

end
end

end
mse = mean(mse , 3);
λmin ← first coordinate of smallest value in mse;
γmin ← second coordinate of smallest value in mse;

Compute Adaptive Lasso solution with λmin and γmin;
compute βinit with normalized X and y;
weights ← 1/abs(βinit(abs(βinit) > 0))γmin ;
scale X by weights;
Compute β(weights, λmin, γmin) and βintercept with a lasso procedure;

Rescale the β estimate β(λmin, γmin)← β(weights, λmin, γmin)/weights;

Algorithm 2: AdaptiveLasso
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Appendix D

Data Sources

In this appendix we provide the field names on the call reports that can be used to
extract individual bank’s time-series in Table D.1, the CAMELS criteria in Table
D.2, and NCO rates for specific loan categories in Table D.3.

Table D.1: Large US Banks on Call Reports

Bank Name Call Report ID number

JP Morgan Chase 852218
Bank of America 480228
Citigroup 476810
Wells Fargo 451965
Bank of New York Mellon 398668
HSBC North America Holdings 413208
PNC Financial Services Group 817824
Capital One Financial Corp 112837
TD Bank US Holding 497404
Morgan Stanley 1456501
Goldman Sachs 2182786
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Table D.2: CAMELS Criteria on Call Reports

Financial Measure1 Call Report Fields

Total Assets RCON2170
Equity RIAD3210
Total Loans RCON3360
Non Interest Expense RIAD4093
Operating Income RIAD4079
Net Income RIAD4301
Liquid Assets2 RCFD0081 + RCFD0071 + RCONB987 + RCFDB989

1 Total Loans for the specific loan categories can be derived from table D.3.
2 Liquid assets include cash and balances due from depository institutions and federal funds.
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Appendix E

Extra Results

In Tables E.1, E.2, E.3, and E.4 we display the stress identification results for 9-
quarters ahead predictions on averaged NCO loan categories. For stress thresholds
T1, T2, and T3 we display the specificity, sensitivity, accuracy, and R2

count, respec-
tively. The results are displayed for the linear model selected and estimated by
Adaptive Lasso, the RegARMA model, and the linear benchmark model.

Table E.1: Specificity Score for Stress Identification by Category

Adaptive Lasso RegARMA Benchmark

T1 T2 T3 T1 T2 T3 T1 T2 T3

HELOC
RES 0.50 0.00 1.00
CLD 0.71 1.00 0.88 0.86 1.00 0.88 0.14 0.36 0.69
MF 0.82 0.74 0.80 0.82 0.79 0.76 0.09 0.42 0.72
NFNR 1.00 0.79 0.89 1.00 0.89 0.79 0.00 0.63 0.71
C&I 1.00 1.00 0.92 1.00 1.00 0.92 0.57 0.90 0.88
LEASE 0.65 1.00 0.92 0.65 1.00 0.92 0.35 0.71 0.92
CON 0.00 0.55 0.93 0.50 1.00 0.93 0.25 0.27 0.71
OTHER 0.46 1.00 0.95 0.46 1.00 1.00 0.38 0.50 0.75
AGRI 1.00 1.00 1.00 1.00 1.00 1.00 0.45 1.00 1.00
FARM 0.17 0.88 1.00 0.17 0.75 1.00 0.00 0.50 0.60
DEP 1.00 0.96 1.00 0.83 0.93 0.96 0.83 0.46 0.50
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Table E.2: Sensitivity Score for Stress Identification by Category

Adaptive Lasso RegARMA Benchmark

T1 T2 T3 T1 T2 T3 T1 T2 T3

HELOC 0.68 0.36 0.21 0.64 0.50 0.36 0.68 0.68 0.61
RES 0.57 0.39 0.08 0.61 0.39 0.23 0.86 0.82 0.77
CLD 0.67 0.82 0.83 0.76 0.82 0.75 1.00 1.00 1.00
MF 0.82 0.89 0.67 0.82 1.00 1.00 1.00 1.00 1.00
NFNR 0.83 0.56 0.83 0.67 1.00 1.00
C&I 0.71 0.88 1.00 0.71 1.00 1.00 0.64 0.88 0.50
CON 1.00 0.94 0.43 0.50 0.47 0.36 0.65 0.35 0.14
LEASE 0.91 1.00 0.75 0.73 0.86 0.75 0.73 0.43 0.25
OTHER 0.73 0.50 0.50 0.53 0.25 0.13 1.00 0.92 0.88
AGRI 0.12 0.00 0.00 0.06 0.11 0.00 0.06 0.00 0.00
FARM 0.45 0.15 0.00 0.41 0.15 0.17 0.95 0.75 0.61
DEP 0.06 0.19 0.88

Table E.3: Accuracy Score for Stress Identification by Category

Adaptive Lasso RegARMA Benchmark

T1 T2 T3 T1 T2 T3 T1 T2 T3

HELOC 0.68 0.36 0.21 0.64 0.50 0.36 0.68 0.68 0.61
RES 0.57 0.39 0.11 0.61 0.39 0.21 0.86 0.82 0.79
CLD 0.68 0.89 0.86 0.79 0.89 0.82 0.79 0.75 0.82
MF 0.82 0.79 0.79 0.82 0.86 0.79 0.64 0.61 0.75
NFNR 0.89 0.71 0.89 0.89 0.82 0.79 0.64 0.75 0.71
C&I 0.86 0.96 0.93 0.86 1.00 0.93 0.61 0.89 0.82
CON 0.71 0.79 0.68 0.50 0.68 0.64 0.54 0.32 0.43
LEASE 0.75 1.00 0.89 0.68 0.96 0.89 0.50 0.64 0.82
OTHER 0.61 0.79 0.82 0.50 0.68 0.75 0.71 0.68 0.79
AGRI 0.46 0.68 0.79 0.43 0.71 0.79 0.21 0.68 0.79
FARM 0.39 0.36 0.36 0.36 0.32 0.46 0.75 0.68 0.61
DEP 0.46 0.96 1.00 0.46 0.93 0.96 0.86 0.46 0.50
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Table E.4: R2
count Score for Stress Identification by Category

Adaptive Lasso RegARMA Benchmark

T1 T2 T3 T1 T2 T3 T1 T2 T3

HELOC 0.00 −0.80 −2.67 0.00 0.00 −0.80 0.00 0.00 0.00
RES 0.00 −0.55 −5.25 0.00 −0.55 −1.75 0.00 0.00 0.25
CLD 0.36 0.79 0.71 0.50 0.79 0.64 0.14 0.36 0.69
MF 0.64 0.57 0.25 0.64 0.69 0.33 0.09 0.35 0.30
NFNR 0.77 0.38 0.00 0.77 0.55 0.00 0.00 0.56 0.00
C&I 0.71 0.88 0.67 0.71 1.00 0.67 0.42 0.70 0.29
CON 0.00 0.50 0.40 0.22 0.47 0.33 0.13 −0.12 0.00
LEASE 0.59 1.00 0.50 0.47 0.86 0.50 0.18 0.23 0.17
OTHER 0.35 0.50 0.44 0.30 0.25 0.13 0.38 0.47 0.54
AGRI −0.15 0.00 0.00 −0.33 0.11 0.00 −0.83 0.00 0.00
FARM −0.06 −0.64 −0.80 −0.20 −0.73 −0.15 0.00 0.31 0.35
DEP −0.15 0.00 − 0.00 0.00 0.00 0.71 −0.15 0.00
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Appendix F

Proofs of theorems

Proofs Concerning Convexity

Proof of Lemma 7.4. First we consider the primal problem,

p∗ = arg min
β

1
2n ||Y −Xβ||

2
2 subject to ||β||1 ≤ t. (F.1)

The Lagrangian, the Lagrange dual, and the dual problem are given by,

L(β, λ) = 1
2n ||Y −Xβ||

2
2 + λ(||β||1 − t),

g(λ) = min
β∈Rp

L(β, λ),

d∗ = max
λ≥0

g(λ),

respectively. To show equivalence of the constrained and unconstrained problem, we
show both inclusions for their solution sets.

If the unconstrained problem is strictly feasible, we have that t > 0. For t > 0 it
is easy to see that the primal problem satisfies Slater’s condition. Put β = 0 ∈
relint(Rp), which gives the desired result

∑p
j=1 |βj | − y < 0. Since the lasso opti-

mization problem satisfies Slater’s condition, it satisfies strong duality by theorem
C.5. Then there exists λ∗ ≥ 0 such that any primal solution β∗ minimizes

1
2n ||Y −Xβ

∗||22 + λ∗(||β∗||1 − t). (F.2)

Hence, if β∗ is a primal solution then (β∗, λ∗) is a minimizer of the unconstrained
Lasso problem.

Conversely, we let (β∗, λ∗) be a solution of the unconstrained form. If λ∗ = 0 then
the unconstrained Lasso problem is equivalent to OLS regression, and the solution is
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also in the solution set of the constrained problem. Otherwise, by theorem C.7 the
solution satisfies the KKT conditions, and hence the solution β∗ satisfies ||β∗||1 = t

and is therefore in the solution set of the constrained Lasso problem.

We conclude that if the primal problem is strictly feasible then the two formulations
have the same solutions.

Proof of Proposition 7.5. From the complementary slackness condition of the KKT
conditions, it follows that either λ = 0 or

∑p
j=1 |β̂j | = t. If t < t0 if follows from

primal feasibility and stationarity that λ 6= 0, and hence
∑p
j=1 |β̂j | = t. So β̂ lies at

the boundary of the constraint region. If t ≥ t0 then we have β̂ = arg minβ{||β||1 :
X>Xβ = X>Y }, with λ = 0. It is easily seen that β̂ satisfies all KKT conditions
and is thus an optimal solution. Because β̂ is the solution to the normal equations
it is an Ordinary Least Squares solution.

Proof of Lemma 7.10. Let x be such that f(x + cei) ≥ f(x),∀c, i. We use the fact
that a continuously differentiable function is convex if and only if f(y) ≥ f(x) +
f ′(x)(y − x), for all x, y. Hence we may write,

f(y)− f(x) ≥ ∇g(x)>(y − x) +
p∑
i=1

(hi(yi)− hi(xi))

=
p∑
i=1
∇ig(x)(yi − xi) + (hi(yi)− hi(xi)) ≥ 0.

Where the last inequality follows from the fact that each part of the sum is greater
than or equal to zero by the assumption that f(x + cei) > f(x) for all c, i. The
reverse implication is trivial, since f(x) = minβ∈Rp f(β) implies that f(x) ≤ f(y)
for all y.

Proof of Lemma 7.15.

i Suppose there exist two local minima x1 and x2 such that f(x1) ≤ f(x2). By
strict convexity of f we have that

f(αx1 + (1− α)x2) < αf(x1) + (1− α)f(x2), α ∈ (0, 1). (F.3)

Using strict convexity and the fact that for α > 0 we have αf(x1) ≤ αf(x2),
we may write

f(αx1 +(1−α)x2) < αf(x1)+(1−α)f(x2) ≤ αf(x2)+(1−α)f(x2) = f(x2).
(F.4)
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Since α can be taken arbitrarily small, this contradicts the assumption that
x2 is a (local) minimum. Hence, there exists at most one minimization point.

ii Every convex function f on the Euclidean space is continuous. A closed and
bounded set in Euclidian space is compact. The Extreme Value Theorem
states that a continuous function attains its minimal and maximal values on
a compact set.

iii Let g = f + h, we may write

g(αx1 + (1− α)x2) = f(αx1 + (1− α)x2) + h(αx1 + (1− α)x2) (F.5)
< α(f(x1) + h(x1)) + (1− α)(f(x2) + h(x2)) (F.6)
= αg(x1) + (1− α)g(x2), (F.7)

where α ∈ (0, 1). Where the strict inequality follows from the convexity of f
and the strict convexity of h.

iv The result follows directly from the triangle inequality,

h(αβ1 + (1− α)β2) = ||αβ1 + (1− α)β2||1 ≤ α||β1||1 + (1− α)||β2||2. (F.8)

v We rewrite,

||Y − αXβ1 − (1− α)Xβ2||22
= α2||Xβ1||22 − 2α2(Xβ1)(Xβ2) + α2||Xβ2||22 − 2α(Xβ1)Y

+ 2α(Xβ1)(Xβ2) + 2αY (Xβ2)− 2α||Xβ2||22 + ||y||22
− 2Y (Xβ2) + ||Xβ2||22.

Similarly we rewrite,

α||Y −Xβ1||22 + (1− α)||Y −Xβ2||22
= α||Xβ1||22 − 2α(Xβ1)Y + 2αY (Xβ2)− α||Xβ2||22

+ ||Y ||22 − 2Y (Xβ2) + ||Xβ2||22.

Combining the above results, we obtain

||Y − αXβ1 − (1− α)Xβ2||22 − α||Y −Xβ1||22 − (1− α)||Y −Xβ2||22
= α||Xβ1||22 − 2α2(Xβ1)(Xβ2) + α2||Xβ2||22
− α||Xβ1||22 + 2α(Xβ1)(Xβ2)− α||Xβ2||22

= α(α− 1)||Xβ1 −Xβ2||22.

Since α(α− 1)||Xβ1 −Xβ2||22 < 0 for all Xβ1 6= Xβ2 and α ∈ (0, 1), we find
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that h(Xβ) is strictly convex. For β1 6= β2 we have that α(α−1)||Xβ1−Xβ2||22
can also be equal to zero, if Xβ1 = Xβ2, hence h(β) is convex.

vi If the columns of X are independent than there exist no β1 6= β2 such that
Xβ1 = Xβ2. Therefore equality between ||Y − αXβ1 − (1 − α)Xβ2||22 and
α||Y −Xβ1||22 +(1−α)||Y −Xβ2||22 does not occur, and h(β) is strictly convex.

Derivation of theorem 7.6

We closely follow [17] and [8]. Before we tackle the multi-dimensional case, we first
look at Lemma F.1 below. In this lemma we consider a simpler, one-dimensional
minimization problem.

Lemma F.1 (One-dimensional problem). Consider the minimization problem

arg min
β∈R

l(β) = arg min
β∈R

1
2(z − β)2 + Jλ(|β|), (F.9)

where Jλ(·) is non-negative, non-decreasing, and differentiable on (0,∞). Assume
that −β − J ′λ(θ) is strictly unimodal on (0,∞). Then the following holds,

i The solution exists, is unique, and is anti-symmetric (β̂(−z) = −β̂(z)).
ii The solution satisfies

β̂(z) =

0 if |z| ≤ p0

z − sgn(z)J ′λ(|β̂(z)|) if |z| > p0
(F.10)

where p0 = minβ≥0{β + J ′λ(β)}. Moreover |β̂(z)| ≤ |z|.

iii If J ′λ(·) is non-increasing then for |z| ≥ p0 we have |z| − p0 ≤ |β̂(z)| ≤
|z| − J ′λ(|z|).

iv When J ′λ(β) is continuous on (0,∞) then β̂(z) is continuous if and only if
the minimum of |β|+ J ′λ(|β|) is attained at zero.

v If J ′λ(|z|)→ 0 as z →∞ then β̂(z) = z − J ′λ(|z|) + o(J ′λ(z)).

Proof. We proof the statements of the lemma separately. The proof can also be
found in [8].

1. The minimizer exists because l(β)→∞ as |β| → ∞. Note that

l′(β) = β − z + J ′λ(β)sgn(β). (F.11)

200



Without loss of generality we split the cases z = 0 and z > 0.
• z = 0: β̂(z) = 0 is the unique minimizer
• z > 0: ∀β > 0 we have that l(−β) > l(θ) and hence β̂(z) > 0. If
z < p0 then l′(β) > 0, so l is strictly increasing on (0,∞) and thus the
solutions is unique. If z ≥ p0 then min l′(β) ≤ 0 and there are two possible
zero crossings of l(β). The larger one is the minimizer, because there the
derivative is increasing. It follows that the solution is unique and satisfies
β̂(z) = z − J ′λ(β̂(z)) ≤ z.

2. If |z| ≤ p0 then l′(θ) is strictly positive on (0,∞) and hence l(β) is strictly
increasing. It follows that β̂(z) = 0. When |z| > p0 we saw for z > 0 that
β̂(z) = z−J ′λ(β̂(z)) ≤ z. Since for z < 0 we have that β̂(z) = z−J ′λ(β̂(z)) ≤ z,
the results follows directly

3. When J ′λ(·) is non-increasing it holds that β̂(z) ≤ z − J ′λ(z). Let β0 =
minβ≥0{β + J ′λ(β)}, then β0 < β̂(z) for z > p0. We have

J ′λ(β̂(z)) ≤ J ′λ(β0) ≤ β0 + J ′λ(β0) = p0, (F.12)

and the desired result follows.
4. Continuity for z 6= p0 is guaranteed by the continuity of β + J ′λ(β) on (0,∞).

For β̂(z) is continuous at z = p0 if and only if the minimum of |β|+ J ′λ(|β|) is
attained at zero.

5. We know that β̂(z) = z − J ′λ(| ˆβ(z)|). As z → ∞, we must have β̂ → ∞ and
J ′λ(β̂(z))→ 0. The result follows.

From this lemma we can derive some results about conditions on the penalty function
Jλ(β) such that the properties of sparsity, continuity, and approximate unbiasedness
are satisfied. From the fifth part of the lemma it is clear that a sufficient condition for
the penalized regression estimator to be approximately unbiased is that Jλ(|β|)→ 0
as β → ∞. In other words, if the penalty function is bounded by a constant,
the resulting estimator is approximately unbiased. The second part of the lemma
indicates that penalized regression has a thresholding property when |z| ≤ p0 and
a shrinkage property when |z| > p0. It follows that minβ>0{|β| + J ′λ(β)} > 0
is a sufficient condition for the sparsity property. The fourth part of the lemma
shows that a necessary and sufficient condition for continuity is that the minimum
of |β|+ J ′λ(β) is attained at 0.

The same reasoning can be employed to derive similar results for the penalized
regression problem. Lemma 7.10 suggests that if the objective and the penalty
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function are convex then the (Adaptive) Lasso minimization problem can be solved
coordinate-wise.

Lemma 7.10 implies that if a convex objective function with a convex penalty func-
tion is optimized along each coordinate axis iteratively, then the global minimum
of the function is found, and vice versa. The convergence of minimizing the Lasso
objective coordinate-wise were established in Section 8.1.3.

Proposition F.2. Let Jλj (·) be a non-negative, non-decreasing, and convex function
on (0,∞) and denote 1

2nX
>X by Î. Let β̃ be the minimizer of Q(β) in equation

7.9, and recall that β̂ is a minimizer of ||Y −Xβ||22. Then we have the following:

1. For the solution β̃ it holds that

β̃j =

0 if |β̃∗j | ≤ mj ,

β̃∗j − 1
Îjj
J ′λj (|β̃j |)sgn(β̃j) if |β̃∗j | > mj ,

(F.13)

where

β̃∗j = β̂j −
p∑

k=1

Îjk
Îjj

(βk − β̂OLS
k ),

mj = min
θ>0

{
θ +

J ′λj (θ)
Îjj

}
.

2. When J ′λj (βj) is continuous on (0,∞), the β̃j are continuous in β̂j if and only

if the minimum of |θ|+
J ′λj

(|θ|)

Îjj
is attained at zero for j = 1, . . . , p.

Proof. Below we give the proofs for both statements of the lemma.

1. Since β̃ is a minimizer of Q(β), it should hold that ∂(Q(β))
∂βj

|
β̃j

= 0by Lemma
7.10. We take the derivative of Q(β) with respect to βj . Since the solution is
found by optimizing Q(β) coordinate-wise, we fix βk for k 6= j and rewrite,

∂Q(β)
∂βj

=
p∑

k=1
Îjk(βk − β̂k) + J ′λj (|βj |)sgn(βj)

= Îjj
(
[βj + J ′λj (|βj |)sgn(βj)/Îjj ]− β∗j

)
Note that Îjj = (X>X)jj =

∑p
i=1X

2
i,j ≥ 0. To find the minimum we equate

the derivative to zero. We distinguish two cases:

• |β∗j | < mj : β̃j = 0 because otherwise, if |β̃j | > 0 we have that ∂(Q(β̃))
∂β̃j

6= 0,
a contradiction.
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• |β∗j | ≥ mj : We set the derivative to zero and solve the equation for βj , the
result in equation F.13 follows by rewriting.

2. By continuity of J ′λj and the result of equation F.13, we have that β̃j is con-
tinuous in β̂j when |β̃∗j | 6= mj . It remains to show continuity for the case that
|β̃∗j | = mj . For β̃ and |β∗j | = mj we have that

∂Q(β̃)
∂βj

= 0 =⇒ [β̃j + J ′λj (|β̃j |)sgn(β̃j)/Îjj ] = β∗j = min
θ>0

{
θ +

J ′λj (θ)
Îjj

}
,

It follows that β̃j = 0 if and only if the minimum of |θ|+
J ′λj

(|θ|)

Îjj
is attained at

zero. In that case the solutions are continuous.

The results that we derived can be used to give some guidance on how to choose a
penalty function.

(Sketch of proof of Theorem 7.6). We give an outline of part of the proof that ap-
pears in [17]. By assumption the conditions of proposition F.2 hold. The first part
of the proposition implies that if coefficients are set to zero, it should hold that
mj > 0. In that case we have that J ′λj (| · |) is positive around zero. Since Jλj (·) is a
non-decreasing function on (0,∞), the function Jλj (| · |) on R attains its minimum
at zero. Hence Jλj (| · |) attains its minimum at zero, and has positive derivative is
positive around zero, hence it is non-differentiable at the origin. The second part
of Proposition F.2 gives necessary and sufficient conditions for continuity of the
resulting estimator.

Other Proofs

Proof of Lemma 7.9. We compute the Taylor expansion of the L2 loss. The deriva-
tives of ||Y −Xβ||22 are given by:

∂

∂β

[
||Y −Xβ||22

]
= −2X>Y + 2X>Xβ,

∂2

∂β2

[
||Y −Xβ||22

]
= 2X>X,

∂k

∂βk

[
||Y −Xβ||22

]
= 0, k ≥ 3.
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Since β̂ is a minimizer of ||Y−Xβ||22 by assumption, it follows that ∂
∂β

(
||Y −Xβ̂||22

)
=

0. The Taylor expansion of ||Y −Xβ||22 in β̂ is given by:

||Y −Xβ||2 = ||Y −Xβ̂||2 +
(
−2X>Y + 2X>Xβ̂

)
(β − β̂) + (β − β̂)>X>X(β − β̂)

= ||Y −Xβ̂||2 + (β − β̂)>X>X(β − β̂).

Since the first term is constant with respect to β, the result follows directly by
plugging in the above in equation 7.8.

Sketch of proof of Theorem 7.13. The sketch given here follows the proof in [16].
We start with the proof for asymptotic normality (property 2), and finish with the
proof for sign consistency (property 1).

• Asymptotic Normality: Let β0 be the true model and write β = β0 + u/
√
n.

Consider û(n) = arg minu Ψn(u) where,

Ψn(u) = arg min
u

∣∣∣∣∣∣
∣∣∣∣∣∣Y −

p∑
j=1

xj

(
β0
j + uj√

n

)∣∣∣∣∣∣
∣∣∣∣∣∣
2

+ λn

p∑
j=1

ŵj

∣∣∣∣β0
j + uj√

n

∣∣∣∣
Ψn(u)−Ψn(0) = u>

1
n

(X>X)u− 2ε
>X√
n

+ λn√
n

p∑
j=1

ŵj
√
n

(∣∣∣∣β0
j + uj√

n

∣∣∣∣− |β0
j |
)

Observe that β̂0(n) = β0 + û(n)
√
n

so û(n) =
√
n(β̂0(n) − β0).

By assumption 1
nX

TX → C and ε>X√
n

d→ W = N (0, σ2C) (since the errors
εi = Yi − Xiβ ∼ N (0, σ2)), where C is a positive definite matrix). Hence, we
consider the limiting behavior of the last term. If β0 6= 0, then

ŵj
p→ |β0

j |−γ , (F.14)
√
n

(∣∣∣∣β0
j + uj√

n

∣∣∣∣− |β0
j |
)

p→ 0. (F.15)

By Slutsky’s theorem the third term converges to 0. For β0
j = 0 a similar result

can be derived. Then, using Slutsky’s theorem again, it follows that ∀u,

Ψn(u)−Ψn(0) d→

u>SC11uS − 2u>SWS if uj = 0∀j /∈ S
∞ otherwise

(F.16)

Ìt can be shown that Ψn(u) − Ψn(0) is convex and has the unique minimum
(C11WS , 0, 0, ..)>, then using convergence results in [7] it can be derived that
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for the limiting behavior of û(n) it holds that,

û
(n)
S

d→ C11WS û
(n)
SC

d→ 0. (F.17)

Since WS = N (0, σ2C11), it follows that û(n)
S

d→ N (0, σ2C−1
11 ).

• Sign Consistency: By the asymptotic normality we now that ∀j ∈ S

β̂
(n)
j

p→ β0
j . (F.18)

This implies that P(j ∈ Sn)→ 1. Hence, it suffices to show that ∀k /∈ S we have
P(k ∈ Sn) → 0. From the KKT conditions it follows that 2X>k (y − Xβ̂(n)) =
λnŵk. It can be shown that

P
(
2X>k (y −Xβ̂(n)) = λnŵk

)
→ 0. (F.19)

Since P(k ∈ Sn) ≤ P(2X>k (y −Xβ̂(n)), the results follows directly.
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