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Abstract

In this thesis, we study the application of the holographic duality to condensed-matter physics.
Utilizing this duality, we consider the electron star as a holographic model for strongly correlated
electrons at a non-zero charge density, in 3 + 1 dimensions. The electron-star model consists of
charged fermions, treated in a �uid limit, which backreact onto a (4 + 1)-dimensional Anti-deSitter
spacetime. After solving the equations of motion in this model numerically, additional probe-fermions
are added by constructing a Dirac action in the curved electron star spacetime. By solving the Dirac
equation, the retarded Green's function and the spectral function for a chiral fermion are computed.
Ultimately, the goal is to obtain a dual description of cold atomic gases in the unitarity limit.
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Conventions

Throughout this thesis, natural units c = ~ = kB = 1 are always assumed. The dimensionality of
the bulk spacetime is of the form d + 1, with d the number of spatial dimensions. Spacetime vectors
are denoted by ordinary letters, while the spatial vectors are denoted with boldface symbols. The
signature of the metric is mostly plus, i.e. (−,+, . . . ,+).

A table of frequently used symbols and their meaning is shown below. Note that the inverse radial
coordinate u is often denoted by z or r in the literature.

` AdS radius
κ Gravitational coupling, κ2 = 8πG
e Fermion charge

r Radial coordinate for (asymptotically) AdS: r = 0 is the interior, r =∞ is the boundary
u Inverse radial coordinate for (asymptotically) AdS: u = 0 is the boundary, u =∞ is the interior
a Locally �at index (denoted by underline)
z Dynamical critical exponent

Γ Bulk gamma matrix
γ Boundary gamma matrix



Chapter 1

Introduction

A challenge facing contemporary condensed-matter physics is providing a general description of sys-
tems that are strongly coupled, in which the comprising degrees of freedom have interaction energies
which are not low compared to their kinetic energies. Although approaches to calculating some of the
observables of these systems exist, a general method is lacking. This is in contrast to weakly cou-
pled systems, which are characterized by weakly interacting degrees of freedom to which perturbative
methods can be applied ubiquitously. Generally, pictures based on perturbative techniques fail in the
strongly coupled regime, prompting condensed-matter physicists to seek new angles of attack.

A surprising approach to this problem comes from string theory, in the form of the holographic
duality. This duality can be used to understand strongly coupled quantum �eld theories by map-
ping them onto a higher-dimensional theory of classical gravity, which is generally more tractable.
The holographic duality earns its name in relation to holograms, which depict a lower dimensional
representation of a higher dimensional object, but is also referred to as the gauge/gravity duality.

Typically, the classical gravity theory is de�ned on an Anti-deSitter (AdS) spacetime and is dual
to a strongly coupled quantum �eld theory (QFT) de�ned on the lower dimensional boundary of this
spacetime. Pictorially,

Classical gravity in AdSd+1 ! Strongly coupled QFT in ∂AdSd+1.

The most prominent example of the holographic duality is the well-known AdS/CFT correspondence re-
lating an AdS5 geometry to a four-dimensional conformal �eld theory (CFT), which is1 a scale-invariant
quantum �eld theory. Currently, the correspondence has been extended in numerous directions and
has found numerous applications in other areas of physics. Most notably, the holographic duality is
applied to condensed-matter physics, under the banner �AdS/CMT� (Anti-deSitter/Condensed Matter
Theory). This application is motivated by the observation that a system undergoing a quantum phase
transition - a phase transition at zero temperature - becomes scale invariant at the quantum critical
point (QCP), see Figure 1.1, and is hence governed by a conformal �eld theory. By attempting a dual
description in terms of classical gravity, the aim of AdS/CMT is to describe the universal behavior
near quantum critical points.

Away from the QCP, there is a region in the phase diagram where the quantum �uctuations are
relevant compared to the thermal �uctuations present at non-zero temperature. Referred to as the
quantum critical region (QCR), it is the region where the physics of the QCP is probed at a non-zero
temperature. This explains how such critical points can be found in experiments, which cannot be
performed at absolute zero.

1Every CFT is a scale-invariant QFT, but the reverse statement need not hold. There are a few exotic examples of
quantum �eld theories invariant under scaling symmetry which are not invariant under the full conformal group. In this
thesis, we will take scale invariance and conformal invariance to be the same.

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: A sketch of a phase diagram showing a quantum phase transition with an associated
quantum critical point (QCP) at zero temperature. At non-zero temperature, a (quantum) critical
region extends over the quantum critical point. This �gure is taken from ref. [1].

In this thesis we will study a speci�c gravitational model, the electron star, in the context of
AdS/CMT. It is an Einstein-Maxwell-Dirac theory, which consists of charged fermions coupled to
gravity, where the fermions are treated in a �uid limit. This model is aimed at providing a dual
description of the quantum critical dynamics of fermionic systems at a non-zero charge density. A
crucial aspect of the electron star is that, unlike many other models within AdS/CMT, the backreaction
of the matter �elds onto the metric is taken into account. That is, the matter �elds explicitly appear in
Einstein's equation and therefore a�ect the metric. Additional fermions are later added to the model,
with the goal of calculating the spectral function. It is de�ned as

ρ (ω,k) = − 1

2π
Im [Tr [GR (ω,k)]]

in terms of the retarded Green's function GR (ω,k), which we �nd by solving the fermion equations of
motion in the electron-star background. Our approach here will be semi-holographic, which means we
will add a term to the action by hand, yielding the free part of the Green's function which is not there
in an ordinary holographic approach. The Green's function obtained this way can then be interpreted
as a single-particle propagator.

The setup of the thesis is as follows. In Chapter 2, we will provide a brief introduction to the
holographic duality and introduce a model, the Lifshitz black brane, as a warm-up exercise. Next, we
will introduce the central model of this thesis, the electron star, and subsequently solve the model, in
Chapter 3. In Chapter 4, we introduce additional fermions to the electron-star model and calculate
the spectral function by solving the Dirac equation numerically. Finally, in Chapter 5, we turn to a
conclusion and an outlook.



Chapter 2

Holography

In this chapter we provide an introduction to the holographic duality. We begin by introducing some
key concepts, after which we discuss the AdS/CFT correspondence and its application to condensed-
matter physics. This will lead us to consider the generalization of the holographic duality to anisotropic
scale invariance, by means of the Lifshitz spacetime. There, we will consider an important model of a
black hole in Lifshitz spacetime, referred to as the Lifshitz black brane, which is closely related to the
electron-star model we will study in the next chapter.

2.1 The AdS/CFT correspondence

We provide a brief introduction to the AdS/CFT correspondence. First, we will thoroughly study the
Anti-deSitter spacetime, after which we will introduce the AdS/CFT correspondence, discussing its
essential structure. For more detailed introductions, we refer the reader to refs. [2],[3], and [4].

2.1.1 AdS spacetime

The central spacetime in the AdS/CFT correspondence is the Anti-deSitter (AdS) spacetime. Together
with its cousin, the deSitter (dS) spacetime, it plays an important role in general relativity; these
spaces are the vacuum solutions to Einstein's equations having constant positive (dS) or negative
(AdS) curvature. One can think of them as the Lorentzian analogs of the sphere and the hyperboloid,
respectively.

The deSitter spaces are maximally symmetric spaces, characterized by a Riemann tensor of the
form

Rρσµν = α (gρµgσν − gρνgσµ) ; α =
R

d (d+ 1)
,

see ref. [5], in d + 1 dimensions. In particular, the Ricci tensor is proportional to the metric of the
spacetime

Rµν = dαgµν

and hence, from Einstein's equation, the energy-momentum tensor

Tµν ≡
−2√
−g

δS

δgµν

is proportional to the metric as well

Tµν = −1

2
d (d− 1)αgµν .

3



CHAPTER 2. HOLOGRAPHY 4

Such an energy-momentum tensor corresponds to a cosmological constant Λ, which is negative (posi-
tive) for α < 0 (α > 0), i.e. for negative (positive) curvature. The action for these spacetimes takes
the form

S =

ˆ
dd+1x

√
−g [R− 2Λ] .

Let us describe the Anti-deSitter spacetime, characterized by a negative Λ, more carefully as an
embedding of a hyperboloid, allowing us to de�ne coordinate frames. Consider the �at (d + 2)-
dimensional space described by the metric

ds2 = −dX2
0 − dX2

d+1 +

d∑
i=1

dX2
i

that embeds a hyperboloid given by the equation

−X2
0 −X2

d+1 +
d∑
i=1

X2
i = −`2. (2.1)

The constant `, having the dimension of length, is called the AdS-radius (it is the radius of curvature).
The set of coordinates

X0 = ` cosh (ρ) sin (t)

Xd+1 = ` cosh (ρ) cos (t)

X1 = ` sinh (ρ) cos θ1

X2 = ` sinh (ρ) sin θ1 cos θ2

...
...

...

Xd = ` sinh (ρ) sin θ1... sin θd−1

with ρ ≥ 0 solves this constraint equation and induces a metric on the hyper-surface given by

ds2 = `2
(
− cosh2 (ρ) dt2 + dρ2 + sinh2 (ρ) dΩ2

d−1

)
where dΩ2

d−1 is the metric on Sd−1. These coordinates1 are global coordinates, i.e. they cover the
entire spacetime.

An incredibly important property of the Anti-deSitter spacetime is that it admits a notion of a
boundary, in the sense that spatial in�nity is in causal contact with the interior of the spacetime. In
particular, light rays can reach the boundary in �nite time. The boundary is identi�ed by conformal
compacti�cation, see ref. [5]. For this, one de�nes a new coordinate χ ∈ [0, π/2[ related to ρ by

cos ρ =
1

cosχ
.

Note that unlike ρ, the coordinate χ takes values in a �nite (open) interval. The AdS metric in terms
of χ takes the form

ds2 =
`2

cos2 χ

(
−dt2 + dχ2 + sin2 χdΩ2

d−1

)
. (2.2)

In these coordinates, we can concretely identify the boundary of AdS spacetime as χ = π
2 by compact-

i�cation.

1Note that the time coordinate t is periodic, which allows for closed time-like curves [5]. The actual de�nition of AdS
space is the covering space, which has the same metric but with t ranging from −∞ to ∞.



CHAPTER 2. HOLOGRAPHY 5

Coordinate frames

We turn to two sets of coordinates parametrizing Anti-deSitter space which we will be important to
us. For more details, we refer to ref. [6].

Begin by de�ning a new set of variables

a =
X0 −Xd

`2

b =
X0 +Xd

`2

xi =
Xi

`a

t =
Xd+1

`a
.

In terms of these, equation (2.1) becomes

`2 = `4ab+ `2a2
(
t2 − x2

i

)
where x2

i =
∑
i x

2
i . This yields an equation for the coordinate b, which is reinserted in the equation

for u and xd−1. Transforming a = 1
u yields

X0 =
1

2u

(
u2 + x2

i + `2 − t2
)

Xd+1 =
1

2u

(
u2 + x2

i − `2 − t2
)

Xi =
`xi
u

Xd =
`t

u
.

Then the metric takes the form

ds2 =
`2

u2

(
−dt2 + du2 + dx2

i

)
(2.3)

where u ∈ [0,∞], which is referred to as the Poincaré form of the metric for the Anti-deSitter spacetime.
We will refer to this system of coordinates simply as �u coordinates�. The boundary of the spacetime
is located at u = 0, and the interior is at u = ∞. Note that the boundary of the spacetime has a
metric isomorphic to the Minkowski metric. It is the notion of a boundary which looks like Minkowski
space that will play a crucial role in the AdS/CFT correspondence.

Another important coordinate system is obtained from the Poincaré metric simply by transforming

u2 =
`4

r2
(2.4)

and has the metric

ds2 = −r
2

`2
dt2 +

`2

r2
dr2 +

r2

`2
dx2

i . (2.5)

We refer to this system of coordinates as �r coordinates�. The radial coordinate r also ranges between
0 and in�nity, but the boundary is at r =∞ while the interior of the spacetime is at r = 0.

Transformations between coordinates

As will be explained in the next section, we will be concerned with asymptotically AdS spaces, which
asymptote the pure AdS metric in the form (2.3) or (2.5) far away from the origin. In particular, we
will consider a metric of the form

ds2 = −f̃ (r)
r2

`2
dt2 + g̃ (r)

`2

r2
dr2 +

r2

`2
dx2

i (2.6)
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in r coordinates, with f̃ (r) , g̃ (r)→ 1 as r →∞. We will also consider an asymptotically AdS metric
in u coordinates, which we write down as

ds2 = −`2f (u) dt2 + `2g (u) du2 +
`2

u2
dx2

i , (2.7)

i.e. the functions f (u) and g (u) do not asymptote 1 but rather u−2. By transforming from the u to
the r coordinate frame, using equation (2.4), one easily veri�es that these functions are related by

f (u (r)) =
r2

`4
f̃ (r)

g (u (r)) =
r2

`4
g̃ (r) (2.8)

This will be crucial later: this coordinate transformation is employed between Chapter 3 and Chapter
4, where we change from a metric of the form (2.7) to one of the form (2.6) .

2.1.2 The holographic duality

Roughly put, the holographic duality is an equivalence between non-gravitational quantum �eld the-
ories and higher-dimensional gravity. In particular limits, the quantum �eld theory becomes strongly
coupled while the dual gravity theory becomes classical. This is incredibly useful, as the conventional
perturbative methods fail in the strongly coupled regime of QFTs, making them hard to describe.
We will brie�y cover the essential structure of this correspondence, skipping the string theoretical
considerations. For a more thorough introduction, we refer the reader to refs. [2, 4].

The AdS/CFT correspondence embodies a realization of two fundamental concepts in theoretical
physics. The �rst of these is the 't Hooft limit of quantum �eld theories. In order to illustrate this
concept, consider the SU (N) Yang-Mills theory described by the Lagrangian

L = − 1

g2
Tr
[
F 2
]

with the non-abelian �eld strength tensor Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. One can rewrite this as

L = −N
λ

Tr
[
F 2
]

by de�ning the 't Hooft coupling λ = g2N. The 't Hooft limit now consists of taking a large number of
�colors� N →∞, the large N limit, and a small coupling g → 0 while keeping λ �xed. The parameter
N then organizes the amplitudes by topology; a diagram with E propagators, V vertices and F loops
has a contribution

NχλE−V

where χ = F −E + V is the Euler characteristic of the simplest surface triangulated by the diagram -
see ref. [4]. In this limit, only the �planar� diagrams having χ = 2 remain. Further, the full partition
function becomes a sum over topologies, precisely as in the perturbative expansion of string theory. The
forms of the partition functions are the same and the connection is made more explicit by identifying

gs = N−1,

where gs is the string coupling constant.
The second concept is the holographic principle in quantum gravity, which states that a given

region of space can be described by a theory living on the boundary of that space. In black hole
thermodynamics, for example, the entropy of a black hole is proportional to the area of the black hole,
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rather than the volume. This concept is realized in the AdS/CFT correspondence, which is why it is
also referred to as a holographic duality.

The original formulation, ref. [7], of the AdS/CFT correspondence involved type IIB string theory
on AdS5 × S5 and N = 4 supersymmetric Yang-Mills theory, which is a conformal �eld theory. In the
large N limit, g becomes small at a �xed 't Hooft coupling and the CFT becomes strongly coupled,
while the string theory with gs = N−1 becomes classical gravity. This is an example of a holographic
- or gauge/gravity - duality with a very high degree of symmetry. More examples have been found,
and it is believed that the duality holds more generally, also for �eld theories without supersymmetry.
The general duality, which we refer to as �the� holographic duality, relates classical gravity in d + 1
dimensional spacetime to a strongly coupled quantum �eld theory living in d dimensional spacetime.
Typically, the gravity theory is on some d+ 1 dimensional Anti-deSitter space, and the quantum �eld
theory is said to live on the boundary (see section 2.1.1) of this spacetime.

The extra spatial dimension of the gravitational theory corresponds to the energy scale of the quan-
tum �eld theory, i.e. the energy scale is placed on an equal footing with the other spatial dimensions
of the �eld theory, see for instance ref. [2]. Invoking wisdom from the theory of the renormalization
group (RG), we learn that the coupling constants g of the �eld theory depend on the energy scale r,
evolving according to the RG �ow equation

r
∂g

∂r
= β (g) .

At the critical point, the �eld theory is scale invariant, which implies β = 0. Thus, the scale
transformation

xµ → λxµ

is a symmetry. Insisting on the interpretation of r as an energy scale, we �nd it should transform as

r → r

λ

under the scaling transformation. Thus, the complete set of coordinates, including r, can be combined
into a (d+ 1)-dimensional spacetime with the metric

ds2 =
(r
`

)2

ηµνdx
µdxν +

`2

r2
dr2.

This describes an AdSd+1 spacetime; it is precisely the metric in the form (2.5). The above considera-
tions can be compressed into the saying "The AdS/CFT correspondence geometrizes the energy scale",
and also in the �geek joke� [G,R] = 0, see ref. [8]. The di�erent energy scales of the system foliate the
higher-dimensional spacetime. The high-energy physics is encoded at the boundary of the space-time
at r = ∞, while the low-energy physics is encoded in the interior of the spacetime at r = 0. These
regimes are referred to as the ultra-violet (UV) and the infrared (IR) of the spacetime. See Figure 2.1.

Although the critical point provides a natural place to begin with the identi�cation of a gravitational
dual, deformations away from criticality are possible. This can be done, for instance, by considering
ensembles such as a non-zero temperature or chemical potential, or by deforming the theory by relevant
operators, ref. [3]. These e�ects break the scale invariance of the spacetime, but we expect this
symmetry to recover at energies well above the characteristic energy scale of the deformation. That
is, in the UV-limit, we expect to obtain a scale-invariant theory again. In the language of general
relativity, the spacetime should be asymptotically Anti-deSitter, thus ensuring scale-invariance on the
boundary.
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Figure 2.1: A sketch of the geometric realization of the QFT resolution scale. The resolution scale
introduces a length scale in the QFT which is interpreted as an extra dimension. The total spacetime,
including this extra dimension, is a curved spacetime, as depicted on the right. This �gure is based
on a �gure from ref. [4].
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The dictionary

As we have mentioned, the holographic duality entails a correspondence between events or quantities
in the theories on both sides. In particular, there is a dictionary which translates between the physics
of the boundary �eld theory and the bulk gravity theory. The core of this dictionary is the so-called
GPKW-rule, which essentially tells us that the partition functions of the �eld theory and the gravity
theory coincide. Let us consider this in more detail.

In the �eld theory one has the partition function, or the generating functional, given by

ZQFT [φ0] =

ˆ
DA exp

[
i

(
SQFT +

ˆ
ddxφ0O (A)

)]
,

where A denotes all of the fundamental �elds in the QFT, and where SQFT is the action of the
QFT. This generating functional is used to compute expectation values of the operator O (A), by
di�erentiating with respect to φ0. The �eld φ0 is said to "source" the operator O (A).

In the context of the AdS/CFT correspondence, the source φ0 is promoted from a �xed �eld on
the boundary of AdS spacetime to a dynamical �eld in the bulk, which is governed by its own action.
This �eld, φ0 (x, r), becomes φ0 (x) precisely on the boundary. The fundamental rule of holography,
the GKPW rule (after Gubser, Klebanov, Polyakov, and Witten), then relates the partition functions
by

ZQFT [φ0] = ZQG

[
φ
∣∣
∂AdS

]
,

where "QG" stands for quantum gravity. In the large N limit, the bulk partition function can be
treated in a saddle point approximation, from which we �nd

ZQFT [φ0] ≈ eiSc
∣∣
φ→φ0

, (2.9)

where Sc is the classical, or �on-shell�, bulk action providing the dominant contribution to the path
integral.

In general, �elds in the bulk correspond to sources of operators in the �eld theory. The simplest
examples are scalar and fermionic �elds

φ, ψ ↔ Os,Of (2.10)

which correspond to scalar and fermionic operators, respectively. In general, tensor �elds correspond
to tensor operators. For example

Aµ ↔ Jµ (2.11)

and
gµν ↔ Tµν . (2.12)

This is the �rst example of a dictionary rule relating both sides of the duality. Another important
dictionary rule concerns the symmetries of the gravity theory and the dual quantum �eld theory. The
symmetry group of AdSd+1 is SO (d, 2), as is clear from equation (2.1). This is precisely the symmetry
group of a d dimensional CFT, as its generators satisfy the so (d, 2) algebra, see ref. [9]. The dictionary
then relates local symmetries in the bulk to global symmetries on the boundary. For example, consider
the U (1) gauge �eld Aµ, dual to the current Jµ in the boundary �eld theory. Then the local U (1)
symmetry in the bulk implies the conservation ∂µJ

µ = 0, by partial integration, hence a global U (1)
symmetry on the boundary. Similarly, invariance under local coordinate transformations implies the
conservation ∂µT

µν = 0 associated with global Poincaré symmetry on the boundary. Other dictionary
rules are listed in Table 2.1.
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Bulk Boundary

Scalar �eld φ Scalar operator Os
Fermionic �eld ψ Fermionic operator Oψ
Vector �eld Aµ Current operator Jµ
Spacetime metric gµν Energy-momentum tensor Tµν
Field boundary value (properly
(re)normalized)

Source of operator

Local isometry/gauge symmetry Global symmetry
Hawking temperature (black hole) Temperature

Table 2.1: The AdS/CFT dictionary rules

2.1.3 Condensed matter

Although discovered in the context of string theory, the AdS/CFT correspondence has applications
far beyond this �eld alone. One application is in quantum chromodynamics (QCD), under the banner
�AdS/QCD�. One physical system studied using this correspondence is the quark-gluon plasma, which
is a phase of QCD consisting of free quarks and gluons. Especially in the case of a strongly coupled
plasma, the idea is that the holographic duality can be used to gain insight.

A second example is the �eld of condensed-matter physics, which is the application we will focus
on in this thesis. In order to motivate this application, we begin by investigating quantum phase
transitions. By de�nition, these are (continuous) transitions between phases of matter that occur at
zero temperature. In contrast, all non-zero temperature phase transitions are referred to as classical.
In classical phase transition, the physical state of the system is changed by thermal �uctuations. The
quantum phase transitions, on the other hand, are driven solely by quantum �uctuations. It is the
occurrence of �uctuations at zero temperature that explains the nomenclature �quantum�.

Figure 2.2: Sketch of a typical quantum phase diagram with a quantum phase transition driven by
the parameter g. The quantum critical point is at gc, above which the shaded quantum critical region
(QCR) extends at non-zero temperature.

Just as their classical counterparts, quantum phase transitions are at a critical point, which is
referred to as the quantum critical point (QCP). At this point, the system exhibits universal behavior;
various quantities of interest diverge or vanish according to power laws, in terms of so-called critical
exponents. These exponents can be identical for systems having completely di�erent microscopic
degrees of freedom, in which case the two systems are said to be in the same universality class.

A particularly important quantity in this respect is the correlation length ξ, which is a typical
length scale in the system of interest. For example, this could the length scale determined by the
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exponential decay of equal time correlations in the ground state. Another important quantity is the
energy scale ∆, which could be given by the energy gap in the system. When tuning the driving
parameter g towards the critical point gc, these quantities typically exhibit the power law behavior 2

∆ ∼ |g − gc|ν

ξ−1 ∼ |g − gc|ν ,

i.e. the energy gap vanishes while the correlation length diverges at the critical point. The latter
implies that the system looks the same on all length scales; the system is said to be scale invariant. It
is this scale invariance that causes the system to exhibit universal behavior, as it e�ectively averages
over microscopic degrees of freedom.

At zero temperature, there are no thermal �uctuations, so any phase transition is purely driven
by quantum �uctuations having a typical energy ~ω. Here, ω the frequency associated with the
correlation time, which is a typical time scale of the system. At non-zero temperature, there are
thermal �uctuations with an energy scale kBT. Any phase transition at a non-zero temperature is a
classical phase transition because the thermal �uctuations always dominate close enough to the critical
point. Again, the diverging correlation length washes out the microscopic quantum details, and the
thermal �uctuations dominate on larger scales that control the critical behavior.

In the quantum critical region (QCR), see Figure 2.2, the energy scale of the quantum �uctuations
~ω is roughly less than the energy scale of the thermal �uctuations kBT . In this region, g ≈ gc, but
due to the non-zero temperature the system is not at the quantum critical point, see ref. [10]. Thus,
the system prefers the quantum critical ground state, characterized by an absence of quasi-particle
excitations, but is constantly thermally excited. Thus, the physics in the quantum critical region
is unusual: the system can exhibit, for example, unusual �nite-temperature properties or non-Fermi
liquid behavior.

Scale invariance at the quantum critical point implies3 that the theory governing the system be-
comes conformal. This is a natural place to start with the application of the AdS/CFT correspondence,
as we have mentioned. Then, following our discussion in section 2.1.2, speci�cally the dictionary in
table 2.1, one might consider deformations of the dual gravity theory in order to describe (the universal
behavior of) a given system. By adding a charged black hole to the spacetime, for instance, one can
aim at a dual description of a system at a non-zero temperature and chemical potential.

2.2 Lifshitz Holography

In this section, we will consider an important extension of the holographic duality applied to condensed
matter. It is the generalization towards anisotropic scale invariance, providing a more realistic picture
of condensed matter. We will be lead to the Lifshitz spacetime, after which we consider a speci�c
model in the resulting Lifshitz holography.

2.2.1 Anisotropic scale invariance

In the previous section we have seen how the holographic duality can be applied to strongly coupled
systems in condensed-matter physics. However, the focus was on a very speci�c class of systems.
Namely, we considered systems in which the correlation time and the correlation length diverged with
the same exponent, referred to as isotropic scale invariance. More often that not, systems in condensed

2This is not the most general power law behavior near the critical point. The more general case, where ∆ ∼ |g − gc|zν
while ξ−1 ∼ |g − gc|ν , is discussed in the next section.

3Strictly speaking, scale invariance does not imply conformal invariance. However, we will not concern ourselves with
the precise di�erence here, as counterexamples are generally exotic.
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matter have an anisotropic scale invariance at the quantum critical point. That is, the energy scale
typically vanishes as

∆ ∼ |g − gc|zν ,
while the length scale diverges as

ξ−1 ∼ |g − gc|ν

near the critical point g = gc. This implies

∆ ∼ ξ−z,

which yields an anisotropy between time and space, measured by the so called dynamical critical
exponent z. In particular, such systems have a scaling symmetry

t→ λzt, x→ λx. (2.13)

The case z = 1 corresponds to a conformal �eld theory which can be considered to live on the boundary
of AdS spacetime, dual to a gravitational theory in the AdS bulk. These correspond to relativistic
systems at a quantum critical point, as the dispersion relations of excitations there are linear in
momentum; E ∼ p. The generalization to a general z takes us towards non-relativistic systems,
in particular the case z = 2, where the dispersion relation becomes E ∼ p2. Including such non-
relativistic systems in the holographic duality necessitates a di�erent bulk gravitational theory, which
is called the Lifshitz spacetime.

By requiring the boundary �eld theory to be invariant under temporal and spatial translation,
spatial rotations, spatial parity and time-reversal, one �nds a metric

ds2 = −r
2z

`2z
dt2 +

`2

r2
dr2 +

r2

`2
dx2

i , (2.14)

which is invariant under the anisotropic scaling

t→ λzt, x→ λx, r → λ−1r.

This metric was �rst found in ref. [11]. From the expression for the metric, one sees that towards the
boundary at r = ∞, the metric component gtt diverges faster than the components gii when z > 1.
Thus, the light-cones �atten out, yielding a diverging e�ective speed of light, as expected for non-
relativistic theories. The case z = 1 corresponds to the AdS metric in r coordinates, equation (2.5),
and corresponds to a relativistic system.

Having obtained the desired boundary scaling behavior, our goal is to �nd a bulk action S which
is minimized by a Lifshitz metric. This action consists of an Einstein-Hilbert action with a negative
cosmological constant and a matter action SM coupled to gravity. It turns out, see refs. [12, 13], that
the matter action

SM =
−1

4κ2

ˆ
dd+1x

√
−g
[
(∇µφ)

2
+

1

2
eλφFµνF

µν

]
,

in terms of a dilaton �eld φ and an antisymmetric �eld strength tensor Fµν , produces a vacuum Lifshitz
spacetime. Note that the matter �elds are not meant to have a physical interpretation. Instead, they
are solely introduced to obtain the correct boundary scaling behavior. The full action is given by

S =
1

2κ2

ˆ
dd+1x

√
−g
[
R− 2Λ− 1

2
(∇µφ)

2 − 1

4
eλφFµνF

µν

]
where κ2 = 8πGd+1 is proportional to the Newton constant in d+1 dimensions. The resulting equations
of motion are

Rµν +

(
Λ− 1

2
R

)
gµν = Tµν (2.15)

∇µ
(
eλφFµν

)
= 0 (2.16)

�φ− 1

4
λeλφFµνF

µν = 0. (2.17)
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with

Tµν =
1

2
∂µφ∂νφ−

1

4
(∂φ)

2
gµν +

1

2
eλφ

[
FµσF

σ
ν −

1

4
F 2gµν

]
.

2.2.2 The Lifshitz black brane

We turn to an important model for this thesis, the Lifshitz black brane. It is a model of a black hole
with planar topology on top of a Lifshitz spacetime. Of course, the presence of the black hole distorts
the curvature of the Lifshitz spacetime. As discussed in section 2.1.2, we are interested in a resulting
spacetime with a metric that asymptotes the Lifshitz metric (2.14).

Of particular importance to us is the charged Lifshitz black brane, which we will study in more
detail here, broadly following ref. [12]. The Lifshitz black brane has been used in the context of
holography in refs. [14, 15]. In this model, the metric is given by

ds2 = −V
2 (r) r2z

`2z
dt2 +

`2

V 2 (r) r2
dr2 +

r2

`2
dx2

i (2.18)

where V (r) is referred to as the emblackening factor. The black hole has a horizon rh where V (rh)→ 0,
while V → 1 on the boundary at r =∞. The action for the charged black brane is the Lifshitz action
with an additional gauge �eld coupled to the dilaton, i.e.

S =
1

2κ2

ˆ
dd+1x

√
−g

[
R− 2Λ− 1

2
(∇µφ)

2 −
∑
i

1

4
eλφFi,µνF

i,µν

]
, (2.19)

where F1,µν is the (unphysical) gauge �eld of the Lifshitz action and F2,µν is a physical gauge �eld, to
which other �elds can couple. For simplicity, it is assumed that Ai,t is the only non-zero component
of Ai,µ, and that it only depends on the radial coordinate r. The equations of motion for this model
are given by

Rµν −
2Λ

d− 1
gµν −

1

2
∂µφ∂νφ−

1

2

∑
i

eλiφ
[
(Fi)µσ (Fi)

σ
ν −

1

2 (d− 1)
F 2
i gµν

]
= 0 (2.20)

∇µ
(
eλiφFµνi

)
= 0 (2.21)

�φ− 1

4

∑
i

λie
λiφF 2

i = 0, (2.22)

where the �rst equation is obtained by tracing (2.15), eliminating R. We proceed to solve these equa-
tions exactly, following ref. [12].

In the following, we denote Einstein's equation by Eµν . We begin by subtracting Err from Ett ,
which leaves only

Rtt −Rrr +
1

2
grr∂rφ∂rφ = 0.

This particular linear combination is useful as several Riemann tensor components cancel. One �nds

Rtt −Rrr = gttRitit − grrRirir

=
(d− 1) (1− z)V 2 (r)

`2
,

and hence
r2φ′2 = 2 (d− 1) (z − 1)⇒ eφ = αr

√
2(d−1)(z−1)
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where α is an integration constant. Next, setting ν = t in Maxwell's equation,

0 = λi∂rφF
rt
i + ∂µF

µt
i + ΓµµαF

αt
i

= ∂rF
rt
i + F rti

(
λi∂rφ+

z + d− 2

r

)
.

Substituting the solution for φ, one �nds

(Fi)rt = ρir
z−de−λiφ,

where the ρi are integration constants.
Having solved the matter �elds, we determine the emblackening factor and the cosmological con-

stant Λ. By entering the solutions for φ and Fi, Eii becomes

Rii −
r2

`4

(
2Λ`2

d− 1
+
r2(1−d)`2z

2 (d− 1)

∑
i

ρ2
i r
−λi
√

2(d−1)(z−1)

)
= 0

Then, one easily computes Rii = r2

`4

(
(1− d− z)V 2 − 2rV V ′

)
and substitutes it in the above

equation to �nd a di�erential equation solved by

V 2 (r) = − 2Λ`2

(d− 1) (1− z − d)
−Mr1−z−d +

`2z

2 (d− 1)

∑
i

ρ2
iα
−λir2(1−d)−λi

√
2(d−1)(z−1)

d− z − 1 + λi
√

2 (d− 1) (z − 1)
.

Here, M is yet another integration constant. The �nal equation of motion is a combination of the
dilaton equation of motion and the remaining Einstein equations, cast in the form

4Λ
√

2 (d− 1) (z − 1) = `2(z−1)r−2(d−1)
∑
i

ρ2
i r
−λi
√

2(d−1)(z−1)α−λi
[
(d− 1)λi −

√
2 (d− 1) (z − 1)

]
.

If we pick

λ1 = −
√

2
d− 1

z − 1
, ρ2

1 = −4Λα−λ1`2(1−z) z − 1

d+ z − 2
,

the �rst term in the sum will equal the left hand side, which in turn implies that the second term on
the right hand side must vanish. This happens when

λ2 =

√
2
z − 1

d− 1
.

Note that while ρ1 is �xed, ρ2 is still a free parameter, interpreted as the charge density of the
black brane - see [12]. Requiring an asymptotically Lifshitz space, we take the limit r → ∞ of the
emblackening factor V

lim
r→∞

V 2 (r) =
2Λ`2

(d− 1) (1− z − d)
− 2Λ`2 (z − 1)

(d− 1) (d+ z − 2) (1− z − d)

and require it to be unity. This yields

Λ = − (d+ z − 1) (d+ z − 2)

2`2
. (2.23)

The solution for V 2 (r) can now be written

V 2 (r) = 1−Mr1−z−d +
`2zρ2

2α

√
d−1

2(z−1)

2 (d− 1) (d+ z − 3)
r−2(d+z−2). (2.24)
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It is interesting to consider the special case of z = 1, φ = 0. In this case, we retrieve the asymptot-
ically Anti-deSitter Reissner-Nordström (AdS-RN) solution. The emblackening factor is given by

V 2 (r) = 1−Mr−d +
`2ρ2

2r
2(1−d)

2 (d− 1) (d− 2)
, (2.25)

while the gauge �eld A2 satis�es
A′2,t = ρ2r

1−d. (2.26)

This is a solution of a charged black hole which asymptotes Anti-deSitter spacetime far away from the
origin.

As mentioned above, when fermions are added to the bulk spacetime, they can couple to the gauge
�eld A2,µ of the black brane. In particular, the covariant derivative for the fermions4 becomes

∇µ → ∇µ − iqA2,µ

via a minimal coupling scheme. Upon a Fourier transform, this means

k → k

ω → ω + qA2,t (r) ,

assuming A2,i = 0 as above. On the boundary, this means that

ω → ω + lim
r→∞

qA2,t (r) ,

where the second term is interpreted as a chemical potential. Thus, charging the black brane and
adding charged fermions to the bulk corresponds to a chemical potential of the boundary. Considering
table 2.1, this makes sense, as a chemical potential µ is associated to a global U (1) symmetry, while
A2,µ is associated to a local U (1) symmetry.

The black brane versus the electron star

This brings us to a distinction between the Lifshitz black brane model and the electron-star model we
will study in this thesis. In the black brane model, the fermions couple to the gauge �eld but they
do not backreact onto the metric, i.e. they are treated in a probe limit. Thus, one can still use the
expression (2.18) for the metric, as the fermions do not a�ect it in this limit. In the electron-star
model, the backreaction of the fermions is taken into account - albeit in a �uid approximation to be
explained in the next chapter - so we will go beyond the probe limit. The reason for doing this is the
fact that the Lifshitz black brane model has non-zero entropy at zero temperature, see ref. [3], which
is unwanted from the point of view of �eld theory. By invoking the fermion �uid approximation, a
vanishing entropy at absolute zero is guaranteed.

We will focus mainly on the electron star in an Anti-deSitter spacetime, rather than a Lifshitz
spacetime. This means that our model will not produce a dual description of critical points with
anisotropic scale invariance. Although we will build towards the Lifshitz electron star, discussing the
equations of motion of this model in Appendix C, we will leave the full generalization for future work.

4We will mention the precise de�nition of the covariant derivatives for spinors in Chapter 4



Chapter 3

The electron star

In this chapter we study a holographic model called the electron star, which is an Einstein-Maxwell-
Dirac theory in which the fermions are treated in a �uid limit. In light of the AdS/CFT correspondence,
we will be interested in �nding a spacetime that asymptotes Anti-deSitter spacetime, but which is
deformed in the bulk due to the backreaction of the fermion �uid onto the geometry.

We begin by addressing the origin of this model, and study the �uid limit of the fermions. Next,
we derive the equations of motion pertaining to the electron star, where we will �nd one of them to
be solved trivially. The remaining equations are solved numerically and the subsequent results are
discussed. In this chapter, we will broadly follow ref. [16], generalizing the discussion to an arbitrary
spacetime dimension.

3.1 The model

Our goal is to study, by means of the holographic duality, quantum �eld theories with fermionic degrees
of freedom at a non-zero charge density, becoming strongly coupled near a quantum critical point. As
we have seen in the previous chapter, this desired additional structure necessitates a deformation of the
dual spacetime geometry. In particular, the dictionary rules (2.1) hint at a model of charged fermions
in an Anti-deSitter background. Thus, we start our investigation from the model

Z =

ˆ
D [g,A,Ψ] ei(Sg+SA+SΨ)

where

Sg =
1

2κ2

ˆ
dd+1x

√
−g (R− 2Λ)

SA = − 1

4e2

ˆ
dd+1x

√
−g FµνFµν ,

are the Anti-deSitter and Maxwell actions. In these actions, κ2 = 8πGd+1 is the gravity coupling in
d + 1 dimensions, while e is the Maxwell coupling. Finally, SΨ is the Dirac action for fermions in
curved spacetime, which describes fermions coupled to gravity as well as the gauge �eld A. We will
postpone an in-depth discussion of this action to Chapter 4, as we will not need it explicitly here.

In the large N limit, classical gravity su�ces, allowing us to approximate the path integral by
employing a saddle-point approximation applied to the metric g and the Maxwell gauge �eld A. This
yields

Z ≈
ˆ
Dψei(S

cl
g +Scl

A+SΨ),

16
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where the gravity and the Maxwell actions Sg and SA are taken on-shell. This way we only retain
the full quantum nature of the fermionic �eld. This model is referred to as the quantum electron star
[17]. Even this simpli�ed model is quite hard to solve1, so we invoke an approximation called the �uid
approximation. In this approximation, the model is referred to as the electron star and it is this
model we will study intensively here. The �uid approximation consists of taking a limit in which the
number of fermions per AdS radius ` is in�nite, while εF /m is held �xed, εF being the Fermi energy
- see ref. [18]. This implies that the length scale set by the variations of the fermionic �elds is very
small compared to the length scale set by the curvature of the space, so that

m`� 1.

Each fermion �sees� a �at spacetime, which means we can invoke the �at space expressions for an ideal
Fermi gas. The e�ect of gravity is only noticeable by comparing di�erent points, and is subsumed
in some parameter. This approximation mirrors the Local-Density Approximation (LDA) familiar in
statistical �eld theory, used to describe atoms in a spatially slowly varying trapping potential. In
this approximation, the spatially varying nature of the trapping potential can be subsumed in a local
chemical potential, see ref. [19]. Other quantities describing the particles can then be calculated from
their ordinary expressions with a constant trapping potential, where only the chemical potential is
replaced by the local chemical potential. In our case, the metric itself plays the role of the trapping
potential, and the e�ects of the curvature are subsumed in the chemical potential describing the fermion
�uid. The local-density approximation and its application to our curved spacetime is discussed in more
detail in appendix A .

In the �uid approximation, the Dirac action SD is replaced by an e�ective action

Seff
Ψ =

ˆ
dd+1x

√
−g p,

where p is the pressure of the fermion �uid. We will show shortly that this action can yield a perfect
�uid energy-momentum tensor when varied with respect to the metric. It is this action, together with
SA and Sg, that will provide the equations of motion which are solved throughout the rest of this
chapter.

3.1.1 The perfect �uid

We describe the perfect �uid of fermions in the local-density approximation, at zero temperature.
We will focus on the zero-temperature case throughout this thesis, although we will mention the
generalization to non-zero temperature in section 3.2. The parameters of the fermion �uid are the
pressure p, the energy density ρ, and the charge density σ. In �at space, the energy and charge
densities are given by the familiar expressions

ρf =

ˆ µ

m

Eg (E) dE, σf =

ˆ µ

m

g (E) dE,

where g (E) is the density of states, m is the mass of the fermion, and µ is the chemical potential.
In these expressions, we integrate from the minimal energy m to the Fermi energy εF which is given
by the chemical potential at zero temperature. The density of states for a relativistic fermion gas in
(d+ 1)-dimensional spacetime

g (E) = βd+1E
(
E2 −m2

)(d−2)/2
, (3.1)

1The reason is that the dominant contribution (via the on-shell actions) of this path integral involves solving the
equations of motion, which in this case involve a fermionic energy-momentum tensor and a current which are non-local
functionals. It is possible to solve these numerically, again referring to [17], but this falls outside of the scope of this
thesis.
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see ref. [20] also Appendix A, where βd+1 is a constant given by

βd+1 =
1

πd/22d−2Γ
(
d
2

) (3.2)

for electrons. The �uid pressure is related to the other parameters by means of an equation of state.
In our case, we will invoke the thermodynamical identity Ω = H − µN (at zero temperature) and the
ideal �uid relation Ω = −pV to obtain the equation of state

−pf = ρf − µσf .

In the local-density approximation applied to our curved space, the global chemical potential µ is
replaced by the local chemical potential

µloc = utAt, (3.3)

where ut is the temporal component of the four-velocity uµ. It acts as a vielbein2, so the local chemical
potential is nothing but the tangent frame value of the global chemical potential µ. In turn, the global
chemical potential is nothing but the temporal component of the gauge �eld, from the dictionary rules
in table 2.1 - see also section 2.1.3. The four-velocity uµ satis�es uµuµ = −1, and in the rest frame of
the gas one �nds

ut =
1√
−gtt

.

Thus, the �uid parameters take the form

ρ = βd+1

ˆ µloc

m

Eg (E) dE (3.4)

σ = βd+1

ˆ µloc

m

g (E) dE (3.5)

−p = ρ− µlocσ. (3.6)

The backreacting e�ect of the fermions to the metric, in the �uid approximation, is then captured
by the associated energy-momentum tensor which appears in Einstein's equations. Realizing that the
pressure depends on the local chemical potential and using equation (3.3), we determine the energy
momentum tensor by varying the e�ective action with respect to the metric. One �nds

−2√
−g

δSeff
ψ

δgtt
= pgtt +At

∂p

∂µloc

1√
−gtt

= pgtt + µloc
∂p

∂µloc
utut

−2√
−g

δSeff
ψ

δgii
= pgii.

Invoking the equation of state, the energy-momentum tensor is seen to take the form

Tµν =
−2√
−g

δS

δgµν

= (ρ+ p)uµuν + pgµν

in a general frame. We will, however, be mainly interested in the local rest frame of the fermions.

2We will introduce the notion of a vielbein more precisely in the next chapter, where we need it to construct the
fermionic action in curved spacetime.
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3.2 Equations of motion

We determine the equations of motion for the electron-star model. It is important to realize that these
equations of motion will provide di�erential equations from which the metric and the gauge �eld are
solved, as these are unknown to us at this point due to the backreaction of the fermion �uid. As in
the Lifshitz black brane case, we will require a spacetime which is asymptotically Anti-deSitter, thus
retrieving a scale invariant quantum �eld theory at high-energies. We parametrize the metric by

ds2 = −`2
(
f (u) dt2 + g (u) du2 +

1

u2
dx2

i

)
, (3.7)

where i = 1, ..., d, and where3 f (u) and g (u) are the unknown functions, depending only on u through
the requirement of spherical symmetry. Demanding an asymptotically Anti-deSitter spacetime trans-
lates into the asymptotic behavior

f, g ∼ u−2

near the boundary u→ 0, as is seen by comparing the metric above to the Poincare metric (2.3). This
requirement is automatically satis�ed by letting

Λ = −d (d− 1)

2`2

as in the Lifshitz black brane case, see equation (2.23) with z = 1. Further, we will consider the case
where the gauge �eld Aµ has vanishing spatial components. Thus only At is non-zero, and we write it
down as

At (u) =
e`

κ
h (u) ,

where h is an unknown function as well. As a result, the only non-trivial component of the �eld
strength tensor is Fut = e`

κ h
′. We stress that the total charge of the bulk theory is carried by the

charged fermions, rather than by the black hole horizon as in the previous chapter.

As described in the previous section, the action of the model is

S =

ˆ
dd+1x

√
−g
[

1

2κ2
(R− 2Λ)− 1

4e2
FµνF

µν − p (µloc)

]
, (3.8)

which yields the equations of motion that we need to solve. They are given by

Rµν +

(
Λ− 1

2
R

)
gµν = κ2Tµν (3.9)

∇µF νµ = e2σuν (3.10)

∇µTµν = 0. (3.11)

The last equation of motion is the covariant conservation of the energy-momentum tensor, and replaces
what would be the fermion equation of motion when allowing the full fermion backreaction. Here, the
energy-momentum tensor Tµν of the charged �uid is given by

Tµν = (ρ+ p)uµuν + pgµν +
1

e2
FµσF

σ
ν −

1

4e2
gµνF

2.

3Note that both the determinant of the metric as well as the �radial� metric component guu are denoted by g. In
principle, this should not lead to any confusion.
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It will be convenient to scale out the parameters e, κ and ` and to work with dimensionless �uid
parameters. For this, we note that in (d+ 1)−dimensional spacetime

[p] = [ρ] = [length]
−1−d

[σ] = [length]
−d

[κ]
2

= [length]
d−1

[e]
2

= [length]
d−3

,

from which we �nd the dimensionless �uid parameters

ρ̂ (u) = κ2`2ρ (u) , p̂ (u) = κ2`2p (u) , σ̂ (u) = e`2κσ (u) .

In terms of the dimensionless quantities, the equations of motion can be cast in the form

p̂′ + (ρ̂+ p̂)
f ′

2f
− h′σ̂√

f
= 0 [∇µTµr = 0]

(d− 1)

2u

(
4

u
+
g′

g
+
f ′

f

)
+ g (ρ̂+ p̂) = 0

[
Rrr −Rtt = κ2T rr − κ2T tt

]
f ′

fz
− (d− 2)

u2
− h′2

(d− 1) f
+ g

(
d (d− 1) + 2p̂

d− 1

)
= 0

[
Rii +

(
Λ− 1

2
R

)
gii = κ2gii

(
p− 1

4e2
F 2

)]
h′′ − h′

2

(
f ′

f
+
g′

g
+

2 (d− 1)

u

)
− g
√
fσ̂ = 0

[
∇µF tµ = e2σut

]
,

where we have indicated the speci�c equation of motion used in square brackets. For a detailed
derivation of the equations, see Appendix B.

At this point, we mention that upon inserting the fermion equation of state and the expressions
for the charge and energy density of the �uid, the �rst equation of motion is solved trivially,
for arbitrary h and f . We proceed to show this explicitly. Inserting the form of the metric into (3.3),
(3.4) and (3.5), one �nds

µloc =
e

κ

h√
f
, (3.12)

while the �uid parameters take the form

ρ = βd+1

ˆ µloc

m

E2
(
E2 −m2

)(d−2)/2
dE, σ = βd+1

ˆ µloc

m

E
(
E2 −m2

)(d−2)/2
dE.

Scaling out dimensionful parameters m→ e
κm̂ and E → e

κε, one �nds the dimensionless expressions

ρ̂ = β̂d+1

ˆ h/
√
f

m̂

ε2
(
ε2 − m̂2

)(d−2)/2
dε (3.13)

σ̂ = β̂d+1

ˆ h/
√
f

m̂

ε
(
ε2 − m̂2

)(d−2)/2
dε (3.14)

where β̂d+1 = ed+1`2

κd−1 βd+1. These quantities are related to the dimensionless pressure via the equation
of state (3.6), which now reads

− p̂ = ρ̂− h√
f
σ̂. (3.15)

By di�erentiating with respect to the upper limit, one the easily veri�es that these expression solve
the �rst equation of motion trivially. Then, substituting the second equation of motion in the last, we
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are left with the set of equations

d− 1

2u

(
4

u
+
g′

g
+
f ′

f

)
+
gh√
f
σ̂ = 0 (3.16)

f ′

fu
− d− 2

u2
− h′2

(d− 1) f
+ g

(
d (d− 1) + 2p̂

(d− 1)

)
= 0 (3.17)

h′′ − h′ (d− 3)

u
+
gσ̂√
f

(
zhh′

d− 1
− f

)
= 0, (3.18)

with p̂ and σ̂ as given above. Clearly, these equations constitute a set of non-linear and highly coupled
di�erential equations, which are too complex to be solved analytically. Thus, in the next section, we
will proceed by solving these equations numerically.

Intermezzo: non-zero temperature

It is important to stress that the electron star model considered here is at zero temperature. Let pause
for a moment to consider the case of a non-zero temperature. According to Table (2.1), in order to
introduce a temperature scale in the boundary �eld theory, we are required to introduce of black hole
in the bulk spacetime. Then, the Hawking temperature of the black hole would coincide with the
temperature in the boundary �eld theory.

Precisely this addition of a black hole was studied in ref. [21]. While one would expect the bulk
�uid to have a di�erent equation of state due to a non-zero temperature, the equation of state was kept
the same in this case. That is, the �uid is treated as if at zero temperature. It was argued that the
thermalization of the bulk �uid with thermal Hawking radiation of the black hole is suppressed. The
resulting model at non-zero temperature becomes an electron shell, or an electron cloud, suspended
over the black hole, while the zero-temperature limit coincides with the electron star considered here.
See also ref. [22].

It is interesting to see what happens when the fermion �uid is treated at a non-zero temperature.
Introducing a temperature means that the thermodynamical identity used to determine the equation
of state for the fermions picks up an extra term. Namely,

Ω = H − µN − TS,

where S is the entropy of a Fermi gas. Thus, the equation of state for the fermions becomes

−p = ρ− µσ − Ts,

where s = S/V is the entropy density. The integral expressions for the �uid parameters also change,
as we now have to integrate over the Fermi-Dirac distribution

nE = [exp [β (E − µ)] + 1]
−1

as well, where β = T−1. Scaling out the couplings, the expressions become

ρ̂ = β̂d+1

ˆ ∞
m̂

ε2
(
ε2 − m̂2

)(d−2)/2
nεdε

σ̂ = β̂d+1

ˆ ∞
m̂

ε
(
ε2 − m̂2

)
(d−2)/2nεdε, (3.19)

with the distribution

nε =

[
exp

[
β
e

κ

(
ε− h`√

f

)
+ 1

]]−1

.
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Taking the limit T → 0, the Fermi-Dirac distribution becomes a Heaviside step function, and the above
expressions reduce to the expressions (3.13) and (3.14). The entropy follows from the continuum limit
of the ideal gas entropy

S = −kB
∑
k

(nk log nk + (1− nk) log (1− nk)) ,

which, after some algebra - see Appendix B, yields

ŝ = −β̂d+1

ˆ ∞
m̂

ε
(
ε2 − m̂2

)(d−2)/2
(nε log nε + (1− nε) log (1− nε))

with ŝ = e`2κ s.
If we substitute these expressions in the �rst equation of motion, however, one �nds they do not

constitute a solution. For this, the temperature needs to have a radial pro�le

T (u) =
T0√
f (u)

,

which can be interpreted as a local temperature for the fermion �uid, or as a redshift due to gravita-
tional e�ects. One can check that this pro�le indeed solves the �rst equation of motion.

Even better, this temperature pro�le as well as the pro�le of the local chemical potential can be
derived without using the speci�c expressions for the �uid parameters. This is worked out in more
detail in Appendix B. By using the equation of state and

Ω = −pV ⇒ −p =
Ω

V
≡ ω,

the equation of motion can be cast in the form

∂ω

∂µ

(
−∂µ
∂r
− µ f

′

2f
+
e

κ

h′√
f

)
=
∂ω

∂T

(
∂T

∂r
+ T

f ′

2f

)
.

Setting both sides equal to zero, one �nds the desired radial pro�les

µloc =
e

κ

h√
f
, T =

T0√
f
.

The problem with the non-zero temperature description of the fermion �uid is the divergence of
T towards the infrared. If we add a black hole to the spacetime, this divergence will appear at the
horizon of the black hole. If we do not add a black hole, this divergence will occur in the deep interior
of the electron star.

If we insist on adding the �thermal� term to the equation of state, one needs to make sense of
the in�nitely red-shifted temperature in the interior of the star and the resulting divergences of the
�uid parameters. Indeed, one can easily verify that the �uid parameters given in equation (3.19) as
functions of u diverge in the infrared limit. These complications fall outside the scope of this thesis
and are left for future work.

3.3 Solving the equations of motion

Having solved the �rst equation of motion, we now focus on solving the remaining equations
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d− 1

2u

(
4

u
+
g′

g
+
f ′

f

)
+
gh√
f
σ̂ = 0

f ′

fu
− d− 2

u2
− h′2

(d− 1) f
+ g

(
d (d− 1) + 2p̂

(d− 1)

)
= 0

h′′ − h′ (d− 3)

u
+
gσ̂√
f

(
uhh′

d− 1
− f

)
= 0,

where σ̂ and p̂ are given by (3.14) and (3.15). These equations have to be solved numerically, due to
the fact that they are highly coupled and non-linear. Although �nding an exact solution for all u is
futile, there are two regimes in which an exact solution can be found:

1. For u → ∞, the set of equations are solved by an emergent scaling solution, which is a Lifshitz
solution.

2. For small u, the equations are solved by the asymptotically Anti-deSitter Reissner-Nordström
(AdS-RN) solutions, given in equations (2.25) and (2.26). For small u, namely, the �uid parame-
ters vanish because the local chemical potential becomes smaller than the mass of the fermions4.
As the �uid parameters vanish, the fermion backreaction is being turned o�. Thus, the resulting
action is an Einstein-Maxwell action, which is solved by a charged black hole solution.

The numerical integration of the equations of motion interpolates between these two exact solutions.
We begin with the Lifshitz solution in the infrared limit, perturbing it in order to generate initial con-
ditions in the deep interior of the spacetime. The equations of motion are then numerically integrated,
using these initial conditions, down to the point u = us where the local chemical potential is equal to
the mass of the fermion. At this value, the numerical solution is matched onto the AdS-RN solution.

3.3.1 The numerical calculation

In the limit u→∞, which is the deep infrared of the spacetime, one �nds a Lifshitz metric (2.14) as
an exact solution to the above equations of motion. Intuitively, this can be explained by the screening
of the electric �eld due to the local charge density, which serves to decrease the range of the electric
�eld. Hence, the electric �eld can be thought of as being �massive�, and actions of negatively curved
spaces with massive vector �elds are known to yield Lifshitz solutions, see ref.s [23]. Here, the Lifshitz
solution takes the form

f =
1

u2z
; g =

g∞
u2

; h =
h∞
uz

, (3.20)

where z is the dynamical exponent - one can check that this solution indeed yields the Lifshitz metric
(2.14) by transforming back to the r coordinates.

By substituting these expressions into the equations of motion, one �nds

g2
∞ =

zd−1 (z − 1) d2 (d− 1)
2

β̂2
d+1 ((1− m̂2) z − 1)

d
h2
∞ =

z − 1

z
,

while the equation of motion (3.17) yields a complicated relation between m̂, z and β̂d. For complete-
ness, it is given by

2− d− 2z − z (z − 1)

d− 1
+
z(d+1)/2

√
z − 1d (d− 1)

β̂d+1 ((1− m̂2) z − 1)
d/2

(
d+

2

d− 1
p̂

)
= 0. (3.21)

4This is because both the electron star model and the AdS-RN solutions asymptote to Anti-deSitter space on the
boundary. Far away from the origin, therefore, the local chemical potential becomes the local chemical potential as
determined from the AdS-RN solution, which vanishes as u towards the boundary as we will see.



CHAPTER 3. THE ELECTRON STAR 24

This relation can be solved for β̂d+1 in terms of the parameters z and m̂. Thus, the Lifshitz solution is
�xed completely if we pick a mass m̂ and a Lifshitz parameter z; these are therefore the free parameters
of this model. The dependence of β̂5 is shown in Figure 3.1, for the case d+ 1 = 5.
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Figure 3.1: The parameter β̂5 as a function of the Lifshitz scaling parameter z, for �xed fermion mass
m̂ = 0.1, 0.4, 0.6.

Following ref. [16], we then consider the limits m̂→ 1 from below with β̂d+1 �xed, and β̂d+1 → 0.
From the expressions (3.13) and (3.14), it is immediately clear that the fermion backreaction is turned

o� in the limit β̂d+1 → 0. The same holds for the �rst limit, as z →∞ in this limit, from (3.21). This
implies h∞ → 1, and thus, as m̂→ 1, the integrals in (3.13) and (3.14) vanish. In order to stay in the
backreacting regime, therefore, the dimensionless mass thus satisfy the bounds

0 ≤ m̂ < 1.

From the relation (3.21), it turns out that by dialing β̂d+1 at a �xed m̂ we can achieve all z such that

z ≥ 1

1− m̂2
≥ 1.

Perturbing the IR scaling solution

As described above, we use the exact solution in the infrared limit to numerically integrate the equations
of motion down to of u. For this, however, initial conditions are required at a large infrared cut-o�
uIR. In order to generate these initial conditions, we perturb the infrared solutions by an irrelevant
deformation

f =
1

u2z
(1 + f1u

α)

g =
g∞
u2

(1 + g1u
α) (3.22)

h =
h∞
uz

(1 + h1u
α) ,

where we require that this deformation vanishes in the IR, but grows in the UV limit. Thus, we are
looking for α < 0.
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Entering these expressions in the equations of motion, one �nds zeroth order equations that are
solved by the Lifshitz scaling solutions, while the �rst order corrections yield a set of equations that
can be used to �nd expressions for α in terms of z and m, and g1 and h1 in terms of f1. In d + 1
dimensions, the solutions for α are

α0 = d− 1 + z

α± =
d− 1 + z

2
± 1

2
√

(1− m̂2) z − 1

[
−9 + 14 (d− 2)− 5 (d− 2)

2

−z
(
−19− 16 (d− 2)− 5 (d− 2)

2
+ m̂2 (d− 1− 3z)

2
+ (19 + 2 (d− 2)− 9z) z

)]1/2
.

For the allowed values for m̂ and z determined in the previous section, α− is negative. Hence, this is
the exponent we are looking for. Next, g1 and h1 are found to be of the form

g1 = f1γg (z, m̂, α−)

h1 = f1γh (z, m̂, α−) ,

where γg, γh are some functions of z, m̂ and α− (z,m). That is, g1 and h1 are proportional to f1.
Having used all equations, f1 remains undetermined. However, this factor can be set to any value
after an appropriate rescaling of the coordinates. Its sign is important, however. It should be taken
negative in order to appropriately match the numerical solution onto the Reissner-Nordström solution
later - see Appendix B. Thus, we set f1 = −1 in our numerical calculation.

Having obtained the perturbed solutions, we introduce a large cut-o� uIR at which the solutions
of equation and their derivatives are computed. These serve as initial conditions to the numerical
integration of the equation of motion, which is carried out - using Mathematica's NDSolve - until

h√
f

= m̂

for a certain value u = us, at which point the integration is stopped. It is at this point that the �uid
parameters vanish, and the solutions becomes the AdS-RN solution. The value us can be interpreted
as the (inverse) radius of the star, separating the perfect �uid from empty space.

Thus, one obtains numerical solutions f, g and h on the interval [uIR, us] . Of course, one should
check that these solutions do not depend on the choice of uIR, which is the case if the WorkingPrecision
of NDSolve is chosen large enough, around 50-60 digits. For those values, the solutions indeed do not
depend on the infrared cut-o�.

We now turn to the results of the numerical calculation, for d+ 1 = 5. A typical result for the �uid
parameters as function of inverse dimensionless radial distance is shown in Figure 3.2.
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Figure 3.2: The fermion �uid energy density ρ, charge density σ and pressure p as functions of the
radial coordinate u, in units of the star �radius� us. In this �gure, the fermion mass is m̂ = 0.4, and
the Lifshitz scaling parameter is z = 2.

One can see that the �uid parameters indeed go to zero at the radius us, while they tend to their
constant values in the infrared limit at large u. These values are simply the Lifshitz values, found by
combining equations (3.20) and (3.13)-(3.15). These radial pro�les are very similar to the �uid pro�les
of neutron stars, which are determined from TOV equations very similar to our equations of motion.

We also plot the �uid parameters separately for various masses at a �xed IR Lifshitz parameter z,
in Figure 3.3.

3.3.2 Matching onto Reissner-Nordström

As mentioned before, the equations of motion have exact solutions in the regime u ≤ us. In this region,
namely, the �uid parameters vanish as the local chemical potential µl is smaller than the fermion mass
m̂. Hence, from the integral expressions (3.13) and (3.14), the pressure, energy density and charge
density of the �uid become zero. In this case, the equations of motion simplify greatly and can be
solved exactly. The resulting solutions are the Anti-deSitter Reissner-Nordström (AdS-RN) solutions,
which for our choice of metric can be written

fRN (u) =
c2

u2
−Mud−2 +

Q2u2d−4

(d− 1) (d− 2)
.

gRN (u) =
c2

u4f (u)

hRN (u) = µ− Q

d− 2
ud−2. (3.23)

Thus the metric outside the electron star is given by the AdS-RN solutions, which are parametrized by
integration constantsM, Q, µand c. By parametrizing the functions f, g and h in this way throughout
the spacetime, the �rst two parameters can be given analytically by integrating over the fermions in
the electron star, as in ref. [16]. They are interpreted as the mass and the charge of the black hole,
respectively. The integration constant µ is simply the boundary value of the gauge �eld, and is hence
referred to as the chemical potential of the black hole. Finally, the parameter c is related to our choice
f1 = −1 and can be freely set to one by rescaling the time coordinate.
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Figure 3.3: The radial pro�les of the fermion �uid for a �xed Lifshitz scaling parameter z = 2, and
varying fermion masses m̂.
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These solutions are equivalent to the AdS black brane solution in section 2.2.2. Indeed, by trans-
forming f (u) , g (u)→ f̃ (r) , g̃ (r) using equation (2.8) and setting c = 1, one �nds

f̃ (r) = 1−M`2dr−d +
Q2`4(d−1)r2(1−d)

(d− 1) (d− 2)

g̃ (r) =
1

f̃ (r)
,

which corresponds to equation (2.25). Further, one �nds

A′t =
e`2d−3Q

κ
r1−d,

which corresponds to equation (2.26). In order to completely map these solutions onto those in Chapter
2, however, note that the convention for the energy-momentum tensor here is slight di�erent. By letting

F =
e

κ
√

2
F̃ ,

one can identify F̃ with the energy-momentum tensor used in Chapter 2. Proceeding this way, one
can map the above solutions to the solutions in Chapter 2.

The numerical solutions for f, g, h and h′ are matched at the �radius� us. That is, we equate the
numerical solutions for f, g, h and h′ and the Reissner-Nordström solutions (3.23) at us, thus providing
equations that are solved for µ, c, Q and M . The full solutions f, g and h that determine the metric
and the gauge �eld in the electron-star spacetime, are simply the numerical solutions for u > us, and
the matched Reissner-Nordström solutions for u < us. They are shown in Figure 3.4, along with the
infrared scaling solution as well as the Reissner-Nordström solution for u > us. In the last �gure,
we clearly see that the numerical solutions for f and g converge towards their inverse relation as in
equation (2.25)
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Figure 3.4: The radial pro�les of the metric functions f and g and the gauge �eld h, with the radial
coordinate u units of the star �radius� us. Notice that the gauge �eld tends to the chemical potential µ
on the boundary at u = 0. The solid line indicates the exact solutions, which is the Reissner-Nordström
(RN) solution for u < us and the numerical solution for u > us. The dotted lines indicate the RN-
solution outside the domain of validity (blue and red), and the infrared Lifshitz solution (yellow). Here,
the fermion mass is m̂ = 0.4 and the Lifshitz scaling parameter is z = 2.

Next, we study the dependence on the parameters m̂ and z. As discussed before, when these
parameters are �xed, β̂d+1 is known. With these values at hand, the equations of motion are solved and
matched onto the Reissner-Nordström solution. Repeating this procedure, one �nds the dependence
of us, µ, Q and M on the parameters m̂ and z. This dependence in shown in Figure 3.5, and will be
important in later numerical calculations. Through this dependence, by �xing a mass m̂ and requiring
a certain value of the chemical potential µ, one can �nd a z which generates the required solution.

It is clear from the �rst �gure that the inverse radius of the star increases upon an increase of the
mass m̂. Thus, the actual radius of the star - identi�ed with u−1

s - decreases, which makes sense as
the larger mass deepens the gravitational potential well, pulling the electrons together. This e�ect
explains the other �gures as well: a smaller star implies a Reissner-Nordström black hole of smaller
radius, and hence a smaller total mass and charge. The chemical potential also decreases when mass
is increased, which can be explained by the smaller total charge Q. Finally, an increase in z is directly
related to a decrease in m̂ via the relation (3.21).
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Chapter 4

The fermion correlator

In this chapter, we add probe-fermion to the electron star model by constructing the Dirac action
in curved spacetime. Having obtained the geometry of the electron-star spacetime within the �uid
approximation. These fermions are not treated in the �uid approximation, and they do not backreact
onto the geometry found in the previous chapter. From the Dirac action, we compute the retarded
Green's function and the spectral function by numerically solving the Dirac equation.

We start by constructing the Dirac action in �at spacetime, after which we will generalize the
discussion to curved spacetime by using the vielbein formalism. The resulting action is not complete,
however, as it does not satisfy the variation principle when employed in a holographic manner. In
order to solve this problem, we add counter terms to the action. The spinors in the action are then
split up in chiral components and one of them is integrated out to yield an e�ective action for a chiral
fermion. From this, we will be able to construct the fermion correlator and the spectral function.

Here, we broadly follow ref. [14] where the Dirac action is built in a di�erent background, namely
that of the Lifshitz black brane, section 2.2.2. We will generalize this discussion to the case of the
electron-star background which was determined in Chapter 3. In order to do so, however, it will be

convenient to transform to the r coordinate system by letting u = `2

r , as discussed in section 2.1.1.

4.1 The Dirac action in curved spacetime

In order to add additional fermions to the electron-star model, a Dirac action for charged fermions
in curved spacetime is required. It will be convenient to study the construction of such an action in
more detail, as the concepts required to do so will be important later. For this, we begin by writing
down the Dirac action for �at d+ 1-dimensional spacetime and subsequently generalize it to a curved
spacetime. This is done by employing the vielbein formalism, which essentially maps �at space to
curved space.

The �nal action, however, needs an additional term in order to satisfy the variational principle,
due to fact that variations at spatial in�nity do not vanish. Instead, they source operators, see section
2.1.2. Moreover, an extra term is added by hand, for reasons explained in the next section.

4.1.1 Flat spacetime

We will begin with the Dirac action in a �at spacetime, after which we will generalize our discussion
using vielbeins which translate between locally-�at space and curved spacetime. We will consider a
�at spacetime both of dimension d and d+1, in order to generalize to the (d+1)-dimensional AdS-like
bulk and the d dimensional boundary in the curved spacetime1.

1Note that we cannot speak of a �at d + 1 dimensional spacetime and its �at d dimensional boundary; Minkowski
spacetime does not have a boundary like the Anti-deSitter spacetime does.

31
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In d dimensional �at spacetime, the Dirac equation takes the form(
γa∂a −m

)
ψ = 0

with a ∈ {t, i} , where i ∈ {1, ..., d− 1}, and where the underlines indicate that we are working in �at
space. In one higher dimension, i.e. in a �at d+ 1 dimensional spacetime, we have the Dirac equation(

Γa∂a −m
)

Ψ = 0,

where we denote the gamma matrices by Γ and where Ψ is the Dirac spinor. In this case, the indices
a ∈ {r, t, i} , where again i ∈ {1, ..., d− 1}.

The matrices γa and Γa form representations of the Cli�ord algebra, of dimensions d and d + 1
respectively2, which means they satisfy the relations{

γa, γb
}

= 2ηab1 and
{

Γa,Γb
}

= 2ηab1.

The matrices themselves have dimensions 2b
d
2 c and 2b

d+1
2 c, respectively. We now make an important

distinction between the case that d is even, and the case that d is odd. First, we mention the fact that
any even-dimensional representation of the Cli�ord algebra is reducible3 [24]. In �at four-dimensional
spacetime (d+ 1 = 4), one can de�ne the matrix γ5 which satis�es{

γ5, γµ
}

= 0,
(
γ5
)2

= 1.

The last property implies that the operators

L =
1

2

(
1− γ5

)
, R =

1

2

(
1 + γ5

)
are projection operators acting on spinors, which can then be split up as

Ψ = ΨL + ΨR

with
ΨL = LΨ, ΨR = RΨ.

For more information, we refer to ref. [25]. The spinors ΨL and ΨR are called the chiral components
of the Dirac spinor Ψ. These components behave independently of each other under the action of the
Lorentz group, indicating reducibility.

We �rst consider the case that d is even, which is the relevant case in this thesis. Generalizing the
above, one can de�ne a matrix γd+1 and the associated projection operators and chiral components.
Meanwhile, the Γ matrices have the same dimension as the γ matrices. One can easily check that the
matrices

Γr = γd+1

Γi = γi

Γt = γt (4.1)

with

γd+1 =

(
1 0
0 1

)
, γt =

(
0 −1
1 0

)
, γi =

(
0 σi

σi 0

)
2The dimensionality of the representation is equal to the dimension of the spacetime.
3This means that the matrices assigned to the abstract elements of the Cli�ord algebra are of block-diagonal form.

Equivalently, reducibility of the representation means that there is a non-identity matrix in the algebra which commutes
with all the generators.
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form a (d+1)-dimensional representation of the Cli�ord algebra. In the (d+1)-dimensional spacetime,
the spinor Ψ can not be split into chiral components4. On a constant radius hyper-surface, however,
this is possible. There, we de�ne

ΨR,L =
1

2
(1± Γr) Ψ. (4.2)

For future reference, we also de�ne the �elds Ψ± by

ΨR =

(
Ψ+

0

)
, ΨL =

(
0

Ψ−

)
. (4.3)

These components and �elds satisfy the relations

ΓrΨR,L = ±ΨR,L (4.4)

ΓrΨ± = ±Ψ±. (4.5)

For completeness, we also consider the case when d is odd. In this case, the Γ matrices have twice
the dimension of the γ matrices. Further, since d + 1 is even, the Γ matrices constitute a reducible
representation. One can then choose

Γr = 1b d2 c ⊗ 1b d2 c
Γt = 1b d2 c ⊗ γ

t

Γi = 1b d2 c ⊗ γ
i,

assuming that the γ matrices constitute a representation of the Cli�ord algebra.

4.1.2 Curved spacetime

We now generalize our discussion to curved spacetime. In particular, we are interested in the setup of
a bulk (d+ 1)-dimensional spacetime with a d-dimensional boundary. In accordance with our previous
notation, we denote the bulk gamma matrices by Γ and the boundary gamma matrices by γ.

Describing the spinors coupled to gravity turns out to be rather intricate, however. The reason is
that while bosons transform according to tensor representations of the general covariance group, this
group does not admit �nite-dimensional spinor representations. Thus, it is not clear how spinors are
to transform under general coordinate transformations.

The Lorentz group, however, does admit �nite-dimensional spinor representations. This opens
up the possibility of describing spinor gravity by employing a local Lorentz representation at each
spacetime point, and connecting these covariantly.

The vielbein basis

The natural basis for the tangent space Tx at the spacetime point x is given by the set of coordinate
vectors êµ (x) = ∂µ. The dual basis for the cotangent space T

∗
x is then given by the set êµ = θµ, which

satisfy êµ (êν) = δµν . However, we are free to choose any basis for Tx, and the convenient basis for this
discussion is the vielbein basis. It is a basis, denoted êa ∈ Tx, chosen such that

g
(
êa, êb

)
= ηab,

4Of course, one can split Ψ into components Ψ+ and Ψ−, but these components do not transform independently
under the action of the Lorentz group. Hence, they are not chiral components.
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i.e. they constitute an orthonormal basis in which the space looks �at. The dual basis for T ∗x is denoted
by êa, and satis�es êa

(
êb
)

= δ
a
b . At each spacetime point, then, we have two bases, which are therefore

related by invertible linear transformations:

êµ (x) = eaµ (x) êa, êa = eµa (x) êµ.

The matrix e
a
µ (x) is referred to as the vielbein, and eµa (x) as the inverse vielbein. They are related to

each other via the relations

eaν (x) eµa (x) = δµν eaµ (x) eµb (x) = δ
a
b

gµνe
µ
ae
ν
b = ηab eaµe

b
νηab = gµν ,

which can be derived in a straightforward manner from the above relations.
We still have remaining freedom when choosing the vielbein basis at each point x. Indeed, the

above relations are still satis�ed when transforming

êa → Λ b
a êb,

where Λ
b
a is a local Lorentz transformation. These transformations correspond to rotations and boosts

applied to the tetrad basis in the tangent space at x.
The Latin indices a, b, . . . are referred to as local Lorentz indices, as they label tensor representations

of the local Lorentz group. These indices are raised and lowered by the �at metric η. The Greek indices
label tensorial objects on the manifold, and are raised and lowered by the Lorentzian metric g, as usual.

The relation between the coordinate basis and the vielbein basis implies the following relations
between (co)vector components

V a = eaµV
µ, V µ = eµaV

a

Wa = eµaWµ, Wµ = eaµWa.

In general, any (k, l) tensor can be expressed as a linear combination of tensor products of the vielbein
and dual vielbein basis. Moreover, we can de�ne the �curved� gamma matrices by

γµ = eµaγ
a, Γµ = eµaΓa,

with respect to the coordinate basis. One easily veri�es that

{γµ, γν} = 2gµν1, {Γµ,Γν} = 2gµν1.

The spin connection

We turn to parallel transport of vectors in the vielbein formalism, thus covariantly connecting the local
Lorentz representations. The parallel transport of a vector in coordinate based general relativity is
described by

D

dλ
V µ ≡ dxν

dλ
∇νV µ = 0,

with ∇νV µ = ∂νV
µ + ΓµνσV

σ the covariant derivative in terms of the Levi-Civita connection. In the
vielbein formalism, the role of the Levi-Civita connection is played by the spin connection:

∇µV a = ∂µV
a + ω

a
µbV

b.

One can regard the spin connection as a gauge �eld, introduced as a correction to the ordinary deriva-
tive, with the purpose of causing the covariant derivative of vectors to transform properly under local
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Lorentz transformations. Indeed, the spacetime dependence of the Lorentz transformations spoils the
transformation behavior of the ordinary derivative.

In order for the introduction of the vielbein formalism to not a�ect the ordinary formalism, the
covariant derivative of vectors expressed in both the coordinate and the vielbein basis should agree.
After some algebra - see Appendix B, one �nds

ω
a
µb = eaνe

λ
bΓνµλ − eλb ∂µ

(
e
a
λ

)
in terms of the Levi-Civita connection.

The formalism derived up to this point allows us to de�ne a covariant derivative for spinors, denoted
again by Ψ. The covariant derivative takes the general form

∇µΨ = ∂µΨ + ΩµΨ,

in terms of the connection Ωµ. Recall that the bilinears Ψ̄Ψ and Ψ̄γaΨ , with Ψ̄ = Ψ†Γt transform as
a scalar and a vector under local Lorentz transformations, respectively. Requiring these combinations
to transform in the same way under parallel transport, one �nds the relations

ΓtΩ†µΓt = −Ωµ

[Γa,Ωµ] = ωaµbΓ
b

have to be satis�ed. This is solved by taking Ωµ = 1
8ωµab

[
Γa,Γb

]
, which implies

∇µΨ =

(
∂µ +

1

8
ωµab

[
Γa,Γb

])
Ψ. (4.6)

This is the de�nition of the covariant derivatives for spinors we will use.

In the following, we will consider the spacetime with the electron-star metric, which we will take
to be of the form as in equation (2.5), namely

ds2 = −r
2

`2
f̃ (r) dt2 + g̃ (r)

`2

r2
dr2 +

r2

`2
dx2

i . (4.7)

Here, the functions f̃ (r) , g̃ (r) are related to the electron-star solutions f (u) , g (u) as in equation (2.8).
We will write f̃ → f in the following, for simplicity. For the electron-star metric, the vielbeins take
the form

err =
r

`
√
g

eii =
`

r
(4.8)

ett =
`

r
√
f
.

from which one derives (see Appendix B) the covariant derivatives

∇r = ∂r

∇i = ∂i +
1

2

r

`2
√
g

ΓiΓr (4.9)

∇t = ∂t −
1

2

r

`
√
g
∂r

(r
`

√
f
)

ΓtΓr.
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4.1.3 The Dirac action

We turn to the Dirac action for the fermions in the electron-star spacetime, where we focus on the
case that d is odd. With the discussion of the previous section at hand, our point of departure is the
action

SD = −igf
ˆ
dd+1x

√
−g Ψ̄

[
1

2

←→
/∇ − i /A−m

]
Ψ,

where a coupling gf for the fermions has been introduced. Further, we have included a minimal
coupling ∇µ → ∇µ − iAµ as the fermions are charged. Note that the charge of the fermions has been
absorbed in the gauge �eld, as in Chapter 3. Finally, m is the mass of the fermions, which can be made
dimensionless by scaling out e and κ. The dimensionless mass m̂ then ranges between m̂ ∈ [0, 1]. As
mentioned above, the spinor Ψ has the same dimensions in the bulk as it has on the boundary when
d is odd, and can be written

Ψ = ΨR + ΨL

=

(
Ψ+

0

)
+

(
0

Ψ−

)
.

The components Ψ± are chiral components only when Ψ is restricted to (d−1)-dimensional space and
satisfy equation (4.5).

We use the above action by introducing a cut-o� radius r0, which we later take to in�nity.

δΨ,Ψ̄SD = terms− igf
2

ˆ
dd+1x

√
−g
[
Ψ̄Γr∇r (δΨ)−∇r

(
δΨ̄
)

ΓrΨ
]
.

We note that the contribution of the spinor connection vanishes on the surface r = r0 due to our choice
of gamma matrices, equation (4.1). One then �nds

δΨ,Ψ̄SD = EOM− igf
2

ˆ
ddx
√
−herr

[
Ψ̄ΓrδΨ− δΨ̄ΓrΨ

]
= EOM− igf

2

ˆ
ddx
√
−herr

[
Ψ̄RΨL

]
by splitting up Ψ = ΨR + ΨL and using (4.4). Here EOM denotes a collection of terms that are to
become the equations of Ψ and Ψ̄. Explicitly, the Ψ contribution is

Γµ (∇µ − iAµ) Ψ−mΨ = 0 (4.10)

as one would expect: this is simply the Dirac equation for Ψ, coupled to the gauge �eld Aµ. In order
for these terms to become the equations of motion, however, the rest of the action needs to vanish
under variations. We can specify a Dirichlet boundary condition at the cut-o� surface, namely either
δΨL = 0 or δΨR = 0, but we are always left with additional terms that do not vanish. Thus, we need
to add a counter-term, which we take to be

S∂ = ∓igf
2

ˆ
ddx
√
−herr

[
Ψ̄LΨR + Ψ̄RΨL

]
(4.11)

with the choice of signs − for picking δΨR = 0, + for picking δΨL = 0. With this counter term, the
total action indeed has zero variations. However, we are going to be interested in obtain the retarded
Green's function, which means we have to drop one of the terms in this boundary action as in ref.
[14], depending on the Dirichlet boundary condition. It turns out that keeping both terms yields a
real propagator, instead of a retarded or advanced Green's function. Choosing the Dirichlet condition
δΨR = 0 (δΨL = 0) means we have to drop the �rst (second) term. In the following, we will choose
δΨR = 0 without loss of generality.



CHAPTER 4. THE FERMION CORRELATOR 37

We are free to add additional terms, as long as we keep satisfying this requirement. A necessary
additional term is

SUV = −iZ
ˆ
ddx
√
−gΨ̄R

[
/∇− i /A

]
ΨR (4.12)

which will describe the free dynamics of a chiral fermion ΨR on the boundary. We will indicate why
this term is necessary in section 4.2.2.

The total action, then, is given by

S = −igf
ˆ
dd+1x

√
−g Ψ̄

[
1

2

←→
/∇ − i /A−m

]
Ψ− igf

ˆ
ddx
√
−h
(
err

) [
Ψ̄RΨL

]
−iZ

ˆ
ddx
√
−g
[
Ψ̄R

[
/∇− i /A

]
ΨR

]
. (4.13)

4.2 The chiral fermion

Having obtained the Dirac action, we turn our attention to the description of the chiral fermion on
the spacetime boundary. For this, we consider the Dirac equation (4.10) and derive an equivalent
equation. This equation is used to integrate out one of the chiral components of the Dirac spinor,
leaving us with an e�ective action for a chiral fermion on the boundary, described by the remaining
chiral component. From this e�ective action, we derive the retarded Green's function and the spectral
density of this chiral fermion.

In the previous discussions, we had assumed d to be odd, but otherwise arbitrary. In the following,
we will explicitly consider the case d+ 1 = 5.

4.2.1 The Dirac equation

Our �rst goal will be to rewrite the Dirac equation, obtained from the action S, as a di�erent equation.
For this, we �rst note that the Dirac equation (4.10) itself implies the relation

Ψ− = −iξΨ+ (4.14)

in momentum space between the chiral components of Ψ, where ξ is a 2× 2 matrix. Indeed, the Dirac
equation in terms of the chiral components becomes two equations of the form

η+Ψ+ + η−Ψ− = 0

where η± are 2 × 2 matrices. This clearly relates the two chiral components by a 2 × 2 matrix as in
(4.14). Moreover, if we rotate our axes such that k = (0, 0, k3) , the matrices η± involved are sums of
diagonal matrices, as only the identity matrix and σ3 are involved in gamma-matrix expansion in the
Dirac equation. Thus, the matrix ξ will be diagonal, providing the relation(

u−
d−

)
= −i

(
ξ+ 0
0 ξ−

)(
u+

d+

)
, (4.15)

where u±, d± are the components of Ψ±. Then, one can read o�

ξ+ = i
u−
u+

, ξ− = i
d−
d+

. (4.16)
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We now turn to the bulk Dirac equation, writing a plane-wave ansatz for Ψ. From equations (4.10),
(4.8) and (4.9) we �nd

0 =
(
/∇− i /A−m

)
Ψ (r) eikx

=

(
Γrerr∂r + Γtett

(
∂t −

r

2`
√
g
∂r

(r
`

√
f
)

ΓtΓr − iAt
)

+ Γieii

(
∂i +

r

2`2
√
g

ΓiΓr
)
−m1

)
Ψ (r) eikx

=

(
Γr

r

`
√
g
∂r + i

`

r

(
Γiki −

(ω +At)√
f

Γt
)

+
1

2

1

`
√
fg
∂r

(
r
√
f
)

Γr +
(d− 1)

2`
√
g

Γr −m1

)
Ψ (r) eikx

Introducing new notation, let k̃ = (−ω̃,k) and Γ · k̃ = Γiki + ω̃Γt, with ω̃ = −(ω+At)√
f

. Next, de�ne

pz (r) = 1
`
√
fg
∂r
(
rz
√
f
)

+ (d−1)
`
√
g . In terms of these, the above equation becomes

0 =

(
Γr

r

`
√
g
∂r + i

`

r
Γ · k̃ +

1

2
pz (r) Γr −m1

)
Ψ (r) eikx

=

(
Γr

r2

`
√
g
∂r + i`Γ · k̃ − rm1

)
Φ,

where in the last line we have de�ned Φ (r) = e
`
2

´ r dr̃√g(r̃)pz(r̃)/r̃Ψ (r) . The components of Φ, which
we denote ũ± and d̃±, are then easily shown to satisfy the set of equations

A (m) ũ+ = i` (ω̃ − k3) ũ− A (−m) ũ− = i` (k3 + ω̃) ũ+

A (m) d̃+ = i` (ω̃ + k3) d̃− A (−m) d̃− = i` (ω̃ − k3) d̃+,
(4.17)

where A (m) ≡ r
(

r
`
√
g∂r −m

)
. Finally, from the de�nition of the function Φ, we have

ξ+ = i
u−
u+

= i
ũ−
ũ+

ξ− = i
d−
d+

= i
d̃−

d̃+

,

which we use to write down an equation for ξ±. From the set of equations (4.17), we �nd

r2

`
√
g
∂rξ+ =

ir2

`
√
gu+

[
∂ru− −

u−
u+

∂ru+

]
= −` (k3 + ω̃)− 2mrξ+ − `ξ2

+ (ω̃ − k3)

and a similar equation for ξ−. Combining these equations, we obtain

r2

`
√
g
∂rξ± + 2mrξ± = `

(
ω +At√

f
∓ k3

)
+ `ξ2

±

(
ω +At√

f
± k3

)
. (4.18)

In order to solve this equation, we need to specify a boundary condition. Because we are ultimately
interested in �nding the retarded Green's function, we have to take in-falling boundary conditions. We
will take

ξ± (0, ω, k3) = i (4.19)

for ω 6= 0. This follows from the above equation by considering the limit r → 0, entering the exact
Lifshitz solutions in the r coordinate frame. This yields

ξ2
± = −1
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and hence ξ+ = ±i and ξ− = ±i. The sign can be �xed by looking at the equations for the components
u±, d±. In order to get in-falling boundary conditions, we should pick the plus sign.

Further, equation (4.18) for ξ± exhibits the symmetry

ξ+ (k3) = ξ− (−k3) , (4.20)

which will simplify our numerical calculation.

4.2.2 Green's function

We turn to a description of a chiral fermion on the boundary of spacetime. For this, we invoke
equation (4.14) to integrate out one of the chiral components of the Dirac spinor Ψ, obtaining an
e�ective boundary action Seff .

Using the Fourier transform

Ψ± (r, x) =

ˆ
ddk

(2π)
d

Ψ± (r, p) eikpx
µ

,

and integrating out Ψ−, one obtains

Seff [Ψ+] =

ˆ
ddk

(2π)
d

√
−gΨ†+

[
gf
√
grrξ (ω,k)− Zσaeµa (kµ −Aµ)

]
Ψ+,

where σa =
(
1, σi

)
. Here, the second term originates from the SUV action we have introduced by hand,

while the �rst is a result of the boundary term S∂ which introduces a coupling between Ψ+ and Ψ−.
Explicitly entering the expressions for the vielbeins (4.8) and the metric (4.7), we �nd

Seff [Ψ+] =

ˆ
ddk

(2π)
d

√
fg
rd−1

`d−1
Ψ†+

[
r2
0gf
`2
√
g
ξ (ω,k) +

Z√
f

(ω + e h)− Zσ · k
]

Ψ+.

Now we perform a rescaling of the �elds

Ψ+ → Z−1/2g−1/4
(r0

`

)(1−d)/2

Ψ+

to get

Seff [Ψ+] =

ˆ
ddk

(2π)
d

Ψ†+

[
ω + e h−

√
fσ · k +

gf
Z

√
f

g

r2
0

`2
ξ (r0,k)

]
Ψ+. (4.21)

The spectral function

From the e�ective action (4.21), one �nds the inverse retarded Green's function G−1
R as the term within

brackets, so that

G−1 (ω,k, r0) =

[
ω + eh (r0)−

√
f (r0)σ · k +

gf
Z

√
f (r0)

g (r0)

r2
0

`2
ξ (r0,k)

]
.

This describes the propagation of a chiral fermion associated with Ψ+ on the UV-slice at r0. Now, our
goal is to consider this description on the boundary of the spacetime, so we now considering a limiting
procedure with r0 →∞. From equation (3.23), it is clear that√

f → c
√
g → 1.
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Next, we use the fact that ξ ∼ r−2m
0 as r0 → ∞ which is clear from the large r behavior of equation

(4.18). See also ref. [14]. Therefore,

r2m
0 ξ (r0,k)→ constant.

In order to keep the retarded Green's function �nite on the boundary when taking the limit, we require

g ≡ cgf
Z

r2−2m
0

`2−2m
→ constant.

After taking these limits, the inverse retarded Green's function takes the form

G−1
R (ω,k) = [ω + µ− cσ · k− Σ (ω,k)] . (4.22)

The �nal term, de�ned by
Σ (ω,k) ≡ −g lim

r0→∞
r2m
0 ξ (r0, ω,k) ,

follows from the boundary action S∂ , while the �rst three terms follow from the free boundary action
SUV. This is why we had to add this term to the action: without it, the retarded Green's function
would not have a free part. Further, as we will see in the next section, without this part the associated
spectral function will not satisfy a certain sum rule to be introduced in the next section. We now invert
equation 4.22, in the case k = (0, 0, k3). Invoking the symmetry (4.20), the matrix ξ as in equation
(4.15) can be written as

ξ =

(
ξ+ (ω, k3) 0

0 ξ− (ω, k3)

)
=

1

2
ξsym
+ (ω, k3)1 +

1

2
ξasym
+ (ω, k3)σ3

where

ξsym
+ = ξ+ (k3) + ξ+ (−k3) (4.23)

ξasym
+ = ξ+ (k3)− ξ+ (−k3) . (4.24)

Since the self-energy is proportional to the matrix ξ, we can expand it in terms of the same matrices

Σ (ω,k) = Σ01 + Σ3σ
3,

from which one can read o�

Σ0 = −g
2

lim
r0→∞

r2m
0 ξsym

+ (ω, k3) (4.25)

Σ3 = −g
2

lim
r0→∞

r2m
0 ξasym

+ (ω, k3) . (4.26)

With this, one writes 4.22 in matrix form, and �nds the retarded Green's function

GR (ω, k3) =

(
ω + µ− Σ0 − Σ3 − k3 0

0 ω + µ− Σ0 + Σ3 + k3

)−1

=
(ω + µ− Σ0)1 + (k3 + Σ3)σ3

(ω + µ− Σ0)
2 − (Σ3 + k3)

2 .

The retarded Green's function in turn de�nes the spectral weight function ρ, by
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Figure 4.1: The free spectral function (4.28) as a function of the energy ω and momentum k3 of a
chiral fermion. The bands have been broadened via ω → ω + iε, with ε = 10−10, and shifted down via
ω → ω + µ with µ = 1.

ρ (ω, k3) ≡ − 1

2π
Im [Tr [GR (ω, k3)]]

= − 1

π
Im

[
ω + µ− Σ0

(ω + µ− Σ0)
2 − (k3 + Σ3)

2

]
. (4.27)

The spectral function gives information about the states accessible to the particles; it can be inter-
preted as a single particle density of states. It is incredibly important as it can be directly measured
using angle-resolved photo-emission spectroscopy (ARPES) in solid-state systems, and radio-frequency
spectroscopy in ultra cold atoms. Clearly, from (4.23) and (4.24) and the de�nition of Σ0 and Σ3, the
spectral weight function is symmetric in k3.

Another important property of spectral functions is the so-called ARPES sum rule

ˆ ∞
−∞

ρ (ω, k) dω = 1,

valid for any k. This rule follows directly from the anti-commutation relations of the fermionic single
particle operators, see ref. [26]. It is this sum rule that necessitates the addition of the action SUV ,
equation (4.12). Without it, the retarded Green's function would not have a free part, and would not
satisfy this rule.

An important simple case to consider is the free fermion case with a chemical potential, i.e. when
the self-energy Σ vanishes. In this case, the spectral weight function takes the form

ρf (ω, k3) = − 1

π
Im

[
ω + iε+ µ

(ω + iε+ µ)
2 − k2

3

]
, (4.28)

where a small imaginary part is added to avoid the poles on the real axis. This function is plotted in
Figure 4.1 and will also serve as a comparison to the interacting spectral function we will plot later.

In the �gure, the spectral function has a distinct cross-like shape, which is due to the linear
dispersion of the chiral fermion. This shape consists of narrow peaks which would be delta peaks, were



CHAPTER 4. THE FERMION CORRELATOR 42

it not for the small imaginary part of ω, broadening the peaks uniformly. The addition of the chemical
potential shifts the structure down on the ω axis. By integrating the free spectral function, it can be
shown easily it satis�es the ARPES sum rule.

In the interacting case, we would expect roughly the same picture, except that the broadening of
the peaks will be nonuniform: the self-energy is a function of ω and k3 as well. Further, we also expect
the interacting spectral function to satisfy the sum rule.

4.3 Numerical calculation

We now turn to the numerical calculation. The goal is to plot the spectral weight function, equation
(4.27), as a function of ω and k3, for various values of m̂ and z. For this, we numerically solve the
di�erential equation (4.18), in the form

r2

√
g
∂rξ± + 2m̂rξ± =

(
ω̂ + h√

f
∓ k̂3

)
+ ξ2
±

(
ω̂ + h√

f
± k̂3

)
where we have scaled out e

κ and put ` = 1. This equation is to be solved with the initial condition

ξ±

(
0, ω̂, k̂3

)
= i

for ω̂ 6= 0. To this end, we invoke the solutions for f, g and h from Chapter 3, transformed to the r
coordinate system. Further, we can simplify the calculation by focusing on k̂3 ≥ 0 only, due to the

symmetry ξ+

(
−k̂3

)
= ξ−

(
k̂3

)
, equation (4.20).

The above equation is �rst solved in the interior of the star, where f, g, h are given by the numerical
solutions. We introduce a cuto� ε close to zero, at which we start numerically integrating using the
initial condition. Of course, one needs to check if ε is small enough by calculating ρ at various choices
for ε.
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Ε
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0.015
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WP=35

Figure 4.2: A plot of the spectral function ρ at �xed ω̂ = 0.5, k̂3 = 1, m̂ = 0.4 and Lifshitz parameter
z = 2, for various infrared cut-o� values ε and values for the Working Precision WP of the numerical
integration. There is a clear convergence with respect to both a smaller value of ε and a larger value
of the Working Precision.

The behavior of the spectral function for various ε at �xed parameter values is shown in Figure
4.2. A degree of convergence of the spectral function is seen for small values of ε. Unfortunately, the
sti�ness of equation (4.18) for small r yields a enormous increase of computational time for even smaller
ε. The convergence exhibited by the spectral function is well enough to trust the results considered
here at at choice of ε = 10−2, but for precise analysis of the behavior of the spectral function requires
a better numerical computational scheme. One possibility is consider only the dominant terms in the
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Figure 4.3: A plot of ξ+ inside the star r ≤ rs (left) and a log-plot of r2mξ+ outside the star r ≥ rs
(right). Here, the fermion mass is m̂ = 0.4, the Lifshitz scaling parameter is z = 2, while the fermion

energy and z−momentum are given by
(
ω̂, k̂3

)
= (1, 0). The ultraviolet cut-o� is r0 = 1012, while the

infrared cut-o� is ε = 10−2. A convergence of r2mξ+ for large r is seen.

di�erential equations at small r, yielding a di�erential equation that may be solved analytically. The
resulting exact solution can then be used to start the numerical integration closer to r = 0. However,
such a computational scheme falls outside the scope of this thesis.

Next, after having introduced the cuto�, we integrate up to the radius of the star rs = u−1
s , after

which we continue solving the same equation outside the star, starting from an initial condition at rs
calculated from the solution inside the star. Then, we integrate up to a large value r0, taken such that

r2m
0 ξ

(
r0, ω̂, k̂3

)
= const.

We plot the real and imaginary parts of r2mξ± in Figure 4.3, both inside and outside the star.
After having solved the di�erential equations for ξ±, we simply calculate Σ0 and Σ3 from (4.25)

and (4.26), and hence the spectral function from the formula (4.27). This procedure is repeated for

a range of values
(
ω̂, k̂3

)
with ω 6= 0. The spectral weight functions for various masses m̂ and IR

Lifshitz parameters z are shown in Figure 4.4.
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Figure 4.4: The interacting spectral function (4.27) as a function of the energy ω̂ and z−momentum k̂3

of a chiral fermion. Here, the Lifshitz parameter is z = 1.75 (top) and z = 2 (bottom) while m̂ = 0.4.

In these �gures, several properties of the interacting spectral function can be seen. First of all, a
clear cross-like shape as in Figure 4.1 is visible, indicating relativistic scaling for high energies. This
relativistic scaling is, of course, a consequence of the asymptotically Anti-deSitter structure of the
electron-star spacetime. Further, the presence of a chemical potential µ, which is the boundary value
of the gauge �eld in the bulk, shifts the bands down.

Near ω̂ = 0 the spectral function appears to vanish, visible by a gap in the cross. In this region, the
imaginary part of the self-energy becomes zero. As in the free case, we would expect a delta peak to
be present at ω̂ = 0, as there is no imaginary part in the Green's function to produce a broadening of
the lines. This is indicative of a Fermi surface, as a peak corresponds to a pole in the Green's function
GR. However, the nature of this Fermi surface is still unknown - for this, we would need to �nd how
precisely the spectral function vanishes near zero energy.

Also visible in these �gures is the presence of a plateau at low energies ω̂, resulting purely from the
self-energy of the chiral fermion. These plateaus are seen to be bounded by ω̂ ∼ kz3 . The explanation
for this scaling behavior is that the low energy excitations correspond to the infrared of the electron-
star spacetime, by the geometric realization of the renormalization group as discussed in section 2.1.2.
As we have seen, the anisotropic scaling in the infrared Lifshitz geometry of the electron-star spacetime
implies the given relation between the energy and momentum of the chiral fermion, see section 2.2.1.
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Figure 4.5: The spectral function ρaq (4.29) in the alternative quantization scheme as a function of

energy ω̂ and z−momentum k̂3. Here, m̂ = 0.4 and z = 1.75 (left) and z = 2 (right).

The scaling behavior for low energies was also found in ref. [27], where the probe-fermions are treated
in a WKB-limit.

We can also plot the results of purely holographic computation, i.e. without the free part of the
Green's function that was added by hand. For comparison with ref. [27], we determine this Green's
function in an alternative quantization scheme. In this scheme, the Dirichlet condition δΨ− = 0 is
chosen on the boundary, rather than the condition δΨ+ = 0 that we have used. E�ectively, this means
the matrix ξ is inverted everywhere, which results in

ρaq ≡ − 1

2π
Im [Tr [GR]]

=
1

π
Im [Σ0] . (4.29)

This spectral function is plotted in Figure 4.5, for the same mass and Lifshitz parameters as before.

Finally, it is interesting to see the e�ect of the fermion backreaction in comparing the results
found here with the results of the AdS-RN model. In the AdS-RN, the fermion backreaction is turned
o�, but the same computation as considered here can be done. In the latter model, multiple Fermi
surfaces appeared at a large chemical potential, see ref. [15]. In particular, this behavior was found
at values of the chemical potential larger than at least µ = 2

√
2. By tuning the parameter z, invoking

Figure 3.5, we can achieve such values of the chemical potential in the electron-star model as well.
Unfortunately, the resulting numerical calculation is much slower. Hence, in Figure 4.6, we plot the
interacting spectral function as a function of ω̂ at �xed values of k̂3. As k̂3 increases, we see the two
peaks - corresponding to the free part of the Green's function - growing further apart. In this �gure,
just as in the previous �gures of the spectral function, only one Fermi surface is present. Thus, the
electron-star model appears to solve the issue of the emergence of multiple Fermi surfaces at large
chemical potentials by taking into account the fermion backreaction. This can be traced back to the
fact that the Reissner-Nordström black hole has a non-zero entropy at zero temperature. Because of
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this we would not expect this model to yield the ground state. Instead, the electron star does have a
zero entropy at absolute zero, as its constituent ideal fermion �uid satis�es this property.
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Figure 4.6: The spectral function at �xed values of k̂3 as a function of ω̂. Here, the Lifshitz parameter
is z = 2.5, which corresponds to a chemical potential of µ ≈ 1.6.



Chapter 5

Conclusion and outlook

Conclusion

The holographic duality is a powerful tool which can be used to gain insight into the universal behavior
of strongly coupled systems in condensed-matter physics. This is incredibly useful, as conventional
theoretical investigations are generally not successful in these cases. The electron-star model is a
relatively simple model within this framework, but still allows insight into a general class of strongly
coupled systems The goal of this thesis was to study the electron star as a holographic dual for strongly
coupled systems at a non-zero density. We have done so by �rst solving the electron-star model and
subsequently adding additional fermions to determine the fermion correlator and the spectral function
of a chiral spinor on the boundary of the electron-star spacetime.

In Chapter 2, we provided a brief introduction to the holographic duality and considered its appli-
cation to condensed-matter physics. We discussed the generalization to Lifshitz spacetimes as a way
of obtaining models dual to systems at anisotropic criticality. We discussed the Lifshitz black brane
model in more detail, solving the equations of motion exactly.

With this introduction at hand, we introduced the electron-star model in Chapter 3. By taking the
�uid limit of the fermions we were able to take the fermion backreaction into account. The equations
of motion were then derived and solved numerically. Although we were able to derive and solve the
equations of motion in any spacetime dimension, we focused on the case d+1 = 5, since this corresponds
to a four-dimensional �eld theory on the boundary. In principle, our analysis can be carried out for
higher spacetime dimensions.

Once the electron-star background was found, additional probe-fermions governed by the full Dirac
action were added to the electron-star model Chapter 4. We introduced the Dirac action and added a
free part by hand. The Dirac equation was used to integrate out one of the components of the fermion,
thus obtaining an e�ective action of a chiral fermion. From this, we were able to determine the retarded
Green's function in terms of the chiral fermion self-energy. By solving the Dirac equation, we were able
to determine the self-energy, allowing us to compute the spectral function from the retarded Green's
function. It would be interesting to add yet another chiral fermion to the boundary, and an additional
mass term, to obtain a massive Dirac spinor on the boundary.

The main result of this thesis is the calculation of the spectral function for a chiral fermion, obtained
by solving the Dirac equation in the presence of the electron-star geometry. From this calculation, we
have seen

• The occurrence of a Fermi surface at ω = 0. This is indicated by the gap in the spectral function
due to the vanishing of the imaginary part of the self-energy. However, the precise nature of this
Fermi surface is not known at this point. This requires the behavior of the spectral function near
zero energy to be determined more precisely, which in turn necessitates an improvement of the
numerical computational scheme presented here.
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• A plateau for small ω bounded by ω ∼ kz3 , con�rming analytical results that were found by
treating the fermions in a WKB limit. Here, no such limit was taken, but the fermion equation
of motion was solved numerically in the presence of the electron star geometry.

• No occurrence of multiple Fermi surfaces, even at large chemical potential µ. Because multiple
Fermi surfaces do occur in the AdS-RN model, this suggests that the fermion backreaction present
in the electron star has solved this unphysical trait. This can be traced back to the fact that the
AdS-RN model has non-zero entropy at zero temperature, while the electron star does not.

Outlook

There are many di�erent ways in which the presented research can be extended. A �rst extension would
be to use the setup presented here to compute transport properties of the dual boundary system, such
as charge transport. This is done by perturbing the gauge �eld and capturing the e�ects on the charge
current by linear response.

Next, the electron-star model can be extended towards Lifshitz spacetime. In that case, one would
start from an Einstein-Maxwell-Dilaton-Dirac action, again treating the fermions in a �uid limit.
This would generalize the model considered here by introducing anisotropic scaling symmetry on the
boundary. It appears - see Appendix B - that the IR geometry is again Lifshitz, which asymptotes
to another Lifshitz geometry on the boundary. It would be interesting to see, after adding additional
fermions as we have done here, how the spectral weight function behaves in this case. Of course, having
obtained this solution, it would be interesting to revisit the previous extensions in the Lifshitz case.

Another interesting extension is the extension towards the thermal electron star. By turning on the
temperature, the fermion equation of state is changed, which in turn a�ects the equations of motion as
we have seen in the intermezzo 3.2 in Chapter 3. Although the �rst equation of motion is still trivially
solved, as is shown in Appendix B, the �uid parameters su�er from divergences due to the in�nitely
red-shifted local temperature in the interior of the electron star. It would be interesting to see if one
can get rid of these divergences. One possible way to do this is by studying the quantum electron star
discussed in Chapter 3. Assuming a solution to these problems, it would be interesting to compute
the heat transport in the boundary �eld theory and to consider the e�ect on the spectral function.

Yet another interesting possibility concerns adding a scalar �eld to the action (3.8) in the thermal
case to obtain the characteristics of superconductivity. This model would fall in the category of
the holographic superconductors, which are theories of gravity dual to strongly coupled �eld theories
undergoing a superconducting phase transition below a critical temperature. A non-zero scalar �eld
is dual to a non-zero condensate, so one would look for the scalar �eld becoming non-zero below the
critical temperature. Especially interesting will be the interplay between this bosonic �eld and the
fermion �uid.
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Appendix A

The local-density approximation

In this appendix, we will more closely investigate the local-density approximation, which is applied to
the fermions in the electron-star spacetime. The physical idea of the approximation is that the length
scale associated with the fermions, such as the Compton wavelength, is small compared to the length
scale ` - the AdS radius - set by the curvature.

In the following, we assume a diagonal metric ds2 = gttdt
2 + giidx

idxi. The Klein-Gordon equation
- see ref. [5] - reads (

�−m2
)
φ = 0, �φ =

1√
−g

∂µ
(√
−ggµν∂νφ

)
,

and becomes
−m2 = gµνp

µpν

in momentum space when neglecting the derivatives on the metric tensor. Of course, the Dirac spinor
�elds also obey this equation. Solving for p0, we obtain

pt =

√
−gtt

(
m2 + gii (pi)

2
)

= Eloc

(
pi
)
,

which we refer to as the local energy, as pt = utE
(
pi
)
with E

(
pi
)2

= m2 + pip
i. Here uµ is the

four-velocity of the gas, uµu
µ = −1. In the rest frame of the gas, ut is the only non-zero component,

which then satis�es

ut =
1√
−gtt

, ut = −
√
−gtt.

We now write down the grand-canonical partition function for fermions in the local-density approx-
imation. In the grand canonical ensemble

Z = Tr exp
[
−β
(
Ĥ − µN̂

)]
,

which we now write down in a covariant form.
The single-particle energy in the rest frame of the gas, ignoring the chemical potential, is given by

E
(
pi
)

= −utpt, and hence is generalized to a general frame as −uµpµ. Realizing that At = µ (x), we
can invoke a minimal coupling scheme to obtain the full covariant single-particle energy, which takes
the form −uµ (pµ +Aµ) . In the rest frame, this becomes −utpt− utAt =

√
m2 + pipi−µloc where we

have de�ned the local chemical potential

µloc = utAt

=
µ√
−gtt

.
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Then,

Z =
∏
pi

∑
N(pi)

exp
[
βloc

(
utp

t + µloc

)
N
(
pi
)]
,

replacing the trace by a sum over energy eigenstates, with N
(
pi
)
the occupation number of an energy

state labeled by pi. In this expression, we to use the local inverse temperature βloc, since in the
local-density approximation the time integral - related to the temperature in the usual way - becomes

ˆ β

0

dt
√
−gtt =

ˆ √−gttβ
0

dt′,

so βloc = −√gttβ, or Tloc = T√
−gtt

. For the Fermi gas, the occupation numbers are 0 or 1, leaving

Z =
∏
pi

[
1 + exp

[
βloc

(
utp

t + µloc

)]]

= exp

∑
pi

log
[
1 + exp

[
βloc

(
utp

t + µloc

)]] .
The grand potential Ω is then de�ned as −βlocΩ = logZ, which implies

Ω = − 1

βloc

∑
pi

log
[
1 + exp

[
βloc

(
utp

t + µloc

)]]
.

Continuum limit

We now wish to take the continuum limit, in which the energy levels of the fermions form a continuum.
The proposition is to use the following;

∑
pi

→ Vflat

d∏
i

ˆ
dpi
2π

where the �at d-volume is given by Vflat =
∏d
i=1

´
dxi. Now we can de�ne ��at� momentum variables

p̃i by pi =
√
giip̃i, in terms of which the single-particle energy looks like the �at energy. This leads to

the continuum limit ∑
pi

→
∏
i

ˆ
dxi
ˆ
dpi
2π

=
∏
i

ˆ
dxi
√
gii

ˆ
dp̃i
2π

= Vcov

ˆ
ddp̃

(2π)
d

where Vcov =
´
dxi
√
−h and where

√
h =

∏
i

√
gii.

In this continuum limit, the thermodynamical potential becomes

−βlocΩ =

ˆ
ddx
√
h

ˆ
ddp̃

(2π)
d

log (1 + exp [−βloc (−u0Eloc (p̃i)− µloc (x))])

=

ˆ
ddx
√
h

ˆ
ddp̃

(2π)
d

log (1 + exp [−βloc (E (p̃i)− µloc (x))]) .
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The pressure of the ideal Fermi gas, then, is given by

Ω = −
ˆ
ddx
√
hpflat (x) ,

and so

pflat (x) =
1

βloc

ˆ
ddp̃

(2π)
d

log (1 + exp [−βloc (E (p̃i)− µloc (x))]) .

Thus, we conclude that we need to use the �at pressure pflat as a function of the local chemical potential
µloc. Another way in which we can see that we have to use the local chemical potential is by studying
the Dirac action directly. It takes the form

S = −
ˆ
dd+1x

√
−gΨ̄ (iΓµ∇µ −m) Ψ.

By performing a coordinate transformation to locally-�at coordinates,

dd+1x
√
−g → dd+1x′

we �nd d
dt′ = 1√

−gtt
d
dt , which implies

Elocally flat =
E√
−gtt

,

which is the local energy. Thus, the local energy Eloc appears when using the Dirac action in locally-
�at coordinates. In thermodynamical calculations, therefore, we integrate over Eloc, so the locally-�at
pressure depends on the local chemical potential µloc. Performing a Wick rotation, one obtains

τ ′ =
√
−gttτ

=
√
−gtt~β

= ~βloc.

Thus, we obtain the local inverse temperature in �at expressions. Indeed,

i

~
S =

i

~

ˆ
dd+1x

√
−gpflat

=
i

~

ˆ
dt
√
−gtt

ˆ
ddx
√
hpflat

= −βlocΩ.

Note that pflat depends on position through βloc and µloc. Invoking ordinary thermodynamical relations,
this implies

pflat = −ρflat + µloc (x)σ + Tlocs.

In the case of zero temperature, the Fermi sphere is de�ned by

E (p̃i)− µloc < 0,

in which case the above expression for the �at pressure becomes

pflat (x) =
1

βloc

ˆ
ddp̃

(2π)
d

[−βloc (E (p̃i)− µloc (x))]

=

ˆ µloc(x)

m

dE g (E) (−E + µloc (x)) .
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In this expression, g (E) is the density of states, calculated from

g (p)
dp

(2π)
d

= (2π)
−d
pd−1 sind−2 (φ1) sind−3 (φ2) · · · sin (φd−2) dpdφ1 · · · dφd−1

→ βd+1E
(
E2 −m2

)(d−2)/2
dE

≡ g (E) dE, (A.1)

where we have used p2 = E2−m2 and where we have integrated over angular variables. Here, βd given
by equation (3.2) for electrons, having spin 1

2 . For fermions of arbitrary spin s, there is a multiplicative
factor of 2s+ 1, rather than the factor 2 implicit in the above equation.

This is the essence of the expressions use in equations (3.4), (3.5), and (3.6). It is the �at pressure,
depending on the local chemical potential, that is used in the action (3.8).



Appendix B

Details on calculations

In this appendix we provide details on several calculations in the main text. First, we provide the
derivation of the equations of motion in Chapter 3 as well as details concerning the numerical calcu-
lation. Next, we discuss the derivation of the spinor covariant derivative in Chapter 4.

Chapter 3

We provide the details of deriving the equations of motion for the electron star. The metric takes the
form

ds2 = −`2f (u) dt2 + `2g (u) du2 + `2u−2dx2
i

while the action is given by

S =

ˆ
dd+1x

√
−g
[

1

2κ2

(
R+

6

`2

)
− 1

4e2
FµνF

µν + p (µloc)

]
as explained in the text. The dimensions of relevant quantities are

[`] = [xµ] = [length] [p] = [ρ] = [length]
−1−d

[f ] = [g] = [length]
−2

[σ] = [length]
−d

[A] = [h] = [length]
−1

[κ]
2

= [length]
d−1

[e]
2

= [length]
d−3

.

In particular, [ e
κ

]
= [length] = [energy]

−1

and the �uid parameters can be made dimensionless by scaling out the couplings

ρ =
ρ̂

`2κ2
, p =

p̂

`2κ2
, σ =

σ̂

e`2κ
.

The metric components are given by

gtt = −`2f (u) , guu = `2g (u) , gii =
`2

u2
,

and the resulting non-zero Christo�el symbols are

Γiiu = − 1

u
, Γttu =

f ′

2f
, Γuuu =

g′

2g
;

Γuii =
1

gu3
, Γutt =

f ′

2g
.

55
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From this, we calculate the relevant Riemann tensor components

Rutut =
f ′′

2g
− f ′g′

4g2
− f

′2

4gf
Ruiui =

−1

gr3

(
2

r
+
g′

2g

)
Rtutu = guug

ttRutut Rtiti =
f ′

2fgr3
. (B.1)

EOM1

The �rst equation of motion is the covariant conservation of the energy-momentum tensor

∇µTµν ≡ ∂µT
µν + ΓµµαT

αν + ΓνµαT
µα

= 0,

where the energy-momentum tensor is given by

Tµν = (ρ+ p)uµuν + pgµν +
1

e2
FµσF

σ
ν −

1

4e2
gµνF

2 (B.2)

= T fµν + TAµν .

In the last line, we have split up the EM-tensor in a �uid part and a part due to the gauge �eld. Now
At = e`

κ h (u) implies that Fut = e`
κ h
′ is the only independent non-zero component of Fµν . Further, we

will invoke Maxwell's equation
∇µF νµ = σe2uν

with ut =
(
`
√
f
)−1

.

First of all, it is easy to show that the only non-zero component of the equation of motion will be

the u component. Thus, we focus on writing out ∇µ
(
Tuµf + TuµA

)
= 0. Using Maxwell's equation, we

�nd

∇µTuµA =
1

e2
∇µ
(
FuαFµα −

1

4
guµF 2

)
= σFuαuα +

1

e2
Fµα∇µ (Fuα)− 1

4
guµ∇µ

(
F 2
)

=
eh′

`2κg
√
f
,

since the last two terms in the second line cancel. Next, expanding the covariant derivatives in terms
of the Christo�el symbols, one shows

∇µTuµf =
p′

`2g
+ (ρ+ p)

f ′

2fg`2
.

Thus, the total equation becomes

p′ + (p+ ρ)
f ′

2f
− e

κ

h′σ√
f

= 0.

Multiplying by `2κ2, one �nds the desired equation of motion.
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EOM 2

The second equation of motion is a linear combination of the (uu) and (tt) components of Einstein's
equation

Rµν +

(
Λ− 1

2
R

)
gµν = κ2Tµν .

Given the form of the energy-momentum tensor (B.2), one �nds

Ruu −Rtt = κ2 (ρ+ p)

guuRiuiu − gttRitit = κ2 (ρ+ p) ,

and hence, by virtue of the Riemann tensor components (B.1),

d− 1

g`2u

(
− 2

u
− g′

2g
− f ′

2f

)
− κ2 (ρ+ p) = 0.

Thus, multiplying by −2g`2, we obtain the second equation of motion

(d− 1)

2u

(
4

u
+
g′

g
+
f ′

f

)
+ g (ρ̂+ p̂) = 0.

EOM 3

The third equation of motion uses the ii components of the Einstein equation

Rii +

(
Λ− 1

2
R

)
gii = κ2pgii −

κ2

4e2
giiF

2.

This becomes (
f ′

2fu
− g′

2gu
− d

u2

)
− g

(
−Λ`2 + p̂

)
− 1

2
g`2R− h′2

2f
= 0.

Next, substitute the second equation of motion to eliminate g′, resulting in

f ′

fu
− d− 2

u2
− h′2

2f
+ g

(
Λ`2 − p̂− 1

2
`2R+

ρ̂

d− 1
+

p̂

d− 1

)
= 0.

Then, by tracing the general form of Einstein's equation, one �nds the expression

−1

2
R`2 =

−Λ`2 (d+ 1)− ρ̂+ p̂d+ κ2`2

e2 F 2
(
1− 1

4 (d+ 1)
)

d− 1

for the Ricci scalar.Entering this into the result found earlier, eliminating R, one �nds

f ′

fu
− d− 2

u2
− h′2

2f
+ g

(
d (d− 1) + 2p̂− 2h′2

gf

(
1− 1

4 (d+ 1)
)

d− 1

)
= 0.

Finally, this is rewritten to yield the third equation of motion

f ′

fu
− d− 2

u2
− h′2

(d− 1) f
+ g

(
d (d− 1) + 2p̂

(d− 1)

)
= 0.



APPENDIX B. DETAILS ON CALCULATIONS 58

EOM 4

The �nal equation of motion is Maxwell's equation

∇µF νµ = e2Jν

with Jν = σuν , and where ut =
(
`
√
f
)−1

is the only non-zero component of uν . It is easy to show
that the only non-zero component of Maxwell's equation is the ν = t component. Then,

∂µF
µt + ΓµµαF

αt +����ΓtµαF
µα +

e2σ

`
√
f

= 0

− e

`3κ
∂u

(
h′

fg

)
− e`h′

κfg

(
(d− 1) Γiiu + Γtut + Γuuu

)
+
e2σ

`
√
f

= 0

h′′ − h′
(
f ′

2f
+
g′

2g
+
d− 1

u

)
− g
√
fσ̂ = 0,

Finally, one invokes the second equation of motion to eliminate f ′

2f + g′

2g and uses the equation of state

p̂+ ρ̂ = h√
f
σ̂ to �nd the fourth equation of motion

h′′ − h′ (d− 3)

u
+
gσ̂√
f

(
uhh′

d− 1
− f

)
= 0.

The constant f1

As mentioned in the text, the constant f1 appearing in the perturbed Lifshitz scaling solution

f =
1

u2z
(1 + f1u

α)

is undetermined from the equations of motion. However, it can be set to any value by an appropriate

rescaling of the coordinates. Indeed, letting u→ f
−1/α
1 u,

f → f
2z/α
1

u2z
(1 + uα) ,

after which we can absorb the remaining factor in the coordinate t. Similarly, one absorbs such a
factor in xi as well. Yet, this does not determine the sign of f1, which turns out to be crucial.

In order to determine the sign of f1, we simply solve the equations of motion using either sign. A
good way to see which sign should be used is to realize that f should interpolate between the Lifshitz
and AdS-RN solutions. We write

f =
1

uγ(u)

for which γ (∞) = 2z and γ (0) = 2 from the AdS-RN solution. We can get a measure for γ by
assuming it is slowly varying and taking the derivative of f :

γ ' −uf
′ (u)

f (u)
.

By numerically solving the equations of motion with f1 = ±1, we plot both associated γ functions.
The result is shown in Figure B.1.

Clearly, when f1 = 1, γ does not converge to 2 for small u, meaning that we cannot match it onto
the Reissner-Nordström solutions properly. This solution simply does not become Reissner-Nordström
for small u. This is why f1 = −1 is chosen in the numerical calculation.
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1 5 10

u�u
s

2

2z

Γ

f1=1

f1=-1

Figure B.1: The radial dependence of the measure of γ in units of the star �radius� us, for the
two choices of signs of the perturbation away from the exact infrared Lifshitz solution. Clearly, the
perturbation with a negative sign converges towards a black hole solution - for which γ = 2 - at u = us.

Non-zero temperature

We consider the extension to a non-zero temperature perfect �uid. In this case, the �uid parameters
are given by

ρ =

ˆ ∞
m

Eg (E)nEdE, σ =

ˆ ∞
m

g (E)nEdE, −p = ρ− µσ − Ts

in terms of the density of states (A.1) and the Fermi-Dirac distribution

nE = [1 + exp [β (E − µloc)]]
−1
.

The entropy of an ideal �uid of fermions is given by

S = −
∑
k

nk log nk + (1− nk) log (1− nk) ,

where nk ≡ nE(k). Taking the continuum limit
∑
k →

Vcov

(2π)d

´
ddk as in Appendix A and changing

integration variables,

s = −βd+1

ˆ ∞
m

dE E
(
E2 −m2

)(d−2)/2
(nE log (nE) + (1− nE) log (1− nE))

= −βd+1

( e
κ

)d ˆ ∞
m̂

dε ε
(
ε2 − m̂2

)(d−2)/2
(nε log (nε) + (1− nε) log (1− nε))

with

nε =

[
1 + exp

[
eβ

κ

(
ε− `h√

f

)]]−1

.

Thus,

ŝ = −β̂d+1

ˆ ∞
m̂

dε ε
(
ε2 − m̂2

)(d−2)/2
(nε log (nε) + (1− nε) log (1− nε)) ,

with ŝ = eκ`2s, implying that s has the same dimension as σ.
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The �rst equation of motion is still given by

p̂′ + (ρ̂+ p̂)
f ′

2f
− h′σ̂√

f
= 0,

where we now substitute the equation of state

p̂ = −ρ̂+
h√
f
σ̂ +

T̂0

`
√
f
ŝ

in terms of the local temperature T = T̂0/`
√
f . One then obtains

−ρ̂′ + h√
f
σ̂′ +

T̂0

`
√
f
ŝ′ = 0.

Entering the integral expressions, the left hand side becomes

−ρ̂′ + h√
f
σ̂′ +

T̂0

`
√
f
ŝ′ = β̂d+1

ˆ ∞
m̂

dε ε
(
ε2 − m̂2

)(d−2)/2

[
−εn′ε +

h√
f
n′ε −

T̂0

`
√
f
n′ε log

(
nε

1− nε

)]

= β̂d+1

ˆ ∞
m̂

dε ε
(
ε2 − m̂2

)(d−2)/2

[
−εn′ε +

h√
f
n′ε −

T̂0

`
√
f
n′ε ×

(
−`
√
f

T̂0

(
ε− h√

f

))]
= 0.

Next, we derive the radial pro�les of µ and T purely on thermodynamical grounds. without entering
an explicit equation of state. Consider the grand potential Ω, and de�ne ω = Ω/V ;

Ω = H − µN − TS
ω = ρ− µσ − Ts.

Then, Ω = −pV for an ideal �uid, which implies p = −ω. The �rst equation of motion reads

p′ + (p+ ρ)
f ′

2f
− h′σe

κ
√
f

= 0.

Now enter

ρ = ω + µσ + Ts

σ = −∂ω
∂µ

s = −∂ω
∂T

to �nd

−ω′ −
(
µ
∂ω

∂µ
+ T

∂ω

∂T

)
f ′

2f
+

h′e

κ
√
f

∂ω

∂µ
= 0.

Writing ω′ = ∂ω
∂T

∂T
∂u + ∂ω

∂µ
∂µ
∂u , one �nds

∂ω

∂µ

(
−∂µ
∂r
− µ f

′

2f
+
e

κ

h′√
f

)
=
∂ω

∂T

(
∂T

∂r
+ T

f ′

2f

)
.

Thus, we �nd the required radial pro�les:

T ′ + T
f ′

2f
= 0 ⇒ T =

T0√
f

µ′ + µ
f ′

2f
=
e

κ

h′√
f
⇒ µ =

e

κ

h√
f
.
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Chapter 4

Spinor covariant derivative

We provide some details regarding the derivation of the spinor covariant derivatives for the electron-star
metric

ds2 = −r
2

`2
f (r) dt2 +

`2

r2
g (r) dr2 +

r2

`2
dx2

i .

From the de�ning equation gµνe
µ
ae
ν
b = ηab, labeling the locally-�at coordinates with t , r, i, the vielbeins

become

err =
r

`
√
g
, eii =

`

r
, ett =

`z

rz
√
f
.

As discussed in the text, the vielbeins de�ne the spin connection in terms of the Christo�el symbols,
which take the form

Γiir =
1

r
, Γttr =

f ′

2f
+

1

r
, Γrrr = −1

r
+
g′

2g

Γrii = − r3

g`4
, Γrtt =

r3

g`4

(
f ′r

2
+ f

)
in the r coordinate frame. We derive the relation between the spin connection and these Christof-
fel symbols. For this, one determines the covariant derivative of a vector �eld in both the original
formalism and the vielbein formalism. First, one has

∇X = (∇µXν) dxµ ⊗ ∂ν
=

(
∂µX

ν + ΓνµαX
α
)

dxµ ⊗ ∂ν

while on the other hand

∇X = (∇µXa) dxµ ⊗ êa
=

(
∂µX

a + ω
a
µbX

b
)

dxµ ⊗ eνa∂ν

= eνa

(
∂µ (eaαX

α) + ω
a
µbe

b
αX

α
)

dxµ ⊗ ∂ν

=
(
δνα∂µX

α + eνa∂µ (eaα)Xα + eνaω
a
µbe

b
αX

α
)

dxµ ⊗ ∂ν

=
(
∂µX

ν + eνa∂µ (eaα)Xα + eνaω
a
µbe

b
αX

α
)

dxµ ⊗ ∂ν .

Comparing these expressions, one �nds

ωµab = eνa∂µe
ν
b + eνae

σ
bΓνσµ.

An important property of the spin connection is that it is anti-symmetric in its two �at indices, as is
easily seen by expressing it purely in vielbeins

ωµab =
1

2
eνa
(
∂µeνb − ∂νeµb

)
− 1

2
eνb
(
∂µeνa − ∂νeµa

)
− 1

2
eρae

σ
b e
c
µ

(
∂ρeσc − ∂σeρc

)
.

Then, from the discussion in the text, the covariant derivative becomes

∇µ = ∂µ +
1

8
ωµab

[
Γa,Γb

]
when acting on a spinor Ψ. We now calculate the various components.
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First, we have ωrab = 0 for all a,b, by considering all possible options. Thus,

∇r = ∂r.

Secondly, setting µ = i, we �nd

ωiri = erre
i
iΓ
r
ii

= − r

`2
√
g

as the only non-zero independent component. Hence,

∇i = ∂i +
1

8
ωiir

[
Γi.Γr

]
+

1

8
ωiri

[
Γr,Γi

]
= ∂i +

1

2

r

`2
√
g

ΓiΓr,

using the anti-commutation relations for the Γ matrices.
Finally, when µ = t we �nd

ωtrt = erre
t
tΓ

r
tt

=
r2

`2

√
f

g

(
f ′

2f
+

1

r

)
as the only non-zero independent component. Thus,

∇t = ∂t +
1

8
ωtrt

[
Γr,Γt

]
+

1

8
ωttr

[
Γt,Γr

]
= ∂t −

1

2

r

`
√
g
∂r

(r
`

√
f
)

ΓtΓr.

Thus, we have shown the correctness of equation (4.6):

∇r = ∂r

∇i = ∂i +
1

2

r

`2
√
g

ΓiΓr

∇t = ∂t −
1

2

r

`
√
g
∂r

(r
`

√
f
)

ΓtΓr.

Finally, an important fact used in the text is that the spin connection yields a vanishing contribution
to the variation of the Dirac action on a constant radius hypersurface. Thus, all covariant derivatives
can be replaced by partial derivatives. To prove this, consider the term in the Dirac action on the
surface r = r0. Since Γa = γa when d is even - see (4.1), we obtain

Ψ̄ (Γµ∇µ −m) Ψ = Ψ†Γt
(
Γt∇t + Γi∇i −m

)
Ψ

= Ψ†Γt
(
ettΓ

t∂t + eiiΓ
i∂i −m

)
Ψ

+ Ψ†Γt
(
−ett

r

2`
√
g
∂r

(r
`

√
f
) (

Γt
)2

Γr + Γi
r

`2
√
g

(
Γi
)2

Γr
)

on the surface r = r0. Thus the contributions are proportional to(
Γt
)2

ΓtΓr, Γt
(
Γi
)2

Γr,

which vanish in the representation (4.1) of the Γ matrices.



Appendix C

The Lifshitz electron star

We provide some results regarding the Lifshitz electron star, for future work. To this end, we study the
action for the Lifshitz spacetime, to which we add fermions treated in the �uid limit. We begin from
an action which combines the Lifshitz black brane action (2.19) and the Electron star action (3.8):

S =

ˆ
dd+1x

√
−g

[
1

2κ2

(
R+

6

`2
− ∂µφ∂µφ

)
− 1

4

∑
i

1

e2
i

eλiφF 2
iµν − p (µl)

]
,

where φ is the dilaton �eld, and where i = 1, 2 indexes the two gauge �elds Ai, the constants λi and
the charges ei. Again, we write down a metric ansatz

ds2 = `2
(
−f (u) dt2 + g (u) du2 + u−2dx2

i

)
where we require the asymptotic behavior f → u−2α, g → u−2 for an asymptotically Lifshitz spacetime.
This time, the equations of motion read

∇µ
(
TµνA + Tµνφ + Tµνf

)
= 0

Rµν +

(
Λ− 1

2
R

)
gµν = Tφµν + κ2

(∑
i

1

e2
i

eλiφ
(
FiµσF

σ
iν −

1

4
gµνF

2
i

)
+ T fµν

)
∇µ
(
eλ1φF νµ1

)
= 0

∇µ
(
eλ2φF νµ2

)
= e2

2σu
ν

�φ− 1

4

∑
i

λie
λiφF 2

i = 0.

with TAµν =
∑
i

1
e2i
eλiφ

(
FiµσF

σ
iν − 1

4gµνF
2
i

)
, Tφµν = ∂µφ∂νφ− 1

2 (∂φ)
2
gµν and T

f
µν = (ρ+ p)uµuν+pgµν .

Also, we will take

Ai,t =
ei`

κ
hi

63
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generalizing our earlier discussion. Then, repeating the same steps as we have taken in Appendix A,
we �nd the equations of motion

p̂′ + (ρ̂+ p̂)
f ′

2f
+
φ′2

g

[
φ′′

φ′
− g′

2g
+

1− d
u

+
f ′

2f

]
(C.1)

+
φ′

2gf

[
h′21 λ1e

λ1φ + h′22 λ2e
λ2φ
]
− σ̂ h

′
2√
f

= 0 (C.2)

d− 1

2u

(
4

u
+
g′

g
+
f ′

f

)
+ g (ρ̂+ p̂) + φ′2 = 0 (C.3)

f ′

fu
− d− 2

u2
+ g

(
d (d− 1) + 2p̂

d− 1

)
− h′21 e

λ1φ

(d− 1) f
− h′22 e

λ2φ

(d− 1) f
+

φ′2

d− 1
= 0 (C.4)

h′′2 − h′2
(
d− 1

u
+
g′

2g
+
f ′

2f

)
− g
√
fσ̂ = 0 (C.5)

h′′1 − h′1
(
d− 1

u
+
g′

2g
+
f ′

2f
− λ2φ

′
)

= 0 (C.6)

φ′′ − φ′
(
g′

2g
− f ′

2f
+
d

u

)
+
λ1h

′2
1 e

λ1φ

2f
+
λ2h

′2
2 e

λ2φ

2f
= 0. (C.7)

The last equation was obtained using

�φ = gµν
(
∂µ∂νφ− Γαµν∂αφ

)
= grrφ′′ − φ′

(
grrΓrrr + (d− 1) giiΓrii + gttΓrtt

)
=

φ′′

g`2
− φ′

g`2

(
g′

2g
− f ′

2f
+
d− 1

r

)
.

One veri�es that letting φ → 0, h2 → 0 and λ1,2 → 0, that the electron-star equations of motion are
retrieved. Next, one substitutes equation (C.7) into the �rst equation of motion and �nds that the
dilaton does not contribute in this equation, leaving simply

p̂′ + (ρ̂+ p̂)
f ′

2f
− σ̂ h

′
2√
f

= 0.

This is precisely the �rst equation of motion that we derived in Chapter 3. It is solved trivially by the
zero-temperature equation of state, −p = ρ− µσ, in terms of the �uid parameters

ρ̂ = β̂d

ˆ h2√
f

m̂

ε2
(
ε2 − m̂2

)(d−3)/2
dε, σ̂ = β̂d

ˆ h2√
f

m̂

ε
(
ε2 − m̂2

)(d−3)/2
dε.

Because these expressions are identical to the expressions of the electron star, we also expect the same
generalization to a non-zero temperature �uid. That is, we expect the �rst equation of motion to also
be solved by invoking a non-zero temperature equation of state with a local temperature.

Having solved the �rst equation of motion, one now substitutes (C.3) into the Maxwell equations,
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as before, to �nd

d− 1

2u

(
4

u
+
g′

g
+
f ′

f

)
+ g

h2√
f
σ̂ + φ′2 = 0

f ′

fu
− d− 2

u2
+ g

(
d (d− 1) + 2p̂

d− 1

)
− h′21 e

λ1φ

(d− 1) f
− h′22 e

λ2φ

(d− 1) f
+

φ′2

d− 1
= 0

h′′2 −
h′2 (d− 3)

u
+
gσ̂√
f

(
uh2h

′
2

d− 1
− f

)
+ h′2

(
uφ′2

d− 1
+ λ2φ

′
)

= 0

h′′1 −
h′1 (d− 3)

u
+
gσ̂√
f

uh1h
′
1

d− 1
+ h′1

(
uφ′2

d− 1
+ λ1φ

′
)

= 0

φ′′ − φ′
(
g′

2g
− f ′

2f
+
d

u

)
+
λ1h

′2
1 e

λ1φ

2f
+
λ2h

′2
2 e

λ2φ

2f
= 0.

This is the set of equations of motion for the Lifshitz electron star, analogous to the equations of
motion (3.16)-(3.18). The presence of the extra equations of motion is due to the fact that additional
matter �elds are required for the support of the Lifshitz geometry. These equations have to solved
throughout the spacetime, providing a background geometry on which, for instance, fermion correlator
can be computed as we have done.
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