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1 Introduction

Set theory is the foundation of modern mathematics and (at the naive level) the first thing
any mathematics student learns at the university. Although the concept of a set was first
introduced by Georg Cantor in the 19th century, the axiomatic system that defines set theory
today was introduced by Zermelo and Fraenkel in the early 20th century. This axiomatic
system, called ZF, has both its strengths and its weaknesses. On one hand it allows us to
perform ordinary naive set theory in other fields of mathematics without having to worry
about such problems as Russel’s paradox. On the other hand, ZF is an extension of Peano
arithmetic and therefore, by the famous Gödel incompleteness theorems, we cannot prove that
ZF is consistent. For we would need some ordinary mathematics to do this, but ZF is our
system of ordinary mathematics, hence ZF would prove it’s own consistency. However, we can
perform relative consistency proofs in set theory, meaning that we can prove the implication
‘if ZF is consistent, then ZF+φ is consistent’, with φ a certain theorem of ZF. This allows us
to perform independence proofs in set theory, for if we would prove this implication for both
φ and ¬φ we would have derived that φ is independent of ZF. The best way of giving these
relative consistency proofs is by giving a method of creating different models of ZF, in order
to make it easier to find suitable models.
In this thesis we will lay out the concept of Boolean-valued models of set theory. This method
of creating models of set theory was first developed by Dana Scott in an unpublished paper
in 1967, and draws heavily on the concept of Boolean algebra’s, named after George Boole
(1815-1864). Most of the material in this thesis is taken from [1], which is by far the most
clear and complete source on the subject.
In section 2, we will will briefly refresh the concept of ZF, give an introduction on Boolean
algebra’s, and prove a number of properties of Boolean algebra’s which will be freely used
in the rest of the thesis. In section 3 we will define a Boolean-valued model of set theory,
and prove some properties and theorem’s about these models. We will also prove that such
a Boolean-valued model is in fact a structure in first order predicate logic satisfying all the
axioms of ZFC (ZF+ the axiom of choice). In section 4, we will briefly discuss the application
of Boolean-valued models in independence proofs.
We assume the reader to be familiar with some basic results in model theory, set theory and
topology. For instance: such notions as a language of first order logic, a structure, the concept
of ordinal numbers or the concept of a topological space will not be explained here.
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2 Preliminaries

2.1 Set theory and formal logic

We will start with a few concepts in logic (especially set theory) which may not be so well-
known. The first is the notion of definable sets in a model. Suppose we are given a language
L and an L-structure M. We call a set A ⊆ M definable in parameters from M if there is
an L-formula φ(x1, ..., xk+1) such that for some m1, ...,mk ∈M:

A = {m ∈M | M |= φ(m1, ...,mk,m)}

Since this thesis will focus on creating models for ZF, we remind the reader that ZF is a theory
in the language L = {∈}, where ∈ is a binary relationship symbol representing elementhood.
ZF is given by the following axioms:

1. Axiom of Extensionality
∀x∀y(∀z(z ∈ x↔ z ∈ y)→ x = y)

2. Axiom of Pairing
∀x∀y∃z∀w(w ∈ z ↔ (w = x ∨ w = y))

3. Axiom scheme of separation
∀x∃y∀z(z ∈ y ↔ (z ∈ x ∧ φ(z)))
Where y is not free in φ

4. Axiom of Union
∀x∃y∀z(z ∈ y ↔ ∃w ∈ x(z ∈ w))

5. Axiom of Power Set
∀x∃y∀z(z ∈ y ↔ ∀w ∈ z(w ∈ x))

6. Axiom of Infinity
∃x(∅ ∈ x ∧ ∀y ∈ x∃z ∈ x(y ∈ z)))

7. Axiom Scheme of Replacement
∀u(∀x ∈ u∃yφ(x, y)→ ∃v∀x ∈ u∃y ∈ vφ(x, y))
Where v is not free in φ(x, y)

8. Axiom of Regularity
∀x(∀y ∈ xφ(y)→ φ(x))→ ∀xφ(x)
Where y is not free in φ(x)

Note that we do not actually need the axiom of pairing, for it can be proved by means of the
other axioms.
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Theorem 2.1. The axiom of pairing can be proved from the other axioms of ZF.

Proof. Suppose x and y are sets. Note that the existence of a set (like x) implies the existence
of the empty set, for ∅ = {z ∈ x | z 6= z} by separation, and this means that P(∅) and P(P(∅))
are also sets. We now define φ(x, y, u, v) to be the formula (u = ∅∧v = x)∨(u = {∅}∧v = y).
By the axiom of replacement we know that {v | ∃u ∈ P(P(∅))φ(x, y, u, v)} is a set, and this
is exactly the set {x, y}. So if x and y are sets then {x, y} is a set.

Therefore, if we need to prove that for a certain structureM we haveM |= ZF, we only have
to prove that all the axioms given above except for the second one hold in M.
The axiom system of ZF is usually augmented with the axiom of choice, which is the assertion
that every surjective function f : X → Y has a section, that is a function s : Y → X such
that for all y ∈ Y : f(s(y)) = y. Note that this is also a theorem in the language of ZF
because we can express the concept of a function in the language of ZF. The system of ZF
with the axiom of choice (denoted by AC) is called ZFC.
Before we can move to the concept of Boolean algebra’s we need one more important set-
theoretical notion, namely the ‘Von Neumann universe’, V . This is the class of all sets, and can
be constructed as follows. Let V0 = ∅, if α is an ordinal and Vα is defined then Vα+1 = P(Vα).
If λ is a limit ordinal and Vα is defined for all ordinals α < λ then Vλ =

⋃
α<λ Vα. By this

recursive definition Vα is defined for all ordinals α. For example: V1 = {∅} and V2 = {∅, {∅}}.
Now we set V =

⋃
α∈ORD Vα, where ORD is the class of all ordinals. Because ∅ is a set we see

by the axiom of power set and the axiom of union that Vα is a set for every ordinal α. One
can now ask how Russel’s paradox is avoided, for isn’t V now defined by taking the union
of sets, and therefore itself a set? The answer is that we are taking the union of sets over a
class (namely ORD), and not a set. And therefore the axiom of union can not be used in
this situation, meaning that V is not a set itself.
We can prove that ∀x∃α(x ∈ Vα) holds by proving that the Vα are transitive sets, and then
use the axiom of regularity. It is easily seen that if x is a transitive set, so x ⊂ P(x), then P(x)
is transitive as well. For suppose a ∈ P(x), then a ⊆ x ⊂ P(x), so a ⊂ P(x) so a ∈ P(P(x)),
which means that P(x) ⊂ P(P(x)), so P(x) is transitive. Because V0 ⊂ V1 and for every
limit ordinal λ we have Vα ⊆

⋃
β<λ Vβ if α < λ it follows by induction on ordinals that for

every α, β ∈ ORD we have α < β implies Vα ⊆ Vβ. We are now ready to prove the following
theorem:

Theorem 2.2. For every set x, there is an ordinal α such that x ∈ Vα. Meaning that ZF
` ∀x∃α(x ∈ Vα).

Proof. We will use the axiom of regularity. Let φ(u) be the formula ∃α(u ∈ Vα). Now suppose
x is a set and ZF ` ∀y ∈ xφ(y). According to the axiom of replacement we now have ZF
` ∃β∀y ∈ x∃α ∈ β(y ∈ Vβ) and therefore ZF ` ∃β(x ⊂ Vβ) so ZF ` ∃β(x ∈ Vβ+1). Therefore
ZF ` φ(x) so ZF ` ∀x(∀y ∈ xφ(y) → φ(x)) so according to the axiom of regularity ZF
` ∀xφ(x), so ZF ` ∀x∃α(x ∈ Vα).

Note that the formula ∃α(x ∈ Vα) can be written in the language of ZF because there is a
formula ψ(α) in the language of ZF stating ‘α is an ordinal’, and therefore the Vα are formally
defined in the language of ZF.
We can now define a function ‘rank’ from V to ORD by stating that rank(x) is the least
α such that x ∈ Vα+1. In the future we can therefore prove a property of all sets by using
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induction on rank.
Remark: It turns out that we can check all the axioms of ZFC in V , making V into a model
of ZFC. Of course this is not a proof of consistency of ZFC, because we are working inside the
system. It is also possible to construct an important submodel of V , called the constructible
universe L, which is also a model of ZFC. We do this by defining L0 = ∅ and for λ a limit
ordinal Lλ =

⋃
α∈λ Lα, which is the same as in the definition of V . However, instead of letting

Lα+1 = P(Lα) as in the definition of V , we let Lα+1 be the set of all subsets of Lα which are
definable in parameters from Lα. And now we define, as usual, L to be L =

⋃
α∈ORD Lα. We

call a set constructible if it is an element of L. The statement that every set is constructible
is called the axiom of constructibility, and denoted by V = L. In fact, this statement turns
out to be independent of ZFC.

2.2 Boolean algebra’s

In this section, we will give the definition and a few elementary yet very useful properties of
Boolean algebra’s, which will later be needed in order to define a Boolean-valued model.

Defintion 2.3. A Boolean algebra is a structure 〈B,∨,∧,¬, 0, 1〉 where B is called the uni-
verse of this algebra, 0 and 1 are two distinct elements of B, ∨ and ∧ are two binary operations
on B and ¬ is a unary operation on B and we have ∀a, b, c ∈ B:

a ∨ b = b ∨ a a ∧ b = b ∧ a
a ∨ (b ∨ c) = (a ∨ b) ∨ c a ∧ (b ∧ c) = (a ∧ b) ∧ c
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
0 ∨ a = a 1 ∧ a = a
a ∨ ¬a = 1 a ∧ ¬a = 0

We shall denote a Boolean algebra 〈B,∨,∧,¬, 0, 1〉 by its universe B. In fact, there are
several different possible notations in literature for a Boolean algebra. We could for example
have chosen to denote ∨ and ∧ with + and · respectively. Note that with this notation, a
Boolean algebra is in some ways just the same as a ring. For example, it has two binary
operations which are associative and commutative. Also, there is the notion of an inverse.
However, our notation has the heuristic advantage that we know the symbols ∧ and ∨ from
propositional logic, and the laws of a Boolean algebra are all consistent with those of classical
first order logic. In fact, suppose we are given a language L of first order logic. Define
an equivalence relation ∼ between sentences in this language by φ ∼ ψ iff ` φ ↔ ψ. The
Lindenbaum-Tarski algebra of this language is the Boolean algebra having the class of all
equivalence classes as its universe, and where ∧, ∨ and ¬ are regular conjunction, disjunction
and negation respectively. In this algebra the element 0 is given by ⊥ and 1 by ¬ ⊥. This
interpretation makes our notation very natural in a sense, where as the notation of a ring
would yield ∀a, b, c ∈ B(a+ bc = (a+ b)(a+ c)), which is very different from behavior in an
ordinary ring. We will have to be careful only to use the laws of a Boolean algebra in proving
theorems, and not accidentally use usual inference rules from classical first order logic though.
We will also use the following abbreviaton: suppose a, b ∈ B, then (a⇒ b) ∈ B is the element
¬a ∨ b.
Boolean algebra’s have a lot of useful properties which are mostly easy to prove.
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Theorem 2.4. Suppose we are given a Boolean algebra B, then we have, for all a, b ∈ B:
i) a ∨ a = a and a ∧ a = a.
ii) a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a.
iii) ¬0 = 1 and ¬1 = 0.
iv) 1 ∨ a = 1 and 0 ∧ a = 0.
v) if (a ∨ b) = 1 and a ∧ b = 0 then b = ¬a.
vi) ¬¬a = a.
vii) ¬(a ∨ b) = ¬a ∧ ¬b and ¬(a ∧ b) = ¬a ∨ ¬b.

Proof. For i), we see that a ∨ a = (a ∨ a) ∧ 1 = (a ∨ a) ∧ (a ∨ ¬a) = a ∨ (a ∧ ¬a) = a ∨ 0 = a
and a ∧ a = (a ∧ a) ∨ 0 = (a ∧ a) ∨ (a ∧ ¬a) = a ∧ (a ∨ ¬a) = a ∧ 1 = a.
For ii), we notice first that a∨ (a∧ b) = (a∨a)∧ (a∨ b) = a∧ (a∨ b), so we only have to prove
the first of the two statements. To do this, we notice that a ∨ (a ∧ b) = (a ∧ 1) ∨ (a ∧ b) =
a ∧ (1 ∨ b) = a ∧ (¬b ∨ b ∨ b) = a ∧ (¬b ∨ b) = a ∧ 1 = a, where we have used property i).
For iii), we see that ¬0 = ¬0 ∨ 0 = 1 and ¬1 = 1 ∧ ¬1 = 0.
For iv) we use i) and see: a∨1 = a∨a∨¬a = a∨¬a = 1 and a∧0 = a∧a∧¬a = a∧¬a = 0.
The proof of v) is slightly more tricky then the ones above. Suppose a ∨ b = 1 and a ∧ b = 0.
Then we see that b∧¬a = (b∧¬a)∨0 = (b∧¬a)∨ (a∧ b) = b∧ (a∨¬a) = b∧1 = b. However,
we also see that b ∧ ¬a = (b ∧ ¬a) ∨ 0 = (b ∧ ¬a) ∨ (a ∧ ¬a) = ¬a ∧ (a ∨ b) = ¬a ∧ 1 = ¬a.
This proves that b = ¬a.
vi) follows from v), since a ∨ ¬a = 1 and a ∧ ¬a = 0 we see that a = ¬(¬a).
To prove vii) (De Morgan’s laws), we will use v). To prove the first of the laws, we have to
prove, according to v), that ((a ∨ b) ∨ (¬a ∧ ¬b)) = 1 and ((a ∨ b) ∧ (¬a ∧ ¬b)) = 0. We see:
(a ∨ b) ∨ (¬a ∧ ¬b) = a ∨ (b ∨ (¬a ∧ ¬b)) = a ∨ ((b ∨ ¬a) ∧ (b ∨ ¬b)) = a ∨ ((b ∨ ¬a) ∧ 1) =
a ∨ (b ∨ ¬a) = 1 ∨ b = 1. And:
(a ∨ b) ∧ (¬a ∧ ¬b) = ¬b ∧ (¬a ∧ (a ∨ b)) = ¬b ∧ ((¬a ∧ a) ∨ (¬a ∧ b)) = ¬b ∧ (0 ∨ (¬a ∧ b)) =
¬b ∧ ¬a ∧ b = 0 ∧ ¬a = 0. This proves the first De Morgan law.
To prove the second, we can use the first and vi). We see:
¬(a ∧ b) = ¬(¬¬a ∧ ¬¬b) = ¬(¬(¬a ∨ ¬b)) = ¬a ∨ ¬b.

We can define a natural ordering ≤ on a Boolean algebra B by stating that ∀a, b ∈ B: a ≤ b
if a = a ∧ b.

Theorem 2.5. The ordering a ≤ b if a = a ∧ b is a partial ordering.

Proof. Because a = a ∧ a we see that a ≤ a for all a ∈ B. Suppose a, b, c ∈ B and a ≤ b and
b ≤ c. Then a = a ∧ b and b = b ∧ c, so a = a ∧ b = a ∧ (b ∧ c) = (a ∧ b) ∧ c = a ∧ c, so a ≤ c.
Suppose a ≤ b and b ≤ a, so a = a ∧ b and b = a ∧ b, then of course a = b.

Theorem 2.6. Suppose a and b are in some Boolean algebra B, then a ≤ b iff a⇒ b = 1.

Proof. Suppose a ≤ b, then a = a ∧ b so ¬a ∨ b = ¬a ∨ ¬b ∨ b = ¬a ∨ 1 = 1, so a ⇒ b = 1.
Suppose a ⇒ b = 1, then ¬a ∨ b = 1 so a = a ∧ 1 = a ∧ (¬a ∨ b) = 1 ∨ (a ∧ b) = a ∧ b so
a ≤ b.

We can easily prove (by induction on n) that if {x1, ..., xn} ⊆ B, then x1∧...∧xn is the greatest
lower bound (infimum) of this set, and x1∨ ...∨xn the smallest upper bound (supremum). In
general, if I is some index set, it is possible (but not always the case!) that {xi | i ∈ I} has
an infimum, denoted by

∧
i∈I xi, and/or a supremum, denoted by

∨
i∈I xi. We call a Boolean
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algebra B complete if every A ⊆ B has an infimum and a supremum. Since in this thesis we
will only be working with complete Boolean algebra’s it is useful to prove some properties
which are unique to this particular class of Boolean algebra’s. The first is a generalized version
of De Morgan’s law.

Theorem 2.7. (De Morgan’s law) Suppose B is a complete Boolean algebra, I is some
index set and {xi | i ∈ I} ⊆ B. Then

¬
∧
i∈I

xi =
∨
i∈I
¬xi & ¬

∨
i∈I

xi =
∧
i∈I
¬xi

Proof. Suppose first that a, b ∈ B and a ≤ b. So a = a∧ b and by De Morgan: ¬a = ¬a∨¬b.
So ¬b ∧ ¬a = ¬b ∧ (¬a ∨ ¬b) = ¬b so ¬b ≤ ¬a. We are now going to use this result to prove
theorem 2.7. We know that

∧
i∈I xi ≤ xj for all j ∈ I, so ¬xj ≤ ¬

∧
i∈I xi for all j ∈ I. Also,

suppose ¬xj ≤ a for all j ∈ I and some a ∈ B. Then ¬a ≤ xj for all j ∈ I so ¬a ≤
∧
i∈I xi and

so ¬
∧
i∈I xi ≤ a. So ¬

∧
i∈I xi =

∨
i∈I ¬xi. The proof that ¬

∨
i∈I xi =

∧
i∈I ¬xi is identical

to the one given, and shall therefore be omitted.

Theorem 2.8. Suppose B is a Boolean algebra and a, b, c ∈ B, and suppose a ≤ b. Then
a ∧ c ≤ b ∧ c and a ∨ c ≤ b ∨ c.

Proof. a = a ∧ b so a ∧ c = a ∧ b ∧ c = a ∧ b ∧ c ∧ c because c ∧ c = c, so a ∧ c ≤ b ∧ c. Also:
a ∨ c = (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c) so a ∨ c ≤ b ∨ c.

Corollary 2.9. Suppose B is a complete Boolean algebra, y ∈ B, I is some index set and
{xi | i ∈ I} ⊆ B. Then

y ∧
∨
i∈I

xi =
∨
i∈I

(y ∧ xi) & y ∨
∧
i∈I

xi =
∧
i∈I

(y ∨ xi)

In order to clarify the concepts introduced in this section we will give a few example’s of
Boolean algebra’s.
Example 1. Suppose A is any non-empty set, then 〈P(A),∪,∩,−c, ∅, A〉 is a Boolean alge-
bra, where −c means that the inverse of a set X ⊆ A is the complement of X in A. It is easy
to check that these operations on sets satisfy all the properties of a Boolean algebra. The
ordering is defined by X ≤ Y iff X ⊆ Y , and we see that this is a complete Boolean algebra
where the supremum of {Xi ⊆ A | i ∈ I} with I some index set is

⋃
i∈I Xi and the infimum is⋂

i∈I Xi. If A consists of only 1 element then P(A) consists of only 2 elements, which are by
definition the constants 0 and 1. This Boolean algebra is called the trivial Boolean algebra.
Example 2. In this example we will treat the Boolean algebra of regular opens of a topo-
logical space. This example is far from trivial, but it will be very important in proving the
independence of the generalized continuum hypothesis (GCH) from ZFC, and therefore, we
will treat it in detail. Suppose (X, T ) is some topological space. We call a set A ∈ T a regular

open set if
◦

A = A. Note that this is the same as saying that A⊥⊥ = A, where A⊥ = A
c

is the
complement of the closure of A. This is the definition of regular open we will use from here
on. The collection of regular open sets in T is denoted by RO(X).

Theorem 2.10. 〈RO(X), (− ∪−)⊥⊥,∩,−⊥, ∅, X〉 is a Boolean algebra.
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In order to prove this we will need some basic topological facts, such as (A∪B)⊥ = A⊥ ∩B⊥
and A ⊆ B implies B⊥ ⊆ A⊥ for all opens A and B. On top of this we will need a sequence
of lemma’s.

Lemma 2.1. If A is an open then A ⊆ A⊥⊥.

Proof. A ⊆ A so A
c ⊆ Ac. Since A is open we know that Ac is closed so Ac = Ac. This yields

A
c ⊆ Ac = Ac so Acc ⊆ Ac

c
so A ⊆ A⊥⊥.

This shows us that an open is regular open iff A⊥⊥ ⊆ A.

Lemma 2.2. If A is an open then A⊥ = A⊥⊥⊥.

Proof. From the previous lemma we know that A ⊆ A⊥⊥ so A⊥⊥⊥ ⊆ A⊥. On the other hand,
we know that A⊥ is open because it is the complement of a closed set. This shows us that
A⊥ ⊆ (A⊥)⊥⊥, so A⊥ ⊆ A⊥⊥⊥. We conclude that A⊥ = A⊥⊥⊥.

So if A is an open set then A⊥ is always a regular open set.

Lemma 2.3. If A and B are opens then (A ∩B)⊥⊥ = A⊥⊥ ∩B⊥⊥.

Proof. First of all, we know that A ∩ B ⊆ A so A⊥ ⊆ (A ∩ B)⊥ so (A ∩ B)⊥⊥ ⊆ A⊥⊥. By
symmetry we see that (A ∩B)⊥⊥ ⊆ B⊥⊥ so (A ∩B)⊥⊥ ⊆ A⊥⊥ ∩B⊥⊥.
For the converse we use that if A is an open then A∩B ⊆ A ∩B. By taking complements we
see that (A∩B)⊥ ⊆ Ac∪B⊥ and therefore (A ∩B)⊥ ⊆ Ac ∪B⊥. By taking complements we

find Ac ∪B⊥
c
⊆ (A ∩ B)⊥⊥. Because taking closure is distributive over unions and because

A is open and therefore Ac is closed we see that we have A ∩ B⊥⊥ ⊆ (A ∩ B)⊥⊥ whenever
A is open. So if A and B are open then so is A⊥⊥, and therefore we find A⊥⊥ ∩ B⊥⊥ ⊆
(A⊥⊥ ∩ B)⊥⊥. Also, because B is open we find A⊥⊥ ∩ B ⊆ (A ∩ B)⊥⊥, and therefore
(A⊥⊥ ∩B)⊥⊥ ⊆ (A ∩B)⊥⊥⊥⊥ by lemma 2.1. Combining this with lemma 2.2 gives us

A⊥⊥ ∩B⊥⊥ ⊆ (A⊥⊥ ∩B)⊥⊥ ⊆ (A ∩B)⊥⊥

And therefore lemma 2.3 is proven.

We are now ready to prove theorem 2.10.

Proof. We first fix three elements A,B,C ∈ RO(X). We note that proving commutativity of
the binary operations is trivial, and so is associativity of ∩. In order to prove associativity of
(− ∪−)⊥⊥ we use (A ∪B)⊥ = A⊥ ∩B⊥ and note that for all opens A, B and C we have:

((A ∪B)⊥⊥ ∪ C)⊥⊥ = ((A ∪B)⊥ ∩ C⊥)⊥ = (A⊥ ∩B⊥ ∩ C⊥)⊥

Since this expression is symmetrical in A, B and C it is equal to (A ∪ (B ∪ C)⊥⊥)⊥⊥.
We now need to prove distributivity. We first notice that because A∪B and A∪C are opens
whenever A, B and C are opens we can use lemma 2.3 and see that

(A ∪ (B ∩ C))⊥⊥ = ((A ∪B) ∩ (A ∪ C))⊥⊥ = (A ∪B)⊥⊥ ∩ (A ∪ C)⊥⊥
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In order to prove that A ∩ (B ∪ C)⊥⊥ = ((A ∩B) ∪ (A ∩ C))⊥⊥ we again use lemma 2.3 and
see

A ∩ (B ∪ C)⊥⊥ = A⊥⊥ ∩ (B ∪ C)⊥⊥

= (A ∩ (B ∪ C))⊥⊥

= ((A ∩B) ∪ (A ∩ C))⊥⊥

Because we are working with regular open sets we see that (∅ ∪ A)⊥⊥ = A⊥⊥ = A. Also:
X ∩A = A.
Finally, we see that A ∩A⊥ = ∅ and

(A ∪A⊥)⊥⊥ = (A⊥ ∩A⊥⊥)⊥ = (A⊥ ∩A)⊥ = ∅⊥ = A

which completes the proof that 〈RO(X), (− ∪−)⊥⊥,∩,−⊥, ∅, X〉 is a Boolean algebra.
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3 The Boolean-valued model V (B)

3.1 V (B) and the Boolean truth value

In this section, we will use our knowledge of Boolean algebra’s to construct models of ZFC.
In fact, we can construct a model V (B) of ZFC for every complete Boolean algebra B. It is
therefore only logical that different Boolean algebra’s will give rise to different models. This
will allow us to prove the independence of several theorems (like the continuum hypothesis,
CH) from ZFC. All we would have to do is choose two suitable Boolean algebra’s to create
two different models of ZFC. One in which CH is true and one in which it is not true. In this
section, we will use a fixed complete Boolean algebra, B. We will also assume that B ∈ V ,
so B is a set.
The Boolean universe V (B) (or universe of B-valued sets) consists of functions from V (B)

itself to B. It can be constructed as follows. Define for every ordinal α:

V (B)
α = {x | x is a function with values in B, ∃γ < α(dom(x) ⊆ V (B)

γ )}

So V
(B)
α is defined by recursion for all ordinals α. We see that V

(B)
0 = ∅, V (B)

1 is a set

consisting of just 1 element, being the empty function e. V
(B)
2 = {e} ∪ {〈e, b〉 | b ∈ B} etc.

We notice that for every ordinal α we have V
(B)
α ⊆ V

(B)
α+1, because if x ∈ V (B)

α then x is a

function with values in B and dom(x) ⊆ V
(B)
γ with γ < α, but since γ < α + 1 it is by

definition also an element of V
(B)
α+1. So we have a sequence V

(B)
0 ⊆ V

(B)
1 ⊆ ... ⊆ V

(B)
ω ⊆ ....

We now define V (B) to be V (B) = {x | ∃α(x ∈ V (B)
α )}. Note that by induction on ORD it

is easy to prove that for every Boolean algebra B the class V
(B)
α is in fact a set, while V (B)

is not a set because we take the union over all ordinals. This justifies the name ‘universe of
B-valued sets’.
In order to work with V (B) we will define the first-order language L(B), which consists of ∈
and a constant for every element of V (B). We can use an induction principle in V (B) in much
the same way that we can in V . Let φ be a formula, then

∀x ∈ V (B)(∀y ∈ dom(x)φ(y)→ φ(x))→ ∀x ∈ V (B)φ(x)

Now that V (B) is defined, we can define a map ‖ · ‖ from the class of all L(B)-sentences to B.
This map will assign to every L(B)-sentence φ the Boolean truth value of φ. We say that a
sentence φ is true in V (B) if ‖φ‖ = 1. Therefore, in the definition of this map, we will have
to keep in mind that we want all the axioms of ZFC to be true in V (B).
Since it will turn out that defining the Boolean truth value of atomic formulas is the hardest,
we will first suppose that this has already been done. So suppose that φ and ψ are two L(B)-
sentences and that ‖φ‖ and ‖ψ‖ are already defined, then we set ‖φ ∧ ψ‖ = ‖φ‖ ∧ ‖ψ‖ and
‖¬φ‖ = ¬‖φ‖. From this it also follows that ‖φ∨ψ‖ = ‖φ‖∨‖ψ‖ and ‖φ→ ψ‖ = ‖φ‖ ⇒ ‖ψ‖.
If φ(x) is a formula with one free variable in L(B) and ‖φ(u)‖ has been defined for all u ∈ V (B),
then {‖φ(u)‖ |u ∈ V (B)} is a subset of B and we can define ‖∃xφ(x)‖ =

∨
u∈V (B) ‖φ(u)‖

and ‖∀xφ(x)‖ =
∧
u∈V (B) ‖φ(u)‖. Now denote by u(x) the function u which sends x to 1

if x ∈ u and to 0 if x 6∈ u. Then we want ‖∃x ∈ uφ(x)‖ =
∨
x∈dom(u)(u(x) ∧ ‖φ(x)‖)

and ‖∀x ∈ uφ(x)‖ =
∧
x∈dom(u)(u(x) ⇒ ‖φ(x)‖) to be true. We will keep this in mind
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in constructing the truth value of atomic formulas, but prove them later from the official
definition we will give. We also want the axiom of extensionality to hold, so we want ‖u =
v‖ = ‖∀x ∈ u(x ∈ v) ∧ ∀y ∈ v(y ∈ u)‖. And we also want the axiom u ∈ v ↔ ∃x ∈ v(x = u)
to hold, so we want ‖u ∈ v‖ = ‖∃x ∈ v(x = u)‖. If we combine this with our earlier results
we find for all u, v ∈ V (B):

‖u ∈ v‖ =
∨

x∈dom(v)

(v(x) ∧ ‖u = x‖) and

‖u = v‖ =
∧

x∈dom(u)

(u(x)⇒ ‖x ∈ v‖) ∧
∧

y∈dom(v)

(v(y)⇒ ‖y ∈ u‖)

With this explanation in mind we can now give the preceding results in a single coherent
definition.

Defintion 3.1. ‖ · ‖ is a map from the class of all L(B)-sentences to B which assigns to a
sentence φ the Boolean truth value of φ, and which satisfies the following properties, for all
u, v ∈ V (B) and for all L(B)-sentences φ, ψ:

‖u ∈ v‖ =
∨

x∈dom(v)

(v(x) ∧ ‖u = x‖)

‖u = v‖ =
∧

x∈dom(u)

(u(x)⇒ ‖x ∈ v‖) ∧
∧

y∈dom(v)

(v(y)⇒ ‖y ∈ u‖)

‖∃xφ(x)‖ =
∨

u∈V (B)

‖φ(u)‖ and ‖∀xφ(x)‖ =
∧

u∈V (B)

‖φ(u)‖

‖φ ∧ ψ‖ = ‖φ‖ ∧ ‖ψ‖ and ‖¬φ‖ = ¬‖φ‖

We say that an L(B)-sentence φ is true in V (B) if ‖φ‖ = 1. In this case, we write V (B) |= φ.
A rule of inference is valid in V (B) if it preserves truth. So if we have a first order predicate
logical rule of inference ‘from φ we can deduce ψ’, then this rule is valid in V (B) if ‖ψ‖ = 1
whenever ‖φ‖ = 1. These definitions give us the following easy yet important theorem, which
is crucial in being able to prove that V (B) actually is a model of ZFC. In fact, the theorem
states that V (B) with the given interpretation of truth is a structure in first order predicate
logic.

Theorem 3.2. All the axioms of first order predicate logic with equality are true in V (B),
and all the inference rules of first order predicate logic are valid in V (B).

Since there are quit a lot of axioms and inference rules and the proofs look a lot alike or are
trivial we will not prove all of them. We will instead only prove the following:

1. ‖φ→ (ψ → φ)‖ = 1

2. ‖φ ∧ ψ → φ‖ = 1

3. ‖(φ→ ψ)→ ((φ→ ¬ψ)→ ¬φ)‖ = 1
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4. ‖¬φ→ (φ→ ψ)‖ = 1

5. If ‖φ‖ = 1 and ‖φ→ ψ‖ = 1 then ‖ψ‖ = 1 (modus ponens)

6. ‖u = u‖ = 1

7. u(x) ≤ ‖x ∈ u‖ for x ∈ dom(u)

8. ‖u = v‖ = ‖v = u‖

9. ‖u = v‖ ∧ ‖v = w‖ ≤ ‖u = w‖

10. ‖u = v‖ ∧ ‖u ∈ w‖ ≤ ‖v ∈ w‖

11. ‖v = w‖ ∧ ‖u ∈ v‖ ≤ ‖u ∈ w‖

12. ‖u = v‖ ∧ ‖φ(u)‖ ≤ ‖φ(v)‖ for any L(B)-formula φ

Proof. 1.

‖φ→ (ψ → φ)‖ = ‖φ‖ ⇒ (‖ψ‖ ⇒ ‖φ‖)
= ¬‖φ‖ ∨ (¬‖ψ‖ ∨ ‖φ‖)
= ¬‖ψ‖ ∨ 1

= 1

2.

‖φ ∧ ψ → φ‖ = ¬‖φ ∧ ψ‖ ∨ ‖φ‖
= ¬‖φ‖ ∨ ¬‖ψ‖ ∨ ‖ψ‖
= ¬‖ψ‖ ∨ 1

= 1

3.

‖(φ→ ψ)→ ((φ→ ¬ψ)→ ¬φ)‖ = ¬(‖φ‖ ⇒ ‖ψ‖) ∨ (¬(‖φ‖ ⇒ ¬‖ψ‖) ∨ ¬‖φ‖)
= (‖φ‖ ∧ ¬‖ψ‖) ∨ ¬‖φ‖ ∨ (‖φ‖ ∧ ‖ψ‖)
= ¬‖φ‖ ∨ (‖φ‖ ∧ (‖ψ‖ ∨ ¬‖ψ‖))
= ¬‖φ‖ ∨ (‖φ‖ ∧ 1)

= ‖φ‖ ∨ ¬‖φ‖
= 1

4.

‖¬φ→ (φ→ ψ)‖ = ‖φ‖ ∨ ‖φ→ ψ‖
= ‖φ‖ ∨ (¬‖φ‖ ∨ ‖ψ‖)
= ‖ψ‖ ∨ (‖φ‖ ∨ ¬‖φ)

= ‖ψ‖ ∨ 1

= 1
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5. Suppose ‖φ‖ = 1 and ‖φ → ψ‖ = 1. Then ‖ψ‖ = ‖ψ‖ ∨ 0 = ‖ψ‖ ∨ ¬1 and ‖φ‖ = 1 so
this becomes ‖ψ‖ ∨ ¬‖φ‖ = ‖φ→ ψ‖ = 1.

6. First, we know that for all a, b ∈ B we have that a ≤ a ∨ b because a = a ∧ (a ∨ b).
We can now prove our statement using the induction principle in V (B). Suppose that
‖v = v‖ = 1 for all v ∈ dom(u), with u ∈ V (B). Then for all v ∈ dom(u) we have
‖v ∈ u‖ =

∨
x∈dom(u)(u(x)∧‖v = x‖) = (u(v)∧‖v = v‖)∨

∨
x∈dom(u)(u(x)∧‖v = x‖) ≥

(u(v) ∧ ‖v = v‖) = u(v). This gives us

‖u = u‖ =
∧

x∈dom(u)

(u(x)⇒ ‖x ∈ u‖) ∧
∧

x∈dom(u)

(u(x)⇒ ‖x ∈ u‖)

=
∧

x∈dom(u)

(¬u(x) ∨ ‖x ∈ u‖)

=
∧

x∈dom(u)

¬u(x) ∨
∨

y∈dom(u)

(u(y) ∧ ‖y = x‖)


≥

∧
x∈dom(u)

(¬u(x) ∨ u(x))

= 1

So because ‖u = u‖ ≤ 1 we find ‖u = u‖ = 1, and thus by induction ‖u = u‖ = 1 for
all u ∈ V (B).

7. We can use the previous result and a similar technique to prove that u(x) ≤ ‖x ∈ u‖
for x ∈ dom(u). We see:

‖x ∈ u‖ =
∨

y∈dom(u)

(u(y) ∧ ‖y = x‖)

= (u(x) ∧ ‖x = x‖) ∨
∨

y∈dom(u)

(u(y) ∧ ‖y = x‖)

≥ u(x) ∧ ‖x = x‖
= u(x)

8. The fact that ‖u = v‖ = ‖v = u‖ is a direct result from the symmetry in the expression
of ‖u = v‖.

9. We will use the induction principle in V (B). Suppose as induction hypothesis that

∀v, w ∈ V (B)(‖x = v‖ ∧ ‖v = w‖ ≤ ‖x = w‖)

for all x in the domain of some u ∈ V (B). Now suppose that v, w ∈ V (B) and x ∈ dom(u),
y ∈ dom(v) and z ∈ dom(w). Then according to the induction hypothesis we have
‖x = y‖ ∧ ‖y = z‖ ≤ ‖x = z‖ so ‖x = y‖ ∧ ‖y = z‖ ∧ w(z) ≤ ‖x = z‖ ∧ w(z). Taking
the supremum over all the elements of dom(w) of both sides of this inequality yields∨

z∈dom(w)

(‖x = y‖ ∧ ‖y = z‖ ∧ w(z)) ≤
∨

z∈dom(w)

(‖x = z‖ ∧ w(z))
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According to the definition of ‖· ∈ ·‖ this says that ‖x = y‖ ∧ ‖y ∈ w‖ ≤ ‖x ∈ w‖. Our
next step is to prove that ‖v = w‖ ∧ v(y) ≤ ‖y ∈ w‖. We see by definition that

‖v = w‖ =
∧

a∈dom(v)

(v(a)⇒ ‖a ∈ w‖) ∧
∧

b∈dom(w)

(w(b)⇒ ‖b ∈ v‖)

so ‖v = w‖ ≤ ¬v(y)∨‖y ∈ w‖ because y ∈ dom(v). This will yield that ‖v = w‖∧v(y) ≤
‖y ∈ w‖. Combining our two results so far gives us

‖x = y‖ ∧ ‖v = w‖ ∧ v(y) ≤ ‖x = y‖ ∧ ‖y ∈ w‖ ≤ ‖x ∈ w‖

Taking the supremum over all the elements of dom(v) of both sides of this inequality
yields by definition ‖x ∈ v‖ ∧ ‖v = w‖ ≤ ‖x ∈ w‖.
Next, we see that u(x) ∧ ‖u = v‖ ≤ ‖x ∈ v‖, the proof is identical to that of ‖v =
w‖ ∧ v(y) ≤ ‖y ∈ w‖. We use this to see that

‖u = v‖ ∧ ‖v = w‖ ∧ u(x) ≤ ‖x ∈ v‖ ∧ ‖v = w‖ ≤ ‖x ∈ w‖

If we now joint both sides of the inequality with ¬u(x) we find ¬u(x)∨ (‖u = v‖∧ ‖v =
w‖) ≤ u(x) ⇒ ‖x ∈ w‖ which yields ‖u = v‖ ∧ ‖v = w‖ ≤ u(x) ⇒ ‖x ∈ w‖. We now
take the supremum of both sides of this inequality over all the elements in dom(u), and
find

‖u = v‖ ∧ ‖v = w‖ ≤
∧

x∈dom(u)

(u(x)⇒ ‖x ∈ w‖)

So from the induction hypothesis we obtain the inequality above. We now observe that
due to 8. our induction hypothesis is equal to

∀v, w ∈ V (B)(‖w = v‖ ∧ ‖v = x‖ ≤ ‖w = x‖)

which yields

‖w = v‖ ∧ ‖v = u‖ ≤
∧

x∈dom(w)

(w(x)⇒ ‖x ∈ u‖)

By joining these two inequalities we find

‖u = v‖ ∧ ‖v = w‖ ∧ ‖w = v‖ ∧ ‖v = u‖ ≤
∧

x∈dom(u)

(u(x)⇒ ‖x ∈ w‖) ∧
∧

x∈dom(w)

(w(x)⇒ ‖x ∈ u‖)

‖u = v‖ ∧ ‖v = w‖ ≤ ‖u = w‖

10. Suppose z ∈ dom(w), then 9. gives us that ‖v = u‖∧‖u = z‖∧w(z) ≤ ‖v = z‖∧w(z) so
by taking the supremum over all the elements of dom(w) of both sides of this inequality
we find ∨

z∈dom(w)

(‖v = u‖ ∧ ‖u = z‖ ∧ w(z)) ≤
∨

z∈dom(w)

(‖v = z‖ ∧ w(z))

and this yields ‖u = v‖ ∧ ‖u ∈ w‖ ≤ ‖v ∈ w‖.
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11. Suppose y ∈ dom(v). We know by definition that

‖v = w‖ =
∧

a∈dom(v)

(v(a)⇒ ‖a ∈ w‖) ∧
∧

b∈dom(w)

(w(b)⇒ ‖b ∈ v‖)

And because y ∈ dom(v) we find that ‖v = w‖ ≤ ¬v(y) ∨ ‖y ∈ w‖ which yields
‖v = w‖ ∧ v(y) ≤ ‖y ∈ w‖. So by using 10 we see that

‖v = w‖ ∧ v(y) ∧ ‖u = y‖ ≤ ‖y ∈ w‖ ∧ ‖u = y‖ ≤ ‖u ∈ w‖

By taking the supremum over all the elements of dom(v) of both sides of this inequality
yields ‖v = w‖∧

∨
a∈dom(v)(v(a)∧‖u = a‖) ≤ ‖u ∈ w‖ so ‖v = w‖∧‖u ∈ v‖ ≤ ‖u ∈ w‖.

12. We will proof this by induction on the complexity of φ. Suppose φ(u) is an atomic
formula, then φ(u) will be of the form u = y with y ∈ V (B), or u ∈ y with y ∈ V (B) or
y ∈ u with y ∈ V (B). We have proved these cases in 9, 10 and 11 respectively. Suppose
that φ(u) is of the form ψ(u) ∧ χ(u), and suppose ‖u = v‖ ∧ ‖ψ(u)‖ ≤ ‖ψ(v)‖ and
‖u = v‖ ∧ ‖χ(u)‖ ≤ ‖χ(v)‖. Then we see that

‖u = v‖ ∧ ‖φ(u)‖ = ‖u = v‖ ∧ ‖u = v‖ ∧ ‖ψ(u)‖ ∧ ‖χ(u)‖
≤ ‖ψ(v)‖ ∧ ‖χ(v)‖
= ‖φ(v)‖

Suppose that φ(u) is of the form ¬ψ(u), and suppose ‖u = v‖ ∧ ‖ψ(u)‖ ≤ ‖ψ(v)‖.
Because of this we notice that ‖u = v‖ ∧¬‖ψ(u)‖ ∧ ‖ψ(v)‖ ≤ ‖ψ(u)‖ ∧¬‖ψ(u)‖ = 0, so
‖u = v‖ ∧ ¬‖ψ(u)‖ ∧ ‖ψ(v)‖ = 0. Now we see that

‖u = v‖ ∧ ¬‖ψ(u)‖ = ‖u = v‖ ∧ ¬‖ψ(u)‖ ∧ 1

= ‖u = v‖ ∧ ¬‖ψ(u)‖ ∧ (‖ψ(v)‖ ∨ ¬‖ψ(v)‖)
= (‖u = v‖ ∧ ¬‖ψ(u)‖ ∧ ‖ψ(v)‖) ∨ (‖u = v‖ ∧ ¬‖ψ(u)‖ ∧ ¬‖ψ(v)‖)
= 0 ∨ (‖u = v‖ ∧ ¬‖ψ(u)‖ ∧ ¬‖ψ(v)‖)
= ‖u = v‖ ∧ ¬‖ψ(u)‖ ∧ ¬‖ψ(v)‖

So ‖u = v‖∧¬‖ψ(u)‖ = ‖u = v‖∧¬‖ψ(u)‖∧¬‖ψ(v)‖ so ‖u = v‖∧¬‖ψ(u)‖ ≤ ¬‖ψ(v)‖.
Suppose that φ(u) is of the form ∃yψ(y, u), and for all z ∈ V (B) we have that
‖u = v‖ ∧ ‖ψ(z, u)‖ ≤ ‖ψ(z, v‖. Then

‖u = v‖ ∧ ‖φ(u)‖ = ‖u = v‖ ∧
∨

z∈V (B)

‖ψ(z, u)‖

=
∨

z∈V (B)

(‖u = v‖ ∧ ‖ψ(z, u)‖)

≤
∨

z∈V (B)

(‖ψ(z, v)‖)

= ‖∃yψ(y, v)‖
= ‖φ(v)‖

Therefore, the result holds for every L(B)-formula φ.
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3.2 Standard elements of V (B)

The previous section concluded with the proof that V (B) is indeed a structure in first order
predicate logic. The goal of next section will be to prove that it is a model of ZF. The proof
of this will be quite long, since we will have to prove the truth of all the axioms of ZF in V (B)

one by one. Before this can be done we will need to do some preliminary work, which is done
in this section. In fact, the results of this section will only be used in proving the truth of
the axiom of infinity in V (B). However, the results are interesting by themselves, and give us
a better understanding of Boolean valued models.
The first notion we need is that of a complete Boolean subalgebra. Suppose we are given a
Boolean algebra B. We call B′ ⊆ B a subalgebra of B if B′ is nonempty and closed under
∧, ∨ and ¬. We see that if B′ ⊆ B is a subalgebra then {0, 1} ⊆ B′, because if x ∈ B′ then
x ∧ ¬x = 0 ∈ B′ and x ∨ ¬x = 1 ∈ B′. Therefore, B′ is itself a Boolean algebra with the
same Boolean operations and the same constants as B. If B′ ⊆ B is a Boolean subalgebra
then we call B′ a complete Boolean subalgebra if it is complete and for every index set I
and {xi | i ∈ I} ⊆ B′ we have

∨
i∈I xi and

∧
i∈I xi formed in B′ are the same as

∨
i∈I xi

and
∧
i∈I xi formed in B. When we are dealing with subalgebras, we need to work with two

Boolean truth values, one for each distinct Boolean algebra. Whenever B′ is a subalgebra of
B we will denote their truth values by ‖ · ‖B′ and ‖ · ‖B respectively.

Theorem 3.3. Suppose B′ is a complete Boolean subalgebra of B, then V (B′) ⊆ V (B) and for
every u, v ∈ V (B′) we have ‖u = v‖B′ = ‖u = v‖B and ‖u ∈ v‖B′ = ‖u ∈ v‖B.

Proof. We first prove V
(B′)
α ⊆ V

(B)
α for all ordinals α by induction on ORD. We see that

V
(B′)
0 = V

(B)
0 = ∅. Suppose that λ is an ordinal such that V

(B′)
α ⊆ V (B)

α for all ordinals α < λ,

then V
(B′)
λ consists of functions with values in B′ ⊆ B with domain in V

(B′)
α ⊆ V (B)

α for some

α < λ, and therefore it consists of elements of V
(B)
λ . So we have V

(B′)
α ⊆ V (B)

α for all ordinals
α.
We will prove the next two assertions simultaneously by induction on the relation y ∈ dom(v).
Suppose that v ∈ V (B′) such that for all y ∈ dom(v) we have for all x ∈ V (B′):
‖x ∈ y‖B′ = ‖x ∈ y‖B, ‖x = y‖B′ = ‖x = y‖B and ‖y ∈ x‖B′ = ‖y ∈ x‖B. For x ∈ V (B′) we
find:

‖x ∈ v‖B′ =
∨

y∈dom(v)

(v(y) ∧ ‖x = y‖B′)

=
∨

y∈dom(v)

(v(y) ∧ ‖x = y‖B)

= ‖x ∈ v‖B

In the same way we find that ‖v ∈ x‖B′ = ‖v ∈ x‖B. We also notice that

‖x = v‖B′ =
∧

z∈dom(v)

(x(z)⇒ ‖z ∈ v‖B′) ∧
∧

y∈dom(v)

(v(y)⇒ ‖y ∈ x‖B′)

Since ‖z ∈ v‖B′ = ‖z ∈ v‖B according to our previous results and ‖y ∈ x‖B′ = ‖y ∈ x‖B
according to our induction hypothesis and the fact that y ∈ dom(v) we see that this expression
is equal to ‖x = v‖B.
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Actually, theorem 3.3 can be seen as the induction basis of a very natural theorem which
is proven by induction on the complexity of a formula (we have treated the case of atomic
formulas above). We call a formula φ restricted if all quantifiers in φ are bounded, that is of
the form ∀x ∈ y or ∃x ∈ y. On a side note, we call a formula ψ a Σ1-formula (and sometimes
write ψ ∈ Σ1) if ψ is of the form ∃x1...xnφ with φ a restricted formula. We first need a
theorem on the truth value of restricted formulas. In fact, we already mentioned these in
constructing the truth value, but we will now prove that they actually have the form that we
wanted them to have.

Theorem 3.4. Let φ(x) be a formula with free variable x, and let u ∈ V (B). Then

‖∃x ∈ uφ(x)‖ =
∨

y∈dom(u)

(u(y) ∧ ‖φ(y)‖) and ‖∀x ∈ uφ(x)‖ =
∧

y∈dom(u)

(u(y)⇒ ‖φ(y)‖)

Proof. Since the proofs of these theorems work virtually identical we will only proof the first
statement. We see the following:

‖∃x ∈ uφ(x)‖ = ‖∃x(x ∈ u ∧ φ(x))‖

=
∨

v∈V (B)

‖v ∈ u ∧ φ(v)‖

=
∨

v∈V (B)

 ∨
y∈dom(u)

(u(y) ∧ ‖v = y‖) ∧ ‖φ(v)‖


=

∨
y∈dom(u)

u(y) ∧
∨

v∈V (B)

(‖v = y ∧ φ(v)‖)


=

∨
y∈dom(u)

(u(y) ∧ ‖∃x(x = y ∧ φ(x))‖)

=
∨

y∈dom(u)

(u(y) ∧ ‖φ(y)‖)

We now have the following theorem:

Theorem 3.5. Suppose B′ ⊆ B is a complete Boolean subalgebra of B and φ(x1, ..., xn) a re-
stricted formula. Then for any u1, ..., un ∈ V (B′) we have ‖φ(u1, ..., un)‖B′ = ‖φ(u1, ..., un)‖B.

Proof. We proof this by induction on the complexity of φ. We treated the case of an atomic
formula φ in theorem 3.3. Suppose that φ is of the form ψ∧χ, and suppose that ‖ψ‖B′ = ‖ψ‖B
and ‖χ‖B′ = ‖χ‖B, then our result follows immediately from the fact that ‖ψ ∧ χ‖ = ‖ψ‖ ∧
‖χ‖. The case that φ is of the form ¬‖ψ‖ is treated in the same way. Suppose that φ is
of the form ∃y ∈ xψ(y, x1, ..., xn) and suppose that for any u0, u1, ..., un ∈ V (B′) we have
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‖ψ(u0, u1, ..., un)‖B′ = ‖ψ(u0, u1, ..., un)‖B. Then we find

‖∃y ∈ vψ(y, u1, ..., un)‖B′ =
∨

u∈dom(v)

(v(u) ∧ ‖ψ(u, u1, ..., un)‖B′)

=
∨

u∈dom(v)

(v(u) ∧ ‖ψ(u, u1, ..., un)‖B)

= ‖∃y ∈ vψ(y, u1, ..., un)‖B

It follows that ‖φ(u1, ..., un)‖B′ = ‖φ(u1, ..., un)‖B for every restricted formula φ.

This theorem can be interpreted as saying that V (B′) is in a natural sense a submodel of V (B).
We now note that the trivial Boolean algebra 2 = {0, 1} is a subalgebra of every Boolean
algebra B, meaning that V (2) is in this sense a submodel of every V (B). This gives us the
opportunity to designate each member of V a representative in V (B) for every Boolean algebra
B, by showing that there is in a natural sense an isomorphism between V and V (2). To that
end we give the following definition:

Defintion 3.6. For every x ∈ V : x̂ = {〈ŷ, 1〉 | y ∈ x}.

We easily see by induction on the rank of x that x̂ ∈ V (2) for every x ∈ V , for if ŷ ∈ V (2) for
every y ∈ x, then x̂ consists of ordered pairs with a value in 2 = {0, 1} and input a member
of V (2), and therefore x̂ ∈ V (2). Obviously, x̂ is our representative of x, and elements of V (B)

that are of the form x̂ for some x ∈ V are called standard.
We can now prove that there is a bijection between V and V (2), and we can prove certain
properties of those standard elements.

Theorem 3.7.

1. For every x ∈ V and u ∈ V (B) we have ‖u ∈ x̂‖ =
∨
y∈x ‖u = ŷ‖

2. For every x, y ∈ V : x ∈ y ↔ V (B) |= x̂ ∈ ŷ and x = y ↔ V (B) |= x̂ = ŷ

3. The map x 7→ x̂ from V into V (2) is injective

4. For every u ∈ V (2) there is an x ∈ V such that V (B) |= u = x̂, so in V (B) the map
x 7→ x̂ is surjective

5. For every formula φ(u1, ..., un) and x1, ..., xn ∈ V : φ(x1, ..., xn)↔ V (2) |= φ(x̂1, ..., x̂n)

Proof. For the proof of 1, suppose x ∈ V and u ∈ V (B), then

‖u ∈ x̂‖ =
∨

y∈dom(x̂)

(x̂(y) ∧ ‖u = y‖)

=
∨
y∈x

(x̂(ŷ) ∧ ‖u = ŷ‖)

=
∨
y∈x
‖u = ŷ‖
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Where this last step is due to the fact that x̂(ŷ) is always 1 if y ∈ x because of definition 3.6.
We prove the assertions made in 2 simultaneously by induction on the rank of y. Suppose
that y ∈ V and for every z ∈ V with rank(z) < rank(y): ∀x(x ∈ z ↔ V (B) |= x̂ ∈ ẑ) and
∀x(z ∈ x↔ V (B) |= ẑ ∈ x̂) and ∀x(x = z ↔ V (B) |= x̂ = ẑ). Then we see:

x ∈ y ↔ ∃u ∈ y(x = u)

↔ ∃u ∈ y(‖x̂ = û‖ = 1)

↔
∨
u∈y

(‖x̂ = û‖) = 1

↔ ‖x̂ ∈ ŷ‖ = 1

Where the last step is due to the result of part 1 of this theorem.
Next, we see that by the definition of the truth value we have

‖x̂ = ŷ‖ =
∧
u∈x
‖û ∈ ŷ‖ ∧

∧
v∈y
‖v̂ ∈ x̂‖

So ‖x̂ = ŷ‖ = 1 is equivalent to saying that
∧
u∈x ‖û ∈ ŷ‖ = 1 and

∧
v∈y ‖v̂ ∈ x̂‖ = 1. The

first statement is equivalent to saying that ‖û ∈ ŷ‖ = 1 for all u ∈ x. According to our result
above this is equivalent to saying that u ∈ y for all u ∈ x. The second statement is equivalent
to saying that v ∈ x for all v ∈ y because of the fact that rank(v) < rank(y) if v ∈ y and our
induction hypothesis. So by the axiom of extensionality:

‖x̂ = ŷ‖ = 1↔ ∀u ∈ x(u ∈ y) ∧ ∀v ∈ y(v ∈ x)↔ x = y

For the third part of the induction step we again use the above results and see:

y ∈ x↔ ∃u ∈ x(‖ŷ = û‖ = 1)

↔
∨
u∈x
‖ŷ = û‖ = 1

↔ ‖ŷ ∈ x̂‖ = 1

For the proof of 3 we notice that if V (2) |= x̂ = ŷ then V (B) |= x̂ = ŷ by theorem 3.5. The
result then follows from 2.
We prove 4 by induction on the relation v ∈ dom(u). Suppose u ∈ V (2) and ∀v ∈ dom(u)∃y ∈
V (‖v = ŷ‖ = 1). We need to prove that there exists an x ∈ V such that ‖u = x̂‖ = 1. We
define x by

x = {y ∈ V | ∃v ∈ dom(u)(‖v = ŷ‖ ∧ u(v) = 1)}

We notice that dom(u) is a set because ∃α ∈ ORD(dom(u) ∈ V (2)
α ). It follows from our result

in 2 and the axiom of replacement that x is a set. We wish to prove that ‖u = x̂‖ = 1. So we
have to prove that ∧

v∈dom(u)

(u(v)⇒ ‖v ∈ x̂‖) ∧
∧
z∈x
‖ẑ ∈ u‖ = 1

So we have to prove that (i): if v ∈ dom(u) then u(v) ≤ ‖v ∈ x̂‖ and (ii): if z ∈ x
then ‖ẑ ∈ u‖ = 1. Since (ii) is the shortest we will prove this first. Suppose z ∈ x, then
by definition of x there exists a v ∈ dom(u) such that ‖ẑ = v‖ = 1 and u(v) = 1, so
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1 = ‖ẑ = v‖ ∧ ‖v ∈ u‖ ≤ ‖ẑ ∈ u‖. For the proof of (i): suppose that v ∈ dom(u), then
according to the induction hypothesis there exists y ∈ V such that ‖v = ŷ‖ = 1, and by
definition of x we see that y ∈ x. This is equivalent to saying that ‖ŷ ∈ x̂‖ = 1 by 2, and
therefore we have 1 = ‖v = ŷ‖ ∧ ‖ŷ ∈ x̂‖ ≤ ‖v ∈ x̂‖, so u(v) ≤ ‖v ∈ x̂‖ because ‖v ∈ x̂‖ = 1.
This completes the proof of 4.
We prove 5 by induction on the complexity of φ. The case of atomic formulas has been treated
in 2. If φ is equivalent to ψ1 ∧ ψ2 where ψ1 and ψ2 satisfy the statement in 5, then it is easy
to see that φ also satisfies this statement. If φ is equivalent to ¬ψ then this is also trivial. So
we are left with just one case, which is slightly harder to prove. Suppose x1, ..., xn ∈ V and
φ(x1, ..., xn) is equivalent to ∃xψ(x, x1, ..., xn) and ψ(x, x1, ..., xn) ↔ V (2) |= ψ(x̂, x̂1, ..., x̂n)
for every x ∈ V . Suppose that φ(x1, ..., xn) is true, then there exists an x ∈ V such that
ψ(x, x1, ..., xn) is true. This means that ‖ψ(x̂, x̂1, ..., x̂n)‖ = 1 and because x̂ ∈ V (2) we see
that ∨

u∈V (2)

‖ψ(u, x̂1, ..., x̂n)‖ = ‖φ(x̂1, ..., x̂n)‖ = 1

Suppose on the other hand that ‖φ(x̂1, ..., x̂n)‖ = 1, then
∨
u∈V (2) ‖ψ(u, x̂1, ..., x̂n)‖ = 1

so there exists u ∈ V (2) such that ‖ψ(u, x̂1, ..., x̂n)‖ = 1. Because if this is not the case
then because we work in the trivial Boolean algebra we see that ‖ψ(u, x̂1, ..., x̂n)‖ = 0 for
all u ∈ V (2), but this would mean that

∨
u∈V (2) ‖ψ(u, x̂1, ..., x̂n)‖ = 0. So we must have

‖ψ(u, x̂1, ..., x̂n)‖ = 1 for some u ∈ V (2). So because of 4 we know that there exists x ∈ V
such that ‖u = x̂‖ = 1 and therefore by 12 of theorem 3.2 we see that ‖ψ(x̂, x̂1, ..., x̂n)‖ = 1,
so by the induction hypothesis ψ(x, x1, ..., xn) is true. This completes the proof of 5.

3.3 Proof that V (B) satisfies the axioms of ZF

In the previous subsection we have developed the concept of standard elements in V (B). In
this subsection we will prove that V (B) is a model for ZF for every complete Boolean algebra
B (hence the name ‘Boolean-valued model of set theory’ will be justified). It will turn out
that the axiom of choice is also generally true in V (B), but in order to prove this we will need
some more tools, which are developed in the next section. Since ZF consists of 7 axioms (we
mentioned before that the axiom of pairing can be omitted) we will need to proof that the
truth value of every one of these 7 axioms is equal to 1. Therefore, this subsection will simply
consist of 7 proofs.

Theorem 3.8. The axiom of extensionality, ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → x = y), is true in
V (B).

Proof. By the definition of the truth value we have to prove that∧
z∈V (B)

(‖z ∈ x↔ z ∈ y‖ ⇒ ‖x = y‖) = 1
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For every x, y ∈ V (B). We easily see that

‖x = y‖ =
∧

z∈dom(x)

(x(z)⇒ ‖z ∈ y‖) ∧
∧

z∈dom(y)

(y(z)⇒ ‖z ∈ x‖)

= ‖∀z(z ∈ x→ z ∈ y)‖ ∧ ‖∀z(z ∈ y → z ∈ x)‖

=
∧

z∈V (B)

‖z ∈ x↔ z ∈ y‖

and that immediately proofs the truth of the axiom of extensionality in V (B).

Theorem 3.9. The axiom scheme of separation, ∀x∃y∀z(z ∈ y ↔ (z ∈ x ∧ φ(z))) where y is
not free in φ, is true in V (B).

Proof. The goal is to define for a given x ∈ V (B) an element y ∈ V (B) such that
∧
z∈V (B) ‖z ∈

y ↔ (z ∈ x ∧ φ(z))‖ = 1. We define y by dom(y) = dom(x) and for z ∈ V (B): y(z) =
x(z) ∧ ‖φ(z)‖. We must prove that (i): ‖∀z ∈ y(z ∈ x ∧ φ(z))‖ = 1 and (ii): ‖∀z ∈
x(φ(z) → z ∈ y)‖ = 1. For (i) we notice that we must prove that

∧
z∈dom(y)(y(z) ⇒ (z ∈

x ∧ ‖φ(z)‖)) = 1 due to theorem 3.4. If z ∈ dom(y) then y(z) = x(z) ∧ ‖φ(z)‖ and since
x(z) ≤ ‖z ∈ x‖ according to theorem 3.2 we find that x(z)∧‖φ(z)‖ ⇒ ‖z ∈ x‖∧‖φ(z)‖ = 1, so
y(z)⇒ ‖z ∈ x‖∧‖φ(z)‖ = 1, which proofs (i). For (ii) we must prove that if z ∈ dom(x) then
x(z)⇒ ‖φ(z)→ z ∈ y‖ = 1. Using the definitions of y(z) and⇒ this can be written as having
to proof that ¬y(z)∨‖z ∈ y‖ = 1. This means that we have to prove that y(z)⇒ ‖z ∈ y‖ = 1
which is true because y(z) ≤ ‖z ∈ y‖ according to theorem 3.2. And that completes the proof
that the axiom of separation is true in V (B).

Theorem 3.10. The axiom of union, ∀x∃y∀z(z ∈ y ↔ ∃w ∈ x(z ∈ w)), is true in V (B).

Proof. Suppose that x ∈ V (B). We need to find an element y ∈ V (B) that identifies with
the union of all the elements in x. We define this y in the following way. dom(y) =⋃
{dom(w) | w ∈ dom(x)} and for z ∈ dom(y): y(z) = ‖∃w ∈ x(z ∈ w)‖. In order to

prove that in V (B) this y identifies with the union of the elements of x we must prove two
things. First we have to prove that this y is in the union of the elements of x. So we have to
prove: ‖∀z ∈ y∃w ∈ x(z ∈ w)‖ = 1. We see:

‖∀z ∈ y∃w ∈ x(z ∈ w‖ =
∧

z∈dom(y)

(y(z)⇒ ‖∃w ∈ x(z ∈ w)‖)

=
∧

z∈dom(y)

(‖∃w ∈ x(z ∈ w)‖ ⇒ ‖∃w ∈ x(z ∈ w)‖)

= 1

Next we have to prove that the union of the elements of x is in y, so we have to prove:
‖∀w ∈ x∀z ∈ w(z ∈ y)‖ = 1. We notice that

‖∀w ∈ x∀z ∈ w(z ∈ y)‖ =
∧

w∈dom(x)

∧
z∈dom(w)

(x(w) ∧ w(z)⇒ ‖z ∈ y‖)

21



If w ∈ dom(x) and z ∈ dom(w) then

x(w) ∧ w(z) ≤ x(w) ∧ ‖z ∈ w‖

=
∨

w∈dom(x)

(x(w) ∧ ‖z ∈ w‖)

= ‖∃w ∈ x(z ∈ w)‖
= y(z)

We also notice that by the definition of dom(y), if w ∈ dom(x) and z ∈ dom(w) then
z ∈ dom(y) so we know that y(z) ≤ ‖z ∈ y‖. So we have that for w ∈ dom(x) and
z ∈ dom(w): x(w) ∧ w(z) ≤ y(z) ≤ ‖z ∈ y‖ which shows that∧

w∈dom(x)

∧
z∈dom(w)

(x(w) ∧ w(z)⇒ ‖z ∈ y‖) = 1

So the element y does indeed function as the union of the elements of x, so the axiom of union
holds in V (B).

Theorem 3.11. The axiom of power set, ∀x∃y∀z(z ∈ y ↔ ∀w ∈ z(w ∈ x)), is true in V (B).

Proof. Suppose we have a given x ∈ V (B). Then define y by dom(y) = Bdom(x) (the set
of all functions from dom(x) to B) and for every u ∈ dom(y): y(u) = ‖u ⊆ x‖ where
u ⊆ x is an abbreviation for ∀w ∈ u(w ∈ x) (we will freely use this abbreviation from now
on). We need to show that y identifies with the power set of x. So we have to prove that
‖∀z(z ∈ y ↔ z ⊆ x)‖ = 1. The first part of this is to prove that

∧
z∈dom(y)(y(z) ⇒ ‖z ⊆

x‖) = 1, but this is immediate because of the definition of y. So we just have to prove that
‖∀z(z ⊆ x → z ∈ y)‖ = 1. We now fix an arbitrary z ∈ V (B), and have to prove that
‖z ⊆ x → z ∈ y‖ = 1. Since this is hard to do for this z we will define an element z′ in
V (B) in such a way that this is easier to be done, and which is under the assumption that
z ⊆ x equal to z in V (B). So we will define z′ by dom(z′) = dom(x) and for w ∈ dom(z′):
z′(w) = ‖w ∈ z‖. We notice that since dom(y) = Bdom(x) we have that z′ ∈ dom(y). We now
have to prove that (i): ‖z ⊆ x→ z = z′‖ = 1 and (ii): ‖z ⊆ x→ z′ ∈ y‖ = 1.
To prove (i) we notice that for any w ∈ V (B):

‖w ∈ z′‖ =
∨

v∈dom(z′)

(z′(v) ∧ ‖w = v‖)

=
∨

v∈dom(z′)

(‖v ∈ z‖ ∧ ‖w = v‖)

≤
∨

v∈dom(z′)

(‖w ∈ z‖)

= ‖w ∈ z‖
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So ‖z′ ⊆ z‖ = 1. For the reverse we notice that

‖w ∈ x ∧ w ∈ z‖ =
∨

v∈dom(x)

(x(v) ∧ ‖w = v‖ ∧ ‖w ∈ z‖)

≤
∨

v∈dom(x)

(‖w = v‖ ∧ ‖v ∈ z‖)

=
∨

v∈dom(z′)

(‖w = v‖ ∧ z′(v)‖)

= ‖w ∈ z′‖

The second step of the calculation above requires some explanation. We know that for
v ∈ dom(x): x(v)∧ ‖w = v‖ ∧ ‖w ∈ z‖ ≤ ‖w = v‖ and since ‖w = v‖ ∧ ‖w ∈ z‖ ≤ ‖v ∈ z‖ we
also see that x(v) ∧ ‖w = v‖ ∧ ‖w ∈ z‖ ≤ ‖v ∈ z‖. This combines to the result in step two of
the calculation above.
We now have that ‖w ∈ x‖ ∧ ‖w ∈ z‖ ≤ ‖w ∈ z′‖ so ‖(z ⊆ x ∧ w ∈ z) → w ∈ z′‖ = 1.
Combining with the result that ‖z′ ⊆ z‖ = 1 completes the proof of (i).
To prove (ii) we notice that

‖z ⊆ x‖ =
∧

w∈V (B)

(‖w ∈ z‖ ⇒ ‖w ∈ x‖)

≤
∧

w∈dom(z′)

(z′(w)⇒ ‖w ∈ x‖)

= ‖∀w ∈ z′(w ∈ x)‖
= ‖z′ ⊆ x‖
= y(z′)

≤ ‖z′ ∈ y‖

Where the last step can be made because z′ ∈ dom(y). This completes the proof of (ii), and
with it the proof of the truth of the axiom of power set in V (B).

Theorem 3.12. The axiom of infinity, ∃x(∅ ∈ x ∧ ∀y ∈ x∃z ∈ x(y ∈ z)), is true in V (B).

Proof. We need to find an element x ∈ V (B) such that ‖φ(x)‖ = 1, where φ(x) is the formula
∅ ∈ x∧ ∀y ∈ x∃z ∈ x(y ∈ z). First we notice that φ(x) is a restricted formula because all the
quantifiers are bounded. Next we notice that in V , the formula φ(ω) is true, where ω is the
first infinite ordinal. Because ∅ ∈ ω and if y ∈ ω then y + 1 ∈ ω and y ∈ y + 1. We can now
use theorem 3.7 and theorem 3.5 to find φ(ω)↔ V (2) |= φ(ω̂)↔ V (B) |= φ(ω̂). So by putting
x = ω̂ we find the truth of the axiom of infinity in V (B).

Theorem 3.13. The axiom scheme of replacement, ∀u(∀x ∈ u∃yφ(x, y) → ∃v∀x ∈ u∃y ∈
vφ(x, y)) where v is not free in φ(x, y), is true in V (B).

Proof. Suppose we have a given fixed u ∈ V (B). We know that B ∈ V because we had
assumed that B is a complete Boolean algebra with a set as universe. For a fixed x ∈ dom(u)
we see that Ax = {‖φ(x, y)‖ | y ∈ V (B)} ⊂ B so Ax is a set. This shows that for every

b ∈ Ax there exists an ordinal α such that b = ‖φ(x, y)‖ and y ∈ V
(B)
α . We now use

the axiom of replacement in V to see that there exists an ordinal α(x) such that for all
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b ∈ Ax there exists an ordinal β ∈ α(x) such that b = ‖φ(x, y)‖ and y ∈ V
(B)
β . We now

use the axiom of union in V to define α =
⋃
{α(x) | x ∈ dom(u)}. Then we see that

{‖φ(x, y)‖ | x, y ∈ V (B)} = {‖φ(x, y)‖ | x ∈ V (B), y ∈ V (B)
α }. We now define v ∈ V (B) by

dom(v) = V
(B)
α and for z ∈ dom(v): y(z) = 1. Then we see that

‖∀x ∈ u∃yφ(x, y)‖ =
∧

x∈dom(u)

u(x)⇒
∨

y∈V (B)

‖φ(x, y)‖


≤

∧
x∈dom(u)

u(x)⇒
∨

y∈V (B)
α

‖φ(x, y)‖


=

∧
x∈dom(u)

(u(x)⇒ ‖∃y ∈ vφ(x, y)‖)

= ‖∀x ∈ u∃y ∈ vφ(x, y)‖

By taking the supremum over all v ∈ V (B) on both sides of the inequality above we find the
truth of the axiom of replacement in V (B).

Theorem 3.14. The axiom of regularity, ∀x(∀y ∈ xφ(y) → φ(x)) → ∀xφ(x) where y is not
free in φ(x), is true in V (B).

Proof. We have to prove that ‖∀x(∀y ∈ xφ(y) → φ(x))‖ ≤ ‖∀xφ(x)‖. Now let ‖∀x(∀y ∈
xφ(y) → φ(x))‖ = b, then it is enough to show that b ≤ ‖φ(x)‖ for all x ∈ V (B). Because
if we can prove this then we also know that b is smaller then or equal to the supremum of
‖φ(x)‖ over all x ∈ V (B). We are now going to use the induction principle in V (B). Suppose
x ∈ V (B) and for all y ∈ dom(x) we have that b ≤ ‖φ(y)‖. Then b ≤

∧
y∈dom(x) ‖φ(y)‖ and

because ‖φ(y)‖ ≤ (x(y)⇒ ‖φ(y)‖) for all y ∈ dom(x) we find that∧
y∈dom(x)

‖φ(y)‖ ≤
∧

y∈dom(x)

(x(y)⇒ ‖φ(y)‖) = ‖∀y ∈ xφ(y)‖

Because of the definition of b we see that

b =
∧

x∈V (B)

(‖∀y ∈ xφ(y)‖ ⇒ ‖φ(x)‖)

And this means that for our particular x we have that b ≤ (‖∀y ∈ xφ(y)‖ ⇒ ‖φ(x)‖). Putting
these findings together yields

b ≤ ‖(∀y ∈ xφ(y)→ φ(x)) ∧ ∀y ∈ xφ(y)‖ = ‖φ(x)‖

and this completes the proof of the axiom of regularity in V (B).

3.4 Proof that V (B) |= AC

In this section we will prove that the axiom of choice is true in V (B) for every complete Boolean
algebra B. We will use the equivalence between AC and Zorn’s lemma, and we are also going
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to need a theorem called ‘the maximum principle’. In order to prove this theorem, we will
need a concept called ‘mixtures’, so we will start this section by defining these mixtures.
Suppose I is some index set and A = {ai | i ∈ I} ⊆ B and U = {ui | i ∈ I} ⊆ V (B).
Then we define the mixture of U with respect to A to be the element u ∈ V (B) such that
dom(u) =

⋃
i∈I dom(ui) and for z ∈ dom(u): u(z) =

∨
i∈I(ai ∧ ‖z ∈ ui‖). The term mixture

is explained by noticing that we can perceive of u as the element obtained by mixing the
elements of U with respect to the elements of A. This concept is made clear by the following
theorem about mixtures:

Theorem 3.15. (Mixing lemma) Suppose I is some index set and A = {ai | i ∈ I} ⊆ B
and U = {ui | i ∈ I} ⊆ V (B), and u is the mixture of U with respect to A, and suppose
ai ∧ aj ≤ ‖ui = uj‖ for all i, j ∈ I. Then for all i ∈ I: ai ≤ ‖u = ui‖.

Proof. We know by the definition of the truth value that

‖u = ui‖ =
∧

x∈dom(u)

(u(x)⇒ ‖x ∈ ui‖) ∧
∧

y∈dom(ui)

(ui(y)⇒ ‖y ∈ u‖)

We first notice that by the definition of the mixture we have for every x ∈ dom(u):

ai ∧ u(x) = ai ∧
∨
j∈I

(aj ∧ ‖x ∈ uj‖)

=
∨
j∈I

(ai ∧ aj ∧ ‖x ∈ uj‖)

≤
∨
j∈I

(‖ui = uj‖ ∧ ‖x ∈ uj‖)

= ‖x ∈ ui‖

And therefore, ai ≤ (u(x)⇒ ‖x ∈ ui‖) for every x ∈ dom(u), which shows that
ai ≤

∧
x∈dom(u)(u(x)⇒ ‖x ∈ ui‖).

Now suppose y ∈ dom(ui), then ai ∧ ui(y) ≤ ai ∧ ‖y ∈ ui‖ ≤ u(y) ≤ ‖y ∈ u‖ because
y ∈ dom(u). This shows us that ai ≤

∧
y∈dom(ui)

(ui(y) ⇒ ‖y ∈ u‖), which completes the
proof that ai ≤ ‖u = ui‖.

In particular, the mixing lemma can be applied if A is an antichain, that is, if ai ∧ aj = 0 for
every i, j ∈ I with i 6= j. We can now use the mixing lemma to prove that V (B) has enough
elements such that the supremum over every formula,

∨
u∈V (B) ‖φ(u)‖, is actually attained by

some element in V (B).

Theorem 3.16. (Maximum principle) Let φ(x) be some Boolean formula, then there exists
a u ∈ V (B) such that ‖∃xφ(x)‖ = ‖φ(u)‖.

Proof. We have to prove that there exists a u ∈ V (B) such that ‖φ(u)‖ =
∨
v∈V (B) ‖φ(v)‖.

Because B is a set we know that {‖φ(u)‖ | u ∈ V (B)} ⊆ B is also a set, and therefore we can
use the axiom of choice in V to see that there is an ordinal α and a set {uλ | λ < α} ⊆ V (B)

such that {‖φ(u)‖ | u ∈ V (B)} = {‖φ(uλ)‖ | λ < α}. So we can now write ‖∃xφ(x)‖ =∨
λ<α ‖φ(uλ)‖. Now define for every λ < α the element aλ = ‖φ(uλ)‖ ∧ ¬

∨
η<λ ‖φ(uη)‖.
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Then we can prove that A = {aλ | λ < α} is an antichain. To do this, suppose γ < θ < α,
then

aγ ∧ aθ = ‖φ(uγ)‖ ∧ ¬
∨
λ<γ

‖φ(uλ)‖ ∧ ‖φ(uθ)‖ ∧ ¬
∨
λ<θ

‖φ(uλ)‖

= ‖φ(uγ)‖ ∧
∧
λ<γ

¬‖φ(uλ)‖ ∧ ‖φ(uθ)‖ ∧
∧
λ<θ

¬‖φ(uλ)‖

≤ ‖φ(uγ)‖ ∧ ¬‖φ(uγ)‖
= 0

This shows that we can now use the mixing lemma to prove that there exists an u ∈ V (B) which
satisfies aλ ≤ ‖u = uλ‖ for all λ < α. For this u we notice that ‖φ(u)‖ ≤

∨
x∈V (B) ‖φ(x)‖ =

‖∃xφ(x)‖. Also, because aλ ≤ ‖φ(uλ)‖ for every λ < α by the definition of aλ, we see that
aλ ≤ ‖φ(uλ)‖ ∧ ‖u = uλ‖ ≤ ‖φ(u)‖ for every λ < α. So if we can prove that ‖∃xφ(x)‖ ≤∨
λ<α aλ we are done. So we have to prove that∨

λ<α

‖φ(uλ)‖ ≤
∨
λ<α

aλ =
∨
λ<α

‖φ(uλ)‖ ∧
∨
λ<α

∧
η<λ

¬‖φ(uη)‖

But the truth of this statement is clear since the ordinals are well-ordered by ∈, so if we have
the truth of φ(uλ) for some λ < α then we know that there is a smallest λ < α such that
φ(uλ) is true. This completes the proof of the maximum principle.

The maximum principle has two important corollaries, which will prove useful in the proof of
Zorn’s lemma.

Corollary 3.17. Let φ(x) be a Boolean formula such that V (B) |= ∃xφ(x). Then for all
v ∈ V (B) there exists a u ∈ V (B) such that ‖φ(u)‖ = 1 and ‖φ(v)‖ = ‖u = v‖.

Proof. Suppose we have a given v ∈ V (B). Since ‖∃xφ(x)‖ = 1 we can use the maximum
principle to find a w ∈ V (B) such that ‖φ(w)‖ = 1. Now choose a = ‖φ(v)‖ and let u be the
mixture of U = {v, w} with respect to A = {a,¬a}. Because A is an antichain we can use
the mixing lemma to see that a ≤ ‖u = v‖ and ¬a ≤ ‖u = w‖. additionally we know that
a ≤ ‖φ(v)‖ because we know the equality between the two, and we know that ¬a ≤ ‖φ(w)‖
because ‖φ(w)‖ = 1. This shows us that

1 = a ∨ ¬a ≤ ‖φ(v) ∧ u = v‖ ∨ ‖φ(w) ∧ u = w‖ ≤ ‖φ(u)‖

So we know that ‖φ(u)‖ = 1, and this gives us that ‖u = v‖ = ‖φ(u)‖∧‖u = v‖ ≤ ‖φ(v)‖ and
because we already knew that ‖φ(v)‖ = a ≤ ‖u = v‖ we find that our u satisfies ‖φ(u)‖ = 1
and ‖φ(v)‖ = ‖u = v‖.

Corollary 3.18. Let φ(x) and ψ(x) be Boolean formulas such that V (B) |= ∃xφ(x) and for
all u ∈ V (B): if V (B) |= φ(u) then V (B) |= ψ(u). Then V (B) |= ∀x(φ(x)→ ψ(x)).

Proof. Suppose we are given a v ∈ V (B). Then we have to prove that V (B) |= φ(v) → ψ(v),
meaning that we have to prove that ‖φ(v)‖ ≤ ‖ψ(v)‖. We use corollary 3.17 to find a
u ∈ V (B) such that ‖φ(u)‖ = 1 and ‖φ(v)‖ = ‖u = v‖. Then we know that ‖ψ(u)‖ = 1 so
‖φ(v)‖ = ‖u = v‖ = ‖u = v‖ ∧ ‖ψ(u)‖ ≤ ‖ψ(v)‖.
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The last notion we need in order to prove that V (B) |= AC is that of a core of an element of
V (B). Suppose u ∈ V (B), then we call v ⊆ V (B) a core of u if for all x ∈ v we have ‖x ∈ u‖ = 1
and for all y ∈ V (B) such that ‖y ∈ u‖ = 1 there exists a unique x ∈ v such that ‖x = y‖ = 1.
In fact it is possible to prove that every element of V (B) has a core, which is a very useful
theorem, for it allows us to use the core of an element for every given element.

Theorem 3.19. Every u ∈ V (B) has a core.

Proof. Suppose u ∈ V (B). Define for every x ∈ V (B): x′ = {(z, u(z)∧‖z = x‖) | z ∈ dom(u)}.
Then by the axiom of replacement there exists a set w ⊆ V (B) such that for every x ∈ V (B)

there exists y ∈ w such that x′ = y′. Now define the equivalence relation ∼ on {x ∈ w | ‖x ∈
u‖ = 1} by x ∼ y ↔ ‖x = y‖ = 1. Now let v be defined as the set containing exactly one
element of every equivalence class in this equivalence relation. Then if a ∈ v we know that
a ∈ {x ∈ w | ‖x ∈ u‖ = 1} and therefore ‖a ∈ u‖ = 1. Also, if b ∈ V (B) and ‖b ∈ u‖ = 1 then
there exists a ∈ w such that a′ = b′, which yields ‖a = b‖ = 1, which means that ‖a ∈ u‖ = 1,
and therefore a ∈ {x ∈ w | ‖x ∈ u‖ = 1}. Now let c be the element in v such that ‖a = c‖ = 1,
then c is the unique element in v such that ‖b = c‖ = 1. This shows that v is a core of u.

Another useful theorem about the concept of a core is the following:

Theorem 3.20. Suppose u ∈ V (B) such that V (B) |= u 6= ∅, and let v be a core of u. Then
for every x ∈ V (B) there exists an element z ∈ v such that ‖x = z‖ = ‖x ∈ u‖.

Proof. Let φ(z) be the formula z ∈ u, then we know that V (B) |= ∃zφ(z) because V (B) |=
u 6= ∅. So by using corollary 3.17 we know that for every x ∈ V (B) there exists a y ∈ V (B)

such that ‖y ∈ u‖ = 1 and ‖x = y‖ = ‖x ∈ u‖. So by the definition of a core there exists a
unique element z ∈ v such that ‖y = z‖ = 1. So we have

‖x ∈ u‖ = ‖x = y‖ = ‖x = y‖ ∧ ‖y = z‖ ≤ ‖x = z‖

and
‖x = z‖ = ‖x = z‖ ∧ ‖y = z‖ ≤ ‖x = y‖ = ‖x ∈ u‖

Which shows that we have ‖x = z‖ = ‖x ∈ u‖.

We now posses all the tools we need to prove Zorn’s lemma. Before we do this, remember that
Zorn’s lemma is the assertion that if every chain in a nonempty poset has an upper bound in
this poset, then this poset contains a maximal element. Note that we can define a predicate
in the language of ZF stating that (x,≤x) is a poset. And also a predicate that states that
an element is a chain in this poset, and one stating that an element is an upper bound or a
maximal element. In other words, we can formally write Zorn’s lemma in the language of ZF.
We will give one example of such a predicate. If we want to define φ(y) in such a way that it
expresses that y is a poset, then we would have to define it in the following way:

∃x,≤x (y = (x,≤x)∧ ≤x∈ P(x× x)

∧ ∀p ∈ x((p, p) ∈≤x)

∧ ∀p, q, r ∈ x(((p, q) ∈≤x ∧(q, r) ∈≤x)→ (p, r) ∈≤x)

∧ ∀p, q ∈ x(((p, q) ∈≤x ∧(q, p) ∈≤x)→ p = q))

27



Note that we have already assumed that we have have defined the concepts of a power set,
a cartesian product and an ordered pair, but that these are easy to define. A more detailed
account of this is in the appendix. From now on we will write p ≤x q to indicate that for
p, q ∈ x we have (p, q) ∈≤x.

Theorem 3.21. Zorn’s lemma, if every chain in a nonempty poset P has an upper bound in
P then P contains a maximal element, is true in V (B).

Proof. Let φ(y) be the Boolean formula stating that y is a nonempty poset in which every
chain has an upper bound, and let ψ(y) be the Boolean formula stating that y has a maximal
element. Since Zorn’s lemma is the assertion ∀x(φ(x) → ψ(x)) we can use corollary 3.18 to
see that we only have to prove that V (B) |= φ(x) implies V (B) |= ψ(x) for every x ∈ V (B).
We will do this by first defining a core of this x, and then use Zorn’s lemma in V to identify a
maximal element of this core. We can then prove that in V (B) this is also a maximal element
of x.
Let x ∈ V (B) such that (x,≤x) is a poset in which every chain has an upper bound, and let
y be a core of x (we know this is always possible because of theorem 3.19). Now define the
ordering ≤y on y by a ≤y b↔ ‖a ≤x b‖ = 1 for a, b ∈ y. Because ≤x is a partial ordering we
easily see that ≤y is also a partial ordering. In fact we can prove that every chain in y has
an upper bound in y. For let C be a chain in y and define C ′ = C × {1} ∈ V (B). Then we
see that V (B) |= C ′ is a chain in x. So we know by our assumption that in V (B) it is true
that there exists a z ∈ x such that z is an upper bound for C ′. We now use the maximum
principle to see that there exists a z such that in V (B) it is true that z ∈ x and that z is an
upper bound for C ′. This means that ‖z ∈ x‖ = 1 so by the definition of y there exists a
w ∈ y such that ‖z = w‖ = 1. Now let a ∈ C, then ‖a ∈ C ′‖ = 1 and ‖a ≤x z‖ = 1 and thus
we have ‖a ≤x w‖ = 1. By the definition of ≤y this shows that a ≤y w so for every a ∈ C we
know that a ≤y w, so w is an upper bound for C. So every chain in y has an upper bound in
y, and since y is a set we can use Zorn’s lemma in V to see that y has a maximal element c.
Because c ∈ y we know that ‖c ∈ x‖ = 1. In fact, we can prove that V (B) |= c is a maximal
element for x.
Let a ∈ V (B), then we are going to prove that if ‖c ≤x a ∧ a ∈ x‖ ≤ ‖a = c‖, which would
prove that in V (B) it is indeed true that c is a maximal element for x. Use theorem 3.20 to
find an element b ∈ y such that ‖a = b‖ = ‖a ∈ x‖. Then we see that

‖c ≤x a ∧ a ∈ x‖ = ‖c ≤x a ∧ a = b‖ ≤ ‖c ≤x b‖

Now let m be the mixture of {b, c} with respect to {d,¬d} where d = ‖c ≤x b‖. Because
{d,¬d} is an antichain we can use the mixing lemma to see that ‖c ≤x b‖ ≤ ‖b = m‖ and
¬‖c ≤x b‖ ≤ ‖c = m‖. Since b, c ∈ y we know that ‖b ∈ x‖ = ‖c ∈ x‖ = 1 and this shows us
that

1 = ‖c ≤x b‖ ∨ ¬‖c ≤x b‖
≤ ‖m = b‖ ∨ ‖m = c‖
= (‖m = b‖ ∧ ‖b ∈ x‖) ∨ (‖m = c‖ ∧ ‖c ∈ x‖)
≤ ‖m ∈ x‖ ∨ ‖m ∈ x‖
= ‖m ∈ x‖

So we know that ‖m ∈ x‖ = 1 so by the definition of y there exists a k ∈ y such that
‖m = k‖ = 1. We notice that because ‖c ≤x b‖ ≤ ‖m = b‖ we have that ‖c ≤x m‖ = 1, and
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thus ‖c ≤x k‖ = 1, and because c, k ∈ y we now have that c ≤y k. Because c is a maximal
element of y we now know that c = k. And now we finally see:

‖c ≤x a ∧ a ∈ x‖ = ‖c ≤x a ∧ a ∈ x‖ ∧ ‖a ∈ x‖
≤ ‖c ≤x b‖ ∧ ‖a ∈ x‖
≤ ‖b = m‖ ∧ ‖a = b‖
= ‖b = m‖ ∧ ‖m = k‖ ∧ ‖a = b‖
≤ ‖b = k‖ ∧ ‖a = b‖
= ‖b = c‖ ∧ ‖a = b‖
≤ ‖a = c‖

And therefore we have that ‖c ≤x a ∧ a ∈ x‖ ≤ ‖a = c‖ so V (B) |= ∀a ∈ x(c ≤x a → a = c),
meaning that c is a maximal element for x in V (B). So the proof of Zorn’s lemma in V (B) is
complete.
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4 Application in independence proofs

In this section we will give a brief introduction in how we can use Boolean-valued models
of set theory to give independence proofs. In order to do this we first need to explore the
famous method of forcing, which was developed by Paul Cohen in 1963 and adapted by Dana
Scott for Boolean-valued models. We will also need some material about cardinals in V (B).
However, this material will not be treated in detail. The interested reader will find a more
detailed account of this material in [1]. Finally, we will use these concepts to prove that the
generalized continuum hypothesis is independent of ZFC.

4.1 The forcing theorem

The idea of forcing is that we identify a poset (P,≤) inside a Boolean algebra B, and regard
the elements of P as states of information. We then regard a formula as true in state p if
we are forced to accept it given the information of p. These matters will be clarified in this
section, but to that end, we first need some results on posets.
Let (P,≤) be a poset consisting of, as we mentioned before, states of information. We say
that all the information of q ∈ P is also contained in p ∈ P if p ≤ q. We call p, q ∈ P
compatible if there exists an element r ∈ P such that r ≤ p and r ≤ q. We write this as
Comp(p, q), and can think of it as meaning that there exists a state which contains all the
information of both p and q, which means that p and q are mutually consistent. We call
P refined if ∀p, q ∈ P (q � p → ∃p′ ≤ q¬Comp(p, p′)). Now we define for every p ∈ P the
set Op = {q ∈ P | q ≤ p}. Then {Op | p ∈ P} is a basis for a topology called the left
order topology on P . We see that a subset X ⊆ P is open in this topology precisely when
∀x, y((y ∈ X ∧ x ≤ y) → x ∈ X). It is easily verified that this is indeed a topology. By
example 2 in section 2 we know that the set of regular opens of this topology, denoted by
RO(P ), is a Boolean algebra. In fact, this Boolean algebra is complete, if {Ui | i ∈ I} is a
family of opens then

∨
i∈I Ui is the interior of the closure of

⋃
i∈I Ui and

∧
i∈I Ui is the interior

of
⋂
i∈I Ui. We will want to look at what closures and interiors look like in this topology. If

X ⊆ P then X should at least contain X. Also, since the complement of X is to be open
and as large as possible, this complement should contain every element that is not greater
than some element of X. So we have X = {p ∈ P | ∃q ∈ X(q ≤ p)}. The interior of X
should consist of every element p such that all elements smaller than p (which have to be in
◦
X because we want

◦
X to be open) are in X. So

◦
X = {p ∈ P | ∀q ≤ p(q ∈ X)}. Combining

these shows that ◦

X = {p ∈ P | ∀q ≤ p∃r ∈ X(r ≤ q)}

Applying this to Op shows that

◦

Op = {q ∈ P | ∀r ≤ q(∃r′(r′ ≤ r ∧ r′ ≤ p))}
= {q ∈ P | ∀r ≤ qComp(p, r)}

We now have the following theorem:

Theorem 4.1. P is refined iff Op ∈ RO(P ) for all p ∈ P .
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Proof. We have to prove that P is refined iff Op =
◦

Op. Suppose P is refined, and fix an

arbitrary p ∈ P . We know that Op ⊆
◦

Op because of lemma 2.1. So suppose q ∈
◦

Op, then we
have to prove that q ∈ Op, so we have to prove that q ≤ p. Suppose q � p, then because P is

refined we know that ∃r ≤ q¬Comp(p, r), but since q ∈
◦

Op we know that ∀r ≤ qComp(p, r).
From this clear contradiction it follows that q ≤ p, so q ∈ Op.
Suppose on the other hand that Op =

◦

Op. Then for all p, q ∈ P : q ≤ p↔ ∀r ≤ qComp(p, r),
so suppose p, q ∈ P and q � p, then ¬∀r ≤ qComp(p, r), which is equivalent to ∃r ≤
q¬Comp(p, r), so P is refined.

We can now prove an important theorem on how we can view a poset inside a Boolean algebra.
We call a subset X of a Boolean algebra B dense if 0 6∈ X and for every b ∈ B there is an
x ∈ X such that x ≤ b. We call a map φ : P → B an order-isomorphism if it is bijective and
satisfies ∀p, q ∈ P (p ≤ q → φ(p) ≤ φ(q)). If φ : P → B is an order-isomorphism we call P
order-isomorphic to φ(P ).

Theorem 4.2. P is refined iff it is order-isomorphic to a dense subset of a complete Boolean
algebra.

Proof. Suppose first that P is refined. We will show that the map p 7→ Op is an order-
isomorphism and that {Op | p ∈ P} is dense in RO(P ). We know by theorem 4.1 that
Op ∈ RO(P ) for every p ∈ P . Now suppose p ≤ q, we have to show that Op ≤ Oq. In RO(P )
this means that we have to show that (O⊥p ∪ Oq)⊥⊥ = P . Since the interior of P is P itself
we have to show that

O⊥p ∪Oq = {r ∈ P | ∃r′ ∈ (O⊥p ∪Oq)(r′ ≤ r)} = P

So suppose r ∈ P , if r ∈ O⊥p then we see that r′ = r satisfies the formula above so r ∈ O⊥p ∪Oq.
So suppose r 6∈ O⊥p = Op

c
. Then r ∈ Op, so ∃r′ ∈ Op(r

′ ≤ r), but since p ≤ q we
have that r′ ≤ p ≤ q and P is a poset so r′ ≤ q, meaning that r′ ∈ Oq. So r satisfies

∃r′ ∈ (O⊥p ∪ Oq)(r′ ≤ r), meaning that O⊥p ∪Oq = P . So this map is indeed an order-
isomorphism. We next show that the image is dense in RO(P ). We first notice that p ∈ Op
for all p ∈ P , so ∅ 6∈ {Op | p ∈ P}. Now suppose X ∈ RO(P ), X 6= ∅, then choose an
arbitrary p ∈ X. We will show that Op ≤ X. In fact we can use the same strategy as above,
since we have to show that

O⊥p ∪X = {r ∈ P | ∃q ∈ (O⊥p ∪X)(q ≤ r)} = P

If r ∈ O⊥p we can choose q = r, and if r 6∈ O⊥p then ∃r′ ∈ Op(r′ ≤ r), but since r′ ≤ p and
p ∈ X we have that r′ ∈ X because X is open. So every r ∈ P satisfies the formula above,
so Op ≤ X as desired. So if P is refined then p 7→ Op is an order-isomorphism from P to a
dense subset of a complete Boolean algebra.
Suppose on the other hand that P is order-isomorphic to a dense subset of a complete Boolean
algebra B. Then we can identify P with the image of this order-isomorphism. So suppose
p, q ∈ P and q � p, then q ∧ ¬p 6= 0, and therefore there exists r ∈ P such that r ≤ q ∧ ¬p.
We will prove that P is refined by proving that this r satisfies r ≤ q and ¬Comp(p, r). Since
r ≤ q ∧ ¬p ≤ q the first part of this is trivial. Now suppose Comp(p, r), then there exists
a ∈ P such that a ≤ p and a ≤ r. So a ≤ r ≤ ¬p, so a ≤ ¬p and we also had a ≤ p so
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a ≤ p ∧ ¬p = 0, so a = 0. But P is dense in B, so 0 6∈ P , so this is not possible. It follows
that ¬Comp(p, r), so P is refined as desired.

We call a pair (B, e) a Boolean completion of a poset P if B is a complete Boolean algebra
and e : P → B is an order-isomorphism and e(P ) is dense in B. We will also call P a basis
for B. The previous theorem tells us that every refined poset has a Boolean completion. In
fact, this Boolean completion will turn out to be unique up to isomorphism, so that we can
regard a refined poset P as a dense subset of it’s unique Boolean completion B. We naturally
define an isomorphism between two Boolean algebra’s B and B′ to be a bijective map f such
that f(x ∨ y) = f(x) ∨ f(y) and f(¬x) = ¬f(x) for all x, y ∈ B.

Theorem 4.3. Suppose (B, e) and (B′, e′) are two Boolean completions of a poset P , then
there exists an isomorphism f : B → B′ such that f(e(P )) = e′(P ).

Proof. Define for every x ∈ B the set Px = {p ∈ P | e(p) ≤ x}, then e(Px) = {e(p) | p ∈ P ∧
e(p) ≤ x}. We notice that x =

∨
{e(p) | p ∈ P ∧e(p) ≤ x}, because if this is not the case, then

there exists an element y ∈ B such that y ≤ x and y 6= x and
∨
{e(p) | p ∈ P ∧ e(p) ≤ x} ≤ y.

We then look at the element x ∧ ¬y. If this element is 0 then because ¬y ∧ x = 1 we have
that x = y, so x ∧ ¬y 6= 0, which means that there exists q ∈ P such that e(q) ≤ x ∧ ¬y, so
e(q) ∈ {e(p) | p ∈ P ∧ e(p) ≤ x}, so e(q) ≤ y. However, we also have e(q) ≤ ¬y so e(q) = 0,
which is impossible because 0 6∈ e(P ).
We now define the map f : B → B′ by f(x) =

∨
e′(Px). We see that this map must be

bijective because e(P ) and e′(P ) are dense in B and B′. Also, Px∨y = Px ∪ Py so f(x ∨ y) =
f(x) ∨ f(y) and

∨
e′(P¬x) =

∧
¬e′(Px) so f(¬x) = ¬f(x). So f is an isomorphism.

We are now ready to define the forcing relation. Let P be a basis of the complete Boolean
algebra B. We perceive of P as a dense subset of B. For p ∈ P and φ a Boolean sentence we
now define that p forces φ (written as p  φ) as following:

p  φ ↔ p ≤ ‖φ‖

With this relation we can make a statement about the truth of a sentence in V (B) by looking
at the elements of the basis of B. The behavior of this relation is contained in the so-called
forcing theorem. This theorem consists of 13 different parts, so we will only prove a few of
them.

Theorem 4.4. (Forcing theorem) Let φ and ψ be Boolean sentences and σ(x) a Boolean
formula. Then:

1. p  ¬φ iff ¬∃q ≤ p(q  φ)

2. p  φ ∧ ψ iff p  φ and p  ψ

3. p  φ ∨ ψ iff ∀q ≤ p∃r ≤ q(r  φ or r  ψ)

4. p  φ→ ψ iff ∀q ≤ p(q  φ → q  ψ)

5. p  ∀xσ(x) iff ∀u ∈ V (B)(p  σ(u))

6. p  ∃xσ(x) iff ∀q ≤ p∃r ≤ q∃u ∈ V (B)(r  σ(u))
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7. For a ∈ V : p  ∀x ∈ âσ(x) iff ∀x ∈ a(p  σ(x̂))

8. For a ∈ V : p  ∃x ∈ âσ(x) iff ∀q ≤ p∃r ≤ q∃x ∈ a(r  σ(x̂))

9. ‖φ‖ = 0 iff ¬∃p(p  φ)

10. ‖φ‖ = 1 iff ∀p(p  φ)

11. ∀p∃q ≤ p(q  φ or q  ¬φ)

12. (p  φ) → ¬(p  ¬φ)

13. (q ≤ p and p  φ)→ q  φ

Proof. For 1, suppose p  ¬φ, and suppose q ≤ p and q  φ, then q ≤ p ≤ ¬‖φ‖ and q ≤ ‖φ‖,
so q ≤ 0, which is impossible, so ¬∃q ≤ p(q  φ). Suppose on the other hand that ¬(p  ¬φ),
then p 6= p ∧ ¬‖φ‖ so p ∧ ‖φ‖ 6= p ∧ ¬‖φ‖ ∧ ‖φ‖ = 0, so there exists a q ∈ P such that
q ≤ p ∧ ‖φ‖ because P is dense in B, so ∃q ≤ p(q  φ).
For 3, we use 1 and De Morgan’s law and notice that

p  φ ∨ ψ ↔ p  ¬(¬φ ∧ ¬ψ)

↔ ¬∃q ≤ p(q  ¬φ ∧ ¬ψ)

↔ ¬∃q ≤ p(q  φ and q  ψ)

↔ ¬∃q ≤ p(¬∃r ≤ q(r  φ) and ¬∃r′ ≤ q(r′  ψ))

↔ ∀q ≤ p∃r ≤ q(r  φ or r  ψ)

For 5, we notice that p  ∀xσ(x) iff p ≤
∧
u∈V (B) ‖σ(u)‖ iff ∀u ∈ V (B)(p  σ(u)).

For 6 we copy the strategy of 3, but use the generalized De Morgan law instead of the usual
one, and see:

p  ∃xσ(x) ↔ p ≤ ¬
∧

u∈V (B)

¬‖σ(u)‖

↔ ¬∃q ≤ p∀u ∈ V (B)¬∃r ≤ q(r  σ(u))

↔ ∀q ≤ p∃r ≤ q∃u ∈ V (B)(r  σ(u))

For 7, we use theorem 3.7 to see that

p  ∀x ∈ â σ(x) ↔ p ≤
∧

x∈dom(â)

(â(x)⇒ ‖σ(x)‖)

↔ p ≤
∧
x∈a

(â(x̂)⇒ ‖φ(x̂)‖)

↔ p ≤
∧
x∈a

(‖φ(x̂)‖)

↔ ∀x ∈ a(p  φ(x̂))

For 10 we easily see that if ‖φ‖ = 1 then ∀p(p  φ). Suppose on the other hand that ‖φ‖ 6= 1,
then ¬‖φ‖ 6= 0 so there exists a q ∈ P such that q  ¬φ, so if q  φ then q  ⊥ by 2, so
q ≤ 0, which is impossible. So we have ∃p¬(p  φ) so ¬∀p(p  φ).
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4.2 Cardinals in V (B)

In this section we will say something about how we can perceive of cardinals in V (B), and
how cardinals in V (B) behave. We will eventually need this in proving the independence of
the continuum hypothesis from ZFC, but the material on itself is not incredibility relevant
for this thesis, and therefore, we shall omit some of the proofs. The interested reader can find
the proofs in [1].
We first notice that if φ(x1, ..., xn) is a Σ1 formula then φ(x1, ..., xn)→ V (B) |= φ(x̂1, ..., x̂n).
The proof is easy with theorem 3.5, part 5 of theorem 3.7 and the maximum principle in V (2).
Since the formula |x| = |y| ∈ Σ1 we find that |x| = |y| → V (B) |= |x̂| = |ŷ|. The converse is
not true in general, so we will need a few theorems to learn more about this.

Theorem 4.5. For all α ∈ ORD we have V (B) |= ℵ̂α ≤ ℵα̂. If α = 0 we have equality.

Proof. A proof of the general case is by induction on α, the proof can be found in [1], page
48. The case where α = 0 follows from theorem 3.7 part 5, theorem 3.5 and the fact that the
formula x = ℵ0 is restricted.

Let Card(α) be the formula stating that α is a cardinal, then we have the following theorem
about Card:

Theorem 4.6. V (B) |= Card(α̂) for all α ≤ ω, and if V (B) |= Card(α̂) then Card(α) is true
in V .

Proof. The case where α = ω has been treated in theorem 4.5. It is a well-known fact that
in any model of ZF the following theorem must hold: ∀α(α ∈ ω → Card(α)), and therefore
this formula is also true in V (B). But since we also have the truth of ω = ω̂ in V (B) we find
that V (B) |= ∀α(α ∈ ω̂ → Card(α)), so we have

∧
α∈ω ‖Card(α̂)‖ = 1, so V (B) |= Card(α̂)

for all α ≤ ω. For the second part of the theorem we notice that ¬Card(α) is a Σ1 formula,
because a cardinal α is an ordinal such that there is no surjective function from any β < α to
α. And therefore our result about Σ1 formula’s at the beginning of this section implies the
contrapositive of the second part of this theorem.

The next theorem shows us that if we put a mild condition on our Boolean algebra, the
behavior of cardinals in V (B) is a lot better than in the general case. We say that a Boolean
algebra B satisfies ccc if every antichain in B is countable. ccc stands for ‘countable chain
condition’, which might feel as a strange name, since the definition talks about the count-
ability of antichains instead of chains. In order to prove the independence of the continuum
hypothesis we can use a Boolean algebra which satisfies this condition, so it will be rewarding
to look at the properties of cardinals in V (B) if B satisfies ccc.

Theorem 4.7. Let B be a Boolean algebra satisfying ccc, and let x, y ∈ V , then for all α we
have:

1. Card(α)→ V (B) |= Card(α̂)

2. V (B) |= ℵ̂α = ℵα̂

3. |x| = |y| ↔ V (B) |= |x̂| = |ŷ|
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Proof. To prove 1, we notice that we can assume that α > ω, for if α ≤ ω the result is
immediate from theorem 4.6. So we assume Card(α) and we also assume α > ω. So in order
to prove that V (B) |= Card(α̂) we have to prove that

‖fun(f) ∧ dom(f) = β̂ ∧ ran(f) = α̂‖ = 0

for every β < α and f ∈ V (B). Here fun(f) means that f is a function. Suppose on the
contrary that there exists a f ∈ V (B) and β < α such that ‖fun(f) ∧ dom(f) = β̂ ∧ ran(f) =
α̂‖ = a 6= 0, then a ≤ a and a ≤

∧
ε<α

∨
δ<β ‖f(δ̂) = ε̂‖, because a ≤ ‖ran(f) = α̂‖. So we

find that
0 6= a ≤

∧
ε<α

∨
δ<β

(‖f(δ̂) = ε̂‖ ∧ a)

And this shows that we must have for every ε < α a least δε < β such that ‖f(δ̂ε) = ε̂‖∧a 6= 0.
Now define for every γ < β the set Xγ = {ε < α | δε = γ}. We now see that every ε ∈ α is in
Xγ for some γ < β. So if every Xγ is countable then α ≤ β × ω, which is impossible because
α is an uncountable cardinal and β < α. So there exists a γ < β such that Xγ is uncountable.
Now look at the set {‖f(γ̂) = ε̂‖ ∧ a | ε ∈ Xγ}. We see that this is a subset of B which does
not contain 0. Also, if ε1, ε2 ∈ Xγ such that ε1 6= ε2, then

‖f(γ̂) = ε̂1‖ ∧ a ∧ ‖f(γ̂) = ε̂2‖ ∧ a ≤ ‖ε1 = ε2‖ ∧ a = 0

Because ¬(x = ε2) is a restricted formula and ε1 6= ε2. So every element of {‖f(γ̂) = ε̂‖∧a | ε ∈
Xγ} is unequal to 0 and because it is an antichain there are no two equal elements in this set.
Therefore, because Xγ is uncountable we have found an uncountable antichain in B, which is
impossible because B satisfies the countable chain condition. It follows that V (B) |= Card(α̂).
To prove 2, we use induction on α. So suppose V (B) |= ℵβ̂ = ℵ̂β for every β < α. By theorem

4.5 we only have to prove that V (B) |= ℵα̂ ≤ ℵ̂α. Because of 1 we know that V (B) |= Card(ℵ̂α)
and if β < α then V (B) |= ℵβ̂ = ℵ̂β < ℵ̂α, so

1 = ‖Card(ℵ̂α) ∧ ∀β < α̂(ℵβ < ℵ̂α)‖ ≤ ‖ℵα̂ ≤ ℵ̂α‖

And this completes the induction step and with it the proof of 2.
3 follows immediately from 2.

We have now arrived at the final theorem of this section. We first need to define ordered
pairs in V (B). For u, v ∈ V (B) we define {u}(B) = {〈u, 1〉}, {u, v}(B) = {u}(B) ∪ {v}(B)

and 〈u, v〉(B) = {{u}(B), {u, v}(B)}(B). We easily see (by a proof identical to that of normal
ordered pairs) that V (B) |= ∀u, v, x, y(〈x, y〉(B) = 〈u, v〉(B) ↔ x = u ∧ y = v). These ordered
pairs are used in the proof of the following theorem:

Theorem 4.8. For every u ∈ V (B) we can find a f ∈ V (B) such that in V (B) this f is a
function with dom(u) ˆ as domain and u is a subset of the range of f . Which shows that
V (B) |= |u| ≤ |dom(u) |̂.

Proof. We define f by f = {〈ẑ, z〉(B) | z ∈ dom(u)} × {1}. It is then easy to check that the
conditions are met. An example is in [1] page 53.
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4.3 The independence of GCH from ZFC

In this final section we are going to show how we can use V (B) to prove the independence of
GCH from ZFC. We will not prove the relative consistency of ZFC+GCH, but assume this
to be done. This can be historically justified by noting that Kurt Gödel had already given
a proof of this almost 30 years before the concept of Boolean-valued models was introduced.
This proof is in [7]. In fact, we will need this result in order to prove the relative consis-
tency of ZFC+¬GCH, because we will need the continuum hypothesis to make the desired
construction. The fact that we can use GCH to obtain a valid proof of ZFC+¬GCH (which
might sound like a paradox) follows from the following theorem:

Theorem 4.9. Suppose T and T ′ are extensions of ZF such that Consis(ZF)→Consis(T ′)
and in LZF we can define a constant B such that T ′ ` B is a complete Boolean algebra and
for all φ ∈ T : T ′ ` ‖φ‖ = 1. Then Consis(ZF)→Consis(T ).

Proof. Suppose all the assumptions are true and suppose that T is inconsistent. Then by
the compactness theorem T must have a finite inconsistent subtheory, so there must be
φ1, ..., φn ∈ T such that φ1 ∧ ... ∧ φn → ⊥. So we must have T ′ ` ‖φ1 ∧ ... ∧ φn‖ = 0, but
T ′ ` ‖φ1∧ ...∧φn‖ = 1, so that T ′ ` 0 = 1, which is impossible. So T must be consistent.

So if we take T ′ to be ZFC+GCH and T to be ZFC+¬GCH we see that all we have to do
to prove the relative consistency of T is prove that we can use the continuum hypothesis to
create a Boolean-valued model of set theory in which the continuum hypothesis fails.
We will now start working on the desired Boolean algebra. Suppose that I is some set and
that 2 is assigned the discrete topology. Then 2I with the product topology satisfies the
condition that every family of disjoint opens is countable. From this it follows that RO(2I)
satisfies the countable chain condition. Also, in general, if we have two nonempty sets x and
y and |y| ≥ 2, then we can partially order C(x, y) (the set of all functions with values in y
and domain a finite subset of x) by reverse inclusion, and obtain a refined partially ordered
set. If we put N(p) = {f ∈ yx | p ⊆ f} for all p ∈ C(x, y) we find that the N(p) are a
basis for the product topology on yx where y is assigned the discrete topology. Also, this
basis consists of clopen (closed and open) sets and is therefore contained in RO(yx). Also,
we find that C(x, y) is a refined partial ordering and that p 7→ N(p) is an order-isomorphism
of C(x, y) onto a dense subset of the Boolean algebra RO(yx), making (RO(yx), N) into a
Boolean completion of C(x, y), meaning that C(x, y) is a basis for RO(yx). We will not prove
these assertions here, more details on how this works are in [8]. We want an estimate of the
cardinality of the Boolean algebra RO(2I), and it turns out that we can in fact give a very
reasonable estimate. In order to prove this we first need the following slightly more general
theorem.

Theorem 4.10. Suppose X is a topological space such that every disjoint family of opens in
X is countable. Let E be a basis for X and set B = RO(X), the Boolean algebra of regular
opens of X. Then |B| ≤ |E|ℵ0.

Proof. Suppose U is some element of B. Then we are going to show that U is uniquely
determined by some disjoint subfamily of E. Let F be a maximal disjoint subfamily of
E ∩ P(U) (such an F exists because of Zorn’s lemma). We will show that this F uniquely
determines U . Set G =

⋃
F , then we can show that G⊥⊥ = U . First of all, we see that
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U ∈ RO(X) so U⊥⊥ = U . If a ∈ G then there exists an A ∈ F such that a ∈ A, and because
A ∈ E ∩ P(U) we have A ⊆ U so a ∈ U , so G ⊆ U . Because every A ∈ F is in E we see that
G is a union of opens and therefore itself an open, so it follows from G ⊆ U that U⊥ ⊆ G⊥

and G⊥⊥ ⊆ U⊥⊥ = U . So we are left with the proof that U ⊆ G⊥⊥. We therefore look at
U\G = U ∩ G⊥. Because U and G⊥ are open we see that U\G is also open. Now suppose
that it is nonempty, then there must be a set A ∈ E such that A ⊆ U\G, because E is a
basis of X. So because A ⊆ U ∩G⊥ we find that A ∈ E ∩ P(U) and A is disjoint from every
member of F . But this goes against the maximality of F , so U\G must be empty, so U ⊆ G,
and because U is open we find that U ⊆ G⊥⊥ as desired. So U = (

⋃
F )⊥⊥, so F uniquely

determines U . And because any maximal disjoint subfamily of E is countable and therefore
has cardinality of at most ℵ0 we find that there are at most |E|ℵ0 disjoint subfamilies of E,
so |B| ≤ |E|ℵ0 .

We now go back to the Boolean algebra RO(2I). Suppose |I| = ℵα, then {f ∈ 2I | f(i1) =
a1, ..., f(in) = an} with i1, ..., in ∈ I and a1, ..., an ∈ 2 is a base for 2I and consists of sets
which are all clopen. It follows that this base consists of elements of RO(2I) and because it
has cardinality ℵα we find using theorem 4.10 the following estimate for |B|:

ℵα ≤ |RO(2I)| ≤ ℵℵ0α

We are now ready for the main theorem of this section:

Theorem 4.11. Suppose ℵℵ0α = ℵα and let B = 2ω×ωα. Then V (B) |= 2ℵ0 = ℵα̂.

Proof. We first prove that V (B) |= 2ℵ0 ≤ ℵα̂. Because |ω × ωα| = ℵα we find that |B| = ℵα.
Define v to be the element with dom(v) = Bdom(ω̂) and for all x ∈ dom(v): v(x) = ‖x ⊆ ω̂‖.
Then this v is the element which identifies with the power set of ω̂ (recall the proof of the axiom

of power set in V (B)). Because of theorem 4.8 we find that V (B) |= |v| ≤ |Bdom(ω̂)| = ℵ̂ℵ̂0α = ℵ̂α.
So because of theorem 4.7 we now have that V (B) |= 2ℵ0 ≤ ℵα̂.
We now have to prove that V (B) |= ℵα̂ ≤ 2ℵ0 . We do this by defining a function from ℵα̂ to 2ℵ0

and show that in V (B) this function is injective. To this end, we first define for every γ < ωα
the element uγ ∈ V (B) by dom(uγ) = dom(ω̂) and for n ∈ ω: uγ(n̂) = {f ∈ 2ω×ωα | f(n, γ) =
1}. Then for every γ < ωα we find that

‖uγ ⊆ ω̂‖ =
∧
x∈ω

(uγ(x̂)⇒ ‖x̂ ∈ ω̂‖) = 1

Because x ∈ ω iff ‖x̂ ∈ ω̂‖ = 1. So in V (B) every uγ is an element of the power set of ω̂. We can
perceive of C(ω × ωα, 2) as a dense subset of RO(2ω×ωα), ordered by reverse inclusion. Now
suppose that p ∈ C(ω × ωα, 2), then p  n̂ ∈ uγ iff p(n, γ) = 1 and p  n̂ 6∈ uγ iff p(n, γ) = 0.
Now suppose that γ, δ < ωα and suppose γ 6= δ. Then we can show that ‖uγ = uδ‖ = 0.
Because if it is not 0, then there exists a p ∈ C(ω×ωα, 2) such that p  uγ = uδ. Now choose
n ∈ ω such that for all ξ < ωα: (n, ξ) 6∈ dom(p). This is always possible because the domain
of p is finite. Now define the element q ∈ C(ω × ωα, 2) by q = p ∪ {((n, γ), 1)} ∪ {((n, δ), 0)}.
Then q(n, γ) = 1 so q  n̂ ∈ uγ , and q(n, δ) = 0 so q  n̂ 6∈ uδ, so q  uγ 6= uδ. But since
p ⊆ q we have q ≤ p (because the ordering is reverse inclusion), so p  uγ 6= uδ. This is
in clear contradiction with the assumption that p  uγ = uδ, and therefore we must have
‖uγ = uδ‖ = 0.
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Now define the element f ∈ V (B) by

f = {〈γ̂, uγ〉(B) | γ < ωα} × {1}

Then we easily see that in V (B) this is a function from ω̂α to P(ω̂), because we had ‖uγ ⊆
ω̂‖ = 1 for all γ < ωα. Also, because ‖uγ = uδ‖ = 0 whenever γ 6= δ we clearly see that
V (B) |= f is injective. And because ω̂α = ωα̂ by theorem 4.7 it follows that ℵα̂ ≤ 2ℵ0 , which
completes the proof.

Now if we assume GCH then ℵℵ02 = 2ℵ1×ℵ0 = ℵ2. So we can find a Boolean algebra B
such that in V (B) we have the truth of 2ℵ0 = ℵ2, which is in direct violation with GCH.
It now follows from theorem 4.9 that Consis(ZF)→Consis(ZFC+¬GCH). And therefore, we
have used our Boolean-valued models of set theory to prove that the continuum hypothesis
is independent of ZFC.
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A Appendix: Zorn’s lemma in LZF

In this appendix we will explain how we can express Zorn’s lemma in the language of ZF.
Since Zorn’s lemma is the assertion that for every poset we have that if every chain in this
poset has an upper bound then the poset has a maximal element, we will need the concepts
of a poset, a chain, an upper bound and a maximal element. We have already seen that

∃x,≤x (y = (x,≤x)∧ ≤x∈ P(x× x)

∧ ∀p ∈ x((p, p) ∈≤x)

∧ ∀p, q, r ∈ x(((p, q) ∈≤x ∧(q, r) ∈≤x)→ (p, r) ∈≤x)

∧ ∀p, q ∈ x(((p, q) ∈≤x ∧(q, p) ∈≤x)→ p = q))

is a way of saying that P is a poset. In order to write that C is a chain in P we will have to
write that C is a subset of x and that ≤x is total on C. This is done in the following way:

∀y ∈ C(y ∈ x) ∧ ∀u, v ∈ C((u, v) ∈≤x ∨(v, u) ∈≤x)

The formula expressing that C has an upper bound in P is ∃a ∈ x∀y ∈ C((y, a) ∈≤x). And
we see that the following formula expresses that P has a maximal element: ∃m ∈ x¬∃n ∈
x(¬(m = n) ∧ (m,n) ∈≤x).
We could now combine these formula’s to get Zorn’s lemma, but we see that we also need the
concepts of a power set of a cartesian product and an ordered pair in the language of ZF. The
statement that ≤x∈ P(x× x) is ∀y ∈≤x ∃a, b ∈ x(y = (a, b)). So the last thing we need is a
formula expressing that y is the ordered pair (a, b). So we have to state that y = {{a}, {a, b}},
and this is done in the following way:

∀z(z ∈ y ↔ (a ∈ z ∧ ∀u ∈ z(¬(u = a)→ u = b)))

Because we see that only the sets {a} and {a, b} satisfy this condition. We can now put all
of this together to get the following formula for Zorn’s lemma:

∀P, x,≤x ((∀z(z ∈ P ↔ (x ∈ z ∧ ∀u ∈ z(¬(u = x)→ u =≤x)))

∧ ∀y ∈≤x ∃a, b ∈ x(∀z(z ∈ y ↔ (a ∈ z ∧ ∀u ∈ z(¬(u = a)→ u = b))))

∧ ∀p ∈ x∃y ∈≤x ∀z ∈ y(w ∈ z ↔ w = p)

∧ ∀p, q, r ∈ x(∃y, z ∈≤x (∀a(a ∈ y ↔ (p ∈ a ∧ ∀u ∈ a(¬(u = p)→ u = q)))

∧ ∀a(a ∈ z ↔ (q ∈ a ∧ ∀u ∈ a(¬(u = q)→ u = r))))

→ ∃w ∈≤x (∀a(a ∈ w ↔ (p ∈ a ∧ ∀u ∈ a(¬(u = p)→ u = r)))))

∧ ∀p, q ∈ x(∃y, z ∈≤x (∀a(a ∈ y ↔ (p ∈ a ∧ ∀u ∈ a(¬(u = p)→ u = q)))

∧ ∀a(a ∈ z ↔ (q ∈ a ∧ ∀u ∈ a(¬(u = q)→ u = p))))

→ p = q)

∧ ∀C((∀y ∈ C(y ∈ x)

∧ ∀u, v ∈ C∃y ∈≤x (∀a(a ∈ y ↔ (u ∈ a ∧ ∀w ∈ a(¬(w = u)→ w = v)))

∨ ∀a(a ∈ y ↔ (v ∈ a ∧ ∀w ∈ a(¬(w = v)→ w = u)))))

→ ∃a ∈ x∀b ∈ C∃y ∈≤x (∀z(z ∈ y ↔ (b ∈ z ∧ ∀u ∈ z(¬(u = b)→ u = a))))))

→ ∃m ∈ x¬∃n ∈ x(¬(m = n)

∧ ∃y ∈≤x (∀a(a ∈ y ↔ (m ∈ a ∧ ∀u ∈ a(¬(u = m)→ u = n))))))
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