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Abstract

In the field of agent models for driving simulators, there are few models aimed at
simulators that teach students how to drive. By approaching the problem from a
students’ perspective, we hope to increase the learning capacity of the driving sim-
ulator. Furthermore, none of the existing agent models use the Belief, Desire and
Intention software model, which forms the basis of our work. By using BDI, we can
exert more control over the agents while remaining to display realistic behaviour.
We validate our method by presenting the behaviour of our agents to both driving
school students and driving instructors. Results show that our model can produce
significantly deviating and realistic behaviour. Although surprisingly, it is deemed
more cautious than intended.

This thesis project was conducted as part of a collaboration between Utrecht Uni-
versity and GreenDino B.V.
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1. Introduction

Advantages of learning to drive in a driving simulator instead of in a real car are
numerous: A simulator is safer, costs less, is more environmentally friendly and is
proven to be more efficient than regular training [11]. Another advantage of driving
simulators that has had little research so far, is the potential for control of the
background traffic. Driving instructors in driving lessons on the real road cannot
influence their surroundings; students need to drive around if the instructor wishes
to encounter a specific situation. A student that has difficulty with vehicles coming
from the right could encounter vehicles from the right at every intersection. These
specific situations could be created when needed in a simulator.

Further benefits might be achieved by taking the students’ overall skill level into
account. Students’ skill level can be categorized with driving skill and their willing-
ness to take risks. Novice students usually start with a low level of driving skill. The
goal of the lessons is to increase that level to high or very high. To better accom-
modate novice drivers the surrounding traffic could be made more docile, keeping
more distance, driving slower and behaving exactly according to the traffic rules.
More advanced students could encounter more realistic traffic that mimics real-world
traffic. The willingness to take risks varies per student and is an important when
it comes to accidents amongst novice drivers [12]. Slower driving traffic could be
used to encourage cautious students to take more risks. On the other hand, fast and
aggressive traffic could be used for students who take too much risk.

According to De Winter et al. [11], the greatest challenge of driving simulators is
creating a simulator that mimics the real world. Realism should therefore not be
forgotten when giving users more control over the background traffic. The traffic
behaviour should lie within the behavioural spectrum of real world vehicles. Indi-
vidual vehicles, or agents, are allowed to drive fast or break traffic rules but they
are not allowed to drive through objects or disappear suddenly. This has a conse-
quence for the handling of the human driver, who could behave in an unpredictable
manner. Similar to the regular behaviour of the agents, their behaviour to deal with
the human driver must also lie within the behavioural spectrum of real-world traf-
fic. The agents should therefore be highly autonomous to deal with complex traffic
situations and unpredictable human drivers. However, the agents should still be
able to follow orders to allow the high levels of control needed from an educational
standpoint. We facilitate all these wishes by introducing a realistic, flexible and
adaptable agent model for the background traffic of a driving simulator. Our model
is realistic because the behaviour falls inside the scope of real-world traffic. It is
flexible since it supports a wide range of environments, and it is adaptable because
it displays a wide range of behaviour. A control system that guides the agents, and
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configuring the agents to support students during driving lessons falls outside the
scope of our thesis.

1.1 Research Questions

Considering our wish of creating a realistic, flexible and adaptable agent model for
the background traffic of a driving simulator, it is possible that there are no existing
models that can be directly built upon. Although the field of traffic simulation is
large, the field of agent models for driving simulators is relatively small. Considering
these factors, we present the following research questions:

1. How can we improve the realism, flexibility and adaptability of the background
traffic for a driving simulator?

(a) Is there a model that can be built upon?

(b) If not, which model or technique comes closest?
2. What model supports the factors of question 1?7

3. How can we validate this method for use among driving school students?

1.2 Structure

Chapter two provides an overview of the related work to this thesis. In chapter three
we will discuss the work by Rao and Georgeff [29, 28] in more detail as it is directly
related to our own method. Chapter four is a description of the theory behind
our method. Chapter five explains how we will validate our method followed by the
results of that validation in chapter six. Chapter seven describes our implementation
and any alterations to the theory of chapter four. Lastly, we give our conclusion
and possibilities for future work in chapter eight.

6 Chapter 1 M.F. de Goeij



2. Related Work

As Bazzan et al. explain in their review on agent-based traffic simulation [2], the field
is large and encompasses many applications related to traffic. It is used for transport
optimization, traffic jam analysis, traffic flow, and driving models. Driving models,
a survey of which can be found in Kesting et al. [23], aim to create realistic driving
behaviour that mimics human behaviour. Kesting et al. [23] introduce the notion
of the driver-vehicle model, which is a reference to the idea of having agents with
human and vehicular properties. However, these models do not take a human driver
into account because they only focus on the simulation of traffic consisting entirely
of agents.

2.1 Agent Models for Driving Simulators

Driving simulators are designed to imitate a real vehicle and are operated by a
human driver. The driver can perceive the environment through the use of one or
more screens, usually to simulate the windows of a real car. In that environment,
the traffic surrounding the human driver takes a leading role. Most models that
simulate these traffic agents focus on creating realistic and human-like behaviour.
Al-Shihabi and Mourant [32] use fuzzy variables and fuzzy if-then rules to simulate
human traffic behaviour. However, the method is limited to two-lane highways, with
future work for multi-lane highways. The authors state that the addition of other
driving environments requires too much work on several levels in their framework,
a common argument against the use of fuzzy logic. Demir and Cavusgoglu [13] use
Hierarchical Concurrent State Machines to simulate the background traffic. The
agents can display different behavioural styles such as slow, normal and fast driving
styles. Furthermore, the agents are able to display aggressive and rule-breaking
behaviour, for example tailgating and running through red lights. However, the
authors do not state how the agents deal with the human driver, or whether they
do at all. It is also not clear how the different driving behaviours are incorporated
into the model, making it hard to judge the actual merits of the method.

Seele et al. [31] base their model on psychological factors, giving a personality profile
to each agent. The agents reason about their environment and make decisions to
advance their goals. Unfortunately, it is not mentioned how many environments
the agents can operate in, since their testing environment is only limited to a single
intersection. Furthermore, it is unclear how agents deal with the decision making
process, incorporate the personality, or deal with conflicting decisions. Lacroix et
al. [24] use behavioural patterns based on configurable parameters for their agent
model. Different behaviours can be introduced by selecting the right percentages
for each of the patterns, or initiating an agent of a certain pattern with different
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parametric values. These behavioural pattern configurations can also be drawn from
real or simulated data for increased ease and control. One of the drawbacks of the
model is the lack of deviant behaviour for urban traffic, an issue that is mentioned
as future work.

The agent model of Olstam et al. [26] lacks variety in behaviour or environment
but tackles the problem of when and where to generate the vehicles. Their method
employs a different model for agents close to the human driver than for agents
that are further away. The agents themselves are generated outside the view of the
human driver. However, their behaviour is limited and based on equations, making it
difficult to add new behaviour with new parameters. Nevertheless, the basic theory
of only generating agents outside the view of the human driver is useful to consider.
Yin et al. [38] handle human unpredictability with regard to turning signals. Their
model sends signals from the human controlled vehicle to the agents to indicate the
intention of the human driver. In the event that the human driver does not use his
turning signals properly, the model tries to predict the signal based on the location
of the human driver. For example, when the human driver is at the rightmost lane
at an intersection, a right turning signal is given to surrounding agents. However,
not all behaviour can be captured in this manner and the more complex behaviour
of human drivers remains difficult to predict.

2.2 Controlling Agents

Driving simulators for driving schools would benefit greatly from more control over
the agents, both to create general traffic as well as specific situations. Unfortunately,
such levels of control are usually not the focus of traffic agent models. Demir and
Cavusoglu [13] for example mention briefly that their existing driving simulator,
TRAFIKENT, can generate vehicles through a ‘Vehicle Generation Unit’ or by the
directives of the ‘Traffic Director’. The ‘Vehicle Generation Unit’ can randomly
generate vehicles according to a predefined distribution function. How the ‘Traffic
Director’ influences the generation of vehicles is not mentioned. However, it should
be possible to create specific situations with the ‘Traffic Director’, as the name and
description is similar to papers about controlled events. Seele et al. [31] make
use of the IDM, Intelligent Driver Model, which allows for the setting of several
parameters per individual agent. However, with IDM it is probably not possible to
create specific situations without extensions.

In both models, the control of the agents is handled by a dedicated controller system.
Although the working of such a controller system is outside the scope of this thesis,
the agent model does need to facilitate extensive levels of control. To this end,
several papers that deal with controlling agents have been examined.

The first one is from Olstam et al. [27], and it aims to combine autonomous vehicles
and controlled events. The analogy used is a theater play: the stage is first prepared
and when the agents are ready the play starts. The largest problem is to not let the
human driver notice the preparations, which is called the play preparation problem.
Agents can transition between being fully autonomous outside the stage and fully
controlled when on the stage. Using a theater play as metaphor is not new. Wassink
et al. [36] use the movies to explain a dynamic scenario generation algorithm for
driving simulators.

8 Chapter 2 M.F. de Goeij
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While outside the scope of driving simulators, both Si et al. [34] and Shoulson et
al. [33] give interesting views from the field of interactive storytelling. Both papers
explain methods to guide a user and the agents surrounding the user to tell a story.
Shoulson et al. [33] argue that agents should not be allowed to grow too complex.
High-dimensional agents are difficult to handle and process. Letting the controller
do all the work is also undesirable for roughly the same reasons. This can be directly
applied to the agents in driving simulators, who should not be relied upon to create
the desired scenario on their own. Instead, they should be given a path through
which the agent would automatically fulfill its part for the desired scenario. When
driving along this path, the agent can operate autonomously, which allows the agent
to deal with sudden changes or irregularities.

Si et al. [34] try to predict what the user would do in an interactive story, not unlike
Yin et al.[38] who have the same goal, only for driving simulators. Si et al. [34]
tackle this problem by having the controller and the agents keep track of the user
through a set of beliefs, reasoning about what they think the user thinks. This model
is called a decision-theoretic goal-driven agent, with a personality and motivation as
the agents goals. This way of thinking has its origin in the Belief Desire Intention
(BDI) model, which is an important area of research in Al [28]. The belief set
of an agent contains information about itself, the environment and other agents.
Desire contains the goals of the agents, what the agent wants to achieve. Intentions
describes how the agent plans to achieve those desires. The model is powerful and
has been used countless times since Rao et al. [28]. The use of BDI in traffic
simulation is both mentioned in the overview by Chen & Cheng [9] as well as in the
overview by Bazzan and Kliigl [2]. However, the method seems to be absent when it
comes to using it for the background traffic in a driving simulator. One of the reasons
for this is mentioned by Rossetti et al. [30] who implement a BDI model for traffic
simulation but argue that the computational load might be too high when using a
large amount of agents. This problem might be less apparent in a driving simulator
where there is no need for a large and intricate traffic simulation with dozens or
maybe hundreds of vehicles. Especially when driving in an urban environment the
number of visible vehicles is limited. Another issue might be the fact that most BDI
systems are implemented using special languages which are not always fit for virtual
environments. More precisely, the creation of virtual environments is usually done
in object oriented programming languages, which is not the standard technology
for BDI systems. This problem and a possible solution is described by Dastani and
Testerink [10], who translate the traditional BDI concepts to an object oriented-
language.

2.3 Conclusion Chosen Model

Most agent models discussed earlier seem to lack one aspect or another. Models
that display varied or realistic behaviour only work in a limited set of environments
(32, 31]. Models that do work for a varied set of environments lack varied behaviour
[24]. Furthermore, the human element is frequently overlooked [13]. Models that
do mention the human element lack aspects in other fields, having no behavioural
diversity or a wide range of environments [38]. An agent model that can display
varied behaviour, operates in a wide range of environments and takes the human
driver into account would be a significant contribution to the field.

Chapter 2 M.F. de Goeij 9
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Almost every discussed model uses a different technique or approach when modelling
the behaviour, but BDI is not used in any of them. The reasons for not using BDI are
clear: BDI has high computational load and lacks OO-language support. However,
the complication of autonomous agents that remain highly controllable while being
able to handle an unpredictable human student gives reason to explore BDI as model
for the background traffic in a driving simulator.

10 Chapter 2 M.F. de Goeij



3. Preliminaries

As the BDI model is directly related to our own method, we summarize previous
research on this topic.

3.1 BDI

Rao and Georgeff present their formalization of the BDI architecture in ‘Modeling
rational agents within a BDI architecture [29]. However, in their follow up paper
28], they mention that their previous work is too theoretical. Therefore, they give
some considerations and improvements to make BDI more fit for practical use. As
done in the paper, we first explain the basis of BDI and the theoretical model, after
which the improvements of Roa and Georgeff are given. Lastly, our own alterations
are discussed.

At the basis of the model lie the dynamic data structures representing the beliefs,
desires, and intentions of the agent. Beliefs hold the state of the environment,
and can be viewed as the informative component. Desires are the objectives to be
completed, and can be viewed as the motivational component. Intentions are the
currently chosen course of actions, and can be viewed as the deliberative component.
Complementing these data structures is an event queue holding both internal and
external events. These events act as input of the system. Furthermore, update
and query operations are allowed on the three data structures. Now that the data
structures are established the main interpreter loop of an agent can be given:

Algorithm 1 BDI interpreter loop

Initialize-state();

repeat
options := option-generator(event-queue);
selected-options := deliberate(options);
update-intentions(selected-options);
execute();
get-new-external-events();
drop-successful-attitudes();
drop-impossible-attitudes();

until end repeat

The first step in the interpreter loop is the option generation based on the event
queue. Next, the deliberation step selects a subset of these options to be incor-
porated in the intentions data structure. After the intentions are updated, any
actions produced by the intentions are executed. New external events are added to

11
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the queue, while internal events are added when they occur. The last step is the
modification of the intention and desire structures by dropping all successful and
impossible desires and all satisfied and unrealizable intentions.

Roa and Georgeft give three important alterations that are meant to make the sys-
tem more practical. The first alteration is to only represent beliefs about the current
state of the world. Furthermore, these beliefs are expected to change change over
time. Second are the introduction of plans, which hold both the information to
achieve a new state as well as the options available to the agent. Each plan has cer-
tain subgoals that need to be achieved for the plan to be executed successfully. Plans
also contain certain conditions that need to be fulfilled before the plan can be chosen
as option. These conditions can either be invocation conditions or pre-conditions.
The invocation condition specifies an event that acts as trigger while a pre-condition
specifies the situation that must be true before the plan can be executed. The third
alteration is the use of a conventional run-time stack of hierarchically related plans.
This stack implicitly represents each intention that the system forms by adopting
certain plans. Multiple stacks can co-exist and they can be suspended until some
condition occurs, or ordered for execution. Unfortunately, these stacks are not thor-
oughly explained and are not further mentioned by Roa and Georgeff. Apart from
these three alterations, the authors make a suggestion for the interpreter loop, which
they otherwise leave completely intact. That suggestion is an extra procedure that
delays posting any events on the event queue regarding intentions until the end of
the interpreter loop. By implementing this delay, the system can determine which
changes need to be noticed by the option generator. This not only results in a faster
system, but also allows for various levels of commitment, which results in different
behaviours.

12 Chapter 3 M.F. de Goeij



4. Method

In this section we propose our agent model for the background traffic of a driving
simulator. The following sections explain the theory and ideas behind the model.

4.1 RoadNet

Multiple descriptions exist for road networks [8, 14]. Both are trying to standardize
the logical description of road networks. RoadXML has its origin in the French car
industry and is backed by the former French national institute for transport and
safety research.

OpenDrive on the other hand has its origin in the German car industry. After the
launch in 2006 other German car companies joined, as well as German, Dutch and
Swedish research institutes. Like RoadXML, the description of OpenDrive is in
XML. Both contain an extensive description of all features of a road network.
Such an extensive description is not needed for our method, which requires some-
thing much more lightweight and flexible. The purpose of a standard is to be used
by multiple products, therefore the product must either adapt to the standard or the
standard incorporates all aspects of the products it supports. Since the exploration
of BDI for background traffic agents in a driving simulator is new, it might not be
wise to adapt it to an existing standard. Furthermore, it cannot be expected of
these standards to incorporate the requirements of a new type of driving simulator
agent. Therefore, we have created our own logical description of a road network
that is more suited for the agents using it. However, the workings and descriptions
of both standards can work as an inspiration for our own description.

Our RoadNet, which will be explained more thoroughly in Section 7.2, is a collection
of straight lines in 3D space that represent real-world traffic lanes. We assume that
these lines lie in the centre of such a traffic lane. Curved lanes can be created by
connecting several shorter straight lines at increasing angle. Since the length of a
line does not have any limitations, it is possible to accurately follow the centre of
any curve. However, this would increase the number of lines severely, making it
more difficult to handle the entire collection.

Furthermore, each line stores all relevant traffic rules related to that line. This
means that agents can request the correct speed limit or any other traffic rule from
the road they are driving on. By storing the traffic rules for each separate line, we
have absolute control on where a certain traffic rule begins by rearranging the lines
on that road. However, this is also a weakness, as each time a traffic sign changes
location, the lines have to be rearranged. Another limitation is a lack of any direct
link to parallel traffic lanes. A single line does not know that it is part of a multi-lane
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highway or if there are any parallel lanes in opposite direction.

As already explained, lines can be linked together to form chains. However, they
can have more than one link on either end, creating a split. This functionality is
used to create intersections which are assumed to be the only location where lines
separate. The lines contained in an intersection hold the information regarding its
type. For example, if it is a equal or biased intersection. By requesting the type of
intersection, agents know which right of way rules apply.

Although the description of our RoadNet is simple and has far fewer options than
RoadXML or OpenDrive [8, 14], it is complete, flexible and can be easily expanded
by adding new traffic rules. Furthermore, due to its simplicity it can be used to
recreate almost any real-world network.

4.2 Belief base

The Belief base of the agent contains everything it knows about the world. Infor-
mation about itself, others and the road it drives on. The Belief base is split into
three sections: Ezternal, Driver and Vehicle. Vehicle holds all physical vehicular
information: the type of the vehicle, its dimensions, current velocity and positional
information. These properties can be requested by other agents, and can be visu-
ally observed by the human player. Driver holds the personality and memory of
the agent: the level of haste, aggression, the preferred following and tail distances,
preferred acceleration and deceleration, look ahead distance, which traffic rules the
agent obeys and the route the agent takes. The Driver- Vehicle pair can be viewed
as the human driver and the car itself. What the human thinks, sees, and feels is
unobservable by others. What the car does and how it reacts is observable. The
same distinction is made for the belief bases of the agent. FEzxternal holds the in-
formation on other agents, and the road network. In other agents the vehicle belief
base of surrounding agents is stored. This is done to assure equality between agents
and the player. By only storing the observable information, the agents do not need
to make a distinction between the human player and other agents. When an agent
checks for agents in their surroundings, the player is seen as another agent. From
every agent the vehicle belief base is stored for future reference. This is the same for
the human player; the player vehicle has a vehicle belief base that stores the same
information as the vehicle belief base of an agent.

The belief base is regularly updated to keep the information it holds up to date.
However, it is possible that a large belief base with many updated variables decreases
performance. Therefore care must be taken when to update which variables. For
example, one of the most important properties that require frequent updates is the
lane on which the agent is driving. Delays here could result in an agent thinking
that it is safe to cross an intersection because the agents thinks others have not
arrived yet. Such situations could easily result in crashes, since they have difficulty
detecting each other. However, if the RoadNet is large, it might be too expensive
to determine the right lane every frame. Furthermore, it is also important to limit
the number of variables in the belief base. As new traffic situations are introduced
it is tempting to incorporate new variables into the belief base. However, that can
have a severe impact on performance. Our own implementation of the Belief base,

14 Chapter 4 M.F. de Goeij
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including which variables we have used, is explained in Section 7.4.

4.3 Plans

Plans are a crucial part of the agent model. As explained in the preliminaries,
a plan is a sequence of actions to achieve a goal. For vehicles, the actions that
take up a sequence are limited. At the basis all vehicles have only three forms
of output: accelerate, decelerate and steer. Therefore, the action that each plan
returns consists of three values, a value for gas, brakes and steering. Vehicles are
mostly used for transportation, therefore the most important goal of any vehicle is to
reach its destination. Directly linked to that is the goal of reaching that destination
safely, without crashing. These two goals are fixed for every agent, they always have
a destination they try to reach and they always try not to crash. Furthermore, a
subgoal of most drivers and thus agents, is to also follow the traffic rules. However,
this goal is not fixed, and agents can be adjusted to ignore any or all traffic rules.
Each plan that the agent has adheres one or more of these (sub)goals, depending on
what the plan is for.

All plans are divided in three layers: the strategic, tactical and operational layer.
This approach is common for traffic simulation [32] and is used to divide actions in
traffic depending on the time window in which they occur. Plans in the operational
layer take place in milliseconds, plans in the tactical layer take several seconds or a
few minutes, and strategic plans a few dozen minutes or several hours. The layers
are also hierarchical, plans in the operational layer have the highest priority, followed
by the tactical layer, and lastly the strategic layer. Such a division guarantees that
events that occur in a very small time frame are handled immediately.

Each plan is entirely free to draw information from the belief base and/or calculate
new information. This is a strength as well as a weakness. By allowing such freedom
it is possible to create a plan for any possible traffic situation. This makes the agent
model very flexible and adaptable by either expanding or creating new plans for
new situations. However, if such new plans calculate too much on their own, it
is possible that the agent model becomes slow. Moreover, it is equally as easy to
create a plan that 'breaks’ the agent by introducing faulty behaviour or behaviour
that interferes with other plans. Therefore care must be taken to the design and
structure of each new plan to make sure it works. Fortunately, a faulty plan can be
easily removed with no loss except the intended behaviour of the plan itself. Our
own implemented plans are explained in Section 7.5. Although the number of plans
might seem limited, only a small number is sufficient for basic traffic behaviour.
Furthermore, plans can be build upon by other plans. This creates even more

Chapter 4 M.F. de Goeij 15



5. Validation

Validation of the proposed agent model is done via an online questionnaire aimed
at driving school students and driving instructors. The questionnaire participants
are shown a series of clips displaying different traffic situations. After each clip the
participant is asked to judge the behaviour of the traffic in the clip.

5.1 Motivation

According to Green Dino BV [7], student drivers can be categorized using two vari-
ables: their driving skill and their willingness to take risks. Both variables can range
from Very Low to Very High. A student is ready to take the driving examination
when their driving skill is High/Very High and their willingness to take risks is
Medium. Any deviation from the examination state needs to be corrected. Green
Dino BV [7] states that the surrounding traffic can help in achieving this state. For
example, a student that is too cautious has a very low or low willingness to take
risks. To achieve the medium status they need to be encouraged. In the driving
simulator this might be achieved by introducing slow and/or calm traffic in the stu-
dent’s lessons. The student then hopefully notices that it is safe to take more risks.
Students that are too aggressive and take too much risk need to be shown the error
of their ways. This might be done by configuring the traffic to match their own
behaviour. If the aggressive student’s skill is low they might crash, indicating that
they are doing something wrong. However, it is not yet known to what extent, if at
all, students can recognize different behaviour in the surrounding traffic. If they do
not notice that the other traffic is driving slow or aggressive, the surrounding traffic
might not contribute to their lessons as intended.

5.2 Questionnaire design

Participants of the questionnaire will first be asked their age, sex, whether they are
a driving instructor or student, and in the latter case how many hours they have
spent on the simulator, and how many hours they have on the real road. The options
for hours on the simulator range from 1 to 9 and 10+. The options for hours on the
real road range from 0 to 49 and 50+. Each consecutive question, given in a random
order, contains a clip and three questions about the clip. In the first question the
participant is asked to rate the behaviour in the clip using a seven point scale. The
option to the far left is cautious, the middle is normal and the far right is aggressive.
In the second question the participant is asked to motivate their answer for question
one. The third question is a Likert scale with the statement: ‘The behaviour in the
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clip was realistic’ and five points ranging from strongly disagree to strongly agree.

Bosnjak and Batinic [4] explain the factors that improve the willingness to partic-
ipate in online questionnaires. In giving advance information, the most important
to least-important factors are: information on access to email address, guarantee of
feedback about the results, information on the exact aims of the investigation, com-
plete anonymity of the answers, and lastly, the personal request by the researcher.
These factors can easily be incorporated in the advance information mail since any
information provided will not influence their answers. Knowledge about the aims of
the questionnaire do not give clues to which movie clip is the ‘correct’ one. When it
comes to the amount of time voluntarily provided for scientific online questionnaires,
most people lie within the 11-15 and 21-30 minutes groups.

The introduction to the questionnaire begins by explaining that the questionnaire is
about the behaviour of virtual traffic, and that they, the participants, have to assess
that behaviour. It is also explained that the evaluation process is done by showing
a clip of a traffic situation involving one or more cars. Before each clip is shown
the exact situation is explained, including which cars are to be followed and judged.
Lastly, the participant is told that he has to answer a few questions after each clip
to the purpose of rating the behaviour of the cars in the clip.

Figure 5.1: The approaching traffic light scenario.

The questionnaire contains five scenarios and 22 clips. The first scenario contains
a biased intersection and two cars approaching that intersection. One car is driv-
ing straight on the major road and the other car wants to enter the major road in
the same direction as the first car. The clip ends when both cars are out of view.
Variables to change are aggression and approach distance. This scenario contains
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Figure 5.2: The leaving traffic light scenario.

Figure 5.3: The biased intersection scenario.

four clips plus two control clips for a total of six clips. The second scenario contains
a red traffic light with three cars waiting for the light to turn green. After a few
seconds the light turns green and the vehicles drive away. The first and third cars go
right and the second car straight. The variable changed in this scenario is preferred
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Figure 5.4: The highway right scenario.

Figure 5.5: The highway left scenario.

acceleration. This scenario contains three clips plus a control for a total of four
clips. The third scenario contains a red traffic light and three cars approaching that
red light. The clip ends when all cars stand still for the red traffic light. Variables
changed in this scenario are following distance and preferred deceleration. This sce-
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nario contains five clips plus a control for a total of six clips.

The fourth and fifth scenario contains a highway with a truck driving on the right
lane and a car approaching from behind that will overtake the truck. Both sce-
nario’s contain three clips each. The fourth scenario encompasses the lane changing
manoeuvre of the car towards the left lane. The changed variable is the preferred
following distance and the clip ends when the car is driving alongside the truck.
The fifth scenario encompasses the lane changing manoeuvre back towards the right
lane. The changed variable to change is the preferred tail distance and the clip ends
when the car has completed the manoeuvre.

5.3 Questionnaire design motivation

It is possible that student drivers are not capable of recognizing the different sets of
behaviour, since they are not experienced enough. Therefore, both student drivers
and driving instructors are asked to participate in the questionnaire. If the students
fail to recognize the different behaviours and the driving instructors do recognize
it, the students probably lack experience. However, the difference might be less for
more experienced students with considerable road experience. Students are therefore
asked for the number of hours they have spent on the simulator and on the road.
Should the driving instructors also fail to recognize the different behaviours, then
the agent model itself has failed.

5.3.1 Personal information motivation

The standard simulator curriculum employed by most driving schools is eight hours
and students always start with at least one lesson on the simulator. However not
all driving schools and/or students follow this curriculum from start to finish; some
stop halfway, retake lessons, or alternate between simulator and a real car. The
same applies for lessons in the real car. The number of lessons and hours needed
vary greatly per student. To limit complexity, the questions on simulator and real
world experience are therefore expressed in hours. For the simulator this means
each number from 1 to 9 and 10+4. All students have spent at least one lesson on
the simulator, resulting in one hour. Eight is the length of all lessons together, plus
one hour to account for retakes. It is unlikely that students spent more than 10
hours on the simulator, so everything above that is grouped together. The number
of hours on the real road range from 0 to 49 and 504. It is possible that students
do not have real road experience yet, which accounts for the 0. The average number
of hours it takes for a student to achieve their driver’s license is 43 with a standard
deviation of 6.[Reference Needed] It is unlikely that a student requires more than
50 hours of real road lessons in addition to their lessons on the simulator.

5.3.2 Usage of movie clips motivation

By using short movie clips to show the behaviour of the traffic agents, it is guaran-
teed that the participant is in the best position to observe that behaviour. Should
the participants judge the same behaviour while driving in an actual simulator they
might not notice the traffic. Furthermore, it is not guaranteed that the same sit-
uation occurs for every participant. Moreover, the organization around using sim-
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ulators will result in less participants when compared to an online questionnaire.
Therefore, using movie clips works best to maximize the number of participants and
guarantees that the participant is able to see the intended situation and vehicles.

5.3.3 Question design motivation

After each clip, the participant is asked to answer three questions with relation
to the behaviour in the clip. The number of questions is limited to three to limit
the length of the questionnaire. Long questionnaires have lower response rates.
There are many options for question formulation and design in questionnaires. The
most unbiased answer is given with an open question. However, this might result
in completely undesired and unrelated answers. In the case of traffic behaviour
they might comment that the indicator lights were not on, or that the traffic is
‘beautiful’. Such answers are difficult to interpret and categorize, which can result
in errors. Another option is a limited list of possible answers. However, the options
might not cover the intended answer or, if the list is too large, they have a difficulty
choosing one. Therefore, it is best to have a limited list of options but with a small
gradation between them, to give more options than just ‘aggressive’ or ‘cautious’.
The choice of a seven point scale over a five point scale is to increase diversity.
From peer experience it is known that participants avoid the far left and far right
choices, resulting in only three choices within a five point scale. The second question,
why they have chosen their answer to question one, forces the participant to think
about their answer and might indicate areas of improvement. Question two also
supports question one by allowing the participant to give an open answer. The third
question, indicate level of realism, uses the common Likert scale to make answering
and evaluation easier. The use of a five point scale is standard for Likert scales and
is therefore not increased to a seven point scale.

5.3.4 Movie clip content

Most scenarios have multiple clips where at least one variable is changed. A scenario
contains a specific situation, for example a red traffic light with three approaching
cars. The variable to change is, for example, the deceleration rate and is set to
low, normal and high, resulting in three clips. If possible, a control clip is added
that shows the same situation only in the engine of the Green Dino BV [7] driving
simulator. All clips have a length between 10 and 30 seconds, and usually start just
before the first car enters the screen or starts moving, and stops after the last car
leaves the screen or has stopped moving. The only exception is overtaking on the
highway scenario, which stops after the manoeuvre is complete.

The variables that change in the clips are: following distance, tail distance, preferred
deceleration, preferred acceleration, haste, and aggression. The configuration of the
variables is drawn from literature on driving behaviour, government safety advices
and expertise from Green Dino BV [7]. When configuring the variables, the goal is
to find a minimum realistic value, average realistic value, and a maximum realistic
value. A minimum, average, and maximum is taken because these values usually
match with what drivers see as cautious/slow, normal or aggressive /fast.

Following distance is the time in seconds between the vehicle in front of the agent
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and the agent itself. It is also the minimum distance in meters when the speed
approaches 0. The following distance in seconds as advised by the Dutch government
is two [19]. However, in most real world situations this value is between one and
two seconds [5], or at higher speeds as low as 0.55 seconds [16]. Since we mostly do
not deal with high speeds the preferred following distances will be set at one second
for the minimum value, on and a half as average and two seconds for the maximum
value. For highway scenarios an extra extreme minimum value is added, namely
0.55.

Figure 5.6: Example of short following distance at the approaching traffic light
scenario.

Figure 5.7: Example of long following distance at the approaching traffic light sce-
nario.

Figure 5.8: The control of the approaching traffic light scenario.

Tail distance is the time in seconds the agent allows between itself and another
agent behind it. In the model, it is mostly used for overtaking. Since no clear data
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is available for this value, and it is closely related to following distance, the same
values for following distance are used for tail distance. For highway scenarios this
also means that the extra extreme minimum of 0.55 is added.

The preferred acceleration and preferred deceleration values are thresholds that the
agent does not break when accelerating or braking. Acceleration and deceleration
values differs greatly between different vehicle types and countries [1, 3, 25]. Akgelik
et al. [1] study acceleration and deceleration in India. Their model is based on real
world data, and shows a maximum acceleration of 2.7 m/s* with an average of 1.5
m/s* for a vehicle starting from 0 km/h and accelerating to 60 km/h. Bogdanovi¢
et al. [3] study the acceleration at traffic signals in Serbia. Their conclusion was
that under normal conditions the acceleration values lie between 1.7-2.0 m/s?. They
purposefully did not take the extremes into account since their aim was to provide
data for traffic flow planning. The authors state that 95% of the values lie between
0.87-3.26 m/s? for their close measuring point, between 1.17 - 2.58 m/s? for their
far measuring point and between 0.71-3.4 m/s? for their second study a few years
later. Considering this data, the minimum acceleration is set to 1 m/s?, the average
to 2 m/s* and the maximum to 3 m/s?.

Akgelik et al. [1] give an average deceleration of 1.8 m/s* and a maximum of
3.1 m/s? for a car travelling at 60 km/h and coming to a full stop. Maurya and
Bokare [25] not only provide their own findings but also the findings of several other
studies on deceleration. Those studies, dating from 1960 to 2005, give a minimum
deceleration rate of 0.28 m/s? and a maximum of 4.9 m/s*. The most recent studies
give values between 2 and 3 m/s?. However, those values are for sudden deceleration
at a signalized intersection. The values given by the authors themselves have a
maximum of 1.6 m/s? and a mean of 1.2 m/s? for cars travelling between 90-100
km/h. Considering this data, the minimum deceleration rate will be 1 m/s?, the
average will be set to 2 m/s?, and the maximum to 4 m/s%.

Aggression influences the distance perceived to others. For example, when determin-
ing the distance between itself and an intersection and another agent with the same
intersection then aggression increases or lowers those distances. There are no exact
values known for aggression since it is an unique value. It is therefore set according
to the needs of the scenario. Only the average setting can already be given, which
is 0.
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6. Analysis

The completed questionnaires are analysed using a repeated measures MANOVA
test with Wilks” Lambda method [15]. Each scenario is treated as a separate test,
scenarios cannot be properly tested with each other due to the large differences
between them. Furthermore, the behaviour score and realism score are separately
tested per scenario to limit complexity. Moreover, one test is done with both stu-
dents and instructors and another test with only students. The tests with both
students and instructors aims to measure the effect of clip on behaviour and realism
scores as well as the interaction between profession and clip. In the tests with only
students, the effect of clip on behaviour and realism scores is measured as well as
the interaction between hours in the simulator on clip and hours on the road on clip.
The hours on simulator data have been grouped into two data sets: group one with
hours from 1 to 5 and group two with hours from 6 to 104-. The hours on the road
data has been grouped into five groups: group one with hours from 0 to 9, group
two with hours from 10 to 19, group three with hours from 20 to 29, group four with
hours from 30 to 39 and group five with hours from 40 to 50+. In all tests both age
and sex are taken as covariants.

The questionnaire was sent to 1500 driving school students who have been active on
the simulator in the last year. The questionnaire was also sent to 80 driving schools
that employ simulators of Green Dino BV. Furthermore, one driving school actively
asked simulator students to fill in the questionnaire after their lessons. In total, 182
students and instructors started the questionnaire. Roughly half of them filled it in
from beginning to end. Results of participants that have stopped halfway are only
taken into account when a full set of clips from one scenario was completed. This
creates fluctuations in the number of participants per scenario. Each of the following
sections gives the results of one of the five scenarios. As explained earlier, each
scenario has four tests: one for behaviour amongst students and instructors, one for
behaviour amongst only students, one for realism among students and instructors,
and lastly one for realism amongst only students.

6.1 Biased intersection

The test with the behaviour score amongst both students and instructors was done
with 78 subjects; of those 78, 14 were instructors and 64 were students. The effect
of clip on behaviour score was significant (F'(5, 70) = 4.963, p <.05) with a strong
effect (eta® = .262). The interaction between clip and profession was not significant
(F(5,70) = .772). The other interactions, sex and age, were likewise not significant.
The pairwise comparison of each clip to all other clips reveals that only clip 1 & clip
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4 and clip 3 & clip 6 are not significant.

The test with the behaviour score amongst only students had 29 participants in the
first group of hours on simulator and 35 participants in the second group. The first
group of hours on road had 15 participants, the second group 7 participants, the
third group 9 participants, the fourth group 19 participants, and the fifth group
14 participants. The effect of clip on behaviour score was significant (F(5, 52) =
8.237, p <.05) with a strong effect (eta® = .442). The interaction between clip and
hours sim was not significant (F(5, 52) = .159). However, the interaction between
clip and hours road was significant (F'(20, 173.414) = 1.684, p <.05) with a strong
effect (eta® = .137). Likewise, the interaction between clip and age was significant
(F(5, 52) = .748, p <.05). The other interactions were not significant. The pairwise
comparison of each clip to all other clips reveals that only clip 1 & clip 4 and clip 1
& clip 2 are not significant.

In combination with the means of Table 6.1, it is revealed that there is a differ-
ence between the clips, and that the intended behaviour of the non-control clips
was recognized as intended. Amongst the non-control clips, the biggest surprise is
that normal far differs significantly from normal close, with normal close being seen
as more cautious that normal far. Amongst the control clips, control close is seen
as equally cautious to normal close. Furthermore, amongst only students there is
no significant difference between control close and cautious far and amongst both
students and instructors there is no significant difference between normal far and
control far. Although there is no significant relation between profession and clip
score, these differences seem to give an indication that there is a difference between
instructors and students. However, the small number of instructors could influence
the results. Another surprising result was the significant relation between hours road
and behaviour score amongst students. The means of Table 6.2 reveal that the more
road hours a student had the less cautious he thought the clips were. The exception
is the first group which had the least road hours. However, like the instructors some
groups had a very low number of subjects, which could influence the results.

clip description behaviour S + I | behaviour S | realism S + I | realism S
1 control close -1.052 -1.423 -.342 -.407
2 cautious far -2.031 -2.050 .282 142
3 normal far .007 .109 -1.210 -1.171
4 normal close -.947 -1.214 -.319 -.515
5 | aggressive close 1.537 1.450 -.195 -.416
6 control far .586 758 -.400 -.369

Table 6.1: Estimated marginal means of behaviour and realism scores for the biased
intersection scenario amongst students (S) and instructors (I).

The test with the realism score amongst both students and instructors was done
with 77 subjects; of those 77, 11 were instructors and 66 were students. The effect
of clip on realism was significant (F(5,69) = 2,574, p <.05) with a strong effect (eta?
= .157). The interaction between clip and profession was not significant (F'(5, 69) =
.296). The other interactions were likewise not significant. The pairwise comparison
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Group | Hours | Mean
1 0-9 -.404
2 10-19 | -.630
3 20-29 | -.422
4 30-39 | -.293
5 40-504+ | -.228

Table 6.2: Means of hours on the road for behaviour score amongst students

of each clip to all other clips reveals that only clip 3 has a significant difference with
all other clips.

The test with the realism score amongst only students had 30 participants in the
first group of hours on simulator and 36 participants in the second group. The first
group of hours on road had 16 participants, the second group 7 participants, the
third group 9 participants, the fourth group 22 participants and the fifth group 12
participants. The effect of clip on realism was not significant (F(5,54) = 1,896).
The same applies for the interaction between clip and hours sim (F'(5, 54) = 1.084),
as well as the interaction between clip and hours road (F(20, 180.048) = 1.593).
Furthermore, all other interactions are also not significant.

In combination with the means of Table 6.1, it is revealed that the normal far clip
is seen as the most realistic of all clips. All other clips are judged equally realistic.
Furthermore, most clips have a negative realism score, indicating that they are more
realistic than unrealistic. The only exception is cautious far, which is seen as more
unrealistic than realistic. Cautious far was also judged as the most cautious, giving
rise to the hypothesis that the more extreme the behaviour, the more unrealistic it is
perceived. Unfortunately, cautious far is not significantly different to any other clip.
Furthermore, there is no significant effect of profession on clip. However, similar
to the behaviour score tests there is a difference between the two groups. The test
amongst both students and instructors shows a significant effect of clip on realism,
while the test amongst only students does not show this significance.

6.2 Leaving traffic light

The test with the behaviour score amongst both students and instructors was done
with 85 subjects; of those 85, 15 were instructors and 70 were students. The effect of
clip on behaviour score was significant (F'(3, 79) = 6.045, p <.05) with a strong effect
(eta® = .187). The interaction between clip and profession was not significant (F(3,
79) = 2.400). The other interactions were likewise not significant. The pairwise
comparison of each clip to all other clips reveals that only clip 1 & clip 3 and clip 2
& clip 4 are not significant.

The test with the behaviour score amongst only students had 31 participants in the
first group of hours on simulator and 39 participants in the second group. The first
group of hours on road had 17 participants, the second group 7 participants, the
third group 10 participants, the fourth group 23 participants and the fifth group
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13 participants. The effect of clip on behaviour score was significant (F(3, 60) =
3.879, p <.05) with a strong effect (eta®> = .162). The interaction between clip
and hours sim was not significant (F(3, 60) = .224). The same applies for the
interaction between clip and hours road (F(12, 159.037) = .994), as well as the
other interactions. The pairwise comparison of each clip to all other clips reveals
that only clip 1 & clip 3 and clip 2 & clip 4 are not significant.

The marginal means of Table 6.3 reveal that similar to the biased intersection sce-
nario, there is a significant difference between the clips and that the intended be-
haviour of the non-control clips is mostly recognized as such. This leads to the
conclusion that the higher the preferred acceleration is, the more aggressive the
behaviour is perceived. However, the aggressive and normal clips do not differ sig-
nificantly on behavioural score. Since both means are around zero, the behaviour
in the aggressive clip is seen as normal. With regards to the preferred acceleration
this indicates that the highest setting was not high enough. The control and cau-
tious clips are seen as significantly more cautious than the normal and aggressive
clips, although there was no significant difference between them. Furthermore, there
was again no significant effect of profession on behavioural score and no significant
differences between the two groups.

clip | description | behaviour S + I | behaviour S | realism S + I | realism S
1 cautious -1.969 -1.381 .190 -.158
2 normal -.091 -.256 -.951 -.841
3 control -1.738 -1.405 .492 .166
4 aggressive -.084 .005 -.862 =774

Table 6.3: Estimated marginal means of behaviour and realism scores for the leaving
traffic light scenario amongst students (S) and instructors (I).

The test with the realism score amongst both students and instructors was done
with 84 subjects; of those 84, 15 were instructors and 69 were students. The effect
of clip on realism score was significant (F'(3, 78) = 3.928, p <.05) with a strong effect
(eta® = .131). The interaction between clip and profession was not significant, (F(3,
78) = 1.456). The other interactions were likewise not significant. The pairwise
comparison of each clip to all other clips reveals that only clip 1 & clip 3 and clip 2
& clip 4 are not significant.

The test with the realism score amongst only students had 30 participants in the
first group of hours on simulator and 39 participants in the second group. The first
group of hours on road had 17 participants, the second group 7 participants, the
third group 10 participants, the fourth group 22 participants and the fifth group
13 participants. The effect of clip on realism score was not significant (F'(3, 59) =
2.303). The interaction between clip and hours sim was not significant (F'(3, 59)
= 1.263). The same applies for the interaction between clip and hours road (F'(12,
156.391) = .546), as well as the other interactions.

Table 6.3, reveals that the cautious and control clips are seen as less realistic than
the aggressive and normal clips. Furthermore, like with the behaviour scores, the
cautious and control clips and the normal and aggressive clips have no significant
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difference between them. Also, the normal and aggressive clips are seen as more
realistic than unrealistic due to the fact that their means are negative. The cautious
and control clips are seen as more unrealistic than realistic since their means are
positive for students and instructors. However, there is no significant result in the
test with only students, even though there is no significant effect of profession on
the realism scores. This leads to the same conclusions as the previous scenarios;
instructors do influence the results but this might be the result of too few subjects.
When comparing the realism with behavioural scores, the extreme behaviours are
again seen as more unrealistic than the normal behaviours.

6.3 Approaching traffic light

The test with the behaviour score amongst both students and instructors was done
with 82 subjects; of those 82, 15 were instructors and 67 were students. The effect
of clip on behaviour score was not significant (F'(5, 74) = 1.792). The interaction
between clip and profession was also not significant (F'(5, 74) = .481), similar to the
other interactions which were also not significant.

The test with the behaviour score amongst only students had 30 participants in the
first group of hours on simulator and 37 participants in the second group. The first
group of hours on road had 17 participants, the second group 7 participants, the
third group 11 participants, the fourth group 21 participants and the fifth group
11 participants. The effect of clip on behaviour score was significant (F'(5, 55) =
4.004, p <.05) with a strong effect (eta® = .267). The interaction between clip
and hours sim was not significant (F'(5, 55) = 1.907). The same applies for the
intersection between clip and hours road (F'(20, 183.364) = 1.326), as well as the
other interactions. The pairwise comparison of each clip to all other clips reveals
that only clip 2 & clip 3, clip 2 & clip 5 and clip 3 & clip 5 are not significant.

In combination with the means of Table 6.4, it is revealed that unlike the previ-
ous scenarios there is a significant effect of clip on behavioural score amongst only
students while this effect is absent in the test with both students and instructors.
Furthermore, there is no significant effect of profession on score. This leads to the
conclusion that in this scenario the instructors seem to have a dampening effect
while in the previous two scenarios the instructors have an amplifying effect. As for
the differences between the behavioural scores themselves: cautious short, normal
average and aggressive long do not differ significantly from each other. Furthermore,
these three clips are seen as more aggressive than the cautious long clip and less
aggressive than the aggresive short clip, indicating that the intended behaviour of
the clips was mostly recognized as such. This leads to the conclusion that the follow-
ing distance does have an influence on the perceived behaviour since the cautious
short and aggressive long differ significantly from their behavioural counterparts.
Lastly the control clip differs significantly from all other clips and is seen as the
most cautious.

The test with the realism score amongst both students and instructors was done
with 78 subjects; of those 78, 15 were instructors and 63 were students. The effect
of clip on realism was not significant (F'(5,70) = ,326). The interaction between
clip and profession was also not significant (F'(5, 70) = .712), similar to the other
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clip description behaviour S 4+ I | behaviour S | realism S + I | realism S
1 cautious long -.229 -.482 -.790 -.693
2 cautious short .369 .260 -.552 -.296
3 | normal average 404 515 -.858 -.809
4 control -1.283 -1.614 -.069 197
5t aggressive long 157 .880 -1.028 -.952
6 | aggressive short 1.268 1.408 -.708 -.298

Table 6.4: Estimated marginal means of behaviour and realism scores for the ap-
proaching traffic light scenario amongst students(S) and instructors (I).

interactions which were likewise not significant.

The test with the realism score amongst only students had 28 participants in the
first group of hours on simulator and 35 participants in the second group. The first
group of hours on road had 14 participants, the second group 7 participants, the
third group 11 participants, the fourth group 21 participants and the fifth group 10
participants. The effect of clip on realism was not significant (F'(5,51) = 1,668). The
same applies for the interaction between clip and hours sim (F(5, 51) = .768) and
the interaction between clip and hours road (F(20, 170.098) = 1.059). Furthermore,
there is no significance on the other interactions.

Since none of the effects in the realism tests are significant, it is difficult to draw
any proper conclusions. However, the means of Table 6.4 do give an indication that
the control clip is seen as less realistic than the non-control clips. Since this effect
was one of the main research questions of our work, we will mention the pairwise
comparison of the control clip with the non-control clips. Amongst both students
and instructors there is a significant difference between the control clip and the
normal and aggressive long clips. Amongst only students there is also a significant
difference between the control clip and the cautious long clip. These results add
to the evidence that the control clips are seen as less realistic than the non-control
clips but this addition is slim due to their origin.

When comparing the realism scores with the behavioural scores we again see that
the most cautious clip is the most unrealistic. However, the most aggressive clip does
not share this tendency and is perceived as equally realistic as the other non-control
clips.

6.4 Highway left

The test with the behaviour score amongst both students and instructors was done
with 85 subjects; of those 87, 15 were instructors and 72 were students. The effect of
clip on behaviour score was significant (F'(2, 82) = 5.489, p <.05) with a strong effect
(eta? = .118). The interaction between clip and profession was not significant (F(2,
82) = .362). The other interactions were likewise not significant. The pairwise
comparison of each clip to all other clips reveals that each clip has a significant
difference with all other clips.
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The test with the behaviour score amongst only students had 32 participants in the
first group of hours on simulator and 40 participants in the second group. The first
group of hours on road had 17 participants, the second group 7 participants, the
third group 13 participants, the fourth group 22 participants and the fifth group
13 participants. The effect of clip on behaviour score was significant (F(2, 63) =
9.295, p <.05) with a strong effect (eta® = .228). The interaction between clip and
hours sim was not significant (F'(2, 63) = .985). The same applies for the interaction
between clip and hours road (F(8, 126) = .694), as well as the other interactions.
The pairwise comparison of each clip to all other clips reveals that only clip 1 & clip
2 are not significant.

The marginal means of Table 6.5 reveal that amongst students and instructors the
shorter the following distance is, the more aggressive it is perceived. The least
aggressive clip is the clip with average following distance, although it does not
differ significantly from the minimum clip amongst only students. Furthermore,
the average clip is seen as normal, creating a lack of any obvious cautious clip.
The extreme minimum and minimum clips do differ significantly and the former
is judged as most aggressive. Although there is no significant effect of profession
on behavioural score, there is again a slight difference between the groups when it
comes to number of significant results.

clip | description | behaviour S 4+ I | behaviour S | realism S + I | realism S
1 minimum 414 321 -.827 -.838
2 average -.034 .044 -.862 -.871
3 | ex. minimum 1.764 1.666 -.508 -.215

Table 6.5: Estimated marginal means of behaviour and realism scores for the high-
way left scenario amongst students (S) and instructors (I).

The test with the realism score amongst both students and instructors was done with
87 subjects; of those 87, 15 were instructors and 72 were students. The effect of clip
on realism score was not significant (F'(2, 82) = .105). The interaction between clip
and profession was not significant (F'(2, 82) = 2.429). The other interactions were
likewise not significant.

The test with the realism score amongst only students had 32 participants in the
first group of hours on simulator and 40 participants in the second group. The first
group of hours on road had 17 participants, the second group 7 participants, the
third group 13 participants, the fourth group 22 participants and the fifth group
13 participants. The effect of clip on realism score was not significant (F'(2, 63) =
.890). The interaction between clip and hours sim was also not significant (F'(2, 63)
= .025). The same applies for the interaction between clip and hours road (F(8,
126) = 1.349), as well as the other interactions.

Since none of the results are significant and there are no control clips in this scenario
all clips are deemed equally realistic or unrealistic. With the mean scores of Table
6.5 we can observe that the scores of all clips is negative, meaning that the clips are
seen as more realistic than unrealistic. Furthermore, there was no significant effect
of profession on realism score and no difference in significant results between the
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groups.
Due to the fact that there are no significant results for realism and no control clips,
a comparison between realism and behavioural scores will prove difficult. The most
aggressive clip does have a lower realism score but we cannot say anything about
whether this difference is significant or not.

6.5 Highway right

The test with the behaviour score amongst both students and instructors was done
with 85 subjects; of those 85, 15 were instructors and 70 were students. The effect
of clip on behaviour score was significant (F'(2, 80) = 3.435, p <.05) with a medium
effect (eta® = .079). The interaction between clip and profession was not significant
(F'(2, 80) = .231). The other interactions were likewise not significant. The pairwise
comparison of each clip to all other clips reveals that each clip has a significant
difference with all other clips.

The test with the behaviour score amongst only students had 32 participants in the
first group of hours on simulator and 38 participants in the second group. The first
group of hours on road had 17 participants, the second group 8 participants, the
third group 10 participants, the fourth group 23 participants and the fifth group 12
participants. The effect of clip on behaviour score was significant (F(2, 61) = 5.716,
p <.05) with a strong effect (eta? = .158). The interaction between clip and hours
sim was not significant (F(2, 61) = 1.171). The same applies for the interaction
between clip and hours road (F'(8, 122) = .621), as well as the other interactions.
The pairwise comparison of each clip to all other clips reveals that only clip 1 & clip
2 are not significant.

In combination with the means of Table 6.6, it is revealed that the shorter the
tail distance the more aggressive the behaviour is perceived. However, unlike the
highway left scenario, the scores are all in the negative, lacking any obvious or even
slightly aggressive behaviour. Even the extreme minimum clip is seen as normal
where it was intended as aggressive. Furthermore, there was again no significant
effect of profession on behavioural score and there are no differences on the number
of significant results between the groups.

clip | description | behaviour S + I | behaviour S | realism S + I | realism S
1 | ex minimum -.035 -.075 -.969 -1.071
2 average -1.292 -1.322 -.123 -.207
3 minimum -.822 =776 -.394 -.609

Table 6.6: Estimated marginal means of behaviour and realism scores for the high-
way right scenario amongst students (S) and instructors (I).

The test with the realism score amongst both students and instructors was done
with 83 subjects; of those 83, 15 were instructors and 68 were students. The effect
of clip on realism score was significant (F(2, 78) = 3.234, p <.05) with a medium
effect (eta® = .077). The interaction between clip and profession was not significant
(F(2,78) = .649). The other interactions were likewise not significant. The pairwise
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comparison of each clip to all other clips reveals that only clip 2 & clip 3 are not
significant.

The test with the realism score amongst only students had 31 participants in the
first group of hours on simulator and 37 participants in the second group. The first
group of hours on road had 17 participants, the second group 8 participants, the
third group 9 participants, the fourth group 22 participants and the fifth group 12
participants. The effect of clip on realism score was not significant (F(2, 59) =
2.931). The interaction between clip and hours sim was also not significant (F'(2,
59) = 1.713). The same applies for the interaction between clip and hours road
(F'(8, 118) = 1.745), as well as the other interactions.

From the results we can observe that there is a significant effect of clip on realism
amongst students and instructors which lacks amongst only students. Furthermore,
like the previous scenarios, there is no significant effect of profession on realism
score. When taking the means scores of Table 6.6 into account, it is revealed that
the extreme minimum clip is seen as more realistic than the other clips. However,
since all clips have a negative realism score they are seen as more realistic than non
realistic.

Combining the realism with behavioural scores reveals that the clip with the most
normal behaviour, extreme minimum, is seen as the most realistic. The other two
clips display cautious behaviour and are seen as less realistic than the clip with
normal behaviour.
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7. Implementation

This section explains the implementation of our model and any alterations to the
theory. The model was implemented using Unity3D, a game engine and game de-
velopment platform [35]. Due to our choice of game engine some alterations have
been made to the theory as explained in Section 4. As far as we know, these changes
have yielded no apparent limitations. Moreover, the advantages of using this game
engine far outweigh any alterations that have been made because of it.

7.1 Alterations to BDI

Our agent model roughly uses the interpreter loop as presented by Roa and Georgeft
[28]. However, due to our choice of game engine, some changes in order have been
made. Most important difference is that any new events spawned by the actions
of the agent and/or the world are only viewed in the next iteration of the system.
This forces the execute method to the end of the interpreter loop and the get-new-
external-events method to the start of the loop. Furthermore, although the first
alteration by Roa and Georgeff [28] mentions changing beliefs, they do not mention
when these beliefs are updated. Therefore, the get-new-external-events method is
changed to updateBeliefs to explicitly handle all changes in the world. This also
drops the event-queue, which is not necessary anymore. This concurs with the sug-
gestion of an extra procedure to delay events to the end of the interpreter loop. By
handling all events at once, there is no need for an event-queue, although any in-
ternal events are still handled when prompted. The rest of the loop remains intact,
although some names are changed as will be explained shortly.

Another alteration is that the role of plans has been made more prominent. Roa
and Georgeff introduce plans as a means to both hold the information to achieve
a new state, as well as the options available to the agent, effectively replacing in-
tentions. In our method, plans are the only options available to the agent, which
result in the option generator function to be the plan generator function, called
generateNewPlans. This in turn has a consequence for the deliberate options func-
tion, which in our method deliberates over the newly generated plans. This func-
tion is therefore named filterNewPlans and also incorporates the functionality of the
update-intentions procedure. Furthermore, it is obvious that most vehicles are made
for transportation, to transport something or someone from A to B. Therefore, any
agent in the model has only one desire at its roots: to reach its destination. All
additional desires are an extension or addition to this; avoiding collisions, adhere
traffic rules, or limit fuel consumption. This desire can be fulfilled by a single in-
tention and thus plan: the description of a route to get from A to B, where B is
the desired location, and A is the current or starting location. All other plans are
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built upon this route and fulfill other desires: avoid collisions, or following traffic
rules. For the interpreter, this results in an alteration of the drop-successful-attitude
and drop-impossible-attitudes, which can be seen as a remove successful and failed
plans. Having one desire and describing that desire as a single plan concurs with
the intended usage of the agents: to act as background traffic.

7.2 Roadnet

In this section we give our implementation of the RoadNet as explained in Section
4.1. At the basis of the RoadNet lies the Lane, a data structure that acts as a
description of the real world traffic lane. A single Lane has several vectors that
describe its location. These vectors are: a start vector S , end vector E and a
tangent vector T for curved lanes. In the case of a curved lane, T describes the
single control point of a quadratic Bézier curve. Each curved lane is translated
into several smaller straight lanes through interpolation with a size that can be
determined by the user. This makes calculations with the route following easier
since calculating intersections between a line and a circle is easier than between a
circle fimd a Bézier curve. The driving direction is indicated by the directional vector
D=F-5.

Figure 7.1: The creation of a Lane in the RoadNet, the red circle is the S vector and
the green circle the E vector.

A Lane L can have none or several connecting lanes in either direction. The lanes
in line with the driving direction, named next lanes, have the same coordinates for
S as L does for E. The lanes in the opposite direction, named previous lanes, have
the same coordinates for E as L does for 5. Most lanes have only one lane in both
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lists, multiple lanes only occur at intersections.

Furthermore each Lane has a speed limit, advisory speed limit, lane group number,
list of allowed vehicle types and a list of traffic signs. Most of these variables reflect
the traffic rules in the Netherlands [20]. Ounly the lane group number has no direct
relation to traffic ruling.

Both speed limits are in km/h since that is the standard measurement for speed
limits in the Netherlands. All lanes between intersections have the same lane group
number to indicate that they are part of the same stretch of road. Agents can use
that number to see if another agent is driving on the same road as they are. The
list of allowed vehicles limits agents in the roads they can use for path planning.
For example, an agent with the vehicle type ‘truck’ can only drive on lanes that
allow trucks. Lastly, the list of traffic signs contains all traffic signs that apply to
that lane. There are some restrictions and deviations for traffic signs that will be
explained shortly. Furthermore, the RoadNet has no visible representation in the
environment, traffic signs need to be placed by hand to alert the human player.

Figure 7.2: The first step in the creation of an Intersection in the RoadNet, the
creation of the incoming (green) and outgoing (red) lanes.

Intersections are stored as a separate data structure. Each intersection has a center
position vector CT , a list of intersection lanes and a variable indicating the type of
intersection. Types currently supported are equal intersections, biased intersections,
traffic light intersections, and roundabouts. Intersections with traffic lights also
contain a traffic light controller. CT is the average of all S and E vectors of the
outgoing and incoming lanes respectively. An intersection lane is a special kind of
lane that is only used in intersections. It contains all information of a normal Lane
plus the Intersection it falls under, the direction (straight, left, right or u-turn) and
a center position vector CL. CL is the average of S and E for straight lanes, and
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Figure 7.3: The result of an automatic generation of an Intersection in the RoadNet,
the intersection lanes are colored according to their direction. The smaller black
dots indicate the location of C'L and the yellow circle indicates C1.

the center interpolation for the Bézier curves. All smaller straight lanes originating
from a Bézier curve share the same C'L of that curve. C'L is used in collision checks
on intersections. Intersection lanes start at the stop line, the white line that tells
vehicles where to stop. The end position is parallel to the start position of the
lane in opposite direction. Vector T of curved lanes is the intersection between the
incoming and outgoing lane.

7.3 Path planning and route following

Apart from holding information, the RoadNet is also used in path planning and
route following. The actual path planning is done using A*. Each lane is handled
as a node with E as the position of the node. Neighbouring nodes are drawn from
the next lanes list of each lane. When a correct path is found, A* returns a list
of connecting lanes that act as the Route of the agent. Since the route is stored
as a collection of lanes, all data from the RoadNet is stored within this collection.
Therefore, many information requests can be handled by using the Route of the
agent instead of using the far larger RoadNet, which increases performance.

Since path planning and route following is not the focus of our work we rely on the
Indicative Route method as described in [22]. Given a lane L and a circle C' around
the agent’s center position with radius r, the agent steers towards the intersection
1 of L and C that lies in the driving direction of the agent. ¢ can be seen as the
attraction point that draws the agent towards it. L is determined by first taking
the current lane the agent is driving on and then continuing on the route till either
an intersection is found or the distance from the agent to Vector E of the lane is
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greater than r. Should in the latter case no intersection be found, the agent steers
towards the last known intersection. r is equal to the velocity of the agent and
can be influenced to allow smoother or more abrupt steering. The minimum of r is
half of the vehicles length plus one meter. This guarantees that the agent is always
steering forward, even when standing still.

The steering output is the angle between the forward vector of the agent and 7 - the
current location vector of the agent. That angle is translated to a value between -1
and 1, with -1 indicates steering to the far left and 1 to the far right.

7.4 Belief Base

In this section we present our implementation of the belief system including what
variables we store, how we update them and what the most important variables are
used for.

7.4.1 Vehicle

Vehicle contains all observable properties and can be categorized in fixed and dy-
namic variables. Fixed variables include vehicle type and vehicle dimensions. The
dynamic properties which require constant updating are: current location, current
Lane, heading, velocity, acceleration, minimum braking distance. Vehicle type is
primarily used in path planning as each Lane contains a list of accepted vehicle
types. An agent with a vehicle type not in that list will dismiss that lane as possible
path. One of the most important properties is the current lane. As already men-
tioned in Section 4.2, it is too expensive to iterate over all lanes in the RoadNet to
find the current lane the agent is driving on. Therefore we only search on the path
the agent has planned for itself.

Minimum braking distance is the distance it takes for the vehicle to come full
stop after braking at full strength at the current velocity. It is calculated using
v?/(2 * tireFriction * 9.81) with v as the velocity and tireFriction being the fric-
tion coefficient between the tires and the road. This distance measure is often used
to determine when to start braking to stop at a particular point. It is also very
important to prevent collisions with other agents.

7.4.2 Driver

Driver contains the personality of the agent and other internal properties that are
not observable by others. Similar to Vehicle there are fixed and dynamic proper-
ties. The fixed variables are related to personality while the dynamic variables are
internal properties that are necessary for certain plans to function. The personality
parameters are haste, aggression, preferred following distance, preferred minimum
tail distance, a list of rules the agent obeys and lookahead distance. The dynamic
variables are the the agent is taking and the intersection and intersection lane it is
approaching. Although it is observable that an agent is approaching an intersection,
it is not known which lane it is going to take.

Most of the personality variables have already been discussed in Section 5.3.4. One
of the variable that has not been discussed is the list of rules the agent obeys. Al-
though the list is currently still short it can be expanded to incorporate any traffic
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rule. Plans that are designed to abide a certain traffic rule can then be ignored by
the agent that is set to not follow that particular traffic rule. Lookahead distance
is the range at which an agent perceives its surroundings and others. However, it is
mostly used to prevent agents from unnecessary searches.

Of the dynamic variables the route the agent follows is the most important as it con-
tains the path the agent is following. It is the same Route as explained in Section
7.3 and is actually a reference to the Route plan. What intersection and intersection
lane the agent is approaching is determined by iterating over the path in Route. If
an intersection and intersection lane is within a certain distance it is stored here.
These variables are mostly used for the handle intersection plans, discussed in a
later section.

7.4.3 External

Ezxternal is the smallest of the belief bases and holds only two groups of entities:
road data and other agents. Road data is a reference to the RoadNet, while other
agents is a continously updated list of any other agents in its vicinity. These other
agents are found by checking if the vehicle’s dimensions are within, or touching a
sphere with a certain radius around the agent itself. This radius is determined by
the lookAhead distance in Driver. The Vehicle belief base of the found agent is
stored in a list if it does not already exist in that list. The list of found agents is
also iterated over to find the closest vehicle directly in front of the agent.

7.5 Plans

Each plan is required to implement several functions and variables, to allow it to be
integrated in the interpreter loop and used by the agent. In the plan generation phase
the MatchPlan function is called of each plan to see if it there is a possibility that
the plan might match. In the filter phase the FvaluatePlan function of each matched
plan is called to see if it is possible, safe, or necessary to execute the plan. This
structure is similar to the graph from Hidas[21], where a lane changing manoeuvre
is evaluated with the same tests. How the matching and evaluation are done is up
to the user, however it is wise to avoid unnecessary calculations. Executing a plan
is done through the GetNextAction function which returns a steering, throttle, and
brake value. Each plan also has a PlanComplete and PlanFailed function which
indicates if a plan was successfully executed or has failed. Furthermore, the fixed
variables for the plans are: the layer the plan belongs to and the predicted speed
when executing the plan. This variable is used when more than one plan passes the
filter phase, on such occasions the plan with the higher predicted speed is chosen.
For example, when an agent is approaching a truck on the highway it can choose to
follow it, or try to overtake the truck. The predicted speed of the overtake plan is
equal to the speed limit of that lane, while the predicted speed of the following plan
is equal to the speed of the truck. Since the truck is driving under the speed limit
the agent will overtake the truck. In the following subsections several important
plans are explained. However, part of the strength of the model comes from the
ability to write new plans for new behaviour, or altering existing plans.
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7.5.1 Follow other

Follow other represents standard car-following behaviour: the agent will match its
speed to that of the vehicle in front. The vehicle in front is the other agent from the
FExternal belief base, which acts as trigger in the generation phase. In the filter phase
several checks and calculations are done to determine if it is necessary to follow the
other agent. Should the other agents’ speed be higher than, or equal to our own
speed, it is not necessary to follow it. In the Exzternal belief base, no distinction is
made as to where the other agent is, just that it is in front. Therefore we make sure
that the other agent is on the same lane as we are, to prevent errors in curvy roads.
The same applies for the on-intersection check, which prevents errors with regard
to intersections. At execution, the agent will adjust its speed to that of the other
agent as can bee seen in Algorithm 2.

Algorithm 2 The GetNextAction function of the FollowOther plan.

Input: Belief base of the agent and the Vehicle of the other agent Vehicleper-
Output: an Action with a value for steering s, throttle ¢t and brake b. s remains
unchanged.

dpre ferred < getPreferredFollowingDistance(Belief)

Dother < computeDistanceToOther( Vehicleper )

v+ getVelocity(Belief)

Vother <— getVelocity( Vehicleiper)

if Dother < dpreferred then

requiredDeacceleration < (v, — v*) /(2 % (Dother — dpreferread))
b < |requiredDeacceleration/mazimumDeacceleration|

else
t < MaintainSpeed(voper )

end if

return Action(s,t,b)

7.5.2 Lane changing

Lane changing is made up of two plans, ChangeLaneLeft and ChangeLaneRight.
Both plans are very similar in structure and are used for multi-lane roads like high-
ways. The plans therefore follow the reasoning steps of a vehicle trying to overtake
someone on the highway. However, in highway scenarios it is very likely that a vehi-
cle can change from the first to the second lane, but the number of vehicles on the
first lane make it impossible to change to the right again. Therefore the overtaking
is split into two plans to encompass this uncertainty.

The ChangeLaneLeft plan is matched if there is a vehicle in front that is driving
slower than the agent, and a parallel lane exists to the left of the agent. In the filter
phase it is made sure that the parallel lane is clear and that the agent is close enough
to the front vehicle to initiate the manoeuvre. At execution, the agent changes lanes
by swapping the lane it is driving on with the parallel lane. To avoid sudden steering
the clearance is increased for smoother steering.

The ChangeLaneRight plan follows a similar structure as the ChangeLaneLeft plan,
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Algorithm 3 Algorithm to maintain a desired speed.

Input: Belief base of the agent and the desired speed vgegired-
Output: A value for throttle t.
v+ getVelocity (Belief)
a < getAccelerationBelief
Apre ferred < getPreferred Acceleration(Belief)
tprevious <— getPreviousAcceleration(Belief)
At < getTimeSinceLastFrame()
if v < Vdesired && a < Qpreferred then
L tprevious + At * Qpreferred
else
if v > Vdesired then
L« tprevious — At x Qpreferred
else
t < tprevious
end if
end if

return ¢

the biggest difference is that there is no check whether a vehicle is in front the agent.
The plan is therefore matched if a parallel lane to the right of the agent exists. This
is in accordance with the Dutch traffic rule to always keep to the right lane when
possible [20]. In the filter phase it is made sure that the manoeuvre is safe to perform
by checking if the parallel lane is clear of any other agents. The execution is equal
to the ChangeLaneLeft plan, only mirrored.

7.5.3 Handle intersections

Any driving instructor will give the same reasoning steps on how to handle an in-
tersection: observe the situation, evaluate the situation with regard to safety, and
traffic flow, decide on the best course of action, perform that action. The same line
of reasoning can be applied to the handle intersection plans. Observing the situation
is largely done beforehand by the Ezternal belief base. The agent knows where the
other agents are and what type of intersection it is dealing with. For the evaluation
all information from the belief base is processed to decide if it is safe to go or not.
With the safety information the agent decides what the best course of action is and
return that action to the interpreter, fulfilling the last two steps.

This structure is similar amongst all handle intersection plans, with the biggest dif-
ference being in the evaluation of the situation. Each intersection type has different
right of way rules, which impacts whether it is safe for the agent to go or not, as
explained in Algorithm 4. Therefore, we explain the handle equal intersection plan
in extensive detail and give only the differences for the other plans. All plans start
when the appropriate intersection is within viewing distance and end when the agent
has left the intersection.

The handle equal intersection plan is matched if an intersection is on the route of
the agent and within lookahead distance. Any intersections that lie beyond the first
do not trigger a plan. For the filter phase, an extra check is made to confirm the
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match. Agents must deal with intersections along their path, failure to follow the
intersections’ rules will result in collisions. Therefore the predicted speed of the plan
is set to the maximum value, to assure that it is chosen above other plans. This
has a consequence for what the plan must handle, since it overrides other plans that
pass through the filter phase. However, for our model this is only one other plan,
the following of other agents. Therefore the functionality of following other agents is
also made possible for other plans. Algorithm 3 explains the GetNextAction function
of the HandleEquallntersection plan.

Algorithm 4 The GetNextAction function of the HandleEquallntersection plan.
The doNothing() function means that the agent will continue its path unaltered as
dictated by the Route plan.

Input:  Belief base of the agent, the Vehicle of the agent directly in front
Vehicle front, distance to the stopline Dgopline -
Output: an Action with a value for steering s, throttle ¢ and brake b. Is handled
by the returned functions in this algorithm.
D ¢ront < computeDistanceToOther( Vehicle front )
if stopLinelsInFront() then
if Dstopline < Dfront then
if isIntersectionSafe() then
return doNothing()
else
return brakeForStopLine(Dgtopiine)
end if
else
if isIntersectionSafe() then
return FollowOther( Vehicle front)
else
return brakeForOther( Vehicle front)
end if
end if
else
if Exists( Vehicle front) then
return FollowOther( Vehicle font)
else
return doNothing()
end if
end if

A biased intersection has at least one incoming and outgoing lane marked as a major
road. An agent that is not on the major road has to give way to agents that are on
the major road, even if they are to the right of the agent. In all other cases right of
way is handled equally to an equal intersection.

At intersection with traffic lights, the right of way is not handled by any traffic rules
but by the color of the light, making it irrelevant who has right of way or not.

On a roundabout, all vehicles on the roundabout have right of way over other vehi-
cles. Vehicles that want to get on the roundabout have to wait for the vehicles that
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Algorithm 5 Algorithm to check if an intersection the agent is approaching is safe
to cross.
Input: Belief base of the agent.
Output: True or False.
for all Vehicleype, in getOther Agents(Belief) do
if isApproachingOurlntersection( Vehicleper) then
if otherHasRightOfWay ( Vehicleyper) then
return False
end if
else
if isOnOurlntersection( Vehicle,pne,) then
if isOnCollisionCourse( Vehicleyper) then
return False
end if
end if
end if
end for
return True

are driving on it.
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8. Conclusion

In this section we give a conclusion and discussion on the experimental results. Next,
we give the contribution of our method followed by the future work.

8.1 Discussion

From the results we can conclude that the clips show significantly different behaviour
that both students and instructors can recognize. However, that behaviour is not
always recognized as it was intended. Furthermore, although there are differences
between the number of significant results between the tests with only students and
the tests with both students and instructors, there is no significant effect of pro-
fession on the score of the clips. All five behavioural tests with only students are
significant, compared to four significant behavioural tests amongst both students
and instructors. For the realism tests, these differences are even greater; three sce-
nario’s show a significant result on realism amongst both students and instructors,
while amongst only students none of the realism tests were significant. These dif-
ferences make it difficult to draw further conclusions. However, since students are
the primary users of the driving simulator, their results should be considered first.
Therefore, we must conclude that there is no significant effect of clip on realism,
and that most clips are more realistic than unrealistic due to the fact that most
scores are negative. Whether our own agent model is overall more realistic than the
current model remains inconclusive. However, when it comes to normal behaviour
there usually is a significant difference for realism between the clips. Returning to
the behavioural scores, most aggressive behaviour was not seen as aggressive, but as
normal. This was especially clear in the leaving traffic light and highway right sce-
nario’s. For the preferred acceleration and tail distance, this means that they have
to be respectively increased and lowered to achieve aggressive behaviour. Further-
more, the normal close clip in the biased intersection scenario was seen as cautious,
where it was meant as normal. The reason as to why can be drawn from the open
question results, which were included for exactly this purpose. A common complaint
of the biased intersection was that the vehicles waited too long before accelerating
when a car passed. The same applies for the leaving traffic light scenario where clips
were often referred to as ’slow’.

8.2 Contribution

We have created a background traffic agent model for driving simulators using a BDI
framework. To the best of our knowledge, this is the first time BDI has been used
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for a background traffic agent of a driving simulator. Furthermore, the model can
operate in any environment that has a RoadNet, creating enormous flexibility. Using
BDI and the accompanied plans also makes the method very adaptable, making it
easy to incorporate new behaviour.

8.3 Future work

Although our method surpasses existing background traffic models, it does not dis-
play the full range of traffic behaviour. This can be done by adding more plans to
deal with more traffic situations. However, there are some situations that require
more work. For example, the RoadNet does not make it possible to properly deal
with multiple lanes at traffic lights. At such situations it is common that a single
lane diverges into two lanes to cover multiple directions. The RoadNet is not yet
equipped to deal with these situations. Furthermore the types of vehicles supported
are still very limited compared to the broad range of traffic users. Although all four
wheeled vehicles and higher are covered, anything with three or less wheels is not yet
possible. The biggest addition would be bicycles which are an intricate part of urban
traffic in the Netherlands. However, they require their own lanes and traffic rules
which would require more work. When it comes to future experiments it would
be interesting to test more different traffic situations. Furthermore, further tests
are needed to discover students’ attitude towards deviant and aggressive behaviour
since that aspect was lacking in our own experiments. Moreover, the experiments
were limited to clips due to time, but it would be interesting to test and validate
the model with an actual driving simulator. Overall, our method provides a sound
foundation for future expansion to ultimately include the whole spectrum of traffic
behaviour.
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A. Questionnaire Example

%VIDEO_PLACEHOLDER%

38.

Hoe zou u het gedrag van de auto/auto's beoordelen?

Voorzichtig Normaal Agressief
Ik vind het rijgedrag: C C (@l C C C C

39,

Waarom vindt u dat de auto/auto's dat rijgedrag heeft/hebben? (optioneel)

40.

Stelling: Het rijgedrag van de auto/auto's is realistisch.

niet eens/niet
oneens

Ik ben het daar: C C C ol C

Zeer mee eens mee eens

Volgende filmpje
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B. Analysis Graphs

Behavioural scores approaching traffic light
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3 — Students +
Instructors

2 — Students

1

0 .

-1

-2

-3

control close normal far aggressive close
cautious far normal close control far
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Behavioural scores highway left
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Behavioural scores highway right
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Behavioural scores leaving traffic light
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Realism scores approaching traffic light
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Realism scores biased Intersection
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Realism scores highway right
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