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Abstract

We demonstrate how the qualitative domain model for the second-order lambda calculus given
by Girard [Gir86] can be formulated in terms of a PL-Category as described by Seely [See87].



Chapter 1

Introduction

In his paper Categorical Semantics For Higher Ordered Polymorphic Lambda Calculus [See87],
Seely defines the concept of a PL-Category, which provides an abstract description of a model
of the higher-order lambda calculus. We modify the requirements on a PL-Category to describe
a model of the second-order lambda calculus and give an outline to show that the qualitative
domain model for the second-order lambda calculus given by Girard [Gir86] is an instance of a
PL-Category.

1.1 Model Theory

Most of this thesis consists of an introduction to the lambda calculus and its models. We briefly
introduce the properties of category theory that we use, but readers entirely unfamiliar with it
are advised to start with an introduction such as Mac Lane’s Category Theory for the Working
Mathematician [ML98] before reading this text.

The lambda calculus was invented by Alonzo Church to formalize the concept of computabil-
ity. Computation occurs by mechanical rewriting of terms according to some basic rules. The two
key operations are abstraction and application. Abstraction parametrises a term by a variable,
and application then substitutes all occurences of the variable with the given argument.

The first formulation of the lambda calculus allowed any term to be applied to any other
term; this is the so-called untyped lambda calculus. Later, it was discovered that assigning every
term a type and restricting application to terms of suitable type had a number of advantages.
For example, a type of natural numbers could be defined, and a natural number could then not
be used as a function.

Informally, one can see this as each type specifying a set and every term describing a com-
putation that yields an element of this set. Such an assignment of types to sets and terms to
functions gives a model of the lambda calculus. Having a model gives us new ways to reason
about the language as a whole; for example, if we can show that two terms are unequal in some
model, then they cannot describe the same computation.

In order to allow more general models than just set-theoretic ones we will define a general
concept of ‘sets and functions between them’, that of a category. This gives us a way to construct
models that interpret types as something other than sets. We will use this to provide a categorical
description of the domain-theoretic model of the lambda calculus presented by Girard [Gir86].
Unfortunately, due to time constraints, we do not provide the full verification of the validity
of this model. In particular, we omit several proofs that the coherence conditions, as well as

1



the proof that the Π functor is right-adjoint to the weakening functor. These shortcomings are
described in more detail in section 8.5.

1.2 Terminology

The paper by Seely [See87] describes the higher order lambda calculus in terms of orders, oper-
ators, types and terms. In computer science circles, ‘kind’ is usually used instead of ‘order’ and
‘type constructor’ instead of ‘operator’. For the sake of consistency, I have stuck with Seely’s
notation, except that function orders are indicated using A⇒ Ω in place of ΩA.
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Chapter 2

The Simply-Typed Lambda
Calculus

The lambda calculus is a language for expressing computation. The system was originally intro-
duced by Church [Chu32], but has since then been expanded with support for types. For a good
introduction to the variations of the lambda calculus, see Barendregt [Bar13]. The variation we
define is similar to the one given by Sørensen and Urzyczyn [SU98].

The two principal objects we concern ourselves with are terms and types. A type specifies
the possible results of a computation, while a term specifies the computation itself. Every term
must have a single type; given a term t and a type τ we say t ∈ τ if t has type τ . We use Ω to
denote the collection of all types.

Informally, we can see a type τ as a set of values. The judgement t ∈ τ then states that
computing t gives a value v and v ∈ τ . This provides a good intuition for the meaning of t ∈ τ
but only works if all computations terminate, which is not the case in general. We use a similar
notation τ ∈ Ω to indicate that τ is a type. As terms must have types, the judgement t ∈ τ
implicitly requires τ ∈ Ω.

The language presented here is called the simply-typed lambda calculus and is denoted λ→.1

In chapter 5, we will expand this system to the second-order lambda calculus.

2.1 Formal Definition

We will now introduce type and term formation rules for λ→.
We require the existence of a unit type >. This is a type with exactly one value ∗. We see

this requirement as the existence of following inference rules for typing:

` > ∈ Ω
>I

` ∗ ∈ > .

In general, when we say ”there exists a type” or ”there exists a term” we mean that there
exist corresponding typing rules. Such rules may depend on earlier deductions. For example, we
require the existence of product and function types as follows:

Γ ` τ ∈ Ω Γ ` σ ∈ Ω

Γ ` τ ∧ σ ∈ Ω

Γ ` τ ∈ Ω Γ ` σ ∈ Ω

Γ ` τ ⊃ σ ∈ Ω
.

1More formally, this is the simply typed lambda calculus with exponential and product types λ(→,×). However,
from the point of view of models, this is inessential.
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In cases where the context Γ is not of interest, we may instead simply write

τ ∈ Ω σ ∈ Ω

τ ∧ σ ∈ Ω

τ ∈ Ω σ ∈ Ω

τ ⊃ σ ∈ Ω
.

These types have the same role as the sets A×B and BA have for sets A and B. For product
types this is easily expressed by requiring the following terms:

t ∈ τ s ∈ σ
∧I

〈t, s〉 ∈ τ ∧ σ
a ∈ τ ∧ σ

∧E
π1a ∈ τ

a ∈ τ ∧ σ
∧E

π2a ∈ τ
.

In order to properly specify the rules for functions we first have to introduce variables. Given
a type τ , we can introduce a variable of type τ using the identity typing rule:

V arI
Γ, x ∈ τ ` x ∈ τ .

If a term t ∈ τ requires x ∈ σ to be deduced, then we say t has a free variable x of type σ.
In chapter 5 will see a similar construction for free type variables. A term with no free variables
(or free type variables) is called closed.

The introduction of function terms corresponds to binding a free variable. Function applica-
tion is expressed by juxtaposition and is left-associative; f x means “f applied to x” and f x y
should be read as (f x) y. The typing rules are as follows:

Γ, x ∈ σ ` t ∈ τ
⊃I

Γ ` λx ∈ σ. t ∈ σ ⊃ τ

f ∈ σ ⊃ τ s ∈ σ
⊃E

f s ∈ τ
We will frequently abbreviate λx ∈ σ. t as λxσ. t or, if the type of x is clear from the context,

λx. t.
This defines all the terms available in the simply typed lambda calculus. However, we must

also define equalities between terms if our models are to satisfy the intuitive requirements de-
scribed above. An equality judgement is of the form t = t′, and means that the interpretation
of t and the interpretation of t′ must be equal in all models. Just as t ∈ τ implicitly requires
τ ∈ Ω, so does t = t′ require that t ∈ τ and t′ ∈ τ .

We require the following equalities to hold for the unit type,

t ∈ >
>red

t = ∗
for products,

t ∈ τ s ∈ σ
∧red

π1〈t, s〉 = t

t ∈ τ s ∈ σ
∧red

π2〈t, s〉 = s

a ∈ τ ∧ σ
∧exp

a = 〈π1a, π2a〉
and for functions

Γ, x ∈ σ ` t ∈ τ Γ ` s ∈ σ
⊃red

Γ ` (λx. t) s = t[s/x]

Γ ` f ∈ σ ⊃ τ
⊃exp

Γ ` f = λx. f x
.

The notation t[s/x] denotes t with all occurrences of x replaced by s. Care must be taken to
avoid changing the meaning of bound variables, and which variables exactly must be changed.
For example, we do not want the following equality to hold:

(λy. λy. y)λx. x = λy. λx. x.
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On the other hand, we also do not want the names of the variables to have any influence on
the meaning of the term; for example, we want to have λx. x = λy. y.

For a formal definition of terms and substitution that addresses these issues, see Sørensen
and Urzyczyn’s book [SU98], which provides an explicit construction of both. We side-step
the issue by requiring that all variables in a term be bound at most once, and assume that
they are renamed after substitution if this property is not satisfied. Similarly, if a deduction
rule mentions a variable, we assume that that variable does not occur free in any terms, unless
explicitly mentioned. For example, in ⊃exp we assume that x is not free in f .

Finally, we require that equality be a congruence relation on terms, and that if two terms
differ only in the names of bound variables (alpha-equivalent terms) that they be equal. This is
done by adding additional equality constraints where necessary. In further sections we assume
that these properties are preserved when adding new equality deductions and binding operations.

2.2 λ→Theories

For the language above to be useful it must be possible to require the existence of more types
and terms than just those that we have already named. However, it is inconvenient to modify the
definition of the language simply for the sake of adding a type. When constructing a model for
our new language, we would have to check a great many properties, most of which have nothing
to do with the changes we have made.

In order to make this more manageable we define what it means to be a λ→ theory, a structure
that can represent most variations that we may want to express. Rather than building a model
for the lambda calculus, we build a model for the lambda calculus together with an arbitrary
λ→ theory. This makes the model harder to construct initially, but allows us to then reuse it.

We define a λ→ theory to be a set of judgements of the form ` τ ∈ Ω, Γ ` t ∈ τ , and
Γ ` t = t′. As above, a judgement of the form Γ ` t ∈ τ or Γ ` t = t′ may only be present if the
judgements required to make it (` τ ∈ Ω and Γ ` t ∈ τ,Γ ` t′ ∈ τ respectively) are also present.
Furthermore, we require that our theories be coherent; that they are closed under weakening (of
Γ), transitivity of equality, substitution, abstraction and application. For a formal description
of the requirements of the requirements we refer the reader to chapter 7 of Van Oosten’s lecture
notes [vO02].
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Chapter 3

Cartesian Closed Categories

We now take a step away from the lambda calculus and look at the language we will be using to
describe models of it: that of category theory.

A category C is a collection of objects O together with for every two objects A,B a collection
HomC (A,B) of morphisms. We write f : A → B for f ∈ HomC (A,B). For all A,B,C ∈ O

and every f : A → B and g : B → C, the composition g ◦ f : A → C is defined. Moreover,
composition is associative and every object A has an identity morphism 1A with respect to it.

The motivating example of a category is the category Set of sets. Let O be the collection
of all sets and HomSet (A,B) the set of functions from A to B. Composition is simply function
composition, of which the identity function is the identity.

We will use categories as models of the lambda calculus as follows. Every type will be assigned
an object, and every term of type B with a free variable of type A will be assigned a morphism
A→ B. Composition of morphisms will correspond to substitution of terms; if t(x) is a term of
type C with a free variable of type B, and t′(x) is a term of type B with a free variable of type
A, then t(t′(x)) is a term of type C with a free variable of type A. The identity is simply the
identity term x, where x is the free variable.

At first glance, it is not clear that this also allows us to interpret closed terms and open
terms with multiple free variables, and even if we can, that there may be no connection between
the interpretation of a term t(x) with x a free variable and a term λx ∈ τ. t(x). The rest of
this chapter will introduce the concepts necessary to impose the conditions we must place on
a category for the model to be well-behaved. The next chapter will show how these conditions
lead to a correspondence between such categories and lambda calculi.

3.1 Examples

It is useful to first look at some examples of categories. In this chapter, a recurring theme
will be that we find some collection of objects and morphisms, notice that there is an obvious
composition relation to be defined and that it has an identity, and then put these together into
a category.

A number of examples come from algebraic structures involving a set together with some
operations on it. For example, vector spaces and linear transformations form a category, as
do groups and group homomorphisms, rings and ring homomorphisms, topological spaces and
continuous functions, and so forth.

Another important example is the category with propositions as objects and a unique mor-
phism P → Q ifQ is provable from P . For example, there would then be an morphism P → P∨Q,
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but no morphism P ∨Q→ P . Interestingly, there is a close relationship between such categories
and models of the lambda calculus. This is known as the Curry-Howard Isomorphism.

Furthermore, for every category C we have a dual category Cop which has the same objects
as C but where all morphisms are reversed.

3.2 Categorical Products

We will start by solving the problem of terms with n 6= 1 free variables. Suppose a term t(~x)
of type σ depends on free variables x1, . . . , xn with types τ1, . . . , τn. We can just as well regard
this as a term t(x) which depends on a free variable x of type τ1 × . . . × τn. However, for this
intepreration to be coherent we must specify how the interpretation of τ1 × . . .× τn must relate
to the interpretations of τ1, . . . , τn.

Given a collection of objects ~A = A1, . . . , An, we say that the (categorical) product of ~A is
an object B together with for each 1 ≤ i ≤ n a morphism πi : B → Ai, such that for any other
object C together with morphisms π′i : C → Ai there exists a unique morphism f : C → B such
that πi ◦ f = π′i for all 1 ≤ i ≤ n.

If n = 1, then B ∼= A1 by taking C = A1 and π′1 = 1A1 . The case for n = 2 can be illustrated
as follows:

C

A1 ×A2A1 A2π1 π2

π′1 π′B
!f

Note that products are defined up to isomorphism, and are associative and commutative up
to isomorphism.

An interesting special case is n = 0. This is called the terminal object of the category, and
is determined by the property that if B is terminal, then for every object A, there is a unique
morphism A→ B. We will usually denote the terminal object with 1. It is worth noting that 1
is the identity of the product.

In the category Set, every singleton set is a terminal object. Note that there is a bijective
correspondence between functions {∗} → A and the set-theoretic elements of A for every A. We
will employ this terminology for the general case as well: a morphism f : 1 → A is called a
(global) element of A. In the context of the categories we will work with, the elements will play
a meaningful role, but this is not always the case: for example, in the category of groups, every
object has exactly one element.

3.3 Functors

A functor is a structure-preserving mapping between categories. It sends an object A to an
object F (A), a morphism f : A → B to a morphism F (f) : F (A) → F (B), and preserves
composition and identities. Composition of functors is defined in the obvious way, and every
category has an identity functor that sends all objects and morphisms to themselves. Given a
collection of categories, we can thus construct a category with these categories as objects and
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functors between them as morphisms. We will use Cat to denote the category of all categories
C where for every object A,B of C, HomC (A,B) is a set (as opposed to a proper class).1

An example of a functor from Set to itself is (−)×B which sends every set A to A×B and
every function f : A→ A′ to a function f × idB : A×B → A′ ×B which sends the pair (a, b) to
(f(a), b). This functor will have an important relation to the functor (−)B , which sends every
object A to AB , the set of functions from B to A, and which sends a function f : A→ A′ to the
function fB : AB → A′B which acts on functions B → A by composition. That is, if we regard
g : B → A as an element of AB , then fB(g) = f ◦ g.

An example of a functor that has different source and target categories is the forgetful functor
from the category of groups to Set. This sends a group (A, ·) to its underlying set A and a
morphism A→ B to the set-theoretic function between the underlying sets.

If a functor F : C→ D and G : D→ C have the property that G ◦ F = 1C and F ◦G = 1D
then we say F and G are each other’s inverses and are thus an isomorphism between C and D.
The categories C and D are then said to be isomorphic.

A functor F : Cop → D is sometimes also called a contravariant functor from C to D.

3.4 Natural Transformations

Let F,G : C→ D be functors. We can regard C and D as graphs, with objects being nodes and
morphisms being paths. Given an object A in C, both F (A) and G(A) are objects in D, which
we can regard as nodes. The question then arises whether we can connect them, and whether
this connection can be done uniformly over all objects.

A natural transformation α : F ⇒ G assigns to every object A of C a morphism αA : F (A)→
G(A). This can be seen as a connection from F (A) to G(A) in D. The naturality condition is
that given a morphism f : A→ B in C, we have G(f) ◦ αA = αB ◦ F (f).

Visually, this means that for every two objects A,B of C and every morphism f : A → B,
the following diagram commutes:

F (A)

F (B)

G(A)

G(B)

F (f)

αA

αB

G(f)

Every functor F has an associated identity natural transformation, with the identity for
each componenent. Given a natural transformation α : F ⇒ G and a natural transformation
β : G⇒ H we can obtain a natural transformation β◦α : F ⇒ H by composing each component.
Given categories C,D this gives rise to a category with functors C→ D as objects and natural
transformations as morphisms.

An important related concept is that of a natural isomorphism. A natural isomorphism
between F and G is a natural transformation that has an inverse. This is usually phrased as
“F (A) and G(A) are isomorphic naturally in A”.

Natural isomorphisms allow us to express a notion of equivalence of categories that is weaker
than isomorphism but still preserves many useful properties. We say that C and D are equivalent

1Most texts also require that the collection of objects of C form a set. However, for our purposes it is convenient
if Set is an object of Cat which this condition would make impossible.
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if there exist functors F : C→ D and G : D→ C such that G ◦F is naturally isomorphic to 1C
and F ◦G is naturally isomorphic to 1D.

3.5 Adjoints

Let C,D be categories and F : C → D and G : D → C be functors. We say that F is left
adjoint to G, or equivalently, G is right adjoint to F , if there is a natural isomorphism

HomD (F (A), B) ∼= HomC (A,G(B)) .

This is denoted F a G.
Adjoints play a key role in category theory. In this text we will use them as a generalisation

of the relation
HomSet (A×B,C) ∼= HomSet

(
A,CB

)
between (−) × B and (−)B in Set which characterises the set of functions CB . In the follow-
ing section, we will generalise this idea to define so-called exponential objects in more general
categories, where CB represents the morphisms from B to C.

This is by far not the only example of an adjunction. The forgetful functor mentioned above
is right adjoint to the free functor that sends every set A to the free group generated by A and
every function f : A→ B to the homomorphism induced by how f maps the generators.

3.6 Exponential Objects

As remarked above, the functors (−) × B and (−)B are related by an adjunction. This means
that the sets HomSet (A×B,C) and HomSet

(
A,CB

)
are isomorphic. In particular, if we choose

A = 1, we have

HomSet (B,C) ∼= HomSet (1×B,C) ∼= HomSet

(
1, CB

)
.

Since, in Set we can identify the set of morphisms from 1 to CB with CB , this shows that
CB is isomorphic to set of morphisms B → C. We now specify this for arbitrary categories.

Let C be a category with all finite products and with a functor (−)B that is a right adjoint
to (−) × B. For every object C of C, we call CB an exponential object. We say that C has all
exponential objects if a functor (−)B that is right-adjoint to (−)×B exists for every B. Notice
that this means that

HomC (B,C) ∼= HomC (1×B,C) ∼= HomC

(
1, CB

)
.

In other words, the set of elements of CB is isomorphic to the set of morphisms B → C.
An alternative definition of the exponential object can be obtained by generalising the concept

of evaluation. In Set, for all sets X,Y there is a morphism ev : X × Y X → Y . We say that
Y X is the exponential object in some category C if there is a morphism ev : X × Y X → Y such
that for every object Z and every morphism f : X × Z → Y there exists a unique morphism
g : Z → Y X such that ev ◦ (1X × g) = f . In a diagram:

We will use the ev morphism to interpret application of terms in our model.
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X × Z

X × Y X Y

1X×!g
f

ev

3.7 Cartesian Closedness

We call a category Cartesian closed if it has all finite products and all exponential objects.
Note that this is equivalent to a category having a terminal object, binary products, and all
exponential objects.

Cartesian closed categories are exactly the categories that make for good models of the
lambda calculus. Products are used to interpret product types and exponential objects are used
to interpret function types. Furthermore, the terminal object allows us to represent closed terms
as elements of some type A via a morphism 1→ A.

10



Chapter 4

CCCs as models of λ→

In this chapter we will define what it means to be a model of the simply-typed lambda calculus,
and demonstrate a correspondence between λ→theories and Cartesian closed categories. The
material here is based strongly on chapters 10 and 11 of Lambek and Scott’s book [LS88].

Given a λ→ theory T , we can construct a Cartesian closed category Cl(T ) in which every
term can be interpreted, and which is the most general possible model, so two terms have the
same interpretation if and only if they are identical up to equalities in the theory.

Given a Cartesian closed category C, we can perform the opposite transformation by taking
a λ→ theory L(C) that has a type for every object of C and a term for every morphism A→ B,
together with equalities for every composition. Moreover, every term that can be formed from
L(C) is equal to a term that is contained in L(C); that is, to a morphism of C.

Composing these transformations in either order does not necessarily give the identity, as
both the resulting category and the resulting theory can be larger than the category or theory
we started with. However, it is still essentially correct to regard them as each other’s inverse. If
we start with a category C, construct a theory T , and then construct a category C′ from that
theory, the categories C and C′ will be equivalent. On the other hand, if we start with a theory
T , construct a category C, and then construct a theory T ′ from it, any term we can form from
T ′ will be equal to a term we can form from T . In this sense, neither transformation allows to
express anything new.

Once we see that a theory T and its corresponding category Cl(T ) are essentially the same,
we can define a model of T entirely in terms of Cl(T ). A model of T is a category C together
with a functor Cl(T ) → C that preserves finite products and exponents. The image of such a
functor is again a Cartesian closed category.

4.1 A Naive Model

We will start by showing how a model of the lambda calculus can be defined naively, by directly
mapping types to objects and terms to morphisms of some given Cartesian closed category C.

Suppose we have a λ→ theory T with type judgements ` T1,` T2, . . ., term judgements
Γ1 ` t1 ∈ τ1,Γ2 ` t2 ∈ τ2, . . . and equality judgements ∆1 ` s1 = s′1,∆2 ` s2 = s′2, . . ..

We now define a function J.K that maps each type to an object of C. Suppose we already
have a definition JTiK for every type judgement ` Ti in our theory T . Then we can extend J.K to
all types as follows:

• J>K is the terminal object of C.

11



• JA ∧BK = JAK× JBK.

• JA ⊃ BK = JBKJAK.

Suppose now that Γ = x1 ∈ σ1, x2 ∈ σ2, . . .. We define JΓK = Jσ1K× Jσ2K× . . .. As a context
is always finite, JΓK is a well-defined object.

We now extend J.K to map every term judgement Γ ` t ∈ τ to a morphism JtK : JΓK → JτK.
Suppose that we have already defined J.K on the term judgements in our theory. We then extend
it as follows:

• JΓ ` xi ∈ τK is the projection morphism from JΓK to its i-th component.

• JΓ ` st ∈ τK is ev(JsK, JtK), where ev is the evaluation morphism introduced in section 3.6.
This is well-typed, as s is necessarily of the type σ ⊃ τ for some σ, and t is then of type σ.

• JΓ ` λxσ. t ∈ τK is ab(JΓ, x ∈ σ ` t ∈ τK), where ab is the isomorphism HomC (JΓK× σ, τ)→
HomC (JΓK, τσ) that exists because (−)σ is right-adjoint to (−)× σ.

This gives us an interpretation of the lambda calculus with theory T in some Cartesian
closed category C. This interpretation gives a model if JΓ ` siK = JΓ ` s′iK for every judgement
Γ ` si = s′i in T .

4.2 Classifying Categories

We will now construct, given a λ→ theory, the most general category that can be treated as its
model. Any other model can be constructed by mapping this category into some other Cartesian
closed category.

For the sake of simplicity, we will first define a category that clearly satisfies the requirements,
but is unnecessary large. We will then show that certain objects are isomorphic and we can thus
restrict ourselves to a simpler category.

Let T be a λ→ theory and let X be the set of types we can form from types in T together
with the unit type, product types, and arrow types. Let Cl−(T ) be the category with tuples of
elements of X as objects and for two objects ~τ = (τ1, . . . , τn), ~σ = (σ1, . . . , σm) let the morphisms

~τ → ~σ be m-tuples ~f = (f1, . . . , fm) with fi an equivalence class of terms of type σi with free
variables xj for each τj . Two terms are in the same equivalence class if they are equal by the
equalities of the simply-typed lambda calculus and the theory T .

By identifying objects of the form (τ) with the corresponding type τ we see that we can
interpret any type as an object and any term t of type σ with free variables of types τ1, . . . , τn
as a corresponding morphism (t) : (τ1, . . . , τn) → (σ). It is also easy to see that this category
has finite products simply by concatenating the tuples in question, with the empty tuple being
the terminal object.

However, while Cl−(T ) satisfies our requirements, it has far more objects than necessary.
Notice that the n-tuple (τ1, . . . , τn) is naturally isomorphic to the product (τ1) × . . . × (τn),
with the tuple of projection functions as the morphism one way, and the pairing function as the
morphism the other way. This means that rather than interpreting a term of type σ with open
variables of type τ1, . . . , τn as a morphism (τ1, . . . , τn) → σ, we can regard it as a morphism
τ1 × . . . × τn → σ. The only objects that we still use are those that have been identified with
types. We can thus use the following, simpler, category.

Definition 4.1. The classifying category Cl(T ) of a λ→ theory T has as its objects the types
of T together with the unit type, product types, and function types. Given objects σ, τ , the
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morphisms σ → τ are equivalence classes of terms of type τ with a free variable of type σ, where
two terms are equivalent if they are equal by the equations of the simply-typed lambda calculus
together with the theory T .

Note that Cl(T ) is a subcategory of Cl−(T ). We can thus interpret any term first in Cl−(T ),
and then precompose it with the corresponding isomorphism to get a morphism in Cl(T ).

4.3 Internal Languages

To show that the construction of the classifying category does not lose us any properties we
define an inverse operations that constructs a theory given a Cartesian closed category. The
λ-calculus given by this theory is called the internal language of the Cartesian closed category.
Conceptually, the language of a theory T is equivalent to the internal language of Cl(T ), and the
classifying category of the internal language of some Cartesian closed category C is equivalent
to C itself.

Both of these claims are discussed and proved by Lamkek and Scott [LS88]. We will simply
state the construction of the theory of the internal language.

Given a Cartesian closed category C the theory of its internal language is denoted L(C). Its
types are the objects of C. For every element f of A (that is, for every morphism f : 1 → A),
there is a constant f of type A in the theory. As C is Cartesian closed, this means that given
a morphism f : A → B there is a corresponding morphism f ′ : 1 → BA. Letting x be a free
variable of type A, we get a term f ′x of type B which we can express in L(C). This means that
we can find, for every morphism of C, a corresponding morphism of Cl(L(C)) in an injective
manner.

The problem is that this mapping does not respect composition and is thus not a functor.
For this purpose we need to include equalities in our theory. Let f : A → B and g : B → C be
morphisms in C. We require that the theory also contain the equality λx ∈ A. g′(f ′x) = λx ∈
A. (g ◦ f)′x, where we indicate with f ′ the element of BA corresponding to f , and idem for g
and g ◦ f .

With this extension, the inclusion of C into Cl(L(C)) is an injective functor, and furthermore
this injection is an equivalence of categories.

4.4 Models of λ→

We have now established that the classifying category of a theory is equivalent to the theory
itself. Given a theory T , we can definitely see Cl(T ) as a model of it. After all, just as we
wanted, we have an object for every type and a morphism for every term. However, this isn’t
very interesting, as every type and term are simply interpreted as themselves.

We define a model of a λ→ theory T by mapping Cl(T ) into a different Cartesian closed
category using some functor F . This allows us to interpret a type or term first by looking
at the corresponding object or morphism in Cl(T ), and then following the functor to find the
interpretation in the category we are making the model in. Coherence demands a number of
further requirements:

Definition 4.2. A model F of a λ→ theory T is a Cartesian closed category C together with a
functor F : Cl(T )→ C which preserves the terminal object, products, and exponents.

Let us finish with an example of a model. Let T be the theory with one type N and the
constants 0 ∈ N and s ∈ N ⊃ N as well as a recursor r ∈ ((N ⊃ N) × N × N) ⊃ N with the
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equalities r(f, 0, x) = x and r(f, sn, x) = f(r(f, n, x)) (where the parametrisation over f , n, and
x is implied). In this case, Cl(T ) will have as objects 1, N , N × N , N ⊃ N , (N ⊃ N) ⊃ N ,
etc. A possible set-theoretic model of this theory would be a functor that sends N to N, 1 to
the singleton set, the term 0 (seen as a morphism 1 → N) to the constant 0 function, s to the
successor function, and r to the recursor function. This would be a fairly natural choice of a
model, but it is by far not the only one. For example, N can be replaced in this construction by
any other model of Peano arithmetic.
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Chapter 5

The Second-Order Lambda
Calculus

In chapter 2 we introduced the simply-typed lambda calculus. We will now expand this def-
inition with the second-order parts and expand λ→ theories to PL theories by allowing types
to be parametrised by type variables and introducing types and terms that make use of these
parametrised types.

The approach taken here is syntactically based on Seely’s description of the polymorphic
lambda calculus [See87]. However, as we are limiting ourselves to the second order, we omit
the existential type Σα. τ from our language and show in section 5.3 how it can be expressed in
terms of the universal type.

5.1 Intuition

Suppose that τ is a type expression with one free variable α. It will be convenient to say that t
is a term of type τ , meaning simply that t is well-formed under the assumption that α is a type.
In general, t may have free (term) variables with types that contain α. This may appear like
abuse of terminology, but it will be justified when we rephrase it in terms of contexts: by t ∈ τ ,
we simply mean that α ∈ Ω ` t ∈ τ is derivable.

Given a type σ, it makes sense to talk about terms of type τ [σ/α]. This immediately suggests
a kind of “terms t of parametrised types”: namely, we require that t[σ/α] ∈ τ [σ/α] for all σ ∈ Ω.
We introduce a type Πα. τ to represent such terms. In order to distinguish between the term t
with a free type variable and a corresponding term of type Πα. τ , we denote the latter by Λα. t.

To give an example, the term λf ∈ α ⊃ α. λx ∈ α. f(fx) has type (α ⊃ α) ⊃ (α ⊃ α) for
all α ∈ Ω. We can thus parametrise the type by a type variable and get the term Λα. λf ∈ α ⊃
α. λx ∈ α. f(fx) of type Πα. (α ⊃ α) ⊃ (α ⊃ α). When we want to apply the term, we specify
the type we want to apply it with just as we would specify a value we give as an argument.

We start by introducing the universal type. Suppose that τ is a type expression with a free
type variable α. We can then always form the type Πα. τ (though of course, this type need not
be inhabited). Just like we consider terms that are alpha-equivalent to be equal, so too do we
consider types equal if they are alpha-equivalent.

Given a term t of type τ with one free type variable α, we can form the term Λα. t if for
every σ ∈ Ω, t[σ/α] is a term of type α. Note that this binds the type variable α, so that it is no
longer free in Λα. t. The inverse operation specialises a term of universal type to a specific type.
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If Λα. t ∈ Πα. τ , then (Λα. t){σ}τ [σ/α] and furthermore, (Λα. t){σ} = t[σ/α].
To formalise this approach, we reformulate it in terms of judgements. This also immediately

extends the construction to terms and types with multiple free type variables.

5.2 Judgement Trees

We will now rephrase the above in terms of contexts and judgement trees. We start by allowing
type variables:

α ∈ Ω ` α ∈ Ω
.

We now introduce the type formation and alpha-equivalence rules. Note that in α − equiv
we assume that α is not free in σ, β is not free in τ , and γ is free in neither τ nor σ.

Γ, α ∈ Ω ` τ ∈ Ω

Γ ` Πα. τ ∈ Ω

Γ ` Πα. τ ∈ Ω Γ ` Πβ. σ ∈ Ω Γ ` τ [γ/α] = σ[γ/β]
α−equiv

Γ ` Πα. τ = Πβ. σ

The term formation rules are somewhat more complicated, as we must ensure that the type
α does not occur in any free term variables of t. We do this by making α ∈ Ω the rightmost
judgement of the context of I. Hence, no judgement in Γ can depend on α ∈ Ω, and thus α does
not occur in the type of any free variable of t.

The rules are as follows:

Γ, α ∈ Ω ` t ∈ τ
ΠI

Γ ` Λα. t ∈ Πα. τ

Γ ` t ∈ Πα. τ Γ ` σ ∈ Ω
ΠE

Γ ` t{σ} ∈ τ [σ/α]
.

The equality rules mentioned above are, of course, also present:

Γ, α ∈ Ω ` t ∈ τ σ ∈ Ω
Πred

Γ ` (Λα. t){σ} = t[σ/α]

Γ ` t ∈ Πα. τ
Πexp

Γ ` t = Λβ. τ{β}
.

In Πexp we assume that β is not a free type variable of τ
Note that this formulation allows terms such as Λα.Λβ. λxα. λyβ . x, which has type Πα.Πβ. α ⊃

(β ⊃ α). Here, the subterm λxα. λyβ . x depends on two type variables.
The notion of a λ→ theory extends immediately to a PL theory by allowing terms and types

to use universal types, as well as allowing equalities between these terms and types.

5.3 Recovering Σ types

A possible further addition to the system would be an existential type Σα. σ, a term s of which
would represent a term of type σ[τ/α] for some (rather than all) τ ∈ Ω. We have chosen not to
make this part of our language, as it can be expressed in terms of the universal type. Namely,
let

Σα. σ = Πβ. (Πα. σ ⊃ β) ⊃ β.

We can define Seely’s IΣα. σ,τ by

IΣα. σ,τ = λxτ .Λβ. λfΠσ. α⊃β . f{τ}x
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and V is obtained by treating a as a term of type Πα. σ ⊃ ρ, where α is not free in ρ, and
then defining

(V α. a)(IΣα. σ,τ t) = (IΣα. σ,τ t){ρ}a.

Once the definitions are expanded, we see that this is equal to a{τ}t.
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Chapter 6

PL Categories

In order to define what a model of a λ→ theory is, we defined a classifying category that corre-
sponds to the theory and then defined a model as a functor from the classifying category to some
category C which preserved the Cartesian closed structure. Once we had done this, it became
clear that we can regard any Cartesian closed category for which we can interpret all terms as a
model.

We will do the same to define a model of a PL theory, by finding a “second-order classifying
category” and stating what properties the ‘functor’ will preserve. Once we have done this, we will
characterise the image of this functor, which will give us the concept of a PL-Category. We will
then speak of a certain PL-Category being a model of a PL theory, leaving the corresponding
functor implicit.

The definition of a PL category given here is a modification of Seely’s work [See87] to adapt
it to the second-order lambda calculus. The primary change is that (as suggested in section 2.6
of Seely’s paper) we have removed the requirement that S be exponentiable. Additionally, we
only require that the weakening functor have a right adjoint, as opposed to both a right and
a left adjoint. This is a consequence of Σ being expressible in terms of Π in the second order
lambda calculus, as we saw in the previous chapter.

6.1 Polymorphic Classifying Categories

Unlike the simply-typed lambda calculus, where the only dependency was of terms on terms, we
have three kinds of dependencies here: terms can still depend on terms, but additionally terms
and types can each depend on types.

First of all, we solve the problem of types depending on types by introducing something akin
to a classifying category S for types. For every natural number n, S has an object Ωn representing
the set of n-tuples of types. A morphism f : Ωn → Ωm is an m-tuple of type expressions in
n free type variables. Note that for any n, HomS (Ωn,Ω) then corresponds to the set of type
expressions with n free variables. We abbreviate Ω1 = Ω and Ω0 = 1. Note that S has all finite
products, with 1 being the terminal object and Ωn × Ωm = Ωn+m.

We will still use a Cartesian closed category to model how terms can depend on terms; in fact,
given that the simply-typed lambda calculus is contained in the second-order lambda calculus,
we should expect every model of the latter to contain a model of the former. We will do this by
making use of the fact that we can assume that the free variables in a term depend on the same
set of free type variables as the term itself does. We can thus have separate categories for terms
that depend on different sets of free type variables.
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This idea gives rise to the following structure. For every n ∈ N, let Gn be the category
with as objects types with n free type variables and as morphisms X → Y terms of type Y
with a free variable of type X. Note that by the definition of S, we can regard an object of
Gn as a morphism Ωn → Ω in S; in fact, these two collections are isomorphic. Given an object
A in Gn and a morphism f : Ωm → Ωn, we can thus compose them to get an object in Gm.
Defining Gf by this, we see that G is a contravariant functor that sends every object of S to the
classifying category of a simply-typed lambda calculus and every morphism of S to a Cartesian
structure-preserving functor between these categories.

Finally, we need to be able to bind free type variables when constructing existential types.
Given an object A in Gn with n > 0, there should be a corresponding object Πτn. A in Gn−1,
where τn is the type variable we are binding. Similarly, given a morphism f in Gn with n > 0,
there should be a corresponding morphism Λτn. f in Gn−1. This boils down to a functor Π from
Gn to Gn−1 for every n ∈ N.

Let κn be the functor Gn → Gn+1 which sends objects and morphisms to themselves, but
with an extra free type variable added. The following condition holds naturally in A an object
of Gn+1 and B an object of Gn:

HomGn+1 (κn(B), A) ∼= HomGn (B,Π(A)) .

Suppose, namely, that f : κn(B) → A. That is, f is a term of type A with n + 1 free type
variables and a free term variable of type B. We can then bind one type variable to get a term
Λτn+1. f of type Πτn+1. A with n free type variables and a free term variable of type B. This
gives a morphism B → Π(A) in Gn.

On the other hand, suppose g : B → Π(A) in Gn+1. Then g is a term of type Πα.A with
n free type variables and a free term variable of type B. Let τn+1 be a free type variable that
doesn’t occur in g. Then g{τn+1} is a term of type A with n + 1 free type variables; that is, a
morphism κn(B)→ A in Gn+1. It is easy to see that this is the inverse of the operation above.
The verification of the naturality condition is long but straightforward.

This shows that Π is the right-adjoint of κn.

6.2 Models of PLC

Just like a model of a simply-typed lambda calculus is a Cartesian structure-preserving functor
from its classifying category to a Cartesian closed category, a model of a second-order lambda
calculus is a mapping from its classifying category to a category with the appropriate structure.
We will complete this chapter by describing what this structure is. This will involve a functor
T to interpret S and a family of functors Fn for n ∈ N to interpret Gn. Recall that Gn is
the classifying category of a simply-typed lambda calculus with n fresh types. Each Fn is thus
a model of a simply-typed lambda calculus. The role of T is to ensure that these models are
coherent.

First of all, we require a category that we can map S into. Let us call this S′. This category
must have all finite products, and the model is given by a functor T : S→ S′ which must preserve
these products. This is entirely analogous to the simply-typed case, except that we do not have
exponential objects.

Secondly, we require a contravariant functor G′ that sends every object of S′ to a Cartesian
closed category. We will use G′n to denote G′(T (Ωn)) and G′f to denote G′(T (f)) in analogy with
Gn and Gf . Together with this, we require a functor F that associates to every object Ωn in S
a functor from Gn to G′n and to every morphism f : Ωn → Ωm a natural transformation from
Gf to G′f . Note that T and F should commute with G and G′. We get the following diagram:
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S

G(S)

S′

Cat

G

T

F

G′

The requirements on F may appear involved, but actually come down to little more than the
simply-typed case. For every n ∈ N, Gn is the classifying category of a simply-typed lambda
calculus with the theory expanded with n fresh types (without terms or equalities). F (Ωn) is then
simply a model of that simply-typed lambda calculus. All other conditions are only necessary to
ensure that the interpretation is coherent.

Finally, we require that the functors Π′ be defined on G′ so that Π and Π′ commute with G
and G′. This is easily achieved by requiring that Π′ be right-adjoint to the weakening functor,
which is induced by the projection morphism in S from A× Ω to A.

We will from now on leave the functors implicit, and simply speak of S when we mean S′ and
G when we mean G′. We will also use Ω to refer to the image of Ω under T . All together, this
gives the following definition:

Definition 6.1. A PL-Category is a pair (S, G) where

• S is a category with finite products and a distinguished object Ω

• G is a contravariant functor that assigns to every object A in S a Cartesian closed category
G(A) where Ob(G(A)) ∼= HomS (A,Ω) and to every morphism f : A → B in S a functor
G(B)→ G(A) which acts by composition on objects.

• For every object A in S, the weakening functor κA : G(A)→ G(A×Ω) has a right adjoint
Π natural in A.
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Chapter 7

Qualitative Domains

We have seen that we can use Set to model a simply-typed lambda calculus. However, as shown
by Reynolds, this no longer works in the second order case [Rey84]. Instead, we construct the
model in a different category: that of qualitative domains.

The idea behind qualitative domains is that rather than assigning to every type a set of
values and to every term a value from that set, we assign to each type a set of ‘properties’ that
its terms might have and then to each term a set of ‘properties’ that it does have. Functions
between qualitative domains specify what properties the result has based on some finite set of
properties of the argument.

The definition we provide here is based on the treatment of complete partial orders by Girard,
Taylor, and Lafont [GTL89]; in particular, their concept of a web is used. This system is
equivalent to the system presented in Girard’s earlier paper [Gir86].

7.1 Definition

The above leads to the following definition:

Definition 7.1. A qualitative domain X is a set |X| of tokens together with a binary relation
coherence that is reflexive and symmetric.

The binary relation is denoted x ^ y.1 A point a of X is a set a ⊆ |X| where all elements
are pairwise coherent; that is, which satisfies ∀x, y ∈ a, x ^ y. A point a is called total if it is
maximal with respect to inclusion, so if for every point b with a ⊆ b, a = b.

A qualitative domain that will come up often is Bool, which has tokens t and f which are
not coherent. The points of Bool are ∅, {t}, and {f}, of which only ∅ is not total.

If we restrict our attention to the simply typed lambda calculus, we can interpret every type
as a qualitative domain and every term as a point in this domain. A Bool type with two values
would be interpreted as the qualitative domain Bool. A term t of type Bool would be interpreted
as one of the points. Under this interpretation, we can see each token as a predicate on the value.
If the interpretation of t is {t}, then we have derived that ‘t is true’ holds. If the interpretation
is ∅, we have not yet derived anything. For example, if t is a non-terminating computation then
both ‘t is true’ and ‘t is false’ fail to hold.

An important note is that while we may derive that some predicate represented by the token
x holds on some term t (that is, t is interpreted as a and x ∈ a), we may not directly derive that

1We may use x ^X y if it is unclear in what qualitative domain x and y are coherent.
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a predicate x does not hold on some term t. The closest we can come is to find a token y that is
not coherent with x and derive y ∈ a. The statement x 6∈ a states only that x has not yet been
derived, not that it does not hold. We will see the significance of this when we introduce stable
functions between qualitative domains.

7.1.1 Set of Points

It is convenient to see a qualitative domain X as the set of its points. We will thus use notation
such as x ∈ X to indicate that x is a point of X. The following theorem gives a characterisation
of what sets correspond to qualitative domains.

Theorem 7.1. A qualitative domain X satisfies the following properties:

1. if a ∈ X and b ⊂ a then b ∈ X,

2. if A is a set of points of X and for all a1, a2 ∈ A, a1 ∪ a2 ∈ X then
⋃
A ∈ X, and

Furthermore, any set of sets X that satisfies the above can be seen as a qualitative domain
with |X| =

⋃
X and for all x, y ∈ |X|, x ^ y iff {x, y} ∈ X.

Proof. Let X be a qualitative domain. Recall that a ∈ X simply means that every two elements
of a are coherent in X. Hence, if a is coherent and b ⊂ a, then for any x, y ∈ b we have x, y ∈ a
and thus x ^ y.

Let A be a set of points of X such that for all a1, a2 ∈ A, a1 ∪ a2 ∈ X. Let x, y ∈
⋃
A and

choose a1, a2 ∈ A such that x ∈ a1 and y ∈ a2. Then a1 ∪ a2 ∈ X, and thus x ^ y. Hence every
two elements of

⋃
A are coherent and thus

⋃
A is itself a point of X.

Now suppose X is a set of sets satisfying the above. If x ∈
⋃
X then there exists some a ∈ X

so that x ∈ a, and then by property (1), {x} ∈ X, hence x ^ x, which gives us reflexivity.
Symmetry is trivial, as {x, y} = {y, x}.

We prove that a ∈ X iff a is coherent in the sense defined in the theorem. Let a ∈ X and
let x, y ∈ a. By property (1), {x, y} ∈ X, thus x ^ y, hence a is coherent. Now suppose a is a
coherent set. Let A = {{x}|x ∈ a}. If a1, a2 ∈ A then a1 ∪ a2 = {x, y} for some x, y ∈ a. As a is
coherent, x ^ y, and thus {x, y} ∈ X. By property (2) it follows that

⋃
A = a ∈ X.

Property (2) is convenient when we work with sets, but it does not immediately generalise to
other categories. We will instead work with directed sets, which generalise as direct limits.

Definition 7.2. A directed set is a non-empty partially ordered set A such that for all a1, a2 ∈ A,
there exists a b ∈ A with a1 ≤ b and a2 ≤ b.

We will be particularly interested in the case that A is a set of points ordered by inclusion.
It is a simple consequence that X contains the union of any directed set of its points.

Theorem 7.2. Given a qualitative domain X and directed set of points A ordered by inclusion,⋃
A ∈ X.

Proof. If a1, a2 ∈ A then there is a b ∈ A such that a1 ∪ a2 ⊂ b, and as b ∈ X, it follows that
a1 ∪ a2. Therefore, A satisfies the requirements for property (2) and

⋃
A ∈ X.
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7.1.2 Examples

Some examples of qualitative domains are:

• Given a set A we can construct a qualitative domain X by taking |X| = A and a ^ b iff
a = b. We call this the discrete qualitative domain. Given a point of X, it either uniquely
determines an element of A, or leaves the element fully unspecified.

• Let |N| = N ∪ {n+|n ∈ N}, and let coherence be the least reflexive and transitive relation
with n+ ^ m+ for all n,m ∈ N and n+ ^ m iff n ≤ m. This domain is suitable for
interpreting the natural numbers in a computational context, as we shall see in the next
section.

• Given qualitative domains X and Y, we can construct the domain X×Y by taking
|X×Y| = |X| t |Y| and x ^ y iff x and y are both in X or both in Y and coherent
within that domain, or if they are in different domains. Once we formalise qualitative
domains as a category, we will see that this is indeed a product.

• Taking |1| = ∅ trivially gives a qualitative domain. This domain has no tokens, but still
has ∅ as a point. This will eventually be the terminal object of our category.

7.2 Stable Functions

Informally, a stable function can be seen as a mapping that is fully determined by rules of
the form “If the input contains tokens x0, x1, . . . , xn, then include the token y in the output.”
Additionally, it must respect the structure of the qualitative domains; given a point in X, it
should return a point in Y.

We formalise this idea by introducing a suitable qualitative domain X⇒ Y, and then defining
a mapping Θ from points in this domain to functions X → Y. We will say that a function
f : X→ Y is stable if there exists a point F in X⇒ Y such that Θ(F ) = f .

Define |X⇒ Y| = {(a, y)|a ∈ X, y ∈ |Y|, |a| ∈ N}. We define coherence as the least reflexive
and symmetric relation such that

1. If a, a′ are points of X and y, y′ ∈ |Y| with y 6= y′, then (a, y) ^ (a′, y′) if y ^ y′ or
a ∪ a′ 6∈ X.

2. If a, a′ are points of X and y ∈ |Y|, then (a, y) ^ (a′, y) if a = a′ or if a∪ a′ is not a point.
We will refer to this property as minimality.

Note that the minimality condition implies that (a, y) and (a′, y) are not coherent if a is a
strict subset of a′.

Now let F ∈ X⇒ Y. We define

Θ(F )(a) = {y|∃(a′, y) ∈ F, a′ ⊂ a}

For this definition to be valid, we need to prove that if a ∈ X then Θ(F )(a) ∈ Y. This
is a consequence of condition (1) above: if y1, y2 ∈ Θ(F )(a) then there exist a1, a2 such that
(a1, y1), (a2, y2) ∈ F with a1 ⊂ a and a2 ⊂ a. Thus a1 ∪ a2 ⊂ a and hence a1 ∪ a2 is a point,
from which follows that y1 ^ y2.
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7.2.1 Traces

By definition, every stable function f : X→ Y is represented by a point F ∈ X⇒ Y called its
trace. We will now prove that this representation is unique and set Tr(f) = F , and then give a
characterisation of the elements of Tr(f). This shows that the qualitative domain X⇒ Y fully
represents the stable functions X→ Y. We will later show that this is indeed the case, and that
it is an exponential object in our category.

Theorem 7.3. The function Θ defined above is injective.

Proof. Let F,G ∈ X ⇒ Y such that for all a ∈ X, Θ(F )(a) = Θ(G)(a). Suppose (a, y) ∈ F .
We prove (a, y) ∈ G, which gives us F ⊂ G and G ⊂ F follows by symmetry. As (a, y) ∈ F ,
y ∈ Θ(F )(a), and thus y ∈ Θ(G)(a). Thus there exists an a′ ⊂ a such that (a′, y) ∈ G. Then
y ∈ Θ(G)(a′) and thus y ∈ Θ(F )(a′). But now there exists an a′′ ⊂ a′ such that (a′′, y) ∈ F , so
(a′′, y) ^ (a, y). As a′′ ⊂ a, it follows by minimality that a′′ = a, hence a′ = a and (a, y) ∈ G.

As a corollary, since we defined Tr as a section of Θ and the section of an injective function
is its inverse, Θ and Tr give an isomorphism between stable functions and their traces.

Theorem 7.4. (a, y) ∈ Tr(f) iff y ∈ f(a) and for all a′ ( a, y 6∈ f(a).

Proof. Suppose (a, y) ∈ Tr(f). Then certainly y ∈ Θ(Tr(f))(a) = f(a), as Tr is a section
of Θ. Furthermore, if a′ ( a and y ∈ Θ(Tr(f))(a′) then there exists an a′′ ⊂ a′ such that
(a′′, y) ∈ Tr(f), which is not coherent with (a, y) by minimality. On the other hand, suppose
y ∈ f(a) and for all a′ ( a, y 6∈ f(a). Then there exists an a′ ⊂ a such that (a′, y) ∈ Tr(f).
However, for all a′ ( a, (a′, y) 6∈ Tr(f). Hence a′ = a, and thus (a, y) ∈ Tr(f).

7.2.2 Functions on Points

Similarly to how we often wish to regard a qualitative domain as the set of its points, it is often
convenient to regard a stable function as a function between points. The following theorem gives
us such an equivalence.

Theorem 7.5. Given qualitative domains X, Y and a function f : X → Y, f is stable iff the
following conditions hold:

1. For all a, a′ ∈ X, if a ⊂ a′ then f(a) ⊂ f(a′).

2. For every directed collection A ⊂ X, f(
⋃
A) =

⋃
a∈A f(a).

3. For all a, a′ ∈ X, if a ∪ a′ ∈ X, then f(a ∩ a′) = f(a) ∩ f(a′).

Proof. Suppose f is stable and let F be the associated element of X⇒ Y.
Let a, a′ ∈ X with a ⊂ a′, and let y ∈ f(a). By definition, y ∈ Θ(F )(a) and so there exists a

a′′ ⊂ a such that (a′′, b) ∈ F . But then y ∈ Θ(F )(a′), as a′′ ⊂ a′.
Let A ⊂ X be a directed collection. We prove that f(

⋃
A) =

⋃
a∈A f(a) by proving that each

includes the other. Let y ∈ f(
⋃
A). Then there exists a finite a′ ⊂

⋃
A such that (a′, y) ∈ F .

Note that for each x ∈ a′ there exists a b ∈ A such that x ∈ b. Hence, by directedness of A, there
is a b ∈ A such that a′ ⊂ b. Thus y ∈ f(b), and so y ∈

⋃
a∈A f(a). In the other direction, let

y ∈
⋃
a∈A f(a). Choose a ∈ A such that y ∈ f(a). As a ⊂

⋃
A, y ∈ f(

⋃
A) follows immediately.

Let a, a′ ∈ X such that a ∪ a′ ∈ X and let y ∈ f(a ∩ a′). Choose a′′ ⊂ a ∩ a′ such that
(a′′, y) ∈ F . Note that a′′ ⊂ a and a′′ ⊂ a′, so y ∈ f(a) and y ∈ f(a′), hence y ∈ f(a) ∩ f(a′).
Now let y ∈ f(a) ∩ f(a′). There exist b ⊂ a and b′ ⊂ a′ such that (b, y) ∈ F and (b′, y) ∈ F .
As a ∪ a′ is coherent, so is b ∪ b′. But then by minimality, b = b′, hence b ⊂ a ∩ a′ and thus
y ∈ f(a ∩ a′).
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Theorem 7.6. The identity function is stable.

Proof. Using theorem 7.5, it suffices to check that the identity function preserves subsets, directed
unions, and intersections, which it trivially does.

Theorem 7.7. Stable functions are closed under composition.

Proof. Again using theorem 7.5, we need only check that if f : X→ Y and g : Y → Z preserves
subsets, directed unions, and intersections, that g ◦ f preserves them as well. In the case of
subsets and intersections this is obviously so. For directed unions, we need to ensure that the
image of a directed set under a stable function is itself a directed set. This follows directly from
stable functions preserving subsets: let f : X → Y be a stable function, A ⊂ X a directed set,
and a, b ∈ A. As A is directed, there is a c ∈ A such that a∪ b ⊂ c. Now, as f preserves subsets,
f(a) ⊂ f(c) and f(b) ⊂ f(c), so f(a) ∪ f(b) ⊂ f(c). Hence f(A) is itself a directed set, and so
given g : Y → Z, g(f(

⋃
A)) = g(

⋃
a∈A f(a)) =

⋃
a∈A g(f(a)).

That the identity function is the identity element of composition follows from considering
stable functions as set-theoretic functions on the set of points.

It follows that qualitative domains and stable functions between them form a category. We
will call this category Stab.

7.3 The Category Stab

In subsection 7.1.2 we have already shown how to define X×Y and 1, and claimed that these
are the product and terminal object respectively. We can now prove this formally.

Theorem 7.8. Given X,Y objects of Stab, X×Y as defined in subsection 7.1.2 is a product.

Proof. Let X,Y, and Z be qualitative domains and qX : Z→ X and qY : Z→ Y be projection
functions. For simplicity, we assume |X| and |Y| are disjoint, which allows us to use the usual
union rather than the disjoint union of |X| and |Y| for |X×Y|. Let X×Y be defined as above,
with pX : X×Y → X be Θ({({x}, x)|x ∈ |X|}) and let pY be defined analogously. We prove
there is a unique stable function h such that pX ◦ h = qX and pY ◦ h = qY .

We start by proving existence. Let h(a) = qX(a) ∪ qY (a). Then pX(h(a)) = {x|∃a′ ⊂
qX(a) ∪ qY (a). (a′, x) ∈ Tr(pX)}. Given that we know Tr(pX) this can be simplified to

pX(h(a)) = {x|x ∈ qX(a) ∪ qY (a), ({x}, x) ∈ Tr(pX)}.

Since ({x}, x) ∈ Tr(pX) iff x ∈ |X|, this can be further simplified to

pX(h(a)) = {x|x ∈ qX(a) ∪ qY (a), x ∈ |X|}

and since qY (a) ∩ |X| = ∅ and qX(a) ⊂ |X|, this is simply pX(h(a)) = qX(a), as desired.
By symmetry, pY ◦ h = qY .
We now prove uniqueness. Suppose h and h′ both satisfy this requirement with h 6= h′. Let

a ∈ Z such that h(a) 6= h′(a). Choose x ∈ h(a) such that x ∈ X and x 6∈ h′(a) (if no such x
exists, switch the roles of h and h′ or of X and Y; by symmetry, these choices are immaterial).
Now by definition of pA, x ∈ pX(h(a)) but x 6∈ pX(h′(a)). However, pX ◦ h = qX = pX ◦ h′, a
contradiction.

Theorem 7.9. The 1 qualitative domain defined in subsection 7.1.2 is a terminal object.
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Proof. Let X be a qualitative domain. As ∅ is the only point of 1, there is only one set-theoretic
function f : X→ 1, namely the function that sends everything to the empty set. This is trivially
stable, being given by the empty trace.

Furthermore, in section 7.2 we have introduced X ⇒ Y, and claimed it will be the internal
hom. We will now prove this.

Theorem 7.10. Given Y,Z objects of Stab, Y ⇒ Z is an exponential object.

Proof. Let X,Y, and Z be qualitative domains. For simplicity, again assume their token sets
are disjoint. We prove

HomStab (X×Y,Z) ∼= HomStab (X,Y ⇒ Z)

naturally in X,Y, and Z.
We define functions

Ap : HomStab (X×Y,Z)→ HomStab (X,Y ⇒ Z)

Ab : HomStab (X,Y ⇒ Z)→ HomStab (X×Y,Z)

as follows:

Ap(f)(a) = Tr(λb.f(a ∪ b))
Ab(f)(a) = {z ∈ |Z||∃a′ ⊂ pY (a). (a′, z) ∈ f(pX(a))}

We prove that Ap ◦ Ab = 1HomStab(X,Y⇒Z) and Ab ◦ Ap = 1HomStab(X×Y,Z). We start with
the first.

Let f : X→ (Y ⇒ Z) and a ∈ X. Then by filling in the definitions we get

(Ap ◦Ab)(f)(a) = Tr(λb.Ab(f)(a ∪ b))
= Tr(λb.{z ∈ |Z||∃b′ ⊂ pY (a ∪ b).(b′, z) ∈ f(pX(a ∪ b))}).

Note that as a ∈ X and b ∈ Y we have pX(a ∪ b) = a and pY (a ∪ b) = b. Hence the above
can be simplified to

(Ap ◦Ab)(f)(a) = Tr(λb.{z ∈ |Z||∃b′ ⊂ b.(b′, z) ∈ f(a)}).

But this is exactly Tr(λb.Θ(f(a))(b)), or equivalently, Tr(Θ(f(a))). As Θ is the inverse of
Tr, we have (Ap ◦ Ab)(f)(a) = f(a) for all a ∈ X, hence (Ap ◦ Ab)(f) = f and Ap ◦ Ab =
1HomStab(X,Y⇒Z).

We now show the converse equality. Let f : X × Y → Z and let d ∈ X × Y. We can
decompose d into a ∪ b with a ∈ X and b ∈ Y by setting a = pX(d) and b = pY (d). Now

(Ab ◦Ap)(f)(d) = {z ∈ |Z||∃b′ ⊂ pY (d).(b′, z) ∈ Tr(λc.f(pX(d) ∪ c))}
(Ab ◦Ap)(f)(a ∪ b) = {z ∈ |Z||∃b′ ⊂ b.(b′, z) ∈ Tr(λc.f(a ∪ c))}.

Note now that (b′, z) ∈ Tr(λc.f(a ∪ c)) iff z ∈ f(a ∪ b′). Hence

(Ab ◦Ap)(f)(a ∪ b) = {z ∈ |Z||∃b′ ⊂ b.z ∈ f(a ∪ b′)

=
⋃
b′⊂b

f(a ∪ b′)

= f(a ∪ b)
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HomStab (X×Y,Z)

HomStab (X′ ×Y′,Z′)

HomStab (X,Y ⇒ Z)

HomStab (X′,Y′ ⇒ Z′)

HomStab (f × g, h)

Ap

Ap

HomStab (f, g ⇒ h)

where the last equality follows from the fact that f(a ∪ b′) ⊂ f(a ∪ b) for all a ∪ b′ ⊂ a ∪ b. We
thus have Ab ◦Ap = 1HomStab(X×Y,Z).

To complete the proof of adjointness, it remains to prove the naturality of Ap. That is, that
given morphisms f : X′ → X, g : Y′ → Y, and h : Z→ Z′, the following diagram commutes:

In other words, that for all i : X ×Y → Z, we have Ap(h ◦ i ◦ f × g) = g ⇒ h ◦ Ap(i) ◦ f ,
where (f ×g)(a∪ b) = f(a)∪g(b) if a ∈ X and b ∈ Y, and where (g ⇒ h)(F ) = Tr(h◦Θ(F )◦g).

Expanding the definitions, we get

Θ(Ap(h ◦ i ◦ (f × g))(a))(b) = Θ(Tr(λb′.(h ◦ i ◦ (f × g))(a ∪ b′)))(b)
= (h ◦ i ◦ (f × g))(a ∪ b)
= h(i(f(a) ◦ g(b)))

and

Θ(((g ⇒ h) ◦Ap(i) ◦ f)(a))(b) = Θ((g ⇒ h)(Ap(i)(f(a))))(b)

= Θ((g ⇒ h)(Tr(λb′.i(f(a) ∪ b′))))(b)
= Θ(Tr(h ◦Θ(Tr(λb′.i(f(a) ∪ b′))) ◦ g))(b)

= (h ◦ (λb′.i(f(a) ∪ b′)) ◦ g)(b)

= h(i(f(a) ∪ g(b))).

This shows that the isomorphism is indeed natural (as Ab is simply Ap−1 and inverses preserve
naturality), and thus that Y ⇒ (−) is an exponential object.

Theorem 7.11. Stab is a Cartesian closed category.

Proof. Immediate consequence of theorems 7.8, 7.9, and 7.10.

27



Chapter 8

Qualitative Domains as a PL
Category

Before we formally define S and G : Sop → Cat, let us give a sketch of what follows.
The only orders present are products of Ω and 1. Hence, up to isomorphism, every order is a

product of n copies of Ω, which we will denote Ωn. An operator expression with a free operator
variable of order Ωn can thus be seen as an operator expression with n free operator variables
of order Ω. Hence, an object of G(Ωn) should be a type expression that depends on n type
variables.

In chapter 7 we have seen that Stab, the category of qualitative domains and functions
between them, is Cartesian closed (theorem 7.11). We would will interpret every type expression
as a qualitative domain. In other words, we would like to see a morphism Ωn → Ω as a qualitative
domain. But this is a problem we have already solved for stable functions! We thus require
Ωn → Ω to have the structure of a stable function and then construct traces on this level. G(Ωn)
then becomes a subcategory of Stab.

Once this construction is complete, it remains to check that G(Ωn) is Cartesian closed, that
for any f : Ωn → Ωm, G(f) : G(Ωm) → G(Ωn) preserves the Cartesian closed structure, and
that there exists an adjoint Π to the weakening functor G(π) : G(Ωn)→ G(Ωn+1) that satisfies
the naturality conditions.

8.1 The Category qD

Given qualitative domains X,Y we can define an inclusion i : X → Y as an injective function
|i| : |X| → |Y| such that for all x, x′ ∈ |X|, x ^X x′ iff i(x) ^Y i(x′). It is immediately clear
that the identity is an inclusion and that inclusions are closed under composition. Let qD be
the category with qualitative domains as objects and inclusions as morphisms.

Intuitively, we want to regard qD modulo isomorphism as a qualitative domain, with object
equivalence classes being points and inclusion of qualitative domains as being the inclusion of
points. However, the equivalence classes are not sets themselves and do not form a set, so we
cannot treat them as a qualitative domain directly. Instead, we will reconstruct the machinery
of stable functions and traces in this new setting.

Our stable functions will be functors qD→ qD. Recall the requirements for a function f to
be stable in the usual sense (theorem 7.5):

1. For all a, a′ ∈ X, if a ⊂ a′ then f(a) ⊂ f(a′).
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2. For every directed collection (ai)i∈I ⊂ X, f(
⋃↑
i∈I ai) =

⋃↑
i∈I f(ai).

3. For all a, a′ ∈ X, if a ∪ a′ ∈ X, then f(a ∩ a′) = f(a) ∩ f(a′).

By using inclusion rather than the subset relation we can reformulate these requirements for
a functor F : qD→ qD as follows:

1. For every two qualitative domains X,Y, if there exists an f : X→ Y, then F (f) : F (X)→
F (Y).

2. For every directed collection (Xi)i∈I of objects of qD, F (limi∈I Xi) = limi∈I F (Xi).

3. For every three qualitative domains X,Y,Z, if f : X→ Z and g : Y → Z and X×Z Y is
the pullback, then F (X×Z Y) = F (X)×F (Z) F (Y).

The first requirement is implied by F being a functor. The second and third state that F
preserves direct limits and pullbacks respectively. We take this as our definition.

Definition 8.1. A stable functor from A to B is a functor A→ B that preserves pullbacks and
direct limits.

It is easy to show that the identity functor is stable, and that the composition of two stable
functors is itself stable. This means that we can consider the category with qDn for n ∈ N as
objects and stable functors as morphisms. We define S to be this category.

8.2 The Category S

The only requirement on S is that it have all finite products, as we have already chosen the
distinguished object qD. We claim that the singleton category qD0 (also referred to as 1) is a
terminal object and that the product of qDn and qDm is qDn+m. This verification amounts to
the projections and the pairing morphism being stable.

Theorem 8.1. qD0 is the terminal object of S.

Proof. Let S′ be the category of powers of qD and functors between them. Note that S is a
subcategory of S′ and that the properties of the categorical product show that qD0 = 1 is the
terminal object of S′. There is thus at most one morphism qDn → qD0 in S, and it suffices to
show that this morphism is stable.

Let n ∈ N. We prove that the morphism F : qDn → qD0 is a stable functor. This requires
that

F (A×C B) = F (A)×F (C) F (B)

F (lim
i∈I

Xi) = lim
i∈I

F (Xi).

As qD0 is a singleton category, these equalities on object equality are trivially satisfied.

Theorem 8.2. Given n,m ∈ N, qDn+m is the categorical product of qDn and qDm.

Proof. We again use S′ for the proof. Note that qDn+m is the categorical product of qDn and
qDm in S′. Let pn and pm be the projections in S′. As pullbacks and direct unions can be taken
componentwise, we see that pn and pm are stable. We thus claim that qDn+m together with pn
and pm are also the product of qDn and qDm in S.
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Let k ∈ N and let qn : qDk → qDn and qm : qDk → qDm be morphisms. We show that there
is a unique morphism h in S such that pn ◦h = qn and pm ◦h = qn. Uniqueness follows from the
uniqueness of such a morphism in S′. For existence, we prove that the pairing morphism in S′

is a stable functor. Again, this is a direct consequence of pullback and direct union distributing
over products.

8.3 The Tr Functor

We can now begin to define how S relates to Stab. Note that for all n ∈ N, the stable functors
qDn → qD form a category, with natural transformations as morphisms. By the above, the
objects of this category represent types that depend on n free type variables, and we will thus
call this category Typen. Soon we will see that given F,G objects of Typen, a morphism
α : F ⇒ G represents a term expression of type G with a free term variable of type F .

However, though we will have G(qDn) ∼= Typen, this interpretation is still too abstract to be
a good model. We will thus define a functor Tr : Typen → Stab and set G(qDn) = Tr(Typen).
This approach will mirror how we used traces of stable functions to define exponential types in
Stab.

Definition 8.2. Let T : qDn → qD in S be a stable functor. The graph of T is the collection
of all pairs (X1, . . . ,Xn, x) where x ∈ |T(X1, . . . ,Xn)|. We call an element of the graph of T a
point on the graph of T , or simply a point of T where no confusion can arise. We call a point
finite if the domains X1, . . . ,Xn are finite.

We define a preorder relation on points of T . Let (
−→
X, x) and (

−→
Y, y) be points. We say that

(
−→
X, x) ≤ (

−→
Y, y) if there exist morphisms ~f :

−→
X →

−→
Y such that y = T (~f)(x).

A minimal point X of T is a point on its graph that is minimal with regard to the preorder
relation. That is, if X is a minimal point and Y ≤ X, then X ≤ Y .1

Given a point X of T we say that X0 is a normal form of X if X0 is a minimal point and
X0 ≤ X.

Intuitively, the minimal points play the same role in the traces of stable functors as (a′, y)
pairs with minimal a′ play in the traces of stable functions. The following few theorems will be
of use later.

Theorem 8.3. Every minimal point of T is a finite point.

Proof. Let (
−→
X, x) be a minimal point of T . Let

−→
X0

i be the directed set of tuples of finite

subdomains of
−→
X with the arrows being inclusions. We can then take the direct limit of T (

−→
X0

i )
and as T is stable, we have

lim
i∈I

T (
−→
X0

i ) = T (lim
i∈I

−→
X0

i ) = T (X).

Hence x ∈ T (
−→
X0

i ) for some i ∈ I and we have the inclusions ~f :
−→
X0

i →
−→
X, thus (

−→
X0

i , x) ≤
(
−→
X, x). By minimality of (

−→
X, x), however, we have functions ~g :

−→
X →

−→
X0

i . As both ~f and ~g

are injective, by the Cantor-Schroder-Bernstein theorem there are bijections between
−→
X and

−→
X0

i .
The latter are all finite, and thus so are the former.

1Note that this does not imply X = Y , as we are dealing with a preorder, not a partial order.
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Theorem 8.4. Let (
−→
X, x), (

−→
Y, y) ≤ (

−→
Z , z) with (

−→
X, x) a minimal element and let ~f :

−→
X →

−→
Z and ~g :

−→
Y →

−→
Z be the morphisms that prove the relations. Then there exists a unique

factorisation of ~f through ~g, and hence (X, x) ≤ (
−→
Y, y).

Proof. We first prove existence. Note that we can construct the pullback
−→
X′ of

−→
X and

−→
Y along

~f and and ~g respectively. We can set
−→
X′ ⊂

−→
X so that the induced arrow ~f ′ :

−→
X′ →

−→
X is the

inclusion. Note that by the same argument as in theorem 8.3 we have that there exist bijections

between
−→
X′ and

−→
X, and hence each of ~f ′ is simply the identity; this follows from the finiteness

of
−→
X. We thus have morphisms ~h : X → Y. By commutation of the pullback square, we have

gi ◦ hi = fi.
The uniqueness of the factorisation follows from the injectivity of morphisms in qD. If we

have factorisations ~h and ~h′, then from the fact gi ◦ hi = fi = gi ◦ h′i follows hi = h′i because gi
is injective, and thus monic.

Note that this implies that all normal forms of any point are equivalent.

Theorem 8.5. Let T : qDn → qD be a stable functor. Every point of T has a normal form.

Proof. Let (
−→
X, x) be a point of T . By the same reasoning as in the proof of theorem 8.3, (

−→
X, x)

has a finite subpoint (
−→
X′, x). But there are (up to renaming) only finitely many points less than

(
−→
X′, x), the number being bounded by the cardinalities of

−→
X′. There is thus a minimal point

(
−→
X0, x0) less than (

−→
X′, x). Now by transitivity we have (

−→
X0, x0) ≤ (

−→
X, x), and so (

−→
X0, x0) is a

normal form of (
−→
X, x).

This already hints that any stable functor T can be expressed as a combination of its least
points.

Definition 8.3. The trace of a stable functor T is a collection ‖Tr(T )‖ that for every point
(X, x) of T contains a unique normal form (X0, x0) of (X, x).

We regard ‖Tr(T )‖ as a superset of the set of tokens of a qualitative domain Tr(T ) and

define coherence as follows: (
−→
X, x) ^ (

−→
Y, y) iff for every n-tuple of finite qualitative domains

−→
Z

and morphisms ~f :
−→
X →

−→
Z and ~g :

−→
Y →

−→
Z we have {T (~f)(x), T (~g)(y)} ∈ T (~Z).

We now set |Tr(T )| = {X ∈ ‖Tr(T )‖ |X ^ X}. This gives us a qualitative domain Tr(T )
for every stable functor T . An important note which we unfortunately cannot prove is that Tr
is an injective mapping.

It remains to extend this mapping to morphisms, and we will have a functor that maps each
Typen into Stab. The following rather technical reinterpretation of Tr(T ) gives us a way of
defining the mapping on morphisms by composition.

Definition 8.4. With every qD-morphism f : X → Y we associate two stable functions f+ :
X→ Y and f− : Y → X given by f+(a) = f [a] and f−(b) = f−1[b].

Theorem 8.6. f− ◦ f+ = 1X .

Proof. Let a ∈ X. Clearly, a ⊂ f−1[f [a]] as if x ∈ a then f(x) ∈ f [a] and so x ∈ f−1[f [a]].
Recall that f is injective. Now suppose x ∈ f−1[f [a]]. Then f(x) ∈ f [a]. But as f is injective,
it follows that x ∈ a. Thus a = f−1[f [a]], as desired.

Theorem 8.7. For every b ∈ Y, f+(f−(b)) ⊂ b.
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Proof. Let b ∈ Y. Suppose y ∈ f [f−1[b]]. Then there is an x ∈ f−1[b] such that f(x) = y. As f
is injective, y ∈ b.

Definition 8.5. Given T a stable functor qDn → qD, define T− : qDn → Stabop as T on
objects and as T−(f1, . . . , fn) = T (f1, . . . , fn)− on morphisms.

Define 1 : qDn → Stabop as the constant functor which sends everything to the terminal
object of Stab.

With these details out of the way, we can finally state the result that makes this worth our
while:

Theorem 8.8. There is a canonical bijection between elements of Tr(T ) and natural transfor-
mations 1→ T−.

Unfortunately, we can only state it, not prove it.
Recall that we wish Tr to be a functor Typen → Stabop. Given objects T, S of Typen

(that is, stable functors qDn → qD) and a natural transformation µ : T → S we can define

µ− : S− → T− by (µ−→
X

)− : S(
−→
X)→ T (

−→
X), which by composition maps natural transformations

1 → S− to natural transformations 1 → T−. This induces a map Tr(S) → Tr(T ), which is a
stable function.

Theorem 8.9. Tr is a functor Typen → Stabop.

Proof. Let T : qDn → qD. We have already seen how Tr(T ) can be regarded as a qualitative
domain and as a natural transformation 1 → T−. Given a morphism µ : T → S in Typen,
the corresponding map S− → T− induces a transformation 1→ T− to 1→ S−. Hence, by the
above we have a corresponding stable function Tr(µ) : Tr(S)→ Tr(T ).

The preservation of composition and identities follows from the way Tr is defined on functions.
If µ : R → T and ν : T → S are morphisms in Typen, then they induce two transformation
Tr(T )→ Tr(R) and Tr(S)→ Tr(T ) simply by how they act on 1→ T− and 1→ S−. However,
the action on these respects composition, and thus so does the induced action on traces. Identities
follow the same way.

With this theorem, everything is in place to define G.

Definition 8.6. Let G be a category-valued contravariant functor from S with G(qDn) the
image of Typen under Tr and with G(f) acting by composition. This is uniquely determined
as we can regard an object of Gn as a functor qDn → qD and a morphism in Gn as a natural
transformation between two functors qDn → qD, each of which can be precomposed with a
morphism qDk → qDn.

This has fixed our choices of S and G. It remains to verify that all requirements are satisfied,
namely that Gn is a Cartesian closed category and that for every morphism f , Gf preserves the
Cartesian structure. Unfortunately, we are unable to provide a proof of these assertions.

Theorem 8.10. For every n ∈ N, Gn is Cartesian closed.

Theorem 8.11. For every f : qDn → qDm, G(f) preserves the Cartesian closed structure.

It is worth noting how, given S : qDn+k → qD and X1, . . . ,Xn we can apply a term

t ∈ Tr(λY1, . . . ,Yk. S(
−→
X,
−→
Y)) to a k-tuple of domains Z1, . . . ,Zk. Let z ∈ |S(

−→
X,
−→
Z )|. Then

z ∈ t(
−→
Z ) iff there exists a (

−→
Y, y) ∈ t such that (

−→
Y, y) ≤ (

−→
Z , z) according to the ordering defined

above. This way, t(
−→
Z ) ∈ S(

−→
X,
−→
Z ).
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8.4 The Π Functor

It remains to show that the weakening functor has the appropriate adjoint. Choose n ∈ N. The
projection morphism pn : qDn+1 → qDn is mapped by G to the weakening functor G(pn) :
Gn → Gn+1. This should be seen as taking a type or term with n free type variables and adding
as dependencies one further type variable that is not used in the term itself.

The final condition on G is that this weakening functor has a right-adjoint Π. This functor
is given as follows:

Definition 8.7. Given S an object of Gn+1, note that we can regard S as a morphism qDn+1 →
qD in S. Let

Π(S)(X1, . . .Xn) = Tr(λY. S(X1, . . . ,Xn,Y)).

This is a morphism qDn → qD in S and thus an object of Gn.
Given S, T objects of Gn+1 and a morphism h : S → T , we can regard h as a set of morphisms

h−→
X,Y

: S(
−→
X,Y)→ T (

−→
X,Y) for all

−→
X and Y. Let t−→

X
∈ Π(S)(X1, . . . Xn) and let Y a qualitative

domain. Define:

Π(h)(t−→
X

)(Y) = h−→
X,Y

(t−→
X

(Y))

The above definition requires some verification to ensure that the types are correct.
We state the following theorem without proof.

Theorem 8.12. The functor Π defined above is right-adjoint to the weakening functor G(pn).

Theorem 8.13. The pair (S, G) forms a PL-category.

Proof. Immediate consequence of theorems 8.1, 8.2, 8.10, 8.11, and 8.12.

8.5 Conclusion

We have now constructed Stab, Tr, G, and S. Due to time constraints, we were unable to
everywhere verify that this construction is valid. The greatest omission is the construction of
the canonical bijection between elements of Tr(T ) and natural transformations 1→ T− claimed
by theorem 8.8. The theorem is a generalisation of theorem 2.9 from Girard’s article [Gir86].
The crucial step is that a natural transformation 1 → T− can be seen as a function t map-
ping X1, . . . ,Xn to an element t(X1, . . . ,Xn) of T (X1, . . . ,Xn) such that given (f1, . . . , fn) :
(X1, . . . ,Xn)→ (Y1, . . . ,Yn) such that T−(f1, . . . , fn)(t(Y1, . . . ,Yn)) = t(X1, . . . ,Xn).

Additionally, we have not verified that the rest of our construction satisfies the requirements
for Gn to be a Cartesian closed category for each n, and for G(f) to preserve the Cartesian
structure. Finally, we have not verified that Π is well-defined and a right adjoint to the weakening
functor. This was caused primarily by a lack of time.
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