
Do you mind if I keep that?
Value extraction in software ecosystems

Jakob Buis

Final thesis
August 6, 2015

quae non valeant singula, iuncta iuvant

Administrative information

Author: dhr. Jakob Buis BSc
Student number: 3699080
E-mail: jakob@jakobbuis.nl
Document version: 2015-08-06 21:09
First supervisor: dr. Slinger Jansen
Second supervisor: prof.dr. Sjaak Brinkkemper
Organisation: Center for Organization and Information

Department of Information and Computing Sciences
Utrecht University

Address: Buys Ballotgebouw
Princetonplein 5
3584 CH Utrecht

What does the quote on the previous page mean?

It is a legal principle: “What is without value on its own, helps when joined”. It is used here
in reference to our subject of value in software ecosystems: that what may not be valuable to
you, might be of value when shared with others. The quote also applies to the thesis as a text
if we adopt its alternative interpretation: “[words] which have no meaning when considered
separately, obtain their sense when they are brought in connection with one another”.

i

Acknowledgments

This thesis was not produced in a vacuum and it is all the better for it. A number of people
have contributed to the ideas, processes and chapters of this project, and I would like to
thank a few of them explicitly. My first supervisor dr. Slinger Jansen, for working with
me through this project, providing both critical and supportive comments on every aspect
of it. Martijn Feekes and prof.dr. Sjaak Brinkkemper for their critical review of the partial
ideas, concepts and chapters that would become a finished thesis. All colleagues at Exact,
especially Dimitri, Erich, Jurjen, Martijn, Pieter, Remco and Ruben who offered many new
ideas through our discussions and new insights I could never have derived by writing this
thesis purely in academia.

Honestly, it is hard to trace every discussion, flash of insight or provoking remark made by
a friend, family member or colleague that helped to shape my work; there were so many.
If you ever heard me say “wait, why didn't I think of that..” in response to your statement,
consider yourself thanked. Please do remind me of it, so that I may properly thank you in
person.

ii

Summary

Software companies no longer operate in a vacuum, but share their products and services,
knowledge and expertise with other companies in various software ecosystems. The reasons
for participating in a software ecosystem are based upon the (business) value the participants
receive from these relationships compared to the value they give up. Exchanging value
through software ecosystems is not sufficiently studied so far. To cover this research gap, a
formal definition of value in software ecosystems is created, together with an overview of the
forms of value as they appear in software ecosystems. The Value Exchange Graph (VEGA) is
developed tomodel the movement of value through the software ecosystem. The VEGA can
be used to accurately model both the impact of specific actions or strategies, and describe the
relationships of a software company in a software ecosystem. Themodel also supports formal
reasoning over its properties to a considerable degree, though applications are limited. The
model is validated using scenarios from both scientific literature and case studies of various
software companies.

iii

Contents

Administrative information i

Acknowledgments ii

Summary iii

Contents iv

1 Introduction 1

2 Theoretical background 3
2.1 Introduction . 3
2.2 Related work . 3

2.2.1 Basics of software ecosystems . 3
2.2.2 Software ecosystem health . 4
2.2.3 Value in software ecosystems . 5
2.2.4 Software ecosystem strategy . 6

2.3 Conceptual model . 7
2.4 Research triggers . 10
2.5 Research questions . 10
2.6 Conclusion . 12

3 Research approach 13
3.1 Introduction . 13
3.2 Research process . 13
3.3 Challenges . 17
3.4 Validity . 18
3.5 Conclusion . 19

4 Structured literature review 20
4.1 Introduction . 20
4.2 Rationale . 20
4.3 Questions . 21

iv

CONTENTS v

4.4 Approach . 21
4.5 Limitations of the approach . 22
4.6 Results . 23

4.6.1 What is sold? . 24
4.6.2 How is it sold? . 25
4.6.3 How is it paid for? . 25
4.6.4 What affects the performance? . 26

4.7 Analysis . 27
4.8 Conclusion . 29

5 Value Exchange Graphs 30
5.1 Introduction . 30
5.2 VEGA meta-model . 31
5.3 Software ecosystem plays . 32

5.3.1 Play #1: support partner productivity 34
5.3.2 Play #4: public roadmap funding . 35
5.3.3 Play #6: bug bounties . 36
5.3.4 Play #7: building complementary products 37
5.3.5 Play #10: subsidise one side, extract the other 38
5.3.6 Play #13: bundling . 38
5.3.7 Play #15: disregard standards . 39
5.3.8 Play #16: adopt standards . 40
5.3.9 Play #34: divestment . 41
5.3.10 Limitations . 42

5.4 Conclusion . 43

6 Reasoning over Value Exchange Graphs 44
6.1 Introduction . 44
6.2 Reasoning on plays . 44
6.3 Who benefits? . 45
6.4 Improving a play . 47
6.5 Determining a price point . 49
6.6 Limitations . 51
6.7 Conclusion . 51

7 Case studies 52
7.1 Introduction . 52
7.2 Approach . 52
7.3 Cases . 54

7.3.1 Supply chains . 54
7.3.2 Hubs . 57
7.3.3 Niche players . 60
7.3.4 Networked companies . 64

7.4 Results . 68

vi CONTENTS

7.5 Conclusion . 70

8 Discussion and Conclusion 71

Bibliography 74

List of Figures 80

List of Tables 82

Chapter 1

Introduction

Actors operate in software ecosystems in conjunction with others. Their actions affect the
other actors with which they are in direct contact, but also the contacts of their contacts,
and the software ecosystem as a whole. Specific roles can be attributed to the positioning
and behaviour of an actor and this has been extensively studied in previous literature. In this
research project, the authors study “(business) value” from the viewpoint of an individual
actor in a software ecosystem. The actors in a software ecosystem, through their action or
inaction, capture value from the software ecosystem for themselves or spread value to other
actors. This research project aims to show that modeling these “value flows” can improve our
insight into software ecosystems, in both theoretical scenarios and real-life applications. A
model is created to depict value flows in a software ecosystems, the Value-Exchange Graph
(VEGA). This model is validated using strategies retrieved from scientific literature and case
studies of software companies.

In chapter 2 we discuss the existing research in scientific literature which frames our work.
The basic concepts and definition of a software ecosystem are described. Additionally, we
discuss the concept of software ecosystem health, based primarily on the seminal work by
Iansiti and Levien, and discuss the existing literature related to the concept of “value” in
software ecosystems. Finally, we discuss the application of strategy in software ecosystems.
These sources of literature are modeled in a conceptual model.

This conceptual model is the primary tool to convey the research gap. A number of areas in
the conceptual model are not sufficiently studied in scientific literature, and these form the
challenges we seek to address in this project. From these triggers, the three main research
questions are posed. Chapter 3 provides an exhaustive overview of the research approach
taken and its known limitations.

Chapter 4 describes the detailed approach taken in conducting the SLR and the results of
it. These results provide the answer to the first and second research questions. Chapter 5

1

2 CHAPTER 1. INTRODUCTION

describes the VEGA notation for modeling flows of value in software ecosystems. Based on
a formal meta-model, the VEGA notation is used to describe existing software ecosystem
strategies retrieved from scientific literature. Chapter 6 explains the concept of using formal
reasoning over value flows to evaluate strategies and how this can be used to improve the
situation of a company, or adapt existing strategies to better suit the needs of all parties
involved. The suitability of VEGAs to describe real-world scenarios is evaluated using a
number of case studies in chapter 7. The approach taken in the interviews used to create
these cases and the subsequent results are all detailed. Chapters 5, 6 and 7 combined form
the answer to the third research question. Finally, the discussion and main conclusions of
the project are drawn in chapter 8.

Chapter 2

Theoretical background

2.1 Introduction

In this chapter, we introduce the theoretical foundation of our work, starting with related
work on software ecosystems (2.2). The related work is elaborated in a conceptual model
(2.3), describing our view of the subject. This model forms the basis of our research project
and is directly mapped onto the research triggers (2.4). The chapter concludes with the
research questions which this research project will answer (2.5).

2.2 Related work

Software ecosystems is not a new field in scientific research and much has been written on
the subject that does not require reiteration here. For a solid overview of the state of the art
in software ecosystems research, we refer the interested reader to the literature overview by
Manikas and Hansen [50]. We start with a few key points in software ecosystems research
that are crucial to our understanding and help explain our point of reference to software
ecosystems (2.2.1), introduce the concept of software ecosystem health (2.2.2), discuss the
basic principles of value and value extraction (2.2.3), and touch on strategies in software
ecosystems (2.2.4).

2.2.1 Basics of software ecosystems

Software is no longer built in isolation, with traditional software companies soliciting re-
quirements from customers, handing these over to development, and passing the resulting

3

4 CHAPTER 2. THEORETICAL BACKGROUND

updates and patches back to the customer. Software vendors are increasingly reliant on other
companies to work together to integrate product software [42, 43]. The resulting “software
ecosystems” have a solid definition by Jansen, Brinkkemper and Finkelstein [43]:

[A software ecosystem is] a set of businesses functioning as a unit and interacting
with a shared market for software and services, together with the relationships
among them. These relationships are frequently underpinned by a common
technological platform or market and operate through the exchange of informa-
tion, resources and artifacts.

We recognize several distinctions in the roles companies play in their software ecosystems.
The five roles defined by Iansiti and Levien [37]: hubs, keystones, landlords, dominators and
niche players; are the most famous and most often used. Hubs occupy central positions in a
software ecosystem, with many crucial connections that hold the ecosystem together. The
hub role is further divided into three roles, according to the behaviour of the company. Key-
stones maintain the health of their ecosystems through specific actions that affect their entire
ecosystem. Landlords extract too much value from the ecosystem using their central hub
position, and do not create or leave sufficient value for others. They extract maximum profit
while making the business models of their peers unsustainable. Ultimately, landlords kill
off their ecosystem, leaving themselves vulnerable. Dominators seek to control large areas
of their ecosystem. It integrates other business horizontally and vertically to maximize the
value it captures. Dominators are not necessarily a bad influence: dominating a niche can
be effective and can potentially increase the health of the ecosystem as a whole, but domina-
tors in hub positions make the ecosystem unsustainable in the long run. By eliminating the
openness that allows others to build upon their product and efforts, dominators essentially
reform the ecosystem back into the pre-connected world of closed, monolithic (software)
products. Finally, niche players are the natural complement of hubs. Niche players have an
average number of connections, none of which are crucial to the ecosystem. The loss of a
niche player has no direct effect on the composition or health of the ecosystem. However,
niche players make up the bulk of every ecosystem. Their nimbleness at the edges of their
ecosystems allows for maximum innovation. [37]

2.2.2 Software ecosystem health

In order to create a software ecosystem that is as effective as possible, network effects are
key [31, 37], increasing the value and stability of the network as it grows. Health is a weak
metaphor in the context of software ecosystems [31], allowing us only to make relative state-
ments e.g. “this is more healthier than that”, but not absolute statements as “this ecosystem
is 80% healthy” or “this ecosystem is not healthy”. Research on the health of business- and
software ecosystems [31, 36, 37] has identified a number of ways to quantify the health of
a software ecosystem. Iansiti and Levien identified three determinants of ecosystem health:
robustness, productivity and niche creation [36]. Robustness is the resilience of the network

2.2. RELATED WORK 5

in the face of external changes. Productivity is the efficiency of turning the inputs of the
ecosystems into outputs, usually profits. Niche creation is the ability of the network to create
and protect profitable niches for niche players to invest.

2.2.3 Value in software ecosystems

Increasingly, businesses are seen as “a major cause of social, environmental, and economic
problems” [61], especially if an approach is taken that seeks to exclusively benefit the com-
pany in detriment to its environment. While some measure of competition is healthy and
inevitable, new work by Porter and Kramer introduces the principle of shared value, defined
as “policies and operating practices that enhance the competitiveness of a company while si-
multaneously advancing the economic and social conditions in the communities in which it
operates” [61]. For example, using the bargaining power of a large company to lower costs
might make the business model of their suppliers unsustainable. This insight forces compa-
nies to leave enough value for their partners. Companies should seek to eliminate the divide
between economic and social concerns, and focus on creating value for all participants [61].

Value in software ecosystems does not have to be monetary. Innovation is one possibility:
the concept of “open innovation” [9] sees outsiders as both a source of new ideas and a means
to commercialise them. Research by Von Hippel [33] has even shown that the notion that
software is developed by manufacturers and used by consumers is outdated, and lead users
can be involved the development of innovative new products and services. Distributing
the costs of development over many companies is another option. One might for example
desire to avoid incurring large costs for the development of generic customer-relationship
management (CRM) functionality and opt for quickly integrating an existingCRM-solution
by another party. This lowers the (potential) revenue for the company as customers shift
payments the other company to use its CRM-product, but also decreases the cost and risks
of development, and shortens the time-to-market. No effective overview of the available
forms of value in software ecosystems exists, and this is one of the primary triggers (section
2.4) of this research project.

Research by Lakhani and Von Hippel [48] has shown that participants in software ecosys-
tems are in fact motivated by value. In their research on the motivation of participants in
a open source software ecosystem to contribute to the seemingly menial task of answering
field-support1 questions, Lakhani and Von Hippel have shown that the participants perceive
a benefit to them in having an active forum filled with information on how to deal with
common problems, improve their own work, etc.; and are eager to contribute to this com-
munity of practice on their area of expertise to improve the health of the community, even
though this benefits them only indirectly.

1Field-support is the answering of entry-level questions of end-users and helping them diagnose problems,
which - strictly speaking - does not contribute to the community as a whole, as these answers could be readily
found in the existing documentation. It is considered “mundane but necessary” work. [48]

6 CHAPTER 2. THEORETICAL BACKGROUND

2.2.4 Software ecosystem strategy

Adopting an explicit focus on its software ecosystem requires decisions by the company as
to which parts of its product(s) are opened up to other parties and to what extent. [43].
Opening a portion of the company can create new opportunities for other parties in the
software ecosystem. The Open Software Enterprise Model [45] may be used to guide these
decisions. The openness decisions determine the activities, guidelines and standards set by
the company in its software ecosystem. Additionally, the company must develop a business
model and a strategy to remain profitable in its software ecosystem. [43]

The role of a company influences which strategies and forms of value are available to it.
In selecting strategies, companies must not only focus on their own profitability, but also
consider the short-term and long-term health of the ecosystem and their position in it. Com-
panies that do not consider the health of their ecosystem in their actions, especially those in
hub positions, risk extracting too much value from their ecosystem and ultimately leave it
barren. [37]

The choice of appropriate strategy is also dependent on the forms of value that are of interest
to the company. Research by Boudreau on fostering innovation [9] indicates that supporting
open innovation is primarily useful when the wishes of the final consumers are unclear and
thus the risk is relatively high. Boudreau defines two major approaches to software ecosys-
tems: collaborative communities or competitive markets. A prime example of the former is
the Linux platform to which innovations are contributed for the benefit of all, and the latter
the various game platforms (Xbox, Playstation, Wii) which feature strong competition be-
tween the studios that develop games, but who all ultimately benefit from shared innovations
as these tend to increase the competitive strength of their platform of choice. The strategy
selected varies by the type of ecosystem. This is in line with findings by Bosch [8] encoded
in the three-layer product model (3LPM). The 3LPM defines three approaches (called “lay-
ers”) to software product lines or software ecosystems. The first approach “innovation and
experimentation layer” is for products or functionality that are unknown and constitute a
high risk. The appropriate approach is to optimise the number of experiments done with
partners and consumers to greatly increase the rate of innovation. Over time, functional-
ity migrates downwards to the “differentiating functionality layer” as functionality becomes
core to a software product and controlling it provides a competitive advantage to the com-
pany. In this type of ecosystem, the functionality must be protected and hurdles erected to
counter the threat of new entrants, and the focus of the company changes to supply maxi-
mum value to its consumers. Ultimately, the functionality transitions downwards again to
the final “commoditized functionality” layer at which point the functionality has become
so commonly available that having it is no longer a source of competitive advantage to the
company. A good example of this are operating systems, which are required by almost ev-
ery software product on the market but confer no advantage on the supplier of said product.
The appropriate strategy changes once again to minimise the total cost of ownership of the
technology.

2.3. CONCEPTUAL MODEL 7

Berk, Jansen and Luinenburg [5] have developed a software ecosystem strategy assessment
model, which provides an overview of various aspects of strategy in software ecosystems.
“Sharing” is included as a form of “Lifestyle” on a tactical level, but it it only defined as the
dissemination of knowledge. While we recognize that this is quite probably one of the most
important forms of value in a software ecosystem, we feel this is ultimately too narrow a
view. Value sharing should in our opinion be considered on both a tactical and strategic
level. This is another direct trigger for this research project.

2.3 Conceptual model

Figure 2.1 describes our view of the concept of value in software ecosystems. The most
important related concepts, apart from value and the software ecosystem themselves, are
actors, their role(s) and the strategies they employ. We use an informal syntax to draw
this conceptual model, though the notations used should be familiar to those well versed in
computer science. Rectangles depict separate concepts. The area of a rectangle does not
indicate the relative importance of a concept. Labeled lines depict the key relations between
concepts. Open arrows are used to describe an inheritance (“is-a”) relationship between
concepts to add specialisation where needed.

We define an actor as any party that operates in the software ecosystem in some capacity
and has an impact on the software ecosystem. These actors could be anything from a lone
developer constructing a open-source module, to a blogger describing a novel approach
to a widespread problem, to large multinational companies that build and deploy a new
marketplace for applications. In this project, we focus primarily on software companies or
their divisions; large entities that have a defined strategy and some semblance of rationality
to their actions.

Actors fulfill a role that describes their positioning in the software ecosystem. We adopt
the ecosystem roles of Iansiti and Levien [37] but consider them separate from the actor.
As described by Iansiti and Levien, an actor can only hold one role at any point in time
in a single software ecosystem, but an actor is not its role. The actor can act out different
roles in separate software ecosystems at the same time; neither is its role static: through
the application of strategy or changing circumstances, an actor might change its role in
the software ecosystem. In the latter case the actor remains the same entity in the software
ecosystem. For these reasons, we model the role explicitly distinct from the entity that holds
it.

Actors define and execute strategies in the software ecosystem, aimed at improving their
situation. The importance of strategy in both business and software ecosystems is corrob-
orated by Porter in his quote “the essence of formulating competitive strategy is relating
a company to its environment” [60]. This is especially apparent in the study of software
ecosystems, which is based largely on the premise that a software company is better off if

8 CHAPTER 2. THEORETICAL BACKGROUND

Value

Actor

Software
Ecosystem

Role

Health indicator

Robustness Productivity Niche creation

Strategy

operates in

Company Division Person

Form N Niche
player

Hub

Keystone

Dominator

Landlord

develops

executes

affects/influences

with a

provides business
value to

indicates

invests

extracts

contains

Other

Health

has

Form 1

Form 2

Figure 2.1: Conceptual model of value in software ecosystems

2.3. CONCEPTUAL MODEL 9

it considers its surrounding software ecosystem explicitly rather than implicitly. Strategy is
“the determination of the basic long-term goals of an enterprise, and the adoption of courses
of action and the allocation of resources necessary for carrying out these goals” [15]. We
consider strategy in this conceptual model to be a coherent plan, aimed at achieving a pre-
determined goal for the company or entity that defines and executes it. Porter's view of
strategy as a “broad formula for how a business is going to compete, what its goals should
be, and what policies will be needed to carry out those goals [...] combination of the ends
(goals) for which the firm is striving and the means (policies) by which it is seeking to get
there” [60], is overly broad for our purpose: we only seek to consider explicit plans that are
directly applicable to the software ecosystem and provide some kind of tangible effect, i.e.
Porter's “means (policies) by which it is seeking to get there”. In this sense, our concept of
strategy is more closely related to tactics than grand strategy. Neither do we consider the
reaction to unexpected changing circumstances without a predetermined plan as strategy.
We're looking for plans, play-books, etc. Taking Mintzberg, Ahlstrand and Lampel's view
[53] of strategy as either a plan, a pattern, a position, a ploy or a perspective; we consider
strategy only as a plan or ploy, the most concrete instances of strategy that yield a direct
impact on the situation of the company.

Strategies wittingly or unwittingly impact the software ecosystem by moving the value in
it. In a broad sense, strategies can either extract value from a software ecosystem or invest
it. In extraction, value is removed from the software ecosystem as a whole and captured by
the actor that executes the related strategy, denying access to it by other parties. Investment
is the opposite of extraction, in which an actor applies a strategy that releases some form of
value to the software ecosystem, enabling its usage or capture by other parties in the software
ecosystem. In this sense, specific instances and forms of value continuously flow between
two mutually exclusive states of an internal form in a specific actor or set of actors, and a state
of being freely available in the software ecosystem as a “common good”. A form of value in
the software ecosystem is always a business value to some party in the ecosystem, i.e. there
has to be at least a single entity in the software ecosystem which is interested in this specific
form of value as a major or lasting advantage to its business. This does not necessarily have
to be the same party that applies the strategy which affects this form of value. Actors can
release value that they do not value highly (pun intended) and release it to the ecosystem
at large to create new opportunities for other players that do consider this form of value as
essential to their business and/or consider it a good new opportunity. The area of value in
this conceptual model is the focus of the first part of our research project.

One of the primary considerations in the definition and execution of strategy in the soft-
ware ecosystem is the effect of said strategy on the health of the ecosystem. The impact of
investment and extraction of value is expressed in terms of the software ecosystem health
indicators of Iansiti and Levien [37], of which there are three. Naturally, executing strategy
also affects the bottom line of the company that does so, but this effect is much more clear
and has been extensively studied in other scientific fields. We will not consider it further in
this study.

10 CHAPTER 2. THEORETICAL BACKGROUND

As for the central concept of software ecosystem, we adhere to the previously mentioned
definition of Jansen, Brinkkemper and Finkelstein of a software ecosystem as “a set of busi-
nesses functioning as a unit and interacting with a shared market for software and services,
together with the relationships among them. These relationships are frequently underpinned
by a common technological platform or market and operate through the exchange of infor-
mation, resources and artifacts.” [43]. In this conceptual model, we take a predominantly
economic view of the software ecosystem, focusing more on the common market rather
than the common technological platform. The phrase “exchange of information, resources
and artifacts” in this definition supports our central tenet that there exist several distinct forms
of value in a software ecosystem and these can be moved inside of the software ecosystem.

2.4 Research triggers

From the related work and the conceptual model, a number of problems and deficiencies
become apparent. First and most important, no formal definition exists for the concept of
value in software ecosystems. Given the central position of this concept in the conceptual
model and in our research project, it is crucial that this definition be created and validated.
In tandem, we have no clear overview of forms of value in software ecosystems. As depicted
in Table 3.1, one can easily come up with a few likely candidates but this is neither a compre-
hensive nor validated overview of how the concept of value in software ecosystems is applied
in practice. Not having this definition and overview is an important gap in our understand-
ing. Creating this definition and overview yields new questions that touch upon the usage
of value in software ecosystems. While research on strategy in software ecosystems exists, it
does not relate directly to the concept and forms of value. This gap needs to be addressed.
These gaps are the primary triggers for our research project which the authors seek to cover
with the research questions.

2.5 Research questions

Based on the theoretical background and triggers for this project, four main research ques-
tions are identified:

RQ1. How can we define value in software ecosystem?

RQ2. What forms of value exist in a software ecosystem?

RQ3. How can value be extracted from a software ecosystem?

These research questions are designed to meet the problems posed by the research triggers.
The research questions therefore map directly onto the conceptual model (Figure 2.1). In

2.5. RESEARCH QUESTIONS 11

Figure 2.2 the conceptual model is overlaid with the areas of application of the main research
questions of this project. These indications in red are the areas of our conceptual model that
are impacted by the research questions, showing how the model and our knowledge of its
concepts is expanded by this project. The first research question RQ1 yields a definition
of the concept of value in software ecosystems. Such a definition does not yet exist and is
needed to improve our understanding of the concept. Research question RQ2 expands our
knowledge of the various forms of value in software ecosystems. This list is important to
gaining an understanding how value is applied in practice. Finally research question RQ3
improves the scientific understanding of how strategy is created and applied in the context of
software ecosystems, and how this impacts the dissemination of value in software ecosystems.

A fourth research question was originally included as “How much value can be extracted
without damaging the health of the software ecosystem?”. Unfortunately there was not
enough time for a proper in-depth investigation and the research question has been dropped
from the project. The concept of health in software ecosystems, appear in a somewhat di-
minished form in the answers to RQ3, specifically the work on participation in plays (chapter
6).

Value

Actor

Software
Ecosystem

Role

Health indicator

Robustness Productivity Niche creation

Strategy

operates in

Company Division Person

Form N Niche
player

Hub

Keystone

Dominator

Landlord

develops

executes

affects/influences

with a

provides business
value to

indicates

invests

extracts

contains

Other

[R2]

[R3]

[R3]

[R1]

Health

has

Form 1

Form 2

Figure 2.2: Conceptual model of value in software ecosystems, overlaid with the research
questions of the research project

12 CHAPTER 2. THEORETICAL BACKGROUND

2.6 Conclusion

This chapter introduced the key elements of existing research, relevant to our research
project. Described are the needed definitions and descriptions of software ecosystems, com-
pany roles (hubs, keystones, dominators, landlords and niche players), health indicators (ro-
bustness, productivity and niche creation), value in ecosystems and the strategies. This is de-
veloped in a conceptual model depicting software ecosystems, actors and their roles in them,
health issues, value and its forms and the strategy that affects all by shifting value around, and
the key relationships between these concepts. The main conclusion is that companies must
pay explicit attention to their positioning in and the health of their software ecosystem, and
their strategies must balance their interests with those of others in the ecosystem. This guid-
ing principle (while obvious) is important to our research project. The triggers for research
are identified in the conceptual model and the four main research questions are posed upon
these gaps.

Chapter 3

Research approach

3.1 Introduction

This research project seeks to first improve our comprehension of value in software ecosys-
tems. We research how value is invested in and extracted from software ecosystems, and
provide a new way of modeling value exchanges between companies. The project is or-
ganised in several distinct phases. The complete approach is described and the main phases
depicted using process-deliverable diagrams (3.2). Challenges to the successful completion
of the project are identified (3.3) and the validity of this approach is discussed and substanti-
ated (3.4).

3.2 Research process

The research project is executed in three consecutive phases. To build an thorough under-
standing of the topic, a structured literature review (SLR) is conducted. This SLR seeks to
answer the first research question on the definition of value in software ecosystems and the
second research question on the forms of value. Based on existing literature, a number of
strategies are selected and used to develop a new artifact to express the concept of moving
value within a software ecosystem. Finally, this artifact is validated using real-life case studies
based on interviews with key employees at companies in related software ecosystems.

Confronting the first research question, no generally accepted definition of value in software
ecosystems exists. We need to create this definition. Suitable definitions do exist for both
software ecosystems and (business) value. For the definition of value, we use the short version
given as “any desirable result for stakeholder in a context” [13]. A stakeholder in the context
of software ecosystems is interpreted as any company that is directly or indirectly affected

13

14 CHAPTER 3. RESEARCH APPROACH

by actions taken by the company that is the object of study. Note that this does not preclude
competition between companies in the ecosystem. The definition of a software ecosystem
we adopt by Jansen et al. [43] is discussed in section 2.2.

Based on a preliminary brainstorm, we have identified a potential set of forms of value in a
software ecosystem as a starting point for further research (Table 3.1). These values include
concepts like increasing the robustness of the ecosystem, an increase in productivity, fos-
tering innovation, lowering development costs, revenue, increased brand recognition and
improved developer relationships. This list of forms of value is by no means exhaustive or
conclusive, and provides only a starting point for the SLR.

Ke
ys
to
ne
s

La
nd

lo
rd
s

D
om

in
ato

rs

N
ich

ep
lay

er
s

defensive strength 3 3 3

increased productivity 3 3

increase innovation 3 3

lowered development costs 3 3 3 3

money/fees 3 3

brand recognition 3 3

Table 3.1: Concepts of value with interested roles [37] in a software ecosystem

Different forms of value are of interest to different roles in the ecosystem. A company that
commands a dominator role in the software ecosystem will have a vested interest in tremen-
dously increasing the defensive strength of the ecosystem to decrease the threat of new en-
trants, even to the point of deliberately hindering innovation. A niche player that is active in
multiple software ecosystems will in contrast be much less reliant on the continued existence
of a single ecosystem and may subsequently prefer a more hospitable strategy in the software
ecosystem in order to generate maximum innovation and profits. The possible sources of
value are laid out in Table 3.1 against the commonly-used ecosystem roles [37]. It is clear
from the entries in the table that the interests of companies playing different roles are almost
mutually exclusive. Entries in this table are in line with previous findings [37] that successful
execution of their strategy by landlords and dominators might harm the interests of niche
players, who are dependent on other forms of value that are marginalised by the dominating
parties.

The major activities of each phase of the project are depicted as method fragments in process-
deliverable diagrams [75] in Figures 3.1, 3.2 and 3.3. Most of the method fragments describe
basic processes well known in academia that are not specific to this project. The associated
tables with in-depth description of the artifacts and activities are therefore omitted for brevity
as these add very little. In addition, connections between artifacts are not labeled in some
cases where their interpretation is obvious.

3.2. RESEARCH PROCESS 15

The SLR is executed (Figure 3.1) based on the process as described by Kitchenham [47].
While the need for a SLR is obvious from section 2.4, it is appropriate to explicitly report on
this need, including the formal criteria as specified by Kitchenham [47]. After developing a
review protocol (which will be peer reviewed), we proceed with gathering the appropriate
sources in accordance with it. If needed, the selection criteria will be adapted as described in
section 3.3. Afterwards, we report of the results of the SLR based on which a valid definition
of the concept of value in software ecosystems is constructed, and the main forms of value
identified.

IdentifyTneedTforTSLR

DevelopTreviewTprotocol

IdentifyTsources

RefineTcriteria

[sufficient?]

[else]

REVIEWTPROTOCOL

SOURCE

ExtractTdata

SLRTREPORT

SynthesiseTdata

ReportTreview

VALUE

re
po

rt
sT

on

de
sc

rib
es

SLR

re
po

rt
sT

on

AssessTquality

SelectTstudies

1

1

1

1..*

1

1..*

Figure 3.1: Process-deliverable diagram of the first phase (SLR) of the research project

In the second phase of the research project, we start by finding from literature various “strate-
gies” that actors in software ecosystems can use. These strategies are adapted from seminal
works on the topic such as Popp's Profit from Software Ecosystems [59] and Iansiti and
Levien's book The Keystone Advantage [37], and the results of the previous SLR. From this
list, a number of strategies are selected which are suitable to use for expressing the concept
of exchanging value in a software ecosystem. For example, some strategies that involve only
changes internal to a company, are to be excluded. The authors elaborate on these choices in
chapter 5. Based on these selected strategies, the main artifact is developed and the strategies
are modeled using the artifact. The resulting models are extensively discussed in this thesis.

The third phase consists of largely two steps: conducting interviews at companies in various

16 CHAPTER 3. RESEARCH APPROACH

Development

1

1..*

e
x
p
re

ss
e
d
 i
n

Find strategies

ARTIFACT

Select strategies

Develop strategies

STRATEGY

Construct artifact

Figure 3.2: Process-deliverable diagram of the second phase (developing artifact) of the
research project

software ecosystems, and expressing their situation using the same models used to describe
the theoretical scenario's. The interviews are conducted in a semi-structured fashion. The
sub-activities are based primarily on the process described by Hove & Anda [35]. Two
activities prescribed by Hove & Anda as these are not relevant to this research project. One,
the discussions/meetings-activity is not relevant because the interviews are done by a single
researcher. Two, transcribing of interviews is excluded because the expected benefits do not
outweigh the costs. A single hour of interview can take up to eight hours to fully transcribe
[35]. Neither will we analyse the answers in-depth using textual analysis. All interviews will
be fully recorded to preserve a proper chain of evidence. Interviewees are asked for their
permission prior to starting the interview, and all interviewees gave their explicit consent.
After starting the recording, this question and the consent were repeated to be recorded.

Selecting companies is done based on a few hard criteria which are elaborated on in chapter
7, which also contains the interview protocol. Some background information is collected on
companies, but this is a limited activity such as studying the website of the company. This
is mostly done to ease the conduction of the interview by gathering common knowledge
such as company size, main products, etc. so that no time has to be wasted in the interviews
on gathering information that is readily available in public sources. The situation of every
company is subsequently modeled using the artifact. The resulting model is sent to the
interviewee with a few probing questions for validation.

The first phase of the research project provides the answer to the first and second research
questions, while the second and third phase uncover the answer to the final research question.

3.3. CHALLENGES 17

INTERVIEW

Validate artifact

Interviews

Develop into artifact

Select companies

Collect background information

Schedule interviews

Prepare interview protocol

COMPANY LIST COMPANY

APPOINTMENT

1

1..*

1
1

1

1

ARTIFACT

1

1
data for

Conduct interview

Figure 3.3: Process-deliverable diagram of the third phase (interviews) of the research project

3.3 Challenges

A number of challenges have been identified that constitute realistic threats to the success-
ful completion of the project. We list these issues in this section and discuss the measures
implemented for mitigating the effects or preventing these problems altogether.

The main threat to the first step, the SLR, is a potential lack of reliable, published scientific
research on the subject. Value (extraction) in software ecosystems is a relatively sparsely
populated subject, as a quick search using Google Scholar yielded very little results. We rise
to this challenge in twoways. If needed, we adapt the SLR to consider literature on value and
value extraction in other types of communities, including but not limited to communities of
practice, business ecosystems and (online) social networks. In tandem, we expand the SLR
to include non-scientific sources of information such as business publications, whitepapers,
press releases, etc. though we should be mindful of and explicitly report on any quality issues.
We expect these measures to adequately mitigate the risk of insufficient breadth. While
the creation of a definition of value in software ecosystems that is embedded in sufficient
literature is strongly desirable, it is not strictly necessary for this research project to proceed.
If all else fails, we will construct a usable definition based our own experience with existing
studies in this field and subject this definition to expert review. Finally, we aim to use the
structured interviews later in the process to both validate and extend the list of forms of value
found in the SLR. It is therefore not necessary to create an exhaustive list of forms of value
based on the SLR alone.

The challenges in the interviews lie primarily in the reliance on sufficient interest and coop-

18 CHAPTER 3. RESEARCH APPROACH

eration at the companies. Companies might not be aware of the need of paying attention
to their software ecosystem at a sufficiently high level in the company's hierarchy and subse-
quently not willing to cooperate in the study. We aim to prevent this by relying on warm
introductions by dr. Slinger Jansen, Martijn Feekes and other professors/experts, though we
are mindful of the selection bias this may incur on the participants. For example, compa-
nies who have worked with dr. Slinger Jansen on research in software ecosystems can be
expected to have a higher than average understanding of their surrounding ecosystem. A
second problemwe expect to encounter at case study companies is based on existing research
in the field of software ecosystems. Existing literature [5, 31] suggests that most work in this
field is based on the financial data of companies. In the latter half of this study, we focus
on the strategic aspect of value extraction. These two subjects are both possibly considered
confidential by companies, especially if they are publicly traded, or we touch on strategies
that have been developed but not yet publicly adopted. We prevent this second problem
by explicitly offering to make participating companies anonymous if desired and only pub-
lish company information relevant to the study such as the number of employees, turnover,
markets, etc. as needed for a clear understanding of its situation.

3.4 Validity

This research project suffers from a few specific concerns related to the validity of results.
Academic rigor is applied in all steps by adhering to known best practices in conducting
science [35, 47, 76]. To preserve the chain of evidence from the interviews to our analysis,
we will ask for permission to record the interviews and we will provide the source material
to other researchers upon request.

A number of specific challenges affect the development of the artifact. It might become
apparent from the interviews in phase two that the interviewed companies do not execute
a pre-defined strategy that is at least closely associated with value extraction in software
ecosystems. In this case, we also expect these companies to not have a articulated expectation
of value in their software ecosystem, something which would quickly be obvious from the
interview. Wewill adapt as needed, but have no specific strategy in place tomitigate this risk.
Second, a potential result of the interviews might be that company strategy related to value
extraction in software ecosystems is too dependent on the specific situation of the company
and its software ecosystem, with no common themes to be identified. We expect this to
be a highly improbable scenario. Nevertheless, if such are our findings, we revert our goal
of building a concise model to providing a descriptive overview of current practices in the
field. The main challenges in the developing the artifact from existing strategies are twofold:
not having a separate test-set and basing the strategies of literature. The main artifact will
be constructed based on the set of existing strategies that are retrieved from existing work
by relatively famous authors. This approach makes the artifact capable of describing the
strategies on which it was based, but it does not imply that the artifact will be able to be
properly used on strategies found in other research, or developed in practice. We mitigate

3.5. CONCLUSION 19

this risk by using three separate sources for strategies to increase the variability found in
this set of strategies. This does not mitigate the second concern: basing the strategies only
on scientific literature. This validity concern is reduced by the combination with the third
phase of the project, in which the same artifact is applied to describe real-world situations of
actual software companies.

The main concern for the interviews is the introduction of selection bias, introduced by
relying on warm introductions by dr. Slinger Jansen. For example, companies who have
worked with dr. Jansen in the past can be expected to have a better than average grasp
of their surrounding ecosystem, and thus subsequently employ better strategies in dealing
with them. This bias is somewhat lowered by including some companies referred by other
colleagues, but cannot be completely excluded.

3.5 Conclusion

The research approach described in this chapter provides a solid basis for the execution of
the project. Special care is taken to reduce specific biases. The four phases of the project are
based on scientific best practices and validation of created artifacts is included at every step of
the way. Challenges to successful completion are identified and specific strategies employed
to mitigate their risk to the project.

Chapter 4

Structured literature review

4.1 Introduction

This chapter depicts the structured literature review (SLR) and its results. The first three
sections comprise the parts of the review protocol as described by Kitchenham [47]; specif-
ically the rationale for the SLR (4.2), the main questions and related viewpoints (4.3), and
the strategies and criteria used (4.4). The review protocol has been peer-reviewed by our
colleagues and adjustments have been made based on their feedback. The final sections of
this chapter report on the results of the SLR (4.6) and the analysis (4.7). These results serve
as the answer to the research questions RQ1 and RQ2 (4.8).

4.2 Rationale

It is clear from existing research on the subject, as discussed in section 2.2.3, that no solid
definition of value in software ecosystems is available. To answer the first research question
RQ1 of this project, such a definition must be created. Neither exists a clear and exhaustive
overview of forms of value in software ecosystems exists. This overview is created to answer
the second research question RQ2. This SLR is the first step in closing this research gap. If
we relate this reason to the reasons defined by Kitchenham [47] it is most closely related to
“provide a framework/background in order to appropriately position new research activities.”
and to a lesser extent to “assist in the generation of new hypotheses”.

The review must be conducted in a structured way. A new definition should not be biased
by our personal experience. Additionally, the review must be conducted as exhaustive as
possible given the constraints of our project to generate a complete and unbiased overview
[47].

20

4.3. QUESTIONS 21

4.3 Questions

The most important part of a SLR, apart from conducting it in a structured fashion, is asking
the right questions. The questions should be relevant to both academia and practice, and
feasible [47]. In the case of this specific SLR, this presents somewhat of a problem. We
can not search directly for instances of value in software ecosystems as the research gap has
shown that such studies do not exist. The concept of value is however closely related to
“business value”. We can thus study the business models of product software companies and
construct the values from them. The questions for the SLR are thus defined as follows:

1. Which business models exist for product software companies?

2. Which factors are identified that influence model performance?

Kitchenham [47] describes valid questions for SLRs from three complementary viewpoints:
population, interventions and outcomes. While the viewpoints are not directly applicable to
our study, we can view the questions through this lens. The population in the SLR consists
of any product software company. The adoption of a new model could be considered the
intervention, though we would be hard-pressed to find consistent before-after studies as
changes in business models are often coupled with the introduction of new products, services
or markets. The outcomes are improvements in the broadest sense to the situation of the
company, be it their strategic positioning, revenue, profits or brand recognition.

4.4 Approach

The SLR is conducted exclusively through CiteSeerX1, despite the prevalent scientific opin-
ion against the practice [7, 26, 39, 47, 55], though not all studies and researchers agree [24,
55].

The criticism of using a single search engine is largely aimed at the suspected search engine
framing and reproducibility, poor quality controls and the reliance on a single source. The
first concern seems based on only speculation and the unsubstantiated assumption that all
search engines operate as Google does. Despite proper testing using different PCs, ISPs and
user accounts, any form of search engine framing by CiteSeerX could not be reproduced by
the authors. The second concern is valid in our opinion, though solid evidence to support it
is lacking and the criticism is mostly leveled at methodological errors in studies in favour of
using Google Scholar. We choose to disregard this concern as the potential problems do not
outweigh the speed with which we require to execute the SLR. The third concern is not a
valid concern in our opinion as the search includes results from multiple authors, countries,
affiliations, companies, etc.

1http://citeseerx.ist.psu.edu/

http://citeseerx.ist.psu.edu/

22 CHAPTER 4. STRUCTURED LITERATURE REVIEW

We have constructed a small tool that allows us to quickly scrape a number of publications
based on specific searches, with title, abstract and number of citations included. The search
terms and subsequent results are included in Table 4.1.

We then apply some hard criteria. All hits that are not a published, scientific paper, report
or thesis are rejected. All publications which have no citations are rejected too. The title
and abstract of each paper is than read and judged for inclusion based on the contents. The
publications that remain are subsequently read in full. If a publication at this point is not
considered relevant or the methodology judged unsound, it is removed from the SLR.

4.5 Limitations of the approach

This SLR is not perfect, and four limitations have been identified.

The main limitation is the inherent bias in the selection criteria. To limit the result set to top
quality sources, the results of the scraper are ordered by citation count. As the used search
engine returns only the top 500 results for any query, this automatically serves to exclude less
cited studies from the SLR. However, citation counts are primarily a measure of impact, not
quality of a given publications. Additionally, this approach tends to exclude newer studies
with potentially more recent insights in favour of the ‘classics’ of the field. Additionally, we
have not corrected for self-citations, papers published by authors who refer to their own
previous work. A manual inspection of a random sample (n=20) of the publications was
conducted and concluded that this problem is probably not an issue as it appears very little
in our data-set.

Three additional limitations have become apparent from the inspection of the results. It is
hard to adopt a consistent, clear and complete definition of a business model. Various studies
have differing opinions on what elements are included and excluded, and the wording is
making things worse. Some papers indicate a strategy to enter a new market as a business
model, while others discuss price discrimination strategies and name that as a business model.
Ultimately, we have identified four common elements that are broadly accepted and which
are discussed in the results.

A lot of early stage e-commerce business models we encountered in the SLR are basic adap-
tations of existing, pre-digital business model with superficial changes, described in research
papers mainly concerned with improved logistics, made-to-order products and increased
price competition. These business models are largely not applicable to the software indus-
try, do not yield any meaningful contribution to our study and are thus excluded from the
analysis.

Finally it is very tough to find a set of descriptions of business models. Nearly every author
seemmore than happy to talk about “business model-models”, and tooling to design business

4.6. RESULTS 23

models is abundant and omni-present with the Board of Innovation2 and Business Model
Canvas3 as the most well-known examples. The simple descriptions of business models are
a lot less common. Due to this effect, the analysis of business models is limited to bits and
pieces retrieved from other studies, and it is hard to paint a complete overview of current
practices in the field.

4.6 Results

The selection criteria used in the SLR (see 4.4) result in the exclusion of a number of studies
from our initial set of publications. The numerical effects of these filters are described in
Table 4.1. The table lists the total number of hits on a given query and how many hits were
retrieved (title & abstract). The third column “exclude technical” lists the number of hits
rejected for technical reasons. There are three reasons entries can be rejected on technical
reasons: it is a duplicate entry that appears under multiple keywords, it is not a published
scientific paper, or it has never been cited. The next column “exclude contents” counts all
papers which are rejected as not relevant to our study upon reading. The final column lists
the total count of papers which were included in the SLR. Note that the results do not cite
all 123 papers, as we only report on the most significant findings in the SLR.

Exclude Exclude
Search query Hits Retrieved technical contents Included
“business model” software 29.812 500 1 444 55
“software ecosystem” “business model” 171 171 152 7 12
“software ecosystem” strategy 382 382 325 44 13
company platform “business model” 178.368 500 22 446 32
company platform strategy 537.907 500 39 450 11
Totals: 746.640 2.053 539 1.391 123

Table 4.1: Search keywords in the SLR with number of results and inclusion/exclusion
counts

A number of effects are immediately apparent from reading the included studies. First of all
a large disagreement in literature on what a business model is, and what it is comprised of.
A large variation of different approaches and definitions is encountered. Value propositions,
specific go-to-market strategies and organisational values are all referred to as “business mod-
els”. Ultimately a widely accepted definition is not found, neither a sliver of consensus on
the subject. However through the SLR we have identified four main elements that are most
often referred to as central tenets of a business model. These elements are best framed as ques-
tions and are each discussed in turn below: what is sold? how is it sold? how is it paid for?
and what affects the performance of the model? The former three elements relate closely to

2http://www.boardofinnovation.com/
3http://www.businessmodelgeneration.com/

http://www.boardofinnovation.com/
http://www.businessmodelgeneration.com/

24 CHAPTER 4. STRUCTURED LITERATURE REVIEW

the first research question of the SLR (which business models exist?) while the latter relates
to the second question (what affects the performance?).

4.6.1 What is sold?

What is being sold comprises the nature of products changing hands and services being
delivered. It is naturally the category with the largest diversity. However, even with the
wide variety found in the studies studied, a number of clusters can be identified which are
relevant to a (SaaS) software ecosystem.

Starting from simply selling a product or service [1, 6, 16, 18, 25, 28, 38, 44, 49, 51, 52,
63, 66–68, 71], a number of papers cite added products or services as a potential source of
sales. For example consulting work on implementations of product software [1, 16, 18, 21,
40], with outsourcing tangibly related [29, 30, 44, 52], or even selling improved software
on hardware built by direct competitors [16]. Additionally plugins, mods and extensions
are well-known and widely used [40, 41, 44, 57]. This serves as a strong indicator that
complementary opportunities are important in building succesful sofware. However, some
parties prefer to erect some barriers to cooperation, employing paid access to APIs, source
code or documentation [38, 40] and preferred partners, often in a tiered system [40]. This
creates a direct revenue stream in lieu of reduced entrance of new partners.

Online marketplaces and platforms have an increased role due to lowering transactions costs,
resulting in some novel approaches such as vulnerability marketplaces [2], reselling user-
generated content [22], virtual gifts exchanged [54] or companies that aggregate pricing
information of various markets and suppliers [34].

Finally, we are left with a significant group of high-level strategies we collectively refer to as
“open source-plays”. Companies have various reasons to participate in open source projects
or even open up parts of their codebase, such as adopting an open source-freemium model
[72] with an open source, limited (both in license and features) product often referred to as a
“community edition” and a premium offering for commercial usage. It could be applied to
deny new entrants access to the market by offering feature-rich software for free [11]. The
model is equally applicable to services [23, 32, 73], offering premium support, consultancy
and implementations of their open source product. These strategies can even be pursued
over different stack levels. The software package is released as open open source, increasing
its adoption compared to priced offerings. Said software subsequently performs best on
hardware sold by the company, boosting revenue from hardware sales. Companies might
seek to lower costs by outsourcing some of the development to the greater community [23],
using bug bounties [4] or public roadmap funding [23, 40] to steer development. In a reversal
of this model, the company accepts donations from the community to fund its contributions
to an open source project [23].

4.6. RESULTS 25

4.6.2 How is it sold?

How it is sold concerns the various methods by which the products and services above are
sold to end-users, or how the market on which they are traded functions. A number of
variations are apparent from the SLR.

The payer does not have to be one and the same with the end-user. A company can adapt
and change the payer by for example including advertising [14, 18, 22, 29, 51, 54, 58, 62, 65,
69, 78] and reselling data of end-users to third parties [22, 51] resulting in a free or cheaper
product for end-users.

SaaS, and the variants PaaS and IaaS, are the dominant delivery model for software with
respect to the scientific literature [6, 18, 27, 44, 51, 52, 66–69]. SaaS allows companies to
fund IT as an operating expense instead of a capital investment. Ultimately in the fullness of
time this might result in the promise of “IT as a utility” [14, 67] in which IT resources and
software are delivered in a way similar to electric power is.

Finally, a number of publications write on the adoption of new markets and platforms. In
these scenarios, companies build a (N-sided market) platform [14, 38, 41, 64, 69, 77], or
create a new clearing house [2, 14, 19, 28, 34, 40, 51, 56, 65, 70] for either a new market or
an existing market that benefits from improvement in various ways, and capture a share of
the traded value in exchange. Auctions are a closely related concept, though mostly adopted
in e-business and advertising [14, 18, 22, 29, 51, 54, 58, 62, 65, 69, 78]. Customers might
also band together to group-buying concepts [14, 25, 46, 56] in which customers but in
bulk to profit from volume discounts.

4.6.3 How is it paid for?

Value that is spread to customers and end-users nearly always has a return component. While
this is usually a form of monetary compensation, especially in simpler business models, other
models exist which alter the exchange. In the result set of this SLR, these adaptations either
delay the pricing or change it.

Delaying pricing reduces the profit from the initial value exchange, in exchange for (the
expectation of) higher future profits. Examples are the razor-blade model [16, 64] and the
freemium model [17, 18, 28, 32, 51], the former selling the initial artifact at a price lower
than the market will bear. The latter offers a less powerful version of the product, in hope
of enticing companies to upgrade later when they have bought into the value proposition
of the product or service. In more extreme cases, it is a “loss leader” [64] in which the initial
value is exchanged at a loss, forcing the company to recoup it through later transactions.

Pricing is changed when either the payer or the payee of the money flow is adapted. The
prime example, advertising [14, 18, 22, 29, 51, 54, 58, 62, 65, 69, 78] is one of the main

26 CHAPTER 4. STRUCTURED LITERATURE REVIEW

pillars upon which IT is built, especially when sold to consumers as opposed to companies.
This can also include reselling usage data to advertisers [22, 51]. It allows for free delivery
of value to end-users in exchange for their (presumed) attention to advertisements. An
alternative change is bundling [6, 18, 25, 28] in which the product is combined with other
complementary products and sold as one package. A bundle might be offered for a reduced
price, some products being offered cheaper and subsidised by its complements [28]. In some
cases unbundling a monolithic product might also be favourable [72]. The payee is changed
much less often than the payer, as any company that is not a charity will need to reap some
benefit from delivering its products. Adopting a kickback-scheme [49] is such an option,
paying a fee to a third-party for delivering sales opportunities.

4.6.4 What affects the performance?

A large number of factors can be identified which influence the performance of a business
model. Some of those are obvious from the definition of the business model itself such as the
performance of a vendor lock-in play being affected by the incompatibilities with competing
products. Some factors are more broadly applicable and a number of results from the SLR
will be discussed here. As there are uncountable variants of business models, each having
one or more properties that affect its performance, there is too an inexhaustible supply of
performance factors. We naturally do not endeavour to create an even remotely complete
list.

First up are the direct financial incentives. Strong price competition [67, 70] erodes margins
and might force companies towards alternative schemes such as freemium and loss-leader
plays. Research shows that the decisions of buyers to invest in software are for example
heavily influenced by potential indirect cost savings rather than price [6, 12].

Curated markets and N-sided market platforms are strongly affected by both the level of
customer lock-in [6, 67, 72]. However, the customer' perception of the level of vendor
lock-in reduces the inflow of new entrants [70, 72]. For solid performance, the products
must further lock-in, but it mustn't look it. Related to these factors are the reduction of
initial adoption problems [40] and low search costs for buyers [70], which both serve to
improve the influx of new customers.

A large number of factors in the SLR deal with complementary opportunities. It is impor-
tant for products to have many opportunities for complementary products [6, 65]. Adopting
interoperable standards [6, 40, 72] might be a good way to stimulate this. Creating modular
products may help too [63]. Network effects [6, 20] which serve to attract new customers,
are strengthened by these factors, even more so when taking into account network external-
ities [72]. Congestion (reverse network effects) [6] can dampen the network effects when
present, or mitigate them altogether.

4.7. ANALYSIS 27

4.7 Analysis

From the business models and factors (section 4.6), a number of clusters become apparent
that could entice companies to join a software ecosystem. These clusters are displayed in
figure 4.1. These clusters serve as the final answer to research question 2 (section 2.5).

Complementary
opportunities Improved

effectiveness

Access to

Savings

Data Customers

Marketing power

Platforms &
closed markets

API´s

Complementary
products & services network effects

reduced
time-to-market

development
support

rapid setup/
deployment

hosting

plugins, mods,
extensions

bundling

open-source
plays hardware/software

{P, S, I}aaS

complementary stack
positioning

interoperable
standards

R
E
S

O
U

R
C

E
 L

E
V

E
L

C
O

L
L
A

B
O

R
A
T
IO

N
 L

E
V

E
L

Figure 4.1: Main clusters of results from SLR

We divide the value in the software ecosystem in two separate levels: resource and collab-
oration. The resource level comprises reasoning in which joining a software ecosystem is
not optional. A company (usually a niche player) that needs to use another company's (usu-
ally a hub) customer data or gain access to its customer base, has no choice but to join the
ecosystem. The resulting relationship largely operates as a “two-sided market platform” [64].
Accepting the terms and conditions that the hub sets, is a conditio sine qua non for joining.
The performance of this business model from the perspective of the host is mediated by
the balance of negotiating power between companies. Having very useful data available
raises the price the hub can charge, while having another suitable alternative available, low-
ers it dramatically. The joining companies essentially pay the hub for having access to its
data, commonly through (metered) APIs, or alternatively pay for its market reach, essentially
buying the right to contact and sell to the hub's customers. If the hub can allow partners
to reach its customers in a way that is mutually beneficial, it can extract hefty fees from the
other companies while preserving its relationship with its current customers.

28 CHAPTER 4. STRUCTURED LITERATURE REVIEW

The second “collaboration level” consists of the other forms of business value found in the
SLR. These are the forms of business value with which a company might help to support
other companies. This form of business value in a software ecosystem is more optional than
those in the resource level in which participation is an obvious requirement for gaining ac-
cess. Companies seeking value on the collaboration level can freely choose to engage in the
ecosystem if it is beneficial to them. It usually employs a more tailored approach to the re-
lationship, instead of the hub or platform setting the terms for participants indiscriminately.
The forms of value are defined in three main opportunities for companies: savings, improved
effectiveness or complementary opportunities, though all three clusters are closely related.
Savings describe the business value that reduces the development costs or operating costs of
partner companies. For example, a company with an API might develop a software devel-
opment kit (SDK) for a programming language that is popular with its partner companies.
An SDK helps partners with their development efforts by containing common, boilerplate
setup logic and abstracting common functionality of the API. This reduces the development
costs of using the API for partners, saving money while it might also contribute to a faster
time-to-market of innovative solutions. This in turn makes the ecosystemmore attractive to
new partners as productivity is a primary indicator of software ecosystem health, attracting
more partners to the more healthy ecosystem, strengthening network effects present in the
ecosystem. The second cluster “improved effectiveness” is the natural opposite of savings,
generate more revenue faster for partners, rather than saving them costs. The aforemen-
tioned SDK that helps to attract new partners also helps these partners to get setup faster and
hit the ground running in development. This reinforces the network effects present even
more. The final cluster “complementary opportunities” comprises all business value which
enables partner companies to build complementary, not competing products, services and
artifacts in the software ecosystem. This cluster ties back strongly to the other main health
indicator of software ecosystems “niche creation”. One prime example of a complementary
opportunity is a complementary stack position between companies. A company that makes
a product sold to consumer, end-users can collaborate more closely with a company that
develops server hardware, an operating system or anything else of the myriad of technolo-
gies that are involved in delivering the final user-facing product to the end-user, without
becoming competitors. The same principle applies to makers of complementary products
and services that offer more benefit from integration than direct competition. An example of
the former is the case of an monolithic enterprise resource planning system, involved in any
and all details of the business that adopts it, compared to a suite of specialised products that
operate in tandem, creating a tightly-integrated, custom solution for a customer that allows
multiple companies to thrive albeit with a smaller slice of the complete pie for each. Com-
panies can explicitly support these complementary opportunities by for example supporting
plugins, extensions or mods4 and essentially adopting an platform approach for its product.
Finally open-source plays have been extensively discussed in section 4.6.1, and bundling and
interoperable standards in section 4.6.4.

4Short for “modification”, a term used specifically in gaming to describe third-party plugins that alter the
aspects of a game to improve it or create a new game altogether.

4.8. CONCLUSION 29

Based on these clusters we can construct our definition of value in software ecosystems,
answering research question 1 (section 2.5):

Value in software ecosystems is any product, service, artifact, improvement or right, which
is enabled or exchanged through the software ecosystem and provides a tangible benefit
to a participant.

This definition closely covers all aspects we have identified in the analysis of the SLR. It
considers the fact that the reason for joining a software ecosystem might be immaterial, such
as having the right to market to a hub's customer base. Value can be exchanged between
parties in software ecosystem, for example in the form of an artifact in the construction of
an SDK. Value is not limited to being exchanged and can also be derived by a company
itself, for example simply having more partners or customers on either side is of value to
a N-sided platform, but this is not in the strict sense value that is provided by the specific
partner as a party in the software ecosystem. The latter case is covered by the inclusion of
“which is enabled [...] through the software ecosystem”. Value does not need to reciprocated
by the receiving party, but it does need to be of a concrete benefit (read: business value) to
a party in the software ecosystem to be considered value. “Participant” is to be interpreted
as “participant in the software ecosystem”, but this extended description is not included as
to not extend the definition needlessly.

The authors recognize that the inclusion of “artifact” in the definition is technically superflu-
ous as artifacts could always be considered a “product” and vice-versa. However, we choose
to make the distinction between products that are exchanged for payment to consumers or
companies in a economic transaction, as opposed to artifacts which are usually distributed
free from direct payment and which realise mostly indirect business value. Informally, read
Microsoft Office and bananas as examples of what we consider to be products, and SDKs,
marketing materials and data-sets as artifacts.

4.8 Conclusion

The results of the SLR serve as the answers to both research questions RQ1 and RQ2. Based a
structured search through scientific literature, themain forms of value in software ecosystems
are identified as the creation of complementary opportunities, realising savings in both time-
to-market and costs, and other measures that make the business of partners more effective.
If one party controls access to a needed resource such as access to existing customers or their
data, these benefits are sidelined by the need to have access to that resource. Based on these
SLR results, the definition of value in software ecosystems is constructed as “any product,
service, artifact, improvement or right, which is enabled or exchanged through the software
ecosystem and provides a tangible benefit to a participant”.

Chapter 5

Value Exchange Graphs

5.1 Introduction

Confronting the third research question in this project (how can value be extracted from
software ecosystems?) describes the way a company might capture value from its ecosystem.
We adopt the viewpoint that value generally flows through a software ecosystem between
the companies operating in it. A company might release example code of the intended
usage of its APIs to teach partners the proper way to use the API. This provides partners
with an improved understanding of the thinking behind the API, reducing the occurrence
of potential issues in development. In return, the company supplying the API receives less
support requests, reducing its operating costs. In this fashion the two partners help each
other succeed. The business value, which is different for each partner, flows between them.
Companies can influence how business value flows between them by adopting different
business models, changing tactics or strategies in a coherent fashion. We refer to these
actions as “plays”. Variations of plays that do not change the general idea of a play but
change its parameters, are named “scenarios”.

In this chapter we show that the changing flow of business value when affected by a play,
can be modeled in a visual way by drawing a Value Exchange Graph (VEGA). The chapter
begins with depicting the formal meta-model for a VEGA (5.2). We describe three sepa-
rate variants of software ecosystems and a set of plays that can be effective in changing the
flow of business value in them (5.3). These plays are developed in VEGAs and the implica-
tions extensively discussed (5.3.1 through 5.3.9). Finally, we discuss the main limitations of
applying VEGAs (5.3.10) and conclusions to the research questions (5.4).

30

5.2. VEGA META-MODEL 31

5.2 VEGA meta-model

Value Exchange Graphs (VEGAs) are directed, unweighted graphs with actors as vertices
and exchanges of business value as its edges. The VEGA is described in a formal meta-
model depicted in Figure 5.1. Note that the meta-model does not prescribe a visual style
for the elements of the diagram, which are left to the discretion of the reader. We adopt
the visually simplest style that covers our use case, but other users may feel the need to add
further distinctions such as borders around actors, etc. They are free to do so.

ACTOR
Identifier
Startingxactor

FLOW
Direction

VALUE

connects
2

1..*

ex
ch

an
ge

s

1..2

1
ca

rr
ie

s

1..*

1

Description

Figure 5.1: Meta-model of the business value flow diagram

An actor (vertice) represent a participant in the software ecosystem. It is usually a company
or a single developer, but no explicit constraints are set. The various types of actors (com-
panies, developers, business units, etc.) are not of interest here and thus not distinguished
in the notation. An actor has an identifier, which is usually the name of the company when
modeling a specific play or a role (partner, customer, etc.) when describing a more general
scenario. One actor in the diagram is the “starting actor”, depicted here as a boolean attribute
of the Actor-concept. This is the actor which adopts the play and executes it. It is purely a
semantic distinction, indicated in our diagrams by a slightly different colour. Flows (edges)
connect actors. A flow always runs from an actor to an actor. It may connect from an actor
to the same actor. For example, development costs to execute the play are usually indicated
as a flow from the main executing entity to itself. An actor must have at least flow to partic-
ipate, though it can be a passive participant, i.e. having one or more inbound flows, but no
outbound flows. Flows may not flow through an actor and continue to another one: these
must be distinguished into two separate flows. In our experience, wanting to run a flow
through an actor usually indicates another deeper, semantic problem with the description
of the business value. Business value (edge value) is exchanged by actors and carried over
flows. It has a textual description to indicate its contents. A value may appear on more than
one flow, while it should obviously appear at least once.

32 CHAPTER 5. VALUE EXCHANGE GRAPHS

5.3 Software ecosystem plays

To show how a business value flow diagram can be used to develop a clearer understanding
of plays in software ecosystems, a number of existing plays from literature are expressed
in business value flow diagrams. We begin by searching for applicable plays in software
ecosystems in existing literature. These plays are primary adapted from Popp [59] and Iansiti
[37] and to a somewhat lesser degree the results of the SLR in chapter 4. The plays are listed
as rows in table 5.1, with unique IDs and the source indicated.

No strategy will be applicable in any and all situations in a software ecosystem. To make
the intentions of each play more clear, we distinguish three variants of software ecosystems
which occur in practice. These variants are defined between them by the primary unit
of exchange in them (flow) and the primary motivation for parties to participate in the
ecosystem (counter-flow). These variants are included as columns in table 5.1. For each
variant, we indicate which plays might be used by adding a 3 in the appropriate field in
table 5.1. The first variant, named “Platform”, are the N-sided platforms as described by
Armstrong [3]. Companies exchange access to their users and their data on these customers
through the market platform. The primary motivation for joining these ecosystems is the
money to be made and the complementary opportunities to be had. The second variant,
named “Supply Chain”, is of the traditional supply chains. A company that buys a Microsoft
server license does not join a two-sided market platform: it simply uses the software to
execute its primary goals. However, it is locked in to some degree to the supplier as it
incorporates the technology into the business and uses larger portions of it. The primary
unit of exchange in this variant are the products and services traded in the ecosystem, and
the opposing payments are the primary motivation for companies to participate. The third
variant, named “Community”, comprises the open source ecosystems in which companies
share open source code, use it in the development of their products, or sell services based
upon it. The primary unit of exchange is thus “code”, though usually exchanged in coherent
higher-level units such as modules or products. The main motivation for participation is
the recognition it brings to the company (or a single developer for that matter) when it
contributes to an open-source product, and to a somewhat lesser degree the complementary
opportunities it creates.

Not all of these plays are suitable to be expressed in a VEGA in the timespan allotted to
our project. Additionally, some of these plays are either too obvious or too vague to be
suitably expressed in a VEGA. To explain and prove the concept of applying a VEGA to
We select a number of plays based on personal interest and experience to be modelled in
VEGAs. Specifically, the plays numbered 1, 4, 6, 7, 10, 13, 15, 16 and 34 are included.
These plays are depicted and described into VEGAs in the following sub-sections.

5.3. SOFTWARE ECOSYSTEM PLAYS 33

Id Platform Platform Supply Chain Community Source
1 Support partner developers / Optimise

partner productivity
3 3 3 [37, 59]

2 sell a premium product 3 [23, 32, 59, 73]
3 sell premium support / implementation /

maintenance / consulting
3 [23, 32, 59, 73]

4 public roadmap funding 3 [23, 40]
5 Accept donations 3 [23]
6 Adopt bounties 3 [4]
7 Sell complementary stack products 3 3 [28]
8 Release open source as a defensive en-

trenchment
3 [11]

9 adopt usage-based pricing 3 [59]
10 subsidize one-side, extract the other 3 [3, 64]
11 stimulate innovation 3 3 [59]
12 open source parts of the product 3 3 [72]
13 bundling 3 [6, 18, 25, 28]
14 maximize retention through product in-

vestment
3 [59]

15 Eat or destroy standards 3 [37]
16 Create, support or adopt a public standard 3 3 [37]
17 Cull threatening partners 3 [37]
18 Erect barriers to entry to promote stability 3 [37]
19 Create high-value, sharable assets 3 [37]
20 Leverage direct customer connections 3 [37]
21 Create and manage physical information

hubs
3 [37]

22 Create, package and share state-of-the-art
tools and building blocks for innovation

3 [37]

23 Build or acquire financial assets for oper-
ating leverage

3 [37]

24 Reduce uncertainty by centralizing and
coordinating communication

3 [37]

25 Avoid dominating and landlording 3 3 [37]
26 Keep API's consistent to promote stability 3 3 [37]
27 move towards borders of the ecosystem 3 [37]
28 Specialize in unique capabilities 3 3 [37]
29 Leverage complementary capabilities

from keystone
3 [37]

30 Sustain innovation 3 [37]
31 Adopt tight coupling with keystone 3 [37]
32 Adopt loose coupling from keystone 3 [37]
33 Use mobility as collective bargaining

power
3 [37]

Table 5.1: Collected plays in software ecosystems

34 CHAPTER 5. VALUE EXCHANGE GRAPHS

5.3.1 Play #1: support partner productivity

A successful strategy for any hub is to optimise the productivity of its partners. This improves
to the overall productivity of the software ecosystem and thus contributes to the health of
the software ecosystem [37]. A hub can for example create systems for developers to reuse
code from other developers [37] or deliver tools (free or paid) that generate compliant code
to reduce the amount of ‘boiler-plate’ that developers need to write over and over again.
The resulting VEGA is depicted in Figure 5.2.

Hub

Partner

Customer

improved
productivity

increased
retention

faster delivery
of new features

reduced
churn

Figure 5.2: VEGA of play #1 optimising partner productivity

The hub is in the center of the graph. In this instance, we assume that the customer buys
a software product from both the hub and the spoke. The hub incurs a cost for developing
the tools and systems needed to support its partners. Even if these tools and systems exist for
internal usage, these probably must be adapted before release outside the company. The part-
ners benefit by using these tools and systems, presumably resulting in greater productivity of
their engineers and a subsequent lowering of development costs. This results in them deliv-
ering new features faster to their customers. The play does not result in a direct benefit to the
hub. It is not paid for supplying these tools or at least not enough to recover its investment
in development. However, the company benefits in more easily retaining its partners and
customers. Reduced churn of customers raises the company's profitability, while increased
retention of partners offers other intangible benefits such as increased attractiveness to new
customers, or a more innovative and resilient software ecosystem.

It should be noted that we can devise a lot more flows and business value that result from the
flows depicted here. It is up to the user to include extra flows if needed. In general as the
flows extend further and further their connection to the original play becomes increasingly
tenuous and unreadable. We thus usually include only a single ‘roundtrip’ of a play so as not
to over-complicate the graph.

5.3. SOFTWARE ECOSYSTEM PLAYS 35

5.3.2 Play #4: public roadmap funding

Public roadmap funding gives users of the software the opportunity to put their money
where there mouth is. The software vendor defines a initial roadmap with the features, bug
fixes and changes it intends to build in the specified time period. As customers use the soft-
ware product in different ways, they will invariably have different wishes, concerns, etc. The
vendor allows customers to pay extra (apart from the regular software pricing) to influence
the product roadmap to cater to their wishes. A customer could create an incentive for the
vendor to pull a specific feature forward on the roadmap, or add a new feature or change
altogether. The main concern in executing this play is balancing the changes when two or
more customer express conflicting priorities or wishes. The resulting VEGA is depicted in
Figure 5.3.

Software vendor

Customer

influence on
product roadmap

free
functionalitypayment

Customer
Figure 5.3: VEGA of play #4 public roadmap funding

The paying customer derives business value from having the influence it desires on the prod-
uct. The software vendor is compensated for this by direct payments. The other, non-
paying customers benefit too in two ways: a) as the company receives more revenue, it can
presumably execute its roadmap faster, resulting in earlier delivery of new features, and b) a
customer that has an active interest in a change in the roadmap for which another customer
already has paid, does not need to add to the pile. Essentially, as long its wishes are common
among other paying customers, the vendor will deliver its desired functionality early, for
free.

This public roadmap funding as described is a relatively simple scenario. It can however be
extended quite easily into a two-sided market platform for open source software. Suppose a
developer creates an open source module. It has seen some adoption, though lately develop-
ment has been slow as the developer has been busy working on other, paid projects needed
to make a living. A hub could allow customers to pool voluntary contributions to help fund
development. Customers can pledge money to a specific feature, for which developers can
sign up to build it, earning the pledges when the feature is delivered. The hub could extract
a small percentage as fees, while the largest contributors get the largest say in the roadmap
for the product. The paying customers gain influence on the ordering of the roadmap, while

36 CHAPTER 5. VALUE EXCHANGE GRAPHS

all customers receive the fruits of increased development efforts. Developers are funded col-
lectively to work on the product, while the hub extracts a small fee for matching supply and
demand on its platform. The VEGA of this adaptation of the original play is depicted in
Figure 5.4. From this major change, it is thus apparent that VEGAs are inherently flexible
and we can easily adapt them to describe changing circumstances.

Hub

Customer

influence on
product roadmap

free
functionalitypayment

Customer

Developer

payment fee

Figure 5.4: VEGA of an adaption of play #4 (public roadmap funding) to a two-sidedmarket
platform

5.3.3 Play #6: bug bounties

In a reversal of play #4, a software vendor may offer bounties for contributing to its software,
essentially outsourcing a specific part of its operations to the public at large. The public
could contribute to documentation, tutorials or anything else that the vendor values to be
available but is not important to build right now. This play is currently most known for “bug
bounties” in which users and security researchers are paid for bugs reported to the company.
The resulting VEGA is depicted in Figure 5.5.

The software vendor benefits by receiving more bug reports of problems in its offerings.
The customers that submit bug reports, receive the bounty payment in return. The other
customers benefit from using improved software, due to having more bugs caught earlier,
while the software vendor benefits by having less frustrated customers and thus less churn.

5.3. SOFTWARE ECOSYSTEM PLAYS 37

Software vendor

Customer

more bug
reports

payment

Customer

improved
software increased

retention

Figure 5.5: VEGA of play #6 bug bounties

5.3.4 Play #7: building complementary products

One of the primary ways to operate successfully is to create as many as possible complemen-
tary products and services. Having a complementary product strengthens the offering of
both parties, while the customer enjoys a benefit due to improved interoperability. The play
could be executed in various ways, such as creating an entirely new product, adding features
to make the products more compatible or even removing a part of the product entirely, but
we assume that in any case a change in the product is necessary. Suppose that we were to
consider the scenario in which a smaller company adapts an existing product it offers to bet-
ter complement an existing, different product by a much larger party, called the hub. The
company can now offer its product in conjunction with the hub. The resulting VEGA is
depicted in 5.6.

Company

improved total
offering strength

CustomerHub

increased
market strength

more
efficiency

increased
vendor lock-in

decreased double costs

increased vendor lock-in

Figure 5.6: VEGA of play #7 building complementary products

The hub benefits by having an improved total offering to sell to its customers. Even if
there is no formal integration between the products, simply mentioning that compatible
products are available for the customers other problems, could help win sales pitches. In
return, it offers the company improved access to the larger market of its own customers. The

38 CHAPTER 5. VALUE EXCHANGE GRAPHS

company helps its existing customer bymaking the integration of data from the two products
more efficient. Customers will increasingly integrate their data, increasing its value and
enhancing vendor lock-in. Finally, the customer benefits by not having to pay for identical
functionality twice though this connection is tenuous at best, as the other participants would
probably not reduce prices voluntarily. In return, the hub too enjoys increased vendor lock-
in as it is now the only party offering the functionality to the customer, rather than two
companies competing.

5.3.5 Play #10: subsidise one side, extract the other

Play 10 is the general underlying principle that underpins the “two-sided market platforms”
[3, 64], i.e. connect two sides of a market through your platform, identify the side which
benefits the most from having access to the other side, and charge that side a premium (called
the “money-side”), while subsidising the product for the other side (called the “subsidy-side”)
to attract maximum number of customer on both sides to your platform. The most famous
examples are the large console gaming platforms such as the Xbox, for which Microsoft sells
the console as a loss-leader, luring customers to the platform attracted by its (relatively) low
initial costs. As triple-A game development is expensive, multihoming by developers tends
to be limited. Developers will join the platform that promises the largest potential market
of consumers. Microsoft subsequently extracts a fee from each game sale and earns back its
investment through these cutbacks. Reversals of this play occur too, in which consumers
pay a premium to access suppliers and products that are normally unavailable to them. The
generic variant of this play can be expressed in a VEGA and it is in Figure 5.7.

Platform
subsidised product

Partner Customer
customer lock-in

percentage cut of sales

access to market

Figure 5.7: VEGA of play #10 subsidise one side, extract the other

In this VEGA, the customer is considered the subsidy-side and the partner the money-side.
The customer benefits by receiving a product or service from the platform at a lower price
than would normally be considered. In exchange, the platform benefits by locking its cus-
tomers into its product. The partner benefits by having access to the platform, and compen-
sates the platform owner by handing over a percentage cut of total sales.

5.3.6 Play #13: bundling

Bundling is the combination of several (software) products into a single, presumably coher-
ent package that is sold as one to a customer. The primary goal for the company which
creates the bundle could be to strengthen its own product which are not of significant value
in and of itself, and command a premium price point. The VEGA of this play is depicted in
5.8.

5.3. SOFTWARE ECOSYSTEM PLAYS 39

Company

reduced marketing/
sales efforts

CustomerSupplier

lower development costs
faster time-to-market

integrated
product offering

premium
pricing

Figure 5.8: VEGA of play #13 bundling

The customer benefits by having an integrated product offerings to cooperates better than
the separate products would. In return, the company adopts a higher price for the combined
offer than the products would command when sold separately. The supplier benefits by
having to spend less time/energy/money marketing and selling its products as this burden
is carried by the company. Depending on the arrangement, in for example a white-labeled
bundle, this could also include lower costs for supporting end-users, as these costs too shift to
the company. In return, the company benefits by having lower product development costs
and a faster time-to-market as its products gain functionality it doesn't have to build itself.

5.3.7 Play #15: disregard standards

Play #15 and #16 are two sides of the same coin. Either deliberately disregarding relevant
standards that are in place (#15) or adopting them (#16). A company might consider explic-
itly not adopting a common standard that is in place if it improves its position in the market.
The basic aim of the play is apparent from the major example of Microsoft's “embrace, ex-
tend, extinguish” strategy, in which Microsoft publicly adopted (“embrace”) common and
open standards, added incompatible features and improvements to them (“extend”), thereby
making Microsofts products compatible with the competition, but not vice-versa reducing
the level playing field (“extinguish”) [74]. We will review the scenario or variant of this play
in which an existing standard is in place. The company adopts the standard, but extends
it with performance enhancements incompatible with the original standard. The resulting
VEGA, which only considers the customer side for reasons of brevity, is displayed in Figure
5.9. A careful reader will note that this is an example of a purely non-monetary play, as it
has no flows on which the business value consists of either payment or savings.

The customer benefits by having improved performance in using the product. However,
in exchange it must incur a greater level of vendor lock-in as it can no longer exchange its
data easily with competing products. In addition, the perception of vendor lock-in harms
the interest of the company as it will reduce inflow of new, potential customers [70, 72].

40 CHAPTER 5. VALUE EXCHANGE GRAPHS

Software
vendor Customer

vendor lock-in

perceived
vendor lock-in

improved performance

Potential
customer

Figure 5.9: VEGA of play #15 disregard standards

5.3.8 Play #16: adopt standards

In a reverse of play #15 a company can adapt its products to adhere to new public standards
which are not under the control of any one company. The primary goal of the play is to
make its products more attractive to the consumer by promising a reduced level of vendor
lock-in. Additionally, the company might promote a common standard to lower R&D costs
for its products. Both considerations are expressed in the VEGA in Figure 5.10.

Software
vendor

Vendor

Customer
reduced
vendor lock-in

reduced
development costs

for integration

reduced
development costs
for integration

increased
interoperability

Figure 5.10: VEGA of play #16 adopt standards

Suppose we were to consider adopting a common standard which makes exchanging data
from several applications easier by specifying a common format and its formal interpretation.
These applications might or might not have overlapping functionality. The customer ben-
efits and the company suffers from having less vendor lock-in. Both the company and the
other vendors profit from reduced R&D costs for making their products successfully inter-
operable. Finally, this increased interoperability again benefits the customer in having less

5.3. SOFTWARE ECOSYSTEM PLAYS 41

issues working with data stored in multiple systems from different vendors.

5.3.9 Play #34: divestment

Divestment is the ‘extreme’ version of play #7 (complementary products, section 5.3.4). The
company removes a portion of its product to create space for partners to operate in. A VEGA
of such a play is expressed in Figure 5.11.

Software
vendor

revenue
Partner

Customerreduced revenue

less functionality

functionality

switching costs

Figure 5.11: VEGA of play #34 divestment

In this scenario, we assume the software vendor sells a products consisting of a few modules
that are perceived as distinct to some degree and are configurable, i.e. the product can be
operated and sold with an incomplete set of its modules. Take for example an enterprise
resource planning (ERP) product with human resource management (HRM) and customer
relationship management (CRM) modules. The CRM module is small, limited in function-
ality and has seen less proactive development over the years. Partners of the software vendor
build a superior product, and sales of CRM have been declining. The software vendor must
nevertheless incur maintenance costs to support existing clients. The vendor can now im-
prove its situation by divesting its CRM module. It delivers less functionality to its clients
(and thus lower costs) in return for reduced revenue, assuming it has adopted per-module
pricing or gives its customers some discount. The customer must migrate to a new CRM
product, losing its value and costs to the original software vendor, replacing it with the util-
ity of the new product. In addition, the customer incurs switching costs for migrating data,
re-training employees, etc. which will dampen its enthousiasm for participating in this the
play.

We have stacked the table heavily in the scenario to make this play work, in having given the
company an ulterior motive (module is outdated) to divest, which is not explicitly modeled
in the VEGA. If this assumption is removed, the play becomes irrelevant. In addition the

42 CHAPTER 5. VALUE EXCHANGE GRAPHS

customer will not be happy with this play by the software vendor if we take it that the utility
the customers derives from the new product is the same as from the old module. It is thus
obvious that this play is not optimal and could be significantly improved. We explore these
improvements to this and other plays in the next chapter (chapter 6).

5.3.10 Limitations

A number of limitations have become apparent in the development of various plays, includ-
ing both those mentioned here and evenmore so other less successful ones. These limitations
make drawing VEGAs less or even not appropriate in some scenarios. We discuss these sit-
uations in this section.

Drawing VEGAs does not work properly in situations in which very little value flows are
shared, i.e. exchanged between two participants. Drawing a flow from “nowhere” to a
single participant in which the resulting flow has no beginning party or no end, is currently
not supported, but might be needed in the future. An example of this are the flows that
appear in some plays or our plays that are essentially a form of “costs incurred to execute this
play”. These flows now flow from one participant to itself, but this is essentially a stop-gap
measure that does not work out very well, especially once one starts reasoning on these flows
(chapter 6). It is currently preferred over having flows end in nothingness, as having these
circular flows is more fitting to the actual situation. Having a flow end in the void, suggests
that value would be permanently destroyed, which is in our experience almost never the case.
There are other complicating factors to this problem. Some flows that enter from nowhere
and end in a participant that is not the main actor of the play, are not usually exclusive to the
play at hand, and can be reached by the participant that receives them in other ways, making
analysis of them more complicated.

A natural limitation of applying VEGAs is that it only considers the exchanges between
companies. A valid strategy in a software ecosystem is to create “shareable assets” (play #22)
which are assets that the company holds that are applicable to the problems of many of its
customers [37], essentially high-tech building blocks of customised solutions, comparable to
the software product line approach [8]. A VEGA of this “creating shareable assets strategy” is
included as Figure 5.12. While this play benefits the company, its customers and the software
ecosystem as a whole (by increasing productivity) and it is a very important strategy within
some large, successful software ecosystems; and while the depicted VEGA here is a complete
and correct depiction of the resulting flows of this play, it is also completely pointless.

Finally, the “state” of a partner is modeled awkwardly and should be improved in the future.
It is currently indicated on the description of the actor, e.g. “partner” versus “potential part-
ner”, and “customer” versus “potential customer”. This could be significantly be improved.

5.4. CONCLUSION 43

Company Customer
increased
retention

cheaper products
and services

Figure 5.12: VEGA of play #22 creating shareable assets

5.4 Conclusion

The introduction of the VEGA and its demonstration serves as the first half of the answer
to our third research question. We have shown that we can create an effective, graphical
way to express the flow of (business) value through an software ecosystem and the associated
capture/release of it by partners. We will pursue this concept further in the next chapter (6)
to show that VEGAs can be used in formal reasoning to enhance our interpretation of the
effects of plays on the flow of value.

Chapter 6

Reasoning over Value Exchange
Graphs

6.1 Introduction

Expressing a strategy in a VEGA allows for structured reasoning over its flows. This enables
us to clearly indicate potential changes to plays to improve them. In this chapter, we explore
this approach. We explain the general principles and the assumptions we make (6.2). By
discussing some of the plays of the previous chapter, we show that we can use structured
reasoning to i.a. make it clear who benefits from plays (6.3), to improve suboptimal plays
(6.4), and to guide pricing decisions (6.5). Unfortunately, this approach is not universally
applicable and we discuss its limitations (6.6), and finally the most-important conclusions
(6.7).

6.2 Reasoning on plays

The primary underlying idea of a Value Exchange Graph is that value is exchanged between
parties in a software ecosystem. This allows us to define the utility of a participant in a play.
The generic value function

v(x, f)

is the amount of value that participant x perceives to receive or give away through flow
f . As the formulas can grow to be very long with extensive description of value, we use

44

6.3. WHO BENEFITS? 45

a shorthand version v(f) in cases in which the participant is clear from the text, and we
might abbreviate the description of flows in some cases. Note that this function expresses
not the business value received by x, but x's appreciation of it. While for some forms of
business value that are expressed on an integer scale, most notably money-based forms, we
can assume that two participants will value it equally, it can not be assumed in general that
v(x, f) = v(y, f) if x ̸= y.

The utility of a play to a participant p can than be expressed as the sum of all inbound value,
minus the sum of all value the participant loses through the play:

u(p) =
∑

v(p, in) −
∑

v(p, out)

If we assume that participants in a software ecosystem operate as rational actors, we can
define the precondition for joining a play as such that a participant must derive some utility
from the play: u(p) > 0. This naturally expands into

∑
v(p, in) >

∑
v(p, out)

The precondition must hold for a rational actor to participate in the play willingly, without
being forced by some outside condition. We can use it to reason about the implications of
executing a play.

In the adoption of the precondition we make a few assumptions. First that the participants
operate as rational actors. This is a reasonable assumption tomake aswe study companies, not
individuals and companies to some degree always operate as rational entities. Additionally,
we assume that the existing situation, i.e. the exchange of business value before adopting the
play, is stable and willing. “Stable” means that the actors and flows can be considered ceteris
paribus, and the only change is wrought by the adoption and execution the play. “Willing”
means that the participants have joined the existing situation willingly, not forced by some
outsidemechanism. This means that for every participant p in a play the assumption u(p) > 0
and thus ∑

v(p, in) >
∑

v(p, out) is true in the initial situation.

6.3 Who benefits?

Structured reasoning over flows can be used to show who stands to benefit from a play. We
will illustrate this using play #16 from the previous chapter. The VEGA is repeated here for
the reader's convenience as figure 6.1 and is identical to the original one depicted in figure
5.10.

46 CHAPTER 6. REASONING OVER VALUE EXCHANGE GRAPHS

Software
vendor

Vendor

Customer
reduced
vendor lock-in

reduced
development costs

for integration

reduced
development costs
for integration

increased
interoperability

Figure 6.1: VEGA of play #16 adopt standards

The flows between the software vendor and the secondary vendor are an equal exchange so
we assume a reasonable

v(software vendor, reduced development) = v(vendor, reduced development)

That makes this part of the exchange neutral with respect to the value exchanged. As
we can reliably assume that the customer will appreciate these forms of value, we take
v(customer, reduced vendor lock-in) and v(customer, increased interoperability) to both be
positive and it becomes clear that the customer will always join the play willingly:

∑
v(customer, in) >

∑
v(customer, out)

v(customer, reduced vendor lock-in) + v(customer, increased interoperability) > 0

The utility of the software vendor is

v(costs for integration) > v(reduced vendor lock-in) + v(costs for integration)
0 > v(reduced vendor lock-in)

from which it is clear that the software vendor only stands to lose from the play. It thus
becomes clear when the play is suitable for the software vendor. It should only adopt a
common standard in two conditions. One, if it desires rapid integration with many partner
vendors more than it wants to protect its own interests

v(software vendor, reduced costsin) >v(software vendor, reduced vendor lock-in)
+ v(software vendor, reduced costsout)

6.4. IMPROVING A PLAY 47

Or alternatively, when there is some ulterior motive that makes the play desirable outside
the scope of direct business value, such as pressure from consumers to adopt standards, or a
desire of the software company to portray a more favourable image of itself.

6.4 Improving a play

Reasoning over plays can also be used to construct improvements to a play in a structured
fashion. We discuss this point at the hand of play #34 from the previous chapter, reproduced
here in figure 6.2. The current basic play has two subtle flaws that could be improved.
The first flaw becomes obvious if we take that the replacement product by the partner is
perceived by the customer as equal both in price and functionality to the original product.
Expressed in the value-function, we take v(functionalityout) = v(functionalityin) and
v(revenueout) = v(revenuein) and it becomes clear that the customer will not be happy
about the change as he/she only incurs the switching costs and gains no benefit:

u(customer) =
∑

v(in) −
∑

v(out)
u(customer) = v(switchingcosts)

The second flaw relates to the value exchange of the partner. The utility of the partner

u(partner) = v(revenue) − v(functionality)

results in an apparent positive utility u(partner) > 0 in any scenario. If the utility were to
become negative, it means that the partner sells its product at a loss, which is not useful1.
However, nothing in this play forces the customer to buy the replacement product from
a partner of the software vendor, and if the customer buys another product from another
company that is not a partner of the software vendor, the company's partner is essentially
excluded from the play.

Now that the weak points of the play are made explicit, we can adapt the play as needed to
improve it. The software vendor agrees with a specific partner to have it act as a “preferred
(replacement) supplier”. The company makes the customer's data (with the permission of
the customer) available to this partner, while the partner pays a lead fee in exchange for every
customer that switches to its offering. The customer incurs no switching costs to the partner
as its data is already automatically imported and made available. To model these changes,
we remove one flow and add a new one. The VEGA of the improved play is included as
figure 6.3.

1The authors recognize that in some business models such as loss-leader plays, selling products at a loss is
perfectly fine. However, this scenario would necessitate adding extra flows, making the play less clear and
befuddle the main point. We take these scenarios as out of scope, but the reader is invited to construct them
him/herself if desired.

48 CHAPTER 6. REASONING OVER VALUE EXCHANGE GRAPHS

Software
vendor

revenue
Partner

Customerreduced revenue

less functionality

functionality

switching costs

Figure 6.2: VEGA of play #34 divestment

Software
vendor

revenue
Partner

Customerreduced revenue

less functionality

functionality

lead
fee

Figure 6.3: VEGA of the improved scenario play #34 divestment

6.5. DETERMINING A PRICE POINT 49

The play has now markedly improved for all parties. The customer's utility is zero, as its
inbound and outbound flows are identical while it no longer incurs switching costs. While
the customer is not getting a great deal per se, its utility has improved from the original,
negative utility. The utility for the partner is still positive, provided that the lead fee is lower
than the margin it makes on its product:

v(fee) < v(revenue) − v(functionality)

Last but not least the utility of the software vendor has improved by v(fee), as it captures
some of the upside from the partner's new turnover, receiving a new lead fee while leaving
its other flows untouched.

6.5 Determining a price point

Formal reasoning can also be employed to determine a price point, to some degree. While
determining an exact price point using this method requires resolving the value function,
which is hard or impossible (section 6.6), this structured approach can aid in determining
key factors in pricing decisions.

Software vendor

Customer

more bug
reports

payment

Customer

improved
software increased

retention

Figure 6.4: VEGA of play #6 bug bounties

Recall the VEGA of the bug bounties play (#6), reproduced here as figure 6.4. How much
should the company offer as a bounty? To answer the question, we can split the value
function of the customer into two parts to make it more clear:

v(more bug reports) = v(finding bugs) + v(reporting bugs)

We cannot model this change directly in the VEGA without using the value function, as
the two parts of the equation are intertwined from the perspective of the company. The

50 CHAPTER 6. REASONING OVER VALUE EXCHANGE GRAPHS

company derives no value from the customer finding bugs without reporting them, while
the customer cannot report bugs it hasn't found.

Finally, we take it that the customer does not care about its retention as it does not incur
a cost to be retained so v(customer, retention) = 0. The utility for the customer has now
evolved to

u(customer) =v(improved software) + v(payment)
− v(cost of finding bugs) − v(cost of reporting bugs)

If we rewrite the equation for u(customer) > 0:

v(improved software) + v(payment) > v(cost of finding bugs) + v(cost of reporting bugs)

the key scenarios for the decision become abundantly clear as we solve for v(payment). If
the company wishes to attract professional bug hunters that are not using its product, for
which v(improved software) = 0, it must adopt

v(payment) > v(cost of finding bugs) + v(cost of reporting bugs)

If it only wishes to entice current customers who use the product to report bugs that they
stumble upon in their daily work, the company adopts

v(payment) = v(cost of reporting)

If the software is perceived as critical by its customers, we can safely assume that any bug
will be promptly reported (and patches demanded), regardless of the costs incurred by the
customer: v(improved sofware) > v(more bug reports) and the company adopts

v(payment) < 0

which essentially translates to “do not adopt this play”.

6.6. LIMITATIONS 51

6.6 Limitations

Reasoning over VEGAs is not without its quirks and limitations and the authors recognize
that the system could be significantly improved in further iterations. We discuss the four
main concerns here.

The most obvious limitation is that actors are not rational. While we assume u(p) > 0 as
the precondition for a partner p to join the play willingly, it is more likely in practice to be
u(p) > V for some undefined value of V which varies per participant, per situation, per play,
and with the weather. Additionally, partners might not appreciate the changes a play brings,
even as their resulting utility is still positive, as a way of sticking to acquired rights.

Second, the value function is too abstract for interpretation. Recall that the value function
describes the amount of business value that an actor perceives to receive from a flow. Not
only is it difficult to resolve the value function to an actual hard number for yourself, but
resolving it for other parties is extremely hard as it is skewed by the asymmetric appreciation
of value. Furthermore, partners and customers have vested interest in negotiation to max-
imise their own utility, making fact-finding hard. The main benefit of the value-function
lies in the structured approach of the thinking instead of the actual values, revealing the key
determinants of the answer, if not the exact number.

The third limitation of using the value function is that some of the results are with hindsight
obvious. For experienced entrepreneurs and , expressing plays in VEGAs and value functions
derives only insights that are obvious and could be more easily reached through simpler
methods.

Finally, these approaches do not account for time and competition aspects. Plays in general
take time to work, and $1 of business value now is better than $1.05 of value in a year.
Neither do we model the effects of competition exhaustively as these tend to make the plays
quite complicated. In combination with the first limitation, utility functions with six or
more distinct forms of business value tend to be unresolvable.

6.7 Conclusion

The main conclusion of this chapter is that value-exchange graphs can be used in formal
reasoning to determine key determinants of a play that influence its performance, though
the reasoning has several important limitations and applications of it in practice are expected
to be of limited value. This provides the second half of the answer to our third research
question.

Chapter 7

Case studies

7.1 Introduction

Expressing theoretical plays in VEGAs and reasoning on them, as we did in the previous
two chapters, is not enough to prove the actual worth of this approach. In this chapter, we
survey established companies on their relationships with other participants in their respective
software ecosystems. Based on interviews with senior leadership at these companies, VEGAs
are drawn and shown to the interviewees for validation. Four sub-groups can be identified
in the set of case studies. The results of this process serves as a partial answer to the third
research question on how value in software ecosystems can be modeled.

This chapters begins by describing the approach and process of the interviews (7.2). The
four subgroups are depicted and all individual cases discussed (7.3). Finally, we discuss the
results of this validation phase (7.4) and the main conclusions (7.5).

7.2 Approach

Companies are selected on wide selection criteria. As we seek to show that VEGAs can be
applied to real-world software ecosystems and produce a solid overview, we do not impose
artificial limits on what types of software ecosystems these companies operate in. We do
limit the survey to companies and thus to “business software ecosystems” in a sense that we
exclude single developers operating in the context of an open source project. The full survey
contains cases on ten companies.

The interviews were conducted over Skype with one employee of the studied company.
These employees were selected by the company based on the subject matter, with minor

52

7.2. APPROACH 53

suggestions from the researchers in some cases in which we were previously familiar with
the company. A majority of the interviewees held senior roles in partner management such
as “international partner manager” or a related role as “marketing manager”. In two cases
in which senior personnel were unavailable, we have interviewed junior employees. One
company (Exact) was not interviewed, as the authors spend eight months working on this
research project embedded at Exact's headquarters as a student employee. Any formal inter-
view would be superfluous.

Interviewees were informed of the subject matter and a rough outline of the interview in
advance. All interviewees gave explicit, verbal consent to the interview being recorded.
This consent was repeated for the record directly after the recording started. All interviewees
were given the explicit choice whether to protect the identity of their company by including
only anonymised data in this thesis. None of the interviewees requested that their company
remain anonymous.

The interviews are recorded in full with audio of both the interviewer and interviewee, with
video added where possible. All e-mails regarding the interviews and subsequent VEGAs
are exported to PDF and archived with the footage.1 This provides a clear chain of evidence
to back up the research claims.

The interviews are conducted in a informal manner, with few questions set in advance. The
interviews are are roughly structured around twomain points: first, the interviewee describes
his/her employers, its size, main products and markets, etc. Second, we discuss which part-
ners are important to the company and how the company cooperates with them.

The authors subsequently depicted these relationships in a VEGA and e-mail this depiction to
the interviewee. No further explanation or interpretation was included, not even a general
overview of the concept of a VEGA so that interviewees would not be influenced in the
slightest. The interviewee is asked to answer two final questions by responding per e-mail:

1. Is this an accurate depiction of the situation of your company? Are there any elements
which you find to be inaccurate?

2. Are there any improvements you would like to add?

Based on the answers to the questions, the authors updated the VEGAs before including
them into this thesis. Minor problems such as spelling mistakes in names were repaired in
the VEGAs. Major problems such as fundamental issues in the approach taken or important
relationships missed are not repaired, and are included in the discussion of the cases below.
These major issues show the limitations of this approach.

1The authors make these records available upon request. For contact details, see the administrative informa-
tion table on page i.

54 CHAPTER 7. CASE STUDIES

7.3 Cases

Ten companies were interviewed and included as a case. While each of these companies has
some unique aspect to it, upon studying the resulting VEGAs some common traits emerge.
Dividing the group of companies along the common traits, four main groups emerge that
fall somewhat along the lines of Iansiti & Levien [37]. We find these four patterns in
the group: supply chains, hubs/keystones, niche players, and networked companies. The
hubs/keystones and niche players are well-known distinctions from Iansiti & Levien which
the authors expect the reader to be familiar with. The group “supply chains” contains two
companies that have primarily ‘traditional’ relationships with other companies, exchanging
solely products and services for money. Networked companies are best described as “mul-
tihoming niche players”. We will discuss each group and their common elements in this
section.

7.3.1 Supply chains

Two companies appear to be “traditional supply chains” in the sense that products and ser-
vices are exchanged for money. These companies are iHomer2 and Datafox Benelux3.

iHomer is a software company based in Etten-Leur, The Netherlands, employing approxi-
mately 19 FTE. It deploys developers on secondment at other companies, specialising in soft-
ware development for electric cars, customs, healthcare, retail and crowdfunding. Unique
aspects of iHomer are that its employees are expected to work from home four days a week,
only meeting in person one day a week, combined with an extreme degree of freedom for
individual employees. The VEGA of iHomer is depicted in Figure 7.1.

iHomer supplies its customers with outsourced development services in exchange for pay-
ment. It acquires a number of goods and services from other companies, all in exchange for
payment. For example, it acquires hosting services from a ISP, and common modules from
other software vendors to reduce rework. Staff services such as administration, sick leave
and all kinds of legal paperwork are handled by a dedicated service provider. When design
services are requested by the client, iHomer includes a preferred supplier in its quotation.

Upon being presented with the completed VEGA, the interviewee of iHomer remarked that
themodel presented a very simplified picture of the situation at iHomer, though it was largely
correct. He remarked that iHomer cooperates more frequently with the design agency,
often sharing leads and collaborating on new development trends. This is mentioned in
the interview but was not accurately reflected in the VEGA. iHomer also collaborates with
its customers on new pricing models rather than the work-for-hire model reflected in the

2http://ihomer.nl/
3http://www.datafoxbenelux.nl/

http://ihomer.nl/
http://www.datafoxbenelux.nl/

7.3. CASES 55

iHomer

payment

Hosting
providers Design

agency

Technology
partnersStaff

suppliers

Customers

outsourced
staff functions

common
functionality

payment

hosting &
infrastructure

payment

outsourced
development

payment

design
services

payment

Figure 7.1: VEGA of iHomer

56 CHAPTER 7. CASE STUDIES

VEGA. This aspect was touched upon in the interview, but the authors believed it to be of
minor concern. These issues show that the completeness and quality of the resulting VEGA
is very dependent on a thorough analysis of the company.

Datafox Benelux is the exclusive importer of products of Datafox Gmbh in Belgium, The
Netherlands and Luxembourg. Datafox Benelux is an independent company, not a part of
Datafox Gmbh and employs 3 FTE. Datafox's main product are physical terminals for time
registration (punch clocks). These terminals are often used for shift registration of employees,
access control and billing purposes. The VEGA of Datafox Benelux is depicted in Figure
7.2.

payment

Datafox
Gmbh

Datafox
Benelux

Software
vendors

Customers
integrated solution

hardware & software

payment
support
installation
terminal hardware

payment;
market reach

in Benelux

terminal
hardware

terminal hardware

payment

Figure 7.2: VEGA of Datafox Benelux

Datafox Benelux simply operates as an exclusive reseller in the Benelux. It is a member of
various software ecosystems in the sense that most of its offers are sold directly to software
vendors which bundle the terminals with their tightly integrated software and offer a com-
plete, fully integrated solution to customers. Occasionally Datafox Benelux also sells directly

7.3. CASES 57

to end-users based on leads from a software vendor, though this occurs infrequently. Fi-
nally, end-user support and regular maintenance on the terminals is also provided byDatafox
Benelux to the customers.

Reflecting on the finished VEGA, the interviewee at Datafox judged the VEGA to be an
accurate representation of the company. He noticed that installation services were missing
from the graph. This service was mentioned in the interview, though the authors considered
it a part of the support flow, which was included. The installation flow was added to the
VEGA to clarify this relationship.

From these two VEGAs, it becomes abundantly clear that drawing VEGAs is not a very suit-
able approach when modeling business relationships that effectively amount to traditional
supply chains. In both VEGAs, nearly all flows are of the type “<some product X> in ex-
change for <payment>”. This is correct in the sense that the customer apparently needs
that product or service, and thus the fact of having the product or service is the business
value. However, if one were to draw these relationships in a software supply network, the
relationships would be exactly the same, save for some slightly different wording.

Additionally, it is apparent from these VEGAs that it becomes very difficult to determine
where to stop. Modern supply chains can be very large and very complex. Almost no
employee cleans his own desk, should cleaning services be included in the VEGA? Catering?
One could argue that the Staff supplier should be removed from the iHomer VEGA (Figure
7.1) as it is simply an outsourced support function of the business, not related in any way to
the core service which iHomer delivers. It is however one of the unique aspects of iHomer as
a company, akin to how it operates without a single office. Strongly related to this issue is the
problem that it is currently not possible in this notation to account for the importance of the
relationship. This problem is apparent in the VEGA of Datafox Benelux (7.2). If one were to
only read the VEGA, one might very well conclude that Datafox Benelux sells its products in
two markets: directly to end-users and to software vendors to resell in integrated, full-stack
solutions. While this is correct in theory, in practice Datafox sells almost exclusively to the
software vendors, only occasionally selling directly to end-users and derives a large portion
of its revenue from its relationships with the software vendors. This makes the relationship
with the software vendors much more important to Datafox Benelux than those with its
direct customers, but this fact is not apparent from the VEGA.

7.3.2 Hubs

Two companies fulfill the traditional role of a hub in their respective ecosystems: they are an
order of magnitude larger than their typical partner, hold crucial advantages, in these cases
important financial customer data that other parties desire to have access to. At the same time,
these hubs must attract enough niche players to their ecosystem to be competitive and thus
have a vested interest in the productivity, health and resilience of their respective ecosystems.

58 CHAPTER 7. CASE STUDIES

Two companies are included in this group: Exact4 and AFAS5. Both are major product
software companies in The Netherlands, headquartered in Delft and Leusden respectively.

Exact employs approximately 1.600 FTE worldwide and is active in numerous countries in
Europe, Americas and Asia. Its main products are focused on ERP systems and financial
administration for small and medium businesses. The VEGA of Exact is depicted in Figure
7.3.

Exact

lower reporting costs

Accountants Software
vendors

Customers

payment financial
administration

Automation
Certification
Accountancy Centre
Leads

sales leads

App Center
Certification
Leads

usage fee

payment

complementary
functionality

Figure 7.3: VEGA of Exact

Exact sells its software products directly to its customers. Through its Accountancy Pro-
gramme and its Exact App Center, is has two important groups of partner companies. Ac-
countancy firms are an important part of Exact's go to market strategy. Accountants can
follow training courses on Exact's product suite and become “certified cloud accountants”.
Accountants who pass the certification are added with special distinction to the “Accoun-
tancy Center”, essentially a website of all accountancy firms who have experience working
with Exact. Customers of Exact can use this website to find an accountant experienced with
their internal systems. This lowers the costs customers of Exact incur for reporting to their
accountant. Exact provides special versions of its software for accountants to manage large
numbers of customer administrations quickly and other power user features. In some cases,
accountancy firms adopt Exact's software as their preferred solution for their existing and
prospective customers, generating more sales (leads) for Exact. Using the Exact App Cen-
ter, Exact offers other software vendors the opportunity to display their products in an App
Center. This too is a website listing software for Exact customers which integrates perfectly
with their data in its administration. Exact certifies these solutions through a standards in-
spection process, including marketing and technical reviews of the integration points. Exact
has recently concluded that because of its market size in comparison to the average partner
is lopsided. Exact sends much more leads to its partners than it receives in return. This un-
equal exchange is especially apparent in markets such as The Netherlands in which Exact

4http://www.exact.com
5http://www.afas.nl/

http://www.exact.com
http://www.afas.nl/

7.3. CASES 59

has a firmly established market and is considered a well-known company amongst its tar-
get customers. In response, Exact has adopted a usage fee for its partner software vendors,
charging a (arguably small) monthly fee per customer for which the partner retrieves data.

At 350 FTE, AFAS is a smaller company compared to Exact though it develops its ecosystem
in much the same way as Exact, though it focuses on different aspects of its ecosystem. The
VEGA of AFAS is depicted in Figure 7.4.

AFAS

payment

Software
vendors

Service
providers

Customers
payment

implementations
value-added services complementary software

increased offering strength
partner fee

administrative software
support

payment

increased offering strength
partner fee

certification
testing license
support
promotion

certification
testing license
support
promotion

Figure 7.4: VEGA of AFAS

AFAS supply its customerwith its software product for financial administration. AFASworks
together with two main sets of partners: service providers and other software vendors. Ser-
vice providers function much like Advisie (section 7.3.3) though Advisie in this case works
primarily with Exact, not with AFAS. These service providers are listed on the website of
AFAS, who supports them with additional support and a certification and includes them in
marketing materials. Attracting these service providers helps AFAS increase the strength and
size of its ecosystem, which makes its products more attractive to its customers. These ser-
vice providers primarily sell advice, custom implementations and integrations (though AFAS
does not allow them to change or adapt its core software, nor simply resell the product), and
provide some services to clients that AFAS does not such as configuring the software for spe-
cific needs. The software vendors operate much in the same way as with Exact, and in fact
some companies in this category such as Xpenditure (section 7.3.4) work with both AFAS
and Exact as a complementary vendor.

When discussing the final VEGA, the interviewee argued that AFAS does not supply licenses
to partners for the purpose of reselling. However, included in the recording of the interview
is a segment on which a partner license is discussed, though not for resale through partners.
AFAS supplies its partners with a single license for testing the integration of their product
or service with the software, and it is this license that is added to the VEGA. More clari-
fication would have been needed in this case and the flow could have been labeled more

60 CHAPTER 7. CASE STUDIES

appropriately as “testing license”. This problem was also appears in the flow “promotion”
to partners, which the interviewee believed should have been directed at the customers, as
AFAS promotes its partners to its customers through the website, marketing materials, etc.
However, it is the partners who benefit from this action and thus receive business value
from it. Again, more clarification here would have prevented this misunderstanding. The
interviewee also indicated that the most important components of the partner program are
certification and technical support for partners, and therefore this licenses-flow was dropped
altogether. With regards to customers, the feedback indicated that AFAS naturally also di-
rectly supports its customers, rather than only its partners and this flow was added to the
VEGA. Service providers are not allowed by the AFAS partner program to execute imple-
mentations of AFAS' software at customers and this label should have been removed. An
interesting problem surfaced when adapting the VEGA to the feedback. It is discussed in
the interview that partners of AFAS pay a €1.500 partner fee for participating in the partner
program. This flow was missed from the initial VEGA where it definitely should have been
added. Interestingly enough, the interviewee did not mention this omission. The missing
flow was added to the final VEGA.

From this comparison between AFAS and Exact it quickly becomes apparent that the appli-
cation of VEGAs is limited in this aspect. Modeled in these VEGAs are the most important
relationships that interviewed employees of the companies described. The VEGAs are not
complete: AFAS too sells some of its software through accountancy firms, as does Exact im-
plements its software in conjunction with some service providers. Mapping a complete set
of relationships for a company of this size would present an overwhelming, clew of arrows.
In addition, what we refer to here as Exact is largely focused on the Cloud Solutions business
unit. While other business units at Exact adopt some if not most of the same practices, differ-
ences remain. The VEGA of AFAS completely ignores AFAS Personal, a personal finance
platform for consumers, as does the VEGA of Exact not include specific details on Exact's
JobBOSS, Macola, MAX, AEC, Insights, Financials, Globe, Manufacturing, Wholesale, etc.
A VEGA is insufficient to describe a complete company in a single graph. The analyst must
choose what to include and what to exclude, and potentially draw multiple VEGAs for a
single companies to make a clear point.

7.3.3 Niche players

Three case studies are conducted that the authors classify as niche players. These companies
are nétive6, Prepped7 and Advisie8. We consider these companies niche players because
they operate on the basis of a platform which they do not own, but is developed by a much
larger company in terms of revenue, market reach, number of customers and FTEs employed.

6http://www.netive.nl/
7http://www.prepped.nl
8http://www.advisie.nl/

http://www.netive.nl/
http://www.prepped.nl
http://www.advisie.nl/

7.3. CASES 61

Additionally, these niche players supply products or services that are not included by the hub-
company, and are much more specialised in nature. These characteristics of niche players
are in line with the classification by Iansiti & Levien [37].

nétive is a product software company with 20 FTE that builds and sells a platform for hir-
ing specialists to fulfill specific roles. The product is sold to large companies which use it
to manage resumes and job descriptions, and offers the opportunity to create a buy-side
marketplace on which freelancers may bid on open project proposals of the company. The
VEGA of nétive is depicted in Figure 7.5.

nétive

VMS software

Package
developers

Force.com

Customers

payment

payment

common functionality
modules

common functionality modules
infrastructure & hosting
support

payment

Arthur's
Legal

Law firms

Customers

payment

outsourced development

platform
support

hosting fees
(per law firm)

generated
contracts

usage fees
(per contract)

generated
contracts

usage fees
(per contract)

Figure 7.5: VEGA of nétive

nétive builds its software on the Force.com platform, a software development platform built
by Salesforce.com (sic.). The platform offer tight integration with salesforce deployments at
customers and common functionality such as user authentication and fine-grained authori-
sation. It also hosts the developed software of nétive and provides support to its developers.
In exchange, nétive pays Salesforce.com a usage fee. nétive acquires software with com-
mon functionality such as optical character recognition (OCR) from other software vendors
which it uses in its products. The finished product (VMS) is delivered to customers in return

62 CHAPTER 7. CASE STUDIES

for payment. Unfortunately, nétive did not respond on time for its feedback to be included
in this report.

The right side of the VEGA of nétive is a special case of historic purposes. A few years ago,
when nétive went through a downturn, it started a new project for a law firm named Arthur's
Legal. For this law firm, nétive builds a a custom Force.com module with which customers
of law firms can generate standard contracts for situations. This is much cheaper than having
a lawyer draw up a contract manually and saves the lawyer's time for more interesting work.
In the user interface, a single lawyer is indicated as the expert on each type of contract, and
he/she can be quickly contacted for questions, or checking or adapting the contract to the
situation of the client. Arthur's Legal uses this module on its own Salesforce.com deployment
for its current customers, and sells the module to other law firms for use with their customers.

Modeling this extra chain through Arthur's Legal raises some questions on the appropriate
depth to model in a VEGA. The product is an important, stable source of revenue for nétive
because it is billed as time and materials, and the product is in a mature state and generally
needs only perfective maintenance. This enables nétive to work on its own products and
when orders are slow, shift more of its developers to the legal module to provide a steady
stream of income for the company to last through tougher times. It is there clear that the
relationship with Arthur's Legal should be included in the VEGA. However, should the
relationships of Arthur's Legal with the law firms and customers be included too? In general,
only direct relationships of the central company are modeled in a VEGA. The authors have
added these relationships here because it adds to our understanding of the product and to
demonstrate the trade-off to be made.

Prepped is a small company (7 FTE) based in Delft, The Netherlands. Its main service
is creating custom modules for Sharepoint, a CMS platform created by Microsoft. These
modules are not sold as product software, but rather specialised solutions and integrations
built for a single customer. The VEGA of Prepped is depicted in Figure 7.6.

Prepped's relationship with its hub is similar to that of nétive though it is more detached.
Microsoft provides training and certification to developers of Prepped. This provides value
to Prepped as it allows Prepped to prove to its customers that its consultants and developers
are well acquainted with the Sharepoint platform. In contrast to nétive, Prepped does not
offer to host Sharepoint implementations for its customers. All customers have a Sharepoint
installation available, either a hosted solution by Microsoft or a local deployment on their
own servers. Prepped acquires common, existing solutions from other software vendors to
prevent reimplementation of basic functionality, as does nétive. Unfortunately, Prepped did
not respond on time for its feedback to be included in this report.

Advisie is a systems integrator headquarted in Soest, The Netherlands. It employs around
62 FTE. Advisie helps its customer in implementing large software systems centered around
administration. Its main partner is Exact, an product software vendor which develops a large
software product for financial administration. Additionally, it resells a number of products

7.3. CASES 63

Prepped

Microsoft

Customers

Other
providers payment

common functionality

license
feescertification

payment
customised
sharepoint
modules

usage
fees

hosted
sharepoint

Figure 7.6: VEGA of Prepped

from other vendors such as webshops, OCR, document management, management dash-
boards and time registration software. Advisie sells and customises these product for its
customers, focusing on customer intimacy. A large part of its activities are integrating dis-
junct software products to increase the efficiency for end-users. Advisie has recently begun
to extract common elements from various customers and used these to start creating its own
product software solutions. The VEGA of Advisie is depicted in Figure 7.7.

It should be readily apparent to the reader that this VEGA is very similar to that of Prepped
(Figure 7.6). Again, Adivisie acquires many customers on the merits of its certification,
proving to its potential customers that it has expert know-how of the solutions it resells.
Advisie too acquires common functionality from other software vendors and sells custom
solutions to its customers.

Responding to the final VEGA, the interviewee of Advisie noticed that the flow of leads is
wrong and should be reversed. Leads far more often flow from Exact to Advisie than the
other way around. This is in line with the VEGA and analysis of Exact, and the flow has been
updated in the VEGA. Missing from the VEGA too is the implementation and customised
services that Advisie delivers to its customer. The authors included this in the in the flow
“customised software”, meaning a collection of software packages that is customised and
tightly integrated for a customer and subsequently deployed at the customer. The authors
agree in retrospect that this description is woefully inadequate and would have needed a clear
explanation at the least to be a clear representation of the situation. As this is considered a

64 CHAPTER 7. CASE STUDIES

Advisie

certification
leads

Exact

Suppliers

Customers

complementary
software

payment

customised
software

payment

financial
administration

software
payment

Figure 7.7: VEGA of Advisie

major problem, the VEGA is not updated to reflect it. Overall, the interviewee found this
graph to be an accurate representation of the cooperation with Exact, though she remarked
that Advisie was more complex than just this relationship.

7.3.4 Networked companies

Networked companies are product software companies which combine properties of both
hubs and niche players. The cases included are roos9, Xpenditure10 and Nmbrs11. These
companies develop a software product which integrates with a significant number of part-
ners. In contrast to the niche players, these companies are not tightly dependent on a single,
much larger company in a hub-role, instead integrating their product with several compet-
ing hubs or a number of partners of roughly the same size in terms of revenue and market
reach. The distinction between networked companies and niche players (section 7.3.3) is
somewhat arbitrary: no company in these cases is truly dependent on a single other com-
pany, and most companies rely on others in varying degrees and in different ways, so there
is more of a gray area rather than a black-and-white distinction. One could properly ar-
gue that roos should be considered a niche player, and Advisie a networked company. The

9https://halloroos.nl
10https://xpenditure.com
11http://nmbrs.com

https://halloroos.nl
https://xpenditure.com
http://nmbrs.com

7.3. CASES 65

authors draw the line here at the impact losing the hub would presumably have on the com-
pany. Networked companies are considered to be more resilient to losing a partner than
niche players are.

roos is startup based in Amsterdam, The Netherlands and currently consists of a single
founder. It builds a platform that offers consumers the option of setting an ‘alarm’ for a
recurring contract or payment. The software than reminds the user at the appropriate date
that the contract is up for renewal and that the time to cancel is now, should the user wish
to do so. These reminders are coupled with personalised offers based on the information
supplied by the user. Users do not pay for the service. The VEGA of roos is depicted in
Figure 7.8.

kickback
fees

Consumentenbond
Vereniging Eigen Huis
ANWB

Bazoeka

Energie
vergelijker

new
contract

sales

product
meta-data

white-labeled
product

Consumers

savings
on renewed

contracts

currently
undefined

fees / payment
roos

Figure 7.8: VEGA of roos

Consumers benefit from roos, saving money by preventing silent extensions of contracts
they intended to cancel. No payment is required to use the service, so no return-flow is
modeled. Additionally, the suggestions roos sends to consumers benefit them by presum-
ably utilising savings or bonusses on new contracts of which they were unaware. roos uses
two intermediaries BaZoeka and Energievergelijker for the mobile phone industry and con-
sumer energy contracts respectively. These companies aggregate offers from various suppli-
ers through an API. New contracts are closed through these companies, which also pay out
the kickback fees to roos. Finally, Roos is in talks with various interested parties such as the
Consumentenbond (Consumers Association), Vereniging Eigen Huis (Homeowners Asso-
ciation) and the ANWB (Motorists Association) amongst other parties, to sell the service as
a whitelabeled platform for these associations to use. These talks are currently in an early
stage and naturally a somewhat sensitive subject, so no further information could be shared

66 CHAPTER 7. CASE STUDIES

on the exact flows in these future partnerships.

Commenting on the final VEGA, the interviewee at Roos noticed a few spelling errors in
company names which were fixed in the final VEGA. The set of partner companies had
changed in the meantime so the ANWB was replaced with AEGON, a major insurance
company in The Netherlands. The relationship with these partners was judged to be incom-
plete. Roos receives access to the installed market of these partners, receives data on their
users, shares the kickback fees with the partner, and is included in the marketing materi-
als. Apart from this relationship, the VEGA is a very good representation of the software
ecosystem around Roos.

Xpenditure is a product software company based in Mechelen, Belgium. It sells a SaaS
platform for companies to speed up managing expenses. Expense receipts can be scanned or
photographed by employees and imported to Xpenditure's service through various means.
These receipts are subsequently processed and can be exported to various administration
packages by other suppliers for inclusion in the (financial) administration of the company.
The VEGA of Xpenditure is depicted in Figure 7.9.

Xpenditure

increased
offering strength

Administration
software vendors

Customers

Input platform
software vendors

leads to
existing customer

easier integration
into workflow

easier submission
of expenses

expense process automation

payment

administration software

payment

Figure 7.9: VEGA of Xpenditure

Xpenditure helps its customers with speeding up the expense management process, creating

7.3. CASES 67

insight and improved handling of expenses and having employees enter receipts while still
away and not having to wait to return the office to claim their restitution. It has two main
categories of partners to work with: input and administration. “Input partners” are software
products/companies that are used to submit receipts to Xpenditure. Xpenditure currently
supports submitting receipts through Dropbox12 and Evernote13. These companies have
made APIs available that are used by Xpenditure to quickly integrate these platforms for its
users. It also supports the import of bank statements from various financial institutions such as
American Express, Mastercard, citi, etc. On the other side, Xpenditure integrates its platform
with various suppliers of administrative and financial software. Xpenditure allows employees
to categorise expenses directly on its platform and enables administrative personnel to export
expenses to its financial administration, supporting Quickbooks, Sage one, Freshbooks and
Exact, amongst many others. Xpenditure receives many inquiries and sales leads through its
presence on the website of these partners, where existing users of the administration software
can find its product.

Regarding the VEGA, the interviewee at Xpenditure concluded that the VEGA was an
accurate representation of the situation. A single comment was entered on how Xpenditure
is attempting to create a bundled offering together with several partners. This was not
included in the recording of the interview, though there had been some discussion in broad
strokes on working towards a better integration with partners as a major goal. This aspect
was subsequently not added to the VEGA.

Nmbrs operates on a similar basis as Xpenditure. It builds a software platform for the admin-
istration of HR. Having employees creates a lot of paperwork and administration to process
such as sick leave days, vacation, salary slips, documentation, taxes, etc. Nmbrs is active in
several European countries, with its headquarters in Amsterdam employing around 60 FTE.
It sells its software both directly to companies using it for their HR administration, and to
accountancy firms which use it to form the HR administration of third-parties who have
outsourced their HR administration to these accountancy firms. The VEGA of Nmbrs is
depicted in Figure 7.5.

Nmbrs sells software directly to its customers in exchange for payment for using the software,
usually based on the number of employees administered. These customers in the VEGA in-
clude both the direct sales and the accountancy firms. Nmbrs offers a number of partners
to integrate its software with, which provides the customer with additional benefits such as
automatically importing aggregated expense claims into its financial administration. Nm-
brs shares sales leads with these partner vendors, with both benefiting. With some partner
vendors, Nmbrs forms a more concrete arrangement, paying its affiliates a lead fee for some
qualified leads. These arrangements are custom made agreements per partner.

Evaluating the VEGA for Nmbrs indicated that two partners of Nmbrs were missing: in-
tegration partners which help customers to integrate existing systems and products with

12https://www.dropbox.com/
13https://evernote.com/

https://www.dropbox.com/
https://evernote.com/

68 CHAPTER 7. CASE STUDIES

Nmbrs

payment

Partner
vendors

Affliate
vendors

Customers

HR administration

paymentpayment

complementary
functionality

complementary
functionality

affliate fee

Figure 7.10: VEGA of Nmbrs

Nmbrs, and development partners which help customers to implement Nmbrs in their or-
ganisation, converting and importing existing data to Nmbrs. These partners were not
discussed in the interview, and are thus not added to the VEGA.

7.4 Results

Ultimately, out of a great many e-mails, ten interviews were conducted with key personnel
at these companies. Of the VEGAs drawn, eight are evaluated through the comments of
the interviews. From these responses, it becomes clear that while VEGAs can be used to
properly model a portion of a software ecosystem, it comes with some challenges of its own.
These issues require the analyst to make trade-offs and are mostly considered judgment calls.
There is not one correct answer that is appropriate, but the approach taken will vary based
on the situation.

Four main issues and/or problems on the application have been discovered in these cases.
These are: what to model, limitations on flows, modeling complex VEGAs, and creating
clear and concise models.

Choosing what to model in a VEGA is a somewhat difficult and arbitrary choice. It is clear
from the case of Datafox Benelux and iHomer that using a VEGA to clearly represent a
traditional supply chain is not beneficial. While it can be done and will create an accurate
assessment of the relationships of the company and their flows, there are other tools better
suited to the task. Most if not all of the flows end up as a variant of “<some product X>
in exchange for <payment>”. The reader would probably be better off using for example
Software Supply Networks [10]. From the nétive case, it is clear that one must make a
choice on how far to model the relationships and its flows. In this thesis, the authors usually
only model direct relationships of a company, but indirect connections can be included if it

7.4. RESULTS 69

helps the understanding of the reader. Rather than strictly limiting the depth of relationships
depicted, the analyst must make a choice on what to include or exclude. Outsourcing of staff
business functions such as HR in the iHomer case are not of particular interest to the analysis
of a software company, but rather a fundamental choice on how the company operates by
its management or owners. One could argue that these should be excluded.

Two limitations of flows are apparent through the Datafox Benelux case. Datafox sells its
hardware to its customers via two channels: directly and via third party software vendors,
but it never sells its hardware to a customer through both channels. While this may seem
obvious, this distinction is not clearly deduced by simply reading the VEGA. Additionally,
the indirect channel is much larger and thus far more important to Datafox Benelux than
its comparatively minor direct sales channel, but this too is lost in the VEGA as we lack a
way to indicate the importance of a flow. Adding this is not as simple as drawing thinner
and thicker lines in the VEGA. Partners can have a different appreciation of the relationship,
especially when the flow is between partner of unequal size such as nétive and Salesforce.com,
or Xpenditure and Dropbox. It also begs the question of what the unit of importance is, and
whether the importance can even be quantified directly. Finally, when including very tight
relationships in which companies cooperate on many aspects such as in the case of roos
with the Consumentenbond/Aegon/Vereniging Eigen Huis and the case of AFAS with its
partners, it becomes quite difficult to judge which flows to include and which to ignore. If
all flows are to be included, this creates an issue of completeness (are you sure you have got
them all?) and, in conjunction with the issue of not indicating the importance of a flow,
makes the VEGA more unclear as undue weight is given to very minor flows.

In more complex cases, such as the cases of AFAS and Exact, capturing all flows in a single
VEGA becomes nigh impossible. Especially when companies grow to a certain size, its
actions might no longer be coherent. For example, two business units of a company might
treat the same partners very differently. A VEGA does not support accurately modeling this
aspect, except for adding a partner or the company twice, which tends to get out of hand
quickly. It is advisable in those case to model the VEGA on a smaller level of detail, perhaps
taking as a basis either a business unit of the company, a single product or a product line.

Finally, clearly depicting the situation of a company in a VEGA requires two aspects to be
in place: a thorough analysis of the company and additional explanation of key terms. As
seen in the iHomer case, the quality of a VEGA is strongly dependent on the thoroughness
of the analysis. Creating a suitable VEGA based on a single interview, some background
research and other sources is still quite hard to get it right on the first try. From the case
of AFAS and Adivisie it is clear that displaying a VEGA without extra explanatory text to
further specify the labels of flows is in some cases not sufficient. Only when the situation is
relatively simple, and the flows clearly labeled such as in the case of Datafox Benelux, one
can expect to not have any confusion as to the interpretation of the VEGA flows.

70 CHAPTER 7. CASE STUDIES

7.5 Conclusion

VEGAs can be used to sufficiently model real-world scenarios, though some restrictions
apply. VEGAs are not ideally suited for describing traditional supply chains. Often, the
ideal representation of the situation is not clear and developing a VEGA will require trade-
offs or adjustments to create a clear picture of the situation. Combined with the previous
two chapters on VEGAs, applications in theory and reasoning over them, this chapter forms
the answer to the third and final research question of this research project.

Chapter 8

Discussion and Conclusion

This research project aimed to find look deeper at the concept of “value” in a software ecosys-
tems. Based on an overview of existing literature, a conceptual model was developed to
combine scientific views in a comprehensive overview. This conceptual model combines
previouswork on a variety of topics in software ecosystems such as software ecosystem health,
actor roles and relationships, indications of value in a software ecosystem, and strategy for
participants in an ecosystem. The model clearly shows that additional research is needed on
defining what “value” in software ecosystems actually means, in what forms we could find
it, and how value is moved through a software ecosystems by parties through their actions.
Three research questions were answered in this project to address these research gaps.

The second research question aims to create a comprehensive overview of what forms of
value that could be found in software ecosystems. Searching directly for a vague concept
like value, without a solid definition of it, would not yield useful results. To answer this
research question, a structured literature review was conducted to gather all kinds of busi-
ness models in software ecosystems from existing scientific literature. Based on common
keywords, a clear search strategy and predefined acceptance criteria, 123 scientific publica-
tions were studied for descriptions of business models. Two important limitations apply to
this SLR. One, the SLR is not exhaustive and it is possible and even likely that some business
models have been missed in the search. Second, there are considerable differences of opinion
in scientific literature on what constitutes a business model, which limits the analysis to bits
and pieces found in various studies. From the publications, the forms of value were extracted
and clustered.

The results clearly clustered around 4 main forms of value on two levels. On the first level,
named the resource level, companies cooperate because they require access to each others
resources. Those resources are commonly access to the market of a company, or the valuable
data it has on its users. On the second level, named the collaboration level, companies work
together because it benefits their work. Threemain clusters of value appear in this level. First,

71

72 CHAPTER 8. DISCUSSION AND CONCLUSION

complementary opportunities describe the instances in which companies can cooperate to
create larger value for their customers. By building new software product for a well-known
hardware platform, customers benefit in having more or better functionality available to
them, and companies reap the benefits of a greater installed base. In developing a mod for
a well-known game, a developer gains access to an existing player base instead of having to
built such a base from scratch, and the players gain new content and more playtime from the
game they already own. The second and third cluster are named “savings” and “improved
effectiveness”. These cover the economies of scale that companies can reach by cooperating
with each other. These clusters include values such as network effects of a system, reduced
time-to-market, and faster development of software resulting from having the right APIs
available or adopting common standards. The resulting model (Figure 4.1, page 27) is the
answer to the second research question.

The first search question addresses the need for a solid definition of value in software ecosys-
tems. Based on the forms of value found in the structured literature review and the clusters
made in the model of the second research question, a definition is constructed. This defi-
nition clearly incorporates the key points of value in a software ecosystem, i.e. that is must
be of value to at least one actor, and that it must be moved through the software ecosystem.
The final definition provides the answer to the first research question:

Value in software ecosystems is any product, service, artifact, improvement or right, which
is enabled or exchanged through the software ecosystem and provides a tangible benefit
to a participant.

The third research question considers how value is moved through a software ecosystems. As
depicted in the conceptual model, the actors in the software ecosystem move value between
them by their actions. These actions are guided by the strategies that the actors adopt. To
answer this research question, the authors have created new model: the Value Exchange
Graph (VEGA). This model is a directed graph structure with the actors as vertices and
flows of value between actors as directed edges. A formal meta-model (Figure 5.1, page 31)
is defined for the VEGA model with some additional business logic. To evaluate the VEGA
model, three steps are taken: 1) the VEGA model is used to explain strategies retrieved from
scientific literature, 2) the authors show that the properties of a flow can be reasoned over
and 3) the VEGA model is applied to describe the real-world situations of various software
companies.

First, existing scientific literature is used to create a list of common strategies applied in
software ecosystems (Table 5.1, page 33). Strategies that are suitable for expression in VEGAs
are selected and subsequently modeled and discussed. This step shows that VEGAs can be
used to model how some theoretical strategies move value through a software ecosystem.
Some limitations have become apparent in the execution of this step. Using VEGAs does
not work for every strategy; if a strategy does not change any value flow, VEGAs are not a
proper choice to model the impact of this strategy. Additionally, some strategies have large
effects on an ecosystem in a way that is not apparent from the flow as its core flow is not
changed. These strategies too should not be analysed using VEGAs.

73

Second, the authors show that the flows of a VEGA can be used to reason on these strategies.
Using formal reasoning over VEGAs can be used to determine a price point, develop an
improved version of a play, and determining which actors stands to gain the most of a play.
The application of this reasoning is hampered by requiring a number of assumptions that
are not particularly realistic in practice such as perfectly rational actors, a value-function that
is hard to resolve for other actors. Even with these assumptions, formal reasoning tends to
create insights that could have been reached through other, simpler means.

Third, employees at ten companies in various software ecosystems are interviewed using
a semi-structured setup on how their companies operate, especially with respect to their
partners. The situation of these companies are depicted into VEGAs by the authors and
shown to the interviewees for comment. It emerges that VEGAs can be a good approach to
depict real-world situations of companies in software ecosystems, though some limitations
become apparent. From the analysis of the cases, it is also clear that applying VEGAs to
situations suffers from some limitations. In some, more complex scenarios VEGAs require
additional clarification to avoid confusion, and significant trade-offs in how deep and de-
tailed the VEGA is modeled. Most importantly, clearly depicting a complex situation has
proven to be a challenge, and exhaustive VEGAs for larger companies could not be drawn.

Together, these three steps show that VEGAs can be applied to clarify the exchange of value
in software ecosystems, both in theory and in practice, and serve as the answer to the third
research question.

The definition of value in software ecosystems, the forms of value found in theory and the
development of the VEGA come together to address the research gap as defined by the
conceptual model. By addressing the research gap with the execution of this research project,
the authors hope to have contributed to the field of software ecosystems research, and eagerly
await the day to see it used in practice or improved upon.

quae non valeant singula, iuncta iuvant

Bibliography

[1] Thomas a. Alspaugh, Hazeline U. Asuncion, and Walt Scacchi. “The role of software
licenses in open architecture ecosystems”. In: CEURWorkshop Proceedings 505 (2009),
pp. 4–18. ᴅᴏ: 10.1109/FLOSS.2009.5071361 (cit. on p. 24).

[2] Ross Anderson and TylerMoore. “The economics of information security.” In: Science
(New York, N.Y.) 314.5799 (2006), pp. 610–613. ᴅᴏ: 10.1126/science.1130992 (cit.
on pp. 24, 25).

[3] Cm Armstrong. “Competition in Two-Sided Markets”. In: 37.3 (2006), pp. 668–691.
ᴅᴏ: 10.1111/j.1756-2171.2006.tb00037.x. ᴜᴌ: http://discovery.ucl.ac.
uk/97844/ (cit. on pp. 32, 33, 38).

[4] David F. Bacon et al. “A market-based approach to software evolution”. In: Proceeding
of the 24th ACM SIGPLAN conference companion on Object oriented programming systems
languages and applications - OOPSLA '09 (2009), p. 973. ᴅᴏ: 10 . 1145 / 1639950 .
1640066. ᴜᴌ: http://dl.acm.org/citation.cfm?doid=1639950.1640066
(cit. on pp. 24, 33).

[5] I. van den Berk, S. Jansen, and L. Luinenburg. “Software ecosystems: a software
ecosystem strategy assessment model”. In: Proceedings of the Fourth European Confer-
ence on Software Architecture: Companion Volume. ACM. 2010, pp. 127–134 (cit. on
pp. 7, 18).

[6] UCBerkeley et al. “Previously PublishedWorks UCBerkeley”. In: (2010). ᴅᴏ: http:
//dx.doi.org/10.1289/ehp.1002503 (cit. on pp. 24–26, 33).

[7] Martin Boeker, Werner Vach, and Edith Motschall. “Google Scholar as replacement
for systematic literature searches: good relative recall and precision are not enough”.
In: BMC medical research methodology 13.1 (2013), p. 131 (cit. on p. 21).

[8] J. Bosch. “Achieving Simplicity with the Three-Layer Product Model”. In: Computer
46 (11 2013), pp. 34–39 (cit. on pp. 6, 42).

[9] K. J. Boudreau and K. R. Lakhani. “How to manage outside innovation”. In: MIT
Sloan Management Review (2009) (cit. on pp. 5, 6).

[10] S. Brinkkemper, I. van Soest, and S. Jansen. “Modeling of product software businesses:
Investigation into industry product and channel typologies”. In: Proceedings of the Six-
teenth International Conference on Information Systems Development (2007) (cit. on p. 68).

74

http://dx.doi.org/10.1109/FLOSS.2009.5071361
http://dx.doi.org/10.1126/science.1130992
http://dx.doi.org/10.1111/j.1756-2171.2006.tb00037.x
http://discovery.ucl.ac.uk/97844/
http://discovery.ucl.ac.uk/97844/
http://dx.doi.org/10.1145/1639950.1640066
http://dx.doi.org/10.1145/1639950.1640066
http://dl.acm.org/citation.cfm?doid=1639950.1640066
http://dx.doi.org/http://dx.doi.org/10.1289/ehp.1002503
http://dx.doi.org/http://dx.doi.org/10.1289/ehp.1002503

BIBLIOGRAPHY 75

[11] AlanW Brown and Grady Booch. “Reusing open-source software and practices: The
impact of open-source on commercial vendors”. In: Software Reuse: Methods, Tech-
niques, and Tools 2319 (2002), pp. 123–136. ᴅᴏ: 10.1007/3-540-46020-9_9. ᴜᴌ:
http://link.springer.com/chapter/10.1007/3-540-46020-9%5C_9 (cit. on
pp. 24, 33).

[12] Gary Burtless et al. “Information technology, workplace organization, and the de-
mand for skilled labor: firm-level evidence* t”. In: February (2002) (cit. on p. 26).

[13] International Institute of Business Analysis. What is Business value? http : / / www .
slideshare.net/IIBA/what-is-business-value. May 2012 (cit. on p. 13).

[14] R. Buyya, D. Abramson, and J. Giddy. “A case for economy grid architecture for ser-
vice oriented grid computing”. In: Proceedings 15th International Parallel and Distributed
Processing Symposium. IPDPS 2001 (2001). ᴅᴏ: 10.1109/IPDPS.2001.925033 (cit.
on p. 25).

[15] A. Chandler. Strategy and Structure: Chapters in the history of industrial enterprise. Dou-
bleday, New York, 1962 (cit. on p. 9).

[16] Henry Chesbrough and Richard S Rosenbloom. “The role of the business model in
capturing value from innovation: evidence from Xerox Corporation's technology
spin-off companies”. In: Industrial and corporate change 11.3 (2002), pp. 529–555 (cit.
on pp. 24, 25).

[17] Alina M Chircu and Robert J Kauffman. “Reintermediation strategies in business-to-
business electronic commerce”. In: International Journal of Electronic Commerce (2000),
pp. 7–42 (cit. on p. 25).

[18] Michael a. Cusumano. “The changing software business: Moving from products to
services”. In: Computer 41.1 (2008), pp. 20–27. ᴅᴏ: 10.1109/MC.2008.29 (cit. on
pp. 24–26, 33).

[19] QizhiDai andRobert J Kauffman. “Businessmodels for internet-based e-procurement
systems and B2B electronic markets: an exploratory assessment”. In: System Sciences,
2001. Proceedings of the 34th Annual Hawaii International Conference on. IEEE. 2001,
p. 10 (cit. on p. 25).

[20] Pedro Domingos and Matt Richardson. “Mining the Network Value of Customers”.
In: Proceedings of the Seventh {ACM} {SIGKDD} International Conference on Knowledge
Discovery and Data Mining (2001), pp. 57–66. ᴅᴏ: 10.1145/502512.502525. ᴜᴌ:
http://doi.acm.org/10.1145/502512.502525 (cit. on p. 26).

[21] Omar a El Sawy et al. “It-intensive value innovation in the electronic economy: In-
sights from marshall industries”. In: MIS Quarterly 23.3 (1999), pp. 305–335. ᴅᴏ: 10.
2307/249466. ᴜᴌ: http://www.jstor.org/stable/249466 (cit. on p. 24).

[22] Joan Feigenbaum et al. “Privacy Engineering for Digital Rights Management Sys-
tems”. In: Security and Privacy in Digital Rights Management 2320 (2002), pp. 1–30 (cit.
on pp. 24–26).

http://dx.doi.org/10.1007/3-540-46020-9_9
http://link.springer.com/chapter/10.1007/3-540-46020-9%5C_9
http://www.slideshare.net/IIBA/what-is-business-value
http://www.slideshare.net/IIBA/what-is-business-value
http://dx.doi.org/10.1109/IPDPS.2001.925033
http://dx.doi.org/10.1109/MC.2008.29
http://dx.doi.org/10.1145/502512.502525
http://doi.acm.org/10.1145/502512.502525
http://dx.doi.org/10.2307/249466
http://dx.doi.org/10.2307/249466
http://www.jstor.org/stable/249466

76 BIBLIOGRAPHY

[23] Karl Fogel. “How To Run A Successful Free Software Project - Producing Open
Source Software”. In: (2009). ᴜᴌ: http://www.amazon.com/How- Successful-
Free-Software-Project/dp/1441437711?SubscriptionId=0JYN1NVW651KCA56C102&
tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=
1441437711 (cit. on pp. 24, 33).

[24] J. Gehanno, L. Rollin, and S. Darmoni. “Is the coverage of Google Scholar enough to
be used alone for systematic reviews”. In: BMC medical informatics and decision making
13.1 (2013), p. 7 (cit. on p. 21).

[25] George M. Giaglis, Stefan Klein, and Robert M. O'Keefe. “The role of intermediaries
in electronic marketplaces: Developing a contingency model”. In: Information Systems
Journal 12.3 (2002), pp. 231–246. ᴅᴏ: 10.1046/j.1365-2575.2002.00123.x (cit.
on pp. 24–26, 33).

[26] D. Giustini. Sure, Google scholar is ideal for some things. http://blogs.ubc.ca/
dean/2010/05/sure-google-scholar-is-ideal-for-some-things/. May 2010
(cit. on p. 21).

[27] N Gold et al. “Understanding service-oriented software”. In: Software, IEEE 21.2
(2004), pp. 71–77. ᴜᴌ: http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?
arnumber=1270766 (cit. on p. 25).

[28] J. Gordijn. “Value-based Requirements Engineering: Exploring Innovative e-Commerce
Ideas”. PhD thesis. Vrije Universiteit Amsterdam, 2002 (cit. on pp. 24–26, 33).

[29] Jim Gray. “Distributed Computing Economics”. In: March (2004), p. 6. ᴅᴏ: 10 .
1145/1394127.1394131. arXiv: 0403019 [cs]. ᴜᴌ: http://arxiv.org/abs/
cs/0403019 (cit. on pp. 24, 25).

[30] Paul Grefen, K Aberer, and Heiko Ludwig. “CrossFlow: cross-organizational work-
flow management in dynamic virtual enterprises”. In: Computer Systems Science & En-
gineering 15.5 (2000), pp. 277–290. ᴜᴌ: http://ieeexplore.ieee.org/xpls/abs%
5C_all.jsp?arnumber=4092175$%5Cbackslash$nhttp://infoscience.epfl.
ch/record/54419/files/CSSE%5C_00.pdf (cit. on p. 24).

[31] E. den Hartigh et al. “Measuring the health of a business ecosystem”. In: Software
Ecosystems: Analyzing and managing business networks in the software industry. Ed. by
S. Jansen, S. Brinkkemper, and M. A. Cusumano. Edward Elgar, Cheltenham, UK,
2013 (cit. on pp. 4, 18).

[32] Richard E Hawkins. “The economics of open source software for a competitive firm”.
In: NETNOMICS: Economic Research and Electronic Networking 6.2 (2004), pp. 103–
117 (cit. on pp. 24, 25, 33).

[33] E. Von Hippel. Democratizing innovation. MIT press, 2005 (cit. on p. 5).

http://www.amazon.com/How-Successful-Free-Software-Project/dp/1441437711?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1441437711
http://www.amazon.com/How-Successful-Free-Software-Project/dp/1441437711?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1441437711
http://www.amazon.com/How-Successful-Free-Software-Project/dp/1441437711?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1441437711
http://www.amazon.com/How-Successful-Free-Software-Project/dp/1441437711?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1441437711
http://dx.doi.org/10.1046/j.1365-2575.2002.00123.x
http://blogs.ubc.ca/dean/2010/05/sure-google-scholar-is-ideal-for-some-things/
http://blogs.ubc.ca/dean/2010/05/sure-google-scholar-is-ideal-for-some-things/
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=1270766
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=1270766
http://dx.doi.org/10.1145/1394127.1394131
http://dx.doi.org/10.1145/1394127.1394131
http://arxiv.org/abs/0403019
http://arxiv.org/abs/cs/0403019
http://arxiv.org/abs/cs/0403019
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=4092175$%5Cbackslash$nhttp://infoscience.epfl.ch/record/54419/files/CSSE%5C_00.pdf
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=4092175$%5Cbackslash$nhttp://infoscience.epfl.ch/record/54419/files/CSSE%5C_00.pdf
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=4092175$%5Cbackslash$nhttp://infoscience.epfl.ch/record/54419/files/CSSE%5C_00.pdf

BIBLIOGRAPHY 77

[34] Donna L. Hoffman, Thomas P. Novak, and Patrali Chatterjee. “Commercial Scenar-
ios for the Web: Opportunities and Challenges”. In: Journal of Computer-Mediated
Communication 1.3 (2006), pp. 1–21. ᴅᴏ: 10.1111/j.1083-6101.1995.tb00165.x.
ᴜᴌ: http://doi.wiley.com/10.1111/j.1083-6101.1995.tb00165.x (cit. on
pp. 24, 25).

[35] S. E. Hove and B. Anda. “Experiences from conducting semi-structured interviews in
empirical software engineering research”. In: Software Metrics, 11th IEEE International
Symposium. IEEE. 2005, pp. 10–23 (cit. on pp. 16, 18).

[36] M Iansiti and R Levien. “Keystones and dominators: Framing operating and technol-
ogy strategy in a business ecosystem”. In: Harvard Business School, Boston (2004) (cit.
on p. 4).

[37] M. Iansiti and R. Levien. The keystone advantage: what the new dynamics of business
ecosystems mean for strategy, innovation, and sustainability. Harvard Business Press, 2004
(cit. on pp. 4, 6, 7, 9, 14, 15, 32–34, 42, 54, 61).

[38] Marco Iansiti and Roy Levien. “Keystones and dominators: Framing operating and
technology strategy in a business ecosystem”. In:Harvard Business School, Boston (2004)
(cit. on pp. 24, 25).

[39] Jacqueline. No, Google Scholar Shouldn’t be Used Alone for Systematic Review Searching.
https://laikaspoetnik.wordpress.com/2013/07/09/no-google-scholar-
shouldnt-be-used-alone-for-systematic-review-searching/. 2013 (cit. on
p. 21).

[40] S. Jansen, S. Brinkkemper, and A. Finkelstein. “Business Network Management as
a Survival Strategy: A Tale of Two Software Ecosystems”. In: Proceedings of the first
International Workshop on Software Ecosystems. 2009 (cit. on pp. 24–26, 33).

[41] S. Jansen and M Cusumano. Defining software ecosystems: a survey of software platforms
and business network governance. Edward Elgar Pub, 2013 (cit. on pp. 24, 25).

[42] S. Jansen and M. A. Cusumano. “Defining software ecosystems: a survey of software
platforms and business network governance”. In: Software Ecosystems: Analyzing and
managing business networks in the software industry. Ed. by S. Jansen, S. Brinkkemper,
and M. A. Cusumano. Edward Elgar, Cheltenham, UK, 2013 (cit. on p. 4).

[43] S. Jansen, A. Finkelstein, and S. Brinkkemper. “A Sense of Community: A Research
Agenda for Software Ecosystems”. In: Software Engineering-Companion. IEEE, 2009
(cit. on pp. 4, 6, 10, 14).

[44] S. Jansen, a. Finkelstein, and S. Brinkkemper. “A sense of community: A research
agenda for software ecosystems”. In: 2009 31st International Conference on Software
Engineering - Companion Volume (2009), pp. 2–5. ᴅᴏ: 10.1109/ICSE-COMPANION.
2009.5070978 (cit. on pp. 24, 25).

[45] S. Jansen et al. “Shades of gray: Opening up a software producing organization with
the open software enterprise model”. In: Journal of Systems and Software 85.7 (2012),
pp. 1495–1510 (cit. on p. 6).

http://dx.doi.org/10.1111/j.1083-6101.1995.tb00165.x
http://doi.wiley.com/10.1111/j.1083-6101.1995.tb00165.x
https://laikaspoetnik.wordpress.com/2013/07/09/no-google-scholar-shouldnt-be-used-alone-for-systematic-review-searching/
https://laikaspoetnik.wordpress.com/2013/07/09/no-google-scholar-shouldnt-be-used-alone-for-systematic-review-searching/
http://dx.doi.org/10.1109/ICSE-COMPANION.2009.5070978
http://dx.doi.org/10.1109/ICSE-COMPANION.2009.5070978

78 BIBLIOGRAPHY

[46] R. J. Kauffman and Bin Wang Bin Wang. “New buyers' arrival under dynamic pric-
ing market microstructure: the case of group-buying discounts on the Internet”. In:
Proceedings of the 34th Annual Hawaii International Conference on System Sciences (2001),
pp. 1–35. ᴅᴏ: 10.1109/HICSS.2001.927065 (cit. on p. 25).

[47] B. Kitchenham. Procedures for performing systematic reviews. Tech. rep. Keele Univer-
sity, July 2004 (cit. on pp. 15, 18, 20, 21).

[48] K. R. Lakhani and E. Von Hippel. “How open source software works:“free” user-to-
user assistance”. In: Research Policy 32.6 (2003), pp. 923–943 (cit. on p. 5).

[49] David Lucking-Reiley. “Auctions on the Internet:What's BeingAuctioned, andHow?”
In: Journal of Industrial Economics 48.3 (2000), pp. 227–252. ᴅᴏ: 10 . 1111 / 1467 -
6451.00122 (cit. on pp. 24, 26).

[50] K. Manikas and K. M. Hansen. “Software ecosystems--a systematic literature review”.
In: Journal of Systems and Software 86.5 (2013), pp. 1294–1306 (cit. on p. 3).

[51] Jonathan R. Mayer and John C.Mitchell. “Third-party web tracking: Policy and tech-
nology”. In: Proceedings - IEEE Symposium on Security and Privacy (2012), pp. 413–427.
ᴅᴏ: 10.1109/SP.2012.47 (cit. on pp. 24–26).

[52] David G Messerschmitt. “Marketplace issues in software planning and design”. In:
Software, IEEE 21.3 (2004), pp. 62–70 (cit. on pp. 24, 25).

[53] H. Mintzberg, B. Ahlstrand, and J. Lampel. Strategy Safari: A Guided Tour Through
The Wilds of Strategic Mangament. FreePress, New York, 2005 (cit. on p. 9).

[54] Tyler Moore. Economics of Information Security and Privacy. 2010 (cit. on pp. 24, 25).
[55] MSU. PubMed, Web of Science, or Google Scholar? A behind-the-scenes guide for life scien-

tists. : So which is better: PubMed, Web of Science, or Google Scholar? http://libguides.
lib.msu.edu/pubmedvsgooglescholar. Feb. 2015 (cit. on p. 21).

[56] M. P. Papazoglou and D. Georgakopoulos. “Service-oriented computing”. In: Com-
munications of the ACM 46.10 (2003), pp. 24–28. ᴅᴏ: 10.1109/WISE.2003.1254461.
ᴜᴌ: http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=1607964
(cit. on p. 25).

[57] Sloan Working Paper, Eric Von Hippel, and Karim Lakhani. “MIT Sloan School of
Management”. In: May (2000), pp. 1–39 (cit. on p. 24).

[58] Edieal J. Pinker, Abraham Seidmann, and Yaniv Vakrat. “Managing Online Auctions:
Current Business and Research Issues”. In:Management Science 49.11 (2003), pp. 1457–
1484. ᴅᴏ: 10.1287/mnsc.49.11.1457.20584 (cit. on p. 25).

[59] K.M. Popp and R. Meyer. Profit from Software Ecosystems. Synomic Gmbh, 2010 (cit.
on pp. 15, 32, 33).

[60] M. E. Porter. Competitive strategy: Techniques for analyzing industries and competitors.
1980 (cit. on pp. 7, 9).

[61] M. E. Porter and M. R. Kramer. “Creating shared value”. In: Harvard business review
89.1/2 (2011), pp. 62–77 (cit. on p. 5).

http://dx.doi.org/10.1109/HICSS.2001.927065
http://dx.doi.org/10.1111/1467-6451.00122
http://dx.doi.org/10.1111/1467-6451.00122
http://dx.doi.org/10.1109/SP.2012.47
http://libguides.lib.msu.edu/pubmedvsgooglescholar
http://libguides.lib.msu.edu/pubmedvsgooglescholar
http://dx.doi.org/10.1109/WISE.2003.1254461
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=1607964
http://dx.doi.org/10.1287/mnsc.49.11.1457.20584

BIBLIOGRAPHY 79

[62] Danny Quah. “The weightless economy in economic development”. In: CEPR Dis-
cussion Paper 417, London School of Economics March.March (1999) (cit. on p. 25).

[63] Ralf Reichwald, Frank T Piller, and Kathrin Möslein. “Information As a Critical Suc-
cess Factor for Mass Customization or: Why Even a Customized Shoe Not Always
Fits”. In: ASAC-IFSAM 2000 Conference (2000), p. 10 (cit. on pp. 24, 26).

[64] Jean-charles Rochet and Jean Tirole. “Platform Competition in Two-Sided Markets”.
In: (2002), pp. 1–47 (cit. on pp. 25, 27, 33, 38).

[65] Alvin E. Roth. “The Economist as Engineer: Game Theory, Experimentation, and
Computation as Tools for Design Economics”. In: Econometrica 70.4 (2002), pp. 1341–
1378. ᴅᴏ: 10.1111/1468-0262.00335 (cit. on pp. 25, 26).

[66] Toni Ruokolainen, Sini Ruohomaa, and Lea Kutvonen. “Solving service ecosystem
governance”. In: Proceedings - IEEE International Enterprise Distributed Object Comput-
ing Workshop, EDOC (2011), pp. 18–25. ᴅᴏ: 10.1109/EDOCW.2011.43 (cit. on
pp. 24, 25).

[67] Markku Sääksjärvi, Aki Lassila, and Henry Nordström. “Evaluating the software as
a service business model: From CPU time-sharing to online innovation sharing”. In:
IADIS international conference e-society. Citeseer. 2005, pp. 177–186 (cit. on pp. 24–
26).

[68] B. F. Schmid and M.a. Lindemann. “Elements of a reference model for electronic
markets”. In: Proceedings of the Thirty-First Hawaii International Conference on System
Sciences 4 (1998). ᴅᴏ: 10.1109/HICSS.1998.655275 (cit. on pp. 24, 25).

[69] Shashi Shekhar, Michael Dietz, and Dan S.Wallach. “AdSplit: Separating smartphone
advertising from applications”. In: Proceedings of the 21st USENIX conference on Se-
curity symposium (2012), p. 28. arXiv: 1202 . 4030. ᴜᴌ: https : / / www . usenix .
org/system/files/conference/usenixsecurity12/sec12- final101.pdf$
%5Cbackslash$nhttp://arxiv.org/abs/1202.4030 (cit. on p. 25).

[70] M D Smith, J P Bailey, and E Brynjolfsson. “Understanding digital markets : review
and assessment”. In: MIT Press (1999), p. 42. ᴅᴏ: 10.2139/ssrn.290326 (cit. on
pp. 25, 26, 39).

[71] Jayashankar M. Swaminathan and Sridhar R. Tayur. “Models for Supply Chains in E-
Business”. In: Management Science 49.10 (2003), pp. 1387–1406. ᴅᴏ: 10.1287/mnsc.
49.10.1387.17309 (cit. on p. 24).

[72] Mikko Välimäki and Ville Oksanen. “The impact of free and open source licensing on
operating system software markets”. In: Telematics and Informatics 22.1 (2005), pp. 97–
110 (cit. on pp. 24, 26, 33, 39).

[73] Mikko Välimäki and Ville Oksanen. “The impact of free and open source licensing
on operating system software markets”. In: Telematics and Informatics 22.1-2 (2005),
pp. 97–110. ᴅᴏ: 10.1016/j.tele.2004.06.008 (cit. on pp. 24, 33).

[74] M.S. VanHouweling. “CultivatingOpen Information Platforms: A LandTrustModel”.
In: Journal on Telecommunications and High Technology Law (2002) (cit. on p. 39).

http://dx.doi.org/10.1111/1468-0262.00335
http://dx.doi.org/10.1109/EDOCW.2011.43
http://dx.doi.org/10.1109/HICSS.1998.655275
http://arxiv.org/abs/1202.4030
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final101.pdf$%5Cbackslash$nhttp://arxiv.org/abs/1202.4030
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final101.pdf$%5Cbackslash$nhttp://arxiv.org/abs/1202.4030
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final101.pdf$%5Cbackslash$nhttp://arxiv.org/abs/1202.4030
http://dx.doi.org/10.2139/ssrn.290326
http://dx.doi.org/10.1287/mnsc.49.10.1387.17309
http://dx.doi.org/10.1287/mnsc.49.10.1387.17309
http://dx.doi.org/10.1016/j.tele.2004.06.008

80 BIBLIOGRAPHY

[75] I. van de Weerd and S. Brinkkemper. “Meta-modeling for situational analysis and
design methods”. In: Handbook of Research on Modern Systems Analysis and Design
Technologies and Applications. Ed. by M. R. S. Syed and S. N. Syed. IGI Global, 2009
(cit. on p. 14).

[76] C.Wohlin et al. Experimentation in Software Engineering. Springer, 2012 (cit. on p. 18).
[77] Eric Yu and Stephanie Deng. “Understanding software ecosystems: A strategic mod-

eling approach”. In: CEURWorkshop Proceedings 746 (2011), pp. 65–76 (cit. on p. 25).
[78] Vladimir Zwass. “Electronic Commerce: Structures and Issues”. In: International jour-

nal of electronic commerce 1.1 (1996), pp. 3–23 (cit. on p. 25).

List of Figures

2.1 Conceptual model of value in software ecosystems 8
2.2 Conceptual model of value in software ecosystems, overlaid with the research

questions of the research project . 11

3.1 Process-deliverable diagram of the first phase (SLR) of the research project . 15
3.2 Process-deliverable diagram of the second phase (developing artifact) of the

research project . 16
3.3 Process-deliverable diagram of the third phase (interviews) of the research

project . 17

4.1 Main clusters of results from SLR . 27

5.1 Meta-model of the business value flow diagram 31
5.2 VEGA of play #1 optimising partner productivity 34
5.3 VEGA of play #4 public roadmap funding 35
5.4 VEGA of an adaption of play #4 (public roadmap funding) to a two-sided

market platform . 36
5.5 VEGA of play #6 bug bounties . 37
5.6 VEGA of play #7 building complementary products 37
5.7 VEGA of play #10 subsidise one side, extract the other 38
5.8 VEGA of play #13 bundling . 39
5.9 VEGA of play #15 disregard standards . 40
5.10 VEGA of play #16 adopt standards . 40
5.11 VEGA of play #34 divestment . 41
5.12 VEGA of play #22 creating shareable assets 43

6.1 VEGA of play #16 adopt standards . 46
6.2 VEGA of play #34 divestment . 48
6.3 VEGA of the improved scenario play #34 divestment 48
6.4 VEGA of play #6 bug bounties . 49

7.1 VEGA of iHomer . 55
7.2 VEGA of Datafox Benelux . 56

81

82 LIST OF FIGURES

7.3 VEGA of Exact . 58
7.4 VEGA of AFAS . 59
7.5 VEGA of nétive . 61
7.6 VEGA of Prepped . 63
7.7 VEGA of Advisie . 64
7.8 VEGA of roos . 65
7.9 VEGA of Xpenditure . 66
7.10 VEGA of Nmbrs . 68

List of Tables

3.1 Concepts of value with interested roles [37] in a software ecosystem 14

4.1 Search keywords in the SLR with number of results and inclusion/exclusion
counts . 23

5.1 Collected plays in software ecosystems . 33

83

	Administrative information
	Acknowledgments
	Summary
	Contents
	Introduction
	Theoretical background
	Introduction
	Related work
	Basics of software ecosystems
	Software ecosystem health
	Value in software ecosystems
	Software ecosystem strategy

	Conceptual model
	Research triggers
	Research questions
	Conclusion

	Research approach
	Introduction
	Research process
	Challenges
	Validity
	Conclusion

	Structured literature review
	Introduction
	Rationale
	Questions
	Approach
	Limitations of the approach
	Results
	What is sold?
	How is it sold?
	How is it paid for?
	What affects the performance?

	Analysis
	Conclusion

	Value Exchange Graphs
	Introduction
	VEGA meta-model
	Software ecosystem plays
	Play #1: support partner productivity
	Play #4: public roadmap funding
	Play #6: bug bounties
	Play #7: building complementary products
	Play #10: subsidise one side, extract the other
	Play #13: bundling
	Play #15: disregard standards
	Play #16: adopt standards
	Play #34: divestment
	Limitations

	Conclusion

	Reasoning over Value Exchange Graphs
	Introduction
	Reasoning on plays
	Who benefits?
	Improving a play
	Determining a price point
	Limitations
	Conclusion

	Case studies
	Introduction
	Approach
	Cases
	Supply chains
	Hubs
	Niche players
	Networked companies

	Results
	Conclusion

	Discussion and Conclusion
	Bibliography
	List of Figures
	List of Tables

