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Abstract

Recently Chekroun et al. [4, 5] developed a method based on so called ‘parameterising manifolds’ to study
stochastic (partial) differential equations. This method is promising for obtaining stochastic reduced models.
We apply their method to a model of the wind-driven ocean ocean circulation at midlatitudes. To model the
stream function ψ we use the quasi-geostrophic barotropic potential vorticity equation. The Reynolds number
(R) is used as bifurcation parameter. ψ is susceptible to several types of bifurcations. We study the pitchfork
bifurcation which occurs for R ≈ 36.6.

We apply reduction methods to model perturbations around the stationary state. First the deterministic case
is considered and the parameterising manifold approach is compared to the Galerkin type of method used in
[16]. It is shown that the ‘parameterising manifold’ approach may be seen as an extension of the Galerkin
method. To include also baroclinic effects, we model baroclinic instabilities by noise on the perturbations. The
stochastic reduced model we obtain from the parameterising manifold approach captures the dynamics of the
full stochastic model well.
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1 The goal and research questions

The main aim of this thesis is to study with the newly developed stochastic model reduction methods by
Chekroun et al[4, 5] as applied to a stochastic model of the wind-driven circulation.

We study the following research questions:

1. How does the parameterising manifold method perform compared to a Galerkin method in the deterministic
case?

2. Are the stochastic reduced models capable of capturing important features of the full model?

The idea is to construct (numerically) a low-order (stochastic) amplitude equation model, modelling the per-
turbations around a stationary state.

2 Introduction

A lot of research has been done in the direction of dynamical systems, and the theory of invariant manifolds for
ordinary differential equations (ODEs) and partial differential equations (PDEs) is well developed. A special
kind of invariant manifolds are the inertial manifolds which are interesting because eventually all the solutions
are attracted to this manifold.

Because of this fact, the dynamics of an high dimensional dynamical system can be studied by studying the
dynamics of the low dimensional inertial manifold. In the deterministic case there are methods developed to
obtain so called approximating inertial manifolds (AIMs). With use of such AIMs, one obtains reduced models
which capture the dynamics of the full model. Studying an approximating inertial manifold is cheaper than
studying the full model and might also give more insight in the important processes which take place.

However, contrary to the deterministic case, very few algorithms are available to compute stochastic AIMs in
practice. In 2015, Chekroun et al [4, 5] introduced the so called ‘parameterising manifolds’ (PMs) as substitute
for stochastic AIMs. We are interested in this method, because stochastic reduced models enable to study
stochastic features as the probability density function (PDF) of the full stochastic model. PDFs might for
example enable to predict bifurcations in the full stochastic model and with the use of PDFs we may be able
to predict what kind of bifurcations will happen.

As a test problem the wind-driven ocean circulation is chosen, since it is known to be susceptible to several
bifurcations. A simple model the wind-driven circulation is the quasi-geostrophic barotropic potential vorticity
equation in an idealised ocean basin. We will refer to this model as ‘the full model’. The Reynolds number is
used as bifurcation parameter. We will consider here the article [16] where a deterministic reduced model is
obtained for this problem and we will compare it with the deterministic parameterising manifold approach and
see how the methods are connected.

As an example we will study the pitchfork bifurcation of the model. We consider reduced models based on
the Galerkin approach of [16] and models based on parameterising manifolds to study perturbations around an
unstable stationary state. We will show how to use both approaches. We show that the deterministic reduced
models are able to capture the perturbations around the unstable stationary state. To incorporate baroclinic
effects, we add baroclinic instabilities as a multiplicative noise term to our perturbations. We obtain therefore a
stochastic (partial) differential equation for our perturbations. We will study the stochastic evolution equation
for the perturbations by applying the stochastic reduction method based on PMs. We are able to capture the
important features of the full model with the reduced model.
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3 Physics of the problem

We consider an ocean flow with constant density (ρ) in a rectangular basin of horizontal dimensions L and B and
with constant depth D, which is situated on a midlatitude β-plane with Coriolis parameter f = f0 + β0y. The
ocean circulation in the basin is forced at the surface through a wind stress vector τ = τ0 (τx(x, y), τy(x, y)).

3.1 The quasi-geostrophic model

In a quasi-geostrophic approximation, the flow can be modelled by the well-known barotropic vorticity equation
(Pedlosky, 1987) for the geostrophic streamfunction ψ. This equation is non-dimensionalized by using horizontal
and vertical length scales L and D, a characteristic horizontal velocity scale U , a time scale L/U and the
maximum amplitude of the wind stress τ0. With the introduction of the horizontal velocities u and v and the
relative vorticity ζ, the dimensionless model can be written as:

[
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

]
(ζ − Fψ + βy) = R−1∇2ζ + ατ

(
∂τy

∂x
− ∂τx

∂y

)
, (1a)

ζ = ∇2ψ, (1b)

u = −∂ψ
∂y

, v =
∂ψ

∂x
. (1c)

See [7, Eq. (5.90)] for its total form and a derivation of the formula. Note that in the above equation we do
not consider bottom friction and bottom deformations. On the zonal boundaries (x = 0 and x = 1) no-slip
conditions and a Munk boundary layer are prescribed, whereas at the meridional boundaries (y = 0 and y = A),
we apply slip conditions and we do not have a boundary layer:

x = 0, x = 1, ψ = 0,
∂ψ

∂x
= 0, (2a)

y = 0, y = A, ψ = 0, ζ = 0. (2b)

Besides the aspect ratio A = B/L, several other parameters appear, i.e. the Reynolds number R, the strength
of the planetary vorticity gradient β, the wind stress forcing strength ατ and the Froude number F . The
parameters are defined as

R =
UL

AH
, β =

β0L
2

U
, ατ =

τ0L

ρDU2
, F =

f20L
2

gD
. (3)

where AH is the lateral friction coefficient (the width of the Munk boundary layer depends on this coefficient).
A consequence of increasing Reynolds number is that AH decreases and that we therefore have that the Munk
boundary layer becomes smaller.

The characteristic velocity U is chosen such that ατ = β to give Sverdrup flow (i.e. such that β ∂ψ∂x balances

ατ

(
∂τy

∂x −
∂τx

∂y

)
) over the main part of the basin. A Sverdrup solution everywhere on the basin is plotted in

figure 1. The figure is from [7, Figure 6.4]

The wind stress considered is

τx(y) = − 1

2π
((1− a) cos(

2πy

A
)− a sin(

2πy

A
)), τy = 0, (4)

where the parameter a controls the asymmetry of the wind stress field with respect to the mid-axis of the basin.
A plot of τx(y) where a = 0 and A = 1 is given in figure 2.
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Figure 1: Contourplot of the Sverdrup solution where a = 0 and A = 1.

Figure 2: Plot of τx(y) where a = 0 and A = 1.

The unforced (ατ = 0) system of equations and boundary conditions admits a reflection symmetry through the
mid-axis (y = A/2) of the basin. This reflection R has representation

R(ψ(x,A− y)) = −ψ(x, y). (5)

For a = 0, the applied wind stress admits a similar symmetry and this places constraints on the bifurcations,
i.e. symmetry breaking bifurcations will be of pitchfork type [11].
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3.2 Stationary solutions and their stability

We can rewrite the left side of equation (1) as:

∂

∂t
(∇2ψ − Fψ)− ∂ψ

∂y

∂

∂x
(∇2ψ − Fψ) +

∂ψ

∂x

∂

∂y
(∇2ψ − Fψ) + β

∂ψ

∂x
.

Therefore (1) is rewritten as:

(∇2 − F )
∂ψ

∂t
= (R−1∇4 − β ∂

∂x
)ψ +

∂ψ

∂y

∂

∂x
(∇2ψ − Fψ)− ∂ψ

∂x

∂

∂y
(∇2ψ − Fψ) + ατ

(
∂τy

∂x
− ∂τx

∂y

)
. (6)

We can now write the above equation in the following form:

Mdψ

dt
= Lλψ +B(ψ,ψ) + f,

where the linear operators M, Lλ are given by:

M = ∇2 − F, (7a)

Lλ = R−1∇4 − β ∂

∂x
. (7b)

We will write Lλ, because λ is one of the bifurcation parameters (R, β). The bilinear operator B(ψ,ψ) and the
forcing f are given by:

B(ψ,ψ) =
∂ψ

∂y

∂

∂x
(∇2ψ − Fψ)− ∂ψ

∂x

∂

∂y
(∇2ψ − Fψ), (8a)

f = ατ

(
∂τy

∂x
− ∂τx

∂y

)
. (8b)

We will use F = 0 for the simulations. With F = 0 equation (6) can be simplified and it can be written as the
following system of equations:

∂

∂t
ζ = R−1∇2ζ − β ∂

∂x
ψ +

∂ψ

∂y

∂

∂x
ζ − ∂ψ

∂x

∂

∂y
ζ + ατ

(
∂τy

∂x
− ∂τx

∂y

)
, (9a)

ζ = ∆ψ. (9b)

If we define φ = (ζ, ψ)T , K(ζ, ψ) = K(φ) = ψyζx − ψxζy and

M =

[
1 0
0 0

]
, Lλ =

[
1
Re∆ −β ∂

∂x
−1 ∆

]
, B(φ, φ) =

(
K(φ)

0

)
, f =

(
ατ

(
∂τy

∂x −
∂τx

∂y

)
0

)
. (10)

The system of equations 9 can be rewritten as:

M∂φ

∂t
= Lλφ+B(φ, φ) + f, (11)

Here M is a singular linear operator, Lλ is a linear operator, B is a bilinear operator and f is the forcing.

Systems (6) and (11) are in principle equivalent if F = 0, but system (11) is from a numerical point of view
more practical, because one does not have to implement higher order boundary conditions for ψ. So we will use
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this system for the computations.

Equation (11) is discretised in the spatial domain using central differences on an equidistant N ×M grid. After
discretisation we obtain from equation (9a) a system of bilinear differential equations, and because equation
(9b) has no derivatives with respect to time, we will refer to these equations as algebraic equations.

To simplify the presentation, we will still keep the same notations when a discretized version of Eq. (11) will
be considered, i.e. a discretisation MN×M of M, will be still denoted by M, etc. So we write our discretised
system as:

M∂φ

∂t
= Lλφ+B(φ, φ) + f. (12)

Now φ = (ζ, ψ)T is the d-dimensional state vector (d = 2 × N × M), consisting of the unknowns at each
gridpoint. M is a singular linear map from Rd → Rd, the operator Lλ is a linear map from Rd ×R→ Rd, B is
a bilinear map from Rd × Rd → Rd, and the forcing f ∈ Rd.

Stationary solutions Φλ,f satisfy:

dΦλ,f
dt

= 0 =⇒ LλΦλ,f +B(Φλ,f ,Φλ,f ) + f = 0, (13)

which is a system of d bilinear algebraic equations. Note that we use the notation Φλ,f to denote that the
stationary state depends on the bifurcation parameter λ and the forcing f .

For computing a branch of stationary solutions in one of the bifurcation parameters we use a pseudo-arclength
method[12]. We use a Newton-Raphson method to converge to the branch of stationary solutions. The linear
systems are solved with a preconditioned conjugate gradient method [15]. The same method as in [16] is used,
we refer to that paper for more details.

If a stationary solution is determined, a linear stability analysis is done and bifurcations like pitchfork, limit
points and Hopf can be detected. For the linear stability analysis we have to solve the generalised eigenvalue
problem:

γJΦλ,f = κMΦλ,f , (14)

Here J is the Jacobian matrix of the right hand side of (12) and M is the same as in equation (12). We solve
the problem using a QZ method [10]. If γ 6= 0 then we will denote an eigenvalue of the problem by σ = κ/γ.
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4 Deterministic Galerkin approach

In this section we explain the approach used in [16]. Let Φλ,f be a stationary solution and let v(t) be a
perturbation to the stationary state. We can write φ(t) = Φλ,f + v(t). If we substitute φ(t) = v(t) + Φλ,f in
equation (12), we obtain for the left hand side of equation (12):

Md(v + Φλ,f )

dt
=Mdv

dt
.

For the right hand side we get:

Lλ(v + Φλ,f ) +B(v + Φλ,f , v + Φλ,f ) + f =

Lλv +B(v,Φλ,f ) +B(Φλ,f , v) +B(v, v) + LλΦλ,f +B(Φλ,f ,Φλ,f ) + f.

Φλ,f is a stationary state, hence the last three terms on the right side of the above equation sum to zero.
Therefore we get that the expression for the right hand side simplifies to:

Lλv +B(v,Φλ,f ) +B(Φλ,f , v) +B(v, v).

Now, given a stationary state Φλ,f , we define the following linearized operator,

Jλ,f · = Lλ,f ·+B(Φλ,f , ·) +B(·,Φλ,f ), (15)

such that we can rewrite the right hand side as:

Jλ,fv +B(v, v).

Now we see that the evolution equation satisfied by the perturbations v around the stationary state Φλ,f , is:

Mdv

dt
= Jλ,fv +B(v, v). (16)

Here Jλ,f is a linear operator and B is a bilinear operator. We assume Jλ,f has only simple eigenvalues. In
this case the linear operator Jλ,f has an eigenvector decomposition:

LHJλ,fR = Σ ; LHMR = I (17)

Here R and L denote the right and left hand eigenspaces of the linear operator Jλ,f , I is the identity and the
diagonal matrix Σ contains the corresponding eigenvalues, i.e.,

R =
(
r1 r2 · · · rr

)
, (18a)

L =
(
l1 l2 · · · lr

)
, (18b)

Σ = diag(σ1 σ2 · · · σr), (18c)

where r = rank(Σ) = (M − 2)× (N − 2) < d; the latter inequality is due to the singular nature of M and the
boundary conditions on ψ. Relation (17) states that we can diagonalise Jλ,f by use of its eigenvectors. Because
the matrix M is simply a kind of identity matrix (see (10)), LHMR = I follows from the fact that L and R
are a bi-orthogonal set of eigenvectors. These properties will be used in the Galerkin projection below.

With the use of this eigenbasis, we consider now the case where the perturbation v is expanded in m righthand
eigenvectors: (One could equivalently say we project v on the space spanned by the first m eigenvectors)

v(t) = Rma(t) =

m∑
j=1

rjaj(t). (19)
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The matrix Rm denotes the m−dimensional subspace of R of suitably chosen righthand vectors, and Lm is its
adjoint subspace.

Substitution of (19) into (16) yields:

MRm
da

dt
= Jλ,fRma +B(Rma,Rma). (20)

Projection onto the lefthand eigenbasis Lm and the use of the relations (17), results in the set of coupled
amplitude equations:

da

dt
= Σma + b(a,a). (21a)

The operators in this projected system are defined as:

Σm = LHmJλ,fRm, (21b)

b(a,a) = LHmB(Rma,Rma), (21c)

with Σm the diagonal matrix containing the eigenvalues corresponding to the eigenvectors of Rm. In terms of
the individual components, the evolution of amplitude aj(t) is governed by:

daj
dt

= σjaj +

m∑
k=1

m∑
l=1

Bjklakal, j = 1, . . . ,m. (22a)

The coefficients Bjkl are defined as:

Bjkl = lHj B(rk, rl). (22b)

Note that these coefficients depend implicitly upon λ and f , on which the spectral problem (17) relies via Jλ,f .

We will use a Crank-Nicholson scheme to discretise equation (22) in time and we use a Newton-Raphson method
to solve the resulting set of nonlinear algebraic equations.
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5 Parameterising manifolds for bilinear PDEs: the non-self adjoint
and singular case

The method of [16] has a drawback: the perturbation considered is only in the direction of the first m eigen-
vectors. In the parameterising manifold approach the idea is to look for a perturbation in the direction of
all the eigenvectors. If one then looks at the equations for the amplitudes of the first m eigenvectors (‘the
resolved amplitudes’) these equations will then not only contain the first m amplitudes, but also ‘unresolved
amplitudes’. With help of a parameterising manifold the unresolved amplitudes are modelled by (and in terms
of) the resolved amplitudes. The expression we obtain in this way is substituted back in the evolution equation
for the resolved amplitudes and so we are able to obtain an approximation for the perturbation v.

We order the eigenvalues by their real part. So we will have Re[σ1] ≥ Re[σ2] ≥ Re[σ3] ≥ . . .. ri and li are
the right and left eigenvector belonging to eigenvalue σi. We denote by Hc the space spanned by the m first
eigenvectors. The projection of the perturbation v on this space is denoted by vc: vc are the ‘resolved variables’.
We can write vc = Rmam =

∑m
i=1 airi, where ai denote the amplitude of eigenvector ri. We denote by Hs the

space spanned by the m + 1-th until r-th eigenvector. The projection of v on Hs is denoted by vs: vs are the
‘unresolved variables’. We can write vs = Rr−mar−m =

∑r
i=m+1 airi.

The PDE (11) has infinitely many eigenvectors. If we would not discretise our space then we could also obtain
a PDE for our perturbation v. Infinitely many eigenvalues means r =∞. In this case we have that Hc together
with Hs span the entire space and therefore we can write every v as v = vc+vs. [5, Eq. (2.13)]. In a discretised
system the number r of eigenvalues and eigenvectors is finite and therefore we only look at perturbations which
can be written as a linear combination of maximum r eigenvectors. Therefore v = vc + vs = Rrar =

∑r
i=1 airi.

To parameterise unresolved variables by resolved variables we use backward-forward systems which are partially
coupled. We use a backward-forward system in the following way: we integrate the linear part of the equation
for the resolved variables first backward and we use this outcome to integrate the equation for the unresolved
variables forward. For the forward integration we let the unresolved variables depend on the resolved variables
through the nonlinear terms. We do not couple the output of the unresolved equations back to the resolved
equations, therefore we call it partially coupled.

To incorporate the baroclinic instabilities, we add them as a multiplicative noise term on the perturbation v.
Therefore Eq. (16) incorporates a multiplicative noise as follows,

Mdv =
(
Jλ,fv +B(v, v)

)
dt+ δMv ◦ dWt. (23)

Here Wt denotes a one-dimensional Wiener process, v ◦ dWt is understood in the Stratonovich sense, and δ ≥ 0
quantifies the intensity of that noise term.

5.1 General approach to obtain a parameterising manifold

Given λ in R and a forcing f in H, a nonlinear parameterising manifold function h
(1)
λ,f : Hc → Hs can be

obtained from backward-forward system which are associated with Eq. (16). Rigorous studies from [5, Sect. 4.5]
and from [4, Chaps. 6 & 7] help support the idea that the graph of such a function can actually provide, even
in the present context, a parameterising manifold, as long as we are not too far from the criticality.

To obtain a parameterising manifold h1 for our model, we consider the following backward-forward system of
[5, Eq. (4.1 a-c)] which we modified so that it fits our problem. Here the uc is an approximation of the resolved
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variables vc and the us give an approximation of the unresolved variables vs. We want to approximate vs(t) in
terms of vc(t):

duc = J cλ,fucds+ δuc ◦ dWs, s ∈ [−T, 0], (24a)

dus =
(
J sλ,fus + PsB[uc(s− T ), uc(s− T )]

)
ds+ δus ◦ dWs, s ∈ [0, T ], (24b)

with uc(0) = ξ = vc(t) ∈ Hc and us(0) = 0 and Ps, Pc the projections on Hs and Hc respectively. J cλ,f , J sλ,f
are defined as Jλ,fPc and Jλ,fPs respectively. In the above equation Wt denotes a one-dimensional Wiener
process, ◦dWt is understood in the Stratonovich sense, and δ ≥ 0 quantifies the intensity of the noise term.

Remark: we expect that the vc are also affected by the vs, therefore we will model with our parameterising
manifold the modes vs which affect the vc.

We consider a model only in our resolved variables. However if integrating the resolved variables would give an
enormous contribution to the equation for the unresolved variables (so if B(uc, uc) is big), then these resolved
variables grow enormously and it should be important to consider these unresolved variables in our equation for
the resolved variables. Therefore a parameterising manifold determines which unresolved variable are affected
much by the resolved variables, and it parameterises these variables in terms of the resolved variables. So it
looks in the history how the unresolved variables are affected by the resolved variables.

If we now take the limit for T →∞ then we get the parameterising manifold h1 [5, Prop. 4.1 and Eq. (4.43)]:

h1(ξ) = lim
T→+∞

us[ξ] =

∫ 0

−∞
eδWse−sJ

s
λ,fPsB(esJ

c
λ,f ξ, esJ

c
λ,f ξ)ds, (25)

where us solves equation (24b). This limit exists if σm+1 < kσm in the case where we have that the nonlinear
term is k-linear (so in our case we have k = 2) [4, Eq. (6.27)]. This condition is always met if the eigenvalues
of the eigenvectors in Hc are all greater or equal to zero. The parameterising manifold h1(ξ) = h1(vc) gives an
approximation of vs in vc.

If Jλ,f is self-adjoint a necessary and sufficient condition for the above integral to exist is the following cross
non-resonance condition: ∀(i1, i2) ∈ (1, ...,m)2, n > m it holds that:

(Bni1,i2 6= 0) =⇒ (σi1 + σi2 − σn > 0) . (26)

The non-resonance condition is checked by our model. It is shown in [4, Cor. 6.1] that in the case where Jλ,f
is self-adjoint that then h1 can be decomposed as:

h1(ξ) =

∞∑
n=m+1

h
(1),n
λ,f (ξ)rn, (27)

and for n ≥ m+ 1:

h
(1),n
λ,f (ξ) =

m∑
i1,i2=1

Bni1,i2M
i1,i2
n ξi1ξi2 ,

with M i1,i2
n given by:

M i1,i2
n =

∫ 0

−∞
e(σi1+σi2−σn)s+δWsds. (28)

This integral is well-defined because of the above cross non-resonance condition and the sub linear growth
property of the Wiener process.
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The M i1,i2
n term corresponds to the unique stationary solution of the SDE given in the equation below [4, Eq.

5.26]. This simplifies the computation in practice:

dM =
(

1−
(
σi1 + σi2 − σn

)
M
)

dt− δM ◦ dWt. (29)

The integration of this equation should be performed simultaneously with the integration of the system (23),
for a fixed realization ω of the noise. If Jλ,f is self-adjoint and the noise is set to zero (δ = 0) we can evaluate
the integral above and the Mn terms are then given by:

M i1i2
n =

1

σi1 + σi2 − σn
. (30)

In the case we consider, Jλ,f is not self-adjoint, but it is believed by M.D. Chekroun [1] that we still should
be able to follow the approach as explained above and that this will give good results. We will show that the
method of backward-forward integration of [5, 2] can be adapted to the present context, in which Jλ,f is not
self-adjoint and M is a singular operator, cases that were not addressed in [5, 2].

The question may arise how to set up the systems for the resolved and unresolved equations to get a good
parameterising manifold. The system above is the simplest system giving parameterising manifold h1. An
example of more complex systems are systems where we need to integrate n-times backward before integrating
forward; this gives access to the parameterising manifolds hn. Details on how to do this are discussed in [5,
Sect. 4.3].

In chapter 7 of [5] a two-layer backward-forward system is described which can be used in the case where no
analytic expression for a parameterising manifold is available. In this case, the vector field of the above equa-
tions is built simultaneously with vc(t;w), as the time t evolves. The parameterising manifold function is thus
computed “on the fly.” This procedure is described in detail in [5, Chap. 7] by way of an example, where the
parameterising manifold considered is h2(ξ). We implemented this two-layer backward forward system which is
computed on the fly. For the results see section 9.2.3.

5.2 Obtaining a parameterising manifold for our model

Expanding v in r eigenvectors gives v =
∑r
i=1 airi = Rrar. Substituting this in equation (16) and multiplying

by LHr gives:
daj =

[
σjaj + lHj B(Rrar,Rrar)

]
dt+ δaj ◦ dWt, j = 1, . . . , r. (31)

We can split this in equations for the resolved amplitudes and the unresolved amplitudes. We consider the
following system (where the ãk are approximations of ak):

dãi = σiãids+ δãj ◦ dWs, i = 1, . . . ,m, s ∈ [t− T, t],

ãi(t) = ξ = ai(t), i = 1, . . . ,m.

Note that specifying the amplitudes ai(t) for all the m resolved amplitudes is the same as giving vc(t). These
are the equations for the approximation of the resolved amplitudes. We integrate these equation first backward
and substitute them in the next equation.

The equations for the approximation of the unresolved amplitudes are:

dãj =
[
σj ãj + lHj B(Rmãm,Rmãm)

]
ds+ δãj ◦ dWs, j = m+ 1, . . . , r, s ∈ [t− T, t],

ãj(t− T ) = 0, j = m+ 1, . . . , r.
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These equations are integrated forward. From these systems we can obtain the ãj(t) for m + 1 ≤ j ≤ r in
terms of the ai(t) with 1 ≤ i ≤ m. This means that we have (at time t) an approximation of our unresolved
amplitudes in terms of our resolved amplitudes. This expression of course still involves our integration time T .

We have that:
r∑

j=m+1

aj(t)rj = vs ≈ us =

r∑
j=m+1

ãj(t)rj ,

h1[vc(t)] = lim
T→∞

us[vc(t)] = lim
T→∞

r∑
j=m+1

ãj(t)rj =

r∑
j=m+1

h
(1),j
λ,f (am)rj ,

where h
(1),j
λ,f is a polynomial of degree two. Note that h

(1),j
λ,f (am) = ãj ≈ aj and that letting T →∞ means that

we take the whole history of the ã into account.
Hence the resolved amplitudes are given by: (we write B(x, x) as B(x) for ease of notation)

daj =
[
σjaj + lHj B (vc + us)

]
dt+ δaj ◦ dWt, j = 1, . . . ,m.

If the limit for T →∞ converges we have:

daj =

[
σjaj + lHj B

(
m∑
i=1

airi +

r∑
k=m+1

h
(1),k
λ,f (am)rk)rk

)]
dt+ δaj ◦ dWt, j = 1, . . . ,m.

If the limit for T →∞ does not converge we integrate back for a finite time T , so if we have vc(t) we can get a
numerical expression for us(t) and use this to calculate vc(t+ ∆t), et cetera.

5.2.1 Deterministic example of a PM with vc and vs spanned by one eigenvector

We consider the case m = 1 and q = 2, with v = a1r1 + a2r2 and vc = a1r1, vs = a2r2:

∂a1
∂t

= σ1a1 + lH1 B(a1r1 + a2r2),

∂a2
∂t

= σ2a2 + lH2 B(a1r1 + a2r2).

As as reduction we only consider our resolved amplitudes:

∂a1
∂t

= σ1a1 + lH1 B(a1r1 + a2r2), t > 0.

Let’s say we have a1(t) = ξ. The above equation still contains a2(t); we use our parameterising manifold
to obtain an approximation of a2 in terms of a1. For obtaining our parameterising manifold we consider the
following backward-forward model:

∂ã1
∂s

= σ1ã1, s ∈ [t− T, t],

∂ã2
∂s

= σ2ã2 + ã21l
H
2 B(r1), s ∈ [t− T, t],

ã1(t) = ξ = a1(t), ã2(t− T ) = 0.

We integrate the first equation backward and the second equation forward. In figure 3 is a schematic overview
of this backward-forward system.

Solving the first equation gives:
ã1(s) = ξeσ1(s−t).

13



Figure 3: Schematic view of the backward-forward procedure. We integrate ã1 back
from initial point ã1(t) = a1(t) to obtain all values ã1 in the interval [t− T, t]. We use
these values in the equation for ã2 which we integrate from ã2(t− T ) = 0 to ã2(t).

Substituting this in the second equation gives:

∂ã2
∂s

= σ2ã2 + e2σ1(s−t)ξ2B2
1,1, s ∈ [t− T, t].

Solving this with variation of constants gives:

ã2(s) = Ceσ2s +
ξ2B2

1,1

2σ1 − σ2
e2σ1(s−t), s ∈ [t− T, t].

We impose the condition at t− T and so we obtain:

ã2(s) =
ξ2B2

1,1

2σ1 − σ2
(e2σ1(s−t) − eT (σ2−2σ1)+σ2(t−s)).

Therefore we have that ã2(t) is given by:

ξ2B2
1,1

2σ1 − σ2
(1− eT (σ2−2σ1)).

Note that T is the integration time of the equations for ã1 and ã2. So if we want to take the whole history into
account we should take the limit for T →∞.

If σ2 − 2σ1 < 0, we have that
lim
T→∞

eT (σ2−2σ1) = 0.

In this case we obtain:

lim
T→∞

ã2(t) =
ξ2B2

1,1

2σ1 − σ2
.

However what if σ2 − σ1 − σ1 ≥ 0? If σ2 − 2σ1 = 0 then the above derivation does not hold, because we divide
by σ2 − 2σ1.

If σ2−2σ1 > 0 there are a few options to proceed: If B2
1,1 = 0, there is no problem, because then we will simply

have ã2 = 0. If B2
1,1 6= 0 we have a bigger issue. An option is to still consider the backward-forward system of

above, but now use a smaller integration time T for obtaining ã2(t) (we then do not use the analytic expression
for h1, but approximate ã2 for each time step numerically). Or one could simply ignore the non-resonance

condition and still use ã2(t) =
ξ2B2

1,1

2σ1−σ2
and see how this works out. The above reasoning explains why we have
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the cross non-resonance condition (26).

Note that ξ = a1(t) and if we define:

M i1,i2
n =

1

σi1 + σi2 − σn
,

we can rewrite the above as:
lim
T→∞

ã2(t) = B2
1,1M

1,1
2 a1(t) ∗ a1(t),

and this is exactly the expression we would get from our parameterising manifold approach. So the above

expression is exactly h
(1),2
λ,f (a1) in the deterministic case with m = 1 and r = 2.

If we substitute ã2(t) for a2(t) in the equation for a1 we obtain:

∂a1
∂t

= σ1a1 + lH1 B(a1r1 +B2
1,1M

1,1
2 a21r2), t > 0,

and so we keep an expression which only contains a1(t) and therefore can be (numerically) solved. We obtain:

∂a1
∂t

= σ1a1 + a21B
1
1,1 + a31B

2
1,1M

1,1
2 (B1

1,2 +B1
2,1) + a41

(
B2

1,1M
1,1
2

)2
B1

2,2, t > 0.

6 PM-based reduced systems: explicit formulas for the determinis-
tic case

In order to describe the resulting “small-scale” parameterisation formulas that we get by application of the
parameterising manifold method, we consider again the nonlinear interaction coefficients (22):

Bkpq = 〈lk, B(rp, rq)〉, ∀ p, q, k ∈ N∗,
:= lHk B(rp, rq).

(32)

Note that now k, p, q are not restricted to {1, ...,m}, but are in N∗. These coefficients describe three types of non-
linear interactions when projected against a given lk-mode: the self-interactions of the resolved r-modes (when
p, q ∈ {1, ...,m}), the cross-interactions between the resolved and unresolved r-modes (when p ∈ {1, ...,m} and
q ≥ m+ 1, or vice versa), and the self-interactions between the unresolved r-modes (when p, q ≥ m+ 1).

We substitute vc + vs for v. Now equation (16) gives:

Mdvc + vs
dt

≈ Jλ,f (vc + vs) +B(vc + vs, vc + vs). (33)

For the left hand side of this equation we get:

Mdvc + vs
dt

=Mdvc
dt

+Mdvs
dt

=MRm
dam
dt

+MRr−m
dar−m

dt
. (34)

Preferred is an equation which contains only the first m modes; therefore we multiply by LHm. Because of the
bi-orthogonal relation equation (17) we get:

LHm(MRm
dam
dt

+MRr−m
dar−m

dt
) = Im

dam
dt

=

(
da1
dt

, ...,
dam
dt

)
.

For the right hand side of equation (33) we get:

Jλ,f (vc + vs) = Jλ,fRmam + Jλ,fRr−mar−m. (35)
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We multiplied the left hand side of equation (33) with LHm, hence we also have to multiply this term by LHm.
Using equation (17) we see that:

LHm(Jλ,fRmam + JRr−mar−m) = Σmam + 0 = (σ1a1, ..., σmam) .

For the term B(vc + vs, vc + vs) we obtain:

B(vc + vs, vc + vs) = B(Rmam + Rr−mar−m,Rmam + Rr−mar−m) =

B(Rmam,Rmam) +B(Rmam,Rr−mar−m) +B(Rr−mar−m,Rmam) +B(Rr−mar−m,Rr−mar−m).

We see that if we multiply the above equation by LHm we do not get rid of the terms am+1, ..., ar. To obtain an or-
dinary differential equation for the amplitudes am which only depends on am, we parameterise vs = Rr−mar−m
by the parameterising manifold h1(am). We obtained in (27) the following formula for our parameterising
manifold:

h
(1)
λ,f (ξ) =

r∑
n=m+1

h
(1),n
λ,f (ξ)rn, ∀ ξ ∈ Hc, (36)

where

h
(1),n
λ,f (ξ) =

m∑
i1,i2=1

Bni1i2M
i1i2
n ξi1ξi2 , (37)

for m+ 1 ≤ n ≤ r. We have that h
(1),n
λ,f (am) ≈ an.

The M i1i2
n coefficients are given by equation (30). Recall that by nature these coefficients depend on λ and f ,

since the σj are eigenvalues of Jλ,f . We obtain:

B (vc + vs, vc + vs) = B
(
vc + h1λ,f (am), vc + h1λ,f (am)

)
=

B

(
Rmam +

r∑
n=m+1

h
(1),n
λ,f (am)rn,Rmam +

r∑
n=m+1

h
(1),n
λ,f (am)rn

)
.

We multiply this equation by LHm, we get:

LHm

[
B

(
Rmam +

r∑
n=m+1

h
(1),n
λ,f (am)rn,Rmam +

r∑
n=m+1

h
(1),n
λ,f (am)rn

)]
=

(
lH1 B

(
Rmam +

r∑
n=m+1

h
(1),n
λ,f (am)rn

)
, ..., lHmB

(
Rmam +

r∑
n=m+1

h
(1),n
λ,f (am)rn

))
.

Here we use the notation B(x) = B(x, x) for compactness.

We get the h(1)-based reduced system of equation (33), that takes the following compact form:

daj
dt

= σjaj +
〈
lj , B

(
Rmam(t) +

r∑
n=m+1

h
(1),n
λ,f (am(t))rn

)〉
, 1 ≤ j ≤ m. (38)
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We obtain thus for any j ∈ {1, ...,m}, that:〈
lj , B

( m∑
i=1

airi +

r∑
n=m+1

h
(1),n
λ,f (am)rn

)〉
=

m∑
i1,i2=1

ai1ai2〈lj , B(ri1 , ri2)〉

+

m∑
i=1

r∑
n=m+1

aih
(1),n
λ,f (am)

(
〈lj , B(ri, rn)〉+ 〈lj , B(rn, ri)〉

)
+

r∑
n1,n2=m+1

h
(1),n1

λ,f (am)h
(1),n2

λ,f (am)〈lj , B(rn1
, rn2

)〉

=

m∑
i1,i2=1

Bji1i2ai1ai2 +

m∑
i=1

r∑
n=m+1

(Bjin +Bjni)aih
(1),n
λ,f (am)

+

r∑
n1,n2=m+1

Bjn1n2
h
(1),n1

λ,f (am)h
(1),n2

λ,f (am).

(39)

Now, using (37) in (39), we find by rearranging the terms:〈
lj , B

( m∑
i=1

airi +

r∑
n=m+1

h
(1),n
λ,f (am)rn

)〉
=

m∑
i1,i2=1

Bji1i2ai1ai2 +

m∑
i,i1,i2=1

r∑
n=m+1

(Bjin +Bjni)B
n
i1i2M

i1i2
n ai1ai2ai

+

r∑
n1,n2=m+1

m∑
i1,i2=1

m∑
i3,i4=1

Bjn1n2
Bn1
i1i2

Bn2
i3i4

M i1i2
n1

M i3i4
n2

ai1ai2ai3ai4 .

(40)

By substituting (40) in (38), the following h(1)-based system of reduced equations is obtained as:

daj =

(
σjaj +

(a)︷ ︸︸ ︷
m∑

i1,i2=1

Bji1i2ai1ai2

+

(b)︷ ︸︸ ︷
m∑

i,i1,i2=1

r∑
n=m+1

(Bjin +Bjni)B
n
i1i2M

i1i2
n ai1ai2ai

+

r∑
n1,n2=m+1

m∑
i1,i2=1

m∑
i3,i4=1

Bjn1n2
Bn1
i1i2

Bn2
i3i4

M i1i2
n1

M i3i4
n2

ai1ai2ai3ai4︸ ︷︷ ︸
(c)

)
dt, 1 ≤ j ≤ m,

(41)

where Blpq are defined in (32), and M i1i2
n are given in (30). Note that (although without discretisation r =∞) in

many situations, only finitely many terms Brpq appearing in (b) and (c) of the above equations (41) are nonzero;
see [5, Sect. 3.1].

In the case where infinitely many of such terms would be nonzero, the summation should be truncated for a
sufficiently large r in practice. Truncating this sum for r = q means that we consider only the eigenvectors ri
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with m+ 1 ≤ i ≤ q as unresolved variables and that we discard the other eigenvectors.

As illustrated in [5, Chaps. 6 and 7] and in [2] for the self-adjoint case, the cubic and quartic terms appearing
respectively in (41) (b) and (c), convey cross- and self-interactions between the resolved and unresolved r-modes
that can turn out to be essential for the derivation of reduced models of good modelling skills. If these terms
are neglected we get back the approximation of equation (22). Hence the deterministic parameterising manifold
approach may be seen as an extension of the Galerkin methods.

Some comments:

• Probably for a certain λ and f the system (41) provides a better reproduction than system (22) of the
“true” dynamics on the resolved variables. Terms (b) and (c) of (41) might in the deterministic case be not
important when we are close to a bifurcation, but if we are further away from the bifurcation these terms
will be important. In stochastic models we can have large excursions caused by (white) noise, therefore
terms (b) and (c) are expected to be important to obtain a good stochastic reduced model.

• The reduced system (41) is complex while the original PDE (11) is real, so the number of modes should al-
ways include conjugate pairs in order to properly build-up a reduced system; otherwise spurious oscillations
or other numerical artefacts could result.

6.1 The stochastic case

For the stochastic case we have, see equation (23):

Mdv =
(
Jλ,fv +B(v, v)

)
dt+ δMv ◦ dWt. (42)

Here Wt denotes a one-dimensional Wiener process, v ◦ dWt is understood in the Stratonovich sense, and δ ≥ 0
quantifies the intensity of that noise term.

We use Stratonovich noise instead of Ito noise, because this gives the best physical representation of the pro-
cesses which are not resolved, because these processes follow standard calculus.
Note that if v = 0 then the right hand side of the SDE is zero, so dv is zero and v remains zero. Therefore if
v reaches 0 it is caught there. We will call 0 a trap for v. Note that if we start a perturbation from a stable
stationary state, we will quickly enter zero and stay there forever. Therefore studying a stable stationary state
with this model is not interesting.

Therefore we consider the case where we start our perturbation v from an unstable stationary state (for example
after a supercritical pitchfork or Hopf bifurcation). We substitute v = vc + vs in equation (42). For the noise
term we obtain:

δMv ◦ dWt ≈ δ(vc + vs) ◦ dWt = δM(Rmam + Rr−mar−m) ◦ dWt (43)

Multiplying this from the left with LHm and using the bi-orthogonal relation results in:

δLHmM(Rmam + Rr−mar−m) ◦ dWt = δam ◦ dWt (44)

Following the derivation above and [5, Chap. 5], reduced systems for Eq. (23) take the same structural form as
in (41) where each equation for 1 ≤ j ≤ m, is perturbed by δaj ◦ dWt, and the M i1i2

n coefficients are no longer
given by Eq. (30), but are obtained from an integration of equation (29) that should be performed simultane-
ously with the integration of the system (45), for a fixed realisation ω of the noise.

18



We have that the amplitudes are given by:

daj =

(
σjaj +

(a)︷ ︸︸ ︷
m∑

i1,i2=1

Bji1i2ai1ai2

+

(b)︷ ︸︸ ︷
m∑

i,i1,i2=1

r∑
n=m+1

(Bjin +Bjni)B
n
i1i2M

i1i2
n ai1ai2ai

+

r∑
n1,n2=m+1

m∑
i1,i2=1

m∑
i3,i4=1

Bjn1n2
Bn1
i1i2

Bn2
i3i4

M i1i2
n1

M i3i4
n2

ai1ai2ai3ai4︸ ︷︷ ︸
(c)

)
dt

+ δaj ◦ dWt, 1 ≤ j ≤ m,

(45)

where the M terms are obtained from the integration of the equation below. This integration should be
performed simultaneously with the integration of the system above for a fixed realisation ω of the noise.

dM =
(

1−
(
σi1 + σi2 − σn

)
M
)

dt− δM ◦ dWt. (46)

These random coefficients M convey exogenous memory effects resulting from the interactions of the noise with
the bilinear term in Eq. (23) (these coefficients depending on the past of the noise). Lemma 5.1 in [5] shows that
these terms exhibit an exponential decay of correlations making the corresponding reduced systems genuinely
non-Markovian as explained in [5, Chap. 5.3]. These non-Markovian features should not be confused with those
discussed in [14]; see also [5, Rmk. 5.6].

6.1.1 Numerical schemes

For integrating (41) we used in the deterministic case (just as for the Galerkin method) a Crank-Nicholson
scheme to discretise equation (41) in time and a Newton-Raphson method to solve the resulting set of nonlinear
algebraic equations.

For integrating (45) and (46) we use an Euler-Maruyama method. Equation (46) is often a stiff equation. To
solve this equation with the Euler-Maruyama method we need an extremely small step size in order to have a
numerical stable scheme. The Euler-Maruyama integration seemed to work fine for a few cases with low m and
r, but failed because of the stiffness problem for higher m.
To get rid of this problem a semi-implicit numerical scheme of [13, Sect. 12.2] is implemented to integrate
equation (46), as advised in [5, Eq. (6.14)]. The scheme is called semi-implicit, because the noise is treated
explicitly and the other parts implicitly. This method solved the problem. As a start value we used M = 0.
The start value of M does not seem to be very important, because M converges very fast to its stationary state.

The Ito form of equation (29) is:

dM =
(

1−
(
σi1 + σi2 − σn − δ2

)
M
)

dt− δMdWt. (47)

Then the semi-implicit Euler method gives: (this is the deterministic implicit Euler scheme with a noise term
added which is treated explicitly)

Mj+1 = Mj +
(

1−
(
σi1 + σi2 − σn − δ2

)
Mj+1

)
dt− δMjdW (j).
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Here dW (j) is given by
√

dtζj with ζj a random number in the interval (−1, 1).

If we solve this for Mj+1 then this gives:

Mj+1 =
Mj + dt− δMjdW (j)

1 + (σi1 + σi2 − σn − δ2)dt
.

If δ = 0 and Mj+1 = Mj we get back Mj = 1
σi1+σi2−σn

, which is the formula for the deterministic case as

should be the case. In figure 22 we observe that in the stochastic case the M terms are fluctuating around the
deterministic equilibrium of M as expected.

A family of semi-implicit Euler schemes [13, Sect. 12.2] for SDEs is given by:

Mj+1 = Mj +
[
α
(

1−
(
σi1 + σi2 − σn − δ2

)
Mj+1

)
+ (1− α)

(
1−

(
σi1 + σi2 − σn − δ2

)
Mj

)]
dt− δMjdW (j)

Note that we get the above scheme for α = 1.

6.2 Rectification term

To obtain the final approximation of our stream function ψ using the PM method, M. D. Chekroun [1] advised
to also include a rectification term from the high modes. We assume Hs is span by the m + 1-th to q-th
eigenvector. The rectification term Rq(t, x, y) is defined as follows:

Rq(t, x, y) = h(am(t), x, y) =

q∑
n=m+1

h
(1),n
λ,f [am(t)]rn(x, y),

with ai(t) the amplitude of eigenvector i at time t in the PM approximation. Note that h
(1),n
λ,f [am(t)] ≈ an,

hence Rq ≈ vs. We have that the approximation v of the PM method is given by:

vPM (t) =

m∑
j=1

aj(t)rj(x, y) +Rq(t, x, y),

where the aj are obtained from system (41), and the approximation of the total solution is (Re[a] is the real
part of a):

φ(t) = Re[vPM (t)] + Φλ,f . (48)

6.3 Parameterisation defect

The parameterisation defect is a useful indicator to measure how good the nonlinear interactions are resolved
by a parameterising manifold.
The parameterisation defect Q(T ) is defined as follows:

Q(T ) =

∫ T
0
||vqs(t, x, y, ω; v0)− vPMs (t, x, y, ω; v0)||2dt∫ T

0
||vqs(t, x, y, ω; v0)||2dt

where ||..|| denotes the Euclidean norm and where v0 is the start value of the perturbation. (As a start value
we took each time the amplitude of the first eigenvector set to 1 and the other amplitudes set to zero.)

vPMs is given by:
vPMs = h(z(t, ω), x, y, ω)
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where z = (z1, ..., zm) and zi is the ’true’ amplitude of eigenvector i. With the true amplitude we mean the
amplitude we get if we run the total system.

Note: the formula for h is stochastic if we consider the stochastic case. Hence if we speak about the parame-
terisation defect (PD) we mean the deterministic parameterisation defect and if we speak about the stochastic
parameterisation defect (SPD) we mean the parameterisation defect in the case that the noise is nonzero.
vqs is given by:

vqs(t, x, y, ω) =

q∑
i=m+1

zi(t, ω)ri(x, y).

Note: the zi(t) depend also on our noise realisation ω, because the zi depend on the solution of the total
system, and the total system is forced by noise.

From [5]: “We note that in the case where the trivial steady state is unstable and a stochastic PM is found,
1−Q will refer to its parameterisation quality in some forthcoming discussions. In particular, the more Q will
get close to zero, the better the parameterisation quality will be.”

The parameterisation defect Q(T ) should be between 0 and 1, if Q(T ) is bigger than one, then the parameterising
manifold does not perform well and we might get a bad approximation of the amplitudes with the PM method.
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7 Introducing the problem

We use a low Reynolds number: this implies that we consider a kind of peanut butter ocean. We do this,
because the wind-driven circulation for a low Reynolds number already undergoes a lot of bifurcations and we
want to have a simple model to test our methods on. Therefore we consider the pitchfork bifurcation which take
place for R ≈ 36.6. In figure 4 and 5 the bifurcation diagram of our model is shown. The bifurcation diagram is
computed with the full model. We use an equidistant 36× 36 grid. PSIsw denotes the value of the stream func-
tion at grid point (9, 9) which is in the south-west of the basin. In figure 4 PSIsw is plotted versus the Reynolds
number. The equilibria on the solid blue line are stable equilibria and the equilibria on the dashed red line are
unstable equilibria. On the line between the labelled points (a) and (d) the streamlines are symmetric through
the line y = 0.5 as can be seen in (a) and (d) of figure 5. It can be seen from (b) and (c) of figure 5 that the two
new equilibria which are born from the pitchfork bifurcation possess streamlines which are exactly anti sym-
metric compared to each other. A similar situation is described in figure 5.16 and 5.17 of [6] and in the paper [9].

We see that (a) and (d) of figure 5 give the stream function we expect to get from the Sverdrup balance, see
figure 1. The difference is that in figure 5 a western boundary layer is included. Note that we have two gyres,
in the north a subpolar gyre (flowing clockwise) and in the south a subtropical gyre (flowing anti-clockwise).

In figure 5b (figure 5c) we see a weakening (strengthening) of the subpolar gyre or strengthening (weakening)
of the subtropical gyre. In figure 11a we have plotted the eigenvector which destabilises the symmetric state at
the pitchfork bifurcation.
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Figure 4: The bifurcation diagram, we see a pitchfork bifurcation at R ≈ 36.65. In blue
the stable branches and in red and dashed the unstable branches. PSIsw is the value of
the stream function at grid point (9, 9) in the south west of the basin.

7.1 Parameters

A set of parameter values is chosen. These values are shown in table 1 and are representatives of a basin of
1000× 1000 km on a midlatitude β-plane centred around 45◦N . In this paper only the Reynolds number R is
used as a bifurcation parameter, the other parameter values will be fixed at their values given in table 1.

The equidistant 36× 36 grid was shown to be sufficient to capture all bifurcation points accurately.[9]
Note that the values ρ, τ0, D and a in table 1 are slightly different from those used in [16].
We use a wind homotopy parameter to switch on the wind. We denote this parameter by W and set ατ =
W τ0L

ρDU2 . We start with W = 0 and when we have found a steady state, we switch on the wind (that is we
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Figure 5: Stationary solutions at labelled points (a)-(d) in Fig. 4. Contour plots
are scaled with the absolute maximum and the contour levels are with respect to this
maximum. Along the horizontal and vertical axes, the dimensionless quantities x/L
and y/L are shown.
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Dimensional Non dimensional

L = 106 m F = 0

β0 = 1.6× 10−11 m−1 s−1 A = 1

f0 = 1.0× 10−4 s−1 β = 103

ρ = 1.026× 103 kg m−3 ατ = 103

τ0 = 0.18386 kg m−1 s−2 a = 0

D = 700 m

U = 1.6× 10−2m s−1

Table 1: Dimensional and nondimensional parameter values.

continue until we have W = 1).

Note that the effect of the deformation of the ocean-atmosphere interface is neglected. (F = 0).
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8 Numerical integration of the SDE

8.1 The full model

Consider the stationary state at the dashed red line for R = 37 in figure 4, this is just beyond the pitchfork
bifurcation. We denote this stationary state by Φλ,f . At Φλ,f we calculate all the eigenvalues and all the left and
right eigenvectors of Jλ,f . Note that the eigenvalues of Jλ,f determine the stability of our stationary state. We

do an initial perturbation v(0) in the direction of the first m right hand eigenvectors ri. So v(0) =
m∑
i=1

riaj(0),

with aj(t) the amplitude of eigenvector j at time t.

This perturbation gives: φ(0) = Φλ,f + v(0). Now we let the full model run and we will see that φ(t) will
converge to a stationary state on one of the solid lines of b or c from figure 5, because these are stable equilibria.

With the full model we calculate φ(t) in time hence v(t) = φ(t) − Φλ,f will indicate how the perturbation
develops in time. If we know how the perturbation develops in time we can project the perturbation on all the
eigenvectors at each time step so that we know how the amplitude of each eigenvector develops in time. We will
denote the projection of the perturbation at time t on eigenvector j by zj(t), so zj(t) is the ‘true’ amplitude of
eigenvector j at time t.

To calculate the projection of the perturbation on eigenvector j we have to take the inner product of the
perturbation at time t with the j-th left eigenvector lj and we divide this by the inner product of the j-th left
and right eigenvector. This gives:

zj(t) =
< lj , φ(t)− Φλ,f >

< lj , rj >

zj(t) says how the amplitude of the j-th eigenvector develops in the perturbation v. We will call zj the ‘true’
amplitude of the j-th eigenvector of this perturbation at time t.

We examine how well the reduced models approximate the deterministic full model. We therefore ask the
following questions:

• Are the ‘true’ amplitudes of the eigenvectors well approximated?

• Is the stream function well approximated? To answer this question we will compare the true minimum
and maximum of the stream function with the approximations and we will plot the true stream function
and an approximation

• Is the parameterising manifold able to parameterise the unresolved variables in terms of the resolved
variables? To answer this question, we will compute the parameterisation defect.
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9 Results

9.1 Deterministic case with Reynolds number 37

We consider the deterministic case, so we set the noise to zero (δ = 0). Consider the unstable dashed red
stationary state given in 4 for R = 37. We compute the eigenvectors and eigenvalues of Jλ,f at this stationary
state. In table 2 we see that in this regime there is one eigenvalue bigger than zero, hence we have one unstable
eigenvector. In figure 6 how the stream function looks for the unstable symmetric stationary state at R = 37.
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Figure 6: R = 37, contour plot of the stream function for the unstable symmetric
stationary state Φλ,f

9.2 The perturbation span by one eigenvector

To get an idea how the method works we first consider the case where Hc is only spanned by the eigenvector
with the largest real part. (Hc = αr1, α ∈ R)

Some terminology explained: the eigenvalues are sorted by their real part, so with the first j eigenvectors we
denote the j eigenvectors with the biggest real part. Setting m = k means Hc is spanned by the first k eigen-
vectors, q = l means Hs is spanned by the k + 1-th to l-th eigenvector. By PM we denote that we use the
parameterising manifold approach of [5] and by Galerkin we denote that the method of [16] is used.

The true amplitudes of the first four eigenvectors are plotted for R = 37 in figure 7. Here the initial perturbation
is given by a1 = 1 and ai = 0 for all i 6= 0. We will each time start with this perturbation, unless another value
is explicitly stated. We observe that if we start with this perturbation we converge to the stable stationary
state at the lowest branch of the pitchfork.

9.2.1 Galerkin method

We can apply the deterministic approach of [16]. If Hc is spanned by 1 eigenvector we obtain from equation
(22):

∂a1
∂t

= σ1a1 +B1
11a

2
1

26



Table 2: The first 20 eigenvalues with R = 37, Re is the real part of the eigenvalue, Im
is the imaginary part of the eigenvalue.

Nr. Re Im

1 0.0698
2 -4.20
3 -4.31 105
4 -4.31 -105
5 -9.75 -47.1
6 -9.75 47.1
7 -14.2 -73.5
8 -14.2 73.5
9 -14.9 -66.3
10 -14.9 66.3
11 -15.5
12 -16.6 -37.1
13 -16.6 37.1
14 -21.1 -26.6
15 -21.1 26.6
16 -21.3 -63.1
17 -21.3 63.1
18 -23.6
19 -24.3 -20.7
20 -24.3 20.7
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Figure 7: R = 37. The ‘true’ amplitudes zi of eigenvector i, z3 = z4 (conjugated pair),
z1 converges to 721.8.

Hence if σ1 6= 0 and B1
11 6= 0 we have two equilibria namely a1 = 0 and a1 = −σ1/B1

11. However we have
σ1 = 0.0698464377 and B1

11 = 0. If we run the simulation, the solution diverges, because the equilibrium a1 = 0
is unstable and there is no other finite equilibrium for B1

11 = 0. In figure 8 we plotted the evolution of a1 in
time; one can see that a1 diverges.

Remark: The Galerkin method is able to give a good approximation of the full model when Hc is spanned by
two eigenvectors. We then have a1 ≈ 724.5 and a2 ≈ 166.6.

9.2.2 The parameterising manifold approach

System (41) is implemented and we took m = 1 and q = 2. We saw that in this case a1 converges to 726.06 after
150 time steps. This is a good approximation of the true amplitude, see figure 7. The minimum and maximum
values of the stream function are also well approximated, see table 3.

In figure 9 for R = 37 the true solution at the low asymmetric branch is plotted together with the approximation
we obtained above for m = 1 and q = 2. We included more unresolved eigenvectors (so we use a higher q) and
plotted the values of the amplitude for m = 1 and different q in figure 10. Note that the curves for q = 2, 4 and
6 lie all on each other. In table 3 are listed the approximations of the stream function and the parameterisation
defect (PD). Observe that the results look reasonable for q = 2, 4, 6, but are unreasonable for q = 8 and higher.
The parameterisation defect is calculated with a time step of 0.05 and 3650 steps, hence the integration time
T = 182.5.
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Figure 8: Plot of the amplitude of a1 in the deterministic model with Hc = 1. We see
it diverges.

Observe that from the low value of the parameterisation defect for q = 2 we can see that the contribution of
the unresolved second eigenvector is well parameterised by the PM in terms of the first eigenvector. If we let
Hs be spanned by 4 and 6 eigenvectors we observe that we still have the same PM, but now there are more
unresolved variables to explain, wherefore the PD grows. For q = 8 a new PM manifold is constructed, but we
see that we obtain a PD above 1. This indicates that the PM ‘explains’ the unresolved variables poorly and
we indeed see that our approximation for q = 8 is unreasonable. Note that we do not make reduced models for
q = 3, 5, 7 et cetera, because the eigenvectors should always be taken in conjugate pairs.

We note the following things about our initial perturbation v(0) = a1(0)r1: If we use a1(0) = 0, then a1 remains
zero and we stay at the unstable stationary state. If we use a1(0) > 0 then a1 converges to a positive value and
if we add the approximation of our perturbation to the unstable stationary state we have a good approximation
of the stable stationary state at the lower branch of the pitchfork. If we use a1(0) < 0 then a1 converges to a
negative value and with this perturbation we can approximate the stable stationary state at the upper branch
of the pitchfork.

The approach of [5] already with m = 1 gives good results. However it is strange what happens from q = 8 and
on.

Because the results from table 3 and figure 10 look strange for q = 8 or bigger we investigate this. If m = 1
then the right hand side of equation (41) simplifies to an ordinary polynomial of order at most 4 from which
we can easily calculate the roots.
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(a) True solution at lower branch
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(b) Approx. of the true solution

Figure 9: For R = 37 and m = 1 and q = 2 we see that the true solution is well
approximated.

Table 3: The results of the reduced models with m = 1 and R = 37

Psimax Psimin Difference max en min PD

True 21.17 -22.57 -1.400
Galerkin, m=1 no convergence
PM, m=1, q=2 20.93 -22.21 -1.282 0.005085
PM, m=1, q=4 ”(same) ” ” 0.772
PM, m=1, q=6 ” ” ” 0.974
PM, m=1, q=8 no convergence 1.049
PM, m=1, q=10 no convergence 1.002
PM, m=1, q=11 no convergence 1.002
PM, m=1, q=13 no convergence 1.004
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Figure 10: R = 37,m = 1. The value of the amplitude for different q. For q = 2, 4, 6
a1(t) converges to 726.1. For q = 8 the convergence initially appears good, but then an
oscillatory divergence occurs.

For q = 2 to 6 we get the same polynomial. We obtain:

6.984643776753031 ∗ 10−2a1 − 1.324948561809644 ∗ 10−7a31.

This is the normal form of a supercritical pitchfork. It has three solutions a1 = 0 or a1 = ±726.06, of which
0 is an unstable node and the other two are both stable nodes. This are exactly the solutions we have found
in figure 10 and from table 3 we know these are quite good approximations, because they lie close to the ‘true’
amplitude and because the psi max and psi min values were close to the psi max and psi min values of the ‘true’
solutions.

For q = 8 we get the polynomial:

6.984643776753031 ∗ 10−2a1 + 1.893870578237248 ∗ 10−6a31,

which has three solutions: a1 = 0 or a1 ≈ ±192.042i. This is the normal form of a subcritical pitchfork. We
have only one real solution a1 = 0 and this solution is unstable, the two complex solutions are stable. Hence if
we start with a complex start value we converge to this complex solution. However we started with a real start
value and from the simulation we observe that the solutions diverge in an oscillatory manner (if we used start
point a1 = 1):

time Real part Imaginary part

1.49970E+04 1.44962E+05 -2.15118E-06

1.49980E+04 -1.44967E+05 2.15111E-06

1.49990E+04 1.44972E+05 -2.15104E-06

1.50000E+04 -1.44977E+05 2.15096E-06

For q = 10, 11 and 13 and q up to 20 we observe the same problem. The problem is that the coefficient before a31
becomes positive. Consequently we get as solution for a1 imaginary numbers and we no longer converge to the
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right solution. In the above calculations we started each time with a real amplitude, namely a1 = 1. However
we could also start with a complex amplitude, in which case we will find the solution a1 = ±192.042i for q = 8.
The question is what it means that we get a purely imaginary solution for our amplitude.

The first eigenvector is real so if we multiply it by the purely imaginary amplitude we get an imaginary vector
and in equation (48) we have to take the real part of this vector (because the original PDE is real) so we get
zero. A perturbation of zero is not very interesting, because then we remain in the unstable stationary state
Φλ,f .

Another way of looking at this problem is by observing what the eigenvectors look like. In figure 11 the first
eight eigenvectors are plotted. Eigenvectors 1 and 2 are real, so only the real part is plotted. For the complex
conjugate pairs of eigenvectors only one of the eigenvectors of the pair is plotted.
We observe that Bj1,1 is zero for 3 ≤ j ≤ 6 (so they do not give a contribution to the polynomial for the evolution
of a1) and that it is nonzero for q = 2, 7, 8, and these are exactly the antisymmetric states. If we introduce more
resolved eigenvectors or use the Galerkin approach with 8 eigenvectors, these eigenvectors still causes trouble.
It might be the case that there is an eigenvector deeper in the spectrum which acts as a rectification term for
this eigenvector; such behaviour is also observed in [16].

9.2.3 Computing reduced systems on the fly

If the limit for T to infinity does not exist (for example, because the non-resonance condition is not satisfied)
then we might have the case that there is not an analytical expression for the parameterising manifold available.
Without an analytical expression for h1 which gives an approximation of the unresolved variables in terms of
the resolved variables, it is still possible to approximate the unresolved variables numerically at each time step
by backward-forward systems.

We first implemented such an approach because we did not realize that an analytical expression for the param-
eterising manifold was available. This numerical procedure associated with the backward-forward system for
the PM h2 is described in [5, Sect. 7.2 and Sect. 7.3] to determine “on the fly” the reduced random vector field.
The cornerstone is the pullback characterization of the appropriate stochastic PMs, which allows to update the
reduced vector field once vc(t;w) is known at a particular time instance t.

We implemented system 7.3 of [5]. We constructed the model where Hc was spanned by the first eigenvector
and Hs was spanned by the second eigenvector and where we used the forward backward integration. This
gives figure 12. We see that the amplitude a1 converges to 726.2, which is close to the true solution of the first
amplitude, see figure 7.

However when we tried to do the same with Hc spanned by 2 eigenvectors, it did not work at first, because
we got overflow during the calculations. In equations (7.3c) and (7.3d) of [5] we need to integrate backward,
however one of the eigenvalues of Hc is negative. Hence if we integrate backward (over a too long time) we
obtain a huge number. M. D. Chekroun provided us with analytical formulas for the parameterising manifold
which solved this issue. Later on we returned to the problem and made the integration time T smaller, which
also seemed to solve the problem for m = 2 and higher.
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(a) Real part eigenvector 1
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(b) Real part eigenvector 2
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(c) Real part eigenvector 3 and 4
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(d) Imaginary part eigenvector 3
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(e) Real part eigenvector 5 and 6

x/L

y
/L

 

 

0 0.5 1
0

0.2

0.4

0.6

0.8

1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(f) Imaginary part eigenvector 5
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(g) Real part eigenvector 7 and 8
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(h) Imaginary part eigenvector 7

Figure 11: The first 8 eigenvectors for R = 37. Note that most eigenvectors are
reflected through the line y = 0.5. Only the second eigenvector and the conjugated pair
of eigenvectors 7 and 8 are antisymmetric and these are also the only eigenvectors
which contribute to the polynomial.
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Figure 12: Plot of a1 obtained by computing vc “on the fly”. a1 converges to 726.2.
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Table 4: The first 20 eigenvalues with R = 40.

Nr. Re Im

1 0.581
2 -3.48
3 -3.61 -105
4 -3.61 105
5 -9.37 47.4
6 -9.37 -47.4
7 -13.5 -66.1
8 -13.5 66.1
9 -13.7
10 -16.1 -74.8
11 -16.1 74.8
12 -16.7 -37.2
13 -16.7 37.2
14 -19.1 -63.5
15 -19.1 63.5
16 -20.6 27.0
17 -20.6 -27.0
18 -21.6
19 -23.6 -94.5
20 -23.6 94.5

10 Reynolds number 40

Here we consider the case where we start our perturbation v from the unstable stationary state at R = 40. This
stationary state is further away from our bifurcation, therefore a reduced model which captures the behaviour
of our perturbation v is harder to make. We compute the eigenvalues, this gives table 4. In figure 13 we plotted
the true amplitudes of the first six eigenvectors.

For m = 1 and q = 2 we obtain:
∂a1
∂t

= 0.58147a1 − 8.9366 ∗ 10−8a31

Solving for the stationary states gives the unstable stationary state: a1 = 0 and the two stable stationary states
a1 = ±2550.81. In figure 14 we plot the amplitude of a1 for m = 1 and different q. Note that the amplitude a1
is the same for q = 2, 4, 6, 8.

We used for the calculation of the parameterising defect for R = 40 a time step of 0.001 and 150 thousand
steps, so an integration time T = 150. In table 5 we list the approximations of minima and maxima of the
stream function and the parameterisation defect for m = 1 and different q. Note that the approximations for
q = 2, 4, 6, 8 are the same. With ‘Start’ we denote the minimum and maximum values of the stream function
from the unstable symmetric stationary state we started from. For q = 11, 13, 18 we have the same problem as
encountered with R = 37 and (m, q) = (1, 8).

Note that the approximation of m = 1 and q = 2 is already quite good. The parameterisation defect is low
(this means that the parameterising manifold with m = 1 and q = 2 is well able to parameterise with the first
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Figure 13: R = 40. The true amplitudes zi of eigenvector i, z3 = z4 and z5 = z6 (both
are conjugate pairs), z1 converges to 1776.6

eigenvector the true amplitude times r2). If we add more eigenvectors our parameterising manifold remains the
same, while there are now more resolved eigenvectors to explain, therefore the PD gets higher and higher for
q = 4, 6, 8. For q = 9 a new parameterising manifold is made, but the parameterising manifold now is only
able to explain 1.52% of the unresolved eigenvectors. However it is remarkable that we already obtain a good
approximation of the true stream function with a perturbation in only one eigenvector.

In table 6 we list the approximations of minima and maxima of the stream function and the parameterisation
defect for m = 2 and different q. In figure 16 we plot the amplitudes of the reduced models and in figure 17 the
approximations of the stream function. For m = 2 and q = 6 the approximation is quite good.
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Table 5: The results of the reduced models with R = 40 and m = 1.

Psimax Psimin Difference max en min PD

Start 24.36 -24.36 0
True’ 19.68 -23.38 -3.7
Galerkin no conv.
PM, q=2 19.29 -19.53 -0.24 0.1157
PM, q=4 ” 0.4772
PM, q=6 ” 0.8553
PM, q=8 ” 0.9875
PM, q=9 21.65 -18.20 3.446 0.9848
PM, q=11 no conv.
PM, q=13 no conv.
PM, q=18 no conv.

Table 6: The results of the reduced models with R = 40 and m = 2.

Psimax Psimin Difference max en min PD

Start 24.36 -24.36 0
True’ 19.68 -23.38 -3.7
Galerkin 19.16 -19.42 -0.2673
PM, q=4 19.02 -19.93 -0.9029 1.040
PM, q=6 19.62 -21.06 -1.445 0.883
PM, q=8 28.14 -31.62 -3.484 0.9134
PM, q=9 25.81 -29.72 -3.910
PM, q=11 no conv.
PM, q=13 no conv.
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Figure 14: R = 40 and m = 1.
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Figure 15: The true solution and approximations with m = 1 for R = 40.
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Figure 16: R = 40, m = 2.
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Figure 17: The true solution and approximations with m = 2 for R = 40.
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11 The stochastic case

We now consider the equation with noise:

Mdv =
[
Jλ,fv +B(v, v)

]
dt+ δMv ◦ dWt.

Note that if v = 0, then Jλ,fv + B(v, v) = 0 and δMv ◦ dWt = 0 and therefore v remains zero. We therefore
call 0 a trap for v.

11.1 The Fokker-Planck equation

Consider the case with R = 37. We consider system (45) with m = 1 and r = 2 to obtain: (we do not have
second and fourth order terms, because B1

1,1 = 0 = B1
2,2)

da1 = σa1 + (B1
1,2 +B1

2,1)B2
1,1M

1,1
2 a31 + δa1 ◦ dWt, (49)

with M1,1
2 given by:

dM1,1
2 = (1− (2σ1 − σ2)M1,1

2 )dt− δM1,1
2 ◦ dWt.

Note that the stationary state of M1,1
2 in the deterministic case is 0.230642 and that in the deterministic case

(B1
1,2 + B1

2,1)B2
1,1M

1,1
2 ≈ −1.3249 ∗ 10−7. Note that 0 is a trap for a1. We want to set up the Fokker-Planck

equation for this SDE, however the problem is that the coefficients before the third and fourth degree terms
(the terms involving M) depend on the noise.

To avert this problem we take for these terms the deterministic coefficients. This gives the following polynomial
for R = 37, m = 1 and q = 2, which approximates well equation (41) for m = 1 and q = 2:

da1 = (0.069846a1 − 1.3249 ∗ 10−7a31)dt+ δa1 ◦ dWt.

This case is known in the literature as the stochastic pitchfork with multiplicative noise. This case is also worked
out in [8, Sect. 4.3.1]. In the following we set x = a1, σ1 = 0.069846, q2 = 1.3249 ∗ 10−7.

We consider the Ito form of the equation above, which is given by:

da1 = [(σ1 + δ2)a1 − q2a31]dt+ δa1dWt.

For this equation we have that the forward Fokker-Planck equation gives:

∂p

∂t
+
∂((σ1 + d2)x− q2x3)p

∂x
− δ2

2

∂2(px2)

∂x2
= 0

with p(x, t) the probability density function. We set ∂p
∂t = 0, because we want to know the stationary distribution

of p. Following the derivation of [8, Sect. 4.3.1] we obtain for x > 0:

p+(x) = c1x
−(δ2−2σ1)/δ

2

e−q2/δ
2x2

.

We obtain for x < 0:
p−(x) = c1(−x)−(δ

2−2σ1)/δ
2

e−q2/δ
2x2

.

The values for σ1 and q2 are given, but the value of δ > 0 still may be chosen, hence we distinguish a few
situations. If δ2 − 2σ1 > 0 then p±(x) is of the form:

p±(x) = c1
e−a2x

2

(±x)a1
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with constant values ai > 0. Note that in this case p±(x) cannot be normalised on (0,±∞). We have:

lim
x↓0

p+(x) =∞,

lim
x↑0

p−(x) =∞.

Therefore we see that the probability to reach 0 is infinite, while the probability to reach another number is
finite. So our probability density function in this case is simply the Dirac delta function.
One can see that if the noise is large enough, (δ >

√
2σ1), jumping across zero between the two stable stationary

states is possible, and that the probability of eventually reaching 0 (and staying there) is 1.

If δ2 − 2σ1 < 0 then p±(x) is of the form:

p±(x) = c1(±x)a1e−a2x
2

with the constant values ai > 0. Note that p±(x) can be normalised at (0,±∞) and that the chance to reach 0
is zero. Therefore if the noise is small enough, δ <

√
2σ1, and we start with either a positive (negative) initial

perturbation, then the perturbation remains positive (negative), because the noise on the perturbation is not
large enough to enable the perturbed solution to cross zero. We normalised p+(x) and made a plot of p+(x)
with δ = 0.1, this gives figure 18.

Letting δ =
√

2σ1 gives δ ≈ 0.373755. Hence the interesting case to study the above system is for a δ < 0.373755,
because otherwise the probability density function is simply a Dirac delta function. Our system is quite like
the above system and therefore we use δ = 0.1 as amplitude for our noise.

We observe that if we decrease the noise the peak concentrates more around the deterministic stable stationary
state and gets more peaked. If we increase the noise we observe that the peak gets broade,r and we observe
that the peak moves away from the deterministic stable stationary state to zero until the noise passes the value
0.373755 and we obtain an Dirac delta function. See for examples figures 18 and 19.

Note that that the equation with (m, q) = (1, 2) for R = 37 is similar to that for R = 40. Therefore in the same
way as above we then find that for this equation with R = 40 the interesting case is for δ <

√
2σ1, which in this

case gives that δ < 1.0784. Hence we see that (as expected) we need for R = 40 greater noise to jump from one
stable stationary state to another stable stationary state.
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Figure 18: R = 37 and δ = 0.1. p+(x) for m = 1 and q = 2.

Figure 19: R = 37 and δ = 0.3. p+(x) for m = 1 and q = 2.
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11.2 Implementation stochastic term

In the simulations we checked that the non-resonance condition was satisfied. To implement the stochastic
reduced system we use M = 0 as a start value for equation 29 and we use a1 = 1 and ai = 0 for i 6= 0 as the
start value for the perturbations. We first consider the system (45) with R = 37 and (m, q) = (1, 2).

In figure 20 we display a picture of a1 with δ = 0.1 and multiplicative noise, we took step size 0.05 and 150.000
steps. The red line is the average. On the x-axis are the number of points, on the y-axis the value of the
amplitude. Observe that there is no jumping between the two stable stationary states.
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Figure 20: R = 37, m = 1, q = 2, δ = 0.1, the red line is the average. The average at
the end is: 711.08.

To make a probability density function for equation (49) we let the simulation for a1 run for a long time, and
make a histogram. By normalising the histogram we approximate the probability density function.

We use multiplicative noise, δ = 0.1, 15 million time steps and a time step of 0.1. We start with a perturbation
a1(0) > 0 and use 1000 bins of the same width, to obtain the PDF of figure 21. Note the resemblance to figure
18. We denote the PDF for all initial perturbations a1(0) > 0 by p+.

If we start with a1(0) = 0 (without perturbation) we stay at 0 forever, because we use multiplicative noise.
Hence this PDF p0 looks like a Dirac delta function. If we start with a perturbation a1(0) < 0 we get the PDF
p− of figure 23.

In figure 22 M1,1
2 is plotted. In the deterministic case we have that M1,1

2 = 1/(σ1 + σ1 − σ1) = 0.230642. We
see that the average of the model with noise is almost the same as this number, as expected.

Figure 24 is made with a time step of 0.1 and 1.5 million steps. Note the resemblance to figure 19, which is
made with the M terms given by their stochastic value.
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Figure 21: R = 37, δ = 0.1. The probability density function p+ for m = 1 and q = 2
and an initial perturbation a1(0) > 0. The average is 710.7927.
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Figure 22: R = 37 and δ = 0.1. Generation of M1,1
2 with noise, 150000 steps, time

step is 0.1 m = 1 and q = 2. The overall average is 0.2309.

For the model with m = 2 we have that a2 always converges to the same value if a1(0) 6= 0, however a1
converges to a negative value if a1(0) < 0 and vice versa. Therefore the value of a1 also determines to which
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Figure 23: R = 37, δ = 0.1. The probability density function p− for m = 1 and q = 2
and an initial perturbation a1(0) < 0. The average is −710.7927.

stable state we converge in the case with m = 2, so the value of a1 is in this case still interesting to plot for
obtaining a PDF. In figure 25 we made a PDF p− for R = 40 where the reduced model is given by (m, q) = (2, 6).

The reduced model captures important features of the full model, namely 0 is a trap for the full model and for
the reduced model. With the full model one would also expect that (starting with a nonzero perturbation) if
the amplitude of the noise δ passes a certain threshold that then the perturbation is able to cross (and therefore
also to reach) 0, and that therefore the PDF will look like a Dirac delta function. Object for further study can
be what this threshold is.

If one wants to see jumping between the stable stationary states we would suggest to incorporate additive
noise (noise in the wind forcing). For additive noise on the full model there are also equations to get a reduced
stochastic model based on parameterising manifolds, see [3]. However we did not have the time to include those.
This may be a nice idea for further research.
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Figure 24: R = 37, δ = 0.3. The probability density function p+ for m = 1 and q = 2
and an initial perturbation a1(0) > 0, the average is: 626.9.
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Figure 25: R = 40. The probability density function p− for m = 2 and q = 6 and an
initial perturbation a1(0) < 0. The average is −1941.9.
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12 Conclusions and discussion

In this thesis we made the translation of the two mathematical books from Chekroun et al[4, 5] to an application.
We showed how the PM method is connected to the Galerkin in the deterministic case and explained how the
PM method works in the deterministic and stochastic case. Further this thesis gives an easy introduction on
how to work with the PM method.

Our first research question was: how does the parameterising manifold method perform compared to a Galerkin
method in the deterministic case? We showed how the Galerkin and the PM method are related to each other
and that the PM method may be seen as the extension of a Galerkin method, in the sense that the Galerkin
method with m variables is the PM method with m resolved variables and without unresolved variables.

We observed that for R = 37 and a perturbation in only one eigenvector the PM approach was already able to
give a reasonable approximation of the full model. Here the evolution of the amplitude of the first eigenvector
was described by a third order polynomial. The Galerkin method is for R = 37 able to give a good reduced
model when the perturbation was expanded in two eigenvectors. Here the evolution of the amplitudes was
described by a coupled second order polynomial.

Generally speaking we need less ‘resolved’ variables for the PM method, but the evolution equations for the PM
method are described by a system of coupled fourth order polynomials. For the Galerkin method we need maybe
more ‘variables’, but the evolution equations are described by a system of coupled second order polynomials.
We did not study the efficiency of the PM method compared to the Galerkin method: this is a point for further
research.

Our other research question was: are the stochastic reduced models capable of capturing important features of
the full model? We observed that this is the case. For example we observed that 0 was a trap for both the
reduced and full model and we observed that if the amplitude of the stochastic noise passed a certain threshold
that then the reduced model and the full model would eventually reach 0 and remain there. Furthermore we
were able to make PDFs with the full model which seem to capture the dynamics of the full model well.

13 Outlook

It will be interesting to apply this method to a (supercritical) Hopf bifurcation and to see if we can obtain a
stochastic reduced model which captures the Hopf bifurcation. Another interesting question is, how far away
(in the sense of the bifurcation parameter R) from the (pitchfork) bifurcation are we still able to obtain a good
reduced model?
The approach we followed here with the multiplicative noise is interesting if the perturbation is started from an
unstable stationary state. If we would start from a stable stationary state then our perturbation would quickly
decay to zero, and if the perturbation is zero it remains zero because of the multiplicative noise used. Therefore
studying stable stationary states with this model is not interesting.

If we consider a full stochastic model purely driven by additive noise (think for example of noise in the wind
forcing) it is possible to get a reduced stochastic model which includes additive noise. For how to obtain such a
model see [3]. With such a model it will be interesting to study PDFs around stable stationary states, because
the perturbation can no longer be caught in 0. It is interesting to make PDFs for different parameter values
each time closer to a bifurcation and to see how the PDF changes if we approach a bifurcation. An interesting
question is if the deformation of the PDF will be bifurcation specific: with this we mean that we can predict
from how the PDF changes shape that a bifurcation will happen, and what kind of bifurcation will happen.
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Further if we would use a model which includes additive noise, we should be able to see jumping between the
two stable states of the supercritical pitchfork bifurcation for a high enough value of additive noise and we
should be able to plot a PDF in which this is visible. For the supercritical pitchfork bifurcation in the additive
noise case with m = 1, we will probably get something like in [8, Sect. 4.3.2].

An interesting application will be to apply the PM method to stochastic models which describe three dimensional
currents.
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