
Master Artificial Intelligence, University Utrecht

Master Thesis

Predicting App Launches on Mobile Devices

Using Intelligent Agents and Machine Learning

Author:
Niels Denissen, BSc.
(4203313)

Supervisor Utrecht University:
prof. dr. John Jules Meyer

Second Examiner:
dr. Mehdi Dastani

Supervisors Avanade:
Boaz Pat-El, MSc. (Technical)
Gijs Ramaker, MSc. (Process)

Almere, June 12, 2015

Abstract

Data rich applications often have to load large amounts of data upon launch. The launch

times for these applications, e.g. Facebook and NU.nl, can be improved by prefetching their

data prior to use. This requires reliable predictions on what applications the user will use in

the near future. In order to perform successful predictions, this research utilizes intelligent

agents and reinforcement learning. With it, the devised system is able to successfully predict

45.6% of all applications launched by a user. The intelligent agent framework Jadex provides

the communication between the agents and Q-learning is used along with the time-of-day as a

reinforcement learning algorithm. The results are obtained via simulations with the LiveLab

dataset which contains phone usage from 24 users over about a year time. The flexible MAS

allows for many improvements in future work that promise even better results.

Acknowledgements

This thesis concludes the 2 years I spend finishing the master Artificial Intelligence at the

University of Utrecht. It was written at Avanade starting November 1st, 2014 and was finished

in June, 2015. I would like to thank Avanade Netherlands and a number of people that helped

me realize the obtained results, as the slogan of Avanade reads.

My weekly supervisor at Avanade was Boaz Pat-El. He fulfilled the role of technical supervisor

and has been a very helpful counselor throughout the entire project. The weekly meetings were

always very pleasant and helpful. During the few usual struggles of a project, Boaz was always

a good partner to discuss ideas with. From the university the role of first supervisor was fulfilled

by prof. dr. John Jules Meyer, whom I would like to thank very much for his advice and trust

at the start, and his enthusiasm and feedback during every meeting in the process.

Furthermore my thanks go to the process supervisor at Avanade, Gijs Ramaker, who provided

the interns at Avanade with helpful meetings and workshops, and the interns at Avanade with

whom many coffee-breaks and lunches were happily shared. Not to forget my family, friends and

girlfriend who provided help and many welcome distractions during the past months. Finally I

would also like to thank the second examiner from the University of Utrecht, dr. Mehdi Dastani,

in advance for his evaluation of this thesis.

Almere, June 2015

i

Contents

List of Abbreviations vii

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Problem Statement . 1

1.1.1 Scope . 2

1.2 Avanade . 2

1.2.1 Company Description . 3

1.3 Research Goals . 4

1.4 Research Methods . 4

1.5 Overview . 5

2 Related Work 6

2.1 Analysis of Smartphone Usage . 6

2.2 Learning User Patterns . 7

2.2.1 AccessRank . 7

2.2.2 Reflection . 7

2.2.3 CondOS . 8

2.2.4 Context Model for App Prediction . 8

2.2.5 Mobile Miner . 8

2.2.6 Call Predictor . 8

2.2.7 Multi-faceted approach to predicting App Usage 9

2.3 Application: App Prefetching . 9

2.3.1 FALCON . 9

2.3.2 PREPP . 10

2.3.3 iOS and Windows Phone 8.1 . 10

ii

2.4 Application: Other . 11

2.4.1 Extract Mental States . 11

2.4.2 Privacy . 11

2.4.3 Predicting Electricity Consumption . 11

2.4.4 Network Load . 11

2.4.5 Webpage Prefetching . 11

2.4.6 Media caching . 12

2.4.7 Storage . 12

2.4.8 Energy Savings . 12

2.4.9 Smart Home . 12

2.5 Intelligent Agents in Mobile Devices . 12

2.6 Related Systems . 13

2.6.1 Anticipatory Systems . 13

2.6.2 Recommendation systems . 13

3 Intelligent Agents 14

3.1 Types of Agents . 14

3.1.1 BDI agents . 15

3.2 Agent Frameworks . 16

3.2.1 Assessment criteria . 16

3.2.2 JACK . 17

3.2.3 Janus . 17

3.2.4 JADE . 17

3.2.5 JADEX . 18

3.2.6 Jason / AgentSpeak . 19

3.2.7 Evaluation . 19

3.3 Development Methods . 20

3.3.1 Methodologies . 20

3.3.2 Evaluation . 21

3.4 Conclusion . 21

4 Machine Learning 22

4.1 Types of Machine Learning . 22

4.1.1 Reinforcement Learning . 23

4.1.2 Aspects of Reinforcement Learning . 23

4.2 Reinforcement Learning Algorithms . 26

iii

4.2.1 Temporal Difference Learning . 27

4.2.2 Batch Reinforcement Learning . 28

4.2.3 Bayesian Reinforcement Learning . 29

4.2.4 Evolutionary Reinforcement Learning . 30

4.2.5 Evaluation of Algorithms . 30

4.3 Alternative Learning Methods . 31

4.3.1 Motivated Learning . 31

4.3.2 Learning Plans in BDI Agents . 32

4.3.3 Transfers in Reinforcement Learning . 32

4.4 Cooperative Machine Learning . 32

4.4.1 Concurrent learning . 33

4.4.2 Credit Assignment . 34

4.4.3 Ensemble Learning . 34

4.5 Libraries . 35

4.5.1 WEKA . 35

4.5.2 RL-Glue . 35

4.5.3 Azure Machine Learning . 36

4.6 Conclusion . 36

5 Mobile Platforms 37

5.1 Comparison . 37

5.2 Development Environment . 38

5.2.1 Xamarin . 38

5.3 Conclusion . 39

6 Implementation 40

6.1 Multi Agent System Design . 40

6.1.1 Early Requirements . 41

6.1.2 Late Requirements . 42

6.1.3 Architectural Design . 44

6.2 Agent Design . 46

6.2.1 Input Agent . 47

6.2.2 Prediction Agent(s) . 47

6.2.3 Assessment Agent . 49

6.2.4 Launcher Agent . 50

6.3 Expansions . 51

iv

6.3.1 Overall System . 51

6.3.2 Input Agent . 52

6.3.3 Prediction Agent(s) . 53

6.3.4 Assessment Agent . 53

6.3.5 Launcher Agent . 54

7 Test Setup 55

7.1 Gathering User Data . 55

7.1.1 Monitoring Sensor Data . 55

7.1.2 Existing Data Sets . 56

7.1.3 Chosen Dataset . 56

7.2 Adjustments to Implementation . 57

7.3 Performance Measures . 57

7.3.1 Data Visualization . 58

8 Parameter Setting 59

8.1 Test Data . 59

8.2 Parameters Prediction Agent . 60

8.2.1 Parameters . 60

8.2.2 Results Per Parameter . 63

8.3 Parameters Assessment Agent . 67

8.3.1 Parameters . 67

8.3.2 Results Per Parameter . 68

9 Results 71

9.1 Expectations . 71

9.2 Performance of System . 71

9.2.1 Configuration . 71

9.2.2 Results . 73

9.3 Compared to Related Work . 77

9.3.1 FALCON . 77

9.3.2 PREPP . 78

10 Discussion 80

10.1 Results . 80

10.1.1 Parameter Setting . 80

10.1.2 Performance System . 81

v

10.1.3 Comparing to Related Work . 82

10.2 Implementation . 84

10.2.1 Xamarin . 84

10.2.2 Jadex . 84

10.2.3 Tropos . 85

10.2.4 Machine Learning . 85

10.2.5 Testing . 86

11 Conclusion 88

12 Future Work 90

A LiveLab Data 91

B R Scripts 93

B.1 Scripts for Parameter Setting . 93

B.1.1 Precision, Recall and Effectiveness . 93

B.1.2 Average Median Freshness . 94

B.2 Scripts for System Performance . 95

B.2.1 Precision, Recall and Effectiveness . 95

B.2.2 Freshness . 99

B.3 Scripts for Comparison to Related Work . 100

C Usability Avanade 102

C.1 Agent Framework . 102

C.2 Reinforcement Learning . 103

C.3 Deployment . 103

C.4 Evaluation . 103

C.5 Applications . 104

D Code and Data Reference 105

D.1 Code . 105

D.2 Data . 105

D.2.1 Parameter Setting . 106

D.2.2 Results . 106

Bibliography 107

vi

List of Abbreviations

ALC - Application Launch Count

API - Application Programming Interface

BDI - Beliefs Desires Intentions

BI - Business Intelligence

BPG - Bayesian Policy Gradient

BQ - Bayesian Quadrature

BQL - Bayesian Q-Learning

CRM - Customer Relationship Management

CSV - Comma Separated Values

DA - Distinct Applications

DROP - Goals (D), Roles (R), Subject (O) en Procedures (P) (Dutch abbreviation)

ERP - Enterprise Resource Planning

FALCON - Fast App Launching with CONtext

FIPA - Foundation for Intelligent Physical Agents

GPTD - Gaussian Process Temporal Difference Learning

IDE - Integrated Development Environment

JADE - Java Agent DEvelopment framework

LTE - Long-Term Evolution (4G)

MAS - Multi Agent System

MC - Monte Carlo

MDP - Markov Decision Process

MEI - Motivated Embodied Intelligence

OS - Operating System

PREPP - PREdictive Practical Prefetch

RL - Reinforcement Learning

SARSA - State-Action-Reward-State-Action

SQL - Structured Query Language

TD - Temporal Difference (Learning)

URL - Uniform Resource Locator

XML - eXtensible Markup Language

vii

List of Figures

3.1 A Procedural Reasoning System [128] . 15

4.1 A general algorithm for online Reinforcement Learning [125] 27

4.2 Comparison between reinforcement learning and motivated learning [111] 32

6.1 Early Requirements: Actor Diagram . 41

6.2 Early Requirements: Goal Diagram . 42

6.3 Late Requirements: Actor Diagram . 43

6.4 Late Requirements: Goal Diagram . 43

6.5 Late Requirements: Goal Diagram (extended with plans) 44

6.6 Architectural Design: Delegations . 45

6.7 Architectural Design: Complete . 46

9.1 Average Precision . 74

9.2 Average Recall . 75

9.3 Average Effectiveness . 75

9.4 CPD Freshness . 76

9.5 Average Precision Assessor (Daily) . 76

9.6 Average Recall Assessor (Daily) . 77

9.7 Average Effectiveness Assessor (Daily) . 77

9.8 PREPP: Freshness Facebook . 78

9.9 PREPP: Freshness E-mail . 78

9.10 CPD Freshness of Facebook and E-mail . 79

viii

List of Tables

3.1 Comparison of agent frameworks . 19

4.1 Comparison of RL algorithms . 30

5.1 Comparison of mobile platforms . 38

8.1 Parameters for Prediction agent . 60

8.2 Result Q reward . 63

8.3 Result Q discount . 64

8.4 Result Q learn rate . 65

8.5 Result Polling interval & Quality threshold . 66

8.6 Configurations for Predictor Agents . 67

8.7 Parameters for Assessment agent . 67

8.8 Result Protocol Consecutive Prefetches . 69

8.9 Result Quality Measure . 70

9.1 Configurations for Predictor Agents . 72

9.2 Per Agent Results . 73

A.1 Livelab: Summary of data . 92

ix

Chapter 1

Introduction

Mobile phones and tablets have become increasingly popular over the last few years. They

provide the possibility to quickly and easily connect to others, search information on the internet,

play games, navigate your route, etc. Because of this extensive use of smartphones by both

the consumer as well as the business world [55, 81], research into improving these devices has

become increasingly important.

Besides aspects like battery life, speed is one of the most important features of a mobile phone

[83]. People rely on their device to provide them with quick information that they can request

on demand. Speed is of crucial importance here as this is one of the main advantages of using a

smartphone. Improvements can of course be realized by placing fast processors in the devices

and devise new techniques that transfer information from and to the internet (think of LTE

and WiFi). But along with improvements of these techniques, more and more data will be

shared (from high quality photos to entire databases with information). Instead of improving on

hardware only, we could try to make phones a bit smarter, let them predict our actions so that

they can prepare some work for us.

This research will attempt to predict which application will be used by a user at what time.

This information can eventually be used to prefetch these applications and reduce their load

times. In this introduction first a more elaborate problem statement will be given along with

the scope for the research in section 1.1. This research was conducted at the company Avanade

which will be introduced in section 1.2. Then the research questions that will be answered are

treated in section 1.3 along with the methods used to answer each of them in section 1.4. Finally

an overview of the rest of this thesis is given in section 1.5.

1.1 Problem Statement

In order to improve the response time of applications, techniques like caching that are common

for websites can be used. Most browsers retain certain web pages that have been accessed by the

user at an earlier time in their cache. Whenever a user requests the same page that has been

requested before, the local cache can be consulted instead of fetching the page again from the

internet. This greatly reduces load times for websites.

1

The same principle is already applied to mobile devices. Numerous mobile apps cache data

when someone is using the app in order to provide a quick launch when the application is

reopened. An example is Facebook. This application caches the stories that are shown on the

app whenever it is exited. Whenever a user reopens it, these stories are shown immediately, after

which the newer ones are loaded. This gives the user immediately something to look at, but

doesn’t show any new data faster. In order to reach that goal, new data should be prefetched

before the user opens the app. But to do this, predictions should be made about what application

will be used when.

This research aims to find a good way to predict the use of such applications. As will be

shown in chapter 2, some overlapping and related work has been done in this area. In these

papers, intelligent agents have not been used yet, even though they seem to provide a suitable

framework for flexible learning. Also machine learning is not used in these papers and has in

fact not been used that often in combination with intelligent agents at all. Since there is a lack

of research in these promising areas, the combination will be investigated in this thesis.

1.1.1 Scope

This thesis focuses on investigating the use of intelligent agents in combination with machine

learning to predict application launches on mobile devices. It will not cover the actual reduction

in load times that will be acquired. Furthermore the actual battery drain and data usage that

comes with the prefetches will not be considered. Focus lies on what applications are used

when. An investigation will be done to how intelligent agents can be used and what type of

machine learning can best be applied. With these results a system will be created that predicts

the application launches of users. Finally the quality of the predictions will be assessed using

simulated data.

1.2 Avanade

The research in this thesis is conducted at the IT consultancy company Avanade [8]. Avanade

was founded in 2000 as a joint venture between Accenture and Microsoft. Because of this, they

focus on Microsoft technologies in the projects they do. Lately, Microsoft is investing more

and more in the field of machine learning and predictive analytics, offering products like Azure

Machine Learning and Revolution Analytics1. Avanade is following this trend and because of it

has the ambition to provide services in these areas as well.

Predictive algorithms and machine learning thus form an interesting new field for Avanade.

This thesis uses machine learning and can enable Avanade to perform real-time predictions.

Appendix C will eventually discuss the practical usability of this thesis. A description of the

company follows below.

1www.zdnet.com/article/microsoft-finalizes-its-revolution-analytics-acquisition/

2

www.zdnet.com/article/microsoft-finalizes-its-revolution-analytics-acquisition/

1.2.1 Company Description

Avanade has over 22,000 employees from all over the world. It offers global IT consultancy,

serving customers at more than 70 locations in 20 countries worldwide, dedicated to using the

Microsoft platform to help enterprises achieve profitable growth through solutions that extend

Microsoft products. Avanade has a comprehensive portfolio of IT and business solutions and has

deep industry experience, technology, assets and proven implementation approaches. Avanade

provides solutions in the following fields:

• Application Development: Gain advantage over the competition by using custom

application solutions to drive business processing and data. Avanade delivers custom

enterprise applications based on the Microsoft .NET Framework. As a 2014 Microsoft

Mobility Partner of the year, this involves enhancing employee productivity across touch

and mobile devices. Also the integration of data sources and implementation of cloud,

private cloud and traditional systems as a preferred partner for Microsoft Azure is part of

Avanade’s Application Development solutions.

• Data and Analytics: Craft a BI strategy that fits your unique business requirements,

integrates with your existing infrastructure, and aligns with your companys goals. Uncover

fundamental business value from your corporate data and transform it into a strategic

business asset with Avanade Business Intelligence solutions. Avanade Touch Analytics is

one such component of a much larger set of capabilities, it provides analytics on mobile

devices to empower real-time, online and offline decisions.

• Collaboration: Evolve your business workplace to the next generation, using Microsoft-

based technologies, where people, processes and technology are connected using collabora-

tion tools that fuel information-sharing and productivity, driving value, profitability, and

innovation.

• Infrastructure Services: Avanade’s business expertise, technology and assets will set

up Microsoft-based infrastructure solutions to maximize existing investments, including a

line of business applications.

• Managed Services: Keeping your business-critical software up and running and up-to-

date is of major importance for any business. Avanade Managed Service support, maintain

and evolve your enterprise business software.

• CRM: It is vital for all businesses to be able to effectively maintain customer relations.

Avanade has expertise in designing, implementing, and deploying Microsoft Dynamics

CRM solutions to optimize any companys return of investements.

• ERP: Avanade’s enterprise resource planning solution addresses challenges that indus-

tries encounter, like changing economics, shifting industry trends and evolving customer

expectations. As the largest partner of Microsoft in this field, Avanade uses the Microsoft

Dynamics AX platform to implement projects across the globe.

3

1.3 Research Goals

From the described problem statement and scope discussed in section 1.1, the research question

for this thesis is formulated as follows:

RQ: Can intelligent agents combined with machine learning be used to predict launches of

applications for mobile devices?

This question gives rise to a number of smaller questions. These questions will have to be

answered first as they are crucial in the choices to be made about the system. Firstly, the use of

intelligent agents requires an investigation as various types of agents exist. There exist many

frameworks that support these objects and thus the first subquestion arises:

SQ1: Which framework for intelligent agents can best be used?

The other aspect of this research covers machine learning. This area of research is quite large

and contains a wide range of different kinds of machine learning. To learn more about machine

learning and which of these techniques are most suitable, the following question will be answered:

SQ2: What kind of machine learning should be used in the agents?

In order to implement the techniques that are developed, a mobile platform has to be chosen.

Since deployment will not be done in this research, this question is not crucial for this work

immediately. In order to actually use the solution eventually though, support for the functions

that are simulated is needed and thus an investigation into the various mobile platforms is

important. The following question will thus be treated:

SQ3: Which mobile platform should be used?

Finally the devised system has to be tested. Testing can be done in multiple ways and by

using various different data sets. As proper testing is crucial in evaluating the created system,

the last subquestion is:

SQ4: Which way can the system be tested?

The research will use a different chapter to answer each one of the subquestions. Using the

answers to those, the research question will finally be answered.

1.4 Research Methods

Before the research started, some interviews were conducted with various employees of Avanade.

Using these interviews the exact direction and scope of the research was determined. The

interviews were conducted following the DROP-model. DROP is a dutch abbreviation and

4

stands for Goals (D), Roles (R), Subjects (O) and Procedures (P). It provides a structured way

to conduct a successful interview.

For most research questions posed in the previous section, a literature study was needed.

Literature was gathered via Google Scholar, which contains a vast database of papers that are

accessible using the subscriptions available through the University of Utrecht. The subquestions

as well as the section on related work were answered using these techniques. First a set of

relevant keywords was used to get an overview of the literature. A selection of most quoted and

recent papers was gathered. Several papers that were cited by these papers were investigated as

well as papers that referred to the most interesting ones found. This way the most important

and relevant works for the question at hand were identified.

In order to design the system, the methodology Tropos [32] was used. This choice is argumented

in section 3.3. Furthermore an Agile [3] way of working was adopted. This methodology results

in intermediate working versions of the system with limited functionality which allow for easier

modifications during the implementation process.

1.5 Overview

In this thesis, first an investigation into related work is described in chapter 2. Then SQ1 will

be answered in chapter 3 using an investigation to the frameworks existing for intelligent agents

and how they can be used in the application. Machine learning is required to detect patterns

in user behavior, the various techniques existing in this field are evaluated in chapter 4, that

answers SQ2. Then chapter 5 shortly discusses the mobile platforms that can be used and with

it SQ3. Chapter 6 shows the design process of the system and the implementation of this design.

The last subquestion SQ4 is answered in chapter 7 in order to define how the results will be

gathered. Since multiple parameters have to be investigated prior to the gathering of these final

results, chapter 8 describes a short research into the setting of these parameters. After these

preparations the actual results can be gathered in chapter 9. Finally the results will be discussed

in chapter 10 and a conclusion will be drawn on the research questions in chapter 11. Lastly

some suggestions for future work are given in chapter 12.

5

Chapter 2

Related Work

Before diving into the various sub questions that were posed in the introduction, previous work

done in related fields will be discussed. Over the last few years there has been a lot of research

to mobile devices as they have become more capable of complex action and are used more often

by people. They have various limitations, e.g. battery life and internet connection, that allow

for improvements. Furthermore, a lot of interesting information can be gathered from mobile

devices, as people tend to bring their device everywhere and use it for numerous actions. All

this results in a vast amount of research done in the field of mobile devices very recently.

Research into mobile phone usage has increased with the popularity of these devices. Some

research in this area will be discussed in section 2.1. Building on this analysis, various researches

have been conducted to extract user patterns from these mobile devices. The learning of these

patterns is treated in section 2.2. Using these patterns, others have already tried to prefetch

applications on mobile phones. These studies are most relevant for this research as their research

questions largely overlap. Section 2.3 treats the papers found on this. Besides using the data

gathered from mobile devices for app prefetching, other applications exist as mentioned in section

2.4. This research focuses partially on the use of intelligent agents in mobile devices, related

work in this field is described in section 2.5. Finally some related systems are treated in section

2.6.

2.1 Analysis of Smartphone Usage

Quite some papers have been written about the way people tend to use their smartphones

and how this data can be used in predicting behavior or improving usability of these devices.

Especially this first aspect is of interest. Several papers suggest that the list of recent apps used

and thus the sequence of app usage is one of the most influential factors in determining what

app will be launched next. A lot of researches focused on the use of other contextual information

as well, with varying rates of success. Here a deeper look into what information determines what

apps users will use is given.

Smartphone usage differs heavily between users [87], this level of diversity suggests that

mechanisms to improve user experience or energy consumption will be more effective if they

6

learn and adapt to user behavior [40]. For the same reasons, patterns will differ greatly between

people as well. Possibly what sensors are important indicators of behavior also differs per person.

Besides this diversity, some studies have a clear overall verdict on what context features are

most important. The analysis in [36] for instance concludes that correlations between smartphone

usage, location and social context (Bluetooth) are most interesting. Others concluded that

contextual information, such as time, location, user profile and latest used app, can be used

to predict mobile app usage [53]. The correlation between sequentially used apps has a strong

contribution to the prediction accuracy. Add to these results the fact that humans operate

different on their phones and may have different triggers to use them. For these reasons it might

be more interesting to let the system decide which context features to use for itself.

An elaborate study has been done on a large range of mobile phone usage related matters

[17, 18]. These include the launching of apps, housekeeping apps on mobile devices (also discussed

in [51]), discovering new apps and multitasking on phones. The most interesting work for this

research is the launching of apps. To extract information about this from mobile devices, the

author created AppSensor. With it he gathers results on when apps are launched, in what order,

where etc. AppSensor was used as a basis to implement the app Appkicker. AppKicker includes

prediction technology based on PREPP [92]. This system will be discussed further in section 2.3.

2.2 Learning User Patterns

One of the most important tasks that has to be completed when reducing load times for apps, is

the elicitation of user patterns on mobile devices. To successfully reduce the load time of an

app, the one that will be launched next needs to be predicted and for that user patterns need

to be elicited. During the last few years, a lot of research has been done in learning these user

patterns. This section will discuss a range of papers that were published in this area and closely

related areas and that can provide more insight in how the learning process is done up until now.

2.2.1 AccessRank

AccessRank [42] is an algorithm that predicts re-visitations and reuse in many contexts. It

predicts the next most likely action based on past results. Essentially this concept can be applied

everywhere, though in this domain AccessRank can be used to determine what app will likely

be used next based on the past. The algorithm says nothing about the next time an application

will be launched though and thus is incomplete for predicting app launches. PREPP, as will be

discussed in section 2.3, uses the same notion but along with a prediction of the next time the

app will be used.

2.2.2 Reflection

Reflection [65] is an Android service API that developers can use to predict what users will most

likely use next in an application. It is an engine that provides machine learning functionality for

apps and can be used by developers. A set of event prediction features is combined using online

7

learning. For the learning process, a large range of algorithms can be used. The authors argue

that some applications perform better with a certain predictor than others. Thus diversity in

predictors seems to be desirable.

2.2.3 CondOS

CondOS [30] is a concept for an extension of currently available mobile OSs. It proposes a way

to learn user behavior on OS level so that OS level functionality might benefit from this as well.

The authors propose a design for such a system and discuss topics on what to improve and how

privacy can be preserved when using the sensors.

2.2.4 Context Model for App Prediction

In [105] a new context model for app prediction is proposed. It collects a wide range of contextual

information in a smartphone and makes personalized app predictions based on the näıve Bayes

model. The authors created a home-screen that presents the most probable apps to be used

next and showed that this reduces the time users have to search for applications. Through an

analysis of data, they found that several contexts such as last application, cell ID and hour of

day were important influences. With cell ID, the identifier of a broadcasting tower for cellular

phones is meant. This can be regarded as a way to determine one’s rough location.

2.2.5 Mobile Miner

Using limited phone resources, Mobile Miner [110] efficiently generates behavioral patterns.

The authors find behavior patterns for individual users and across users, ranging from calling

patterns to place visitation patterns. This is done by combining features into baskets and use of

a weighted rule mining algorithm to generate association rules that represent state transitions.

With their results the authors finally created a phone UI that shows the most probable next

apps used to the user.

2.2.6 Call Predictor

Call prediction is the topic studied in [95]. It aims to learn a model that predicts when calls will

arrive or go out. Call prediction can be useful in planning daily schedules, avoiding unwanted

communications and resource planning in call centers. The paper suggest probabilistic ways

to determine when someone will receive and make a new phone call. At any given time, this

model can generate a list of most likely contacts to be called, creating an intelligent address

book. Observations are clustered per hour of day and predictions are done per hour. Call

prediction relates closely to this research at this aspect. The agents for app prediction will likely

poll for information as well, though at a smaller interval and using machine learning instead of

probability theory.

8

2.2.7 Multi-faceted approach to predicting App Usage

Besides using solely context or preferences in predicting apps, one could combine these facets

and create a multi-faceted approach to predicting smartphone app usage patterns [134]. The

authors formulate smartphone app prediction as a classification problem. To classify app usage

they use App Bags. Phone features are classified with app usages and from this the N most

likely apps to occur are extracted along with a confidence level.

In the system all features extracted are combined in an app bag to classify app usage. Then

these app bags are compared to other users’ app bags. For this the similarity of users’ patterns

is used to weigh their influence, and the confidence of their predictions is taken into account as

well. A limitation of the system is that only the prediction of the first next app is taken into

account. Furthermore, these predictions aren’t groundbreaking in their accuracy with respect to

a very simple prediction based on Most Recently Used. Nevertheless the idea is valuable and is

likely to perform well. In section 2.1 it was concluded that users behave in a diverse way and

every app could well have a different optimal learning scheme. Using multiple facets in learning

could thus prove useful.

2.3 Application: App Prefetching

Some researches conducted fairly recently have been about the same topic as this research

is covering, prefetching applications to reduce their load times. This section will discuss and

evaluate FALCON and PREPP, each of which show promising results. Furthermore a short

comment is made on this technology existing in iOS and Windows Phone 8.1 already.

2.3.1 FALCON

The research leading to the program FALCON [136] uses different features to determine what

app will be launched next. Firstly the authors distinguish between trigger apps and follower

apps. Trigger apps tend to trigger other (follower) apps in a session, like an SMS might trigger

a browser search. Besides that, location is used. The location where apps were used is clustered

and used as a feature. Furthermore the time can be of influence, both as the time of day or

using yearly and monthly timelines.

Using all of these features, FALCON trains a Cost-Benefit learner using a Knapsack model

and tries to decide what app to launch next. It then prefetches apps by calling the prefetch

process of an app, this process needs to be created for each app. If it is not available, FALCON

loads the default page of the app.

Evaluation

The idea of FALCON is very closely related to the approach in this research. Nevertheless some

improvements might be made. FALCON only starts predicting app launches once the first app

on the phone has been used, it thus isn’t constantly monitoring the phone and predicting what

app might be used next. These predictions are only done after a certain launch. Furthermore a

9

single model is learned that combines all of the features. Using different models might turn out

to be more accurate as every application and user might have their own characteristics.

Nevertheless, FALCON seems like a very good technique to predict app launches and reduce

their load times. Using agents that constantly monitor the system and actively predict even for

the first use of an app could improve results. With machine learning better predictions than the

statistical methods of FALCON can possibly be reached.

2.3.2 PREPP

In [91, 92] the authors propose a system called PREPP that solves the problem as follows: Given

a sequence of content-based apps that a user has used, and the times when the user has used

them, can we prefetch content in a timely manner while keeping overall network prefetch costs

low? They predict which app will be launched next and after what time using the past launch

sequence of apps. Crucial in PREPP is the time at which the next app will be launched. This

time has to be short enough to ensure freshness of the data. It is undesirable to prefetch an app

an hour before it’s used, since the data will be old.

Evaluation

PREPP is improving launch times a lot, but it only learns what will be the next used app. It

doesn’t learn a user pattern with respect to other features like for instance time and location as

FALCON did. For each time period and location, the pattern of apps used can differ. Say a user

always uses Google Maps at 17:30 to drive home. Then it doesn’t matter what sequence of apps

was used before, only the temporal aspect counts here. The sequence is only one aspect that

contributes a good prediction, other aspects might improve this further. PREPP most closely

relates to this research as it predicts applications at any given time. Besides that, it reports

some important results of FALCON as well. Therefore it can be used to compare results with.

2.3.3 iOS and Windows Phone 8.1

In iOS some form of background fetch already exists [131]. This function can be used by apps

to specify that iOS should try to prefetch specified data whenever it predicts the app will be

openened. iOS thus determines when an app is prefetched. Besides the information via the link

in the footnote, no information could be found regarding this. It is expected that agents aren’t

involved here. Besides Apple, Windows recently offers developers the chance to prefetch content

as well1. With regard to literature, the same holds as for iOS. With this lack of information, it

will be assumed no agent technology was used here either. These techniques can thus not be

used for evaluation, but are not expected to outperform recent literature on this topic.

1http://blogs.windows.com/buildingapps/2014/05/01/

10

http://blogs.windows.com/buildingapps/2014/05/01/

2.4 Application: Other

Besides predicting user behavior in mobile devices, other fields are interested in finding user

patterns as well. As these are closely related techniques, it might be beneficial to look at some

of these fields. Some applications of these techniques in other areas will be discussed here.

2.4.1 Extract Mental States

Several studies have been done to infer mental statuses of the user from usage data on a mobile

device. This could prove as an interesting intermediate step in inferring what a user will do.

These mental states might prove to be good predictors for app launches as well.

In [102] a system is proposed to retrieve user traits from a limited amount of applications

present on a mobile device. Another usage of these user patterns is discussed in paper [50]. The

authors propose a way to infer logical status of the mobile device from this data. Logical statuses

are statuses that say something about the state of the user, like isAlone or isBusy.

2.4.2 Privacy

Besides all the good things that come from using user patterns, there are also privacy concerns.

In [29] the authors use the found patterns to protect the privacy of a user by allowing them to

reveal a limited amount of information to a requesting service. This topic takes a very important

place in Artificial Intelligence and thus also in this research, especially where information is

heavily shared among users as is done in community learning.

2.4.3 Predicting Electricity Consumption

Recently, a study [58] has been done into predicting load on the electricity net for the next

day, considering patterns of previous days. The data on input is first clustered using a Self

Organizing Map (SOM) and predictions are done using an Artificial Neural Network.

2.4.4 Network Load

A study has been done to the diverse usage patterns of smartphone apps via network measurements

on a national level in the US [133]. From this the authors conclude that a considerable fraction

of apps is used in particular regions. This information can be used to optimize content fetching

time in LTE and WiFi.

2.4.5 Webpage Prefetching

PocketWeb [66] describes a technique to predict user browsing for mobile devices. It tries to

predict what website the user will visit next and load these pages before the user opens them.

60% of the URLs could be predicted within 2 minutes for 80-90% of the users. This is only done

though, for the 2 most used URLs. The authors argue this is because there is always a small set

of URLs that defines most of the usage. PocketWeb is an extension of Pocket Cloudlets [60]

11

that prefetched these pages at night while charging the phone. The biggest improvement is that

now it also works with dynamic content.

2.4.6 Media caching

The user experience on mobile devices can be enhanced largely by efficiently caching media.

These are large files that mostly need a lot of time to load. A study [2] has been done to how the

load of networks could be reduced. Besides that studies [27, 77] to cache advertisement videos

on mobile devices have been done as well. These show that keeping a cache for these videos

pays off well, predicting them could be beneficial in this area.

2.4.7 Storage

Although this research is seeking a different approach to improve load time of apps, storage

performance can greatly affect performance of several applications on smartphones as well. This

storage should be revisited to improve the performance as is reasoned in [59]. Another study

related to storage [82] and smartphone application launch was done by utilizing information

about I/O behavior. By studying reads and writes, a system is implemented that reduces

application delay by prioritizing reads over writes.

2.4.8 Energy Savings

Even though outside the scope of this research, a lot of research has been done to energy savings

in mobile devices [119]. For future work these considerations could be taken into account.

2.4.9 Smart Home

A more advanced approach to using user patterns in practice are smart homes. These homes

will learn the behaviors of its inhabitants and adjust all sorts of actions to it. These include

climate control, lights, music, etc. Intelligent agents are being applied to smart homes already.

MavHome [31] is proven to predict user behavior in homes accurately. This research could

eventually prove useful in the mobile domain as well.

2.5 Intelligent Agents in Mobile Devices

Already in 2005 researchers anticipated on the predicted importance of mobile devices and devised

the idea of using intelligent agents with them [86]. The authors investigate the possibilities

of agents and implement an application called Genie on a mobile device. This application

uses BDI agents to create a context-sensitive mobile tourist guide application. Various agents

communicate with each other in the system to provide predictions on what a user will want to

know and anticipate on that. The idea of using agents in mobile devices has thus successfully

been implemented, which emphasizes the usefulness of this notion in this research.

Another study implements intelligent agents for the Android platform [4]. The Andromeda

12

Platform is a result of this study and provides a platform for simple agents to be used in Android.

More on intelligent agents used in this research can be found in chapter 3.

2.6 Related Systems

Several works that relate to this work in a range from doing somewhat the same to being only

remotely related to the topic have been discussed. Besides this, other related systems that

perform similar tasks exist as well. Anticipatory systems and Recommendation systems are two

of these that could prove interesting to this research.

2.6.1 Anticipatory Systems

In [94] the difference between a predictive and an anticipatory system is made. An anticipatory

system is defined as follows: ”A system containing a predictive model of itself and / or its

environment, which allows it to change state at an instance in accord with the model’s predictions

pertaining to a later instant”.

The use of sensor data in context elicitation is discussed with a lot of examples of existing

anticipatory systems. A description of Machine Learning techniques used in various subjects is

available as well as an overview of what sensors can be used to identify which features. In the

article, context sensing domains and relevant machine learning techniques for it are evaluated.

For Activity Classification a lot of ensemble learners as well as Bayesian networks are suggested.

Besides that, for scene classification, K-means clustering is the most used approach. This may

give some insight in what to use when creating learning agents. The classification task could

classify which prediction agent works best.

2.6.2 Recommendation systems

Somewhat related as well are recommendation systems. Systems that recommend material based

on what a user has used in the past. It differs slightly because it predicts the possible interest in

new content, not existing content. Recommendation systems have been developed for mobile

devices, like AppJoy and GetJar. AppJoy [135] recommends applications to install based on app

usage of a user. GetJar [104] does the same thing, but in addition the authors created an entire

app store that utilizes this functionality to recommend new apps.

Collaborative Filtering is a dominant approach in these systems. The technique can be used

user-based (evaluate similarity among users) or item-based (evaluate similarity among items)

[17].

13

Chapter 3

Intelligent Agents

In order to create a system that predicts application usage and prefetches apps, a certain degree

of autonomy is needed. This autonomy is required since the system has to decide for itself when

to prefetch applications. Therefore the system needs to act proactively and has to react to

changes of its environment. All of these aspects hold for the notion of an agent as opposed to

objects we know from Object Oriented Programming. Wooldridge provides an introduction to

what Intelligent Agents are and how they can work together in a Multi-Agent System [128, 129].

The first subquestion posed in the introduction will be treated here:

SQ1: Which framework for intelligent agents can best be used?

This chapter will discuss what intelligent agents are. What different types of agents exist will

be treated in section 3.1. A framework to implement the system in is needed, since creating a

multi-agent system from scratch requires a lot of work. Various frameworks are discussed in

section 3.2. To create a multi-agent system in an appropriate way, a design methodology can be

used. Some of these are discussed in section 3.3. Finally the posed question will be answered in

section 3.4.

3.1 Types of Agents

In the literature on agents there is no universally accepted definition of an agent. Nevertheless

an attempt at it is made by Wooldridge [129]:

An agent is a computer system that is situated in some environment, and that is capable of

autonomous action in this environment in order to meet its design objectives.

An agent though, needs not to be intelligent. A thermostat is an often used example of an

agent that decides autonomously whether to switch the heater on or off. Although it is an

agent, it is not generally called intelligent. This notion requires some more capabilities that are

characterized by Wooldridge and Jennings [129]:

14

• Reactivity ensures that agents are able to perceive their environment, and respond in a

timely fashion to changes that occur in it in order to satisfy their design objectives.

• Proactiveness means that agents are able to exhibit goal-directed behaviour by taking the

initiative in order to satisfy their design objectives.

• Social ability states that agents are capable of interacting with other agents (and possibly

humans) in order to satisfy their design objectives.

To use agents, at least some intelligent behavior is needed. The agents need to react to their

environment which is the user of a phone, they need to be proactive in making decisions about

what apps to launch when and they have to be social to communicate with each other on their

predictions.

There are thus different kinds of agents available. The thermostat as discussed earlier is said

to be a purely reactive agent, one that responds to its environment directly. The more intelligent

agents are often realized using the intentional stance [35]. These agents are called BDI agents

and since they are the most sophisticated type of agent they are most interesting to use. BDI

agents will be discussed next.

3.1.1 BDI agents

The notion of BDI agents is based on the idea that there exist beliefs, desires and intentions in

practical reasoning. People have believes about the world, they have desires they would like to

achieve and a set of intentions that represent desires with a form of commitment. A procedural

reasoning system as depicted in Figure 3.1, can represent this model and summarize how a BDI

agent works.

Figure 3.1: A Procedural Reasoning System [128]

15

Via input that is retrieved using sensors the belief base of an agent is updated. Using these

beliefs and the desires the agent has, the interpreter selects a set of intentions that will be

executed. The interpreter can use the plan base to select plans needed to achieve intentions.

Being the most sophisticated agent at the moment it is researched a lot. Researches have

already devised an improved method to select plans in BDI agents [88] and to better validate

them [113]. Using BDI agents as the main agent for the system, there are not really any mistakes

that can be made. BDI agents can be used as purely reactive agents where necessary and are

capable of being extended to fully reasoning agents when desired.

3.2 Agent Frameworks

When implementing agents, a platform on which they can run is needed. There already exist

numerous platforms on which all sorts of agents can be implemented. Most of these frameworks

are JAVA-based to provide cross-platform functionality.

There is a lot of literature available on languages, tools and applications used in multi-agent

programming [20] and a survey to MAS programming languages and platforms [19]. These papers

were written a couple of years ago. This means that some of these are outdated, especially for

mobile device considerations. Besides these older ones, some have been expanded and improved

and they will be considered in this section.

First a number of assessment criteria will be devised on which the various frameworks that

are taken into consideration will be tested. Then the frameworks will be discussed, evaluated

according to the assessment criteria and explained to some extent. Finally everything is evaluated

and conclusions will be drawn on which framework to use.

3.2.1 Assessment criteria

In order to evaluate the various agent frameworks that exist, some criteria to assess them on

are required. These criteria will be listed here and can also be found in table 3.1 where the

comparison is made. Differences are made between crucial and desired aspects, the latter are

displayed italic in the table.

BDI

As seen in section 3.1 on Types of Agents, a BDI agent is currently one of the more advanced

reasoning agents. Since this type of agent could be used, support for it is required.

Mobile support

Since the goal of the research is to reduce app load times on mobile devices, these mobile devices

would ideally be supported directly by the framework. As the research doesn’t include any live

tests, but only a simulation, this is not a hard requirement.

Debugging

For quick and easy development, the right debugging tools are valuable. Since some frameworks

16

utilize multiple programming languages, some aren’t easily debugged. Again, this is a desired

property and thus not a hard requirement. If necessary, debugging can always be done by

printing the information needed to a console.

Community

A large community and widely used framework often provides more support for development in

the form of tutorials or internet fora. These communities can be important in the development

of the application when help is needed. A community is also a soft constraint.

Free

Of course the costs have to be taken into account as well. A free and open source solution is

preferred. This is considered a hard requirement as software tends to be expensive.

FIPA compliant

FIPA [54] is a developed standard for agent frameworks. This ensures that multiple frameworks

can work with each other. As only a single framework will be used it’s not crucial to have a

language that is compliant to the FIPA standards, but it is always a plus to have. Apart from

the expansion possibilities it brings, the standard ensures some rules are followed that are known

to be working and have been verified extensively.

3.2.2 JACK

JACK [6] is a popular agent platform that has been developed for quite some time already [52].

It comes with an entire own development environment(IDE). BDI agents are fully supported,

unlike mobile devices. A lot of tools are provided for debugging purposes and the community for

JACK is fairly large. Unfortunately it is a commercial product and thus not freely available.

Also, it isn’t FIPA compliant by default, but can be made this way using a plugin called FIPA

JACK.

3.2.3 Janus

Janus [56] is developed as the Virtual Machine for SARL. SARL is an agent programming

language designed to make agent development faster and easier [100]. It fully supports Java via

which other APIs can be accessed eventually. BDI agents are supported, but no explicit support

for mobile devices is available. Furthermore debugging can be done via java when the agents are

created using the SARL language. The community is small though and the product has been

developed only recently. Finally it is freely available and FIPA compliant.

3.2.4 JADE

JADE [117] was the first framework to be developed and is the most used one in the research

field as well. A comparison of various JAVA-based agent platforms done in 2003 [122], concludes

that JADE is the best option to use. Furthermore some lessons learned from using JADE are

discussed in [12].

17

Basically JADE provides a platform for agents to run on, communicate on, find each other

and their services and all that in a cross platform manner. BDI is not supported in JADE, but

several expansions on it exist that do support this and will be discussed below. Mobile devices

are also supported via an extension called JADE-LEAP. Using this, agents can run on the device

itself the same way as JADE runs on PCs, or it can be used as a front end with a PC as back

end. Support for Android phones [15] and Windows Mobile .NET is provided. The Windows

Mobile platform is deprecated though and replaced by Windows Phone which is not explicitly

supported. Besides that, agents here cannot reside on the device but the app can only connect

to an agent network externally.

Various debugging tools are available to JADE developers and the community is quite big.

A lot of tutorials, internet fora and also a book on Jade from 2007 [13] is available. JADE is

freely available and completely FIPA compliant. Besides all this various extensions have been

developed for it, these include JESS, BDI4JADE, 2APL and JADEX. Most features of JADE

hold for these extensions as well, only exceptions will be mentioned. Over the years, JADEX

has been separated from JADE and now runs in its own environement. Because of this JADEX

will be discussed in a separate section.

JESS

Jess [101] is a rule-based reasoning engine that can easily be used to add intelligence to JADE

[10]. It only provides the reasoning part of a BDI. Jadex actually uses the RETE functionality

used in JESS for the implementation of its production rule system.

BDI4JADE

BDI4JADE [11] is exactly what the name says, a BDI layer built on top of the JADE framework

[85]. It uses Java only, just like the newest version of Jadex. Since its initial launch this framework

was updated with capability relationships as described in [84]. Unlike Jadex, BDI4JADE still

works with JADE itself. Its community is small and the framework is used by only very few

people, partly because it was released fairly recently.

2APL

2APL [1] is a BDI multi agent programming language built on the JADE platform [33]. The

framework seems to be a bit more popular than BDI4JADE, but isn’t as popular and broadly

used as Jadex. Besides that, it has no explicit support for any mobile devices apart from via

JADE.

3.2.5 JADEX

Jadex is a framework that provides for the implementation of BDI agents in Java [24, 25]. It

can work in a standalone version as well as with JADE by using it as a middle layer. For a long

time, Jadex worked with XML to specify its agents’ beliefs, goals, etc. This reduced the ease

with which other existing applications could be used from within the agent and made testing

18

more difficult. Recently though, Jadex has been upgraded to work with Java only [96], therefore

simplifying the use of external API’s inside the agents. (This update also resulted in Jadex

only being able to run as a standalone package, thus there is no integration with JADE possible

anymore.)

Jadex is being developed for quite some time already and because of that provides many

tutorials and support for development. It has been used in various applications and can be used

with Android. For this purpose other tutorials are available for use with the standalone version.

It also has a fairly large community and many users based on the amount of downloads on

SourceForge1, the website they distribute their software on, and the fora found on the internet

regarding this topic.

3.2.6 Jason / AgentSpeak

AgentSpeak has been one of the most influential abstract languages based on the BDI architecture.

Jason has been created as the first fully-fledged interpreter for a much improved version of

AgentSpeak [57]. A book has been written about programming a MAS in AgentSpeak using

Jason [21]. This combination thus provides BDI functionality and via the possibility to run

Jason on JADE has the possibility to run on mobile devices. Furthermore a plugin to Eclipse or

even a separate IDE called jEdit is provided via which debugging is made more easy. Also FIPA

compliancy can be guaranteed via JADE and the community for Jason is quite large.

3.2.7 Evaluation

Table 3.1 shows all discussed aspects for each of the frameworks mentioned. The first two

columns, not written in italics, represent the hard constraints while the others form the softer

ones. Jadex and Jason are the only frameworks that support all demands that were required and

desired. They have a larger community which gives them a slight advantage over BDI4JADE

and 2APL. From the two, Jadex is chosen to provide the BDI agent functionality in the system.

BDI Free Mobile support Debugging Community FIPA compliant

JACK
√

X X
√ √ √

Janus
√ √

X
√

-
√

JADE X
√ √ √

+
√

JESS X
√ √ √ √ √

BDI4JADE
√ √ √ √

-
√

2APL
√ √ √ √

O
√

Jadex
√ √ √ √ √ √

Jason
√ √ √ √ √ √

Table 3.1: Comparison of agent frameworks

1http://sourceforge.net/projects/jadex/

19

http://sourceforge.net/projects/jadex/

As it is difficult to assess the various measures for each framework, the provided table is to be

considered a guideline. The aspects measured are all taken from the corresponding literature or

via an internet search on the topics.

3.3 Development Methods

Since the design of a multi agent system can be a very complex task, development methods

exist that are often very useful in constructing these new systems. A lot of these methods are

discussed in the Handbook on Agent-Oriented Design Processes [32] by Cossentino et al. Some

of the most interesting methodologies for our purpose will be discussed here, along with another

called Prometheus, which is not described in the book. Finally a short evaluation will be given.

3.3.1 Methodologies

The most appealing methodologies will shortly be discussed. These include GAIA, Tropos,

Prometheus and an Agile Multiagent Software Engineering methodology.

GAIA

Gaia is the oldest methodology described. It was developed by Wooldridge et al. and is applicable

both in the macro-level (societal) and the micro-level (agent) aspects of systems [130, 137]. The

original method has been expanded to work with agent design and iterative development by

Gonzalez et al. [46]. Besides this expansion, a lot of work has been done in the usage of Gaia

for engineering JADE agents [78, 79, 80, 16], as we have seen in the previous section. As is the

case with a lot of existing software solutions, chances are that a multi-agent system has to be

adapted after deployment. How to handle this in the Gaia methodology is discussed by Cernuzzi

et al. [28].

Tropos

Tropos as discussed in [32] provides a way to develop BDI agents including a tool to create them

in Jadex. Jadex has been the framework of choice, making Tropos a good match. Tropos also

provides support for a macro and micro-level of designing. It goes even further by enabling the

developer to generate Jadex code.

Prometheus

The Prometheus methodology [89] can be used to develop BDI agents. It provides three

design phases: system specification phase, detailed design phase and architectural design phase.

Prometheus is applied in the development of agents for the JACK agent platform. The idea of

this is similar to Tropos. Prometheus though was developed for JACK, a framework that isn’t

used.

Agile Multiagent Software Engineering

When working in a team on a single software product, agile is an increasingly popular development

method. This method can also be applied to multi-agent systems as is done by Domann et al.

[37]. This doesn’t provide a true alternative to the other methodologies as there will not be

20

a team of developers. The agile way of working though is interesting nevertheless and can be

applied in the creation of this system.

3.3.2 Evaluation

All discussed methodologies provide a good guideline for agent development. Since the system

developed will not require a very complex configuration, most development methods will suffice.

Since an Agile approach provides a flexible way of developing the system, this will be adopted at

implementation. Taking into account that Jadex is the framework of choice (see section 3.2),

Tropos is considered the most suitable choice as it is designed to work directly with it.

3.4 Conclusion

This chapter was concerned with determining how agents can be used in the research. There exist

various types of agents, from reactive to intelligent. The type that was chosen, BDI, supports the

intelligent aspects of agents, but is also capable of use in a reactive way. Next an evaluation was

done between various different agent frameworks. Most of these frameworks provided the most

important aspects required. Only two of them though, Jadex and Jason, satisfied all constraints

that were identified for the platforms. From these two, Jadex was chosen. Finally Tropos will

be used to design the macro level of the agents and the more detailed design of each separate

agent. Among other options for these design methodologies, Tropos fitted best with the choice

for Jadex.

21

Chapter 4

Machine Learning

In order to create a system that learns from past behavior of a user, some form of artificial

learning is needed. Different types of learning that exist in the literature on machine learning

will be discussed and some algorithms from relevant sub-fields reviewed. Besides the standard

ways of machine learning, there exist many interesting alternative methods. Also, some great

improvements can be obtained when combining multiple learning entities in a form of cooperative

machine learning. Finally, in order to implement these techniques, some existing programs might

be used, reducing the programming effort required.

The second subquestion posed in the introduction will be treated here:

SQ2: What kind of machine learning should be used in the agents?

To discuss all of these topics this chapter is organized as follows. First the 3 types of machine

learning will be discussed in section 4.1. From this a type of machine learning is identified as

relevant for the system, namely reinforcement learning. This form of learning will be treated

more elaborately and some aspects needed will be identified here. Having discussed which type

of learning is required, various reinforcement learning algorithms are treated in section 4.2 and

some interesting alternative methods in section 4.3. Furthermore, since cooperating agents might

prove very useful, section 4.4 discusses cooperative machine learning. Finally some software

libraries regarding machine learning are mentioned in section 4.5 and an evaluation of the chapter

and discussion of what will be used can be found in section 4.6.

4.1 Types of Machine Learning

In the current literature, a distinction can be made between three types of machine learning:

supervised, unsupervised and reinforcement learning. In supervised learning, the learner receives

example inputs along with their outcomes and should learn to map the inputs to the correct

outputs. In unsupervised learning the desired output is not known and thus the learner has

to find a structure in the input by itself. Finally reinforcement learning requires a learner to

achieve a certain goal in a dynamic environment, without some teacher explicitly stating what is

correct but only giving an indication of whether it has come close to this goal.

22

When predicting app launches, the correct output for the given input is unknown beforehand,

rendering supervised learning not applicable. Even stronger, because the behavior of the user

is changing there will never be a universal truth as to what prediction is correct. Thus data

can never be labeled, the correctness can only be guided by evaluating a measure of accuracy.

Unsupervised learning is not applicable either since it works without any label, error or reward

signal. There is a way to evaluate the results though, by using the time an app was launched by

the user. In summary there is a clear goal, the environment is dynamic and while there is a

way to evaluate the results, the outcomes aren’t explicitly stated. From this it is concluded that

reinforcement learning needs to be used to learn the behavior of a user. A short explanation of

it will be given next, followed by an overview of its aspects.

4.1.1 Reinforcement Learning

As discussed before, reinforcement learning can be defined as learning without the existence of a

teacher that provides ’training examples’. Only experience can be used to evaluate results. In

reinforcement learning agents [99] a mathematical formalism is often used to ease the analysis

of systems. This formalism is called a Markov Decision Process (MDP). In an MDP the

environment is modeled as a set of states and actions can be performed to control the system’s

state. The goal is to control the system in such a way that some performance criterium is

maximized [125]. This performance criterium can be expressed as the reward received from

performing an action in a certain state.

Even within the field of reinforcement learning, numerous different types of learning exist.

The most important aspects that can be identified in these various algorithms will be discussed

next, along with an evaluation of the aspects needed.

4.1.2 Aspects of Reinforcement Learning

In order to effectively evaluate what algorithms within the domain of reinforcement learning are

needed, some aspects of these will be discussed. For every aspect a short description is given as

to whether it will be useful or even necessary. These aspects will eventually be used to assess

the algorithms discussed in section 4.2.

Markov Condition and Uncertainty

Reinforcement learning often assumes that a condition called the Markov Condition holds on an

MDP. This condition states that any observation made by an agent must be a function only

of its last observation and action (plus some random disturbance). When observations made

by the agent are not sufficient to summarize all information about the process, the history of

observations and actions has to be taken into account as well, resulting in a non-Markovian

condition. Furthermore there can be uncertainty present in state transitions. Some algorithms

are able to explicitly model this uncertainty.

It’s likely that the Markov Condition will not hold for this system. The reading of some sensors

will never be sufficient to represent the entire state of a human using a smartphone. This results

23

in uncertainty in state transitions. It is thus desired to be able to deal with uncertainty, mostly

because of the lack of observability. This observability will be treated next.

Full vs Partial Observability

Full observability of an MDP is reached when an agent always has the ability to distinguish a

certain state over another. When the environment cannot be observed fully by an agent though,

because of a lack of decent sensors for instance, the environment is said to be partially observable

and an agent might not be able to distinguish between all states. Such processes involving partial

observability are called Partial Observable Markov Decision Processes (POMDP) [109] and they

imply non-Markovian observations.

The action of opening an app will by far not be the only action that results in the environment

entering a certain next state. Starting a browser search for instance could follow from something

read on paper and have nothing to do with any observations made on the phone. Because the

environment thus is only partially observable, algorithms that require full observability of the

MDP are less preferable as they will most likely perform worse.

Model-free vs Model-based

In reinforcement learning it is useful to have a model, so that you know which states exist and

how state transitions work. When this is available, model-based algorithms can be applied.

These algorithms assume that such a model is present. In many complex systems though, such a

model is not available. Whenever this is the case, model-free reinforcement learning techniques

have to be used.

An explicit model of the environment is not available initially in this system. This requires one

to focus on model-free reinforcement learning. Since the system will be only partially observable,

such a model will never be able to be determined either. From this it is concluded that being

model-free is a crucial aspect of the algorithm.

Offline vs Online

Learning can be done in an online or offline fashion. Online means that the agent alters his

decisions while performing actions in the environment, so he is learning while acting. Offline

learning means a simulation is run for the agent to learn from. This requires knowing the model

of course. Whenever possible offline learning can be very practical since a simulation can be

done numerous times without having to use the actual system yet.

Since a real-world entity has to be modeled in this system, online learning is required. As there

is no model of the system available, it was concluded before that learning has to be model-free.

Offline learning isn’t even possible when there’s no model available, as no simulation can be run

in this case. Being able to learn online is therefore a crucial aspect.

24

Exploration vs Exploitation

A very important aspect of reinforcement learning is the trade-off between exploration and

exploitation. Of course the learned information should be exploited to predict future events

more precisely, but especially in a dynamic environment it is very important to keep exploring

other options. This is needed to keep the policy up-to-date, but also to be able to improve the

policy. Without exploration, the system is generally not able to improve.

This trade-off between exploration and exploitation is ever present and discussed broadly in

the domain of reinforcement learning. Because of the dynamics of this system, exploration will

be very important. The used policy has to be able to alter quickly. Nevertheless, exploitation is

necessary to be able to learn patterns in behavior. This leads to believe no explicit conclusion

as to what is more important can be reached beforehand. Since all algorithms account for this

trade-off, this aspect will not be considered in the evaluation of the algorithms.

Fixed, Indefinite or Infinite Horizon

A distinction is often made in the types of tasks that can be performed by an agent in an MDP.

A type means the number of actions to be performed before the goal is reached. One type is

finite, fixed horizon tasks. These use a fixed number of steps to reach a goal state of the MDP.

In indefinite horizon tasks, action profiles can have arbitrary lengths but by using goal conditions

they can come to an end. Finally in infinite horizon tasks the system does not end at all.

For the system it is fairly clear to see that infinite horizon is the way to go. A goal state or

goal condition upon which the system ends is not known. Predictions on user behavior are never

finished as the user keeps using his phone.

On-policy vs Off-policy

Another aspect of reinforcement learning details how policies are investigated by an algorithm.

A policy is simply the rules used by an agent to select an action from a certain state. Learning

can happen on-policy or off-policy. On-policy means that only the current policy of the agent is

evaluated. To ensure exploration, this policy should be altered from time to time. A benefit of

this technique is that it will run fast, but a downside is that exploration is less involved as in

off-policy techniques. Using off-policy namely, besides only the action belonging to the current

policy, other actions are investigated as well. This ensures a broader investigation of possibilities,

but requires more computing time.

Whether on- or off-policy learning is more desirable is not clear entirely. On-policy ensures

that the algorithm runs fast, resulting in small computing overhead and quick decisions. On

the other hand off-policy learns far faster as it evaluates multiple actions at the same time.

Since computing overhead is outside the scope of this research and the speed of learning is of

great importance in the fast changing environment of mobile phones, off-policy learning will be

preferred.

25

Continuous vs Discrete Space

An MDP has various states and actions that can be performed from these states. These states

and actions can be represented by continuous or discrete variables. When continuous variables

are used, the state space is often infinite. An algorithm either can or cannot cope with these

continuous or infinite spaces of actions and states.

Since states are defined from sensor data retrieved from the phone, they are represented

by somewhat continuous data (the digital sensor discretizes the values technically). Besides

continuous states, continuous actions are used as the actions consist of an app and time to

launch it (time is continuous). Nevertheless, all of these input variables can easily be discretized

so that finite states and actions are the result. An example of discretizing can be given in

time. All time units that happen in one minute can be classified to belong to that minute per

week. So everything between 10:20 and 10:21 on a Wednesday belongs to a single state. Besides

discretizing the space there are other methods to deal with continuous state and action spaces

[120]. Thus these aspects of continuous and infinite spaces aren’t crucial in our system. Being

able to handle these spaces can be desired though, as values then do not have to be discretized.

Conversion Speed

The conversion speed of an algorithm denotes the time it takes for the algorithm to converge

to a hopefully optimal policy. Algorithms ideally would search the entire space elaborately to

find the optimal policy and converge quickly as well, but this will always be a compromise to a

certain extent.

In this application it is desirable to have a high conversion speed. Smartphone users may often

delete or add applications and expect apps to work quickly. This implies that it’s required to

learn patterns as soon as possible. Nevertheless, conversion to an optimal policy will never be

possible, since the optimal policy will most likely not exist. Or if it exists, the agent will not

find it due to a lack of observability of a smartphone user. It is thus required to have a fast

conversion speed.

4.2 Reinforcement Learning Algorithms

The previous section concluded that reinforcement learning will be used. Thereafter a description

of the various aspects was given. Now the various algorithms that exist within this field will

be discussed. Figure 4.1 shows a general algorithm that holds for these features just discussed.

This gives a very rough outline of how the algorithms mentioned in this section work. In the

algorithm all occurrences of the ’S’ stand for state, ’T’ for time, ’R’ for reward and ’Q’/’V’ for

quality/value of a state.

First the most basic techniques, namely those using Temporal Difference Learning will be

discussed. After that some other interesting reinforcement learning algorithms will be treated,

some of which are taken from [125] and [115]. Finally an evaluation using the aspects discussed

in section 4.1 is done to conclude on the found algorithms.

26

Figure 4.1: A general algorithm for online Reinforcement Learning [125]

4.2.1 Temporal Difference Learning

The main idea of temporal difference (TD) learning [114] is that learning values can be updated

while not finished with a trial yet. These TD methods thus learn their value estimates based on

estimates of other values, a process called bootstrapping. No model of the MDP is needed and

they can be applied online without having to sweep the entire state space. The most basic and

popular method to estimate Q-value functions in a model-free fashion is by using Q-learning.

Q-learning is an off-policy learning algorithm, algorithms like SARSA and Actor-Critic Learning

are variants on it that work on-policy. These thus learn the Q-values of the policy the agent is

actually executing. Benefit of these is that there is no need to evaluate all actions’ Q-values.

Q-learning

Using Q-learning [123], an agent can estimate a model of state transition probabilities of the

environment, but the state transition probability must be fixed (so the environment should be a

Markov Decision Process). In order for this to apply, the behavior of a user on his phone has to

be modeled by a Markov Decision Process. There exist successful attempts at predicting human

intent using MDPs [69], so there is good reason to believe Q-learning can be used. Q-learning

then estimates Q-values for actions based on the reward it receives for these in a certain state.

Basic Q-learning does not support partial observability or dealing with uncertainty and it works

only with finite state/action spaces.

There have been several extensions developed for Q-learning. Some that focus on the balance

between exploration and exploitation, like Bayesian Q-learning [34] and SA-Q-learning [49].

Other examples of extensions are Speedy Q-learning [9] that seeks to speed up convergence

and GQ(λ) [67] that addresses policy selection. As Q-learning learns values for each possible

action simultaneously, learning can happen quite fast, depending also on how the parameter for

learning rate is set.

27

SARSA

SARSA is closely related to Q-learning, but it incorporates on-policy learning. So the agent will

always follow the current policy and exploration has to be done on a higher level by changing the

policy from time to time. SARSA is said to be especially useful in non-stationary environments

where one will never reach an optimal policy. It is also useful if function approximation is used,

since off-policy methods can diverge in these cases [125].

Because of its off-policy learning, only a single action is evaluated per state. It takes SARSA

a long time to evaluate all possibilities and thus learning is quite slow. This is the case in this

problem domain assuming no prior knowledge is present. With prior knowledge implemented,

SARSA could perform better.

Actor-Critic Learning

Actor-critic learning represents another class of algorithms that precedes Q-learning and SARSA.

This type of learning separates the policy from the value function. An advantage of this is when

there are many actions or the action space is continuous, there is no need to consider all actions’

Q-values to select one. Furthermore they can learn stochastic policies naturally and can use a

priori knowledge about policy constraints [125].

Actor-Critic learning again uses off-policy learning, which learns slower than on-policy as

explained in the section on SARSA.

4.2.2 Batch Reinforcement Learning

Originally, batch RL required a set of transition samples to be known a priori from which the

learning system then derives a solution [61]. It was originally intended for supervised learning

only. Later though it was revisited to work without an a priori fixed set of training experience.

The benefits coming from this are stability and data-efficiency. Compared to Q-learning, batch

learning converges significantly faster and thus has more use in real-world systems.

One of the benefits of batch learning is that it handles the problem of exploration overhead

via experience replay. In learning Q-values, when the value of state st changes, the value of

st−1 changes only when this state is visited again. So it takes a long time for this updated value

to propagate back through the state space. To speed this process up, ’experience replay’ was

introduced. This involves replaying state transitions using observed data as if they were new

observations.

Other problems that are overcome using batch RL are inefficiencies due to stochastic ap-

proximation of values and stability issues when using function approximation. Besides this the

algorithm is reminiscent of the typical temporal difference learning algorithms as it uses these,

only then more often by learning in batches.

28

4.2.3 Bayesian Reinforcement Learning

When determining the behavior of a user on his smartphone, a lot of uncertainty in state-

transitions arises. Probably many of these transitions will be correct (e.g. traveling from work

to home) but they will always remain uncertain. To deal with uncertainty, Bayesian networks

can be used. ”Since Bayesian learning meshes well with decision theory, Bayesian techniques

are natural candidates to simultaneously learn about the environment while making decisions.”

[121]. As a sidenote it should be mentioned that uncertainty in state-transitions is not present

when working with time for example. The fact that time progresses is deterministic and as this

feature will be the only one used in this research, dealing with uncertainty is not yet a crucial

feature. It could become so when for example location is used.

Multiple algorithms have been developed in this field. These can be categorized as value-

function based or policy gradient algorithms. Some algorithms for each of these categories will

be discussed. As these are more sophisticated methods, they can become more difficult to

implement and fully understand. This research covers more than just machine learning which

could make these algorithms unfeasible to use due to time constraints. They will be covered

shortly nevertheless, possibly for future work.

Value-Function Based Algorithms

Value-function based algorithms search the space of value functions to find an optimal value

(action-value) function.

An algorithm in this class that works with discrete state and action spaces is Bayesian

Q-Learning (BQL). As the name hints, it is a Bayesian approach to the popular Q-learning

algorithm. Here exploration and exploitation are balanced by explicitly maintaining a distribution

over Q-values to help select actions. In its original form BQL algorithms can only be applied to

MDPs with finite state and action spaces.

As an extension to BQL that can handle continuous state or action spaces, Gaussian Process

Temporal Difference Learning (GPTD) was proposed. Where the sum of discounted rewards for

a state-action pair is modeled by a Normal distribution in BQL, a Gaussian is used in GPTD.

Furthermore using a Gaussian process, infinite state and actions spaces are accomodated using

infinitely many Gaussians over the Q-value of a state-action pair.

Policy Gradient Algorithms

Policy gradient algorithms maintain a parameterized action-selection policy and update the policy

parameters by moving them in the direction of an estimate of the gradient of a performance

measure. They are proven to work well with partial observability. The largest problem in

this field though is the high variance of the gradient estimates, mostly due to the reliance on

Monte-Carlo (MC) techniques. As a Bayesian alternative to this, Bayesian Quadrature (BQ)

was introduced which outperforms MC in terms of mean-squared error by orders of magnitude.

29

An algorithm in this domain is the Bayesian Policy Gradient (BPG) method. This method

casts the problem of estimating the gradient of expected return as an integral evaluation problem,

and then uses the BQ method. The algorithm starts with an initial set of policy parameters and

updates these parameters in the direction of the posterior mean of the gradient of the expected

return, as calculated by the BPG evaluation procedure.

4.2.4 Evolutionary Reinforcement Learning

Evolutionary algorithms use the process of natural selection to solve optimization problems.

These algorithms can be used for discovering high-performing reinforcement-learning policies.

[47, 124]

The evolutionary methods are evaluated to perform well with partial observability and con-

tinuous action spaces. Furthermore with the use of hybrid methods, the computation power

needed is less than for temporal-difference methods. The only downside is that these techniques

are mostly used in offline learning. There has been promising research in the online learning

area, but there are still some critical challenges ahead for this. Since these techniques are not

profound enough, they will be assumed as only available in offline learning.

4.2.5 Evaluation of Algorithms

A selection of reinforcement learning algorithms has been discussed and shortly explained. Since

no model is available, all methods evaluated work without one and are thus model-free. A

comparison chart was made in Table 4.1 with the criteria that were discussed before.

supports infinite

online learning off- partial deal with state/action

learning speed policy observability uncertainty space

Q-learning
√

+
√

X X X

SARSA
√

- X X X X

Actor-Critic
√

- X X X
√

Batch RL
√

+
√

/ X X X
√

/ X

BQL
√

+
√

X
√

X

GPTD
√

+
√

X
√ √

BPG
√

+ X
√ √

Evolutionary X
√ √

Table 4.1: Comparison of RL algorithms

The evaluation was set up as such that all green fields are desirable options. Meaning that one

can simply refer to the table and search for green fields. The yellow fields for batch reinforcement

learning mean that these class of algorithms depend on the underlying algorithm used. When

reading the table though, keep in mind the importance of a field. The fact that learning is done

in an online fashion is crucial and also the learning speed is considered crucial in the mobile

30

domain, therefore these fields are made bold. All of the other factors are desirable and thus

negations here might be permissible via a workaround. The italic features are of least importance

as they either are not applicable yet when only learning based on time (uncertainty) or they are

very easily worked around. Some gaps exist where papers didn’t state clearly whether this was

or was not a feature of the algorithm.

From the table it can be concluded that 3 algorithms (SARSA, Actor-Critic and Evolutionary)

do not satisfy the most important bold constraints. Furthermore one can see that the Bayesian

algorithms (BQL, GPTD and BPG) have a few more green italic fields. These though are of

very minor importance for this research. Besides that Bayesian Reinforcement algorithms are

far more complex and used very little in recent literature yet. This was explained in section

4.2.3 on Bayesian Reinforcement Learning. As this research considers more than just machine

learning and the advantage is only very minor, the more proven methods are deemed favorable.

This leaves only Q-learning and Batch RL. Batch RL though, only has a green field for

off-policy if Q-learning is used underneath instead of Actor-Critic. So basically both algorithms

will use Q-learning, where the only difference is the fact that Batch RL more often repeats

samples gathered that Q-learning only processes once. Since Q-learning is the core of this and

will be used anyway, this algorithm is chosen for this research. When deemed valuable it can

easily be expanded to Batch RL by reentering old data entries in the algorithm. In future work

the more complex but possibly slightly better bayesian algorithms can be considered.

4.3 Alternative Learning Methods

Besides the regular machine learning techniques, alternative methods exist to let agents learn

about their environment. This chapter will discuss Motivated Learning as an alternative to

reinforcement learning. Then learning policies in BDI-agents will be discussed and finally a short

comment on the transfer of learning experiences is made.

4.3.1 Motivated Learning

In reinforcement learning, the learning effort and computational cost increase significantly with

the complexity of the environment. This turns optimal decision making intractable in these

complex environments. Using a network of interdependent motivations, goals and values that

the machine learns while interacting with the environment, a new learning strategy is described,

Motivated Learning [111]. From Motivated learning, embodied intelligence is produced. An

agent that uses motivated learning is called a Motivated Embodied Intelligence (MEI) agent.

These agents resemble BDI agents a lot. The main significant difference between the two is that

while the motivations of BDI agents are predetermined by the designer, MEI agents create their

own motivations to act and learn how to implement their goals.

In 2013 the author performed a successful simulation in a 3D game with an MEI agent [112].

Furthermore a comparison chart with reinforcement learning is provided in Figure 4.2.

31

Figure 4.2: Comparison between reinforcement learning and motivated learning [111]

4.3.2 Learning Plans in BDI Agents

Learning in BDI agents often is about learning what plans are appropriate. When the environment

changes, different plans might become more interesting and thus it is desired that the agent

learns to use different plans. [48, 107].

Previous work [108] has combined decision trees with BDI agents to enable BDI agents to

learn from past experience. This way the effectiveness of their plans can be evaluated and altered

over time. This approach will probably not be useful in this research, since the problem will not

contain a vast plan base from which an agent can learn different plans. The only type of plan an

agent can choose is to launch an app at a certain time, with variables being what app and at

what time.

4.3.3 Transfers in Reinforcement Learning

Since the system might have multiple predictors acting at the same time, they can share their

results and experience with each other. Research has been done to these types of transfers in

reinforcement learning [63]. The agents can share parameters they’ve learned that work well

with each other for example. This has been done in community learning as discussed in related

work. This research will not involve any of this, but future work could take it into account.

4.4 Cooperative Machine Learning

Besides predicting app launches based on various input types, this research also wants to combine

multiple predictors and evaluate their performances in some kind of assessment agent. Since the

performance of agents will likely alter with changes in the behavior of the user, these evaluations

differ constantly. When an app launch is predicted by a predicting agent, the accuracy measure is

known as soon as the user acts. The quality of such a prediction agent can then be learned using

reinforcement learning. This learning via multiple agents can improve reinforcement learning

[14].

In their paper on cooperative machine learning [90], the authors describe two types: team

learning and concurrent learning. Team learning applies a single learner to search for behaviors

32

for the entire team of agents. Concurrent learning uses multiple concurrent learning processes.

Within team learning, a distinction can be made between homogeneous and heterogeneous

agents. Homogeneous means that all agents are assigned identical behaviors, while not being

identical perse. Heterogeneous agents have a certain skillset and thus differ in behavior. Ho-

mogeneous is especially interesting when no specializations of agents are required, or when the

search space is too large to use heterogeneous agents. Finally hybrid team learning provides a

way to combine both.

In concurrent learning, typically each agent has its own unique learning process to modify its

behavior. Concurrent learning may be preferable in those domains for which some decomposition

is possible and helpful. The question then is whether this holds in the problem domain of this

research.

Concurrent learning using homogeneous agents seems to be the best approach in this domain.

As all agents eventually perform the same tasks, but all in a different way, homogeneous agents

are needed. The following section will elaborate on the choice of concurrent learning. When using

multiple learners, credit can be assigned to them according to their work done or performance

reached. This will be discussed in the section on credit assignment. Whether this is needed is

doubted as each predictor learns how well it performs on its own using reinforcement learning, but

the principle is closely related and might be used. Furthermore, ensemble learning is discussed

as an example of dividing the learning task.

4.4.1 Concurrent learning

Concurrent learning projects a large joint team search space onto separate smaller ones, thus

reducing computational complexity. Furthermore, breaking the learning process into smaller

chunks permits more flexibility in the use of computational resources to learn each process,

because they may be learned independently of one another.

Most research in finding user patterns recently focuses on learning independent aspects of a

user. For instance only keep the application launch sequence in mind like PREPP [92] or learn

multiple aspects concurrently and combine them later [134]. This would give rise to the idea

that the learning process can be decomposed.

Benefits of this technique are that mobile resources are sparse and can then be used more

flexibly, disabling them when the mobile device is running out of battery. Furthermore the

computational complexity would decrease, which again is preferable considering the limited

resources of mobile devices.

Usually in concurrent learning, the problem of multiple learners occurs. This means that

when multiple agents are acting in an environment, the fact that one of them learns can affect

the others as well. This problem is avoided in the current domain since the environment will

technically not be altered by the agents. The agents learn behavior of a user, but they do not

enforce or change any of this behavior.

33

4.4.2 Credit Assignment

There exist various ways to assign credit to the different learners in concurrent learning. Global

reward gives all learners equal reward, regardless of how they contributed. But in order to

reward good learners and punish others, reward can best not be divided equally.

A possible way to do divide the credit is by using local reward. It assesses each agent solely on

its individual behavior. This way it discourages weak agents because they will receive few reward.

A downside is that agents will have no rational incentive to help others, which will result in the

development of greedy behaviors. This doesn’t have to be a problem in this research though,

since each learner should be best in its own case and its not preferable for an agent to perform

worse in order to help others. That is because the predictors do not depend on each other for

their performance. In problems where this is the case, it could be preferable for agents to let

some of their performance drop in order to improve that of others. Here this is not applicable.

It is argued that local reward increases homogeneity in teams, which suggests that the choice

of credit assignment should depend on the desired degree of specialization. Since in this research

the agents are basically required to do exactly the same (namely predict behavior, only in

different ways) homogeneity is desirable and thus local reward is a good way to go.

Besides local reward, many other techniques have been developed. One other way to evaluate

agents’ performance is to evaluate how the team would have performed if the agent had never

existed [127].

Assessing Agents

Besides dividing the credits well, the agents have to be assessed in order to determine their

value. In [64] a way to assess which of multiple criteria influence the real user’s assessment is

presented. It proposes an Adaptive Multi-Agent System and compares it to other standard

learning algorithms like Neural Networks and Support Vector Machines. A desired way to assess

the quality of cooperating agents in the final result is described. If an agent (criteria) performs

well, its weight goes up. When results turn out negative, the agents (criteria) that had most

influence on the outcome are punished most by having their weights reduced.

Various studies have been done to different kind of comparison techniques [44, 62]. For instance,

eigenbehaviors present a way to compare different behavior patterns between users [39]. Since

they are vectors, they can easily be evaluated using euclidean functions. In this research, local

reward can be used based on the error the agents made in their predictions. To possibly improve

the system, other techniques as described here could be tried.

4.4.3 Ensemble Learning

In ensemble learning, multiple models are learned independently of each other and later combined

to create a better hypothesis as opposed to a single model [76]. This is most common in supervised

learning. Some sort of ensemble learning is done by Darwin Phones [74]. The paper is about

34

classifying context on multiple devices and combining these by using model pooling (sharing

models between devices) and let them perform collaborative inference. For this research it

doesn’t seem as interesting though, mainly because ensemble learning is often used for supervised

learning. The application found in Darwin Phones differs in that it combines models from

different devices. There do exist efforts though that apply ensemble learning in RL, mainly

because of it’s often proven improvement over learning with a single model.

Ensemble Learning with Reinforcement Learning

Ensemble learning and reinforcement learning have been combined in the past. The general idea

is to let several homogeneous or heterogeneous reinforcement learning algorithms run at the

same time and combine their efforts. In [68] it is shown that this tactic can be very effective and

result in rewards that are better than every separate RL algorithm.

Research has been done where five different RL algorithms (Q-learning, Sarsa, Actor-Critic,

QV-learning and ACLA) have been combined using ensembles in four different ways [126].

Besides this one there exist several others that have succesfully applied this approach [41, 93].

This research thus has good reasons to believe the combining of different prediction agents will

have a positive effect.

4.5 Libraries

To use machine learning, one could of course implement the algorithms themselves, but this

will not always be necessary as there exist numerous libraries that implement these learning

techniques. To ensure cross platform operability, most researchers and with it most of these

techniques are implemented in Java. This section will briefly discuss three of these, WEKA,

RL-Glue and Azure ML.

4.5.1 WEKA

WEKA is a machine learning API, written in Java. The manual for WEKA 3-7-8, which is

a developers version, can be found in [22]. Furthermore some experiences of WEKA by the

authors have been listed in [23]. From the libraries discussed it is one of the oldest and contains

most algorithms for all sorts of machine learning techniques.

4.5.2 RL-Glue

RL-Glue [116] is a library with Reinforcement learning methods for internal use in C# and Java.

This means that the library can be used in these programming languages directly. Nevertheless

it is available via external use for all platforms.

35

4.5.3 Azure Machine Learning

Azure is the cloud solution of Microsoft. With Azure, an application resides in the cloud and can

be accessed from anywhere on the internet. Inside Azure recently the possibility to run machine

learning has been provided [70]. Unfortunately though, Azure provides no reinforcement learning

methods at the moment. Besides that, for research purposes a local machine learning library

seems preferred for quick setup and easy testing. Nevertheless by offloading this to the cloud

some computational work could be relieved from the mobile device.

4.6 Conclusion

In this chapter many approaches to learn artificially have been discussed. Firstly it was concluded

that reinforcement learning is the type of learning that is applicable in this domain. These

algorithms have been researched for a long time and thus are proven to work well. Nevertheless

some alternatives like Motivated Learning might be applied to compare results eventually. From

the reinforcement learning algorithms, Q-learning was chosen to provide artificial learning.

Various other algorithms that are supposed to perform better though were treated as well. As

these techniques are more sophisticated, difficult to implement and aren’t sufficiently backed

up by results, Q-learning will be used at first. Again in future work or if time allows, using

other techniques might be considered. The reason for not delving further into this, is that the

research depends on a lot more factors (the multi-agent system for instance) than reinforcement

learning alone. Because of this the decision was made to start off with a proven technique for

reinforcement learning, so to avoid unnecessary uncertainty to the solution.

As the predictors each are reinforced individually, no cooperation techniques are required

initially. When gathering more of these predictors though, the techniques discussed here can

become important in assessing what agents to believe. When this is done, local reward will be

the first choice, in order to have homogeneous agents. As Q-learning is present in the RL-Glue

library, this library will be used.

36

Chapter 5

Mobile Platforms

Now that every technique has been chosen, a platform to implement the solution on has to be

picked. Various platforms exist for mobile devices, but by far the most used are Android, iOS

and Windows Phone. Each of these platforms have their own limitations and their own benefits.

The third subquestion posed in the introduction will be treated here:

SQ3: Which mobile platform should be used?

It should be mentioned that the mobile platform is of particular importance when deploying

the system to a device. This research will not include a deployment as it will only use simulations

to verify the techniques used. The question is mostly answered for Avanade. Since they focus

on Microsoft technology, the question rose on whether the Windows Phone platform is suitable.

Furthermore it is deemed useful to know which platform and development environment is most

interesting, particularly for any future work.

First the different platforms are compared with the abilities needed kept in mind. Then some

development environments are introduced and finally a conclusion is drawn about what will be

used.

5.1 Comparison

The three different platforms mentioned before all have their own perks. For this research it

is particularly important that at least features of the phone can be monitored, apps can be

launched from another app and Java is supported. This support is important since all agent

frameworks found in section 3.2 work with Java at the moment. The assessment criteria used

along with the results can be found in table 5.1.

Java is only supported by Android1 which gives it a very important advantage. The parts of

the agent framework that are needed could be rewritten in a different language, but it should

be avoided if possible. Another important issue arrives at the launching of apps from within

1http://en.wikipedia.org/wiki/Comparison_of_mobile_operating_systems

37

http://en.wikipedia.org/wiki/Comparison_of_mobile_operating_systems

Java App launching Monitor system

Android
√ √ √

iOS X
√

/ X
√

/ X

Windows Phone X
√

/ X
√

/ X

Table 5.1: Comparison of mobile platforms

another app. In iOS2 and Windows Phone [73] it seems to only be possible to start some default

apps like Mail or SMS from within other apps, but not any kind of app. Android phones are able

to perform this though3. Besides that, in iOS4 and Windows Phone the system can monitor all

sensors like GPS or the Accelerometer, but is unable to monitor which apps are opened. These

problems are due to the nature of apps being separated from each other by design. Android is a

bit more open and is able to monitor this5 6.

5.2 Development Environment

There are multiple development environments available for mobile devices. As Android is the

chosen platform, Eclipse is the most likely choice. That is because Eclipse provides development

tools and support for Android development. Also the Tropos design method works with Eclipse

as seen in section 3.3.

Besides Eclipse though there is an interesting other option, Xamarin. Xamarin is a development

tool that provides 100% coverage of the API’s of iOS, Android and Windows Phone and makes

sure an app can be developed for all 3 platforms using only .NET. It will shortly be treated

below.

5.2.1 Xamarin

There have been studies in the past regarding which mobile OS is easiest to develop in [45]. These

discussions though are somewhat in the past when using Xamarin. Xamarin is a development tool

that makes it possible to develop mobile applications in the .NET framework. These applications

can easily be ported to all 3 mobile platforms, thus removing the need to code an app 3 times.

Java can be integrated in Xamarin so that existing java libraries can be used when coding

in the .NET environment of Xamarin. For this Java bindings can best be used [132]. When

this is done, the application can only run on Android though, because it still needs a Java

Virtual Machine to perform the Java libraries on. Xamarin thus doesn’t enable us to use iOS or

Windows Phone, but the application could be adjusted more easily to work with either one of

the platforms by replacing or rewriting the java libraries used.

2http://stackoverflow.com/questions/419119/
3http://stackoverflow.com/questions/3872063/
4http://stackoverflow.com/questions/19452696/
5http://stackoverflow.com/questions/11346557/
6http://stackoverflow.com/questions/3290936/

38

http://stackoverflow.com/questions/419119/
http://stackoverflow.com/questions/3872063/
http://stackoverflow.com/questions/19452696/
http://stackoverflow.com/questions/11346557/
http://stackoverflow.com/questions/3290936/

5.3 Conclusion

This chapter discusses Android, iOS and Windows Phone as possible platforms to eventually

deploy the system to. Mostly because of the need for Java considering the agent framework

used, Android is shown to be the best choice for a mobile operating system. In order to develop

the code, Xamarin and Eclipse were proposed. Xamarin promises some interesting features by

providing the possibility to create apps for all mobile platforms while coding them only once.

Unfortunately the binding of Java libraries turned out to be too time consuming. Because of

this, Eclipse was used to develop and test the system with.

39

Chapter 6

Implementation

Now that all of the literature is discussed and an idea is formed on how to fix the problem

at hand, the implementation of this idea comes next. As was concluded before, multi agent

systems can provide a flexible way of designing programs. Tasks can easily be divided over active

components that execute their tasks in parallel. Such a system can be realized in numerous

different ways, which is why a design methodology should be used. As was concluded in section

3.3, Tropos will be used in the following sections to design the MAS and further specify the tasks

of the system. The actual code resulting from the described design can be found via appendix D.

Firstly the overall design of the MAS will be described, using Tropos as a design methodology,

in section 6.1. Then each identified agent will be further specified in section 6.2. This concludes

the basis of the system. Nevertheless, several expansions are possible and these will be discussed

in section 6.3.

6.1 Multi Agent System Design

Tropos [32] is a software engineering methodology that can be used to design software particularly

existing of agents. It provides a guideline to develop agent systems. There exist some tools

that can be used in the design process of Tropos. TAOM4E [106] is one of these, which was

used because of its integration with Eclipse and Jadex. The tool provides a way to design

Tropos models in Eclipse, the same environment in which the application will be developed.

Furthermore, it supports exporting the model to Jadex code. This shows that the way agents are

modeled in Tropos and Jadex coincide, which is an important benefit of Tropos. All diagrams

used in this section were created using TAOM4E.

This section will first walk through the 2 requirement phases that Tropos offers, the early

and late requirements. Once these have been determined, the architectural design will be made.

The specifications of each agent identified here will be deferred to section 6.2, which essentially

covers the detailed design phase of Tropos.

40

6.1.1 Early Requirements

The early requirements phase of Tropos concerns the understanding of the organizational context

within which the system-to-be will eventually function. To understand this context, domain

knowledge is acquired from experts. With this knowledge, actors that need to interact with the

system-to-be are modeled along with their goals. These goals will finally be made more specific.

Domain Knowledge Acquisition

The proposed ways of acquiring domain knowledge involve talking to stakeholders and analyzing

documents. Using these techniques, information on required and desired functionality of the

system-to-be can be obtained. The present system though, will not provide any practical

functionality that accomplishes actual goals of other actors. It will simply improve usability

of a smartphone. Because of this the organizational context of the system is very simple and

thus does not require elaborate domain knowledge acquisition. Later on, the system will be

further specified. For these decisions the related work section of this research (Chapter 2) can

be regarded as domain knowledge. Furthermore, interviews with employees at Avanade were

conducted to extract useful applications of the system.

Actor Modeling

This phase concerns the modeling of desires, needs and preferences for every stakeholder involved.

Since the only stakeholder of the system-to-be is the user of a smartphone, the resulting model

is fairly simple and doesn’t include any relations. The resulting diagram can be seen in Figure

6.1 and is discussed below.

Figure 6.1: Early Requirements: Actor Diagram

Tropos differentiates between 2 types of goals. Functions that the user needs from the system-

to-be are called ’hard goals’, while functions that are desired or preferred are called ’soft goals’.

They are depicted using round circles and cloud-like circles respectively.

A mobile phone is assumed to have only a single user. This user will use the phone to open

applications that provide the user with the desired functionality. The system-to-be will not

provide any of the functionality like opening apps on the foreground, but only properties that

are desired. The user will want a quick response from his mobile phone. Furthermore the battery

of the phone should last as long as possible and the system-to-be should use as few data as

possible. These 3 goals form the soft goals that can be identified.

41

Goal Modeling

For each goal identified in the previous step, a decomposition into sub-goals can be made. The

only way a user himself can alter any of the soft goals would be by upgrading his phone to a

newer model. This would probably reduce the response time and hopefully prolong the battery

life. Using fewer data could only be influenced by using the phone less when on paid connections,

but this should not be considered a goal of the user. For our system-to-be the goals in the early

requirements cannot be decomposed, but to illustrate how this step works, the upgrade of a

phone is included in the model in Figure 6.2.

Figure 6.2: Early Requirements: Goal Diagram

6.1.2 Late Requirements

The Late Requirements Phase is concerned with the definition of functional and non-functional

requirements for the system-to-be. The new system will be treated as another actor (or a small

number of actors) who are dependers or dependees in dependencies that relate them to external

actors. The top goals assigned to the system will then be refined and finally the capabilities

of the system-to-be are identified and modeled as plans. Since the goals of minimizing battery

usage and data usage are outside the scope of the project, these will not be specified further for

now.

Actor Modeling

The system-to-be will first be introduced as an actor. The goals of the stakeholders will be

assigned to the new actor by establishing goal dependency links from stakeholder actors to the

system actor. Figure 6.3 shows the resulting diagram.

All of the soft goals identified in the previous phase will depend on the system for their

completion. Furthermore the system will be given a hard goal that enables it to fulfill some of

the soft goals. This goal will be to prefetch applications before use, so that opening them will

require a smaller load time.

42

Figure 6.3: Late Requirements: Actor Diagram

Goal Modeling

As done in the previous phase, the goals specified can now be refined. This time, goals are

analyzed from the system actor’s perspective. Figure 6.4 shows the decomposition of the top-level

goal into lower level ones.

Figure 6.4: Late Requirements: Goal Diagram

The main goal of the system will be to prefetch data before the user accesses it, this will

improve the load time of applications and thus provide a quicker response of the phone. This

goal can be decomposed in one that determines what application will be prefetched and one that

performs it. The goal that determines the app to prefetch can be further decomposed into a goal

that predicts what app will be launched next and one that assesses the quality of this prediction.

The reason to have such an assessment is to be able to combine multiple predictors later on in

the modeling process. Having multiple of these predictors can greatly enhance performance of

the system. Finally the prediction of an app launch can be decomposed into a goal to learn a

model for these launches and to monitor the user in order to feed this model.

43

Plan Modeling

The last phase of the late requirements turns the goals of each actor into concrete plans. Every

plan that fulfills a leaf-level goal is modeled by a means-end relation to that goal. These plans

are straightforward for each leaf-level goal in our example and are depicted in Figure 6.5.

Figure 6.5: Late Requirements: Goal Diagram (extended with plans)

6.1.3 Architectural Design

Now that all requirements for the system are modeled, the actual system architecture can be

made. This phase consists specifically of designing the multi-agent system structure and further

specifying the capabilities for each individual agent. First the various agents that together form

the system will be identified. Then the goals specified earlier will be delegated to these new

agents. Finally for every agent the goals and capabilities are further specified.

Identify Agents

Considering the goals that were identified earlier, the system will be broken down into smaller

subsystems (agents) that are all responsible for part of the job. When considering the process

of prefetching apps, a first step to be made is the gathering of information. This information

includes the times that a user actually launches an app and possibly information on the location,

44

duration, activity, etc.. This task can be decoupled from the total system in the form of an

Input agent. As we will have multiple predictors, this will prevent the system from gathering

the same information multiple times.

The input gathered by this agent is needed to predict what applications to prefetch next. For

these predictions, models need to be trained and consulted when applicable. Since it might be

interesting to train multiple models based on different classifiers, multiple of these predictors

can be allowed. This introduces our next agent, the Prediction agent.

Now that there are multiple predictors making predictions in parallel, an agent is needed

that brings this information together. This agent can learn the performance metrics of each

individual predictor and decide who to believe based on this. The task of gathering predictions

and assessing them can thus be separated in the form of an Assessment agent.

Finally the conclusions of this agent consist of what application to prefetch. This prefetch of

course still has to be carried out, for which a Launcher agent can be used.

Delegate Goals

After identifying which agents are present in the system, the previously modeled goals will be

divided. Figure 6.6 shows the goals assigned to the agents and the dependencies between them.

Figure 6.6: Architectural Design: Delegations

In short this system works as follows. The Launcher agent performs a prefetch of apps

determined by the Assessment agent. This Assessment agent makes this choice based on

predictions gathered from Predictor agents and the assessment it learns about these predictions

using app launches logged by the Input agent. The Predictor agents are able to make these

predictions based on the information they receive from the Input agent and the machine learning

models they learn on this information. Finally the Input agent gathers the information needed

by the Predictors and Assessor from sensors in the smartphone.

Goal and Capability Modeling

As has been done in the requirements phases, the goals for each individual agent can now be

specified further along with their capabilities. The result of this phase is depicted in Figure 6.7.

45

Figure 6.7: Architectural Design: Complete

After the architectural phase comes the detailed design phase and implementation and testing

phase. This elaborate design of individual agents will be discussed in the next section on agent

design, section 6.2.

6.2 Agent Design

Now that the various agents in the Multi Agent System are identified, each agent has to be further

specified. These specifications will be given for the basic system, so without any expansions

done yet. This will provide the framework upon which various improvements are possible. These

improvements will be discussed in a separate section, called Expansions (section 6.3).

46

For every agent identified in the previous section, a description of the way it works and the

messages it sends will be given. This includes the possible machine learning models that were

used and the way they work within each separate agent.

6.2.1 Input Agent

The task of an input agent is to retrieve all information about the user (apps launched, location,

time, etc.) that is requested by the prediction agents. This means that capabilities of this agent

involve polling the user location, logging his application launches and everything else that can

be determined about the user.

The input agent works on demand, so it reacts to questions from prediction agents. Initially, it

will not do anything but wait for messages from these prediction agents. A prediction agent can

now send a message to the input agent that specifies what information it would like to receive at

what interval. Say a prediction agent wants to know the users location every 5 minutes, then the

input agent will start a process that polls this location for the requested interval and immediately

sends the information to the predictor. Besides this, the input agent will send information about

an application launch to every prediction and assessment agent for every launch performed by

the user.

All the applications that are launched are given a unique ID so that the other agents don’t

have to bother checking what input belongs to what exact application. In the end the launcher

agent can use the mapping between IDs and applications to launch the appropriate application.

The IDs start at number 1, reserving 0 for not launching any application.

6.2.2 Prediction Agent(s)

A prediction agent’s task is to predict what application will be launched next by the user based

on information about past behavior. These predictions can be found using a large range of

different techniques. As concluded before (section 4), reinforcement learning seems to be the

most promising form of learning for this problem and because of this it will be the current focus

for the prediction agents.

The prediction agent takes an active role in determining its predictions. First it will announce

to the input agent what data it will need. The agent will then receive the requested information

on the desired intervals and can learn its machine learning model using this. This model will be

used to predict what is the most likely application to be launched next, along with a quality

of this prediction. If the quality of this result from the model is above a certain threshold, the

agent will send this prediction to the assessment agent.

Reinforcement learning can be applied in a lot of different ways. This research though will

focus solely on learning patterns based on time of day. This allows to evaluate the system, but

it should be kept in mind that a lot more options are possible. They are left for future work and

described in section 6.3.

47

Learning Based On Time

A prediction agent learning solely based on time is considered. This agent uses the Q-learning

[125] algorithm for reinforcement learning, thus learning the quality of a state-action pair. As

a state this agent uses time and the possible actions are the different applications that can be

launched. Only one application can be launched in an action, thus limiting the prefetch to one

application per timestep used by the agent. Furthermore it should be noted that action number

0 is reserved for not prefetching any application.

There are 2 different messages that can be received. For each, the actions that are performed

after will be treated. Firstly the agent can receive a message notifying him that the user

launched an application (Algorithm 1). And he can receive one that notifies him of a time

update (Algorithm 2).

Algorithm 1 Receive an application launch

1: Update launched applications . For later use to determine reward

Algorithm 2 Receive a time update

1: Remove outdated prefetches . When their lifetime is expired

2: for Every possible prefetch do

3: Calculate reward . Proportional to number of correct prefetches

4: Update old state/action value . Using parameters for learning

5: end for

6: Set current state of model . As specified by time update

7: Select next prefetch . select action with highest state/action value

8: if value > quality threshold then

9: Send prediction to assessment agent

10: end if

In these algorithms, several parameters can be identified that alter the performance of the

agent. For each of these algorithms an optimal value has to be estimated:

• Learning time span:

The agent can learn within different time spans. Say for instance an agent learns per day.

This means that 14:00 on Monday is the same time to him as 14:00 on Tuesday. If he were

to learn per week, 14:00 on Monday would be different from 14:00 on Tuesday, but again

the same as 14:00 on Monday next week. In case of per day learning, weekends can be

treated as a special case as they tend to have different patterns.

• Polling interval:

With this parameter the interval with which the agent requests state updates from the

input agent is meant. This influences the precision with which the agent learns. For

example, a polling interval of 5 minutes allows the agent to update its state every 5 minutes

and to possibly prefetch an application every 5 minutes. If this interval would be too small,

48

say 10 seconds, the agent would distinguish between app launches that are more than

10 seconds apart. As a deviation of 10 seconds from a pattern is highly likely to occur

with human users, this will result in a failure to learn such a pattern. Too large a polling

interval, say 1 hour, is undesirable as well. This causes applications to be predicted only

once an hour and will thus reduce the actuality of a prefetch.

• Quality threshold:

Determines when a prediction done by the model is good enough to be send to the

assessment agent.

• Lifetime prefetch:

This parameter determines how long a prefetch will prevail and thus is deemed relevant. A

fast changing application like a news app will have a short lifetime, as its retrieved data is

outdated quickly.

• Q-learning parameters:

– Reward:

There are several ways to determine the reward. One way is to only give positive

reward when a prefetch was correct. It is also possible though to reduce reward when

an incorrect prefetch was done, or when an application launch was not predicted.

– Discount factor:

The Q-learning algorithm works with a discount factor that determines the influence

of future states. The higher this value, the more influence the next state will have on

the state/action value.

– Learn rate:

This parameter is used to determine the learning speed. The higher this value, the

more influence immediate reward and the value of the next state have. When 0 for

instance, nothing will be learned.

6.2.3 Assessment Agent

The task of the assessment agent is to assess the quality of each prediction agent. Using this

quality it decides what prefetches to do based on the predictions of the agents. This assessment

can be done in numerous ways using supervised learning. As only the basis is described here, a

simple statistic is used.

The agent will receive messages from both the input agent and the various prediction agents.

Using this it will calculate two statistics: The percentage of correct prefetches out of the total

number of prefetches (precision) and the percentage of correct prefetches out of the total number

of application launches (recall). Everytime a prediction comes in from a prediction agent, the

assessment agent decides whether to send this to the launcher agent or not based on these

statistics.

There are again 2 different messages that can be received. For each of these the actions

performed after will be specified. Firstly a prediction can be received from a prediction agent

49

(Algorithm 3) and secondly an application launch can be received form the input agent (Algorithm

4).

Algorithm 3 Receive a prediction

1: Add prediction to agent’s list of predictions

2: if Quality of agent > quality threshold then . Quality measure decides on quality

3: if Protocol of consecutive predictions then . Protocol decides on same predictions

4: Send prediction to launcher agent

5: end if

6: end if

Algorithm 4 Receive an application launch

1: for Every agent known do . Known means: a prediction was received in past

2: Remove outdated predictions . When their lifetime is expired

3: if application was predicted then

4: Raise number of correct predictions

5: end if

6: end for

The assessment agent also has parameters that can alter the way it works:

• Quality measure:

This measure specifies the quality an agent should have before its predictions will be

send to the launcher agent. Whenever an agent’s quality is below a certain threshold, its

predictions are too inaccurate. This measure can be calculated using the precision or the

recall statistics of the agent. Also, a weighted function between these measures can be

used.

• Protocol consecutive predictions:

Whenever a prediction is done by a prediction agent while the same prediction was already

done by the assessment agent, a choice has to be made. The new prediction can either be

carried out or ignored.

• Lifetime prefetch:

This parameter has the same meaning as the one described at the prediction agent. Probably

it’s best to keep these the same as this should be an attribute for the application that is

prefetched.

6.2.4 Launcher Agent

The launcher agent’s purpose is to launch the applications that are predicted by the rest of

the network. It receives predictions from the assessment agent and makes sure the appropriate

prefetch function for this application is initiated.

50

6.3 Expansions

The basis of the system as designed in the previous sections allows for a lot of expansions. The

multi agent nature ensures a lot of flexibility for the system. Most agents can be expanded with

varying levels of intelligence. The first and most basic expansion of the system would be to let

prediction agents learn on increasingly different facets. These might include location or even

calendar events belonging to the user.

Besides this it is possible to identify far more improvements on the system. These will be

discussed in the following sections. Firstly functionality that can be added to the overall system

will be discussed. Then every separate agent will be mentioned with possible extensions within

their own behavior.

6.3.1 Overall System

There exist various ways of altering the overall system in order for it to predict more accurately.

The ways discussed in this section include learning the lifetime of applications, community

learning and the use of 2 new agent types: context and pattern matching. Finally a concept is

explained that allows developers to use this system.

Lifetime of Applications

As of now, the lifetime of an application is a preset number, the same for each application. This

lifetime determines the time a prefetch of an application is useful. When it expires before an

actual launch is done, the prefetch will be considered useless. A news app for instance will have

a short lifetime as a lot of new data will arrive in a short period of time.

A possible expansion is to let the system learn the lifetime of each application instead of

setting it manually. The system could learn the amount of data that still needs to be gathered

in between the time the app was prefetched and it was opened. The larger this amount, the

shorter the lifetime of an app would become.

Community Learning

As previous research has concluded, many patterns of users are the same within various commu-

nities. It would thus be interesting to let agents of a certain user, learn from agents of other

users. Applications or web pages that are often visited at a certain location for example can

then be shared, this way a community can learn certain patterns instead of users themselves.

A related field of this technology is distributed sensing [94]. This technique allows systems

to communicate their sensory data, so that they do not have to gather this all individually. In

our system, the input agent could learn the current location from other input agents in the

neighborhood.

51

New Agent: Context

In order to improve the system, a context agent is proposed. This agent could infer context that

can be used by the prediction agents. There has been done a lot of related work into extracting

user traits from sensory data on mobile phones. An example of how this data can be used is to

determine whether someone is walking or driving by using the accelerometer. This information

might possibly be used to determine the chance that a user will open an application.

This context agent could be used for far more purposes though. Patterns could be learned for

the location of the user. This way the location of a user can be predicted whenever the input

agent decides not to monitor this because of battery issues. Predicting this location can also

be done on the server, this way offloading the computation for machine learning. Furthermore,

patterns in charging behavior or wifi connection can be learned. This can help in prefetching

ahead. Possibly some data can be prefetched earlier when a wifi connection is expected to be

lost in order to save money on data charges.

Furthermore this agent could check when irregular patterns occur, like in the event of a holiday

or weekend. It is likely that these days possess different patterns and thus for these days agents

should stop their learning process.

New Agent: Pattern Matching

Another agent could be added to the system in order to improve its performance. This pattern

matching agent can be used to match patterns in behavior of different apps. This way apps

can be categorized based on their usage patterns. Whenever a new application is installed, the

system could quickly learn its pattern by matching it with another application. This feature

can turn out very valuable as users tend to install new apps quite often. Besides letting new

applications find their pattern quickly, these apps in the same category might learn from each

other as they have similar patterns.

Platform for Developers

The flexibility of the system gives rise to the opportunity for developers to create their own

prefetching techniques. By providing an easy way for developers to create prediction agents for

their own applications, machine learning can be added more easily. This idea is closely related

to the framework Reflection [65]. As the system assesses the quality of each prediction agent,

the created agent can automatically be disregarded if it doesn’t function.

6.3.2 Input Agent

The input agent is responsible for data gathering. This logging of the system will use some

battery life and thus is not always desired. The goal of not using too much of the battery could

be added to the input agent. This way the agent will have conflicting goals and needs to utilize

the true BDI potential in order to choose between these goals. Prediction agents could be ranked

based on battery usage and whenever needed the most demanding ones can be shut down. In

52

order to determine when to start shutting down agents, charging patterns can be used as was

proposed in the addition of a context agent.

6.3.3 Prediction Agent(s)

The prediction agent forms the most important part of the system, as it generates the actual

predictions that are needed to prefetch applications. Because of this these agents are involved

in most improvements to the system. As said before the first thing to mention is that these

agents can be used to learn using different sensory input data, from location to calendar events

and many more. In addition to using different sensor data, the resolution with which this data

is gathered will greatly alter performance. An agent can learn per day, meaning 10:00 o’clock

results in the same state every day, or per week, meaning 10:00 o’clock is only the same state as

10:00 o’clock on the same day in another week.

Whilst learning, the agents use various parameters that determine their success. These

parameters were discussed in the previous section. As of now, they have to be set prior to

starting the agent, but these values could possibly be learned as well. The assessment agent

knows the score of each prediction agent. It could feed this back to each of these agents which

allows the predictors to adjust their parameters based on this. For this goals can be used within

the prediction agents to keep performance at a certain level. To maintain these goals, plans can

be adopted that alter parameters and report on the effect of this.

The agents could communicate with each other about good performing parameters. This idea

was shown in community learning, where agents of different users communicate, but might also

be useful for agents belonging to the same user. Possibly the assessment agent could notify agents

that are performing bad and tell them to retrieve some parameters from other well performing

agents.

6.3.4 Assessment Agent

The assessment agent determines the quality of each prediction agent and determines whether

to believe it or not based on that. A first improvement of this model would be to combine

the predictions of the different predictors and determine which one to prefetch based on their

combined quality. This way 2 prediction agents with a low quality can complement their

predictions and thus reach the threshold of the assessment agent.

When combining these predictions, supervised learning can be used. There exist various

techniques in this domain. Some will probably prove useful in determining the quality of each

agent and in combining the predictions of different agents.

Finally the assessment agent could take an active role in altering the predicting agents. It

could kill agents that have been performing very bad over a certain period of time and even

start new agents that are similar to good performing ones.

53

6.3.5 Launcher Agent

The launcher agent right now is only responsible for the actual prefetch of an application. Its

functionality could be expanded though by letting it consider data usage and battery life. When

one of these gets critical, it might prove better not to perform any prefetches. The user will

rather have a working phone till the end of the day than a faster application launch upon use.

Another improvement on this agent would be to keep track of the times that are saved when

using the prefetch capability. The launcher agent could keep track of the improvements obtained

whenever a prefetch was successful. Prefetches that have practically no influence in loading

times could be dismissed.

54

Chapter 7

Test Setup

The system as it was proposed in chapter 6 now has to be tested on its performance. This

chapter will describe everything there is to know about the setup for testing.

The fourth subquestion posed in the introduction will be treated here:

SQ4: Which way can the system be tested?

In order to assess the system, a setup is needed that supports gathering the needed results. This

section describes how user data was gathered, what adjustments had to be done to the original

implementation and finally the performance measures used and how they will be measured.

7.1 Gathering User Data

For testing purposes, various alternatives were considered. One way the system can be tested, is

by deploying it to a mobile device and conducting a real life user study. This was not feasible

unfortunately due to the timespan available for this research. Besides this, using simulated data

makes gathering statistics more easy and allows for an easier investigation into the possibilities.

Simulating was thus the method chosen.

The data needed to run these simulations has to be retrieved somehow. This sensor data can

be gathered by using monitoring apps or by using existing data sets. Both options will shortly

be treated below.

7.1.1 Monitoring Sensor Data

There exist many applications that are capable of monitoring a smartphone. Benefits of this

is that gathering sensor data can be tailored and log exactly the information that is required.

There exist some frameworks that provide this functionality out of the box, without the need

to implement every sensor log manually. One of these is called SCDF and is described in [7].

With SCDF one can choose what sensors to log and export it to an XML file. There is even a

possibility to let the app send the statistics to a server periodically.

55

Funf [43] is another but more advanced application that provides the logging of sensor data [5].

Using Funf, one can specify what sensors to log, at what interval rate and for how long if that is

applicable. Furthermore results can be send periodically to dropbox and can be exported to an

SQL database file from there. The creation of the application that logs the sensors can be done

via a web interface where one can easily specify the loggers needed and send the automatically

created application to collaborating people. The app automatically sends the gathered statistics

to the specified dropbox folder, where the developer can retrieve them from. A side note is that

this application only works up until Android 4.4. Since Android 5.0 new functions were made to

retrieve sensor data and the old ones that Funf still uses were deprecated.

7.1.2 Existing Data Sets

In order to simulate and test the predictions offline, existing data sets can be used. These

are mostly limited though to information on location and application launch times and do not

include much more sensor information. As the implementation without extensions only considers

the app launch times, most of these will be sufficient for now. Livelab, AppSensor and Reality

Mining are datasets that contain this information and will shortly be discussed

Livelab [103] is a dataset that has been developed as a way to retrieve usage data from iOS

devices, specifically the iPhone 3GS. Since the iOS platform is very closed, jailbreaking (hacking)

the phone was necessary to gain access to the various sensors on the phone. The application

logs most of the sensors available on the phone [98].

AppSensor [18] is an event logger for Android and with it, data was collected from over 4000

users. The authors only looked at the location, time and sequence of apps launched.

Furthermore, researchers at MIT gathered a large dataset of user data. This project was

called Reality Mining [75]. It has been described in [38]. As the data collected is from 2004, this

dataset is the oldest of the three. This doesn’t mean it can’t be used, but the more recent the

better as this reflects usage nowadays best.

7.1.3 Chosen Dataset

The Livelab data set has been chosen as this project contains most sensory data and was collected

most recently. It contains a lot of data gathered from 34 different users from February 19th 2010

to April 25th 2011. These users were all affiliated with Rice University in Texas, USA. Due to

time constraints, monitoring phones would result in significantly smaller datasets. The benefit

it gives of having more recent data representative for phone usage nowadays, is deemed of less

importance. Assuming phone usage, and with it patterns in this usage, has only grown since

2010, the program can be assessed on this dataset. Also, PREPP uses the same set of data,

which allows for good comparisons.

The 34 users of the Livelab dataset along with some statistics on their application usages are

shown in appendix A.

56

7.2 Adjustments to Implementation

In order for the simulation to be run, some minor adjustments have to be done to the imple-

mentation. First of all the simulation has to be able to run on maximum speed. As time is

simulated, it would thus be ideal if the agents let each other know when they are done and the

process can continue. How this process works will be described here.

Firstly the input agent will send information about the environment and about application

launches in batches. The interval of these batches will be determined by the smallest interval a

prediction agent uses to predict. Say there is an agent that learns and tries to prefetch every 5

minutes, and one that does so every 10 minutes. The input agent will then send both agents

the required information every 5 minutes. The second prediction agent will ensure itself that it

acts as if it received this information every 10 minutes. Whenever the prediction agents and

the assessment agent are done, they send confirmations to the input agent so that it knows it

can continue sending the next batch. This ensures a speedy simulation. In real life this would

not form a problem as learning would happen at sufficiently large intervals for the algorithm to

compute everything needed.

Furthermore the system is tuned a little bit by excluding weekends from learning. Whenever

the system detects the simulated time falls in a weekend, it will stop learning and thus stop

updating its state-action values. As people tend to have different schedules in weekends, the

destructive results of this when included are prevented. Also, the application called ’SpringBoard’

is excluded when retrieving application launches of a user. This application is nothing more

than the homescreen of an iPhone which isn’t regarded as a genuine application. The next

section will reveal the performance measures used to assess our system and thus include the

final adjustments made to support this.

7.3 Performance Measures

Finally after having gathered the results, they need to be evaluated. In order to determine how

the system performs and to be able to compare results, some performance measures are needed.

For all of these measures it holds that they have to be averaged out using a number of different

users. A system might perform very good with a certain user, while not being able to detect

patterns of others. The performance measures used are listed here, followed by a description of

each of them:

• Precision (%):

The percentage of predictions that was correct (followed by a corresponding launch).

• Recall (%):

The percentage of launches that was correctly predicted (preceded by a prefetch).

• Freshness (CPD):

A Cumulative Probability Distribution (CPD) of the number of seconds between the

current launch and the previous load time. This previous load time can be a past launch

57

or a prefetch. The median freshness is a less elaborate indicator that will be used in

determining the parameters first.

• Effectiveness:

The proportion of the number of launches that was predicted to the number of predictions

done.

Precision, recall and freshness are measures that are also used by PREPP [92]. Precision

and recall tend to have a negative relation, when one rises, the other drops. When a lot of

predictions are done, the chances that they are correct become lower, but the chance that a

launch is predicted will become higher. Freshness is a measure proposed by the authors of

PREPP to determine the relevance of a prefetch. The longer a prefetch is done before a launch,

the less value it has as the data will become older. Finally effectiveness was added to the list.

This value helps to determine the number of double prefetches. Whenever a single launch is

successfully predicted 3 times for instance (which can happen when the lifetime of a prefetch is

longer than the polling interval of an agent), this is of course redundant, but not noticed by any

of the other measures.

In order to retrieve the data needed, the assessment agent saves logs to various CSV files. For

each prediction agent and for itself it keeps track of the number of correct predictions and the

number of launches predicted. Furthermore it determines freshness by keeping track of the last

load time for each application for each agent. It also tracks a benchmark for this freshness by

determining it when no agent does any prefetching.

7.3.1 Data Visualization

To draw conclusions from the performance measures, it is often useful to visualize the obtained

data in a certain way. This way it can be easily seen what parameters lead to the best results.

For this purpose two programs are considered, R and Excel.

R [118] is a statistical programming language that makes manipulating data and altering CSV

files easy. Besides this, scripts can be created for it in order to be reused. As the experiments

will tend to require a lot of the same evaluations, creating these scripts once can save a lot of

time. The preparation of the data will thus be done using R, and more specifically Rstudio [97].

The scripts that were used to prepare the data properly are described in appendix B.

After having prepared the data, it will be visualized using Microsoft Excel [71]. This program

allows for easy creation of graphs like the way the performance measures evolve and provides

many ways to alter the look of a graph.

58

Chapter 8

Parameter Setting

The system deals with a number of different intelligent agents, each of which have parameters

that can be set to a range of values. Before the results of this research can be obtained, these

parameters have to be set or at least evaluated to know which ones to choose. As this requires a

lot of different tests to be run and each of these tests have to be evaluated immediately, this

separate section contains a small research into appropriate values for these parameters. The raw

data gathered can be found in appendix D.

Because the entire dataset, as is concluded in section 7.1, is quite large and would take a long

time to process for all combinations of parameters, a subset will be used. This selection of data

is treated in section 8.1. Then the parameters for the prediction agents and the assessment agent

will be tested in section 8.2 and section 8.3 respectively.

8.1 Test Data

In order to determine the parameters for the agents, data will be gathered from a selection of

different users. It is important to use multiple users and average the results so that these results

cannot coincidentally hold only for a specific case. Nevertheless due to time constraints on the

research it was not possible to run these tests for all 34 different users present in the LiveLab

dataset. As this phase only considers estimating the parameters, only a subset of the users is

used to reduce the influence of exceptional cases.

The users are picked using the table on the LiveLab data in appendix A. From this set,

only users that cover the maximum timespan were considered for parameter setting. These

users include those with identifiers A and B. From these users, those with an exceptionally low

Application Launch Count (ALC) were not considered either (B00, B11), as these sporadic users

are not likely to benefit from this system. The users that were picked for this phase are listed

below, along with a short motivation why they were included:

• A10, B10:

These users have a high ALC and a low measure for Distinct Apps (DA). This means they

use the same apps often and are thus assumed to be best candidates for the system.

59

• A09:

This user has a high ALC and a high DA. He/she is still a good candidate for the system,

but uses a larger amount of different applications.

• A08:

This user has a low ALC and a low DA. Therefore he/she will probably not benefit a lot

from the system and is expected to yield lower results.

• B08:

This user has a low ALC and a high DA. For him/her the system is expected to yield even

lower results. Apart from not using the phone often, a lot of different apps are used as well.

With the LiveLab data of these users, this chapter will determine what parameters will be

used for each agent.

8.2 Parameters Prediction Agent

In order to determine the optimal parameters for the prediction agents, first a list of all possible

values for these parameters will be given. From this range, a selection of values to test with

are chosen and some presumptions on the expected best outcome will be discussed. Finally the

described order will be used to determine the optimal value for each parameter.

8.2.1 Parameters

A list of possible parameters for the prediction agent, along with their possible values, those

used for testing and the expected best one, is given in table 8.1.

Possible values/options Values to test Expected

Learning time span 1: Day 2 2

2: Day (excl weekends)

3: Week

Polling interval <0 sec, 30 min] 5, 10, 30 min 10 min

Quality threshold [0, 1] 0, 0.1, 0.2, 0.3 0.1

Lifetime prefetch <0 sec, 1 hour] 30 min 30 min

Q reward 1: 1.0 per correct prediction 1, 2, 1+3, 1+4, 2+4 2+4

2: 1.0 per correctly predicted use

3: -0.1 per incorrect prediction

4: limit reward [-1.0,1.0]

Q discount [0, 1> 0, 0.1, 0.3, 0.8 0.1

Q learn rate <0, 1] 0.1, 0.2, 0.5, 1 0.2

Table 8.1: Parameters for Prediction agent

The described parameters are explained more elaborately in section 6.2 about the implementa-

tion of a prediction agent. For each, an explanation for the values chosen is given.

60

Learning Time Span

Theoretically, the learning time span can be varied in all time ranges. The most interesting

ones though will align with user cycles. With this a certain cycle of a user is meant. A day

is an example of this, a user will behave the same to a certain extent in this time range, such

as sleeping every night. As weekends tend to be an exception, these can be excluded from the

learning process. Per week learning can be interesting as patterns might return on a weekly basis

as well. Learning per month is considered too large an interval as learning will be excruciating

slow.

For this parameter, only learning per day excluding weekends will be evaluated. Patterns

per day are learned quickly and can adapt to changes far more quickly than weekly patterns.

Furthermore, excluding weekends is expected to perform better or at least similar to including

these.

Polling Interval

The polling interval can be anything above 0 seconds up until 30 minutes. The reason for

choosing this limit is that predicting app launches each half an hour is estimated as a threshold

for interesting predictions. When predictions are done with a longer interval, they are done even

fewer than once per half an hour. It is likely that not much will be predicted and freshness of

this data will remain very low. Furthermore, the lifetime of a prefetch should be longer than the

polling interval. Otherwise it would not be possible to prefetch an app that occurs at the end of

an interval, since the lifetime of the required prefetch will be expired when the launch occurs.

Polling at a low interval is expected to yield the best results. The lower this measure, the

higher the recall as more predictions can be made. On the other hand this will lower precision

for the same reason. This parameter should thus be small, but too small will lead to the agent

differentiating between too narrow time intervals and not clustering the launches appropriately.

Because of this phenomenon, 10 minutes is expected to perform best. 5 and 30 minutes are

chosen also to test near the boundaries of this value.

Quality Threshold

The quality threshold can be any value between 0 and 1. 0 means that everything resulting

from the Q-learning algorithm will be prefetched by the agent (except when negative reward is

possible). 1 is considered an upper-bound, resulting in nearly no prefetches done. To be precise,

the quality of a prediction can be higher than 1, depending on the maximum reward set and

also the discount factor and learn rate. The other values will be chosen as such though, that a

quality of 1 results in a very high confidence for the agent.

The best quality threshold is expected to be 0.1 for the polling interval of 10 min. The reason

for this is that the threshold is nothing more than a cap on the predictions done, when no

action seems to provide a good enough prediction. A low threshold yields more predictions and

probably a higher recall, but a lower precision. 0.1 is expected to be a good value in-between,

61

a blend between precision and recall. Besides it, some surrounding values lower and higher

are tested. The reason that the polling interval is mentioned with this parameter is that the

quality measures depend on this. The lower the polling interval, the more precise predictions

and probably the lower the qualities of each prediction. These lower qualities might require a

lower threshold in order for the agent to perform well.

Lifetime Prefetch

The lifetime of a prefetch was briefly mentioned at the polling interval. Setting it too high will

result in agents believing a prefetch was correct even though it was done long before the actual

launch. This phenomenon results in very long delayed results. If these results are delayed too

long, the agent will not be able to determine the correct source of the high reward. So the

lifetime will be set to 30 minutes always, as this is regarded reasonable. In short this means that

if a prefetch is more than half an hour apart from its launch, it is regarded as incorrect.

Q Reward

The reward for the Q-learning reinforcement algorithm can be determined in multiple ways.

4 different types are considered here. The first option is by giving a reward of 1.0 for each

prediction that was correct. Secondly, a reward of 1.0 can be given for each app launch done by

the user that was correctly predicted. Furthermore a negative reward of -0.1 could be given for

each incorrect prediction and finally the total reward can be limited. These options form the

most basic ones. It is possible though too think of more complex ways to assign reward, but this

will not be subject to this research.

The best option for reward is expected to be 1.0 per correctly predicted app launch in

combination with limiting the total reward. This research focuses on maximizing the number

of correctly predicted launches, not necessarily on maximizing the number of predictions that

were correct. Of course this last measure is important and related, but the first is leading. The

limit on reward ensures that these rewards do not become too large. This in its turn ensures

that quality values for state-action pairs do not become too high and thus makes the system

quicker in adapting to changes in user patterns. It should be noted though that this comes with

a reduction in robustness when a temporary deviation of this pattern occurs.

Q Discount Factor

The discount factor can be set from 0 upto but excluding 1. A discount factor of 0 means that

future states are not considered when valuing state-action pairs. If this would be 1, the qualities

of those pairs could diverge in theory.

Too high a discount factor would also result in future states being more important than

immediate reward, which is not expected to be desirable. Future states directly mean future

times and even though future times can be of importance, observations at the current time will

best predict what application to launch. Because of this the selected values are all in the lower

section of the possible values and 0.1 is expected to perform best.

62

Q Learn Rate

Finally the learn rate is limited from 0 to 1, excluding 0 itself. When the learn rate is 0, nothing

is learned and the old quality of state-action pairs always remains. When it is 1 though, the

old value is not considered anymore. This means that only immediate reward and future state

determine the quality.

The discount factor and learn rate are estimated with low values. The reason for this is that

it makes the system more robust to deviations from user patterns. A high learn rate will quickly

adapt to changing patterns, but also be quickly altered when an exception occurs. Since this

short term learning can be beneficial, the entire range of values will be tested, but a lower one

like 0.2 is expected to perform best.

8.2.2 Results Per Parameter

Determining what values to choose for the parameters is quite an elaborate task. Since trying

all combinations is infeasible as the number of combinations is very large, an order in which

parameters are chosen has to be determined. First the Q-learning parameters will be set, as they

form the basis of learning and will likely perform approximately equal for different thresholds

and polling intervals. From the Q-learning parameters, the reward is expected to have the most

impact on the results, followed by the discount factor and the learn rate. This order will thus be

followed to determine their values.

Q Reward

The parameters that are used for the simulation are listed below. Finally table 8.2 shows the

results of the simulation. These are the averages of the 5 users selected before. As all users

where tracked for approximately the same amount of time, these averages are not weighted.

Fixed parameters:

Polling interval: 10 min

Quality threshold: 0.1

Lifetime prefetch: 30 min

Q discount factor: 0.1

Q learn rate: 0.2

Variable (Q reward):

option 1

option 2

option 1+3

option 1+4

option 2+4

Q reward Precision Recall Effectiveness Freshness (median)

option 1 21.7% 32.9% 46.0 588.6

option 2 21.4% 33.7% 44.3 574.2

option 1+3 23.3% 25.4% 50.4 698.2

option 1+4 21.7% 31.9% 45.4 593.2

option 2+4 21.7% 31.8% 45.3 593.7

Table 8.2: Result Q reward

63

From the results gathered, the options can be evaluated. Option 3 gives a slightly best

precision, because it gives negative reward for incorrect predictions. This increase comes with too

large a drop in recall though. Furthermore option 4 limits the maximum and minimum reward.

It doesn’t seem to influence precision and recall a lot, though the slightly lower performance in

recall and freshness gives the agents without option 4 a small advantage. This difference might

be considered neglectable, but since a choice in parameter has to be made, those with option 4

will be discarded.

Choosing between option 1 and 2 is more difficult. As option 1 learns per correct prediction,

it has a very small advantage regarding precision and effectiveness. From this the conclusion

can be drawn that the agent with option 2 tries a bit more predictions, thus increasing its recall

and freshness, but reducing its precision and effectiveness. Eventually both might be useful in a

configuration with an assessor. For now option 2 will be chosen as the one to continue with.

The combination 2 and 4 was expected to perform best. Now it seems that the cap on reward

is not necessary and even unwanted. From this it is concluded that the rewards are not excessive

and the learning process is still able to adapt itself without it.

Q Discount Factor

The parameters that are used for the simulation are listed below. Finally table 8.3 shows the

results of the simulation. These are the averages of the 5 users selected before. As all users

where tracked for approximately the same amount of time, these averages are not weighted.

Fixed parameters:

Polling interval: 10 min

Quality threshold: 0.1

Lifetime prefetch: 30 min

Q reward: option 2

Q learn rate: 0.2

Variable (Q discount):

0

0.1

0.3

0.5

0.8

Q discount Precision Recall Effectiveness Freshness (median)

0 21.7% 33.1% 45.1 580.4

0.1 21.4% 33.7% 44.3 574.2

0.3 20.2% 34.6% 41.7 563.1

0.5 18.9% 35.4% 39.0 554.7

0.8 17.9% 36.2% 37.2 544.2

Table 8.3: Result Q discount

The results lay again not that far from each other. A higher discount factor results in lower

precision but higher recall. The higher discount factor means that future states become more

important and thus the agent becomes less shortsighted. This can result in a few more mistakes

as too long a foresight results in too early prefetches. On the other hand it predicts more

applications as states nearby will get higher quality and thus prefetch earlier. All in all the

64

discount value will be chosen at 0.3 as this seems to be a nice balance, precision is still in slow

decline and recall as always in slow increase.

The expected value for this parameter was 0.1. As the results lay not that far off, this would

still have been a good choice.

Q Learn Rate

The parameters that are used for the simulation are listed below. Finally table 8.4 shows the

results of the simulation. These are the averages of the 5 users selected before. As all users

where tracked for approximately the same amount of time, these averages are not weighted.

Fixed parameters:

Polling interval: 10 min

Quality threshold: 0.1

Lifetime prefetch: 30 min

Q reward: option 2

Q discount: 0.3

Variable (Q learn rate):

0.05

0.2

0.5

0.8

1

Q learn rate Precision Recall Effectiveness Freshness (median)

0.05 19.4% 37.3% 39.7 542

0.2 20.2% 34.5% 41.7 564.6

0.5 21.1% 31.7% 43.9 589.8

0.8 21.1% 28.8% 44.6 621.6

1 20.3% 15.7% 45.1 742.8

Table 8.4: Result Q learn rate

In the results it is clear that a learn rate of 1 is inferior. As was expected this disregards any

past results and thus only uses the last use as an indicator. For the other values it holds that a

choice should be made between precision/effectiveness or recall/freshness. As a high recall and

low freshness is the goal and the differences in precision and effectiveness are limited, the value

with the highest recall/lowest freshness will be chosen, which is 0.05.

As an expected value, 0.2 was chosen. A low value was expected due to the fact that it makes

learning more robust. That an ideal value would be this low though wasn’t expected, as it is

not very flexible when patterns are changing. It seems though that these patterns either do not

change often, or the agent adjusts himself enough using a low learn rate.

65

Polling Interval and Quality Threshold

The parameters that are used for the simulation are listed below. Finally table 8.5 shows the

results of the simulation. These are the averages of the 5 users selected before. As all users

where tracked for approximately the same amount of time, these averages are not weighted.

Fixed parameters:

Lifetime prefetch: 30 min

Q reward: option 2

Q discount: 0.3

Q learn rate: 0.05

Variable (Poll. interval - Qual. threshold):

30 min - 0.3

30 min - 0.2

30 min - 0.1

10 min - 0.2

10 min - 0.1

10 min - 0

5 min - 0.1

5 min - 0

Polling — Quality threshold Precision Recall Effectiveness Freshness (median)

30 min — 0.3 26.7% 24.9% 89.4 707.2

30 min — 0.2 25.5% 25.7% 85.8 692

30 min — 0.1 24.1% 26.1% 81.7 683.4

10 min — 0.2 22.2% 34.4% 45.3 592.6

10 min — 0.1 19.5% 37.5% 39.8 543.1

10 min — 0 18.6% 37.7% 38.3 539.6

5 min — 0.1 14.4% 43.5% 24.3 507.4

5 min — 0 13.2% 44.4% 22.6 499.6

Table 8.5: Result Polling interval & Quality threshold

The first thing that can be noted in the results is the relation between the polling interval and

the freshness. As was to be expected, a smaller polling interval has the capability of predicting

more precisely and thus reducing freshness. As a cost this comes with a lower precision and

effectiveness, since more mistakes are made. For each polling interval, the goal of the prediction

agent will differ, as it typically is more interesting for a certain purpose. The 30 minutes polling

interval is clearly interesting if precision and effectiveness are deemed important. As values are

close, a quality threshold of 0.3 would be the best choice to maximize these values. For 10 minutes

polling, the recall and freshness will be more suitable goals. Since the differences between a

threshold of 0 and 0.1 are not astounding, 0.1 will be chosen as a best quality threshold. Finally

for a polling interval of 5 minutes, 0 is chosen as threshold to maximize recall and freshness.

The expected best combination for this variable was 10 minutes along with a quality threshold

of 0.1. This was eventually deemed as one of the best options as well. As was predicted, the

polling interval used is highly influential in what is favored, more accurate predictions, or more

predicted application launches.

66

8.3 Parameters Assessment Agent

Now that the characteristics of the prediction agents have been investigated, the assessment

agent has to be optimized. For this a set of prediction agents is needed, of which the assessment

agent has to combine the predictions. In order for the assessment agent to best leverage its full

potential, it seems best to have a diverse blend of prediction agents. The chosen agents are

specified in table 8.6 and motivated below.

Agent 0 Agent 1 Agent 2

Polling interval 30 5 10

Quality threshold 0.3 0 0.1

Q reward 1+3 2 2

Q discount 0 0.8 0.3

Q learn rate 0.8 0.05 0.05

Table 8.6: Configurations for Predictor Agents

Agent 0 is reserved to optimize precision and effectiveness. From the results gathered in the

previous section, the values for the parameters are chosen. Agent 0 has all parameters that

have been reported to generate the best precision/effectiveness. Agent 1 has all parameters that

have been reported to generate best recall/freshness. Lastly Agent 2 represents the overall best

parameters found in the previous section.

8.3.1 Parameters

A list of possible parameters for the assessment agent, along with their possible values and the

expected best one, is given in table 8.7.

Possible values/options Values to test Expected

Lifetime prefetch <0 sec,1 hour] 30 min 30 min

Quality measure 1: precision of agent 1, 2, 3 3

2: recall of agent

3: 0.5 * precision + 0.5 * recall

Protocol consecutive 1: prefetch again 1, 2, 3 3

prefetches 2: don’t prefetch

3: prefetch again (only after 10 min)

3: prefetch again (only after 20 min)

Table 8.7: Parameters for Assessment agent

The parameters described here are explained more elaborately in section 6.2 about the

implementation of a assessment agent. For each of them, an explanation for the values chosen in

the table is given below.

67

Lifetime Prefetch

As has been discussed when determining the optimal parameters for the prediction agents, the

lifetime for a prediction will be set to 30 minutes. The higher the lifetime is set, the higher

the precision and recall will be evaluated for each agent, because a prefetch is deemed correct

more often in this case. This is of course only an illusion, as prefetches are still done the same

way with either lifetime. The freshness value is not influenced by this and thus better used for

comparisons between different systems that value precision and recall differently.

Quality Measure

The quality of an agent can be measured and limited using different measures. These measures

consist of the precision, recall or a combination of these values for an agent. The measure chosen

determines the focus of the assessment agent and thus what is deemed more important by him.

To the quality measure belongs a quality threshold. This threshold can make sure predictions of

agents that are performing bad on the chosen measure are excluded.

The parameter of the quality measure will most likely determine where the focus of the agent

lies. Focusing solely on precision or recall is expected to yield high results in either one of the

area’s, but probably a mix of these measures is preferred. As this research doesn’t concern any

issues regarding battery life or data usage yet, a slight preference lies on the recall/freshness.

Protocol Consecutive Prefetches

The protocol for consecutive prefetches concerns the case where a prefetch has already been done

by the assessment agent and is predicted again by another agent. The assessor has 3 options

to handle this, it can prefetch it anyway, confine consecutive prefetches to happen only after a

certain amount of time has passed since the previous prefetch or do nothing at all.

When the protocol for consecutive prefetches is set to stop prefetching when this has already

been done, the recall is expected to get lower along with higher freshness. That is because the

prefetch would prevail longer if it was refreshed. The plusside of it though is that it greatly

reduces the number of preformed prefetches and thus improves effectiveness. With other protocols,

prefetches can be done several times within a lifetime of prefetch, reducing effectiveness. In

order to keep the improved recall and freshness while not overreacting on effectiveness, the best

solution expected is to only prefetch after a certain amount of time has expired since the previous

prefetch.

8.3.2 Results Per Parameter

Just as in the search for optimal parameters of the prediction agent, not all combinations can be

assessed here either. As the protocol for consecutive prefetches is expected to alter performance

regardless of the quality measure used, this will be assessed first. This protocol is deemed more

important as it has most impact on the aspects of bringing multiple predictors together.

68

Protocol Consecutive Prefetches

The parameters that are used for the simulation are listed below. Finally table 8.8 shows the

results of the simulation. These are the averages of the 5 users selected before. As all users

where tracked for approximately the same amount of time, these averages are not weighted.

Fixed parameters:

Lifetime prefetch: 30 min

Quality measure: option 3

- threshold: 0.2

Variable (Protocol):

option 1

option 2

option 3 (10 min)

option 3 (20 min)

Protocol Precision Recall Effectiveness Freshness (median)

option 1 17.4% 46.3% 16.7 430.8

option 2 20.3% 28.2% 55.4 693

option 3 (10 min) 15.7% 45.9% 23.7 461

option 3 (20 min) 14.1% 44.6% 30.0 517.6

Table 8.8: Result Protocol Consecutive Prefetches

Option 2 has a slight advantage in precision and quite a big one in effectiveness. This results

in a very low relative recall and a very high freshness. Considering this drop, option 2 will be

regarded as inferior. When looking at the other results and disregarding effectiveness, the order

of performance is clear. Option 1 performs best, then option 3 (10 min) and finally option 3

(20 min). Now option 1 and 3 both prefetch again, only 3 puts some limitations on when to

prefetch again. Since option 3 prefetches less applications, its effectiveness increases, since it

makes less double prefetches. This effectiveness difference is expected to only increase when

multiple similar agents are present, that is because these agents will prefetch more of the same

applications, all of which will be granted by option 1 and none of which will be by option 2.

Considering this will have most drastic results in option 1 and option 3 reduces this, option 3

will be chosen. Considering the fact that freshness is superior to effectiveness in this research,

option 3 (10 min) will be chosen.

Option 3 was the expected outcome of which 10 minutes appeared to have a small advantage.

Another possibility for future research would be to look at delaying prefetches, although this

would not be following the advice of the predicting agents. Because of it this will likely cause

more incorrect prefetches and keep freshness high.

Quality Measure

The parameters that are used for the simulation are listed below. Finally table 8.9 shows the

results of the simulation. These are the averages of the 5 users selected before. As all users

where tracked for approximately the same amount of time, these averages are not weighted. The

threshold for the quality measure is valued along with expected values for the measures. As

69

precision has been reported lower in previous results, the threshold to test this measure with is

set lower as well.

Fixed parameters:

Lifetime prefetch: 30 min

Protocol consecutive

prefetches: option 3 (10 min)

Variable (Quality measure - threshold):

option 1 - 0.1

option 1 - 0.2

option 2 - 0.2

option 2 - 0.3

option 3 - 0.1

option 3 - 0.2

option 3 - 0.3

option 1||2||3 - 0

Quality measure Precision Recall Effectiveness Freshness (median)

option 1 - 0.1 15.8% 44.5% 23.8 485.4

option 1 - 0.2 18.0% 39.0% 27.1 515

option 2 - 0.2 14.9% 47.9% 22.7 427.4

option 2 - 0.3 15.5% 45.9% 23.3 443.5

option 3 - 0.1 14.9% 48.4% 22.7 424.8

option 3 - 0.2 15.7% 45.9% 23.7 461

option 3 - 0.3 16.4% 41.5% 24.6 500.4

option 1||2||3 - 0 14.6% 48.9% 22.4 423.2

Table 8.9: Result Quality Measure

As expected option 1, which focuses on precision, yields the highest precision and effectiveness.

Option 2 focuses on recall and thus yields a relative higher recall and lower freshness. Option

3 finally falls in between these two considering the same threshold values. Interesting enough

though is that a threshold of 0, in which case it doesn’t matter anymore which option is chosen

as every quality measure for each agent is above 0, seems to yield most interesting results. For

this research freshness and recall are deemed the most important parameters, but precision and

effectiveness should be maximized closely after. As these last two parameters suffer very lightly

from choosing a threshold of 0, while it does optimize freshness and recall a lot, this option will

be chosen.

Option 3 was expected to yield the best results. That was because a large drop in precision

and effectiveness was expected for option 2. As it turns out this drop is very small and thus

acceptable for the increased performance. Finally it seems that it is best to use no filter except

for the protocol of consecutive prefetches. Every prediction done by any agent of course benefits

recall and freshness, but it also seems to have only a very light negative impact on precision and

effectiveness.

70

Chapter 9

Results

With all of the system in place, the setup for testing made and the parameters investigated, the

final results of the system can be gathered. Some expectations about the results will first be set.

Then the system will be evaluated on the aforementioned performance measures and it will be

compared to the existing literature on this topic. Appendix D refers to the raw data gathered.

9.1 Expectations

As can already be seen in chapter 8 on parameter setting, the prediction agents along with

reinforcement learning are able to predict user behavior and successfully prefetch the correct

applications. Using the full potential of the Multi Agent System along with the assessment agent,

is expected to enhance these results. Overall the expectation is that the system is suitable for

these predictions and shows promising results.

Though the benefit of the techniques used are expected to be seen. It is not expected that

the results are groundbreaking. Since learning is only based on time of day, which is very

limited based on related work, results will not likely be better than this work. Furthermore, the

benefit of the MAS will mostly be seen when different kinds of prediction agents are used. Now

these agents are very similar, with only their parameters set differently. Because of this, the

improvement of the assessment agent over the separate predictors will not be high.

9.2 Performance of System

Now that the expectations are set, let’s have a look at the performance of the system. First the

configuration of the system is set after which the results can be gathered.

9.2.1 Configuration

In order to test the system, user data is needed. As these results are important for the evaluation

of the system, more users than before are used and explained first. Then the configurations for

the prediction agents along with the assessment agents are discussed.

71

Test Data

In section 8, where the parameters of the agents were investigated, only 5 users from the LiveLab

dataset were used. The reason for this was that a lot of tests had to be run while limited time

was available and for these small tests a smaller set of users would be acceptable for significance.

These results gathered here though are used to evaluate the performance of the system with.

Thus significance is of higher importance here, which is why as many users as possible were

tested. To be able to evaluate as long a period as possible, all users with prefixes ’A’ and ’B’ were

chosen from the set shown in appendix A. Users with prefix ’D’ where tracked for a considerably

smaller timespan. As the smallest timespan determines the time that can be evaluated and a

longer time allows for better evaluation, these were not included.

Prediction Agents

For the prediction agents, a large range of diverse agents was chosen, as the assessment agent

is expected to perform best with a large and diverse set of predictors. Table 9.1 shows the

configurations of the prediction agents. Following the table is a description of the choices.

Agent 0 Agent 3 Agent 4 Agent 5

Polling interval 30 30 10 10

Quality threshold 0.3 0.3 0.1 0.1

Q reward 1+3 2 1+3 2

Q discount 0 0.3 0.3 0

Q learn rate 0.8 0.05 0.05 0.8

Agent 1 Agent 6 Agent 7 Agent 2

Polling interval 5 5 10 10

Quality threshold 0 0 0.1 0.1

Q reward 2 2 2 2

Q discount 0.8 0.3 0.8 0.3

Q learn rate 0.05 0.05 0.05 0.05

Table 9.1: Configurations for Predictor Agents

Agent 0 till 2 are kept the same as before when determining the optimal parameters for the

assessment agent in section 8.3. Agent 0, 3, 4 and 5 are reserved to optimize precision and

effectiveness. From the results gathered in the previous chapter, the values for the parameters

are chosen. Agent 0 has all parameters that have been reported to generate the best preci-

sion/effectiveness. Agent 1 till 3 have the determined optimal parameters with respectively the

polling interval/quality threshold, Q reward and Q discount/learn rate optimized. Agent 1 has

all parameters that have been reported to generate best recall/freshness. Then Agent 6 and 7

each have the before determined best parameters with respectively the polling interval/quality

threshold and Q discount optimized (the other parameters were already optimal). Lastly Agent

2 represents the best parameters found in the determination of parameters for the prediction

agents.

72

Assessment Agent

Finally the assessment agent has to be configured appropriately as well. As reported in section

8.3, option 3 of the protocol for consecutive prefetches with 10 minutes is argued to perform

best. This protocol, that doesn’t prefetch the same application twice within 10 minutes, is used

for the assessor. Furthermore the quality measure was chosen with a threshold of 0, essentially

meaning that no measure will be used and all prefetches of all agents will be done. This was

reported to yield best results.

9.2.2 Results

In order to discuss the characteristics of the system, several experiments can be done. To

determine the primary performance measures of the overall system and prepare the data, R

scripts were used to transform the data for all users and gather it in a single file. These scripts

can be found in appendix B.2. Finally Microsoft Excel 2013 was used to plot the actual graphs,

except for the freshness graph. This one was made using R since the files needed for it where

too large to be loaded into Excel.

Two types of tests will be done. First the data will be shown in an accumulated fashion, thus

always the average of all statistics done before. The other type of test will consider the measures

per day. This way more characteristics of the learning process can be extracted.

Measures Accumulated

The values that were obtained with the configuration run are displayed in table 9.2. Here one

can see that each agent reduces freshness as opposed to the benchmark. The benchmark is the

freshness of each application when no prefetches are done. It can also be noted already that the

assessment agent performs best on recall and freshness, worst on effectiveness and nearly worst

at precision.

Precision Recall Effectiveness Freshness (median)

Benchmark 854

Assessor 8.6% 45.6% 10.3 520

Agent 0 21.6% 8.4% 54.6 578

Agent 1 9.0% 39.0% 13.3 548

Agent 2 12.9% 29.0% 22.6 546

Agent 3 18.6% 16.5% 49.2 565

Agent 4 9.7% 8.8% 18.1 582

Agent 5 13.0% 15.7% 24.3 590

Agent 6 8.3% 36.0% 12.5 576

Agent 7 12.4% 31.0% 21.7 571

Table 9.2: Per Agent Results

73

Besides these tabular values though, graphs often tell a lot more about data and make sure

data is easier compared. Figure 9.1, 9.2 and 9.3 respectively show the average precision, recall

and effectiveness for each agent as a function of time. Each of these graphs has the average

percentage on its y-axis and the time in days on its x-axis.

In the graph for precision it is clear that agent 0 and 3 yield the highest scores. This goes

hand in hand with a relative lower score in recall for these agents. These agents also perform

exceptionally well in effectiveness. In recall, agent 1, 2, 6 and 7 yield best results. Along with

the remaining agents, 4 and 5, they perform lower in precision and effectiveness. Actually agent

4 and 5 manage to score below average on all 3 performance measures.

The assessment agent can be seen to outperform every single agent in recall. This feature

comes at a cost though as its precision is consistently lower and its effectiveness even stays lowest

of all agents.

0

5

10

15

20

25

0 50 100 150 200 250 300

A
vg

 P
re

ci
si

o
n

 (
%

)

Time (days)

Precision

Assessment

Agent 0

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Agent 6

Agent 7

Figure 9.1: Average Precision

Figure 9.4 shows the Cumulative Probability Distribution of the freshness values for each agent.

This graph can easily be used to read the difference in freshness obtained by the program. The

higher the cumulutative probability for a certain time, the lower freshness was in the applications.

As can be seen, all agents improve freshness regarded to the benchmark (black line). The

benchmark represents the case where no prefetches are done and thus only the previous launch

of an application determines its freshness. All agents perform similar based on freshness, they

are all drawn with grey lines since the difference is too small to notice. The red line finally

represents the assessment agent and can be seen to result in the best freshness.

74

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300

A
vg

 R
ec

al
l (

%
)

Time (days)

Recall

Assessment

Agent 0

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Agent 6

Agent 7

Figure 9.2: Average Recall

0

10

20

30

40

50

60

0 50 100 150 200 250 300

A
vg

 E
ff

ec
ti

ve
n

es
s

Time (days)

Effectiveness

Assessment

Agent 0

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Agent 6

Agent 7

Figure 9.3: Average Effectiveness

75

Figure 9.4: CPD Freshness

Results per Day

In order to further investigate the results obtained from the system, the performance measures

will be calculated per day as well. The previous section showed the averages of the performance

measures of all the history, now the performance measures are calculated per day and displayed

in the following graphs. This is done only for the assessment agent. The patterns that can be

seen here are similar for all other agents. Figure 9.5 shows the precision, figure 9.6 the recall

and figure 9.7 the effectiveness.

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200 250 300

A
vg

 P
re

ci
si

o
n

 (
%

)

Time (days)

Precision

Assessment

Figure 9.5: Average Precision Assessor (Daily)

All graphs first start with an increase in performance as the agent learns the user patterns.

The short bursts to zero can be explained by the fact that the agents do not learn during

weekends, and thus achieve zero for all performance measures during these times. Furthermore,

a small decline can be noticed between 100 and 150 days. Since data gathering of users started

in February, this period falls approximately around June and July, which is the most common

season for holidays.

76

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300

A
vg

 R
ec

al
l (

%
)

Time (days)

Recall

Assessment

Figure 9.6: Average Recall Assessor (Daily)

0

5

10

15

20

25

0 50 100 150 200 250 300

A
vg

 E
ff

ec
ti

ve
n

es
s

Time (days)

Effectiveness

Assessment

Figure 9.7: Average Effectiveness Assessor (Daily)

9.3 Compared to Related Work

In section 2.3 the algorithms FALCON and PREPP were mentioned as two predictors of

application launches. In order to verify the results obtained in this study it is important to

compare them to the ones obtained by related work. This section will discuss both FALCON

and PREPP although there are a number of difficulties encountered for both.

9.3.1 FALCON

Let’s first consider FALCON. This algorithm only predicts application launches that occur after

a first application has been opened already. Right after unlocking a phone, nothing is predicted

yet, only when a first launch has been detected the algorithm starts working. This cannot be

compared to predicting launches at every given moment, as the latter will always be performing

worse. Thus this algorithm will not be compared to the one discussed in this report.

77

9.3.2 PREPP

The other algorithm discussed in section 2.3 was PREPP. This algorithm does try to prefetch

applications at any given time. It determines the order in which app launches occur, from this

predicts which one will be next and finally learns a model to decide the time before this app will

be launched. They use a couple of ways to measure performance. One considers the accuracy of

the top 5 ranking for the next app to be used. Besides this the freshness of the Facebook and

E-mail app is evaluated. Finally the overall system is evaluated using a controlled user study of

a maximum of 2 weeks. For this study 1 week was used to let the algorithm learn and only 1

week was used to obtain performance measures.

The first measure is again not useful to compare with this study. The top 5 ranking says

nothing about the time it will be used. This could very well be hours ahead. The proposed

system doesn’t work this way since time is inherent in its predictions. The ranking for next

apps cannot be easily extracted from this, it would require the algorithm to look ahead for an

unknown amount of time and extract the most likely apps to be launched. This unknown time

forms the problem though.

The second measure, freshness, could be used to compare the results. The freshness represents

the time between a prefetch and a launch. When no prefetch was done, it represents the time

between two launches of a certain app. In the proposed system, this can be extracted quite

easily. Figure 9.8 and 9.9 show the freshness as reported by PREPP for Facebook and E-mail

respectively. The same graph is created using the system of this research and results are shown

in Figure 9.10. The R scripts used to extract them are shown in appendix B.3. The graphs show

that the freshness of the benchmarks in this study and PREPP’s coincide, which shows this

measure is likely to be calculated in the same way. The algorithms of FALCON and PREPP

both acquire substantially better freshness values.

Figure 9.8: PREPP: Freshness Facebook Figure 9.9: PREPP: Freshness E-mail

78

Figure 9.10: CPD Freshness of Facebook and E-mail

Finally the controlled user study of PREPP resulted in a median freshness of 2.7 minutes

along with a precision of 22.12% and a recall of 46.87% [92]. Polling each 15 minutes resulted in

a median freshness of 247 seconds while this resulted in 3.58 times the number of prefetches

done compared to PREPP.

In order to compare to PREPP, the results obtained with the assessment agent can be used.

These results can be found in table 9.2. The median freshness for the system is reported to be

520 seconds, or roughly 8.7 minutes. The average precision was 8.6% and average recall 45.6%.

PREPP is not clear as to which applications are polled and thus it is not clear what 3.58 times

means. Assuming all applications on the phone are used in this calculation, this means that

PREPP does a prediction every 3.58 · 15 = 53.7 minutes per application. Using the R script

listed in appendix B.3, the average time between prefetches for the system of this research is

calculated to be 670.3 minutes, or 11.2 hours.

79

Chapter 10

Discussion

Now that the results have been gathered, a discussion as to how to interpret these results

is up next. Section 10.1 will cover this. Besides only discussing the results though, during

implementation all sorts of challenges were encountered. These hiccups and how they were

resolved are discussed in section 10.2.

10.1 Results

The system that has been brought about in this research showed some interesting results which

were presented in chapter 8 and 9. These chapters evaluated the parameters of the framework

and the overall gathered results respectively. Here they will be discussed in the same order.

10.1.1 Parameter Setting

Before being able to assess the system, the parameters of all agents had to be evaluated. This

was done in chapter 8. Here a division was made in determining parameters for the predictors

and for the assessor, as will be done now.

Parameters Prediction Agent

The predictors first of all have a vast amount of parameters that can be altered. This changes

their behavior and determines the performance measures that are deemed most important by

them. As all different combinations are unfeasible to investigate, some choices had to be made.

Because of this, some parameters were kept static, others were evaluated in selected ranges and

all parameters were assessed one by one instead of testing all combinations. These decisions

somewhat limit the value of the experiments, but using good reason they proved to give very

good insights in the effects of altering each different parameter.

Since a conclusion of the parameters was needed for further testing, the results here have been

discussed to a certain extend in this chapter already. Nevertheless some remarks can still be

made on some of the parameters.

80

The discount factor doesn’t seem to have much influence on the outcome of the performance

measures. This factor determines the weight of the next state in the quality determination of a

state-action pair. This small difference seems to hint that whether the future state is considered

important or not doesn’t influence learning much. This means that the quality of a state one

timestep later adds little information to the learning process.

Overall for all parameters, it can be noted that the effectiveness measure coincides heavily with

the precision measure. The effectiveness essentially describes the percentage of total predictions

that let to a successfully prefetched application. When a single prediction is valid for multiple

application launches, the effectiveness is high. While the case where multiple predictions are

done for a single launch, the effectiveness is low. Prediction agents will rarely find themselves

in these cases as they account for the predictions they already did. This performance measure

will be more useful for the assessment agent as multiple of the same predictions in the same

timespan are more likely to occur there.

Parameters Assessment Agent

As of writing, the assessment agent is only a simple agent that filters the predictions of multiple

predictors. Due to this it has less parameters to choose from at the moment. Again some choices

were made in the order in which the parameters were set, just like in the predictors. This order

was to first investigate the protocol for consecutive prefetches. Both parameters have been

discussed and concluded on in section 8.3. Besides the discussion there, still some remarks on

the quality measure can be noted.

This quality measure was evaluated using 3 well performing agents. Partly because of it, the

way each agent was evaluated didn’t matter all that much, the more predictions were let through,

the better. Because of this a threshold of 0 came out on top. Something to consider though is

that this threshold might be relevant when bad performing agents are present. The predictions

of these agents will then be filtered out and not ruin the performance of the assessor.

10.1.2 Performance System

The overall system has been assessed in section 9.2 with agents selected using the parameters

found in section 8. Looking at the graphs of the performance measures, it is clear that the

assessment agent mostly coincides with agent 1 and 6. Those agents have the smallest polling

interval and thus make the most predictions. Since the assessor is not that sophisticated in

its filtering yet, all of these predictions are actually done, unless the protocol for consecutive

prefetches states otherwise. Nevertheless it is clear that the assessor is able to obtain better

recall and also better freshness as all of the other agents.

Agents 4 and 5 can be noted to perform relatively bad on all performance measures. Both

the agents are designed to perform best on precision and effectiveness. For these measures,

the polling interval and threshold are shown to have largest influence. Therefore focusing on

precision and effectiveness, without the appropriate polling interval and threshold, turns out to

be useless.

81

The curve of accumulated recall and all of the curves that show the daily performance measures

all show periodic drops. In the accumulated recall these are short setbacks but when looking at

the daily measures, the reason becomes more clear. The fact that the performance measures all

have a short burst to 0 can be explained by the fact that they do not learn during weekends.

Every weekend all performance measures should be 0 as nothing is done by any of the agents.

The fact that they’re not completely 0 can be caused by some predictions being done in the

transition periods from weekend to week. These drops off course heavily reduce the average

performance measures. In the daily graphs one can see the actual values reached for each

performance measure by the assessment agent. Recall can be seen to reach values around 70%.

In these daily graphs one can also see a small drop of the performance measures after about

100-150 days. As noted in the results section, this period of time falls approximately around

June and July, being the most popular months for a holiday. These are the hottest months in

Texas, the region where the data was gathered. These drops could thus be explained by the

fact that user patterns alter somewhat in the holiday season, as users tend to use their phones

differently. Nevertheless the algorithm maintains quite steady results and recovers immediately

after.

The fact that daily effectiveness measures for the assessment agent hover a bit above 10 roughly

means that approximately 10 predictions were done per correctly predicted application. Also

freshness can be seen to improve in the cumulative probability distribution made with it. These

measures are difficult to talk about though, as they only indirectly and roughly represent the

benefits the system has and the costs that come with it.

10.1.3 Comparing to Related Work

The system is finally compared to the paper of PREPP which comes closest to this research.

This comparison is difficult since PREPP rapports some choices poorly and calculates costs

for the mobile device where this research does not. This thesis focuses solely on the predictive

capabilities while considering measures that indicate these costs like precision and effectiveness.

Furthermore PREPP is expected to learn throughout all days in a week, instead of disregarding

weekends. First a comparison based on freshness is done, where it is explained that this is the

only reliable way to compare the systems. After that some other ways to compare are mentioned.

Freshness

In order to compare to PREPP, freshness was reported in the results. From the performance

measures gathered this is the only one probably calculated in the same way. PREPP isn’t clear

on how precision and recall are determined. To explain how these differences in calculation can

occur, a small example will be used.

Say Facebook is prefetched at time 0 and opened at time 30 without any applications opened

in between. This could be considered a correct prefetch as Facebook was the first app to be

opened after the prefetch. This system would deem the prefetch incorrect when E-mail was

opened at time 15, since then E-mail would have been the next application from the time of

82

prefetch. Another approach, the approach of this research, is to determine the lifetime for a

prefetch. If an app is opened before this lifetime, the prefetch is correct. Now if the lifetime in

this example is 60, the prefetch will be deemed correct regardless of the E-mail launch in between.

But if the lifetime is set to 15, the prefetch will be deemed incorrect, even when E-mail was not

launched in between. These things can make a large difference in the outcome of precision and

recall. As can be seen in the example, a high lifetime guarantees a higher percentage of correct

prefetches, even though the actual prefetches are the same.

Freshness is independent of this phenomenon and thus is concluded to be the best way to

compare the systems. Let’s first discuss the freshness values reported on Facebook and E-mail.

Both PREPP and FALCON outperform the methods of this research. This means the prefetches

of those other algorithms either are closer to the actual time of the launch, or more of the launches

are predicted correctly. This last statement is not likely to be the case as PREPP reports similar

recall values to the proposed system in their controlled user study. The freshness difference thus

has to be caused by the fact that predictions of FALCON and PREPP are closer to the actual

launch times of apps. This might be explained by the small portion of features considered for

the algorithm in this research. Only time of day was expected to perform worse and thus it is

no surprise that PREPP and FALCON are performing better. Furthermore the polling time of

agents in this system is 5 minutes, which results in fixed times on which predictions can be done.

Letting agents poll at different times and improving the assessors way of combining predictions

could reduce this. Finally, the agents in this research only prefetch a single application per

interval, resulting in at most one prefetch per 5 minutes per prediction agent. This could reduce

freshness of a specific application if another was chosen as a better candidate for prefetch.

Other

Besides freshness, a user study in the wild has been conducted by PREPP. Here recall is reported

to be about the same compared to this research. Precision and freshness are reported a lot

better by PREPP though. This could be because of the same reasons as discussed above, but an

important difference not mentioned by PREPP could be whether the homescreen application

’SpringBoard’ is taken into account. This would improve freshness as this application is opened

every time the phone is used. Also, the number of prefetches actually done could influence this.

PREPP mentions such a measure very briefly in their paper. In section 9.3 this notion is used

to estimate the interval between prefetches. This interval is notably higher than is calculated for

the system of this research. As some presumptions had to be made in the calculations, these

measures are uncertain. Provided they do hold though, it would mean that PREPP uses a lot

more prefetches. The system of this research could already leverage this by prefetching more

often, for instance by using option 2 of the protocol for consecutive launches in the assessment

agent (section 8.3).

The fact that the number of prefetches can be of importance as suggested above, is thus

important for the notion of freshness. This can be explained better using a small example. Say

Facebook is opened by a user at time 60. Then a single prefetch at time 30 could result in a

correct prefetch and a freshness of 60 − 30 = 30. Now say the system would try a few more

prefetches to improve freshness. It could prefetch again every 5 minutes for the next 15 minutes

83

for example. Then the system prefetches Facebook at times 30, 35, 40 and 45. All of these

prefetches are correct thus raising precision, the app Facebook was still predicted correctly thus

recall remains the same and freshness will be reduced to 60− 45 = 15. The only way to detect

this is by looking at the number of prefetches actually done, or by incorporating a measure like

effectiveness as is done in this research. PREPP doesn’t report on this, but only evaluates the

battery and data costs. This research though isn’t able to evaluate on those measures, thus

making comparisons on these grounds difficult.

10.2 Implementation

Besides only discussing the results obtained, some words will be used to discuss the various

techniques used in the implementation. The problems that were encountered in the design and

implementation phase will be treated along with the way they were fixed.

10.2.1 Xamarin

The development environment chosen initially in the research was Xamarin. As Xamarin offers

a convenient way to develop applications for multiple platforms. In order to use the existing

Java libraries, Java bindings could be developed. Using these bindings, the .JAR files needed

for communication by the application are wrapped in C# code. This way these files can be

easily used in the .NET code used by Xamarin. Though the use of such a binding library would

eventually be straightforward, the binding process itself was subject to numerous amounts of

errors. As the automated binding isn’t capable of converting everything successfully, many errors

had to be removed manually. Because of the size of Jadex, the errors kept on coming. Eventually

it was decided not to use Xamarin after all and implement using Eclipse. Since no deployments

to actual devices were done this was no limitation.

Xamarin still seems like a good solution for cross platform development, but the use of external

.JAR files is quite complex. Due to the fact that not everything can be bound to .NET code

automatically, it seems like this solution is only feasible for simple and small classes of java code.

10.2.2 Jadex

The Jadex framework provides excellent support for the creation of BDI agents. The platform

was quickly deployed on a windows machine and after the usual struggle with new techniques, the

framework ran on Android as well. The agents created on either one of the machines easily work

on the other as well. Using the BDI tutorial provided on the website of Jadex, an understanding

of this framework and the possibilities is easily obtained.

In Jadex, BDI agents can be realized in two different ways. One is by using XML files that

specify the agents and the other is by using java code in combination with annotations. In this

research the combination with XML files was used as it was better documented and the java

standalone files didn’t work out of the box. As the main difference between the two is only ease

of programming, the decision to use XML was quickly made.

84

Speed

When creating the agents, one downside that was encountered is the speed of Jadex. Considering

predictions will normally be done throughout days or even weeks, this is not a problem. But

when simulating these scenarios with timesteps of a single second, the agents were too slow.

Each prediction agent has to perform a plan and a prediction every timestep. This went well

with one prediction agent, but as more were added, the execution of all the plans took longer

than a second, resulting in prediction agents that were running behind. Upon further inspection

the reason for this time was not caused by heavy tasks of the agents, but by the fact the relay

server was not properly contacted. This relay server gathers information on the use of Jadex.

When it is not connected the speed of the framework is drastically reduced. Some networks

had firewalls that blocked this connection and thus testing with the frameworks had to be done

outside these networks.

10.2.3 Tropos

In order to design the agent configuration, some existing methodologies can be followed. This

research uses Tropos. Tropos provides several design phases that provide guidance in the

development of agent systems. During the use of Tropos though, it became clear that designing

a system with a specific goal for a user is a little different than designing a ’silent’ system that

improves user experience. This resulted in very few requirements to be identified in the first

phases of the methodology. Nevertheless the methodology provided a nice guideline in the design

process in later stages. It encouraged to think better about the system to be developed.

10.2.4 Machine Learning

During the development of the system, the choice of machine learning was often reconsidered.

Reinforcement learning was chosen initially, but raised some challenges during implementation.

When learning what task is performed at what time, the environment is time. This means the

environment is altered by an external process, so the state changes constantly. Since reinforcement

learning is based on trial and error and works with delayed rewards, such a constant change of

environment can interfere with the learning process of the agent.

For this reason supervised learning was reconsidered. In time-series predictions this type of

learning is often applied. It can be used to learn which applications are often used in a certain

state. A difficulty faced here though, is that the launch of a certain application isn’t a fact

(the next time it might not happen or at a different time), where supervised learning is used to

classify data based on facts. Furthermore, as the user will change behavior over time, this data

can alter a lot in the future.

As supervised learning isn’t suitable, eventually reinforcement learning was successfully imple-

mented nevertheless. This was done as follows. The agent keeps as a state the current time only.

The actions it has to its availability are the act of prefetching an application. The environment

then keeps track of the applications that are prefetched and receives the event of an application

actually being launched. Every time the agent sends an action to the environment (what

85

application to prefetch), the environment generates a reward based on whether this application

was actually launched.

SARSA

At first SARSA was considered as a reinforcement learning algorithm. When predicting based

on time though, it learned very slowly. For every state (time of day), only one action is tried at

a time. Besides that, since the prefetches are on hold for several timesteps, a high reward might

be received for a prefetch done a few timesteps back. This information has to propogate back

for the model to learn where this high reward came from. That takes some time as well. In the

end the SARSA algorithm was dismissed and replaced by the very similar Q-learning algorithm.

This algorithm learns state-action values for all actions possible from a certain state at the same

time. This way learning became considerably faster.

RL-Glue

The RL-Glue environment provides a framework for reinforcement learning. RL-Glue works as a

static class which at first seems to allow for only a single instance. But it turns out it is possible

to construct multiple interfaces for RL-Glue and swap the correct one in the static class when

needed. This way multiple instances of RL-Glue could be used.

Unfortunately, this workaround proved not to be enough fairly quickly. Learning has to happen

simultaneously, as many agent will be doing this at the same time. Via the workaround just

discussed though, learning can only happen for one agent at a time. This eventually led to the

only possibility which is adjusting the RL-Glue library to not work with a static, but a dynamic

class. This way enabling it to work with multiple instances.

10.2.5 Testing

In order to simulate the user queries provided by the LiveLab dataset, the SQL statements in

which they are delivered need to be processed. Microsoft’s SQL Server is used to serve the data

to the input agent. This input agent will query the SQL database and send the simulated data

to the prediction agents.

One issue though is that the SQL files are far too big to be loaded into MS SQL server at once.

Some even are over 1GB which results in the SQL Server Management Studio to give memory

errors. There are multiple ways to work around this problem. The SQL files can be split and

executed separately. A downside to this approach is that it takes a long time. Another way is to

use SQLCMD, which is a command line approach of executing scripts on the server. This still

resulted in insufficient system memory errors.

Eventually a combination of both solutions was used. The large SQL files were split using a

small utility program to split large text files [26]. Then the smaller files were executed using

sqlcmd. Query used: ”sqlcmd -d livelab -U livelabuser -P livelabuser -i [sqlfilepath].sql”.

86

SQL JDBC

In order to connect to the MS SQL Server from the Java environment, the Microsoft JDBC

Driver was used [72]. This driver consists of an API that can be used to connect to the server

and execute queries on it.

At first a new database connection was used every time a query was performed to the SQL

server. This reconnecting eventually proved to cost a lot of time. Either retrieving all data before

simulation or keeping the connection to the database open proved to be successful solutions.

87

Chapter 11

Conclusion

The goal of this thesis is to predict application launches on mobile devices. In order to reach

this goal though, the problem was decomposed in some smaller goals in the introduction. Each

of these smaller goals tried to answer a sub question of the overall research question. Now the

conclusions on each question will be presented.

In order to use the flexible and expandable intelligent agents, a framework was needed and so

the first question was posed:

SQ1: Which framework for intelligent agents can best be used?

To answer this question, multiple types of agents were considered. From these the most

sophisticated type, namely the BDI agent, was chosen. They can be used as reactive as well

as intelligent and complex agents, thus providing the flexibility for expansions. With the BDI

property as one of the constraints, various agent frameworks were evaluated. Out of the two

frameworks that provided everything required, Jadex was chosen. Now that the framework is

determined, a way to learn user patterns was needed. The second question concerned this topic:

SQ2: What kind of machine learning should be used in the agents?

First the choice for a type of machine learning was settled at reinforcement learning. From

the many algorithms considered, Q-learning was chosen mostly because of its popularity, proven

effectiveness and qualities required for this research. This concludes the questions that make

up the core of the system. This system though, will eventually be ported to a mobile device to

work real time. For this purpose a third question was raised:

SQ3: Which mobile platform should be used?

The 3 most popular mobile platforms (Android, iOS and Windows Phone) were considered in

this evaluation. Android came out on top because of its support for Java and the open nature

that more easily permits some needed functions. Lastly the system has to be tested in order to

evaluate it. The last question treats this aspect:

88

SQ4: Which way can the system be tested?

There are multiple ways to test the system. Existing datasets or real life testing were considered

for this purpose. Eventually the LiveLab dataset was chosen to work with. Real life testing

would take too much time and using existing datasets would allow for quick testing and adjusting.

Furthermore this dataset was used by some related work, making comparisons more valuable.

Using these subquestions and the conclusions drawn from them, the research question was

successfully investigated:

RQ: Can intelligent agents combined with machine learning be used to predict launches of

applications for mobile devices?

The answer to this question is yes, the combination of both techniques was proven to successfully

predict application launches of mobile phone users. With these predictions the freshness of the

data and thus the recency of the data loaded for an application was reduced. This implies that

applications should have a reduced load time, although this very fact should be verified using a

deployment on a mobile device in future work.

Firstly reinforcement learning proved to be a good way to predict user behavior. When looking

at a single prediction agent, it was clearly capable of predicting what a user would launch next.

Besides machine learning, also the multi agent system has proven to work well in this domain. It

is shown that the assessment agent is able to improve the results from each individual prediction

agent. Considering all agents are similar in how they work, the framework promises even better

results when more diverse predictors are used.

The comparison with related work was more difficult. Mostly because some decisions were not

entirely documented in the papers and some evaluations on the cost of the system were done

differently, more elaborately. As of now the systems PREPP and FALCON perform a bit better

than the proposed system. This research simply hasn’t had the chance yet to implement enough

suitable predictors to match or exceed these results. Future work should clear this up.

For now, the conclusion remains that intelligent agents and machine learning form an excellent

combination and are very capable of predicting user behavior on a mobile device. As there are

numerous expansion possibilities possible, also in various other areas, such a system shows great

potential for future work. These future possibilities are discussed in chapter 12.

89

Chapter 12

Future Work

The system as proposed in this thesis has various different expansion possibilities. The use of a

multi agent system allows for many simple alterations and additions of agents to the system.

Many expansions of the system have been discussed in section 6.3 already. These cover most

improvements per agent. Besides these improvements, other types of machine learning could be

used as well. Chapter 4 describes an elaborate research to machine learning and covers a range

of different techniques that can be considered.

Besides trying different machine learning techniques, the BDI nature of the intelligent agents

as discussed in chapter 3 can be leveraged more. Goals could be added regarding battery life

constraints or data usage constraints. The intelligent agents using BDI are designed to work

well with conflicting goals and thus can be used with these conflicts.

To test the system better, a deployment would be essential in future work. Right now the only

evaluation that could be done was the performance in predicting applications, not the actual

costs of the system. Besides implementing everything on the mobile device, an attempt can

be made to implement only the input and launcher agent on the mobile device and offload the

others to the cloud. The prediction and assessment agents use more system resources as they

perform the actual machine learning. This way battery drain could be prevented in the mobile

devices. Also, when deploying the application to a phone, a user study can be done to how users

perceive the improvements.

Finally, as was treated in the beginning of this thesis, the techniques discussed here can be

applied to other domains. One of these could be the caching of websites or databases. As these

systems are often used by a lot of users, patterns could be extracted in what is requested from

them. This could result in reducing the load times of these systems drastically as well. These

caching techniques are one of the practical ways Avanade could use the devised system. The

usability of this thesis for Avanade is discussed in Appendix C.

90

Appendix A

LiveLab Data

The LiveLab data consists of data from 34 users of an iPhone 3G from Texas, USA. The data

was gathered from February 19th 2010 to April 25th 2011, varying per user. A summary of this

dataset can be found in table A.1. The timestamps used in this table are UNIX timestamps.

Furthermore, for the statistics in this table, the application ’SpringBoard’ was excluded. That is

because this is the homescreen of iPhone and therefore not considered a true application.

The query that was used to retrieve this table, is the following:

SELECT uid,COUNT(id),COUNT(DISTINCT(name)),MIN(time),MAX(time)

FROM [livelab].[dbo].[appusage]

WHERE name NOT LIKE ’SpringBoard’

GROUP BY uid

ORDER BY uid

91

User ID App Launch Count Distinct Apps Start Timestamp End Timestamp

A00 24275 89 1266247858 1298621859

A01 13335 161 1266250192 1297743157

A02 30698 149 1266250247 1296627649

A03 26162 318 1266261792 1298014999

A04 30421 102 1266249817 1298019952

A05 16618 184 1266250280 1299316704

A06 31784 80 1266259781 1298187902

A07 25947 216 1266250360 1301891155

A08 20057 46 1266259564 1303775269

A09 43230 341 1266250036 1290422489

A10 38382 96 1266250398 1297839233

A11 22306 91 1266250426 1298070169

A12 28270 184 1267226692 1296795933

B00 2798 40 1266250484 1291625624

B02 27768 75 1266250581 1297840148

B03 23015 57 1266250572 1298352938

B04 36366 129 1266250608 1301636623

B05 23680 316 1266249209 1297755014

B06 18519 65 1266250665 1297841129

B07 13768 86 1266250689 1297836173

B08 18777 535 1266250731 1297841777

B09 17165 59 1266250760 1300901448

B10 38178 85 1266250841 1293440978

B11 9255 58 1266241808 1298537849

D00 19666 131 1283903660 1298653610

D01 6746 50 1283892079 1287558610

D02 15467 247 1283900234 1298098265

D03 24613 69 1283892318 1298005996

D04 26245 158 1283896014 1297846359

D05 17040 134 1283900114 1296261516

D06 10696 134 1283892499 1297999149

D07 3992 85 1283892712 1297991678

D08 18724 136 1283892715 1297840797

D09 16709 51 1283891070 1296798471

Table A.1: Livelab: Summary of data

92

Appendix B

R Scripts

In order to transform and reorder all data gathered, R was used. As many scripts had to be

used multiple times, this way data could be evaluated faster. This appendix lists the R scripts

that were used in this research. First those used in chapter 8 on parameter setting are listed

in section B.1. Then those for the evaluation of system performance as used in section 9.2 are

shown in section B.2 and lastly those to compare to related work used in section 9.3 are listed in

B.3.

B.1 Scripts for Parameter Setting

Chapter 8 discusses parameter setting. In it the performance measures for precision, recall and

effectiveness are calculated as well as the average median freshness. The scripts used for it are

shown in this section.

B.1.1 Precision, Recall and Effectiveness

The R script that is used to extract precision, recall and effectiveness. The values used to

determine these performance measures, are retrieved from the last time an application was done

by that user. The simulation actually went on till a fixed last timestamp and thus longer than

most users were tracked. In the void the performance measures might drop because of it.

1 #Point to the folder containing relevant data for this experiment

2 last_folder <- "%current evaluation folder%/"

3 folder <- paste0("C:/%folder containing results%",last_folder)

4
5 #First read the data from CSV file for each user (uid)

6 rew_A08_assess <- read.csv(paste0(folder ,"A08/assessment.csv"))

7 rew_A09_assess <- read.csv(paste0(folder ,"A09/assessment.csv"))

8 rew_A10_assess <- read.csv(paste0(folder ,"A10/assessment.csv"))

9 rew_B08_assess <- read.csv(paste0(folder ,"B08/assessment.csv"))

10 rew_B10_assess <- read.csv(paste0(folder ,"B10/assessment.csv"))

11
12 #Filter each dataset until the last timestamp an application was opened for it

13 rew_A08_assess <- rew_A08_assess[rew_A08_assess$time <1303775269 ,]

14 rew_A09_assess <- rew_A09_assess[rew_A09_assess$time <1290422489 ,]

15 rew_A10_assess <- rew_A10_assess[rew_A10_assess$time <1297839233 ,]

93

16 rew_B08_assess <- rew_B08_assess[rew_B08_assess$time <1297841777 ,]

17 rew_B10_assess <- rew_B10_assess[rew_B10_assess$time <1293440978 ,]

18
19 #Create a list for each performance measure

20 precision <- c("agent_id","avg_precision")

21 recall <- c("agent_id","avg_recall")

22 effectiveness <- c("agent_id","avg_effectiveness")

23
24 #Run through each agent

25 for(i in -1:7){

26 #Append the last row to a list , this last row contains the average of the entire run

27 agent <- tail(rew_A08_assess[rew_A08_assess$id==i,],n=1)

28 agent <- rbind(agent , tail(rew_A09_assess[rew_A09_assess$id==i,],n=1))

29 agent <- rbind(agent , tail(rew_A10_assess[rew_A10_assess$id==i,],n=1))

30 agent <- rbind(agent , tail(rew_B08_assess[rew_B08_assess$id==i,],n=1))

31 agent <- rbind(agent , tail(rew_B10_assess[rew_B10_assess$id==i,],n=1))

32
33 #Calculate the preformance values for each agent and append it to a list

34 precision <- rbind(precision ,c(i,sum(agent$precision)/5))

35 recall <- rbind(recall ,c(i,sum(agent$recall)/5))

36 agent$effectiveness <- agent$noFactsPredicted / agent$noPredictions

37 effectiveness <- rbind(effectiveness ,c(i,sum(agent$effectiveness)/5))

38 }

39
40 #Print the values for each performance measure

41 precision

42 recall

43 effectiveness

Calculate Precision, Recall and Effectiveness

B.1.2 Average Median Freshness

This script concerns the freshness values needed. It calculates the average median freshness out

of all freshness values for each user.

1 #Point to the folder containing relevant data for this experiment

2 last_folder <- "%current evaluation folder%/"

3 folder <- paste0("C:/%folder containing results%",last_folder)

4
5 #First create a list to save values for agents in

6 list_median_sum <- c("agent_id","avg_medianfreshness")

7
8 #Run through each agent

9 for(i in -2:7){

10 #Agent -2 represents the benchmark

11 if(i==-2) i = "_benchmark"

12
13 #Read the data from CSV file for every agent , add median freshness for all the

different users

14 median_sum_i <- median(read.csv(paste0(folder ,"A08/freshness",i,".csv"))$freshness)

15 median_sum_i <- median_sum_i + median(read.csv(paste0(folder ,"A09/freshness",i,".csv")

)$freshness)

16 median_sum_i <- median_sum_i + median(read.csv(paste0(folder ,"A10/freshness",i,".csv")

)$freshness)

17 median_sum_i <- median_sum_i + median(read.csv(paste0(folder ,"B08/freshness",i,".csv")

)$freshness)

18 median_sum_i <- median_sum_i + median(read.csv(paste0(folder ,"B10/freshness",i,".csv")

)$freshness)

19
20 #append calculation to list

94

21 list_median_sum <- rbind(list_median_sum ,c(i,(median_sum_i/5)))

22 }

23
24 #Print the list of average median freshnesses

25 list_median_sum

Average Median Freshness

B.2 Scripts for System Performance

To transform the data used for evaluating system performance in section 9.2, the following scripts

were used. All scripts in this section have to connect to the MS SQL database1 to retrieve data

about the users at some point. This can be done using the following script and will thus not be

repeated in each following section.

1 #add library needed for MS SQL connection to R

2 library("RODBC")

3
4 #Connect to the appropriate database

5 odbcChannel <- odbcConnect("LiveLabDatabase", uid="livelabuser", pwd="livelabuser")

6
7 #Execute query resulting in the user info needed

8 userInfo <- sqlQuery(odbcChannel ,

9 "SELECT uid ,COUNT(id) as ’ALC ’

10 ,COUNT(DISTINCT(name)) as ’DA’

11 ,MIN(time) as ’ST ’

12 ,MAX(time) as ’ET ’

13 FROM appusage

14 WHERE name NOT LIKE ’SpringBoard ’

15 AND uid NOT LIKE ’%D%’

16 GROUP BY uid

17 ORDER BY uid")

18
19 #Close the connection afterwards

20 odbcClose(odbcChannel)

Connection to MS SQL Database

B.2.1 Precision, Recall and Effectiveness

In order to plot a graph for all performance measures for every agent, a script is needed to

prepare this data. Eventually everything will be written to a new file and Excel will be used to

plot the data. 2 scripts were used for this purpose, one that plots the accumulated performance

measures and one that plots the performance measures per day.

The averages over all users have to be gathered even though they start using their phones at

different times. To synchronize them, the starting times were extracted from the timestamps

to let all users start at timestamp 0. The user that was tracked the shortest amount of time

determines the total time evaluated.

1https://andersspur.wordpress.com/2013/11/26/connect-r-to-sql-server-2012-and-14/

95

https://andersspur.wordpress.com/2013/11/26/connect-r-to-sql-server-2012-and-14/

Accumulated

1 #Point to the folder containing relevant data for this experiment

2 last_folder <- "%current evaluation folder%/"

3 folder <- paste0("C:/%folder containing results%",last_folder)

4
5 #Point to a folder to write transformed data to

6 folder_transformed <- "%new folder%"

7
8 #Now find the user with the shortest timespan , this will be the timespan used

9 shortest_time <- 9999999999

10 for(i in userInfo$uid){

11 userInfo_i <- userInfo[userInfo$uid==i,]

12 diff <- userInfo_i$ET - userInfo_i$ST

13 if(diff < shortest_time) shortest_time <- diff

14 }

15
16 #Transform all data gathered by extracting start time from timestamps per user

17 all_assessments <- data.frame()

18 for(user_id in userInfo$uid){

19 #Extract data belonging to the user

20 userInfo_i <- userInfo[userInfo$uid==user_id ,]

21 data_assessment <- read.csv(paste0(folder ,user_id,"/assessment.csv"))

22
23 #Transform the timestamp

24 data_assessment$timestamp <- data_assessment$timestamp - userInfo_i$ST

25
26 #Write the transformed data to a new folder

27 write.csv(data_assessment , paste0(folder_transformed ,user_id ,"/assessment.csv"))

28
29 #save the data in a dataframe for future reference

30 #this is done because reading a dataframe is considerably faster than reading a CSV

file

31 data_assessment$uid <- user_id

32 all_assessments <- rbind(all_assessments , data_assessment)

33 }

34
35 #Prepare a dataframe to write output to

36 output <- data.frame(integer (0),integer (0), double (0), double (0), double (0))

37 output <- rbind(output , c(0 ,0 ,0.0 ,0.0 ,0.0))

38
39 #Run trough each agent

40 for(agent_id in -1:7){

41 current_timestamp <- 86400

42
43 #Run through each timestamp with intervals of a day

44 while(current_timestamp < shortest_time){

45 added_precision <- 0

46 added_recall <- 0

47 added_effectiveness <- 0

48 count <- 0

49
50 #Run through each user

51 for(user_id in userInfo$uid){

52 #Extract data belonging to the appropriate user

53 curr_data <- all_assessments[all_assessments$uid==user_id ,]

54
55 #retrieve the last row within current timestamp

56 curr_data <- curr_data[curr_data$time <current_timestamp ,]

57 last_row <- tail(curr_data[curr_data$id==agent_id ,],n=1)

58
59 #Calculate the preformance values for each agent and append it to a list

60 added_precision <- added_precision + last_row$precision

61 added_recall <- added_recall + last_row$recall

96

62 added_effectiveness <- added_effectiveness + (last_row$noFactsPredicted / last_row

$noPredictions)

63 count <- count + 1

64 }

65
66 avg_precision <- 0

67 avg_recall <- 0

68 avg_effectiveness <- 0

69
70 #Calculate the average performance measure for the agent in this timestamp

71 if(count != 0){

72 if(length(added_precision) > 0) avg_precision <- added_precision/count

73 if(length(added_precision) > 0) avg_recall <- added_recall/count

74 if(length(added_precision) > 0) avg_effectiveness <- added_effectiveness/count

75 }

76
77 #Write results to the output

78 output <- rbind(output , c(agent_id,current_timestamp ,avg_precision ,avg_recall ,avg_

effectiveness))

79
80 current_timestamp <- current_timestamp + 86400

81 }

82 }

83
84 #Add column names to the output

85 colnames(output) <- c("agent_id","timestamp","avg_precision","avg_recall","avg_

effectiveness")

86
87 #Write the output to a file to evaluate using Excel later

88 write.csv(output , paste0(folder_transformed ,"/agents_averaged.csv"))

Accumulated Average Precision, Recall and Effectiveness

Daily

1 #Point to the folder containing relevant data for this experiment

2 last_folder <- "%current evaluation folder%/"

3 folder <- paste0("C:/%folder containing results%",last_folder)

4
5 #Point to a folder to write transformed data to

6 folder_transformed <- "%new folder%"

7
8 #Now find the user with the shortest timespan , this will be the timespan used

9 shortest_time <- 9999999999

10 for(i in userInfo$uid){

11 userInfo_i <- userInfo[userInfo$uid==i,]

12 diff <- userInfo_i$ET - userInfo_i$ST

13 if(diff < shortest_time) shortest_time <- diff

14 }

15
16 #Transform all data gathered by extracting start time from timestamps per user

17 all_assessments <- data.frame()

18 for(user_id in userInfo$uid){

19 #Extract data belonging to the user

20 data_assessment <- read.csv(paste0(folder_transformed ,user_id ,"/assessment.csv"))

21
22 #save the data in a dataframe for future reference

23 #this is done because reading a dataframe is considerably faster than reading a CSV

file

24 data_assessment$uid <- user_id

25 all_assessments <- rbind(all_assessments , data_assessment)

26 }

97

27
28 #Prepare a dataframe to write output to

29 output <- data.frame(integer (0),integer (0), double (0), double (0), double (0))

30 output <- rbind(output , c(0 ,0 ,0.0 ,0.0 ,0.0))

31
32 #Prepare datafames to save old values of start of week in

33 old_no_correctpredictions <- data.frame (0,0)

34 for(user_id in userInfo$uid){

35 old_no_correctpredictions <- rbind(old_no_correctpredictions , c(user_id ,0))

36 }

37 old_no_correctpredictions <- old_no_correctpredictions[-c(1),]

38 old_no_predictions <- old_no_correctpredictions

39 old_no_correctlypredictedfacts <- old_no_correctpredictions

40 old_no_facts <- old_no_correctpredictions

41
42 #Run trough each agent

43 for(agent_id in -1:7){

44 current_timestamp <- 86400

45
46 #Run through each timestamp with intervals of a day

47 while(current_timestamp < shortest_time){

48 added_precision <- 0

49 added_recall <- 0

50 added_effectiveness <- 0

51 count <- 0

52
53 #Run through each user

54 for(user_id in userInfo$uid){

55 #Extract data belonging to the appropriate user

56 curr_data <- all_assessments[all_assessments$uid==user_id ,]

57
58 #retrieve the last row within current timestamp

59 curr_data <- curr_data[curr_data$time <current_timestamp ,]

60 last_row <- tail(curr_data[curr_data$id==agent_id ,],n=1)

61
62 if(nrow(last_row) > 0){

63 #Add column names to dataframes to filter on them

64 colnames(old_no_correctpredictions) <- c("uid","oldvalue")

65 colnames(old_no_predictions) <- c("uid","oldvalue")

66 colnames(old_no_correctlypredictedfacts) <- c("uid","oldvalue")

67 colnames(old_no_facts) <- c("uid","oldvalue")

68
69 #Calculate differences of each measure

70 diff_correctpredictions <- last_row$noPredictionsCorrect - as.numeric(old_no_

correctpredictions[old_no_correctpredictions$uid==user_id ,]$oldvalue)

71 diff_predictions <- last_row$noPredictions - as.numeric(old_no_predictions[old_

no_predictions$uid==user_id ,]$oldvalue)

72 diff_correctlypredictedfacts <- last_row$noFactsPredicted - as.numeric(old_no_

correctlypredictedfacts[old_no_correctlypredictedfacts$uid==user_id ,]$

oldvalue)

73 diff_facts <- last_row$noFacts - as.numeric(old_no_facts[old_no_facts$uid==user_

id ,]$oldvalue)

74
75 #Calculated the sum of the performance measures for this user

76 if(diff_predictions > 0) added_precision <- added_precision + (diff_

correctpredictions/diff_predictions)

77 if(diff_facts > 0) added_recall <- added_recall + (diff_correctlypredictedfacts/

diff_facts)

78 if(diff_predictions > 0) added_effectiveness <- added_effectiveness + (diff_

correctlypredictedfacts/diff_predictions)

79
80 #Update the old values for the measures

81 old_no_correctpredictions[old_no_correctpredictions$uid==user_id ,]$oldvalue <-

last_row$noPredictionsCorrect

98

82 old_no_predictions[old_no_predictions$uid==user_id ,]$oldvalue <- last_row$

noPredictions

83 old_no_correctlypredictedfacts[old_no_correctlypredictedfacts$uid==user_id ,]$

oldvalue <- last_row$noFactsPredicted

84 old_no_facts[old_no_facts$uid==user_id ,]$oldvalue <- last_row$noFacts

85 }

86 count <- count + 1

87 }

88
89 avg_precision <- 0

90 avg_recall <- 0

91 avg_effectiveness <- 0

92
93 #Calculate the average daily performance measure for the agent in this timestamp

94 if(count != 0){

95 if(length(added_precision) > 0) avg_precision <- added_precision/count

96 if(length(added_recall) > 0) avg_recall <- added_recall/count

97 if(length(added_effectiveness) > 0) avg_effectiveness <- added_effectiveness/count

98 }

99
100 #Write results to the output

101 output <- rbind(output , c(agent_id,current_timestamp ,avg_precision ,avg_recall ,avg_

effectiveness))

102
103 current_timestamp <- current_timestamp + 86400

104 }

105 }

106
107 #Add column names to the output

108 colnames(output) <- c("agent_id","timestamp","avg_precision","avg_recall","avg_

effectiveness")

109
110 #Write the output to a file to evaluate using Excel later

111 write.csv(output , paste0(folder_transformed ,"/agents_averaged(weekly).csv"))

Daily Average Precision, Recall and Effectiveness

B.2.2 Freshness

Data also needs to be prepared in order to plot the cumulative probability distribution of the

freshness with. The transformation and plotting of this data is described by the following script.

1 #Point to the folder containing relevant data for this experiment

2 last_folder <- "%current evaluation folder%/"

3 folder <- paste0("C:/%folder containing results%",last_folder)

4
5 #write for every agents the freshness values added to a file

6 for(i in -2:7){

7 #Agent -2 represents the benchmark

8 if(i==-2) i = "_benchmark"

9
10 #First read the data from CSV file for every agent , combine all the different users

11 for(user_id in userInfo$uid){

12 if(exists("freshness")) freshness <- rbind(freshness , read.csv(paste0(folder ,user_id

,"/freshness",i,".csv")))

13 else freshness <- read.csv(paste0(folder ,user_id,"/freshness",i,".csv"))

14 }

15
16 #Now write the appended list of freshnesses to a file

17 write.csv(freshness , file=paste0(folder ,"addedfreshness",i,".csv"))

18 }

19

99

20 #For each agent , read the appriopriate data and plot the CPD

21 #Meanwhile names , colors and linetypes are used and saved in dataframes

22 added_freshness <- read.csv(paste0(folder ,"addedfreshness_benchmark.csv"))

23 plot(ecdf(added_freshness$freshness), xlim=c(1,1e5),log=’x’,ylab="Cumulutative

Probability", xlab="time (s)",main="Cumulutative Probability Freshness")

24 names <- c("benchmark")

25 colors <- c("black")

26 linetypes <- c(1)

27 for(i in 7:-1){

28 if(i == -1) color <- "red"

29 else color <- "grey"

30 added_freshness <- read.csv(paste0(folder ,"addedfreshness",i,".csv"))

31 lines(ecdf(added_freshness$freshness), xlim=c(1,1e5),col.h=color , col.v=color)

32 names <- c(names ,paste0("agent ",i))

33 colors <- c(colors ,color)

34 linetypes <- c(linetypes ,1)

35 }

36
37 #Print a grid to read data easier

38 grid(nx = NULL , ny = NULL , col = "lightgray", lty = "dotted", lwd = par("lwd"), equilogs

= TRUE)

39
40 #Print the legend of the graphs

41 legend (5,.9,names , col=colors , lty=linetypes)

Freshness CPD

B.3 Scripts for Comparison to Related Work

To compare the freshness values reported in PREPP using Facebook and Email only, a small

adjustment has to be made to the aforementioned method to print the CPD of freshness. The

script used to export this CPD for the applications Facebook and Email is given below.

1 #Point to the folder containing relevant data for this experiment

2 last_folder <- "%current evaluation folder%/"

3 folder <- paste0("C:/%folder containing results%",last_folder)

4
5 #retrieve the needed files on freshness

6 benchmark_data <- read.csv(paste0(folder ,"addedfreshness_benchmark.csv"))

7 assessor_data <- read.csv(paste0(folder ,"addedfreshness -1.csv"))

8
9 #First print values for facebook (benchmark and assessor)

10 facebook_bench <- benchmark_data[benchmark_data$query_name=="com.facebook.Facebook",]

11 plot(ecdf(facebook_bench$freshness), xlim=c(1,1e5),log=’x’,ylab="Cumulutative

Probability", xlab="time (s)",main="Cumulutative Probability Freshness",col.h="

darkblue",col.v="darkblue")

12
13 facebook_assessor <- assessor_data[assessor_data$query_name=="com.facebook.Facebook",]

14 lines(ecdf(facebook_assessor$freshness), xlim=c(1,1e5),col.h="blue",col.v="blue")

15
16 #Then print values for E-mail (benchmark and assessor)

17 email_bench <- benchmark_data[benchmark_data$query_name=="com.apple.mobilemail",]

18 lines(ecdf(email_bench$freshness), xlim=c(1,1e5),col.h="red",col.v="red")

19
20 email_assessor <- assessor_data[assessor_data$query_name=="com.apple.mobilemail",]

21 lines(ecdf(email_assessor$freshness), xlim=c(1,1e5),col.h="orange",col.v="orange")

22
23 #Finally print the gridlines and legend

24 axis(1,at =1000)

25 axis(1,at=10)

100

26 grid(nx = NULL , ny = NULL , col = "lightgray", lty = "dotted", lwd = par("lwd"), equilogs

= TRUE)

27 legend (1,.9,c("Facebook benchmark","Facebook assessor","E-mail benchmark","E-mail

assessor"), col=c("darkblue","blue","red","orange"), lty=c(1,1,1,1))

Freshness CPD per Application

Furthermore a script was used to extract the average times between two prefetches per

application. This measure is used to guess the amount of prefetches done and compare it to

PREPP. The retrieval of user information from the MS SQL database is needed as mentioned in

section B.2.

1 #Point to the folder containing relevant data for this experiment

2 last_folder <- "%current evaluation folder%/"

3 folder <- paste0("C:/%folder containing results%",last_folder)

4
5 #Prepare variables to save data

6 sum_time_between_prefetches <- 0

7 count <- 0

8
9 #Transform all data gathered by extracting start time from timestamps per user

10 for(user_id in userInfo$uid){

11 #Extract appropriate data for user

12 userInfo_i <- userInfo[userInfo$uid==user_id ,]

13 data_assessment <- read.csv(paste0(folder ,user_id,"/assessment.csv"))

14
15 #Retrieve last row within last timestamp collected by user

16 data_assessment <- data_assessment[data_assessment$time <userInfo_i$ET ,]

17 last_row <- tail(data_assessment[data_assessment$id==-1,],n=1)

18
19 #Calculate the time interval this user covered

20 timeinterval <- (userInfo_i$ET - userInfo_i$ST)

21
22 #Calculate number of predictions that were done per application

23 no_predictions_per_app <- (last_row$noPredictions / userInfo_i$DA)

24
25 #Calculate sum of time elapsed on average between two predictions for an application

26 sum_time_between_prefetches <- sum_time_between_prefetches + (timeinterval / no_

predictions_per_app)

27 count <- count + 1

28 }

29
30 #Calculate the average time between two prefetches per application

31 avg_time_between_prefetches <- sum_time_between_prefetches / count

Average Time between Prefetches per Application

101

Appendix C

Usability Avanade

This thesis was written at the IT consultancy company Avanade. Avanade is a company

founded by Accenture and Microsoft. Because of this, the company focuses largely on Microsoft

technologies and with it the .NET framework. This appendix will have a look at all techniques

used in this thesis and how Avanade can possibly use these in practice. Lastly a section will be

devoted to some applications where Avanade might be able to apply the system.

C.1 Agent Framework

This thesis uses a Multi Agent System as its core architecture. These agents can be seen as

individual threads that take autonomous action and decide what to do themselves. They come

in varying levels of intelligence, from reactive up until fully autonomous.

One of the best advantages of such a MAS is the flexibility it provides. When set up

correctly, agents can easily deal with the addition or removal of other agents that provide other

functionalities. Systems like yellow pages exist that provide the possibility to easily communicate

between agents what functionalities they all provide. Furthermore they provide a good framework

to set up concurrent, possibly distributed systems in.

In order to implement such a system, a multi agent framework has to be used. This thesis

discusses a few (section 3.2), but they are all written in Java. The reason for this is that these

techniques are mostly used in research and the research community often chooses Java for its

platform independence. Since Avanade works mostly with .NET, this would either require

porting a framework or using/expanding an existing .NET agent framework. These do exist, but

they are rather limited and thus unpopular compared to the others. These limitations include

the possibility to port agents to a mobile device (Windows Phone in this case) and the required

BDI functionality. As BDI is not used to its full potential, this deficiency could be overcome.

A good option for Avanade would be to use existing .NET agent frameworks and work with the

functions provided by it. The system as of now doesn’t utilize the more profound possibilities,

making this a viable option that requires a lot less work than porting code from one programming

language to another. When necessary, the frameworks can be expanded as an asset of Avanade.

102

C.2 Reinforcement Learning

The technique used to learn the actual user patterns was Q-learning (section 4.2). This algorithm

is a form of reinforcement learning which in its turn is a form of machine learning. Reinforcement

learning is useful when only a performance indicator is available for the learning process, as

opposed to a clear label (supervised) or nothing at all (unsupervised).

Again, Java was used to provide this functionality. The main reason for this was the choice

for an agent framework in Java. The library used, RL-Glue (section 4.5), contains algorithms in

C# as well though.

Recently, Microsoft released machine learning functionality within Azure, their cloud solution.

Unfortunately, this library doesn’t provide reinforcement learning. It is deemed interesting by

Microsoft though, as it is mentioned as a natural fit for the Internet of Things applications1.

This gives reason to believe it will be realized by Microsoft in the future, or otherwise Avanade

could create an asset out of it. Reinforcement learning bridges the gap between supervised and

unsupervised learning, thus being an interesting technique for domains that cannot use these.

Furthermore, the creation of a reinforcement learning algorithm is rather simple and doesn’t

require expert knowledge of mathematics or statistics. When using a C# solution, Avanade could

easily use reinforcement learning in their projects as well as the already available (un)supervised

methods.

C.3 Deployment

The developed system can eventually be deployed to mobile devices in order to work in practice.

Again since Java was needed by the agent framework, Android came out on top. Also when

dropping the constraint of Java, Android proved to be the best option, but this time only very

mild (section 5.1). When using an agent framework in .NET, the Windows Phone environment

could be used.

Furthermore Xamarin, which is popular in Microsoft as well as Avanade, can be used to

develop applications for all platforms in this case. The reason this failed in this research was

due to the bindings needed for Java.

C.4 Evaluation

When evaluating the system, various Microsoft techniques were used that can directly be applied

by Avanade as well. These include the use of R and Excel in preparing and plotting the data

acquired. Also the Microsoft SQL Server was used to supply the test data consisting of mobile

phone usage amongst various users.

1azure.microsoft.com/en-gb/documentation/articles/machine-learning-algorithm-cheat-sheet/

103

azure.microsoft.com/en-gb/documentation/articles/machine-learning-algorithm-cheat-sheet/

C.5 Applications

The system was developed to predict application launches on mobile devices. It was created

with the goal to improve the user experience on such a device. To achieve this, predictions can

be done about what users need in order to prepare the required data. This is a clear use case

that can be applied to the creation of business apps within the mobile department of Avanade.

It would speed up the use of data intensive applications, which are not uncommon in companies

nowadays.

Furthermore the system can be applied to speed up access to databases. Following some

interviews with Avanade experts on Sitecore, improvements in caching of databases can be

achieved. The content of these caches nowadays is determined by the most recently or most

often used data. The cache is filled completely after which the least important data is removed.

This process can be made more intelligent. Based on past user queries, predictions can be made

about what query the database will receive when. These queries can then be prepared in the

form of a cache, creating a cache with more relevant content and thus allowing faster access to

this data.

104

Appendix D

Code and Data Reference

The data and code of the project is publicly available on OneDrive via the following link:

http://1drv.ms/1Mp1udq

Via this link all the implemented code and the gathered data is accessible. This appendix will

shortly discuss the contents of each of these folders.

D.1 Code

In order to run the code provided, Java SE 1.8 is needed. Besides that the frameworks that were

used have to be installed. These include RL-Glue [116], Jadex, Microsoft SQL Server and the

SQL JDBC driver [72] to connect to the server.

The code folder contains for each type of agent (”input”, ”prediction”, ”assessment” and

”launcher”) a folder with an XML file and several Java files. The XML files specifies the agents

characteristics. Once started in Jadex, these files make calls to the appropriate Java files that

provide the performed functions. Aside from these agent folders, a ”machinelearning” folder is

added that contains the Java files required for the machine learning (only ”qlearning” as of now).

Lastly the folder ”settings” contains Java files that provide some miscellaneous functionalities

along with a file that specifies global settings of the system (Settings.java).

D.2 Data

The data folder contains three separate folders. The first is called ”Parameter Setting” and

contains all data gathered to investigate the parameters in chapter 8. The folder called ”Results”

contains all data gathered to investigate the results of the entire system in chapter 9. Finally

the folder called ”R Scripts” contains all R scripts that were used. These will not be discussed

as they are listed in appendix B. The contents of the other 2 folders will be explained in the

following sections.

105

http://1drv.ms/1Mp1udq

All folders in the lowest levels that contain data for a specific user have the same structure

that will be explained first. They all contain text files (agent[i].txt) that specify for each agent

the parameters used. Furthermore they contain a CSV file (assessment.csv) with information

on the precision, recall and effectiveness per timestep per agent. Finally a list of CSV files

(freshness[i].csv) contains for each separate agent the freshness values of the applications during

runtime.

D.2.1 Parameter Setting

The data gathered for parameter settings is separated in data gathered for the prediction agent

and the assessment agent. These contain folders for every separate parameter investigation.

Within these folders resides the data gathered for every different user separated and one file of

added freshness values of the users per agent. These last files are used to eventually create the

Cumulutative Probability Distributions for the freshness performance indicator.

D.2.2 Results

The results folder firstly contains a folder with all raw data called ”Raw Data Per User”, where

all data gathered directly from the program resides per user. This data is transformed so that

all users start their usage cycles at time 0 and run for as long as the shortest user runs. The

result of this transformation is stored in ”Raw Transformed Data Per User”.

This transformed data can be averaged among all users so that the average performance

measures for each agent can be calculated. This averaged data resides in ”Averaged Per Agent

Data” and using the CSV files located there, the plots used in this research are made. They are

present in the folder ”Plots” as well.

As the freshness performance indicator is evaluated using a CPD, all freshness data has to be

accumulated. This accumulation of usage data per agent is present in ”Accumulated Freshness

Per Prediction Agent” and is used to create the other plots that reside in ”Plots” as well.

106

Bibliography

[1] 2APL. 2APL: A practical agent programming language. http://apapl.sourceforge.

net/, 2015. Accessed: 10-06-2015.

[2] Hatem Abou-Zeid and Hossam S Hassanein. Toward green media delivery: location-aware

opportunities and approaches. Wireless Communications, IEEE, 21(4):38–46, 2014.

[3] Pekka Abrahamsson. Agile Software Development Methods: Review and Analysis (VTT

publications). 2002.

[4] Jorge Agüero, Miguel Rebollo, Carlos Carrascosa, and Vicente Julián. Developing

intelligent agents on the android platform. Universidad Politecnica de Valencia, Spain,

2010.

[5] Nadav Aharony, Wei Pan, Cory Ip, Inas Khayal, and Alex Pentland. Social fmri:

Investigating and shaping social mechanisms in the real world. Pervasive and Mobile

Computing, 7(6):643–659, 2011.

[6] AOS. AOS product website: JACK. http://www.agent-software.com.au/products/

jack/, 2015. Accessed: 09-06-2015.

[7] Martin Atzmueller and Katy Hilgenberg. Towards capturing social interactions with sdcf:

An extensible framework for mobile sensing and ubiquitous data collection. In Proceedings

of the 4th International Workshop on Modeling Social Media, page 6. ACM, 2013.

[8] Avanade Inc. Avanade company website. http://www.avanade.com/en-us/home, 2015.

Accessed: 12-06-2015.

[9] Mohammad Gheshlaghi Azar, Remi Munos, Mohammad Ghavamzadeh, Hilbert Kappen,

et al. Speedy q-learning. Advances in neural information processing systems, 2011.

[10] Bala M Balachandran. Developing intelligent agent applications with jade and jess. In

Knowledge-based Intelligent Information and Engineering Systems, pages 236–244. Springer,

2008.

[11] BDI4JADE. BDI4JADE project website. http://www.inf.ufrgs.br/prosoft/

bdi4jade/, 2015. Accessed: 09-06-2015.

[12] Fabio Bellifemine, Giovanni Caire, Agostino Poggi, and Giovanni Rimassa. Jade: A

software framework for developing multi-agent applications. lessons learned. Information

and Software Technology, 50(1):10–21, 2008.

107

http://apapl.sourceforge.net/
http://apapl.sourceforge.net/
http://www.agent-software.com.au/products/jack/
http://www.agent-software.com.au/products/jack/
http://www.avanade.com/en-us/home
http://www.inf.ufrgs.br/prosoft/bdi4jade/
http://www.inf.ufrgs.br/prosoft/bdi4jade/

[13] Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood. Developing multi-agent

systems with JADE, volume 7. John Wiley & Sons, 2007.

[14] Hamid R Berenji and David Vengerov. Advantages of cooperation between reinforcement

learning agents in difficult stochastic problems. In Fuzzy Systems, 2000. FUZZ IEEE

2000. The Ninth IEEE International Conference on, volume 2, pages 871–876. IEEE,

2000.

[15] Federico Bergenti, Giovanni Caire, and Danilo Gotta. Agents on the move: Jade for

android devices. In Procs. Workshop From Objects to Agents, 2014.

[16] Ig Ibert Bittencourt, Pedro Bispo, Evandro Costa, João Pedro, Douglas Véras, Diego

Dermeval, and Henrique Pacca. Modeling jade agents from gaia methodology under the

perspective of semantic web. In Enterprise Information Systems, pages 780–789. Springer,

2009.

[17] Matthias Böhmer. Understanding and supporting mobile application usage. 2013.

[18] Matthias Böhmer, Brent Hecht, Johannes Schöning, Antonio Krüger, and Gernot Bauer.

Falling asleep with angry birds, facebook and kindle: a large scale study on mobile

application usage. In Proceedings of the 13th International Conference on Human Computer

Interaction with Mobile Devices and Services, pages 47–56. ACM, 2011.

[19] Rafael H Bordini, Lars Braubach, Mehdi Dastani, Amal El Fallah-Seghrouchni, Jorge J

Gomez-Sanz, Joao Leite, Gregory MP O’Hare, Alexander Pokahr, and Alessandro Ricci.

A survey of programming languages and platforms for multi-agent systems. Informatica

(Slovenia), 30(1):33–44, 2006.

[20] Rafael H Bordini, Mehdi Dastani, Jürgen Dix, and A El Fallah Seghrouchni. Multi-Agent

Programming. Springer, 2005.

[21] Rafael H Bordini, Jomi Fred Hübner, and Michael Wooldridge. Programming multi-agent

systems in AgentSpeak using Jason, volume 8. John Wiley & Sons, 2007.

[22] Remco R Bouckaert, Eibe Frank, Mark Hall, Richard Kirkby, Peter Reutemann, Alex

Seewald, and David Scuse. Weka manual for version 3-7-8, 2013.

[23] Remco R Bouckaert, Eibe Frank, Mark A Hall, Geoffrey Holmes, Bernhard Pfahringer,

Peter Reutemann, and Ian H Witten. Weka—experiences with a java open-source project.

The Journal of Machine Learning Research, 11:2533–2541, 2010.

[24] Lars Braubach, Winfried Lamersdorf, and Alexander Pokahr. Jadex: Implementing a

bdi-infrastructure for jade agents. 2003.

[25] Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf. Jadex: A bdi-agent system

combining middleware and reasoning. In Software agent-based applications, platforms and

development kits, pages 143–168. Springer, 2005.

[26] Phil Campbell. A small utility app for splitting large text files. http://www.devtxt.

com/blog/large-file-splitter-console-app-utility, 2015. Accessed: 09-06-2015.

108

http://www.devtxt.com/blog/large-file-splitter-console-app-utility
http://www.devtxt.com/blog/large-file-splitter-console-app-utility

[27] Maria Carpen Amarie, Ioannis Pefkianakis, and Henrik Lundgren. Mobile video ad caching

on smartphones. In Proceedings of the 2014 ACM International Joint Conference on

Pervasive and Ubiquitous Computing, pages 57–61. ACM, 2014.

[28] Luca Cernuzzi, Ambra Molesini, Andrea Omicini, and Franco Zambonelli. Adaptable

multi-agent systems: the case of the gaia methodology. International Journal of Software

Engineering and Knowledge Engineering, 21(04):491–521, 2011.

[29] Supriyo Chakraborty, Kasturi Rangan Raghavan, Matthew P Johnson, and Mani B

Srivastava. A framework for context-aware privacy of sensor data on mobile systems. In

Proceedings of the 14th Workshop on Mobile Computing Systems and Applications, page 11.

ACM, 2013.

[30] David Chu, Aman Kansal, Jie Liu, and Feng Zhao. Mobile apps: its time to move up to

condos. In Proceedings of the 13th USENIX conference on Hot topics in operating systems,

pages 16–16. USENIX Association, 2011.

[31] Diane J Cook, Michael Youngblood, Edwin O Heierman III, Karthik Gopalratnam, Sira

Rao, Andrey Litvin, and Farhan Khawaja. Mavhome: An agent-based smart home.

In 2013 IEEE International Conference on Pervasive Computing and Communications

(PerCom), pages 521–521. IEEE Computer Society, 2003.

[32] Massimo Cossentino, Vincent Hilaire, Ambra Molesini, and Valeria Seidita. Handbook on

Agent-Oriented Design Processes. Springer, 2014.

[33] Mehdi Dastani. 2apl: a practical agent programming language. Autonomous agents and

multi-agent systems, 16(3):214–248, 2008.

[34] Richard Dearden, Nir Friedman, and Stuart Russell. Bayesian q-learning. In AAAI/IAAI,

pages 761–768, 1998.

[35] Daniel C Dennett. The intentional stance. MIT press, 1989.

[36] Trinh Minh Tri Do, Jan Blom, and Daniel Gatica-Perez. Smartphone usage in the wild: a

large-scale analysis of applications and context. In Proceedings of the 13th international

conference on multimodal interfaces, pages 353–360. ACM, 2011.

[37] Jaschar Domann, Sindy Hartmann, Michael Burkhardt, Alexander Barge, and Sahin

Albayrak. An agile method for multiagent software engineering. Procedia Computer

Science, 32:928–934, 2014.

[38] Nathan Eagle and Alex Pentland. Reality mining: sensing complex social systems.

Personal and ubiquitous computing, 10(4):255–268, 2006.

[39] Nathan Eagle and Alex Sandy Pentland. Eigenbehaviors: Identifying structure in routine.

Behavioral Ecology and Sociobiology, 63(7):1057–1066, 2009.

[40] Hossein Falaki, Ratul Mahajan, Srikanth Kandula, Dimitrios Lymberopoulos, Ramesh

Govindan, and Deborah Estrin. Diversity in smartphone usage. In Proceedings of the

8th international conference on Mobile systems, applications, and services, pages 179–194.

ACM, 2010.

109

[41] Stefan Faußer and Friedhelm Schwenker. Ensemble methods for reinforcement learning

with function approximation. In Multiple Classifier Systems, pages 56–65. Springer, 2011.

[42] Stephen Fitchett and Andy Cockburn. Accessrank: predicting what users will do next. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages

2239–2242. ACM, 2012.

[43] Funf. Funf in a box project website. http://inabox.funf.org/, 2015. Accessed:

09-06-2015.

[44] Kehan Gao, Taghi Khoshgoftaar, and Randall Wald. Combining feature selection and

ensemble learning for software quality estimation. In The Twenty-Seventh International

Flairs Conference, 2014.

[45] Mark H Goadrich and Michael P Rogers. Smart smartphone development: ios versus

android. In Proceedings of the 42nd ACM technical symposium on Computer science

education, pages 607–612. ACM, 2011.

[46] Jorge Gonzalez-Palacios and Michael Luck. Extending gaia with agent design and iterative

development. In Agent-Oriented Software Engineering VIII, pages 16–30. Springer, 2008.

[47] John J Grefenstette, David E Moriarty, and Alan C Schultz. Evolutionary algorithms for

reinforcement learning. arXiv preprint arXiv:1106.0221, 2011.

[48] Alejandro Guerra-Hernández, Amal El Fallah-Seghrouchni, and Henry Soldano. Learning

in bdi multi-agent systems. In Computational logic in multi-agent systems, pages 218–233.

Springer, 2005.

[49] Maozu Guo, Yang Liu, and Jacek Malec. A new q-learning algorithm based on the metropo-

lis criterion. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,

34(5):2140–2143, 2004.

[50] Jon C Hammer and Tingxin Yan. Exploiting usage statistics for energy-efficient logical

status inference on mobile phones. In Proceedings of the 2014 ACM International

Symposium on Wearable Computers, pages 35–42. ACM, 2014.

[51] Alina Hang, Alexander De Luca, Jonas Hartmann, and Heinrich Hussmann. Oh app,

where art thou?: on app launching habits of smartphone users. In Proceedings of the 15th

international conference on Human-computer interaction with mobile devices and services,

pages 392–395. ACM, 2013.

[52] Nick Howden, Ralph Rönnquist, Andrew Hodgson, and Andrew Lucas. Jack intelligent

agents-summary of an agent infrastructure. In 5th International conference on autonomous

agents, 2001.

[53] Ke Huang, Chunhui Zhang, Xiaoxiao Ma, and Guanling Chen. Predicting mobile applica-

tion usage using contextual information. In Proceedings of the 2012 ACM Conference on

Ubiquitous Computing, pages 1059–1065. ACM, 2012.

[54] IEEE. FIPA organization website. http://www.fipa.org/, 2015. Accessed: 09-06-2015.

110

http://inabox.funf.org/
http://www.fipa.org/

[55] SM Jacob and Biju Issac. The mobile devices and its mobile learning usage analysis.

arXiv preprint arXiv:1410.4375, 2014.

[56] Janus Core Developers. Janus project website. http://www.janus-project.org/, 2015.

Accessed: 09-06-2015.

[57] Jason Developers. Jason, a Java-based interpreter for an extended version of AgentSpeak.

http://jason.sourceforge.net/wp/description/, 2015. Accessed: 10-06-2015.

[58] Cheng Hao Jin, Gouchol Pok, Yongmi Lee, Hyun-Woo Park, Kwang Deuk Kim, Unil Yun,

and Keun Ho Ryu. A som clustering pattern sequence-based next symbol prediction

method for day-ahead direct electricity load and price forecasting. Energy Conversion and

Management, 90:84–92, 2015.

[59] Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu. Revisiting storage for smartphones.

ACM Transactions on Storage (TOS), 8(4):14, 2012.

[60] Emmanouil Koukoumidis, Dimitrios Lymberopoulos, Karin Strauss, Jie Liu, and Doug

Burger. Pocket cloudlets. ACM SIGPLAN Notices, 47(4):171–184, 2012.

[61] Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In

Reinforcement Learning, pages 45–73. Springer, 2012.

[62] Pier Luca Lanzi. Learning classifier systems: then and now. Evolutionary Intelligence,

1(1):63–82, 2008.

[63] Alessandro Lazaric. Transfer in reinforcement learning: a framework and a survey. In

Reinforcement Learning, pages 143–173. Springer, 2012.

[64] Sylvain Lemouzy, Valérie Camps, and Pierre Glize. Principles and properties of a mas

learning algorithm: A comparison with standard learning algorithms applied to implicit

feedback assessment. In Web Intelligence and Intelligent Agent Technology (WI-IAT),

2011 IEEE/WIC/ACM International Conference on, volume 2, pages 228–235. IEEE,

2011.

[65] Yang Li. Reflection: enabling event prediction as an on-device service for mobile interac-

tion. In Proceedings of the 27th annual ACM symposium on User interface software and

technology, pages 689–698. ACM, 2014.

[66] Dimitrios Lymberopoulos, Oriana Riva, Karin Strauss, Akshay Mittal, and Alexandros

Ntoulas. Pocketweb: instant web browsing for mobile devices. In ACM SIGARCH

Computer Architecture News, volume 40, pages 1–12. ACM, 2012.

[67] Hamid Reza Maei and Richard S Sutton. Gq (λ): A general gradient algorithm for

temporal-difference prediction learning with eligibility traces. In Proceedings of the Third

Conference on Artificial General Intelligence, volume 1, pages 91–96, 2010.

[68] Vukosi Ntsakisi Marivate and Michael L Littman. An ensemble of linearly combined

reinforcement-learning agents. In AAAI (Late-Breaking Developments), 2013.

111

http://www.janus-project.org/
http://jason.sourceforge.net/wp/description/

[69] Catharine LR McGhan, Ali Nasir, and Ella Atkins. Human intent prediction using markov

decision processes. In Proc. Infotech@ Aerospace Conference, 2012.

[70] Microsoft. Microsoft Azure machine learning website. http://azure.microsoft.com/

en-us/services/machine-learning/, 2015. Accessed: 09-06-2015.

[71] Microsoft. Microsoft Office Excel. https://products.office.com/nl-nl/excel, 2015.

Accessed: 09-06-2015.

[72] Microsoft. Microsoft SQL server: JDBC driver. https://msdn.microsoft.com/en-us/

sqlserver/aa937724.aspx?f=255&MSPPError=-2147217396, 2015. Accessed: 09-06-

2015.

[73] Microsoft. Microsoft windows dev center: Launching, resuming, and multitasking

for Windows Phone 8. https://msdn.microsoft.com/en-us/library/windows/apps/

jj207014%28v=vs.105%29.aspx, 2015. Accessed: 09-06-2015.

[74] Emiliano Miluzzo, Cory T Cornelius, Ashwin Ramaswamy, Tanzeem Choudhury, Zhigang

Liu, and Andrew T Campbell. Darwin phones: the evolution of sensing and inference

on mobile phones. In Proceedings of the 8th international conference on Mobile systems,

applications, and services, pages 5–20. ACM, 2010.

[75] MIT. Reality mining dataset by MIT Human Dynamics Lab. http://realitycommons.

media.mit.edu/realitymining.html, 2015. Accessed: 09-06-2015.

[76] H.B. Mitchell. Ensemble learning. In Data Fusion: Concepts and Ideas, pages 295–321.

Springer Berlin Heidelberg, 2012.

[77] Prashanth Mohan, Suman Nath, and Oriana Riva. Prefetching mobile ads: Can advertising

systems afford it? In Proceedings of the 8th ACM European Conference on Computer

Systems, pages 267–280. ACM, 2013.

[78] Pavlos Moräıtis, Eleftheria Petraki, and Nikolaos I Spanoudakis. Engineering jade agents

with the gaia methodology. In Agent Technologies, Infrastructures, Tools, and Applications

for e-Services, pages 77–91. Springer, 2003.

[79] Pavlos Moraitis and N Spanoudakis. Combining gaia and jade for multi-agent systems

development. 2004.

[80] Pavlos Moraitis and Nikolaos Spanoudakis. The gaia2jade process for multi-agent systems

development. Applied Artificial Intelligence, 20(2-4):251–273, 2006.

[81] Arash Negahban and Chih-Hung Chung. Discovering determinants of users perception of

mobile device functionality fit. Computers in Human Behavior, 35:75–84, 2014.

[82] David T Nguyen, Ge Peng, Daniel Graham, and Gang Zhou. Smartphone application

launch with smarter scheduling. In Proceedings of the 2014 ACM International Joint

Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, pages 131–134.

ACM, 2014.

112

http://azure.microsoft.com/en-us/services/machine-learning/
http://azure.microsoft.com/en-us/services/machine-learning/
https://products.office.com/nl-nl/excel
https://msdn.microsoft.com/en-us/sqlserver/aa937724.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/sqlserver/aa937724.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/windows/apps/jj207014%28v=vs.105%29.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/jj207014%28v=vs.105%29.aspx
http://realitycommons.media.mit.edu/realitymining.html
http://realitycommons.media.mit.edu/realitymining.html

[83] Jacob Nielsen. Nielsen Norman Group: Response times: the 3 important limits. http://

www.nngroup.com/articles/response-times-3-important-limits/, 2015. Accessed:

12-06-2015.

[84] Ingrid Nunes. Improving the design and modularity of bdi agents with capability relation-

ships. EMAS 2014, pages 58–80, 2014.

[85] Ingrid Nunes, Carlos JP De Lucena, and Michael Luck. Bdi4jade: a bdi layer on top of

jade. ProMAS 2011, pages 88–103, 2011.

[86] Michael J OGrady and Gregory MP OHare. Mobile devices and intelligent agentstowards

a new generation of applications and services. Information Sciences, 171(4):335–353, 2005.

[87] Antti Oulasvirta, Tye Rattenbury, Lingyi Ma, and Eeva Raita. Habits make smartphone

use more pervasive. Personal and Ubiquitous Computing, 16(1):105–114, 2012.

[88] Lin Padgham and Dhirendra Singh. Situational preferences for bdi plans. In Proceedings

of the 2013 international conference on Autonomous agents and multi-agent systems, pages

1013–1020. International Foundation for Autonomous Agents and Multiagent Systems,

2013.

[89] Lin Padgham and Michael Winikoff. Developing intelligent agent systems: A practical

guide, volume 13. John Wiley & Sons, 2005.

[90] Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state of the art.

Autonomous Agents and Multi-Agent Systems, 11(3):387–434, 2005.

[91] Abhinav Parate. Designing efficient and accurate behavior-aware mobile systems. 2014.

[92] Abhinav Parate, Matthias Böhmer, David Chu, Deepak Ganesan, and Benjamin M Marlin.

Practical prediction and prefetch for faster access to applications on mobile phones. In

Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous

computing, pages 275–284. ACM, 2013.

[93] Ioannis Partalas, Grigorios Tsoumakas, and Ioannis Vlahavas. Pruning an ensemble of

classifiers via reinforcement learning. Neurocomputing, 72(7):1900–1909, 2009.

[94] Veljko Pejovic and Mirco Musolesi. Anticipatory mobile computing: A survey of the state

of the art and research challenges. CoRR, abs/1306.2356, 2013.

[95] Santi Phithakkitnukoon, Ram Dantu, Rob Claxton, and Nathan Eagle. Behavior-based

adaptive call predictor. ACM Transactions on Autonomous and Adaptive Systems (TAAS),

6(3):21, 2011.

[96] Alexander Pokahr, Lars Braubach, Christopher Haubeck, and Jan Ladiges. Programming

bdi agents with pure java. In Multiagent System Technologies, pages 216–233. Springer,

2014.

[97] R Studio. R Studio: A powerful IDE for R. http://www.rstudio.com/, 2015. Accessed:

09-06-2015.

113

http://www.nngroup.com/articles/response-times-3-important-limits/
http://www.nngroup.com/articles/response-times-3-important-limits/
http://www.rstudio.com/

[98] Ahmad Rahmati. LiveLab dataset: Measuring wireless networks and smartphone users in

the field. http://livelab.recg.rice.edu/traces.html, 2012. Accessed: 09-06-2015.

[99] CHCR Ribeiro. Reinforcement learning agents. Artificial intelligence review, 17(3):223–250,

2002.

[100] Sebastian Rodriguez, Nicolas Gaud, and Stephane Galland. Sarl: a general-purpose

agent-oriented programming language. In Web Intelligence (WI) and Intelligent Agent

Technologies (IAT), 2014 IEEE/WIC/ACM International Joint Conferences on, volume 3,

pages 103–110. IEEE, 2014.

[101] Sandia National Laboratories. Jess project website. http://www.jessrules.com/, 2015.

Accessed: 09-06-2015.

[102] Suranga Seneviratne, Aruna Seneviratne, Prasant Mohapatra, and Anirban Mahanti. Pre-

dicting user traits from a snapshot of apps installed on a smartphone. ACM SIGMOBILE

Mobile Computing and Communications Review, 18(2):1–8, 2014.

[103] Clayton Shepard, Ahmad Rahmati, Chad Tossell, Lin Zhong, and Phillip Kortum. Livelab:

measuring wireless networks and smartphone users in the field. ACM SIGMETRICS

Performance Evaluation Review, 38(3):15–20, 2011.

[104] Kent Shi and Kamal Ali. Getjar mobile application recommendations with very sparse

datasets. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 204–212. ACM, 2012.

[105] Choonsung Shin, Jin-Hyuk Hong, and Anind K Dey. Understanding and prediction of

mobile application usage for smart phones. In Proceedings of the 2012 ACM Conference

on Ubiquitous Computing, pages 173–182. ACM, 2012.

[106] Alberto Siena and Mirko Morandini. TAOM4E project website. http://selab.fbk.eu/

taom/, 2015. Accessed: 09-06-2015.

[107] Dhirendra Singh, Sebastian Sardina, Lin Padgham, and Stéphane Airiau. Learning context

conditions for bdi plan selection. In Proceedings of the 9th International Conference

on Autonomous Agents and Multiagent Systems: volume 1-Volume 1, pages 325–332.

International Foundation for Autonomous Agents and Multiagent Systems, 2010.

[108] Dhirendra Singh, Sebastian Sardina, Lin Padgham, and Geoff James. Integrating learning

into a bdi agent for environments with changing dynamics. In IJCAI Proceedings-

International Joint Conference on Artificial Intelligence, volume 22, page 2525, 2011.

[109] Matthijs TJ Spaan. Partially observable markov decision processes. In Reinforcement

Learning, pages 387–414. Springer, 2012.

[110] Vijay Srinivasan, Saeed Moghaddam, Abhishek Mukherji, Kiran K Rachuri, Chenren Xu,

and Emmanuel Munguia Tapia. Mobileminer: Mining your frequent patterns on your

phone. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and

Ubiquitous Computing, pages 389–400. ACM, 2014.

114

http://livelab.recg.rice.edu/traces.html
http://www.jessrules.com/
http://selab.fbk.eu/taom/
http://selab.fbk.eu/taom/

[111] Janusz A Starzyk. Motivated learning for computational intelligence. Computational

Modeling and Simulation of Intellect: Current State and Future Perspectives, pages 265–292,

2011.

[112] Janusz A Starzyk, James Graham, and Leszek Puzio. Simulation of a motivated learning

agent. In Artificial Intelligence Applications and Innovations, pages 205–214. Springer,

2013.

[113] Jan Sudeikat, Lars Braubach, Alexander Pokahr, Winfried Lamersdorf, and Wolfgang

Renz. Validation of bdi agents. In Programming Multi-Agent Systems, pages 185–200.

Springer, 2007.

[114] Richard S Sutton. Learning to predict by the methods of temporal differences. Machine

learning, 3(1):9–44, 1988.

[115] Csaba Szepesvári. Algorithms for reinforcement learning. Synthesis Lectures on Artificial

Intelligence and Machine Learning, 4(1):1–103, 2010.

[116] Brian Tanner and Adam White. RL-Glue : Language-independent software for

reinforcement-learning experiments. Journal of Machine Learning Research, 10:2133–

2136, September 2009.

[117] Telecom Italia SpA. JADE project website. http://jade.tilab.com/, 2015. Accessed:

09-06-2015.

[118] The R Foundation. R project for statistical computing. http://www.r-project.org/,

2015. Accessed: 09-06-2015.

[119] Narseo Vallina-Rodriguez and Jon Crowcroft. Erdos: achieving energy savings in mobile

os. In Proceedings of the sixth international workshop on MobiArch, pages 37–42. ACM,

2011.

[120] Hado Van Hasselt. Reinforcement learning in continuous state and action spaces. In

Reinforcement Learning, pages 207–251. Springer, 2012.

[121] Nikos Vlassis, Mohammad Ghavamzadeh, Shie Mannor, and Pascal Poupart. Bayesian

reinforcement learning. In Reinforcement Learning, pages 359–386. Springer, 2012.

[122] Pavel Vrba. Java-based agent platform evaluation. In Holonic and Multi-Agent Systems

for Manufacturing, pages 47–58. Springer, 2003.

[123] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD thesis,

University of Cambridge, 1989.

[124] Shimon Whiteson. Evolutionary computation for reinforcement learning. In Reinforcement

Learning, pages 325–355. Springer, 2012.

[125] Marco Wiering and Martijn van Otterlo. Reinforcement learning. Adaptation, Learning,

and Optimization, 12, 2012.

115

http://jade.tilab.com/
http://www.r-project.org/

[126] Marco A Wiering and Hado van Hasselt. Ensemble algorithms in reinforcement learning.

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 38(4):930–

936, 2008.

[127] David H Wolpert and Kagan Tumer. Optimal payoff functions for members of collectives.

Advances in Complex Systems, 4(02n03):265–279, 2001.

[128] Michael Wooldridge. An introduction to multiagent systems. John Wiley & Sons, 2009.

[129] Michael Wooldridge and Nicholas R Jennings. Intelligent agents: Theory and practice.

The knowledge engineering review, 10(02):115–152, 1995.

[130] Michael Wooldridge, Nicholas R Jennings, and David Kinny. The gaia methodology

for agent-oriented analysis and design. Autonomous Agents and Multi-Agent Systems,

3(3):285–312, 2000.

[131] Xamarin Inc. Xamarin developer guide: Background fetch (iOS 7 and

greater). http://developer.xamarin.com/guides/cross-platform/application_

fundamentals/backgrounding/part_3_ios_backgrounding_techniques/updating_

an_application_in_the_background/#background_fetch, 2015. Accessed: 09-06-2015.

[132] Xamarin Inc. Xamarin developer guide: Java integration overview. http://developer.

xamarin.com/guides/android/advanced_topics/java_integration_overview/, 2015.

Accessed: 09-06-2015.

[133] Qiang Xu, Jeffrey Erman, Alexandre Gerber, Zhuoqing Mao, Jeffrey Pang, and Shobha

Venkataraman. Identifying diverse usage behaviors of smartphone apps. In Proceedings of

the 2011 ACM SIGCOMM conference on Internet measurement conference, pages 329–344.

ACM, 2011.

[134] Ye Xu, Mu Lin, Hong Lu, Giuseppe Cardone, Nicholas Lane, Zhenyu Chen, Andrew

Campbell, and Tanzeem Choudhury. Preference, context and communities: A multi-

faceted approach to predicting smartphone app usage patterns. In Proceedings of the 17th

annual international symposium on International symposium on wearable computers, pages

69–76. ACM, 2013.

[135] Bo Yan and Guanling Chen. Appjoy: personalized mobile application discovery. In

Proceedings of the 9th international conference on Mobile systems, applications, and services,

pages 113–126. ACM, 2011.

[136] Tingxin Yan, David Chu, Deepak Ganesan, Aman Kansal, and Jie Liu. Fast app launching

for mobile devices using predictive user context. In Proceedings of the 10th international

conference on Mobile systems, applications, and services, pages 113–126. ACM, 2012.

[137] Franco Zambonelli, Nicholas R Jennings, and Michael Wooldridge. Developing multiagent

systems: The gaia methodology. ACM Transactions on Software Engineering and

Methodology (TOSEM), 12(3):317–370, 2003.

116

http://developer.xamarin.com/guides/cross-platform/application_fundamentals/backgrounding/part_3_ios_backgrounding_techniques/updating_an_application_in_the_background/#background_fetch
http://developer.xamarin.com/guides/cross-platform/application_fundamentals/backgrounding/part_3_ios_backgrounding_techniques/updating_an_application_in_the_background/#background_fetch
http://developer.xamarin.com/guides/cross-platform/application_fundamentals/backgrounding/part_3_ios_backgrounding_techniques/updating_an_application_in_the_background/#background_fetch
http://developer.xamarin.com/guides/android/advanced_topics/java_integration_overview/
http://developer.xamarin.com/guides/android/advanced_topics/java_integration_overview/

	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Scope

	Avanade
	Company Description

	Research Goals
	Research Methods
	Overview

	Related Work
	Analysis of Smartphone Usage
	Learning User Patterns
	AccessRank
	Reflection
	CondOS
	Context Model for App Prediction
	Mobile Miner
	Call Predictor
	Multi-faceted approach to predicting App Usage

	Application: App Prefetching
	FALCON
	PREPP
	iOS and Windows Phone 8.1

	Application: Other
	Extract Mental States
	Privacy
	Predicting Electricity Consumption
	Network Load
	Webpage Prefetching
	Media caching
	Storage
	Energy Savings
	Smart Home

	Intelligent Agents in Mobile Devices
	Related Systems
	Anticipatory Systems
	Recommendation systems

	Intelligent Agents
	Types of Agents
	BDI agents

	Agent Frameworks
	Assessment criteria
	JACK
	Janus
	JADE
	JADEX
	Jason / AgentSpeak
	Evaluation

	Development Methods
	Methodologies
	Evaluation

	Conclusion

	Machine Learning
	Types of Machine Learning
	Reinforcement Learning
	Aspects of Reinforcement Learning

	Reinforcement Learning Algorithms
	Temporal Difference Learning
	Batch Reinforcement Learning
	Bayesian Reinforcement Learning
	Evolutionary Reinforcement Learning
	Evaluation of Algorithms

	Alternative Learning Methods
	Motivated Learning
	Learning Plans in BDI Agents
	Transfers in Reinforcement Learning

	Cooperative Machine Learning
	Concurrent learning
	Credit Assignment
	Ensemble Learning

	Libraries
	WEKA
	RL-Glue
	Azure Machine Learning

	Conclusion

	Mobile Platforms
	Comparison
	Development Environment
	Xamarin

	Conclusion

	Implementation
	Multi Agent System Design
	Early Requirements
	Late Requirements
	Architectural Design

	Agent Design
	Input Agent
	Prediction Agent(s)
	Assessment Agent
	Launcher Agent

	Expansions
	Overall System
	Input Agent
	Prediction Agent(s)
	Assessment Agent
	Launcher Agent

	Test Setup
	Gathering User Data
	Monitoring Sensor Data
	Existing Data Sets
	Chosen Dataset

	Adjustments to Implementation
	Performance Measures
	Data Visualization

	Parameter Setting
	Test Data
	Parameters Prediction Agent
	Parameters
	Results Per Parameter

	Parameters Assessment Agent
	Parameters
	Results Per Parameter

	Results
	Expectations
	Performance of System
	Configuration
	Results

	Compared to Related Work
	FALCON
	PREPP

	Discussion
	Results
	Parameter Setting
	Performance System
	Comparing to Related Work

	Implementation
	Xamarin
	Jadex
	Tropos
	Machine Learning
	Testing

	Conclusion
	Future Work
	LiveLab Data
	R Scripts
	Scripts for Parameter Setting
	Precision, Recall and Effectiveness
	Average Median Freshness

	Scripts for System Performance
	Precision, Recall and Effectiveness
	Freshness

	Scripts for Comparison to Related Work

	Usability Avanade
	Agent Framework
	Reinforcement Learning
	Deployment
	Evaluation
	Applications

	Code and Data Reference
	Code
	Data
	Parameter Setting
	Results

	Bibliography

