
Faculty of Science
Department of Information and

Computing Sciences

Harpe
Partitioning Models to Minimize the Parallel Print Time in

Fused Filament Fabrication

ICA-5785316
October 6, 2021

Supervisor:
Prof. Dr. M.J. van Kreveld

2nd Examiner:
Dr. M. Löffner

Author:
C.H.P. Lamboo

c.h.p.lamboo@students.uu.nl

c.lamboo@ultimaker.com

Daily Supervisors:
Remco Burema

Jaime van Kessel

mailto:c.h.p.lamboo@students.uu.nl
mailto:c.lamboo@ultimaker.com

Abstract

3D printers have become widely accessible. It is increasingly more common for compa-
nies, or even individuals to have multiple 3D printers. Having multiple printers allows one
to fabricate more objects at the same time, although the earliest time that any single object
is available is still bounded by the printing time of a single printer. Partitioning this model
such that each sub-model is printed in parallel on a separate printer will greatly improve
the print time of the model. Harpe is a model-decomposition algorithm that partitions a
3D model in (at most) n parts such that the print time of the sub-model with the slowest
print-time is minimized.

i

Contents

1 Introduction 1
1.1 Preliminaries . 1

1.1.1 3D manufacturing techniques . 1
1.1.2 Fused Filament Fabrication . 2
1.1.3 Slicing . 2

2 Related Work 4
2.1 Improve print time . 4
2.2 Increase print volume . 4
2.3 Avoid support . 4
2.4 Improve surface quality . 5
2.5 Partitioning a model for packing . 6

3 Method 7
3.1 Definitions . 7
3.2 Print Time Estimation . 10

3.2.1 Calculating feature volumes . 11
3.2.2 Print time estimation . 13
3.2.3 Material usage estimate . 14
3.2.4 Print Direction . 14

3.3 Partition Search . 15
3.3.1 Candidate Planes . 16
3.3.2 Basic Partition Search . 17
3.3.3 Average Cross-section Area Heuristic . 19
3.3.4 Support . 21

3.4 Batched Calculations . 25
3.4.1 Cross-sectional Area . 25
3.4.2 Surface Areas . 27
3.4.3 Volume . 28
3.4.4 Support Volumes’ Geometry . 31
3.4.5 Support Volumes’ Support . 33

3.5 Local Search Procedure . 34
3.6 Connectors . 36

4 Results 39
4.1 Print Time Estimation . 40
4.2 Partition Search . 43

4.2.1 Comparison of search strategies . 43
4.2.2 Performance of Partition Search . 44

4.3 Batched Calculations . 45
4.4 Local Search Procedure . 46

5 Conclusion 47

6 Discussion & Future work 48

7 Acknowledgement 50

ii

A Partition Examples 51

iii

1 Introduction

3D printers are used for various applications such as education, manufacturing and prototyping.
Prototyping is a process where it is very useful to have a physical representation of the object
that is being designed. A common workflow in prototyping is an iterative process where a design
is printed. After the design has been printed flaws and possible improvements can be discovered.
The design is adjusted and the process starts again. In this process a fast turnaround time is
valued. For some models the printing process takes hours or even days. This slow turnaround
time stagnates the iterative designing process.

Using multiple 3D printers could solve this issue. The model can be split into a number of
parts that is at most equal to the number of available printers. All sub-models can then be
printed in parallel. In order for this method to be effective, the model-splitting needs to be
automated. Doing this manually would require additional time, defeating the purpose of the
high turnaround time. Additionally the assembly process should be as easy as possible. Having
a partitioning that requires an intensive assembly process can cost a significant amount of time
that exceeds the time gained by the partitioning.

As all parts are printed simultaneously the total print time of all parts is determined by the
part with the longest print time. The goal of the algorithm thus becomes an optimization problem
of finding the partition G of the input model g containing at most n pieces that minimizes the
print time PrintTime(gpart) of the slowest printed sub-model gpart ∈ G (eq. (1)).

arg min
partitioning G of g : |G|≤n

(
max

gpart∈G

{
PrintTime(gpart)

})
(1)

This objective is referred to as minimizing the parallel print time. Contributions of this work
include

• a novel method to estimate the print time, while less precise than previous methods, it can
predict the print times of models significantly faster,

• a partition algorithm, that cuts a model in n parts,

• a method calculates properties for a set of candidate cuts, making it possible to evaluate a
dense collection of cuts while maintaining an efficient algorithm,

• a local search procedure that improves an existing solution by iteratively optimizing the
partitioning, and

• a method for adding connectors between the model-parts for an increased ease of assembly.

1.1 Preliminaries

1.1.1 3D manufacturing techniques

There are many techniques for fabricating 3D models. Examples of such techniques are:

• Fused Filament Fabrication (FFF); a form of additive manufacturing where molten
filament is extruded through a heated nozzle. The nozzle is guided through a predetermined
toolpath,

• Selective Laser Sintering (SLS) or Powder Bed Fusion; here a model is manufactured
by depositing a layer of powder on the whole build area. The area that needs to be solid
is fused together using a laser,

1

• Milling (e.g. CNC); a form of subtractive manufacturing, material is removed from a solid
block by drilling until only the desired model remains.

Each of these techniques has different characteristics, and the total time spent manufacturing
the model is influenced differently by each of these fabrication methods. In this thesis FFF
printers will have the main focus.

1.1.2 Fused Filament Fabrication

For most FFF printers 3D models are fabricated by extruding molten plastic through a 3-axis
controlled nozzle head. Using this method models can be printed by guiding the nozzle through
predetermined tool paths and adding material on the build plate. After the first layer is printed
the second layer can be added by using the first layer as the build area. The complete model is
fabricated layer by layer, where each previous layer is the build area for the next layer.

1.1.3 Slicing

Before a model can be printed the model needs to be converted to instructions the printer can
understand: G-Code. The process of generating these print instructions is called slicing. Slicing
is usually done using slicing software such as Cura[23] (fig. 1).

Figure 1: Screenshot of slicing software Cura showing a preview of the tool paths.

The slicing process splits a model into layers. Each layer fills the two-dimensional polygon
shape resulting from the cross section between a horizontal plane and the target model. Each
layer is built from a collection of tool paths. This is highlighted in fig. 2. Figure 2a shows the
original target model with layers α and β highlighted. Tool paths for these layers are shown in
fig. 2b and fig. 2c.

2

(a) Model g with slice α
and β highlighted. (b) Layer view of slice α.

Outer wall

Inner wall

Infill

Skin

(c) Layer view of slice β.

Figure 2: Visualisation of the tool paths for a cube model.

These tool paths can all be assigned to a feature, each feature serves a different purpose and
is printed with different characteristics. The main features used by Cura are.

• a slowly printed outer wall that is visible on the outside,

• an inner wall, which is printed faster,

• a skin that fills the outer shell of the model that is not covered by the wall,

• a coarsely printed infill that provides structural integrity on the inside of a model, and

• a support structure, as it is not possible to print on top of a non-existent previous layer.

The slicing process can be customized through slice settings. A simplified version of the slice
settings used in Cura is shown in listing 1. Changing these slice settings will influence the print
time and material usage. Throughout the thesis this deviating font type is used to refer to
these settings.

Settings:

material_diameter: mm

nozzle_size: mm

layer_height: mm

wall_thickness: mm

top_thickness: mm

bottom_thickness: mm

infill_percentage: percentage

support_percentage: percentage

inner_wall_speed: mm/s

outer_wall_speed: mm/s

skin_speed: mm/s

support_speed: mm/s

infill_speed: mm/s

Listing 1: Relevant slice setting values with their corresponding physical units.

3

2 Related Work

A lot of research has been conducted in the field of the decomposition of 3D models. There
are several motivations for partitioning a model, such as improving print time (section 2.1),
partitioning the model so its volume can be increased (section 2.2), removing the need for support
(section 2.3), improving the surface quality (section 2.4), and packing (section 2.5).

2.1 Improve print time

A moderate amount of research has been done where models are decomposed with the goal to
speed up the print process.

Both Chen et al.[16] and Chen et al.[11] propose a method where only the shell of a model is
printed in pieces. Both approaches have an inner structure that is constructed separately from
the print process. For [16] this inner structure is made from pre-manufactured building blocks to
which the printed outer shell pieces are connected. In [11] an improvised skeleton of the model is
constructed using crafting material. The shell-pieces are assembled by gluing the pieces to this
skeleton.

2.2 Increase print volume

The sizes of 3D printed models are bounded by the build-volume of the printer. One way to
circumvent this restriction is to partition a model such that each partition is not bigger than the
build-volume. The assembled parts can then be many times the size of the original build volume.

Chopper[6], an algorithm designed by Luo et al., uses beam search to find a BSP (Binary
Space Partition) of the input model. Their objective criteria are not limited to make sure that
every part fits within the build-volume, but also take into account the assemblability1 of the
parts, structural soundness of the assembled model, and aesthetics. An elaborate connector
placing scheme is designed to simplify the assemblability process, and makes for a sturdier
assembled model. The objective of Chopper is highly modular and could easily be adjusted for
different needs.

Song et al. place a model in a voxel grid in [10]. The model partitioning is based on those
voxel cells that are covered by (part) of the model. Voxels are grouped together to form parts
that can be assembled without glue as the pieces are self-interlocking.

Jiang et al. shrink the input model to a 0-volume skeletal representation of the original
mesh[13]. Each position on the skeleton corresponds to a part of the surface on the original
model. Parts of the skeleton that correspond to a minimum local surface area are good candidate
cuts. Consequently, the model is partitioned on these locations.

2.3 Avoid support

Using FFF-printers, overhangs are harder to print. These printers construct a model by fusing
additional material to an already printed part of the model. This is usually done by splitting the
model into layers, printing the model layer by layer. In order to get a successful print, each layer
needs support from the previous layer(s). For some models the model itself does not provide for
sufficient support, so a support structure is printed along the model itself for the needed support.
These support structures are not part of the model, and thus need to be removed after printing.
These structures require additional material, and removing these structures is manual work that
may damage the model and leave marks on the final product. Considerable work has been done

1A term introduced by Chopper, meaning whether it is possible to assemble the final model

4

to partition the 3D model to eliminate, or minimize, the overhanging areas and thus the need
for these support structures.

Hu et al. aim to solve the k-pyramidal shape decomposition problem in [7]. A shape is
considered pyramidal if it has a flat base, and is x-monotone in the remainder of its shape. As
the k-pyramidal shape decomposition is a very complex problem, the shapes produced by the
algorithm are not strict, but approximate pyramidal shapes. The algorithm works by sampling
the interior of the input shape. A number of planar cuts are considered. A planar cut ` is the
full, infinite plane defined by a normal −→n and a distance d. A sample point v is said to be covered
by a planar cut `, if the minimal distance from the sample location v to the planar cut ` does
not travel outside the input shape. A set number of cut-directions −→n are generated, the number
of which is controlled by a parameter. Each of the sample locations vote for a number of cuts.
A cut is voted for if the sample location is covered by the aforementioned cut. Neighbouring
sample locations that vote for the same bases are clustered together. Each cluster has multiple
valid cuts that could be used as print base, and each cluster is (approximately) pyramidal. Then
neighbouring clusters are merged by solving an exact cover problem over the candidate parts to
obtain the final pyramidal decomposition.

In [18] an object is partitioned by recursively applying three decomposition tactics. One of
the tactics is base extraction. Here a large flat base is identified. The largest possible portion
of the model that can be printed using this flat area as a print base is found and cut from the
model. The second tactic is tip extraction. Narrow features that are not likely to be printed as
a print base are identified. From such features a region is grown until a large enough print base
can be identified. The print base then serves as a cut to partition part of the model. Finally
T-Junctions, two parts of the model that are connected perpendicularly, are identified using a
voxel approach. The two parts are split using a planar cut. These three approaches are applied
recursively, on each recursion step one approach is chosen with a random probability. This
recursive process is repeated until each piece is assigned a print direction, and can be printed
without support.

Yu et al. employ evolutionary computing to find a BSP over the input model[15]. The
objective of the genetic algorithm is to find a partition that minimizes the total overhang area,
while also trying to keep the part-count as low as possible. Both the Multi-objective Generic
Algorithm (MOGA) and Covariance Matrix Adaptation Evolution Strategy (CMA-ES) strategies
are used to find the decomposition.

Wei et al. start their approach similarly to the approach described in [13] by creating a 0-
volume skeletal representation of the model using Laplacian smoothing[17]. As a result from
the Laplacian skeletonization the surface area, and the skeletal edge that corresponds to this
surface area skeleton, are approximately perpendicular to each other. A section of the model can
be printed without support if all of its skeletal edges have an orientation that is at least equal
to the maximum overhang angle of the printer. Wei et al. solve the decomposition problem by
decomposing the skeleton such that each part fits within a cone with an angle that is twice the
maximum overhang angle.

2.4 Improve surface quality

For FFF printers a model is usually fabricated by slicing a model into layers. The resolution in
the layer direction (usually the z-axis) is far less than the resolution in the two other directions.
For models where surface quality is of importance, the surfaces with a large amount of detail
need to be printed perpendicular to the print direction. Partitioning a model might help finding
the ideal print direction for a larger portion of the surface of the model.

In [12] Wang, Zanni, and Kobbelt aim to solve this problem by assigning each face to a set

5

of candidate print directions. Adjacent faces are grouped together to find a balance between
number of surface patches, and local ideal print direction. Then the model is partitioned by
finding a Voronoi region that approximates these surface patches. The intersection between a
Voronoi region and the model form a partition.

Filoscia et al. aim not only to print the surfaces in the ideal print direction, but also eliminate
the need for any support on the surface of the model[19]. First, patches with similar surface
characteristics are found. These patches are then grouped together using Linear Programming
(LP). The objective of the LP is not only to find a balance between the number of patches and
the ideal print direction, but also to prevent the need for support on any of these surfaces. The
result is a partition on the surface of the model where the ideal cuts would be. These cuts are
then slightly moved to creases in the model to make the cuts less apparent. The creases are
found by using the ambient occlusion of the model; places where less light can penetrate are less
visible, and are good candidate places where these seams can be hidden.

2.5 Partitioning a model for packing

Packing algorithms aim to decompose an object, and then tightly pack the parts. This kind of
algorithms are most applicable for SLS printers. For SLS printers each layer is completely filled
by a powder, the model is constructed by fusing parts of the layer that belong to the model.
The powder that is not part of the model is discarded and cannot be used again. In order to
minimize waste, model (parts) are tightly packed together. Miscellaneous research has been done
on how to decompose a model, and pack the pieces together such that the height of the packed
components is minimized. SLS printers will more reliably print overhang areas compared to FFF
printers. Because of this the packing of objects may contain intricate overhang areas that are
almost impossible to print for FFF printers.

Chen et al. use the results from [7] to create an initial pyramidal decomposition of the model
[9]. These parts are then voxelized, using the pyramid-base adjacent to the voxel boundary. These
pieces are then iteratively added to the packed build-volume. Parts may be further partitioned
during this process through axial cuts. Using beam search multiple configurations of the packed
build-volume are considered during the packing process. Only the most promising configurations
are explored in the search tree.

In “PackMerger: A 3D Print Volume Optimizer” Vanek et al. partition a model by first
extracting the shell of the input model[8]. This shell is converted into a set of tetrahedral cells
and split into a large number of segments. These are combined using k-means clustering to create
an initial partitioning of the model. The relation between the pieces is stored in a weighted
undirected graph, with edge weights equal to the cross-sectional area between the segments.
Pieces with little contact area are hard to assemble, so these pieces are merged. Tabu search
and gradient descent are used to tightly pack the pieces in a minimum-volume bounding box by
changing the orientation and position of the pieces.

6

3 Method

Recall that the goal of this research is to develop an algorithm that computes a partition G of
the input model g containing at most n pieces that minimizes the print time PrintTime(gpart)
of the slowest printed sub-model gpart ∈ G.

arg min
partitioning G of g : |G|≤n

(
max

gpart∈G
{PrintTime(gpart)}

)
A valid partitioning G must comply with the following properties.

• The number of model-parts is at most equal to the number of available printers n

|G| ≤ n (2)

• When assembling the parts the result should be the original model. The union of all
geometry-parts results in g ⋃

gpart∈G
gpart = g (3)

• There is no overlap between geometry-parts{
ga ∩ gb | ga, gb ∈ G, ga 6= gb

}
= ∅ (4)

In order to compare partitions, the print time PrintTime(g) for each piece needs to be known.
Previously the best method for doing this is slicing the model to generate the tool paths. After
these tool paths are generated, the print process is simulated by traversing all tool paths. This
will be too time consuming as the search-algorithm will need to know the print time for a large
number of model pieces. Section 3.2 describes a novel method for estimating the print time more
efficiently. While less accurate the increase in performance makes this new approach useable for
the algorithm. In section 3.3 the search method for finding the partitioning is described. The
min-max print time goal for this thesis is achieved using a greedy heuristic search procedure that
at each step of the algorithm evaluates a number of candidate cuts. Evaluating a higher number
of candidate cuts results in a better partitioning. Section 3.4 describes a method to efficiently
evaluate these candidate cuts. After a partitioning has been found the partitioning is improved
by iteratively updating the partitioning in section 3.5. Finally connector pieces are added to the
partition surfaces for an improved assembly process (section 3.6).

3.1 Definitions

During the explanation of the algorithm there are recurring geometrical objects. In the following
section the most important objects are described.

Geometry Models are represented as a geometry g, an unordered triangle list. Geometry g
contains m triangles g = t1, t2, . . . , tm, and each triangle ti consists of three points t = (ta, tb, tc).

As these geometries represent solid models we need to have a well-defined in and outside
of the geometry. When directly facing the triangle the side of the triangle is said to be on the
outside if the order of points is clockwise. Alternatively if the order of points is counter clockwise
when directly facing the triangle that side is on the inside.

The geometries used in this thesis are limited to those models that are manifold ; every triangle
edge has exactly one other incident triangle and there are no overlapping/intersecting faces.

7

Hyperplane The hyperplane is a geometric element for representing planes, generalized to
any dimension d. Any point (v1, v2, . . . , vd) for which eq. (5) holds is located on the hyperplane.

HyperPlaned := {x1v1 + x2v2 + · · ·+ xdvd = 0} (5)

The most common hyperplane variant used in this thesis is the regular plane and can be
expressed as HyperPlane3 otherwise referred to as p. The two-dimensional variant (a line) can be
expressed as HyperPlane2 or `.

A HyperPlane3 can be used to partition a geometry g, cutting it into a top geometry g>, and
a bottom g⊥ geometry (Partition(p, g) 7→ (g, g)). The top part g> is the geometry from g
that is above p, while bottom part g⊥ is the geometry that is below p. This is illustrated in
fig. 3.

Figure 3: A plane p partitioning a geometry g into geometries g> (red) and g⊥ (turquoise).

Partitioning a geometry might cut a geometry in disjoint pieces, however these disjoint pieces
are considered to be a single geometry. This is done to provide more control over the cuts; using
this definition of a cut, partitioning a geometry always results in exactly two geometries.

Parallel Planes An ordered list of k parallel planes P = p1, p2, . . . , pk is frequently used
throughout the algorithm. During the search procedure a batch of candidate partition-planes
are evaluated before picking a single plane to perform a cut. The space in between each successive
plane is constant throughout the batch, τ is used to denote this distance in millimetres. Figure 4
illustrates such a set of parallel planes for the Lucy model.

8

Figure 4: A set of parallel planes P with accompanied geometry g.

Various properties can be calculated on a geometry g in combination with a collection of
parallel planes P . Examples of such properties used in this work include:

• CrossSectionalAreas(P, g) 7→ [R]; for each plane p ∈ P calculate the area of the cross
section with geometry g,

• Areas(P, g) 7→ ([R], [R]); for each plane p ∈ P calculate the area of g> and g⊥ if geometry
g were to be partitioned by p, and

• Volumes(P, g) 7→ ([R], [R]); for each plane p ∈ P calculate the volume of g> and g⊥ if
geometry g were to be partitioned by p.

Later in section 3.4 we will show that these operations are calculated efficiently. Having these
efficient operations allow for a higher density of candidate partition-planes.

Half-space Similar as the hyperplane, the difference is that the half-space also includes the
region below the plane (when oriented in the direction of the half spaces’ normal). Any point
(v1, v2, . . . , vd) for which eq. (6) holds is contained within the half-space.

HalfSpaced := {x1v1 + x2v2 + · · ·+ xdvd ≤ 0} (6)

There is not a variant of the half-space where the sign is flipped; this is redundant as it can
be achieved by negating the half-space.

Binary Tree A tree is a recursive data structure that can be either one of two elements; a
node (depicted as a circle in fig. 5b) or a leaf (depicted as a square in fig. 5b). The nodes contain
a left and a right child that are themselves instances of the tree data structure. A location in a
tree can be expressed through a sequence of left and right turns from the tree’s root. Data can
be stored in both the leaf and node elements of the binary tree. For our definition of a binary

9

tree we borrow a concept from functional programming, namely algebraic data types. Such data
types contain variables in their definition, denoting the type of data contained within the data
type. For our case these variables are the data types for the leafs and nodes.

Tree〈leaf , node〉

For instance, a Tree〈N, `〉 corresponds to a binary tree that stores lines at the nodes and a
natural number in the leaves.

Observation 1. A tree-branch can only terminate in a leaf.

Lemma 2. In all non-empty trees of finite depth there is at least one node that has a terminating
leaf for both the left and right child.

Proof. By contradiction. Suppose that this would not be the case then all nodes should have (at
least) one child that is also a node. Such a node does not result in a termination. As this is the
case for all nodes, the tree cannot terminate and we thus have a tree of infinite depth. As the
lemma states we have a tree of finite depth, we have found a contradiction.

BSP A Binary Space Partition (BSP) is a tree data structure that partitions space using hyper-
planes. Each node of the tree corresponds to a hyperplane. The sub tree on the left child of
this node corresponds to the space above p, and the right child corresponds to the space below
p. Each node recursively splits more space in a similar fashion. A simple BSP is illustrated in
fig. 5a, the tree structure of the same BSP is depicted in fig. 5b.

(a) A Binary Space Partition (b) Tree representation of fig. 5a

Figure 5: A BSP partitioning the plane (fig. 5a) and the tree representation of the same BSP
(fig. 5b).

For our definition of a BSP the BSP is defined in terms of a binary tree. Note that the unit
type () is used to denote that a BSP does not contain any data in the leaves.

BSPd := Tree〈(), HyperPlaned〉

3.2 Print Time Estimation

The time spent printing a model, PrintTime(g), is an important metric throughout Harpe.
Using slicing software Cura the print time can be precisely calculated. The print time can be
calculated by first generating all tool paths for a model. After the tool paths are created the

10

print time, PrintTimecura(g), is calculated by traversing all tool paths and for each tool path
calculating the time spent printing. Unfortunately this method is computationally too expensive.
Instead, a novel method for calculating the print time is proposed; PrintTimeharpe(g). As this
method is used with high frequency to evaluate large sets of candidate partitions this method
should be very efficient; any program with a running time worse than linear cannot be used.

The method for estimating the print time for a model g works by calculating the time spent
on each feature separately. For a given feature the process of determining the print time is split
into two steps. First the volume for each feature vfeature(g) in mm3 is calculated. Additionally
the print speed ffeature, denoted as flow rate in mm3s−1, for each feature is determined based on
the print settings. Then the print time of each feature is its volume divided by its print speed.

By looking at the physical units this makes sense; mm3

mm3s−1 = s. The total print time is the sum
of each volume’s print time. This is shown in eq. (7).

PrintTimeharpe(g) =
∑

feature∈{inner wall,outer wall,skin,infill,support}

vfeature(g)

ffeature
(7)

3.2.1 Calculating feature volumes

The regions occupied by each feature are traditionally calculated by processing each layer indi-
vidually. For Harpe the model g is never split into layers. As we still need to know the volume
occupied by each feature a different approach for calculating these regions is proposed. Figure 6
illustrates the difference between the tool paths and regions.

For our print time estimation all triangles t in geometry g are traversed. For each triangle
t the contribution of triangle t to each feature is determined. The calculations are not exact
as other parts of the geometry might intersect a features’ volume. However, considering these
special cases would make the algorithm too slow and unfit for our purpose.

Wall

Skin

Infill

Regions

(a) Cross section

(b) Tool paths (c) Regions

Figure 6: Cross section (fig. 6a) of geometry g with tool paths (fig. 6b) and regions (fig. 6c) for
the wall, skin and infill features highlighted.

11

Wall volume For a given triangle t the surface area does not directly determine the wall
volume, but instead the horizontal projected area of t is used. This is because the volume that
is filled by the wall feature is determined by the horizontal distance to a boundary of model
g; a face that is oriented horizontally will not contribute to the total wall volume, while a face
that is oriented vertically does. Let Normal(t) be the surface normal of unit length for triangle
t. The horizontally projected area of triangle t is calculated by taking the horizontal vector
length of normal |Normal(t)xy| multiplied by the area of t. In order to get the wall volume, the
horizontally projected area is multiplied by the wall thickness eq. (8).

HorizontallyProjectedVolume(t) = |Normal(t)xy| · Area(t) · wall_thickness (8)

Then the total wall volume vwall(g) of model g is approximately the sum of all triangle wall
volumes eq. (9). This is approximate as narrow features in a model might cause the wall regions
of two separate triangles to overlap. For the exact volume these overlapping regions should only
be calculated once.

vwall(g) =
∑
t∈g

HorizontallyProjectedVolume(t) (9)

Note that the wall volume is split into an inner wall volume, and an outer wall volume. In
order to correctly calculate these volumes the wall thickness in eq. (8) is replaced

• by nozzle_size for the outer wall as the outer wall is a single extrusion line on the outer
contour of the layer,

• and by wall_thickness− nozzle_size for the inner wall, as the remaining volume of the
wall that is not filled by the outer wall is filled using the inner wall feature.

Skin volume Similarly to the wall volume discussed previously, the skin volume is determined
by first calculating the top projected area for each triangle t. This top projected area is then
multiplied by the SkinThickness eq. (11). As the bottom and top thickness can be modified
separately the SkinThickness is equal to either top thickness or bottom thickness depending
on the surface normal of triangle t. If the surface normal is pointing up then triangle t is part of
the top surface thus top thickness is used. Otherwise bottom thickness is used as the skin
thickness eq. (12).

The total skin volume vskin(g) is then determined by the sum of all skin volumes of all
triangles. However, some regions within the model might be assigned to both the skin and wall
features. If this is the case then the wall feature takes precedence over the skin feature. Let
rfeature be the region assigned to each feature. Then the correct volume for the skin would be
rskin − rskin∩wall. Calculating the intersection between these regions would be too costly, thus
this intersection is calculated on a per-face bases, where the skin region is considered to be a
subset of the outer wall region. The resulting value is capped at 0 to prevent negative volumes
(eq. (10)).

vskin(g) =
∑
t∈g

max
{

0, HorizontallyProjectedVolume(t)− TopProjectedVolume(t)
}

(10)

TopProjectedVolume(t) = |Normal(t)z| · Area(t) · SkinThickness(t) (11)

SkinThickness(t) =

{
top_thickness if Normal(t)z > 0,

bottom_thickness otherwise.
(12)

12

Infill volume The remaining volume of model g that is not filled by the skin, inner wall, and
outer wall volumes is printed by the infill. As such the infill volume vinfill(g) is calculated by
subtracting the skin, inner wall and outer wall volumes from the total volume vtotal(g) of model g.
The total volume vtotal(g) of model g is calculated using the sum of signed volumes as described
in [2] and in detail explained in section 3.4.3. As the infill volume is not printed solid, but as a
coarse structure, the calculated infill volume is multiplied by the infill percentage.

vinfill(g) = (vtotal(g)− vskin(g)− vinner wall(g)− vouter wall(g)) · infill_percentage (13)

Support volume For each downwards oriented triangle support is needed. The support struc-
ture is considered to be a solid triangular column that spans all the way from the print base to
the triangle. The total support volume is the sum of all these triangular columns, eq. (14).

vsupport(g) =
∑
t∈g

{
TriangularVolume(t) if Normal(t)z < 0,

0 otherwise.
(14)

3.2.2 Print time estimation

After the volumes for each feature has been calculated the print time can be derived. First the
print speed is determined. This is the rate at which filament is extruded through the nozzle;
the flow rate. Flow rate is denoted in mm3s−1. Lines extruded by the print head have a height
equal to the layer height, and the width of the line is determined by the nozzle size. Let
speedfeature be the print speed of each of the features (i.e. skin_speed, outer_wall_speed etc).
As the print head moves with speedfeature millimetres per second, the length of a line extruded in
a single second is equal to speedfeature. For each feature the volume extruded in a single second,
the flow rate, is ffeature as described in eq. (15).

ffeature = nozzle_size · layer_height · speedfeature (15)

As previously discussed the total print time is calculated by dividing the volume by the print
speed (eq. (7)). Pseudo code for finding the volumes for each feature, and calculating the total
print time is shown in Algorithm 1. The time complexity for this method is dictated by the loop
going through all m triangles. All operations within this loop are executed in constant time. We
will later show in section 3.4.1 that volume calculated in line 15 has a time complexity linear in
the number of triangles m. Sequencing these operations results in a time complexity of O(m).

13

Algorithm 1: Calculating print time for model g

Input : Geometry g and the print settings
Output: Estimate of the print time in seconds

1 Function PrintTimeharpe(g) is
2 skinVolume, innerWallVolume, outerWallVolume, supportVolume ← 0
3 foreach t ∈ g do
4 Let −→n be the normal of unit length of triangle t.

5 skinThickness ←

{
top_thickness if nz > 0,

bottom_thickness otherwise.

6 skinArea ← Area(t) · |nz|
7 wallArea ← Area(t) · |nxy|
8 outerWallVolume += wallArea · nozzle_size
9 innerWallVolume += max{0,wallArea · (wall_thickness− nozzle_size)}

10 skinVolume += max{0, skinArea · skinThickness− wallArea · wall_thickness}
11 if nz < 0 then
12 supportVolume += TriangularVolume(t)
13 end

14 end
15 infillVolume ← (Volume(g) − skinVolume − innerWallVolume − outerWallVolume) ·

infill_percentage

16 supportVolume ← supportVolume · support_percentage
17 ffeature ← nozzle_size · layer_height · speedfeature

18 return skinVolume
fskin

+ innerWallVolume
finner wall

+ outerWallVolume
fouter wall

+ supportVolume
fsupport

+ infillVolume
finfill

19 end

3.2.3 Material usage estimate

Using this approach the material usage for a geometry can be predicted. While not relevant to
the remainder of the thesis it shows the versatility of the approach.

Finding the amount of material needed is fairly easy once we know the volumes for each
feature. In FFF printers the material is provided through spools of plastic called filament.
Filament is a long cylindrical shaped strand of plastic. The material usage of a model g is
defined as the length λ of filament required. The volume of plastic in a strand of length λ is
equal to λπ(material_diameter2)2. The total volume of plastic that is inside the model is equal to
the volume of filament required. Solving for λ provides for the formula for calculating the length
of plastic needed from the spool (eq. (16)).

λπ
(material_diameter

2

)2

=
∑

vfeature(g)

λ =

∑
vfeature(g)

π(material_diameter2)2

(16)

3.2.4 Print Direction

The algorithm described previously in section 3.2.2 has a dependency on the print direction.
This is due to the separation of the wall, bottom, and top features. For most practical print

14

settings these three features contain the same settings for thickness and print speed. If this is
the case print direction does not influence the print time (not taking support into account).

If the previous paragraph feels counter intuitive, imagine the following: changing the orien-
tation does not change the print speed, area or volume. If the same volume is printed with the
same print speed then the print times will be equal. The only difference in print time can be
attributed to how optimized the travel paths are in each orientation. Different print orientations
might change the height of a model. One could argue that, for models that become taller when
changing orientation, more time is spent moving the print head from bottom of the print bed
to the top of this model. While this is true virtually no time is spent changing z position while
moving to the next layer; the z travel time is negligible on the whole print time.

When making the print time direction independent the settings wall thickness,
bottom thickness and top thickness and wall speed, bottom speed and top speed need
to have equal values. If this is the case then these are combined into settings shell thickness

and shell speed. The shell volume is calculated by multiplying the shell thickness by the
area of g. The time it takes to print the shell is calculated similar to the other features; the flow
rate fshell is determined making the print time equal to vshell

fshell
.

Pseudo code for this simpler print time estimation is given in Algorithm 2. This method runs
in constant time, given that the volume, area and support volume have already been calculated.

Algorithm 2: Calculating print time for model g

Input : Area in mm2, volume in mm3 and support volume in mm3 of geometry g.
Output: Estimate of the print time in seconds

1 Function PrintTimeharpeΩ(area, volume, supportVolume) is
2 innerWallVolume ← area · nozzle_size
3 outerWallVolume ← area · (wall_thickness − nozzle_size)
4 supportVolume ← supportVolume · support_percentage
5 infillVolume ← (volume − wall_thickness · area) · infill_percentage
6 ffeature ← nozzle_size · layer_height · speedfeature

7 return ← innerWallVolume
finner wall

+ outerWallVolume
fouter wall

+ supportVolume
fsupport

+ infillVolume
finfill

8 end

3.3 Partition Search

Partition Search is a recursive model decomposition algorithm that partitions an input ge-
ometry such that the maximum print time of all geometry-parts is minimized. A large number
of candidate cuts are heuristically evaluated to find the locally optimum partition plane. To do
this the print time is estimated as described in section 3.2.

The results of the partitioning algorithm is BSP-tree. This BSP-tree can be used to partition
geometry g; the intersection between the space of a BSP-leaf and g forms a partition-part. There
are multiple reasons for using a BSP-tree. Models partitioned using a BSP have flat surfaces
where the model is partitioned. These flat surfaces can function as the print base for the model-
part. Additionally when a model is partitioned using a BSP it is always possible to assemble
the pieces. Later in section 3.6 we will discuss how connectors will be added to the model-parts.
These connectors are pins oriented in the same direction as the normal of the partition-plane.
The only way for two pieces to be assembled is sliding the pieces together in the direction of the
pin.

Observation 3. Let g> and g⊥ be a partitioning of geometry g using any plane p. Parts g>

and g⊥ can always be assembled by sliding them together in the direction of the surface normal

15

of plane p.

Lemma 4. There always exists an ordering on connecting the pieces of a model partitioned using
a BSP such that none of the connectors prevent the pieces from being assembled further.

Proof. By lemma 2 we have that all trees of finite depth should have at least one node with two
leaves as children. For the case of a BSP such a node corresponds to a partition-plane and two
geometry-parts. From observation 3 we know that such a partitioning can always be assembled.
Connecting these pieces results in a single geometry and can be considered as a single model-part,
or a new leaf in the BSP tree.

As this operation decreases the total number of nodes in the BSP tree and for non-empty
trees it is always possible to perform this operation we can repeat this operation until we are left
with an empty tree. Such a tree corresponds to a fully assembled model.

The number of partition-pieces cannot exceed n, the number of available printers. As it turns
out, for an optimal parallel print time partition, the partitioning will always consist of exactly n
pieces. This follows from the print time analysis; let g be an arbitrary model and let the print
time be defined as

PrintTime(g) = α · Area(g) + β · Volume(g)

α, and β are some positive constants that follow from the print-time analysis. Let g> and
g⊥ be the resulting parts for any plane p partitioning g.

Lemma 5. The print time of PrintTime(g>) and PrintTime(g⊥) must be less than the print
time of PrintTime(g).

Proof. Let us first consider part g>. The volume of g> is strictly smaller than g as g> is a strict
subset of g. The surface area that is removed by the partitioning was non-flat. As the cut that
replaces this surface is now flat, the overall area is now decreased.

PrintTime(g) = α · Area(g) + β · Volume(g)
> α · Area(g>) + β · Volume(g>)
= PrintTime(g>)

(17)

The same argument can be made that the print time PrintTime(g⊥) must be less than
PrintTime(g).

It is thus beneficial for a parallel print time partitioning to always partition in n pieces. If
the partitioning consists of < n pieces the part with the longest print time in the partitioning
can be split for a better solution.

3.3.1 Candidate Planes

To find the partition plane p at each recursion step of the algorithm a number of candidate
partition-planes are evaluated. These candidate partition-planes need a surface normal orien-
tation. For an effective search method these normals need to be uniformly distributed, as the
best partition-plane can be oriented in any direction. Additionally the density of these normals
should be balanced. By having too few candidate partition planes we might overlook good cuts
while having too many impairs the run time of the algorithm.

16

The vectors used as surface normals for the planes are generated using a subdivided octahedron.
The octahedron is an eight-sided shape, and is defined using six vertices (see fig. 7). Each face
of the octahedron is a triangular polygon. The six vertices of the octahedron are located at
unit length directed in both the positive and negative directions for each of the orthogonal axis
directions.

Figure 7: The octahedron shape.

To generate the normals each triangle is subdivided h times. The faces after h = 0, 1, 2 sub-
divisions are shown in fig. 8. Before these vertices are used as normal vector they are normalized
to unit length. The vertices of a trice subdivided octahedron are normally used when generating
normals throughout the algorithm.

(a) h = 0 (b) h = 1 (c) h = 2

Figure 8: A h = 0, 1, 2 subdivided face.

The number of vertices in a subdivided triangle are
∑h+2

i=1 i = (h+3)·(h+2)
2 . As there are 8 faces

in an octahedron there are O(h2) number of vectors generated as a result from an h-subdivided
octahedron.

For each normal direction −→n a set of parallel planes P is constructed. These parallel planes
are spaced τ millimetres apart, and span the complete depth of geometry g in the direction of
the normal. The set of plane-locations is defined as{

r ∈ τZ | min
v∈t∈g

{v ·−→n } ≤ r ≤ max
v∈t∈g

{v ·−→n }
}

(18)

For each scalar r a HyperPlane3 is constructed by multiplying r by the plane normal −→n .

3.3.2 Basic Partition Search

To find a partitioning a greedy search method is proposed. Input to this method is a geometry g
and the number of partition parts n. For this geometry g the plane p from a collection candidate

17

partition-planes P is found such that the maximum print time per-part according to the heuristic
of the partition parts g> and g⊥ is minimized, if g> were to be partitioned in n> =

⌈
n
2

⌉
parts

and g⊥ were to be partitioned in n⊥ =
⌊
n
2

⌋
parts. The print time per part is calculated by

dividing the total print time of model g by the number of partition-parts. This estimate will
later be improved in section 3.3.2. During the evaluation of all planes the following invariant is
maintained: variable pbest contains the best plane of all processed candidate planes. The method
is recursively executed on the resulting g> and g⊥ geometries with n> and n⊥ number of parts
respectively. This is repeated until n = 1 in each branch of the algorithm. Pseudo code for this
algorithm is given in Algorithm 3.

Algorithm 3: Partition Search

Input : Geometry g, the number of available printers n, number of octahedron
subdivisions h and parallel planes separation τ in mm

Output: A BSP-tree partitioning geometry g
1 Function PartitionSearch(g, n) is
2 if n = 1 then
3 return BSP-leaf
4 else
5 n> ←

⌈
n
2

⌉
6 n⊥ ←

⌊
n
2

⌋
7 tbest ← ∞
8 Initialize pbest to a HyperPlane3

9 foreach −→n ∈ GenNormals(h) do
10 Let P be the set of parallel planes with surface normal −→n spaced τ mm such

that the planes from P span the complete depth of geometry g

11 V >, V ⊥ ← Volumes(P , g)

12 A>, A⊥ ← Areas(P , g)
13 for i = 1 to k do

14 t> ← PrintTime
harpeΩ(v>i , a>i , 0)

n>

15 t⊥ ← PrintTime
harpeΩ(v⊥i , a⊥i , 0)

n⊥

16 tparallel ← max(t>, t⊥)
17 if tparallel < tbest then
18 tbest ← tparallel

19 pbest ← pi
20 end

21 end

22 end

23 g>, g⊥ ← Partition(g, pbest)

24 BSP> ← PartitionSearch(g>, n>)

25 BSP⊥ ← PartitionSearch(g⊥, n⊥)

26 return BSP-node constructed from p with left child BSP> and right child

BSP⊥

27 end

28 end

18

3.3.3 Average Cross-section Area Heuristic

Throughout the algorithm an estimate on the print time per part is frequently calculated. This is
not as simple as dividing the total print time by the number of parts as each cut increases the total
surface area, and consequently the total print time of whole model is increased. By estimating
the increase in surface area of all cuts the print times can be more accurately predicted. This is
done by looking at the average cross-section area.

If a model is partitioned, the amount of volume in this part turns out to be a great indication
on the average cross-section;

AverageCrossSectionArea(gpart)
AverageCrossSectionArea(g) ≈

Volume(gpart)
Volume(g) . This is tested empirically

on a large data set of models. This set of geometries is the same set used for the results, details
of which can be read in section 4. The geometries include some models where one axis is many
times larger than the other two axes. The relation between volume and average cross-section
area of partitioned geometries is shown in fig. 9. For the heuristic this relation is assumed to be
linear.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

part volume / total volume

pa
rt

 a
vg

 c
ro

ss
 s

ec
tio

na
l a

re
a

/ t
ot

al
 a

vg
 c

ro
ss

 s
ec

tio
na

l a
re

a

Figure 9: Cross-section area heuristic.

Using the relation between the cross-section and the volume we can estimate the increase in
surface resulting from the cuts in a BSP. The area of each cut is assumed to be this average
cross-section area. After partitioning each part is then assumed to be half the volume of the
original geometry. The average cross-section of these parts is half of the original average cross-
section. For each successive layer deeper in the BSP tree the average cross-section area halves.
This is illustrated in fig. 10.

19

Figure 10: Cross-section area heuristic.

The average sum of the total increase by n cuts is equal to log2(n)·AverageCrossSectionArea(g).
Section 3.2.4 shows that the print time can be calculated as a function of volume and area. The
calculated average increase in surface area can simply be added to the area of g. A more accurate
estimate on the parallel print time of a n partitioned model can be calculated using eq. (19).

PrintTimeharpeΩ(Volumes(g), Area(g) + log2(n) · AverageCrossSectionArea(g))

n
(19)

The print time calculated by the heuristic will generally be higher than the final result of the
algorithm. In this heuristic the area of each cut is assumed to be equal to the average cross-
section area. As we aim to find the partition that minimizes the maximum print time of any
partition part, cuts with a lower cross-section area will be favoured in the algorithm.

The average cross-section area is approximated by sampling the cross-section area geometry
using different planes. For a number of normals a collection of parallel planes is created that
intersect the geometry. For each of these planes the cross-section area is calculated. The result
of the function is the average of all cross-sections. This method is shown in Algorithm 4.

Algorithm 4: Find average cross-section area

Input : Geometry g, number of octahedron subdivisions h and parallel planes
separation τ in mm

Output: Average cross-section area in mm2

1 Function AverageCrossSectionArea(g) is
2 aca, c ← 0
3 foreach −→n ∈ GenNormals(h) do
4 Let P be the set of parallel planes with surface normal −→n spaced τ mm such that

the planes from P span the complete depth of geometry g in the normal
direction.

5 foreach area ∈ CrossSectionalAreas(P , g) do
6 aca += area
7 c += 1

8 end

9 end
10 return aca

c

11 end

20

Using this heuristic the Partition Search method is improved. Pseudo code for this
improved method is given in Algorithm 5.

Algorithm 5: Partition Search with average cross-section area heuristic

Input : Geometry g, the number of available printers n, number of octahedron
subdivisions h and parallel planes separation τ in mm

Output: A BSP-tree partitioning geometry g
1 Function PartitionSearchaca(g, n) is
2 if n = 1 then
3 return BSP-leaf
4 else
5 n> ←

⌈
n
2

⌉
6 n⊥ ←

⌊
n
2

⌋
7 aca ← AverageCrossSectionArea(g)
8 tbest ← ∞
9 Initialize pbest to a HyperPlane3

10 foreach −→n ∈ GenNormals(h) do
11 Let P be the set of parallel planes with surface normal −→n spaced at τ mm’s

apart such that the planes from P span the complete depth of geometry g

12 V >, V ⊥ ← Volumes(P , g)

13 A>, A⊥ ← Areas(P , g)
14 for i = 1 to k do

15 aca> ← aca · v>i
v>i +v⊥i

16 aca⊥ ← aca · v⊥i
v>i +v⊥i

17 t> ← PrintTime
harpeΩ(v>i , a>i + log2(n>) · aca>, 0)

n>

18 t⊥ ← PrintTime
harpeΩ(v⊥i , a⊥i + log2(n⊥) · aca⊥, 0)

n⊥

19 tparallel ← max(t>, t⊥)
20 if tparallel < tbest then
21 tbest ← tparallel

22 pbest ← pi
23 end

24 end

25 end

26 g>, g⊥ ← Partition(g, pbest)

27 BSP> ← PartitionSearchaca(g
>, n>)

28 BSP⊥ ← PartitionSearchaca(g
⊥, n⊥)

29 return BSP-node constructed from pbest, with left child BSP> and right child

BSP⊥

30 end

31 end

3.3.4 Support

The previous sections did not consider the impact of the support structure on the print time.
This section improves the previous two methods by taking into account the print time spent on
this feature.

21

Each partition-plane can serve as a print base. As the print bed of a 3D printer is flat, the
part of the model that is printed first and adhered to the bed benefits from being flat. A partition
plane proves to be a great print base as the cut results in a flat surface on the partition-part. A
partition-part can be printed using any plane at the tree-node from the partition-part’s tree-leaf
to the BSP-tree’s root.

A HyperPlane3 is used as a definition for a print base. This plane is located such that the
complete geometry g is located at the positive side of the plane. As mentioned in section 3.2 the
support volume is the sum of irregular triangular prism volumes of all triangles oriented towards
the print base.

Each plane p of the candidate cuts P may be used as a print base. If geometry g were to be
partitioned by a candidate partition plane p then p may serve as the print base for geometry g>

while −p may serve as the print base for geometry g⊥. When evaluating the candidate partition
planes P the support volumes for the g> and g⊥ geometries are calculated for each plane p ∈ P
(fig. 11). As we will later see in section 3.4 these support volumes can be efficiently calculated
when batched.

This function, SupportVolumesgeometry(P , g), takes two arguments: a set of parallel planes

P and a geometry g. Each plane pi in P partitions g in geometry-parts g>i , g⊥i . The support
volumes geometry operation returns the support volumes for the g>i and g⊥i geometries. The
print base used when calculating the support volume is pi for geometry g>i , and −pi for geometry
g⊥i .

(a) p1 (b) p2 (c) p3

Figure 11: Support structure for g> (red) and g⊥ (blue) when partitioning geometry g using
plane p1 (fig. 11a), p2 (fig. 11b) and p3 (fig. 11c).

In addition to the print base generated from the candidate partition planes all planes created
from previous cut may serve as a print base. The print direction for these print bases are generally
oriented differently from the candidate partition planes.

When a candidate partition plane is evaluated it may choose the support structure of one
of the print bases created earlier in the algorithm. The partition plane will in addition to the
geometry also partition the support structure (fig. 12a). Unless partition plane p is orthogonal
to the print base, p will expose a surface at either part where additional support is needed.
This additional support is located at the cross-section between partition plane p and geometry
g (fig. 12b).

22

Shape

Support for

Support for

Partition Plane

Print Base

(a) Support for geometry g> (red) and g⊥

(blue) after partitioning.

Shape

Original Support

Cross Section
Support

Partition Plane

Print Base

(b) Increase in support at the cross-
section (dark blue) of geometry g>.

Figure 12: Partitioning of the support structure.

The Partition Search method with support (Algorithm 6) is similar to Algorithm 5, but
with some additions. The function takes one additional argument; the set of print-bases P bases.
This argument is initially empty and will in later steps contain a set of candidate print bases.
Each time a geometry g is partitioned the partition plane p used to cut g also serves as candidate
partition plane. For partition parts g> and g⊥ print bases p and −p are added respectively.

For each of the candidate cuts p ∈ P the support volume is calculated if the plane p were to
be used as print base (line 15). Then for each of the provided print bases (line 16) the support is
partitioned by the candidate planes P (line 17). If the support volume when using one of these
partition planes improves the current support volume, the current support volume is updated
(line 19, line 20). This minimal support volume of all print bases is used when calculating the
print time (line 26, line 27).

23

Algorithm 6: Partition Search with support

Input : Geometry g, the number of available printers n, a set of candidate print bases,
number of octahedron subdivisions h and parallel planes separation τ in mm

Output: A BSP-tree where the print direction of each part is stored in the leaves
1 Function PartitionSearchsupport(g, n, P base = ∅) is
2 if n = 1 then
3 Let pbest be the print base from P base that minimizes the print time
4 return BSP-leaf containing pbest

5 else
6 n> ←

⌈
n
2

⌉
7 n⊥ ←

⌊
n
2

⌋
8 aca ← AverageCrossSectionArea(g)
9 tbest ← ∞

10 Initialize pbest to a HyperPlane3

11 foreach −→n ∈ GenNormals(h) do
12 Let P be the set of parallel planes with surface normal −→n spaced at τ mm’s

apart such that the planes from P span the complete depth of geometry g

13 V >, V ⊥ ← Volumes(P , g)

14 A>, A⊥ ← Areas(P , g)

15 supportVolumes>, supportVolumes⊥ ← SupportVolumesgeometry(P , g)

16 foreach pbase ∈ P base do
17 supportVolumesSupport ← SupportVolumessupport(P , pbase)

18 for i = 1 to k do

19 supportVolumes>i ← min(supportVolumes>i , supportVolumesSupport>i)

20 supportVolumes⊥i ← min(supportVolumes⊥i , supportVolumesSupport⊥i)

21 end

22 end
23 for i = 1 to k do

24 aca> ← aca · v>i
v>i +v⊥i

25 aca⊥ ← aca · v⊥i
v>i +v⊥i

26 t> ← PrintTime
harpeΩ(v>i , a>i + log2(n>) · aca>, supportVolumes>i)

n>

27 t⊥ ← PrintTime
harpeΩ(v⊥i , a⊥i + log2(n⊥) · aca⊥, supportVolumes⊥i)

n⊥

28 tparallel ← max(t>, t⊥)
29 if tparallel < tbest then
30 tbest ← tparallel

31 pbest ← pi
32 end

33 end

34 end

35 g>, g⊥ ← Partition(g, pbest)

36 BSP> ← PartitionSearchsupport(g
>, n>, printBases ∪ {pbest})

37 BSP⊥ ← PartitionSearchsupport(g
⊥, n⊥, printBases ∪ {−pbest})

38 return BSP-node constructed from pbest, with left child BSP> and right child

BSP⊥

39 end

40 end

24

3.4 Batched Calculations

During the Partition Search method certain properties are calculated on a number of can-
didate cuts. The number of candidate cuts influence the quality of the partitioning; a higher
number of candidate cuts leads to a better result as more options are evaluated. As these candi-
date partition-planes are parallel it is possible to group a batch of planes to efficiently calculate
these properties.

The candidate cuts P consist of k parallel planes; P = p1, p2, . . . , pk. The distance between
each plane in τ mm. Each plane pi serves as a candidate partition plane that, if chosen, would
partition the geometry into parts g>i and g⊥i . Before picking a partition plane the best one is
chosen based on certain properties such as each geometry-parts’ volume, area etc. The batched
calculations allow to calculate these features of each geometry-part g>i and g⊥i without partition-
ing.

The operations for which the batched performance can be improved are the cross-sectional
areas (section 3.4.1), surface areas (section 3.4.2), volumes (section 3.4.3), support volumes’ ge-
ometry (section 3.4.4) support volumes’ support (section 3.4.5) calculations. The cross-sectional,
and surface area calculations are arguably trivial, they do however serve as nice introduction for
the volume calculations.

When naively implementing these operations, by having an outer loop through all parallel
planes and an inner loop that calculates for each plane the intersection with each triangle of the
input geometry, the time complexity accumulates to O(mk). Here m is the number of triangles in
geometry g and k is the number of parallel planes. The main idea behind the batching operations
is reversing the natural order of these two loops. Reversing the order of the loops allows to more
efficiently determine what planes have intersections with what triangles, eliminating a lot of
intersection checks. The complexity when batching these operations reduces the complexity
from O(mk) to O(m+ k+ c) where c is the number of plane-triangle intersections. The number
of intersections is bounded by mk intersections, but for most practical models c is a lot lower2.

Section 3.2.4 shows that the print time of a model-part can be estimated as a function of the
model’s volume and area. Calculating the print time becomes very efficient as a result from the
batched operations as both the volume and surface area can be calculated.

3.4.1 Cross-sectional Area

The function CrossSectionalAreas calculates the area of the cross-section between geometry g
and each plane pi in a set of parallel planes P .

Naive Approach Calculating the cross-sectional area between a single plane v and geometry g
is fairly straight forward. First for each triangle t ∈ g that is intersecting g the planar intersection
is calculated. This is the intersection in the plane’s two-dimensional planar space. The result of
this intersection is a two-dimensional line segment. Sequencing all these line segments results in
a polygon S.

The cross-sectional area can then be calculated by using the Sum of Signed Areas[2]. Let S
be a polygon containing l points in clockwise order. For each two successive points u and v there
is a line segment s. The signed area for a line segment is a parallelogram. Endpoints u and v
are connected points directly below u and v at y = 0 (fig. 13). The area for this line-segment is

2When the parallel planes’ separation τ is bigger than the largest diagonal distance of a triangle t, each triangle
can at most intersect a single plane, making c ≤ m resulting in a time complexity of O(m + k) for the relevant
operations.

25

described in eq. (20). Note that the area is positive if the line segment is directed from left to
right and negative if the segment is directed from right to left.

SignedArea(s) = (s.vx − s.ux)
s.uy + s.vy

2
(20)

The total area of polygon S is the sum of these signed areas.

Area(S) =
∑
s∈S

SignedArea(s) (21)

An intuition as to why this produces the correct area is illustrated in fig. 14. Each line
segment going from left to right casts a positive area shown in blue in fig. 14. These areas cover
a super set of the area of polygon S. Exactly those areas that are in this super set but not in
the original polygons are covered by the negative areas cast by the segments going from right to
left shown in red in fig. 14.

Figure 13: Area for a line segment.

positive area

negative area

Figure 14: Polygon shown in grey, with for each
line segment the signed area highlighted.

For Partition Search we are interested in the cross-sectional area for a set of parallel
planes P . When naively implementing this variant by repeating the algorithm described above
for all k planes, the time complexity results in O(mk). This time complexity can be improved
by batching the planes.

Batched Approach For each triangle t in g the lower most and upper most plane that is
intersecting t is found. This can be done in constant time as the planes are sorted and spaced at
equal distances. As these planes are defined in the algorithm we have control over the spacing
and ordering of the planes.

For each of the intersecting planes the signed areas are calculated similarly to the single plane
cross-sectional area calculation. As addition is commutative, re-ordering the summation does
not change its outcome. It is thus not required to traverse the line segments in order, but any
ordering is possible. Pseudo code for this algorithm is given in Algorithm 7.

26

Algorithm 7: Batched cross-sectional areas

Input : Geometry g consisting of m triangles t1, t2, . . . , tm, k parallel planes
P = p1, p2, . . . , pk

Output: List areas A = a1, a2, . . . , ak where each area ai is the cross-section area
between plane pi and geometry g

1 Function CrossSectionalAreas(g, P) is
2 Initialize A to ai ← 0 for all i = 1, 2, . . . , k
3 foreach t ∈ g do
4 Let l and u correspond to the lower and upper most plane index that is

intersecting t
5 for i = l to u do
6 s ← PlanarIntersect(t, pi)
7 ai += SignedArea(s)

8 end

9 end
10 return A

11 end

3.4.2 Surface Areas

Another operation used frequently during Partition Search is to find the areas of all geometries
g>i and g⊥i when partitioning g using candidate partition planes P = p1, p2, . . . , pk.

This is done by using bins; spaces between planes (see fig. 15). The batched algorithm
involves calculating the surface area within each bin. As there are k planes there are k+ 1 bins.
For each triangle t ∈ g the contribution of t for each bin b is calculated and added to b. Once
the surface area within bins bj , j = 1, 2, . . . , k + 1 is known, the surface area of g>i (if g were to

be partitioned by plane pi) is equal to the accumulation of bins from i+ 1 to k;
∑k+1

j=i+1 bj . The

surface area of g⊥i is equal to
∑i

j=1 bj . In Algorithm 8 pseudo code for calculating the surface
area is shown.

Figure 15: Showing bins for k = 2 planes intersecting geometry g.

27

Algorithm 8: Batched Surface Areas

Input : Geometry g consisting of m triangles t1, t2, . . . , tm, k parallel planes
P = p1, p2, . . . , pk

Output: List of surface areas for geometry parts g>i and g⊥i if geometry g were to be
partitioned by all planes pi

1 Function Areas(g, P) is
2 Initialize B where bi ← 0 for all i = 1, 2, . . . , k + 1
3 foreach t ∈ g do
4 Let l and u be the bin indices corresponding to the lower and upper most vertices

of t
5 for i = l to u do
6 Let a be the area of t between planes pi−1 and pi
7 bi += a

8 end

9 end

10 Let A> be the accumulation a>i ←
∑k+1

j=i+1 bj for all i = 1, 2, . . . , k

11 Let A⊥ be the accumulation a⊥i ←
∑i

j=1 bj for all i = 1, 2, . . . , k

12 return A>, A⊥

13 end

When g is not just a surface mesh but a solid mesh, the cross-sectional area of the plane cut
contributes to the total surface area. For these kinds of geometries the cross-sectional areas of
each plane need to be added to the top and bottom surface areas of each cut. This is demonstrated
in Algorithm 9.

Algorithm 9: Batched surface areas for solid geometries

Input : Geometry g consisting of m triangles t1, t2, . . . , tm, k parallel planes
P = p1, p2, . . . , pk

Output: List of surface areas for geometry parts g>i and g⊥i if geometry g were to be
partitioned by all planes pi

1 Function AreasSolid(g, P) is
2 A>, A⊥ ← Areas(g, P)
3 Across-section ← CrossSectionalAreas(g, P)
4 for i = 1 to k do
5 a>i += across-section

i

6 a⊥i += across-section
i

7 end

8 return A>, A⊥

9 end

3.4.3 Volume

Another operation that can be improved by batching is the volume operation. Here the volumes
for g>i and g⊥i are calculated for each plane pi.

Sum of Signed Volumes The formula for calculating the area can be generalized to work in
higher dimensions[2]. For three-dimensional geometries consisting of triangles the volume can
be calculated using the sum of signed volumes of each triangle t. This is done by connecting

28

each vertex v of triangle t to location z = 0 directly below v. The shape that this creates is an
irregular triangular prism (fig. 16).

Figure 16: Triangle t with accompanied irregular prism.

To calculate the volume of such an irregular prism we need to know the distance between each
triangle-vertex and the base. For reasons that will become apparent later this base is angled,
this angle is the normal of the parallel planes. The distances of these vertices are calculated
using the formula

d(v) = Normal(P) · v (22)

where Normal(P) is the normal of the parallel planes and v is one of the vertices of triangle t.
By multiplying the area of t by the projection of the plane-normal Normal(P) on the triangle-
normal Normal(t) we get the signed projected area of t on a plane. This is signed because the
area becomes negative when the two normals point in opposite direction. The volume of this
irregular triangular prism is

SignedVolume(t) =
Area(t) · Normal(t) · Normal(P) · (d(ta) + d(tb) + d(tc))

3
(23)

The total volume of g is calculated as the sum

Volume(g) =
∑
t∈g

SignedVolume(t) (24)

Bin Volumes Similar to before the space is split into k+1 bins. The approach works similarly
as the previous approach by evaluating each triangle t from geometry g. For each bin space
triangle t intersects, the signed volume contained within this bin is calculated. This volume is
added to the relevant bin.

Calculating the volumes like this produces the incorrect results as only the volume for part of
the model is calculated; only the sum of signed volumes of all triangles of a manifold geometry
results in the correct volume of the geometry. The intersection between all surface faces and a
bin space does not result in a manifold mesh.

29

In fig. 17a a geometry g is partitioned using plane p into a top g> geometry and a bottom
g⊥ geometry. As all triangles in g> point in the same direction as the plane normal the signed
volume for g> can be visualised as the shape shown in fig. 17b. Similarly the volume for g⊥ is
incorrect. As all normals from g⊥ point in opposite direction of the plane normal, the signed
volume of g⊥ is negative and can be visualized as shown in fig. 17c.

(a) Sphere geometry g partitioned
into a top g> and a bottom g⊥ part

(b) Positive volume
of geometry g>

(c) Negative volume
of geometry g⊥

Figure 17: Signed volumes when partitioning a sphere geometry.

For both geometries g>, and g⊥ the signed volume is incorrect as the geometry of the cross-
section is missing. For correct volume calculations the signed volume of these missing cross-
sections needs to be added. By making the base the same normal as the parallel plane this
volume can easily calculated using the cross-section area calculations discussed previously in
section 3.4.1. The volume of the missing cross-section is equal to the cross-section area of
partition plane p and geometry g multiplied by the distance of p from the base. As the normal
of the cross-section of g> is pointing in opposite direction of the plane the signed volume for g>

is negative, and as the normal of the cross-section of g⊥ is pointing in the same direction of the
normal of the plane the signed volume for g⊥ is positive.

Pseudo code for calculating the volumes is shown in Algorithm 10.

30

Algorithm 10: Batched Volumes

Input : Geometry g consisting of m triangles t1, t2, . . . , tm and k parallel planes
P = p1, p2, . . . , pk spaced τ millimetres apart

Output: List of volumes for geometry parts g>i and g⊥i if geometry g were to be
partitioned by all planes pi

1 Function Volumes(g, P) is
2 Initialize B to bi ← 0 for all i = 1, 2, . . . , k + 1
3 foreach t ∈ g do
4 Let l, u be the bin indices corresponding to the lower and upper most vertices of t
5 for i = l to u do
6 Let v be the signed volume of the part of t between planes pi−1 and pi
7 bi += v

8 end

9 end

10 Let V > be the accumulation v>i ←
∑k+1

j=i+1 bj for all i = 1, 2, . . . , k

11 Let V ⊥ be the accumulation v⊥i ←
∑i

j=1 bj for all i = 1, 2, . . . , k

12 Across-section ← CrossSectionalAreas(g, S)
13 for i = 1 to k do
14 v>i −= d(pi) · across-section

i

15 v⊥i += d(pi) · across-section
i

16 end

17 return V >, V ⊥

18 end

3.4.4 Support Volumes’ Geometry

The support volumes’ geometry operation calculates the support volumes when partitioning a
geometry for each plane out of a set of parallel planes P . The support volume for part g>i uses
plane pi for the print base and part g⊥i uses plane −pi for the print base.

During the operation each triangle t ∈ g is assigned a print base. Only if a triangle is oriented
such that Normal(t) is in opposite direction to Normal(P) then support is needed when using
Normal(P) as print direction. Alternatively when using print direction −Normal(P) then all
triangles oriented such that Normal(t) is the same direction as Normal(P) need support.

When the support volume is calculated all triangles t ∈ g are traversed. For each triangle t
the print direction for which support is needed is determined. First the case where the support
is needed in the print direction is considered. Then the support volumes that are within bins
that intersect t are calculated (fig. 18).

31

Figure 18: Support volume needed for a single triangle t, partitioned using parallel planes P .

The support volume would be correctly calculated when calculating the support for t when
continuing until plane p1. However, this would be too costly. Instead the projected area of t on
P is calculated and added to a cumulative area bin. This is shown in fig. 19. Figure 19a shows
a set of triangles needing support. Interspersed with these triangles is a set of parallel planes
P placing each triangle in a bin. Figures 19b, 19c, 19d and 19e depict the cumulative support
area for planes p4, p3, p2 and p1 respectively. As the support is generated from a triangle all the
way down to the print base, the accumulated support is calculated by traversing from the upper
most bin down to the lower most bin. Let ai be the addition to this cumulative support area
for plane pi, then the cumulative support volume for plane pi can be calculated as ci =

∑k
j=i aj .

The area of support within a bin bi is the cumulative support area for the plane directly above
bi multiplied by the separation of the planes τ ; bi = cj · τ .

(a) Set of triangles needing support.

(b) p4 (c) p3

(d) p2 (e) p1

Figure 19: Cumulative support area for a set of triangles T for a selection of parallel planes P .

32

In Algorithm 11 pseudo code for calculating the support volumes for a geometry is given.

Algorithm 11: Batched Support Volume Geometry

Input : Geometry g consisting of m triangles t1, t2, . . . , tm and k parallel planes
P = p1, p2, . . . , pk spaced τ millimetres apart

Output: List of top and bottom support volumes for models g> and g⊥ for each plane
pi if plane pi were to be used as print base

1 Function SupportVolumesgeometry(g, P) is

2 Initialize B> and B⊥ to b>i , b⊥i ← 0 for all i = 1, 2, . . . , k + 1

3 Initialize A> and A⊥ to a>i , a⊥i ← 0 for all i = 1, 2, . . . , k
4 foreach t ∈ g do
5 Let l, u be the bin indices corresponding to the lower and upper most vertices of t
6 for i = l to u do
7 Let v be the support volume needed for triangle-part of t that is between

planes pi−1 and pi
8 Increase either b>i or b⊥i by v depending for what direction support for t is

required

9 end
10 Let s be the projected area of t on P

11 Increase either a>i or a⊥i by s depending for what direction support for t is
required

12 end

13 Initialize V > to v>i ← 0 for all i = 1, 2, . . . , k

14 v>k ← bk+1

15 cumulativeArea ← ak
16 for i = k − 1 to 0 do
17 v>i ← v>i+1 + bi+1 + cumulativeArea · τ
18 cumulativeArea += a>i
19 end

20 Initialize V ⊥ to v⊥i ← 0 for all i = 1, 2, . . . , k

21 v⊥1 ← b1
22 cumulativeArea ← a1

23 for i = 2 to k do
24 v⊥i ← v⊥i−1 + bi + cumulativeArea · τ
25 cumulativeArea += a⊥i
26 end

27 return V >, V ⊥

28 end

3.4.5 Support Volumes’ Support

When a geometry part is partitioned using a plane p the geometry part can still be printed using
previously created support structures. However, when partitioning a geometry into g⊥ and g>

then g⊥ does not need the support required for g> and g> does not need the support required for
g⊥. The support structure itself needs to be partitioned as well. The support volumes’ support
operation calculates the support volumes when partitioning a support structure for each plane
out of a set of parallel planes P .

33

Algorithm 12: Batched Support Volume Support

Input : Geometry g consisting of m triangles t1, t2, . . . , tm, the print base pbase and k
parallel planes P = p1, p2, . . . , pk

Output: List of support volumes when using plane pi as a print base for geometry parts
g>i and g⊥i if geometry g were to be partitioned by all planes pi

1 Function SupportVolumessupport(g, pbase, P) is

2 Initialize B to bi ← 0 for all i = 1, 2, . . . , k + 1
3 foreach t ∈ g do
4 if triangle t requires support when using pbase then
5 Let l, u be the bin indices corresponding to the lower and upper most vertices

of t
6 for i = l to u do
7 Let v be the volume corresponding the support volume of the polygon

between planes pi−1 and pi
8 bi += v

9 end

10 end

11 Let V > be the accumulation v>i ←
∑k+1

j=i+1 bj for all i = 1, 2, . . . , k

12 Let V ⊥ be the accumulation v⊥i ←
∑i

j=1 bj for all i = 1, 2, . . . , k

13 return V >, V ⊥

14 end

3.5 Local Search Procedure

After an initial BSP has been found by the Partition Search method the BSP is refined
using a local search procedure. During the search method the partition-planes are immutable;
once a cut has been made the cut does not change. Once the complete BSP is constructed it
might become apparent that earlier cuts are suboptimal. The Local Search procedure works by
iteratively moving each plane in the BSP in the direction of largest average print time. Each
iteration results in an improved parallel print time.

Let us first consider the case where a geometry is partitioned using a single plane p. If the
resulting geometries differ in print time then a better solution can be found by moving p towards
the geometry-part with longer print time. It is easy to see that for the simple case where a
geometry is split using a single plane the optimal parallel print time partitions the geometry in
two parts with equal print time.

During each iteration the BSP-tree is recursively traversed. The result of each recursion step
is the adjusted BSP, the total print time t of all partition-parts and the number of parts g. If a
tree-leaf is encountered during the traversal this is easy; the sub-tree contains a single partition
part, and the total print time is the print time of said partition part. If alternatively a tree-node
is encountered, first the total print time (t>, t⊥) and number of parts (n>, n⊥) is calculated
using the recursive method. Then the average time difference per part between the left and right

sub-tree δt is defined as t>

n>
− t⊥

n⊥
. Plane p′ is constructed from p by moving p in the direction

of p’s normal vector by α · δt. As δt is measured in seconds and the position of p is measured in
millimetres, δt is multiplied by a weight α to account for the difference in both domains. The
method for adjusting a BSP is shown in alg. 13.

34

Algorithm 13: Adjust BSP

Input : A BSP partitioning geometry g and a weight α
Output: Updated BSP, total print time t and the number of parts n

1 Function AdjustBSP(BSP, g) is
2 if IsLeaf(BSP) then
3 t ← PrintTime(g)
4 n ← 1
5 return BSP, t, n

6 else if IsNode(BSP) then

7 Let p be the hyper plane at the BSP-node and let BSP> be its left child and

BSP⊥ its right child

8 Let g> and g⊥ be the resulting geometries from g partitioned by p

9 BSP>, t>, n> ← AdjustBSP(BSP>, g>)

10 BSP⊥, t⊥, n⊥ ← AdjustBSP(BSP⊥, g⊥)

11 δt ← t>

n>
− t⊥

n⊥

12 p′ ← p
13 p′.d += α · δt
14 BSP′ ← tree-node from p′ with left child BSP> and right child BSP⊥

15 return BSP′, t> + t⊥, n> + n⊥

16 end

17 end

The adjustment procedure described above is repeated x times, or until the new BSP ceases
to improve the old BSP. A typical value for x is 20. Pseudo code for the Local Search procedure
is given in Algorithm 14.

Algorithm 14: Local Search

Input : An initial BSP partitioning geometry g and the number of iterations x
Output: Updated BSP

1 Function LocalSearch(BSP, g, x) is
2 repeat x times
3 BSP′ ← AdjustBSP(BSP, g)
4 if max

g′∈BSP′
{PrintTimeharpe(g′)} > max

g′′∈BSP
{PrintTimeharpe(g′′)} then

5 return BSP
6 end
7 BSP ← BSP′

8 end
9 return BSP

10 end

Each iteration yields diminishing results in the parallel print time. This is depicted in fig. 20
for the armadillo model partitioned into n = 6 parts. With a higher number of iterations the print
times of all parts reach an equilibrium where time spent printing each model is approximately
equal. Figure 21 depicts the partitioning for the same model after x = 0, 1, 2 iterations. In
section 4.4 we will experimentally show the parallel print time improvement of the local search
procedure applied to Partition Search partitioned models.

35

1000

1250

1500

1750

0 2 4 6 8 10
Iteration

P
rin

t t
im

e
(s

)

Part 1

Part 2

Part 3

Part 4

Part 5

Part 6

Figure 20: The print time of each of the six model-parts of the armadillo model after local search
optimizations of x = 0, . . . , 10 iterations.

(a) x = 0 (b) x = 1 (c) x = 3

Figure 21: Visualisation of BSP partitions of the armadillo model after local search optimizations
of x = 0, 1, 3 iterations.

3.6 Connectors

On the cross-section between cuts, connectors are added for an easier assembly process. These
connectors are added in the following steps. First a set of candidate connector-locations is found
on the cross-sections. These candidate connector locations are located on the surface of each
plane in the BSP-tree (fig. 22a). Any connector that is too close to the boundary is removed
(fig. 22b). From this set of candidate connector locations the definitive connector locations are
found and a connector is added to the geometry part (fig. 22c). In order to preserve a flat print
base two female connectors are added to each side of the cross-section. The parts can then be
assembled using a pre-manufactured connector-piece.

36

(a) All candidate connector loca-
tions.

(b) Removed boundary threshold
exceeding connector locations.

(c) Definitive connector locations.

Figure 22: Steps for finding the connector locations on the partition-planes for the armadillo
model (green) with partition-planes (blue) and (candidate) connector locations (red).

Let V be the set of candidate connector locations on the partition-planes. The points v ∈ V
that are too close to the boundary, either the to the geometry itself or to one of the partition-
planes, are removed. The library we used for our representation of geometries provides methods
for such point-distance operations. After some investigation this method is implemented using
a quad-tree acceleration structure. This quad-tree is traversed by exploring the nodes closest to
the target location first. During this traversal the closest face found thus far is stored. When
exploring a quad-tree node, if the closest point of the node is located further from the target
location compared to the closest face found thus far, then there is no need to explore the node.

The region of a leaf in a BSP-tree can be expressed as the intersection of half-spaces of all
nodes in the path from the leaf to the root of the tree. As such we don’t want to remove the
points that are in range of the infinite plane p, but instead we only want to remove the points
that are in range of p within the region of the BSP leaf. For each BSP-node, the geometry of its
partition-plane is created in each BSP-node’s planar space and then transformed to a geometry.
The half-spaces of all parents for a partition-plane p are intersected with p. The intersecting line
is transformed to the planar space of p, resulting in a set of half-planes (fig. 23b). The intersection
of these half-planes results in a convex polygon (fig. 23c) that is converted to a geometry, and
used for the boundary queries.

The intersection of these half-spaces is calculated using the approach described in [3]. In
the approach the set of half-planes is split into two parts, and for each part the intersection is
recursively calculated. These two convex polygons are intersected to form the resulting polygon.

(a) A binary space partition. (b) A binary tree containing a set of half-
spaces, Tree〈(), H〉.

(c) Intersection of half
planes.

Figure 23: Overview for creating the partition-plane geometries.

37

From this set of candidate connector locations V the set of definitive connector locations is
found. The definitive connector locations are the locations that are located on the boundary of
the smallest enclosing disc of V . To find the smallest enclosing disc the method as described
in [4] is used. In this approach the smallest enclosing disc is found in expected linear time
using randomized incremental construction. The input points are randomized and two points are
selected to form an initial disc D. All points v ∈ V are traversed until a point va is encountered
for which va 6∈ D. Let Va be the points processed thus far. We know that point va is located on
the boundary of the smallest enclosing disc of points Va. A process similar as before is started;
the points from Va are randomized and a disc Da is created from a random point from Va and
va. All points from Va are processed until we encounter a point vb for which vb 6∈ Da. Let Vb be
the points processed from Va thus far. We now know that points va and vb are located on the
boundary of the smallest enclosing disc of points Vb. Finding the smallest enclosing disc for a
set of points is easy when two points on the boundary are known. First create a disc Dc from
point va and vb. Then traverse all points vc ∈ Vb, if vc 6∈ Dc then update Dc with a new disc
constructed from points va, vb and vc. This process of finding discs with 0, 1 and 2 points on
the boundary known is repeated until we have found a disc that can contain all points.

The method is slightly adjusted such that the points that form the smallest enclosing disc is
returned rather than the disc itself. For inputs containing at least 2 non-overlapping points the
result is a set containing either 2 or 3 points.

Once the set of connector locations is know the partition parts can be supplemented with
connectors. Two female holes are added to each geometry part located at each of the connector
locations. The connector geometry itself is a custom geometry and can be changed according to
the needs of the end user. A special closed edge loop of the connector geometry is marked. The
vertices on these edges are all located at z = 0. When partitioning a geometry, the cross-section
needs to be triangulated. Before this triangulation is applied the edge loops are inserted as
holes to the cross-section polygon. After the cross section is triangulated the remainder of the
cross-section geometry is connected to the holes to form the final geometry-part.

38

4 Results

Harpe partitions models to improve the parallel print time. An example of a partitioned and
printed bunny model can be seen in fig. 24. Both models-parts were printed on a Ultimaker s5.
The time spent printing for model a (fig. 24a) was 2 hours and the time spent printing model b
(fig. 24b) was 2 hours and 5 minutes. In appendix A partitions for various models are depicted.

(a) Model part a

(b) Model part b (c) Assembled model

Figure 24: Bunny model partitioned in n = 2 parts printed on two Ultimaker s5 printers.

A collection of around 400 models is used as input for the various methods. To ensure variety
in the collection, the models are sourced from different repositories (as stated in section 7) and
consist of CAD modelled mechanical parts, 3D scans and miniatures. These models are then
converted[1] to the STL (Standard Tessellation Language) format. There are two variants when
storing models in the STL format; a binary and an ASCII variant. Figure 25 describes the
grammar of the ASCII variant of the STL file format.

solid name

facet normal ninjnk
outer loop

vertex v1x v1y v1z
vertex v2x v2y v2z
vertex v3x v3y v3z

endloop
endfacet

+

endsolid name

Figure 25: Grammar of the STL file format.

The STL files are then imported and all non-manifold and self-intersecting models are dis-
carded. All models are adjusted such that the longest axis of the axis aligned bounding box is
between 20 and 200 millimetres by scaling the model 10x times where x is an integer.

Computing times reported are achieved using an intel i7 7700k CPU utilizing a single core.

39

4.1 Print Time Estimation

To evaluate the accuracy of Harpe’s print time prediction the estimations are compared against
the print times calculated by Cura. The assumption is made that Cura can accurately predict
print times.

When estimating the print time each print-feature is estimated individually (fig. 26). For
each feature a plot is generated where each measurement depicts the print time calculated by
Cura on the x-axis and by Harpe on the y-axis. Some of these features can be predicted more
accurately than others.

0

2500

5000

7500

10000

0 2500 5000 7500 10000
PrintTimeCura(g)

P
rin

tT
im

e H
ar

pe
(g

)

(a) inner wall

0

5000

10000

15000

20000

0 5000 10000 15000 20000
PrintTimeCura(g)

P
rin

tT
im

e H
ar

pe
(g

)

(b) outer wall

0

25000

50000

75000

100000

0 25000 50000 75000 100000
PrintTimeCura(g)

P
rin

tT
im

e H
ar

pe
(g

)

(c) infill

0

5000

10000

15000

20000

25000

0 5000 10000 15000 20000 25000
PrintTimeCura(g)

P
rin

tT
im

e H
ar

pe
(g

)

(d) skin

0

20000

40000

60000

80000

0 20000 40000 60000 80000
PrintTimeCura(g)

P
rin

tT
im

e H
ar

pe
(g

)

(e) support

0

5000

10000

0 5000 10000
PrintTimeCura(g)

P
rin

tT
im

e H
ar

pe
(g

)

(f) travel

Figure 26: Print time of each feature estimated by Harpe plotted against the print time calcu-
lated by Cura for 300 models.

The total print time of a model is the sum of the print times for each feature. Not each
feature contributes as much to the total print time. Generally more time is needed to print the
infill compared to the time spent traveling. The relative time spent per feature according to
Cura is shown in table 1. The averages were calculated by adding the print time per feature of
all models. The relative time spent printing per feature is calculated on these total print times.

40

Feature
Contribution to the

total print time
skin 11.42%
inner wall 7.19%
outer wall 14.43%
infill 37.28%
support 19.85%
travel 9.83%

Table 1: Print time spent per feature.

The total print time estimated by Harpe is plotted against the total print time calculated
by Cura in fig. 27. A histogram of the normalized print times is shown in fig. 28. The mean of
the histogram is 0.974 with a standard deviation of 0.137.

0

50000

100000

150000

0 50000 100000 150000
PrintTimeCura(g)

P
rin

tT
im

e H
ar

pe
(g

)

Figure 27: Total print time estimated by
PrintTimeharpe plotted against the print time
calculated by PrintTimecura for 300 models.

0

10

20

30

40

0.75 1.00 1.25 1.50
PrintTimeharpe(g) / PrintTimecura(g)

F
re

qu
en

cy

Figure 28: Histogram of percentage er-
rors between the print time estimated using
PrintTimeharpe and the print time calculated
using PrintTimecura.

During the algorithm the above method for estimating the print time is not used but instead
the simplified version where the print time is estimated using only the model’s volume and surface
area. The accuracy of this variant of the method is measured the same as before. The total print
time estimated by Harpe is plotted against the total print time calculated by Cura in fig. 29.
A histogram of the normalized print times is shown in fig. 30. The mean of the histogram is
0.976 with a standard deviation of 0.140.

41

0

50000

100000

150000

0 50000 100000 150000
PrintTimeCuraΩ(g)

P
rin

tT
im

e H
ar

pe
Ω
(g

)

Figure 29: Total print time estimated by
PrintTimeharpeΩ plotted against the print time
calculated by PrintTimecura for 300 models.

0

10

20

30

40

0.75 1.00 1.25 1.50

PrintTimeharpeΩ(g) PrintTimecuraΩ(g)

F
re

qu
en

cy

Figure 30: Histogram of percentage er-
rors between the print time estimated by
PrintTimeharpeΩ and the print time calculated
by PrintTimecura.

As mentioned before the time complexity of the PrintTimeharpe function is linear in the
number of triangles m. A plot depicting the computation time spent estimating the print time
for models with triangle count m is shown in (fig. 31). The model with highest triangle count
from this data set contains m = 7, 219, 045 triangles, the print time for this model was computed
in 0.46 seconds.

1e−04

1e−03

1e−02

1e−01

1e+03 1e+04 1e+05 1e+06 1e+07
m

C
om

pu
ta

tio
n

tim
e

(s
)

Figure 31: Computation time in seconds when calculating the print time for various models g
with triangle count m.

For Cura the computation time for calculating the print time is in general bound by the size
of the model, rather than the number of triangles. As the print time calculation is a by-product
of creating the print instruction, the tool paths have to be generated. A bigger model results in
a higher number of layers and tool paths. As the computation times for both Cura and Harpe
are dependent on different factors it is complicated to compare these times. However when
inspecting individual models it becomes apparent that Harpe is several orders of magnitude
faster in estimating the print time compared to Cura as can be seen in table 2.

42

Model m
Volume
(mm3)

Computation time
of PrintTimeharpe (s)

Computation time
of PrintTimecura (s)

Stanford Bunny 69,664 770,056 4.66 · 10−3 33
Asian Dragon
Low Poly Scan

249,881 154 1.75 · 10−2 7

Asian Dragon
High Poly Scan

7,219,045 154 4.61 · 10−1 7

Neptune 4,007,872 12,578 3.11 · 10−1 33

Table 2: Computation time to calculate the print time for various models with triangle count m
calculated by Harpe and Cura.

4.2 Partition Search

In order to compare the results of the Partition Search method with other algorithms the
state-of-the art partitioning method Chopper is transformed into a parallel print time algorithm.

Chopper is originally designed to partition models such that each partition-part fits within
a provided print volume. Additionally Chopper describes several objectives, a linear combi-
nation of these objectives determines the outcome of the partitioning. These objectives include
objectives that favour symmetric cuts, and penalize fragile parts in the resulting decomposition.
Our own implementation of Chopper is developed, and only the objectives that (in our opinion)
would contribute to the parallel print time partitioning (the part and utilization objectives) were
implemented.

The number of parts n is not an input parameter for Chopper, instead Chopper provides
control over the maximum print volume. The transformation of Chopper consist of two parts:
partitioning the model with the aim to partition the model in n parts, and selecting a print
direction.

Chopper Partitioning In the results we want to report the print times of n = 2, . . . , 6 parts.
The relevant parameter Chopper provides is adjusting the print volume. There is a correlation
between print volume and number of parts; partitioning models using a smaller print volume re-
sults in a higher number of parts. However this relation is not easily quantifiable. For each model
partitioned using Chopper the longest axis of the axis aligned bounding box aabbmax was cal-
culated. This value was then multiplied by a factor f = 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6.
This aabbmax · f is then used as the print volume. If the resulting BSP contains n = 2, . . . , 6
parts the partitioning is incorporated in the results, otherwise the entry is discarded.

Selecting a print direction for Chopper The model-parts generated by Chopper are
oriented such that each part fits within the print volume. However this orientation does not
correspond to the orientation that minimizes the print time. For a fair comparison the model
parts are oriented such that print time is taken into account. Similar as with the Partition
Search each partition plane is a candidate print base. For each model-part the partition plane
is chosen that minimizes the print time.

4.2.1 Comparison of search strategies

To accurately report the results, 400 models were partitioned by both Partition Search and
Chopper. In order to compare different models with different print times the parallel print
times are normalized. This is calculated by dividing the partition-part that takes the longest

43

to print by the print time of the original non-partitioned model. Results are calculated for 400
models partitioned in n = 2, . . . , 6 parts. The normalized print time with a confidence interval
of 95% is shown in fig. 32. Both Partition Search and Chopper have parameters to control
the density candidate cuts. These parameters, h to control the number of plane normals and τ
the distance between planes, were set to 3 and 10.0 millimetre respectively. The print times were
estimated using PrintTimecura.

0.0

0.1

0.2

0.3

0.4

0.5

2 3 4 5 6
n

N
or

m
al

is
ed

 p
ar

al
le

l p
rin

t t
im

e
Search strategy

Chopper

Partition Search

Figure 32: Confidence interval of 95% with 400 models depicting the normalized parallel print
time of an n = 2, . . . , 6 partitioned model using the search strategies Partition Search and
Chopper.

4.2.2 Performance of Partition Search

The performance of Harpe is compared against Chopper. The results of this comparison can
be seen in fig. 33.

0.1

1.0

10.0

1e+05 1e+06 1e+07
m * n

C
om

pu
ta

tio
n

tim
e

(s
)

Search strategy

Chopper

Partition Search

Figure 33: Computation time in seconds of Partition Search (blue) compared to Chopper,
for different models containing m triangles partitioned in n parts.

Note however that we did use our own implementation of Chopper, and as such the reported

44

performance might differ from the original implementation. After careful examination of the
Chopper paper[6] we have identified several causes that might cause our implementation to
differ from Chopper.

• Chopper stated that their implementation utilized multiple cores, where our implemen-
tation only uses one,

• Not all of the objectives described in Chopper were implemented, only those that we
identified as being beneficial for the parallel print time partitioning were added, and

• Chopper benefits from the batched operations described in section 3.4. We were not sure
if, and how many, of these batched operations were also implemented for Chopper.

4.3 Batched Calculations

As discussed in section 3.4 the batched calculations reduce the time complexity of the naive
implementation from O(mk) to O(m+ k+ c), where m is the number of triangles of a geometry
g, k the number of parallel planes in set P and c the number of plane-triangle intersections. The
number of intersections c is bound by the number of planes m · k; there are situations where it
is possible for the naive algorithm to outperform the improved batched operations, however as
we will see for all practical models this is not the case.

A set of planes spaced τ = 1 millimetres apart, oriented in all three octagonal axis directions
were used to perform the Areas, CrossSectionalAreas, Volumes, SupportVolumesgeometry and
SupportVolumessupport operations on the data set. The results can be seen in fig. 34. The number
of parallel planes k varies per model as not all models are the same size, and highly influences
the computation time improved. For k = 100 a performance increase in excess of 100x can be
achieved for some operations when batched compared to the naive implementation.

3

10

30

100

300

10 30 100
k

na
iv

e
/ b

at
ch

ed

operation

Areas

CrossSectionAreas

SupportVolumesGeometry

SupportVolumesSupport

Volumes

Figure 34: Computation time improvement for the areas, cross section areas, support volumes
geometry, support volumes support and volumes batched operations as a function of the number
of parallel planes k.

45

4.4 Local Search Procedure

The local search procedure is an iterative process that optimizes an existing BSP. After each
iteration the planes in the BSP are moved such that the parallel print time is decreased. What
became apparent is that the amount of optimization possible using this method depends on the
parameter n; for a model partitioned in more parts, a greater decrease in parallel print time can
be achieved. For this reason the results for different parameters n are reported independently.

Each model is partitioned into n = 1, . . . , 6 parts using the Partition Search method.
Then the local search procedure is executed for x = 1, . . . , 30 iterations. The parallel print time
is calculated after each iteration. The parallel print time is normalized by dividing the parallel
print time after iteration c by the original parallel print time. The results of a 95% confidence
interval of these normalized parallel print times are shown in fig. 35.

0.94

0.96

0.98

1.00

0 10 20 30
Iteration

N
or

m
al

is
ed

 p
ar

al
le

l p
rin

t t
im

e

n=2

n=3

n=4

n=5

n=6

Figure 35: Confidence interval of 95% of the normalized improvement in parallel print time of
400 models partitioned in n = 2, . . . , 6 parts for x = 1, . . . , 30 iterations.

Computation time of the local search procedure is dependent on both the number of partition
parts n and the number of triangles m in geometry g. Figure 36 shows a plot of the performance
of a single iteration for various models g partitioned in n = 1, . . . , 6 parts.

0.00

0.02

0.04

0.06

0 10000 20000 30000
m

C
om

pu
ta

tio
n

tim
e

pe
r

ite
ra

tio
n

(s
)

n=2

n=3

n=4

n=5

n=6

Figure 36: Computation time of local search procedure of a single iteration for a model g con-
taining m triangles partitioned in n = 1, . . . , 6 parts.

46

5 Conclusion

With Harpe we introduce a novel method for partitioning models to improve the parallel print
time in Fused Filament Fabrication; Partition Search. An input model g is partitioned in n
(the number of available printers) parts. By partitioning a model some of the support structure
becomes obsolete. Partition Search favours decompositions that diminish the support volume,
resulting in a parallel print time improvement that sometimes surpasses 1

n for lower values for
n. On the other hand, by partitioning, the total print time of all models might increase due to
the increase in combined surface area. For partitions with higher values n the impact of this
increase in combined surface area becomes apparent. For higher values of n the parallel print
time improvement slightly exceeds, but still approaches 1

n times the print time of the original
model.

With the addition of the batched computations on the candidate cuts the algorithm becomes
computationally more efficient. A larger number of cuts can be evaluated, resulting in a higher
quality decomposition.

Compared to state-of-the-art partition method Chopper, Harpe can partition models in
the required number of parts, produce model parts with improved parallel print time and is
computationally faster.

With Harpe we introduce a novel method for estimating the print time of models. While less
accurate compared to previous methods, it can predict the print times of models significantly
faster. The proposed method takes into account the print settings used to print the model for the
print time estimation. In addition to being a prerequisite for Partition Search, regular slicers
can also benefit from this method. Slicers such as Cura could for instance display material
usage and print time before the model has been sliced. The material/time cost can be updated
in real time after certain print settings have been changed by the user.

After a partitioning has been found it is improved by the local search procedure. Possible inef-
ficiencies in the decompositions can be restored. The approach is versatile, any BSP partitioning
could be refined using the local search procedure.

47

6 Discussion & Future work

Accuracy of the print time estimation The print time estimations of the inner wall, outer
wall and infill features (fig. 26) can be estimated with high accuracy. As the volumes for these
features are determined with high accuracy and printed continuously with a more or less constant
speed, their print times estimation approximate the real print times well.

The print time estimations by Harpe of the skin, support and travel features (fig. 26) deviate
more from their Cura counterparts. Print time spent on these features are inherently harder to
predict. For each of the features this happens for a different reason.

• As mentioned in section 3.2 some liberties were taken when calculating support volume
in order to maintain an efficient algorithm. The support volume is constructed from each
surface that needs support downwards. Once the support is obstructed (by the model itself)
there is no need for that support structure as the model itself provides sufficient support.
Our approach (incorrectly) assumes all support is constructed from the print-base to the
surface needing support.

• The travel times are inherently hard to predict. These travel times follow from a path
optimization problem where the sequence of tool paths is found that minimizes the travel
times. As these tool paths are never generated it is not possible to estimate the print times
on these tool paths, but instead a heuristic approach based on the surface area of the model
is taken to estimate this feature.

• The volume occupied by the skin feature would be easy to calculate were it not for the wall
volume; if a region of space would be both filled by the skin and the wall volume then the
wall feature takes precedence over the skin feature. To calculate the skin feature exactly we
would need to know the volume of the intersection between the skin and wall regions. As
this would be too expensive to calculate, some liberties were taken to estimate this volume.

In recent development researchers propose a novel tool path generation method where the
tool paths are printed with variable width[20]. Harpe’s approach for estimating the print time
cannot easily be extended to account for tool-paths with variable line-width, as our approach
assumes the flow rate to be constant for all features. This might however not be an issue as the
researchers propose a different method to vary the line width; back pressure compensation. Here
the flow rate remains constant and instead the travel speed is adjusted. As the flow rate remains
the same the print time is not changed.

Implementation of Chopper The Chopper partitioning algorithm is implemented as a
Beam Search objective. Beam Search improves greedy search methods by traversing the b
most promising search branches. The beam width b should improve the quality of the parti-
tioning, however as more branches are explored the running time of the algorithm grows. As
Beam Search provides a flexible framework for defining custom objectives, the first version of
Partition Search was implemented as such an objective.

For our research we started by exploring the Beam Search approach by defining a custom
objective that evaluates partial BSP trees based on an estimate on the parallel print time. The
reason for abandoning this approach was twofold. When defining a Beam Search objective
for a parallelization objective only a lower bound on the resulting partitioning can be provided.
As both the average cross section heuristic and support volume additions are upper bounds
on the parallel print time, these two improvements could not be added to such an objective.

48

Additionally the parameter b did not appear to significantly improve the parallel print time; in
some cases only a few percent was gained in the parallel print time when increasing b.

For our results we use our own implementation Chopper for comparison. As Chopper is
also based on Beam Search the question arises if our implementation is correct; did the original
authors encounter the same problem regarding the beam width b? We did not have access to the
original Chopper implementation and we could only compare our results of Chopper against
the results reported in their work. Unfortunately Chopper offers little data on these values
in the results; only the objective value of two models were reported. The axis on which this
objective was displayed showed only a small decrease in this objective (1.0995 to 1.0980 and
0.600 to 0.5596 for b = 1 and b = 8 respectively[6]). These values were in line with the minimal
improvement we found when increasing b. We reached out to the authors of Chopper but
received no further reply.

Future work Harpe provides an exploration in the field of partitioning models to improve
the parallel print time. However, improvements are always possible. Future work could focus on

• when partitioning models using Partition Search it is assumed that all parts are printed
with the same printer and print settings. Some people might have access to multiple
printers, that might not be the same model. A possible improvement to Partition Search
would be that a collection of different printers can be used as input,

• Harpe does not take into account a printer’s volume; a possible extension to the algorithm
would be to further partition pieces that exceed the print volume,

• additional partition criteria could be added to the partitioning function. Cuts that prevent
narrow or fragile features in the resulting decomposition or hide cuts in creases could be
favoured by such additional criteria, and

• an interesting subject not yet explored is how simplifying meshes affects the algorithm. If
partitioning simplified models does not result in a significantly different outcome then the
algorithm could be improved by partitioning only the simplified mesh. The resulting BSP
can then be used to partition the high resolution model.

49

7 Acknowledgement

This research project was commissioned by 3D printer manufacturer Ultimaker B.V.3 as a (paid)
internship.

Models used to test, benchmark and generating the results presented throughout this the-
sis, were sourced from a repository called “A Benchmark for 3D Mesh Segmentation”[5], the
AIM@SHAPE[21] repository and The Stanford 3D Scanning Repository[22].

The 3D Printing Handbook: Technologies, Design and Applications[14] is frequently consulted
during the research. While not directly quoted in the work, the general knowledge gained from
this book was of great benefit in understanding additive manufacturing.

3https://ultimaker.com/

50

https://ultimaker.com/

A Partition Examples
M

o
d

e
l

n
=

2
n

=
3

n
=

4
n

=
5

n
=

6

D
an

ci
n

g
C

h
il

d
re

n

D
an

ci
n

g
C

h
il

d
re

n
O

ri
en

te
d

F
er

ti
li

ty

F
er

ti
li

ty
O

ri
en

te
d

K
it

te
n

K
it

te
n

O
ri

en
te

d

Table 3: Partitions for various models.

51

References

[1] Patrick Min. meshconv. Accessed: 2021-09-29. 1997. url: http://www.patrickmin.com/
meshconv.

[2] Cha Zhang and Tsuhan Chen. “Efficient feature extraction for 2D/3D objects in mesh
representation”. In: Proceedings 2001 International Conference on Image Processing (Cat.
No.01CH37205). Vol. 3. 2001, 935–938 vol.3. doi: 10.1109/ICIP.2001.958278.

[3] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. 3rd ed. Santa Clara, CA, USA: Springer-Verlag
TELOS, 2008. Chap. 4.2, pp. 66–71. isbn: 3540779736.

[4] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. 3rd ed. Santa Clara, CA, USA: Springer-Verlag
TELOS, 2008. Chap. 4.7, pp. 86–89. isbn: 3540779736.

[5] Xiaobai Chen, Aleksey Golovinskiy, and Thomas Funkhouser. “A Benchmark for 3D Mesh
Segmentation”. In: ACM Transactions on Graphics (Proc. SIGGRAPH) 28.3 (Aug. 2009).

[6] Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, and Wojciech Matusik. “Chopper: Parti-
tioning Models into 3D-Printable Parts”. In: ACM Trans. Graph. 31.6 (Nov. 2012). issn:
0730-0301. doi: 10.1145/2366145.2366148. url: https://doi.org/10.1145/2366145.
2366148.

[7] Ruizhen Hu, Honghua Li, Hao Zhang, and Daniel Cohen-Or. “Approximate Pyramidal
Shape Decomposition”. In: ACM Trans. Graph. 33.6 (Nov. 2014). issn: 0730-0301. doi:
10.1145/2661229.2661244. url: https://doi.org/10.1145/2661229.2661244.

[8] J. Vanek, J. A. Garcia Galicia, B. Benes, R. Mundefinedch, N. Carr, O. Stava, and G. S.
Miller. “PackMerger: A 3D Print Volume Optimizer”. In: Comput. Graph. Forum 33.6
(Sept. 2014), pp. 322–332. issn: 0167-7055. doi: 10.1111/cgf.12353. url: https://doi.
org/10.1111/cgf.12353.

[9] Xuelin Chen, Hao Zhang, Jinjie Lin, Ruizhen Hu, Lin Lu, Qixing Huang, Bedrich Benes,
Daniel Cohen-Or, and Baoquan Chen. “Dapper: Decompose-and-Pack for 3D Printing”. In:
ACM Trans. Graph. 34.6 (Oct. 2015). issn: 0730-0301. doi: 10.1145/2816795.2818087.
url: https://doi.org/10.1145/2816795.2818087.

[10] Peng Song, Zhongqi Fu, Ligang Liu, and Chi-Wing Fu. “Printing 3D objects with inter-
locking parts”. In: Computer Aided Geometric Design 35-36 (2015). Geometric Modeling
and Processing 2015, pp. 137–148. issn: 0167-8396. doi: https://doi.org/10.1016/j.
cagd.2015.03.020. url: https://www.sciencedirect.com/science/article/pii/
S0167839615000436.

[11] Kuo-Wei Chen, Chih-Yuan Yao, Yu-Chi Lai, and You-En Lin. “Parallel 3D Printing Based
on Skeletal Remeshing”. In: ACM SIGGRAPH 2016 Posters. SIGGRAPH ’16. Anaheim,
California: Association for Computing Machinery, 2016. isbn: 9781450343718. doi: 10.
1145/2945078.2945126. url: https://doi.org/10.1145/2945078.2945126.

[12] W. M. Wang, C. Zanni, and L. Kobbelt. “Improved Surface Quality in 3D Printing by
Optimizing the Printing Direction”. In: Proceedings of the 37th Annual Conference of the
European Association for Computer Graphics. EG ’16. Lisbon, Portugal: Eurographics
Association, 2016, pp. 59–70.

[13] Xiaotong Jiang, Xiaosheng Cheng, Qingjin Peng, Luming Liang, Ning Dai, Mingqiang
Wei, and Cheng Cheng. “Models partition for 3D printing objects using skeleton”. In:
Rapid Prototyping Journal 23 (Jan. 2017). doi: 10.1108/RPJ-07-2015-0091.

52

http://www.patrickmin.com/meshconv
http://www.patrickmin.com/meshconv
https://doi.org/10.1109/ICIP.2001.958278
https://doi.org/10.1145/2366145.2366148
https://doi.org/10.1145/2366145.2366148
https://doi.org/10.1145/2366145.2366148
https://doi.org/10.1145/2661229.2661244
https://doi.org/10.1145/2661229.2661244
https://doi.org/10.1111/cgf.12353
https://doi.org/10.1111/cgf.12353
https://doi.org/10.1111/cgf.12353
https://doi.org/10.1145/2816795.2818087
https://doi.org/10.1145/2816795.2818087
https://doi.org/https://doi.org/10.1016/j.cagd.2015.03.020
https://doi.org/https://doi.org/10.1016/j.cagd.2015.03.020
https://www.sciencedirect.com/science/article/pii/S0167839615000436
https://www.sciencedirect.com/science/article/pii/S0167839615000436
https://doi.org/10.1145/2945078.2945126
https://doi.org/10.1145/2945078.2945126
https://doi.org/10.1145/2945078.2945126
https://doi.org/10.1108/RPJ-07-2015-0091

[14] Ben Redwood, Filemon Schffer, and Brian Garret. The 3D Printing Handbook: Technolo-
gies, Design and Applications. 1st. 2017. isbn: 9082748509.

[15] Eric A. Yu, Jin Yeom, Cem C. Tutum, Etienne Vouga, and Risto Miikkulainen. “Evolu-
tionary Decomposition for 3D Printing”. In: Proceedings of the Genetic and Evolutionary
Computation Conference. GECCO ’17. Berlin, Germany: Association for Computing Ma-
chinery, 2017, pp. 1272–1279. isbn: 9781450349208. doi: 10.1145/3071178.3071310. url:
https://doi.org/10.1145/3071178.3071310.

[16] Xuelin Chen, Honghua Li, Chi-Wing Fu, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen.
“3D Fabrication with Universal Building Blocks and Pyramidal Shells”. In: ACM Trans.
Graph. 37.6 (Dec. 2018). issn: 0730-0301. doi: 10.1145/3272127.3275033. url: https:
//doi.org/10.1145/3272127.3275033.

[17] Xiangzhi Wei, Siqi Qiu, Lin Zhu, Ruiliang Feng, Yaobin Tian, Juntong Xi, and Youyi Zheng.
“Toward Support-Free 3D Printing: A Skeletal Approach for Partitioning Models”. In:
IEEE Transactions on Visualization and Computer Graphics 24.10 (Oct. 2018), pp. 2799–
2812. issn: 1077-2626. doi: 10.1109/TVCG.2017.2767047. url: https://doi.org/10.
1109/TVCG.2017.2767047.

[18] E. Karasik, R. Fattal, and M. Werman. “Object Partitioning for Support-Free 3D-Printing”.
In: Computer Graphics Forum 38 (May 2019), pp. 305–316. doi: 10.1111/cgf.13639.

[19] I. Filoscia, T. Alderighi, D. Giorgi, L. Malomo, M. Callieri, and P. Cignoni. “Optimizing
Object Decomposition to Reduce Visual Artifacts in 3D Printing”. In: Computer Graphics
Forum 39.2 (2020), pp. 423–434. doi: https://doi.org/10.1111/cgf.13941. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13941. url: https:

//onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13941.

[20] Tim Kuipers, Eugeni L. Doubrovski, Jun Wu, and Charlie C.L. Wang. “A Framework
for Adaptive Width Control of Dense Contour-Parallel Toolpaths in Fused Deposition
Modeling”. In: Computer-Aided Design 128 (2020), p. 102907. issn: 0010-4485. doi: https:
//doi.org/10.1016/j.cad.2020.102907. url: https://www.sciencedirect.com/
science/article/pii/S0010448520301007.

[21] Digital Shape Workbench - Shape Repository. url: http://visionair.ge.imati.cnr.
it/ontologies/shapes/.

[22] The Stanford 3D Scanning Repository. url: http://graphics.stanford.edu/data/

3Dscanrep/.

[23] Ultimaker Cura: Powerful, easy-to-use 3D printing software. url: https://ultimaker.
com/software/ultimaker-cura.

53

https://doi.org/10.1145/3071178.3071310
https://doi.org/10.1145/3071178.3071310
https://doi.org/10.1145/3272127.3275033
https://doi.org/10.1145/3272127.3275033
https://doi.org/10.1145/3272127.3275033
https://doi.org/10.1109/TVCG.2017.2767047
https://doi.org/10.1109/TVCG.2017.2767047
https://doi.org/10.1109/TVCG.2017.2767047
https://doi.org/10.1111/cgf.13639
https://doi.org/https://doi.org/10.1111/cgf.13941
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13941
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13941
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13941
https://doi.org/https://doi.org/10.1016/j.cad.2020.102907
https://doi.org/https://doi.org/10.1016/j.cad.2020.102907
https://www.sciencedirect.com/science/article/pii/S0010448520301007
https://www.sciencedirect.com/science/article/pii/S0010448520301007
http://visionair.ge.imati.cnr.it/ontologies/shapes/
http://visionair.ge.imati.cnr.it/ontologies/shapes/
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://ultimaker.com/software/ultimaker-cura
https://ultimaker.com/software/ultimaker-cura

	Introduction
	Preliminaries
	3D manufacturing techniques
	Fused Filament Fabrication
	Slicing

	Related Work
	Improve print time
	Increase print volume
	Avoid support
	Improve surface quality
	Partitioning a model for packing

	Method
	Definitions
	Print Time Estimation
	Calculating feature volumes
	Print time estimation
	Material usage estimate
	Print Direction

	Partition Search
	Candidate Planes
	Basic Partition Search
	Average Cross-section Area Heuristic
	Support

	Batched Calculations
	Cross-sectional Area
	Surface Areas
	Volume
	Support Volumes' Geometry
	Support Volumes' Support

	Local Search Procedure
	Connectors

	Results
	Print Time Estimation
	Partition Search
	Comparison of search strategies
	Performance of Partition Search

	Batched Calculations
	Local Search Procedure

	Conclusion
	Discussion & Future work
	Acknowledgement
	Partition Examples

