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Abstract

The research area of water simulation control is focused on controlling the flow of
computer-generated water. Current studies in this area are heavily skewed towards
off-line applications. While there are studies that achieve control in real-time, in prac-
tice this is limited to small-scale scenarios. This thesis presents a simple technique to
control shallow water simulations on a large scale in real-time.

The water control technique presented by this thesis works on any type of water
simulation that stores its properties in a grid-based format. The technique is based on
splitting the low and high frequency components of the water state through convolution
with a low-pass filter. Additionally, to maintain existing water flow details, control is
applied in a weak form by linearly interpolating the current water state with a target
state.

We show that the technique produces similar results to an uncontrolled water simula-
tion that is based on the same input. Furthermore, we show that important small-scale
wave details of the water simulation are maintained for an extended period of time, while
large-scale interruptions are quickly dealt with. Performance of the technique relies on
the size of the grid, but is real-time when running on a single CPU for a typical flooding
scenario of 128 by 128 cells.
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1. Introduction

Water simulation is one of the largest areas of research within computer graphics. Ap-
plications for water simulation include computer games and movies, but is also useful
for disaster management, to visualize for example oil spills and flooding scenarios.

Simulating a large-scale flooding scenario in the context of disaster management has
one major requirement: the simulation has to be an accurate representation of a real-
world flooding scenario. This means the governing equations that describe water flow,
often the shallow water equations, can not be simplified much. Combined with the large
scale of the simulation, this means it can not be simulated in real-time on an average
desktop computer. If a real-time visualization is required, the large-scale simulation will
have to be precomputed.

A real-time water flow visualization can have several degrees of realism. A realistic
visualization of a flooding scenario means detailed interaction with the environment is
required. For this, a water simulation is typically used. In the case of visualizing an
existing large-scale simulation, it would be a small-scale water simulation on top of the
large-scale simulation. One major difficulty arises: the small-scale simulation should
look like it is a result of the large-scale simulation. It has to be a realistic and detailed
visualization of the large-scale water flow. As the small-scale simulation will not behave
like the large-scale simulation by default (it does not even know about incoming water),
a way to control the small-scale simulation is required.

Objective

The research topic of this thesis is water simulation control. Specifically, it is about
controlling shallow water simulations without losing the characteristics that make the
water what we perceive it to be. While there are several techniques to solve this problem
off-line on both small and large scales, mentioned in chapter 2, there have not yet been
any to solve this in real-time on a large scale. Thus, the objective of this thesis is to
present a simple technique to control large-scale shallow water simulations with coarse
control data.

Controlling water flow

To apply control on a water simulation, we first need a shallow water solver. The solver
we use models water velocity, water height and dry regions and includes some stability
enhancements.

The focus of our water control technique is on trying to keep the details important
for recognizing water. This is done by using a Gaussian high-pass filter to separate the
large- and small-scale water flow. The high-frequency part will contain the small-scale
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water flow that we desire to keep. This filter includes some modifications to account for
dry water regions. We also evaluate a problem with repeated application of a Gaussian
high-pass filter.

To control the simulation, the large-scale water flow, the low-frequency part, is re-
placed with the ’correct’ large-scale flow, taken for example from an external data source.
The small-scale details are kept by adding the high- and low-frequency parts back to-
gether. Furthermore, we assume that an uncontrolled small-scale simulation and the
data we use to control the simulation move roughly the same, allowing weak control on
the simulation through interpolation between the current and a target water state. The
end result is a robust technique to control shallow water flow.

Contributions

The technique to control shallow water flow is our main contribution. A minor contri-
bution is an analysis of repeated high-pass filtering. Additionally, we have a very small
contribution in the function that determines reflecting boundaries for our shallow water
simulation.

In addition to the contributions in water simulation, we present a small advance in
image-based water visualization in appendix A.

Overview

This thesis will continue with a summary of work related to our research topic in chap-
ter 2. After that, we will give a short problem description in chapter 3. Following this,
in section chapter 4, we will describe our technique from start to finish, complete with
all details required to implement it. Chapter 5 will then describe the test environment
and the results of the technique, including an analysis of its quality and performance.
The thesis will finish with a conclusion and our future work in chapters 6 and 7.
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2. Related Work

This chapter’s purpose is to give an overview of the current state of the art in water
simulation in section 2.1, water simulation control in section 2.2 and flow rendering in
section 2.3. Each section will provide an overview of real-time techniques, if applicable,
and mention relevant off-line methods otherwise.

2.1. Water Simulation

The topic of water simulation has been very well researched. At the same time, there is
yet no all-round perfect technique for simulating water. As such, there are many different
approaches to do so. Water simulations typically revolve around simplifying and/or
solving the Navier-Stokes equations (presented in section 4.1.1) one way or another. In
some cases, the techniques rely on linear wave theory, which only models water height,
or the even simpler wave equations, which also assumes a constant wave speed.

2.1.1. Particle-based methods

In particle-based simulations, particles typically carry mass through space, interacting
with other particles and their environment. Typical usages in real-time applications are
small-scale, such as water sprays and foam.

The core of many particle-based methods is Smoothed Particle Hydrodynamics, first
applied to free-surface fluid simulation by [Mon94]. It has since been extended for use in
interactive applications [MCG03, KW06]. To increase performance, adaptive simulation
has been implemented by [APKG07], who scale the particles, and [LTKF08], who couple
SPH with a particle level-set method. Different types of fluids can also be simulated,
such as viscoelastic fluids as done by [CBP].

Other particle-based methods include Langevin particles [CZY11], Moving Particle
Semi-implicit(MPS) [KO96] and position-based fluids [MM13].

In contrast to the above particle simulations, where the particles carry mass, [YHK07]
uses particles to carry wave information across a water surface. This has been extended
for use in flowing water by [Cor08].

2.1.2. Grid-based methods

Grid-based methods are based around the idea of cells containing water. Water is then
moved by cells exchanging mass and possibly other water properties like velocity and
temperature. This method is very popular in real-time applications, as it is well-suited
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to simulating large bodies of water. It is often coupled with particle-based methods for
small-scale details.

Grid-based simulation became popular with the introduction of unconditionally stable
fluid models [Sta99]. Many variations have been introduced since, not only 3D or 2D,
but also the 2.5D heightfield-based shallow water simulations.

3D water simulations are typically used for off-line applications. A recent advance in
3D water simulation is chimera grids by [EQYF13], who discretize space with overlapping
grids that translate and rotate. This way, different (possibly moving) regions of interest
can be simulated with different resolutions. A 3D / 2D hybrid has been designed by
[CM11], who represent a water body’s deep water with tall cells, while using a full 3D
simulation for the detailed surface.

For real-time applications, shallow water simulations are very popular. They solve the
shallow water equations, which are a derivation of the Navier-Stokes equations, simplified
with varying assumptions, of which the most obvious is that water can be represented
as a 2D surface with varying water heights. The shallow water equations are described
in detail in section 4.1.2. Recent implementations of shallow water solvers have been
done by for example [KP+07] and [CM10]. To further improve the range of applications
for shallow water simulations, several adaptive schemes have been implemented [LO07,
Kal08].

Because even the shallow water equations are too demanding for real-time applications
in some scenarios, there has been research into faster water simulations using linear wave
theory [Tes04a, Day09] or even the wave equations [CS09]. A notable achievement is
a prototype implementation in DICE’s Frostbite engine by [Ott11], who approximate
dispersion by simulating different wave lengths on different grids, thereby drastically
reducing the number of computations per cell.

2.1.3. Other methods

Several other methods exist to simulate water, such as mesh-based simulation [CFL+07],
which is a position-based method, and model reduction [TLP06, WST09].

Aside from doing actual simulation, there are also procedural methods to generate
animated water surfaces. One example is the Gerstner swell model, which generates
wave shapes that can be summed, as implemented by [HNC02]. Another well-known
and battle-tested technique generates waves given a phase/amplitude spectrum [Tes04b].
Both of these procedural methods can also be used to add details to an existing simu-
lation. Lastly, there are also techniques to generate turbulent water flow [BHN07] or to
add turbulence to an existing simulation [NSCL08, PTSG09].

2.2. Simulation Control

The goal of controlling simulations is to make the water flow in the direction the user
wants, without breaking realism for the viewer (that is, it should still look and move like
water). This is usually done by applying forces to the water or calculating derivatives
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given certain constraints in terms of water flow. Control can be applied in scenarios like
a flooding hallway, but could also be used to create an animated figure made of water.

Research in this area typically only includes off-line applications, with some exceptions
like [PHT+13], which is interactive only on a small scale. Many off-line simulation
control methods use the adjoint method to calculate the derivatives required to steer
the simulation in the correct direction, usually towards a target keyframe [MTPS04].
[TKPR09] use control particles to apply force-based control. Additionally, similar to
our method, they split the low and high frequencies of the velocity to be able to apply
control only to the large-scale flow. [NB11] use a guide shape, limiting their control
computations to a thin layer around it. Similarly, [RTWT12] use a mesh as their target,
but control their simulation more strictly by keeping the mass constant.

2.3. Flow Rendering

Instead of simulating and controlling water, the alternative is to render the water flow in
a simpler way. [YNBH09] does this by moving sprites with the flow on a flowing river. In
a more ’Eulerian’ approach, [vH11] splits the domain in overlapping squares, rendering
water textures on them and moving the textures in the direction of the flow.

An a slightly different approach, some have tried to advect the pixels in an image with
the flow, trying to maintain the texture [VW02, YNBH11]. A similar technique has also
been applied in games [Vla10], where they simply keep the texture by blending the ’old’
advected image with a fresh image that still has its texture.
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3. Problem Description

The goal of this project is to investigate solutions to render large-scale water simulations
in real-time. In our case, the result is intended to be integrated in a flood visualiza-
tion framework. This software can be used to predict the flooding impact and has the
potential to ease decision-making in the context of disaster management.

The large-scale water simulation the software takes input from exists only on a very
coarse scale and can spread to over tens of square kilometres. In order to visualize this
simulation while maintaining realism, the existing simulation will have to be refined.
This could be done, for example, by projecting the coarse data on a higher resolution
grid and to interpolate what lies in between.

Initially, image-based rendering might seem like a good solution. However, image-
based water simply can not realistically display (violent) water flow over a rough surface.
This is a typical flooding scenario. Observe for example the water in the video located
at https://www.youtube.com/watch?v=_VD5GxluHN8. It is also very difficult for an
image-based water renderer to interact with the bottom elevation to create things like
whirlpools.

The goal of this thesis is to find a solution for displaying turbulent water flows within
the constraints of the given simulation data. This solution is presented in chapter 4.
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4. Model

This chapter defines a solution for rendering detailed water flow under constraints given
by a simulation performed on a larger scale. We will provide all the details required
to reproduce the result, as well as give arguments for the chosen sub-methods and
parameters.

First we pose a global overview of our method with algorithm 1. We will then explain
some techniques and algorithms we use in our method in sections 4.1 to 4.3. Finally, we
will describe the algorithm in detail and how we put it all together in section 4.4.

From here on out, unless mentioned otherwise, small-scale data will refer to the small-
scale water simulation or state. Similarly, control data or large-scale data refers to the
data used to control this simulation. The latter can refer to the data interpolated over
time and space, only over space or not at all, depending on context. Ambiguities will
be explained. Similarly, water state refers to the combination of water depth/height,
x-velocity and y-velocity. It will also be referred to as S(x, y, t), S(x, y), St or just S,
where x and y are the x- and y-position in meters respectively and t is the frame time
in seconds. It can also be referred to as S(i, j), meaning it is indexed with grid indices
instead of position. It refers to the small-scale data by default. When S refers to the
large-scale data, it will be denoted with L.

Algorithm 1 Main loop (executed every frame)

1: Interpolate control data over space and time. (section 4.4.3)
2: Extract high-frequency data from water state using Gaussian filter. (sections 4.2

and 4.3)
3: Mix current water state with high-frequency data and control data. (section 4.4.1)
4: Apply shallow water simulation algorithm to water state. (section 4.1)

The cell width and/or time step of the large-scale data is larger than that of the
small-scale simulation. As such, the control data, which exists only on a large scale, will
have to be interpolated first. We assume there is too much data to do this beforehand,
so this is for practical reasons like memory usage and disk space.

Next, existing high-frequency data is extracted from the current water state. This is
done with a Gaussian filter. The idea is to replace the low-frequency data with something
we want it to be, in this case the interpolated large-scale data.

Then, the current water state is mixed with the obtained high-frequency and control
data. We use a level set method to determine the free-surface boundary region of the
large scale data. The current water state is treated differently depending on whether it
is outside of, inside of or on the boundary.
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4.1. Shallow Water Simulation

To describe motions of a fluid like water, usually, the Navier-Stokes equations are used
(section 4.1.1). These equations describe the 3D motion of a fluid. Since computing
large-scale 3D water flow on a regular PC in real-time is difficult, we have chosen to
use the simpler shallow water equations (SWE, section 4.1.2). The SWE reduce the
problem to 2D space, using a heightfield to represent the third dimension. We believe
they give the best trade-off between realism and performance, while remaining relatively
simple to implement. Unlike simpler pipe models, they still allow for vortices and take
the dispersion relation into account which links maximum wave speed to water depth.
However, any water simulation algorithm can be used, as long as it stores the water
state in a similar manner. The algorithm described in this thesis is a combination of the
methods used in [CM10] and [MSJT08]. Only using the algorithm described in [MSJT08]
will give problems with mass conservation.

From here on we use the following notation, mostly following the conventions from
[CM10]1. For our units, we use meters and seconds.

• h is the depth of the water,

• H is the height of the bottom elevation,

• η = H + h is the height of the water above zero-level (see figure 4.1a),

• ~v = (u, v)ᵀ is the horizontal velocity of the water,

• g is gravity,

• t is time.

We define the water state as follows:

St = S(x, y, t) =

η(x, y, t)
u(x, y, t)
v(x, y, t)

 =

ηtut
vt

 (4.1)

4.1.1. Navier-Stokes Equations

The incompressible Navier-Stokes equations can be written as follows [bri]:

δ~v

δt
+ ~v · ∇~v +

1

ρ
∇p = ~g + ν∇ · ∇~v (4.2a)

∇ · ~v = 0 (4.2b)

Here, ρ is the fluid density, p is the pressure, ~g represents external forces such as gravity
and ν is the kinematic viscosity.

1The exceptions are the symbols for the velocity. Also, it is worth noting that [MSJT08] uses signifi-
cantly different conventions.
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(a) Elevations (b) Staggered grid

Figure 4.1.: Spatial layout of water state.

4.1.2. Shallow Water Equations

The shallow water equations are derived from the Navier-Stokes equations. See [MSJT08]
for a detailed derivation. Several assumptions are made in order to simplify the previ-
ously mentioned Navier-Stokes equations:

• The water pressure is hydrostatic, which implies the vertical velocity is temporally
constant and equal to 0.

• The density of the water is constant.

• The viscosity of the water is equal to 0.

The shallow water equations can be written as follows:

Dh

Dt
= −h∇ · ~v (4.3a)

D~v

Dt
= −g∇η (4.3b)

Here, D is the material derivative operator, Dx
Dt = δx

δt + ~v · ∇x, where x is a property of
the material such as water height or temperature. It can be seen as a derivative that
follows the motion of the water [BSL07]. In practice, this means we not only have to
integrate the formulas, but also advect (move) x with the velocity of the water.

4.1.3. Algorithm

Before we can do any integration, we have to discretize our domain. As is common in
fluid simulation, we use a uniform grid to represent the height of the water, with the
velocities stored on the boundaries of the cells. See figure 4.1b. We define our domain to
be a grid of n1 by n2 points. We use the zero-based indices i and j respectively to index
into this grid. Unless mentioned otherwise, an equation like hi,j +=

δhi,j
δt ∆t is meant to

be applied to every combination of the indices i and j. When we index velocities, we
use for example ui+ 1

2
,j to indicate the value of u stored on the right border of hi,j and

vi,j− 1
2

for the value of v on the lower border of hi,j . ∆x is the cell width or grid spacing

and ∆t is the time step size.
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All steps in the shallow water solver algorithm 2 are applied on the whole grid, unless
mentioned otherwise. When implementing any of the steps, keep in mind that some of
the variable state updates rely on themselves (ie. u when advecting u), so these variable
states (or the results) need to be cached or the results might not be correct.

Algorithm 2 Advection

1: Advect u
2: Advect v
3: Advect & Integrate h
4: Set domain boundaries
5: Set water level, η = H + h
6: Integrate u
7: Integrate v

Velocity advection

The advection algorithm used is taken from [MSJT08], which uses the unconditionally
stable method from [Sta99]. See equation (4.4). It performs advection by projecting
backwards in time. Given a position on our grid, x, we trace an imaginary particle back
in time to get to a position x′. We set the property we are advecting, s, at x, to the
value of the property found at x′.

Since x′ can be outside of the simulation domain, it should be clamped to stay on
the grid. Additionally, we have to perform bilinear interpolation at x′, because we will
usually end up between the grid points where the values are stored.

The staggered grid stores the u and v parts of the velocity in different locations, so we
have to advect twice, once for u and once for v. They require different interpolations to
get a complete velocity vector, so they have to be advected separately. Simple averaging
can be used, as it is equal to bilinear interpolation in those cases.

x′i,j = xi,j −∆t · ~vi,j (4.4a)

si,j = bilinearInterpolation(s, x′i,j) (4.4b)

Height integration

Instead of explicitly advecting h, we use the method from [CM10], which combines the
height advection step with the height integration. This way, we can guarantee mass
conservation. According to them, equation (4.3a) can be rewritten to:

δh

δt
= −∇ · (h~v) (4.5)
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After discretization, their result is:

δhi,j
δt

= −

(
(h̄u)i+ 1

2
,j − (h̄u)i− 1

2
,j

∆x
+

(h̄v)i,j+ 1
2
− (h̄v)i,j− 1

2

∆x

)
(4.6)

Here, h̄ is h evaluated in the upwind direction, for example:

h̄i+ 1
2
,j =

{
hi+1,j if ui+ 1

2
,j ≤ 0

hi,j if ui+ 1
2
,j > 0

(4.7a)

h̄i,j− 1
2

=

{
hi,j if vi,j− 1

2
≤ 0

hi−1,j if vi,j− 1
2
> 0

(4.7b)

It is then explicitly integrated:

hi,j +=
δhi,j
δt

∆t (4.8)

Velocity integration

The velocity integration step is equal for both [CM10] and [MSJT08].

ui+ 1
2
,j += −gηi+1,j − ηi,j

∆x
∆t (4.9a)

vi,j+ 1
2

+= −gηi+1,j − ηi,j
∆x

∆t (4.9b)

Boundary conditions

We use the same reflecting domain and free-surface boundary conditions as [CM10].
The values of η on the domain boundary are always set to be equal to their closest
non-boundary neighbour. In addition, the values of the velocities on the borders of
this boundary should be set to 0 and never updated during the velocity advection or
integration steps.

For the free-surface boundary conditions, we say a cell is dry when equation (4.10)
is true. A face (i + 1

2 , j) is reflective when either equation (4.11a) or equation (4.11b)
is true. This is similar for a face (i, j + 1

2), every i+1,j becomes i,j+1. Reflective faces
have their corresponding velocity value set to 0 during the velocity integration step. In
words, a face is reflective if two sides are dry or if one side is dry and the other side has
water that can flow into the dry cell. We made a slight modification to the equations
used by [CM10]: they use H > η, we use H ≥ η. This way faces between dry cells of
equal height are also properly marked as reflective.

h ≤ 10−4∆x (4.10)

hi,j ≤ 10−4∆x ∧Hi,j ≥ ηi+1,j (4.11a)

hi+1,j ≤ 10−4∆x ∧Hi+1,j ≥ ηi,j (4.11b)
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Stability enhancements

The authors of [CM10] add a few stability enhancements. They mention that due to
numerical error, h can become smaller than zero. This can cause stability issues. We
have not observed this with the standard solver, but since we are going to modify the
water state later on we adapt their method of clamping h to be ≥ 0. We do this in
the height integration step. Additionally, in the velocity integration step, we clamp the
magnitudes of u and v to be less than α∆x

∆t . We used α = 0.45 instead of 0.5 as [CM10]
do, because of an issue related to velocity advection, causing water flow to almost come
to a halt. In hindsight, this might not have been necessary, as later testing did not show
any obvious differences. The issue was likely related to erroneous bilinear interpolation
in the code that was fixed in the meantime. The end result is not much different, as the
difference is relatively small and clamping is a rare event to begin with, which happens
only with very large waves and steep slopes.

4.2. Gaussian Low-pass Filter

When controlling the shallow water simulation, we want to separate the large-scale flow
from the small-scale details. To achieve this, we apply a Gaussian low-pass filter to
extract the large-scale (low-frequency) part.

This section describes the details for the process of separating the high and low fre-
quencies of our water state through convolution with a Gaussian filter kernel. We start
with describing the convolution process in section 4.2.1, followed by a modification of
it in section 4.2.2. After that we will describe the Gaussian function as a filter and the
filter kernel itself in sections 4.2.3 and 4.2.4.

4.2.1. Convolution

The 1D and 2D convolution operations are defined by equation (4.12), where f and g are
2d images. x and y are discrete variables, the grid indices of the pixel we are currently
operating on. n1 and n2 are half the extents of g in x- and y-direction respectively. In
our case, f is a grid that stores a property of the water state like h. g is the filter kernel,
where n1 and n2 are half the kernel size, rounded down. Note that the kernel has to
have uneven sizes for this to work. The Gaussian is a separable filter, so we perform the
2D convolution in two consecutive 1D passes, once for x, once for y.

g(x, y) ∗ f(x, y) =

n1∑
i=−n1

n2∑
j=−n2

g(i, j)f(x− i, y − j) (4.12a)

g(x) ∗ f(x) =

n1∑
i=−n1

g(i)f(x− i) (4.12b)
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4.2.2. Filter masking

Because water height is stored as bottom elevation plus water depth, using the Gaus-
sian filter as-is can cause problems. For dry regions, we would be filtering the bottom
elevation instead of the surface. To solve this, we introduce a type of masking for the
convolution operation. What we mask specifically is discussed in section 4.4.5.

Since our filter is a separable one, we will present our modifications in 1D. We modify
equation (4.12b) to equation (4.13), where m is the grid that stores the mask values.
m(x) can be 0 (masked) or 1 (not masked). In the code, we first check if m(x) is 0 before
doing any convolution for the current pixel, thus avoiding the possible division by zero.

g(x) ∗ f(x) = m(x)

n1∑
i=−n1

g(i)m(x− i)f(x− i)

n1∑
i=−n1

g(i)m(x− i)
(4.13a)

m(x) =

{
0 if x is masked

1 if x is not masked
(4.13b)

4.2.3. Gaussian filter

We chose a Gaussian filter to filter out low-frequency details of the water. There are
several reasons for this:

• The Gaussian has a decent spatial response. It is a simple blur. There should be
no unexpected or strange artifacts resulting from this property.

• The frequency response of a Gaussian is also a Gaussian [AGJN02]. Again, this
should make the result predictable.

• It is rotationally symmetric [JKS95]. This is important, because we do not want
to emphasize signals going in any specific direction.

• The Gaussian filter is separable [JKS95], which means it can be implemented in 2D
as the product of two 1D filters, one for each direction. This is efficient and simple
to implement. Even if this is not efficient enough, there has been research into
faster implementations, for example with box filters [BETVG08] or via integral
images [Kov10].

A downside of the frequency response being a Gaussian is that the filter is far from
ideal. Since a Gaussian is never 0, the entire frequency spectrum is affected, even though
there is a clear bias towards the lower end of the spectrum. In practice, with repeated
application, this means that eventually every frequency (except for 0) will be filtered
out completely.

A filter is applied by convolving the original signal with the filter function [S+97]. The
original signal in this case is the water state S(x, y). Each part of the water state is
convolved separately. The 1D and 2D Gaussian functions g(x) and g(x, y) are given by
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(a) 1D Gaussian with σ = 0.125

(b) 2D Gaussian

Figure 4.2.

equations (4.14a) and (4.14b) respectively, where x and y are spatial dimensions and σ
is the standard deviation. See figure 4.2 for a visual representation.

g(x) = exp(− x2

2σ2
) (4.14a)

g(x, y) = exp(−x
2 + y2

2σ2
) (4.14b)

The relationship between the standard deviation of the time domain, σt, and frequency
domain, σf , is given by equation (4.15) [S+97].

2πσf =
1

σt
(4.15a)

σt =
1

2πσf
(4.15b)
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4.2.4. Gaussian kernel

The kernel will be defined on the scale of the small-scale grid. This means a standard
deviation of 1 in the spatial domain is exactly the ∆x from the small-scale shallow water
simulation. Since we implement a separable filter, we will calculate the parameters of
the kernel for the 1D function only. The kernel can then be filled with values sampled
from the resulting Gaussian function, placed on the center of the kernel.

We define the cut-off frequency of our filter, fc, to be equal to the standard deviation in
the frequency domain, which relation is given by equation (4.15). We can then determine
an appropriate standard deviation for the Gaussian:

σt = 1/(2πfc) (4.16)

The frequency response of the Gaussian filter ĝ(f) at this cut-off frequency equals:

ĝ(f) = exp(−f2
c /2σ

2
f ) (4.17a)

= exp(−σ2
f/2σ

2
f ) (4.17b)

= exp(−1
2) ≈ 0.607 (4.17c)

Since the Gaussian has a transition bandwidth that spans the entire frequency band
〈0, 0.5], it is difficult to determine a proper cut-off frequency. Initially, we will start
with equation (4.18), where ControlScale is the scale of the large scale simulation com-
pared to the small scale simulation. This arbitrary decision is related to the Nyquist
frequency. The sample rate of the large-scale grid is 1/ControlScale, which means the
highest frequency we can extract will be 1/(2∗ControlScale). This would be the highest
frequency the large grid can represent. Thus, we should at least try to filter out the
higher frequencies as good as we can; they are the important details we want to keep.
In our experiments, ControlScale = 8.

fc = 1/(2 ∗ ControlScale) (4.18)

The resulting standard deviation is used to calculate the Gaussian kernel. The size
of this kernel is given by equation (4.19), taken from [Tur07]. It is rounded down
before multiplying with 2, because the kernel size needs to be an uneven number for the
convolution process. After calculating the kernel, it is normalized by dividing each value
by the accumulated values of the kernel.

KernelSize = 2 ∗ b3 ∗ σc+ 1 (4.19)

In our experiments, we will vary the cut-off frequency to determine its effect. We
expect the optimal value to be smaller, where the higher frequencies are damped less.
In contrast, we also expect the margin of acceptable values to be relatively wide.

4.3. Gaussian High-pass Filter

We use the low-pass filter to extract low-frequency data. The complement of this is the
high-frequency data, the details we want to preserve over time. Thus, our high-pass
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filter at a certain point in time is given by equation (4.20), where g is a low-pass filter
and gc is a high-pass filter.

gc(St) = St − g(St) (4.20)

The next section is about artifacts related to the Gaussian high-pass filter. It is not
required for replication of our technique.

4.3.1. Gaussian high-pass filter artifacts

After implementing the Gaussian filter, strange artifacts started appearing several min-
utes into the simulation. Instead of calm, almost still water, mass clumps up in certain
locations and the velocities behave strangely. See figures 4.3a and 4.3b. The large col-
ored area is the water, which is colored with an hsv scheme depending on water height.
The small squares in the image are particles that move with the velocity of the water,
colored with an hsv color scheme depending on the angle of the velocity. Figure 4.3c
shows the colors for the main directions of the particles. They are colored with a hue
scheme that relies on the angle relative to the horizontal x-axis.

In the first image, there are particles moving up (green) and particles moving down
(purple, difficult to see) right next to each other. A similar thing happens in the second
image, but for horizontal directions. In order to find out the cause, we set up a 1D
testing environment for the high-pass filter.

Signal responses

The first test was to apply the high-pass filter on a step function. Figure 4.4 shows how
it evolves over multiple iterations. We also tested it on a Gaussian function (figure 4.5).
We initially perform these filter applications on a low-resolution graph with a kernel
size equal to our own usage. The graph resolution is 100 data points (x-axis), with
wrapping boundaries. Green is the original signal, red is the low-pass filter and blue is
the high-pass filter. This will be the case for all graphs in this section.

Testing showed that, after repeated filtering, the graph eventually shows numerical
instability if any kind of non-zero signal was introduced. The Gaussian function is
initially almost entirely eliminated from the signal by the fourth iteration (the largest
value is approx. 3.5·10−4). Regardless, after a sufficiently large number of iterations, the
simulation shows instabilities. Figure 4.5b shows an iteration where the artifacts have
just began growing. Introducing a little noise anywhere in the initial Gaussian causes it
to happen faster.
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(a) Vertically moving artifacts.

(b) Horizontally moving artifacts.

(c) Colors of particle directions.

Figure 4.3.: High-pass filter artifacts.
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(a) First iteration.

(b) Second iteration.
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(c) Fiftieth iteration.

(d) Two hundredth iteration.
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(e) Thousandth iteration.

(f) Two thousandth iteration.

Figure 4.4.: High-pass filter artifacts on a simple step function.
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(a) First iteration.

(b) Seven thousandth iteration.

Figure 4.5.: High-pass filter artifacts on a Gaussian function.
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Discretization

It was noticed, during the water simulation, that a wider kernel causes the artifacts to
appear later or disappear entirely. This lead us to the hypothesis that these artifacts may
arise due to the non-continuous nature of the signal and/or kernel. Testing in our custom
1D environment shows, however, that with a higher resolution the same artifacts still
arise. For the resolution increase from 100 to 1000 (meaning 1000 data points instead of
100), they do appear somewhat later. A resolution of 10000 gives a graph evolution very
similar to that of 1000. See figure 4.6. Taking into account the fact that the simulation
runs 20 frames per second, the actual difference in time at which the artifacts should
appear is almost negligible. The reason for their slower appearance in the simulation is
likely due to the self-damping of the simulation, which amplifies the delay.

Floating point accuracy

Since the values resulting from the low-pass filter can get very small and floating point
accuracy is highest here, another hypothesis was that maybe subtracting or adding
something so small from a higher value might in reality subtract or add slightly more
than intended, causing a gradual increase in some parts of the signal. If this was the
case, changing from 32-bit floating point to 64-bit floating point numbers should at least
slow the appearance of the artifacts. However, it gives the exact same graphs as a result,
so this could be ruled out.

Gaussian width

The structure of the artifacts is related to the standard deviation of the applied Gaussian
filter. This is easy to see in figure 4.7.

Further investigation

After ruling out other possibilities, the problem had to lie with the Gaussian filter itself.
On this topic, some information is mentioned in [Luc14, ch. 12]. The subject is on
waveform filtering. It mentions that all filters produce distortions, but that “distortions
produced by the high-pass filter may be more problematic because they may lead to
the appearance of artifactual peaks”. They mention Gaussian filters do this. The re-
sults show indications that such peaks are created and are slowly amplified after many
iterations.

To verify the problem lies with the Gaussian filter, we implemented a sinc filter with a
blackman window [S+97, ch. 16]. Testing in the 1D environment (figure 4.8) shows the
windowed sinc causes the data in the graph to show instabilities around 10 times slower.
The peaks are a little higher initially and that goes for both the correct and artifactual
peaks that lie in between. Notice also the stronger oscillatory movement at the left and
right tails of the signal. In the actual simulation environment, we noticed significantly
more oscillations. Due to time constraints, finding out if the windowed sinc is better or
if there are even better filters is postponed to future work.
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(a) Thousandth iteration, resolution 1000.

(b) Thousandth iteration, resolution 10000.

Figure 4.6.: High-pass filter artifacts on a step function with different resolutions.
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(a) Thousandth iteration, halved standard deviation for the filter kernel.

(b) Thousandth iteration, doubled standard deviation for the filter kernel.

Figure 4.7.: High-pass filter artifacts on a step function with varying filter standard
deviations.
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(a) First iteration.

(b) Fiftieth iteration.
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(c) Thousandth iteration.

(d) Ten thousandth iteration.

Figure 4.8.: High-pass windowed sinc on a simple step function.
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Figure 4.9.: High-pass Gaussian on a simple step function. Thousandth iteration, kernel
width increased from 15 to 17.

It might seem paradoxical at first sight that the windowed sinc had slower artifact
appearance, as the Gaussian should have the better spatial response. Of course, the
filter is different by nature. However, it is windowed, because the sinc function never
drops to zero in either direction. Interestingly, the Gaussian is also infinitely wide.
This leads to the hypothesis the numerical instability might be related. Testing showed
that using a wider kernel without changing the standard deviation has the effect of
significantly reducing the artifacts (see figure 4.9). Increasing the width more reduces
some of the artifactual peaks, but some remain regardless. This makes sense, given the
information we found in [Luc14].

Cause

To summarize, the cause for the numerical instability lies, at least for the largest part,
in truncation of the filter kernel. To explain what we believe to be happening, look at
the frequency response of an ideal filter and a truncated sinc filter in figure 4.10. Even
though we use a windowed sinc, due to kernel discretization there is likely still some
implicit truncation, a small tail beyond the kernel’s resolution. The frequency response
for the truncated (high-pass) Gaussian that caused the artifacts will have similar issues.
One or more frequencies in the response for this filter kernel are going slightly above the
amplitude response of 1. Very slightly, because, as shown, the amplification the filter
applies only becomes apparent after a very large number of iterations.
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Figure 4.10.: Filters and frequency responses given a cut-off frequency Fc. Images taken
from [S+97].
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Solution

There are two immediate solutions available: increase the kernel width or use a window
function. Increasing the kernel width is simple, but comes at a slightly larger computa-
tional performance cost. Using a window function unnecessarily complicates things with
regard to the frequency response.

A different solution to this problem was found in the self-damping of the shallow water
simulation. By giving the water simulation more time to dampen itself, these artifacts
do not become a problem. This solution is discussed in section 4.4.1. It is about linearly
interpolating the current and envisioned water states. This solution makes the Gaussian
a viable filter again, while saving some execution time.

The difference between a kernel width of 13 and a width of 15 is largely that a width
of 13 causes the data to show instabilities approximately twice as fast. The first 50
iterations are very similar, save for some small extra artifactual peaks, so it might even
be possible to make the kernel smaller and thereby gaining filter execution speed. We
will leave it to future work to decide whether this is a good idea or not.

4.4. Water Control

This section describes our method to control the water simulation. We start with explain-
ing the basic algorithm and an adjustment to parametrize strictness of the simulation
control in section 4.4.1. After that, we will discuss the grid layout and how to interpolate
the large-scale data in sections 4.4.2 and 4.4.3. We will then define the area in which
we apply control in section 4.4.4, describe the details for the Gaussian filter mask in
section 4.4.5 and finish with how to apply control on different parts of the simulation in
section 4.4.6.

4.4.1. Algorithm

Every frame, the low-frequency components of the water state are separated from the
high-frequency components using the Gaussian filter from section 4.2. The split roughly
looks like presented in figure 4.11, where G is the low-frequency part after one application
of the filter and I is the identity matrix. The low-pass filter is also applied on the
interpolated control data. The high-frequency part of the water state is then added to
the low-frequency part of the control data.

Using matrix-notation for converting from and to the frequency domain (for example
with a DFT [S+97] matrix) and a matrix representing the Gaussian filter in the frequency
domain, the method can be written down like this:

St = F−1GFCt + St−∆t − F−1GFCt−∆t (4.21)

St and St−∆t are the current and previous water states respectively. Ct and Ct−∆t are
the current and previous control data states. F is the matrix that maps to the frequency
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Figure 4.11.: Frequency domain split through Gaussian filter.

domain and F−1 its inverse. G is the low-pass Gaussian filter in the frequency domain,
represented by a diagonal matrix.

Rewriting the formula gives:

FSt = GFCt + FSt−∆t −GFSt−∆t (4.22a)

= GFCt + IFSt−∆t −GFSt−∆t (4.22b)

= GFCt + (I −G)FSt−∆t (4.22c)

(I −G) is the high-pass filter. Since the high-pass filter is applied on the simulation
state each frame, any low frequencies in this data will quickly disappear. This includes
the low-frequency information introduced by the control data. The highest frequencies
remain longest, but due to the implicit damping of the water simulation these will not
remain indefinitely.

Strict Versus Subtle Control

The control applied in the algorithm so far is still rather strict. Because the Gaussian
high-pass filter filters practically every frequency to some extent, most signals disappear
quickly. Additionally, along the large-scale free-surface border some minor oscillations
can occur, due to the weakly controlled water simulation reacting on the corrections
applied by the algorithm, which in turn corrects the reaction. In order to get rid of
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Figure 4.12.: Frequency domain split through Gaussian filter, blended with the original
signal.

these problems, the state of the water, St−∆t, is linearly interpolated with the target
state calculated by equation (4.21). We will call the user-defined interpolation factor α,
set to 0.05 by default. This modifies our algorithm to become:

St = (1− α)St−∆t + α(F−1GFCt + St−∆t − F−1GFCt−∆t) (4.23a)

FSt = F (1− α)St−∆t + Fα(F−1GFCt + St−∆t − F−1GFCt−∆t) (4.23b)

= (1− α)FSt−∆t + α(GFCt + FSt−∆t −GFSt−∆t) (4.23c)

= (1− α)FSt−∆t + α(GFCt + (I −G)FSt−∆t) (4.23d)

This shows that we also linearly interpolate between the frequencies of the previous
and target state when we linearly interpolate between their signals. Put another way,
we reduce the strength of the Gaussian filter. See figure 4.12 for a visual representation.

4.4.2. Grid layout

The raw control data used to test our model consists of an 18 by 18 cells grid of data,
where each cell is 50 meters in width2. This data is a result of a water simulation on a
2The flooding framework (chapter 3) performs simulation on a quadtree. The leaves of this quadtree

are between 50 and 200 meters in width. Because of this, we chose 50 meters for our test control
data.
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Figure 4.13.: Small and large scale grid layout.

grid of 18 by 18. The borders lie outside of the simulation domain and should not be
used. Thus, the total domain on which the small-scale simulation is controlled is 16 by
16 large cells, or 800 by 800 meters. We use ControlScale = 8, which means each small
cell is 50/8 = 6.25m. The size of our small-scale grid is thus 128 by 128, which is 130
by 130 including borders. The cells are laid over each other so that the area they cover
(excluding borders) neatly aligns, as in figure 4.13. The dots are the cell centers, the
velocities are stored on the boundaries as described in figure 4.1b. This goes for both
the large cell and the small cells.

Grid transformations

The position on a grid with respect to the scale can be described as follows. Say a
position x = (x, y)ᵀ = (0, 0)ᵀ is in the bottom-left corner of the grid, including border
cells. This is on the bottom-left corner of the bottom-left cell. A position of (1, 0)ᵀ would
then indicate the bottom-left corner of that cell’s neighbour, and so on. We can use this
conceptual sub-space to intuitively convert small-scale grid coordinates to large-scale
grid coordinates and vice-versa.

Transforming from small- to large-scale coordinates is as follows. For water depth and
height (h and H):

xlarge = 0.5 + (xsmall − 0.5)/controlScale (4.24a)

ylarge = 0.5 + (ysmall − 0.5)/controlScale (4.24b)
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For x-velocity (u):

xlarge = 1 + (xsmall − 1)/controlScale (4.25a)

ylarge = 0.5 + (ysmall − 0.5)/controlScale (4.25b)

For y-velocity (v):

xlarge = 0.5 + (xsmall − 0.5)/controlScale (4.26a)

ylarge = 1 + (ysmall − 1)/controlScale (4.26b)

Transforming from large- to small-scale coordinates should not be needed, but otherwise
requires only a simple inversion of the above equations.

4.4.3. Large-scale data interpolation

In our test scenarios, the large-scale data is simply a water simulation executed on the
same terrain as the small-scale simulation, but with larger cells. This data needs to
be scaled to match the small-scale simulation it can be used. Spatially, this is done by
projecting the data on a higher resolution grid and bilinearly interpolating data points
that lie in between. High-frequency details of this data, most notably the edges between
data points, become visible in the simulation. To that end, this interpolated state is
filtered with the same low-pass Gaussian filter as the one used for dividing the low
and high frequencies. We initialize the small-scale simulation with the first spatially
interpolated frame of this large-scale data.

The large-scale data used might not be suited for bilinear interpolation, it could for
example be stored in a quad-tree. If this is the case, it will have to either be subdivided
first or be interpolated with a different interpolation scheme.

Since subsequent spatial interpolations may be far apart in time, we then interpolate
each cell separately over time to fill in the missing data. Since our data is uniformly
spaced, we use cubic b-spline interpolation. An algorithm for this can easily be found
on the web. We believe this to result in a more natural transition between different time
frames than linear interpolation. In order to be able to do this, we need to store 4 frames
of spatially interpolated data at all times: the closest frame whose time we have passed
and the 3 frames following it. Another interesting method could for example be cubic
Hermite spline interpolation, in which the interpolated data will always move through
its data points, but this is more computationally expensive.

Surface interpolation

Surface interpolation is done by interpolating the water height, η. However, the bottom
elevation used for the small-scale simulation is real data and not a linear interpolation.
As such, simple linear interpolation can create water where it should not be. See fig-
ure 4.14. The blue dots indicate the large-scale water height, where the right cell is dry.
The blue line is the interpolation and brown is the small-scale bottom elevation. The
erroneous water is marked with red. To counteract this effect, we use a weighted linear
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Figure 4.14.: Surface interpolation errors.

interpolation. Note that time interpolation can cause similar appearances, for example
when future water spreads out over terrain that lies higher than the current water level.

Suppose we are interpolating a grid variable s at a position (x, y)ᵀ. We have deter-
mined the four corners between which our position lies to be s00, s10, s11 and s01, starting
bottom-left, going counter-clockwise. If we convert our position to the coordinate system
where those points lie on (0, 0)ᵀ, (1, 0)ᵀ, (1, 1)ᵀ and (0, 1)ᵀ respectively, (x′, y′)ᵀ, linear
interpolation is as follows:

s(x, y) = w00s00 + w10s10 + w01s01 + w11s11 (4.27)

The weights w are:

w00 = (1− x′)(1− y′) (4.28a)

w10 = x′(1− y′) (4.28b)

w01 = (1− x′)y′ (4.28c)

w11 = x′y′ (4.28d)

To prevent described interpolation errors a multiplier is applied to each weight, cxy,
where xy denotes the corresponding corner. cxy is 1 if the corresponding cell is wet or if
the cell is dry but below the highest water level between the 4 cells. Otherwise, cxy is 0.
Note that this means we need to apply equation (4.10) on the large-scale data. If there
is no depth data for the large-scale simulation, the bottom elevation of the small-scale
simulation can be used to calculate it.

cxy =

{
1 if sxy is wet or sxy < max({all wet sxy})
0 otherwise

(4.29)

After that, the final value is normalized by dividing by the accumulated weight of all
cells. Of course, this only works if there is any weight at all. Additionally, the result
must not end up below the bottom elevation of the small-scale simulation, H. This
modifies our interpolation method to become:

s(x, y) =

{
max(H(x, y),

∑
(cws)xy∑
(cw)xy

) if
∑

(cw)xy > 0

H(x, y) otherwise
(4.30)

It is important to clamp to H(x,y), which can otherwise cause oscillations close to dry
cells in controlled regions.
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Velocity interpolation

Because reflective faces at domain and dry/wet borders have their velocity set to 0,
interpolating these values will incorrectly drag the ’correct’ velocities towards zero. A
moving front of water does not have a velocity of zero. Because of that, the velocity
interpolation is similar to the surface interpolation. Instead of checking if the cell is dry
or wet, we have to check if the face is reflective or not with equation (4.11). Note that
our slight modification of that equation is relevant here.

cxy =

{
1 if sxy is not reflective

0 otherwise
(4.31)

s(x, y) =

{∑
(cws)xy∑
(cw)xy

if
∑

(cw)xy > 0

0 otherwise
(4.32)

4.4.4. Control region

Control is not applied everywhere. This is to make sure the free-surface water border
can behave naturally. This control region is decided based on our large-scale data.

Every cell of large-scale data SL(i, j) is assigned a value, cL(i, j), called the control
contribution. This value is assigned −1 for dry cells, 0 for wet cells that share an edge
with one or more dry cells and 1 for wet cells that only share edges with other wet
cells. This large-scale grid of values is then projected onto a small-scale grid and linearly
interpolated. This gives us a grid of values which can be used to determine where
control needs to be applied. We will refer to this value as ci,j . It is updated together
with interpolating the large-scale data.

4.4.5. Gaussian filter masking

Since we’re only interested in the water, we do not want to include dry areas when ap-
plying the Gaussian filter. They would introduce a lot of invalid data into the system.
These are excluded by masking them from the filter as described in section 4.2.2. Un-
controlled areas are masked for a similar reason, we need the high-frequency details only
for the controlled region. This mask is applied to every filter operation described in this
thesis. The mask needs to be updated every frame after large-scale data interpolation,
but before the Gaussian filter is applied on the interpolated state.

Since the water state S(x, y) is stored in a staggered grid format, separate masks are
used for the water surface and each of the velocities. For the water surface, the domain
boundary cells, all dry cells and all uncontrolled cells are masked. For the velocities, all
faces that border the domain boundary, all reflecting faces and all uncontrolled faces are
masked.

The decision to mask uncontrolled faces is also based on experimenting. Not masking
uncontrolled regions introduced artifacts that clearly visualize the control region bound-
aries. However, these experiments were solely based on strict control (section 4.4.1), so
more experimenting might be a good thing.
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4.4.6. Applying control

Note that whenever control is applied and η or h is updated, h or η respectively will
have to be updated with it. Also, the domain boundaries should be masked in any
filter operation and excluded from control, but do have to be updated afterwards as in
section 4.1.3.

We apply control on cells where ci,j > cb . Here cb is the control boundary threshold,
0 by default. When varying this value, it is very important to make sure that the outer
border of the control region consists solely of cell centers and not edges. The easiest
way to achieve this is to use different thresholds for the water surface and the velocities,
where the threshold for the velocities is at least 1/controlScale smaller. If the outer
border consists of cell edges, where the velocities are stored, it will disrupt interaction
between the controlled region and the free region.

The control threshold, cct , by default 1, is the value from which point onwards control
is applied as discussed in section 4.4.1. A possible exception to this are dry cells and
cells that have one or more dry neighbours. This way, controlled water can be pushed
away and will naturally fill up again. A (large) downside to this is that water can not
be created on dry cells if the large-scale data requires it, for example if the small-scale
bottom elevation prevents water from spreading to a certain region. We have no good
solution for this, so we currently decide to do this or not based on what the situation
requires.

The area where cb < ci,j < cct we call the control boundary region. In this region, control
is applied just as in section 4.4.1, but the linear interpolation factor α is multiplied with
a value based on how deep in the control region it is:

α ∗= min(ci,j , cct)− cb
cct − cb

(4.33)

This way, control will slowly decrease in strength towards the outside of the boundary.
It may be a good idea to not apply control on the velocities at all in the boundary

region. It may also be a good idea to more loosely control the velocities in general, or
even not at all, as they are less important for the visual quality than surface height.
Again, this depends on the situation and the purpose of controlling the simulation.

In addition to controlling the water, water is slowly removed from regions where ci,j =
−1. The water depth h is multiplied with 0.999 every frame. This way, if some water is
leaked, it will be cleaned up eventually. In some cases this might not be good enough.

A good alternative to this straightforward water removal is to apply the same kind
of control as discussed on removal regions, but with a smaller interpolation factor and
only on the water height with a target state that is equal to the bottom elevation. This
would prioritize removal of the large mass of water, but leave more of the details intact.
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5. Results

This section is about analysis on the method and its parameters. We will start with
describing some qualitative criteria for our simulation control in section 5.1 and describe
the scenarios used to test these criteria in section 5.2. In section 5.3 we will discuss the
parameters that are varied through several of those scenarios. We will then describe
both quality and performance of our test results in sections 5.4 and 5.5. We conclude
with an evaluation in section 5.6.

5.1. Qualitative criteria

There are two main goals that our simulation ideally achieves: controlled behaviour that
matches with our large-scale data and realistic water behaviour. Truly realistic behaviour
and perfectly controlled behaviour do not match. They contradict; truly realistic water
does not necessarily flow how we want it to, which is the whole reason for controlling
it. However, there are visual characteristics of water movement that we can maintain,
making our simulation look like water while still steering it in the right direction.

We had previously determined that the shallow water simulation is a good trade-off
between realism and performance when it comes to visualizing water-land interactions.
Assuming this model is good for our purposes, we need to maintain the visually im-
portant characteristics of this model as good as we can. We have tried to achieve this
through filtering the high frequencies in the water state from the low frequencies and
subsequently replacing the low frequencies. This way, we hope to keep as much of the
visually important details as we can, while still having control over the large-scale flow
of the simulation. To maintain the details longer, we introduced linear interpolation
with a target state, literally keeping more of the original simulation, skewed towards the
high-frequency details.

The visual behaviour of the controlled water simulation is rather uninteresting. To test
how the water reacts on high-frequency details, we have created a controlled simulation
where we add water drops over time. The waves introduced by these drops should look
like water, but the large-scale simulation should be relatively unaffected. We will use
our own eyes and opinion to judge the quality of the simulation’s reaction.

In addition to good reaction to high-frequency details, we believe the controlled sim-
ulation should look like an uncontrolled simulation that comes from a similar origin. By
this we mean the forces that act on the water state are similar. We use an uncontrolled
large-scale simulation for controlling the small-scale simulation. Similar to this, we have
created an uncontrolled small-scale simulation that adds the same amount of water per
second in the same region as this large-scale simulation. Determining the quality of
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Figure 5.1.: Heightmap of our simulation domain.

our simulation is then a matter of visual resemblance between the controlled and un-
controlled small-scale simulations. We use a mathematical approach to determine this
resemblance, discussed later in section 5.4.

5.2. Scenarios

The following is a description of the scenarios used to test the control method. Each of
these scenarios takes place on the same domain and will be run for 10 minutes unless
mentioned otherwise.

Large-scale simulation

The large-scale data we use to control the small-scale simulation is the result of a large-
scale simulation on the same domain, covered with 16 by 16 cells. The layout has been
described in detail in section 4.4.2. Our custom flooding scenario takes place on an area
defined by the heightmap in figure 5.1. The width in x- and y-direction is 800 meters
and the height ranges from 0 to 50 meters, given by heightmapx,y · 50. Every frame, we
add 0.15 ·∆t to the water height in 4 neighbouring cells, as highlighted in figure 5.2.

Controlled small-scale simulation

The controlled small-scale simulation cells are 8 times smaller in each dimension. They
have been laid out relative to the large-scale grid as described in section 4.4.2. We apply
control on it as described in section 4.4. This scenario is executed multiple times with
different control parameters, which will be described in section 5.3.
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Figure 5.2.: Large-scale cells where water is added each frame are highlighted.

Uncontrolled small-scale simulation

The uncontrolled small-scale simulation follows the layout of the controlled simulation.
There is no control applied. Instead, in every frame, we add 0.15 ·∆t to the water height
in the same area as in figure 5.2, which is covered by 16 by 16 small cells.

Water drops on controlled simulation

This scenario is similar to the controlled small-scale simulation. We use the default
parameters for this, which will be described later. We will create videos for a part of
the simulation.

In addition to applying control on the simulation, we drop large amounts of water
on the simulation over time, with varying intervals and positions. These drops are just
masses of water added to the simulation. This should give a good impression of the
robustness of the controlled simulation. In addition, we will have clear visual feedback
of how the high-frequency filter performs in practice.

5.3. Parameters

In this section, we will discuss the different parameters that will be varied in the con-
trolled small-scale simulations. While there are a lot of parameters that can be tweaked,
most of them have very little influence on the result or only deal with border regions.
Adding in practical reasons, we have decided to only vary the two most important pa-
rameters that work on controlled regions.
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Figure 5.3.: Legend for the graphs in section 5.4.

5.3.1. Filter cut-off frequency

The cut-off frequency defined in the frequency domain, fc, is inversely proportional to the
filter’s standard deviation in the spatial domain and thus the kernel width. The relation
was described in section 4.2.4. A lower cut-off frequency means less strict control, most
notably with regard to the frequencies higher than the cut-off frequency. Additionally,
a wider kernel will result in slower performance.

The default value for this is fc = 1/(2 ∗ ControlScale) (see equation (4.18)), where
ControlScale = 8. The values we test with are 2, 1, 0.5 and 0.25 times the default: 0.125,
0.0625, 0.03125 and 0.015625.

5.3.2. Water state control strength

α, the linear interpolation factor for interpolating the current simulation state with the
target state. A lower interpolation factor means control is less strict. The result of this
is that the mass and velocities might lag behind on the large-scale simulation. However,
loose control also means there is more room for free water movement, with an emphasis
on the higher frequencies.

The default for this interpolation value is 0.05. In addition to the default value, we
will also test 0.5, 0.1, 0.02 and 0.01.

5.4. Quality comparison

This section tries to determine the quality of the simulation control. We will try to
determine the independent quality of the simulation as a whole, as well as the quality of
the different simulations relative to each other. Every part of the water state, η (surface
height), u (x-velocity) and v (y-velocity), will be graphed separately. The colors for each
of them are shown in figure 5.3.

5.4.1. Controlled vs. uncontrolled

This subsection is about comparing the controlled simulations to the uncontrolled sim-
ulation, our ”ground truth”. To first get a grasp of what the simulation looks like, take
a look at our video located at https://youtu.be/ybihrgH0EnI. It shows the relative
error of the water surface height (as defined later in equation (5.1c)) between a default
controlled simulation and an uncontrolled simulation that mirrors the large-scale input
forces. Black means there is no water in either simulation. White means the relative
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error is 0. Dark red and dark blue mean the relative error is −1 and 1 respectively. In
words, this means that dark red implies there is water in the uncontrolled simulation,
but not in the controlled simulation. The other way around for blue. The video is sped
up by a factor 10.

From the video, a few distinct phases in the uncontrolled simulation can be identified,
with approximate time in seconds:

0 seconds: Initial rest state. The simulations are the same.

0 to 120 seconds: Water is added from frame 1 onwards, creating waves that disperse
outwards and reflect on the boundaries. This creates a large wave in the uncon-
trolled simulation, which shows up as an error in the video. The uncontrolled
simulation is ahead of the controlled simulation in the top region of the water.
Some high-frequency errors show up in the bottom-right area of the simulation.

120 to 170 seconds: The bottom lake fills up. The uncontrolled simulation is still ahead
of the controlled simulation.

170 to 240 seconds: A small appendage above the bottom lake fills up too. The un-
controlled simulation is still ahead.

240 to 340 seconds: The high-frequency errors in the bottom-right dissolve. The lake
reaches a threshold surface height, water starts flowing over an edge and streams in
to the top lake. The controlled and uncontrolled simulations show large differences
in the top region of the simulation.

340 to 600 seconds: The top lake fills up. High-frequency errors in the top region
remain until the end of the simulation, but gradually become less pronounced.

Overall, the simulations show great similarity on a large scale. The highest errors are
in the border regions, where there is a lot of water flow. Most of the areas with large
errors are combinations of red and blue, meaning they are high-frequency errors.

RMSE and modifications

In order to compare the simulations, we use the root mean square error (RMSE) and
two modifications of the RMSE. We store the results of these functions for every frame
and display them in graphs. The functions used are shown in equation (5.1), where x′ is
a state variable of the uncontrolled simulation and x is a state variable of the controlled
simulation. Note that we compare all indices excluding borders, but only divide by the
number of grid values that are valid in the ground truth. This ensures the result is only
relative to the ground truth. Invalid grid values for the water surface η are those that
are dry. For the velocities u and v, all reflecting edges are invalid (which includes edges
between dry cells).

The RMSE, equation (5.1a), is the standard deviation of the error. The result is in
the same units as the variable we are comparing. This is meters for the surface height,
η, and meters per second for the x- and y-velocities, u and v.
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The first modification of the RMSE we call the normalized RMSE or NRMSE, equa-
tion (5.1b). We normalize the RMSE with the range of the values in the uncontrolled
simulation. The result can be interpreted as a percentage-based error, where 1 equals
100%.

The last modification is the root mean square of the relative error, RMSRE, equa-
tion (5.1c). We only use this for the water surface height. We define the relative error
as the difference between two values divided by the values added. The result of this is
that the error is maximized when there is some water present in one simulation, but
none in the other. This way we can objectively verify that the controlled and uncon-
trolled simulations are similar in shape. The result of this can also be interpreted as
a percentage-based error, however we only used this to show the video, as the result
is largely dependent on water depth and as such is prone to misinterpretation. This is
especially true for our case, as the borders are uncontrolled and depth is lowest here.

The results of the RMSE and its modifications represent accuracy, in a numerical
sense. A low RMSE does not necessarily mean visual accuracy, as shape and structure
are not variables.

RMSE (xt, x
′
t) =

√∑
i

∑
j(xi,j,t − x′i,j,t)2

numValid(x′t)
(5.1a)

NRMSE (xt, x
′
t) =

RMSE(xt, x
′
t)

max(x′t)−min(x′t)
(5.1b)

RMSRE (xt, x
′
t) =

√√√√∑i

∑
j(
xi,j,t−x′i,j,t
xi,j,t+x′i,j,t

)2

numValid(x′t)
(5.1c)

RMSE analysis

First, let us take a look at the RMSE originating from the default control parameters,
figure 5.4. Ignoring the initial state, the surface height RMSE ranges from ≈ 0.13 to
0.3m. The y-velocity varies from 0.32 to 0.73ms−1 and the x-velocity varies more, from
0.45 to 1.01ms−1.

This section will contain screenshots that show the square error of the simulation at
varying points in time. This is to give an idea of what the simulation looks like at that
point in time.

The surface height error is highest in the first 20 seconds. See figure 5.5, which shows
the square error at 10 seconds. This screenshot is from the square error video, ., which
seems to be caused by the difference in water being added. The controlled simulation
interpolates with an interpolated and filtered water height target, which is more spread
out than the direct addition of water mass as done in the uncontrolled simulation. In the
first minute, the velocities also show a few peaks, which are likely related to the same
waves. From there on, until 180 seconds, the errors for surface height and y-velocity
remain somewhat stable, while x-velocity peaks. This seems related to the movement
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Figure 5.4.: RMSE, fc = 0.0625, α = 0.05 (default parameters).

Figure 5.5.: Frame 200 (10 seconds) of the video showing the squared errors between a
controlled simulation with default parameters and an uncontrolled simula-
tion. Deep blue and red mean a high error, white means a low or no error,
black is dry.

happening in the bottom-right corner of the domain, where the simulations seem to
disagree quite strongly, as both videos show as well.

From ≈ 210 seconds (figure 5.6a), while the x-velocity error declines, the y-velocity
error increases. The water is stabilizing slightly. This is just before the point in time
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(a) Squared error video, 210 seconds. (b) Squared error video, 240 seconds.

where the uncontrolled simulation starts streaming water into the top lake. It has been
ahead of the controlled simulation for a while now, which was causing the y-velocity
error to increase (since it is flowing upwards).

After that, at 240 seconds (figure 5.6b), the water flows in to the top lake. Because
the error is small, since there is little mass, the surface height error does not reflect
the relatively large error in shape and instead declines, because the large bottom lake
threshold is equal and thus the overall surface height is very similar in both simulations.

At around 340 seconds (figure 5.7a), the y-velocity error reaches a low peak. This is the
moment where the water streaming into the top lake reaches the top domain boundary.
The simulations are very similar at this point in time. After that, the top lake starts
filling up. The simulations flow water in at different speeds here, with the uncontrolled
simulation being slower, which causes a lot of relatively small-scale errors, as can be seen
in figure 5.7b. It also causes a relatively large error in the small appendage between the
two lakes.

RMSE comparison

The different parameter values we have tested create rather similar graphs. A higher α
values creates larger errors for the velocities, while the error in mass stays approximately
the same. The latter is probably due to the free boundaries and the limited number of
directions the water can flow in. The higher errors in velocity for stronger control are go
unexplained. Fact is that every graph shows weaker control gives a significantly lower
velocity error. Loose control has a mixed effect on the surface height error. Weaker
control causes a higher error in the start and during the time where water starts flowing
into the top lake, but otherwise reduces the error.

The different cut-off frequencies have a smaller effect on the graphs. In combination
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(a) Squared error video, 340 seconds. (b) Squared error video, 500 seconds.
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Figure 5.8.: RMSE, fc = 0.015625, α = 0.01 (best performing parameters).

with α ≥ 0.05, a cut-off frequency of 0.03125 (0.5 times the default) performs best.
However, for more loose control, a cut-off frequency of 0.015625 (0.25 times the default)
performs better. In fact, the best results for the velocities are obtained by the combina-
tion of fc = 0.015625 and α = 0.01. For the surface height, there is almost no difference
between the different cut-off frequencies, with the exception of fc = 0.015625, where the
errors are slightly lower for loose control and higher for strong control. The graph of
the best performing parameter combination is shown in figure 5.8. Overall, the surface
height errors are larger in the start and during the overflow phase compared to all other
simulations, but lower at the other intervals.
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Figure 5.9.: NRMSE, fc = 0.0625, α = 0.05 (default parameters).

NRMSE analysis

Again, we start with a look at the default parameters, see figure 5.9. Initially, the errors
are very large for the surface height. This is because the initial range of the surface
height is very small. After the first minute, the error stays between 4 and 12%. The
velocities both hang between 5 and 13%, with the x-velocity performing slightly better
overall. This seems to be in agreement with the overall flow direction, which is in the
y-direction.

The graph tells us somewhat the same story as the RMSE graph (figure 5.4) did. It
also tells us the x-velocity error peak in the RMSE graph is maybe not as bad as it
seemed, because apparently the range of values at this point in time is much wider as
well.

There is one major exception: there is a peak in surface height error around 240
seconds. This peak is right at the time the water starts flowing in to the top lake.
At this point in time, the range of surface height is shrinking while the water surface
stabilizes. As a result, the normalized error grows dramatically with ≈ 5% in half a
minute, only to shrink even more afterwards. The shrinking is due to the surface height
range increasing, because of the water flowing down.

At around 420 seconds the errors for surface height and x-velocity can be seen rising
again. At this point in time, the range is decreasing again, while the total error is also
slightly rising.

NRMSE comparison

The different graphs for the NRMSE also tell a story very similar to those of the RMSE.
For the velocities, the same parameters come out as clearly the best. For the surface
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Figure 5.10.: NRMSE, fc = 0.015625, α = 0.01 (best performing parameters).

height, weaker control increases the peak, but lowers the rest of the errors. The dif-
ference between the different cut-off frequencies is marginal. Lower cut-off frequencies
tend to favour weaker control, while higher cut-off frequencies tend to favour stronger
control. The peak increases for weaker control, which we believe is due to the controlled
simulation lagging slightly more behind on the uncontrolled simulation.

Squared error video analysis

Similar to the video showing the relative error, we also have a video showing the squared
error for the water surface height: https://www.youtube.com/watch?v=NBQMfudJUUk.
The largest squared error measured in this video was 3.05, which equals an error of 1.75.
All coloring in the video is based on this maximum, with red indicating more water in
the uncontrolled simulation and blue meaning more water in the controlled simulation.
Unfortunately, there was not enough time to create videos for the x- and y-velocities as
well.

In the video we can see many high errors occur close to the border regions. Most of
the errors are strong variations over small distances, where positive and negative errors
exist right next to each other, such as figure 5.6a. One major exception to this is the
error in the appendage between the lakes, which is clearly a solid red (figure 5.11). There
is also a small blue area in the bottom-right, slightly more difficult to see. The solid red
area means the uncontrolled simulation has (relatively) significantly more water there.
We see one possible cause: the large-scale water state is different from the uncontrolled
small-scale water state. The error occurs in a controlled region and the default control
does not apply control weak enough to allow for such a large deviation in such a large
area.
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Figure 5.11.: Frame 9408 (470.4 seconds) of the video showing the squared errors be-
tween a controlled simulation with default parameters and an uncontrolled
simulation. Deep blue and red mean a high error, white means a low or no
error, black is dry. The largest squared error measured in this video was
3.05, which equals an error of 1.75.

5.4.2. Water drop analysis

This is an analysis of the previously mentioned water drop scenario. For this, it is best to
look at our video using the default parameters: https://youtu.be/sjn8Rr7XgYQ. The
corners of the green lines are the large-scale simulation cell centers, the blue surface is
the controlled water. Visible are quite a few drops of water, most of which land outside
our controlled water region. The water level of the controlled area (the center area of the
lake) remains relatively stable when they do land on or close to the controlled region,
large incoming waves are quickly reduced to smaller waves. These smaller waves remain
for a while until they eventually disappear completely.

For reference, we also have a video that introduces water drops to water without
control: http://youtu.be/sZWdO2RfdF0. The waves caused by the water drops in
this video remain much longer. Unfortunately, the damping by the Gaussian and the
interpolation has a strong effect on the existence of smaller waves later in time.

With more loose control and a lower cut-off frequency, things are already much better,
as can be seen in another video, where the ’best’ parameters from the previous analysis
are used: https://youtu.be/xO41Dchb25w. The waves in this video behave much like
those in the uncontrolled simulation, dispersing almost as slow (the difference is hard to
see with the naked eye).

We can conclude that the controlled area reacts well, when control is not too tight.
However, the same can not be said for the areas that are supposed to be dry. They
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remain wet for a very long time. If they have to be dealt with stronger removal is
required.

5.5. Performance

This section discusses the performance of our algorithm. Before we dive into it, some
background information is useful.

The application implementing the algorithm is written on Windows in C++. It runs
on a single Intel(R) Core(TM) i5 CPU @ 2.53 GHz in a default release x64 configuration
of Visual Studio 2012. We have recorded the total time before and after the code
implementing said parts of the algorithm. The execution time is given by the differences
of these timings. The code used to retrieve the current time in milliseconds is given by
listing 5.1.

1 double milliseconds_now ( )
2 {
3 s t a t i c LARGE_INTEGER s_frequency ;
4 s t a t i c BOOL s_use_qpc = QueryPerformanceFrequency(&s_frequency ) ;
5
6 LARGE_INTEGER now ;
7 QueryPerformanceCounter(&now ) ;
8 re turn (1000 ∗ s t a t i c c a s t <double>(now . QuadPart ) ) / s_frequency . QuadPart ;
9 }

Listing 5.1: Code used to retrieve total milliseconds.

For every simulation we perform, the execution time of the following algorithm parts
was stored:

• large-scale data interpolation;

• filter mask updating;

• Gaussian filtering;

• application of control;

• and shallow water solver.

Execution time analysis

The performance for a simulation with default parameters is shown by figure 5.12. There
is an irregular pattern, different for every simulation, which is probably caused by other
applications using the CPU. Ignoring that, what catches the eye right away is the increase
in execution time as the simulation progresses. Looking closer, it becomes clear that at
least a very large part of this, if not the whole, is caused by an increase in filter execution
time. This makes sense, combining the facts that our controlled area increases over time
and that only controlled cells are convoluted with the filter.
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Figure 5.12.: Performance chart for default parameters, fc = 0.0625, α = 0.05.

The execution time follows the simulation’s progress; it increases, then stabilizes some-
what around 240 seconds, then increases again. Not so easy to see is that the execution
time for the water simulation also increases over time, albeit by a very small amount.
This probably means there is some optimization we could have done here.

Interpolation of the large-scale data also takes quite a lot of time, compared to the
shallow water simulation. Since the spatial interpolation only needs to be done every
30 seconds, this is has to be caused by the interpolation over time. This is one b-spline
interpolation per cell per frame.

Execution time comparison

When comparing execution time for the different parameters, it is important to keep in
mind that if the CPU is occupied with something else, even comparing results between
different runs of the same simulation may not make sense. However, the execution time
of the shallow water solver is practically constant. Since the different simulation results
show a very similar execution time for the shallow water solver, we can compare them
without any extra effort.

Varying α does not make a noticeable difference. Different cut-off frequencies, however,
have a large impact on performance. See figures 5.13a and 5.13b, where the filter time
for a lower cut-off frequency easily performs 4 times worse. The cause for this is clear:
a lower cut-off frequency results in a wider kernel, which means convolution takes more
time.
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(a) Performance chart for fc = 0.125000, α = 0.05.
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(b) Performance chart for fc = 0.015625, α = 0.05.

Figure 5.13.
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5.6. Evaluation

This section evaluates on the results and the analysis. Criteria were established in
section 5.1: realistic-looking water and controlled large-scale flow. Robustness of control
and realistic looks were tested with the water drop scenario. Additionally, we compared
the controlled simulation with an uncontrolled simulation from a similar origin.

In the comparison with the uncontrolled simulation (section 5.4.1), we saw the uncon-
trolled simulation is more turbulent and always flooding dry areas ahead of the controlled
simulation. We also learned that the uncontrolled simulation was not exactly the same
as the large-scale simulation (section 5.4.1). The controlled and uncontrolled simula-
tions are quite similar, especially with weak control and a low cut-off frequency, where
the standard deviation of the surface height error is between 0.09 and 0.36m. This is
really quite low, considering the size of a cell is already 6.25 meters wide and on average
several times deeper. On the other hand, this is to be expected when the applied forces
are similar. The relative error is as high as 13% and as low as 3%. This 3% is quite
deceptive, however, as it is that low at the point in time where the range is highest,
because of water streaming down into a dry lake. A similar thing goes for the 13%,
which occurs when the uncontrolled simulation is stabilizing across the whole domain
and thus the range is very low.

Overall, we believe the quality comparison results warrant using a low cut-off frequency
with slightly stronger control for the surface height than for the velocities. This way,
the flow of mass keeps up, but the velocities still have enough freedom to do what they
should. The linear interpolation of the large-scale velocities is probably too simple.

Although the results favour weaker control, the differences between the different sim-
ulation comparisons are relatively small. A better argument comes from the water drop
scenario. As the videos clearly showed, a lower cut-off frequency and weaker control give
significantly longer-lasting waves. These videos also showed robustness of the controlled
area. However, water drops landing on areas that should be dry caused these areas to
remain wet for a very long time.

We mentioned robustness of the controlled area. Looking at the nature of linear
interpolation, it is a given that large-scale errors are corrected quicker than the smaller
waves. How much of this is due to the splitting of the frequencies is hard to tell,
unfortunately.

While these results look good in the scenario the method was initially meant for, the
scenarios are rather simple. Other scenarios would help evaluate the quality of the
method, such as a scenario where water flows out of the domain, one where water is
added on a slope or even a scenario where the small-scale bottom elevation works against
the control data (ie. forcing to flow uphill).

Some of the problems created by these scenarios are tough to tackle - creating water
on a dry cell is necessary in some situations, but unwanted in others. For example,
we may need to spawn water on a slope where the cell may flow dry in a single frame
(especially the case with weak control). At the same time, a scenario can occur where
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an incoming small-scale wave causes a controlled area to become dry for a short period.
A typical scenario for this is a wave rolling on and off a beach.

Visually there is a lot of room for improvement: there is a lack of feedback for water depth
and direction of flow. Visualizing water depth is mostly a matter of shading. Visualizing
the flow can be done by advecting objects or textures with the water velocity, again a
rendering thing.

The method performs in real-time, even with the widest kernel. This would still be the
case if the entire domain was filled with water. However, the method scales upwards
linearly, making larger simulations infeasible very quickly. A domain filled with cells of
half the width would perform approximately 4 times slower. Control with the widest
kernel would then execute in ≈ 80 milliseconds, which is only ≈ 12.5 frames per second,
less than the 20 frames per second the simulation typically runs at. Optimization of the
filter process is required before up-scaling is possible.
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6. Conclusion

The objective of this thesis is to present a solution for visualizing detailed water flow
under the constraints of a governing large-scale simulation in real-time.

First, a shallow water solver that can handle dry-wet border regions was introduced,
combining techniques from two different publications. A small modification was made
to the function that defines reflecting cell borders so that dry cells of equal height are
also properly marked as reflective.

Then, the convolution process for separable filters was modified to ignore dry cells
and reflecting borders. The choice for a Gaussian low-pass filter was motivated and the
filter kernel was defined.

To obtain the high-frequency part of a signal, the low-pass filter result is subtracted
from the original signal. The Gaussian filter now effectively acts as a high-pass filter.
Repeated application of this high-pass filter caused numerical instabilities. The cause
for these instabilities lay with truncation of the filter kernel.

Finally, each time step, the Gaussian high-pass filter is used to extract high-frequency
information from the water state. This high-frequency information is added to inter-
polated data from the governing large-scale simulation. Together, they form the target
state. The water state is then linearly interpolated with the target state. This allows
the small-scale simulation to follow the governing large-scale simulation while allowing
room for detailed water flow.

Results have shown that the quality is good, when looking at numerical error. The con-
trolled simulation is very similar to an uncontrolled simulation that mirrors the governing
large-scale simulation. Additionally, the simulation is robust to large interruptions, while
still allowing smaller waves to disperse and dissolve naturally. Another advantage of the
method is that interaction is easy to implement, as the underlying simulation is a simple
shallow water simulation.

The largest downside of the technique is that it does not scale upwards easily. A wide
filter kernel is required for the convolution process, which means quite a performance hit.
Also, the method is really only suitable for situations that are suited for weak control
and free boundaries. Strict control will mean a degradation of realism and have a bad
impact on the duration high-frequency details are visible. Controlled boundaries will
lead to unrealistic water fronts.
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7. Future Work

A lot of work can be done to improve the current method. We will describe a problem
we have not solved, as well as point out some areas of improvement.

• Unforeseen small-scale bottom elevation can block the flow of water (almost) com-
pletely, in which case our method will not follow the large-scale simulation correctly
any more. Allowing water to be added into dry areas will solve this problem, but
will create problems when controlled areas should become dry for other reasons.
A related problem is that, currently, the initial water state must have water before
anything can happen. A simple solution might be to check if there is water within
a certain area.

• Investigation into a better advection scheme is useful, as the current semi-lagrangian
advection scheme as introduced by [Sta99] introduces dissipative error, which tends
to smear the fine details in the flow ([LO07]).

• Optimizing the convolution with the Gaussian will definitely improve performance.
For example, the Gaussian can be approximated with box filters [BETVG08, S+97]
or calculated via integral images [Kov10].

• Investigation into a (different) better filter might benefit the quality or perfor-
mance. Section 4.3 showed that we can deal with some error in the spatial domain,
which means we do not necessarily need a perfect spatial response.

• Spatial interpolation of the large-scale data can maybe be improved. Perhaps a
better method would be to start with nearest-neighbour interpolation and then
perform convolution with a Gaussian filter, masking dry cells and reflecting edges.

• Visual feedback of the water depth and flow direction is poor. Combining with
techniques like tiled directional flow [vH11] or animated textures generated with
Fast Fourier Transforms [Tes04b] will solve these problems, while improving the
rendering significantly with regard to visual quality. These animated textures could
be precomputed or generated on the fly based on water depth and other properties.
Alternatively, an animated texture could simply be scaled.

• A level-of-detail technique will be required to be able to scale up the simulation
domain. A good start can be replacing the shallow water simulation in certain
regions with a combination the techniques of [vH11] and [Tes04b]. This would
be possible in regions where the water is deep enough for the bottom elevation
not to influence the shallow water simulation strongly. The water height in these

59



regions will be almost flat. For an example of this combination of techniques, see
appendix A.

• GPU enhancements will help improve performance.

• Better wet/dry boundary tracking is required to improve visual quality on areas
that become dry.
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Figure A.1.: Tiled directional flow, as implemented by [vH11].

A. Side Project: Image-based Rendering

This appendix describes a simple combination of two techniques: tiled directional flow
and FFT-based image generation. Appendices A.1 and A.2 will give a short overview of
both techniques. Appendix A.3 will describe the combination of these techniques.

A.1. Tiled Directional Flow

Tiled directional flow by [vH11] is a technique used to visualize water flows (figure A.1).
It can be completely implemented in a pixel shader. It works by splitting the domain into
tiles (see figure A.2). For each tile, a normal map is sampled, which is scaled and moved
according to data sampled from a texture that stores the flow. These normal maps are
added together, after which the water surface can be shaded, resulting in waves that
look animated.

The contribution factor of the overlapping tiles as shown in figure A.2 is decided by the
center tile. It is strongest in the top-left corner and fades out towards the bottom-right
corner. The author of [vH11] uses a cubic fall-off for this contribution factor, so that it
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(a) Center tile. (b) Four large tiles overlapping the center tile.

Figure A.2.: Tiled directional flow tiling.

keeps a contribution close to 1 until close to the opposite edges, where it drops to 0.
The normal is computed as follows. First, the top two overlapping tiles’ normal maps

are added together. The normal of the left tile is multiplied with the contribution factor,
the other’s with 1 minus the contribution factor. The same for the bottom two tiles.
The result of both additions is then added again in the same way, but the contribution
is decided based on which tile addition is on top. The resulting normal is scaled by
equation (A.1c). Finally, the normals are scaled by the transparency of the water as
defined in the flow map, which is just another way of decreasing the normal strength
where it would make sense (for example near the edges of the water).

Factorx =
√

(f(X)x)2 + (1− f(X)x)2 (A.1a)

Factory =
√

(f(X)y)2 + (1− f(X)y)2 (A.1b)

NormalScaling =
C

Factorx ∗ Factory
(A.1c)

Here, f(X) is the contribution factor of the center tileX in x- and y-direction. NormalScaling
is the scaling factor for the final result. C is a user-defined constant, again to tweak the
strength of the waves.

A.2. Fast Fourier Transform

FFT-based water animation [Tes04b, JG01] is core to many water rendering techniques,
even if just for adding details or ambient waves. It generates animated waves given
a phase/amplitude spectrum. It allows for the user to define both a spectrum, which
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encodes wave amplitudes and phases, and a dispersion relation, which relates water
depth and wavelength to wave speed. The spectrum can be modified in such a way that
it emphasizes waves in a certain direction more than others. Additionally, it can be
modified to show choppy waves. The result is a realistic water animation that can be
stored as a heightmap or normal map.

The basis of this technique is the fast Fourier transform, which is an efficient way of
evaluating the following sum:

h(~x, t) =
∑
k

h̃(~k, t) exp(i~k · ~x) (A.2)

Here, h(~x, t) is the height at position ~x at time t. ~k is the wave vector, which is a
composition of the wave numbers in x- and y-direction. A wave number k relates to
the wavelength λ as follows: k = 2π/λ. h̃(~k, t) is the representation of the sine wave of
wave number k as a complex number. It encodes the phase and amplitude. exp(i~k · ~x
represents a sine wave with wavelength 2π/k, phase 0 and amplitude 1, sampled at
position ~x. Multiplied with h̃(~k, t), it results in a sine wave with wavelength 2π/k and a
phase and amplitude as defined by h̃ at time t. Adding all the sine waves together gives
the height of the water at the requested position. Sampling this function for an entire
grid, given the right spectrum, results in an image of waves.

More details regarding the FFT method can be found in [Tes04b] and [JG01].

A.3. Tiled FFT

As an exploration in image-based rendering, we combined the previous two techniques
into one. Simply put, we generate an animated normal map and use tiled directional
flow to sample it instead of the static normal map. See figure A.3 for a screenshot.

In contrast to the default tiled directional flow, we do not move the normal map
over time. Instead, water movement is generated by modifying the spectrum to gener-
ate waves in the direction we desire. We used the Phillips spectrum (equation (A.3),
[Tes04b]), which generates waves based on wind velocity. For details on how to integrate
this with the FFT-based algorithm, see [Tes04b, JG01].

Ph(~k) = A
exp

(
−1/(kL)2

)
k4

|~k · ~w|2 (A.3)

Here, ~k is the wave vector, k is the wave vector magnitude and ~w is the wind velocity.
We modify this spectrum slightly by multiplying negative outcomes of the dot product
with a scaling factor, to reduce the strength of waves going in the opposite direction.
We found that they can be eliminated completely, giving a subjectively better result.

To generate an animation map with moving waves, we simply set the wind speed.
This wind speed does not need to be high to create water movement required for calm
flowing water (our wind speed had a magnitude of 1). To get waves in the direction
of the flow, we sample the normal map with the right orientation. The result can be
viewed at https://www.youtube.com/watch?v=rF_cAAwXlz4.
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Figure A.3.: Tiled directional flow with animated normal maps, generated with the FFT.

The combination of these two techniques is interesting, because it is highly customiz-
able and highly realistic at the same time, given the right spectrum. The required
animated normal maps are small enough to be generated in real-time. Alternatively, a
large number of animated maps could be precomputed. Interesting parameters to vary
would for example be wind speed and water depth. Water depth is a parameter of the
dispersion relation, for which several versions exist. We used the following dispersion
relation [Tes04b]:

ω(~k) =
√
gk tanh(kd) (A.4)

Here,k is the wave vector magnitude, g is gravity and d is the water depth.
Finding a realistic spectrum, for example one that uses flow velocity instead of wind

velocity, might require some research, as the Phillips spectrum describes open ocean
waves generated by wind. Scenarios like a flood or a flowing river have significant influ-
ences resulting from bottom elevation and flow speed, which could result in a spectrum
significantly different from a wind-based spectrum.

64



Bibliography

[AGJN02] Arul Prakash Asirvatham, AP Gachibowli, CV Jawahar, and
PJ Narayanan. Script segmentation of multi-script documents. 2002. 17

[APKG07] Bart Adams, Mark Pauly, Richard Keiser, and Leonidas J Guibas. Adap-
tively sampled particle fluids. In ACM Transactions on Graphics (TOG),
volume 26, page 48. ACM, 2007. 7

[BETVG08] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-
up robust features (surf). Computer vision and image understanding,
110(3):346–359, 2008. 17, 59

[BHN07] Robert Bridson, Jim Houriham, and Marcus Nordenstam. Curl-noise for
procedural fluid flow. In ACM Transactions on Graphics (TOG), volume 26,
page 46. ACM, 2007. 8

[bri] Fluid simulation: Siggraph 2007 course notes. 12

[BSL07] R Byron Bird, Warren E Stewart, and Edwin N Lightfoot. Transport phe-
nomena. John Wiley & Sons, 2007. 13

[CBP] Simon Clavet, Philippe Beaudoin, and Pierre Poulin. Particle-based
viscoelastic fluid simulation. In Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 219–
228. 7

[CFL+07] Nuttapong Chentanez, Bryan E Feldman, François Labelle, James F
O’Brien, and Jonathan R Shewchuk. Liquid simulation on lattice-based
tetrahedral meshes. In Proceedings of the 2007 ACM SIGGRAPH/Euro-
graphics symposium on Computer animation, pages 219–228. Eurographics
Association, 2007. 8

[CM10] Nuttapong Chentanez and Matthias Müller. Real-time simulation of large
bodies of water with small scale details. In Proceedings of the 2010 ACM
SIGGRAPH/Eurographics symposium on computer animation, pages 197–
206. Eurographics Association, 2010. 8, 12, 14, 15, 16

[CM11] Nuttapong Chentanez and Matthias Müller. Real-time eulerian water sim-
ulation using a restricted tall cell grid. In ACM Transactions on Graphics
(TOG), volume 30, page 82. ACM, 2011. 8

65



[Cor08] Hilko Cords. Moving with the flow: Wave particles in flowing liquids. 2008.
7

[CS09] Hilko Cords and Oliver G Staadt. Real-time open water environments with
interacting objects. In NPH, pages 35–42. Citeseer, 2009. 8

[CZY11] Fan Chen, Ye Zhao, and Zhi Yuan. Langevin particle: A self-adaptive la-
grangian primitive for flow simulation enhancement. In Computer Graphics
Forum, volume 30, pages 435–444. Wiley Online Library, 2011. 7

[Day09] Mike Day. Insomniac’s water rendering system, 2009. http://www.

insomniacgames.com/tech/articles/0409/files/water.pdf. 8

[EQYF13] R Elliot English, Linhai Qiu, Yue Yu, and Ronald Fedkiw. Chimera grids
for water simulation. In Proceedings of the 12th ACM SIGGRAPH/Eu-
rographics Symposium on Computer Animation, pages 85–94. ACM, 2013.
8

[HNC02] Damien Hinsinger, Fabrice Neyret, and Marie-Paule Cani. Interactive ani-
mation of ocean waves. In Proceedings of the 2002 ACM SIGGRAPH/Eu-
rographics symposium on Computer animation, pages 161–166. ACM, 2002.
8

[JG01] Lasse Staff Jensen and Robert Golias. Deep-water animation and rendering.
In Game Developers Conference (Gamasutra), 2001. 62, 63

[JKS95] Ramesh Jain, Rangachar Kasturi, and Brian G Schunck. Machine vision,
volume 5. McGraw-Hill New York, 1995. 17

[Kal08] Daniel Kallin. Real-time large scale fluids for games. SIGRAD 2008,
page 31, 2008. 8

[KO96] S Koshizuka and Y Oka. Moving-particle semi-implicit method for fragmen-
tation of incompressible fluid. Nuclear science and engineering, 123(3):421–
434, 1996. 7

[Kov10] Peter Kovesi. Fast almost-gaussian filtering. In Digital Image Computing:
Techniques and Applications (DICTA), 2010 International Conference on,
pages 121–125. IEEE, 2010. 17, 59

[KP+07] Alexander Kurganov, Guergana Petrova, et al. A second-order well-
balanced positivity preserving central-upwind scheme for the saint-venant
system. Communications in Mathematical Sciences, 5(1):133–160, 2007. 8
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physics: class notes. In ACM SIGGRAPH 2008 classes, page 88. ACM,
2008. 12, 13, 14, 15

[MTPS04] Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. Fluid
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