
Department of Information and Computing Sciences

Experimental Research and Algorithmic
Improvements involving the Graph Parameter

Boolean-width

Master Thesis
ICA-3507645

Author:
Frank J.P. van Houten
Utrecht University
Frankv@nhouten.com

Supervisor:
Prof. Dr. H.L. Bodlaender

Utrecht University
H.L.Bodlaender@uu.nl

July 2015



Abstract

In this thesis, we investigate numerous algorithms that make use of boolean decomposi-
tions. We provide a new algorithm for computing the representatives of linear decompo-
sitions. These representatives are the indices for a table storing partial solutions, which
is used by dynamic programming algorithms. These algorithms are parameterized by
the width of the boolean decomposition that is used as an input.

We present a new heuristic to compute linear boolean decompositions and experimen-
tally evaluate it by comparing it to existing heuristics. The experimental evaluation
shows that significant improvements can be made with respect to running time without
increasing the width of the generated decompositions. Moreover, we consider reduction
rules in order to reduce the running time needed to generate linear boolean decompo-
sitions. However, these reduction rules seem to describe degenerate graph classes that
will not occur often in practical settings, meaning that the benefit of reducing vertices
will be very marginal.

Boolean decompositions can be used to solve the class of locally checkable vertex subset
problems. We evaluate an algorithm for solving these problems, showing that the algo-
rithm is often up to several orders of magnitude faster compared to theoretical worst
case bounds.
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Chapter 1

Introduction

A graph is a structure used to model a set of objects, called vertices, and possible links
between pairs of these objects, called edges. This representation can be used to solve
many practical problems. A simple example is the problem of finding the shortest path
between two vertices, which is solved continuously by GPS navigation systems. The
problem of finding a shortest path can be solved relatively easily, but other problems
are much harder and require more computation time. An example of such a problem
is to find the maximum independent set in a graph. An independent set X is a subset
of all vertices of the graph, such that no two vertices in X are connected by an edge.
A trivial algorithm for finding the largest independent set in a graph with n vertices
is to compute all 2n possible subsets of vertices and check for each each subset if it is
an independent set, while keeping track of the largest one seen so far. In practice this
is not feasible as soon as n becomes a large number. Therefore we can make use of a
divide and conquer approach, which splits the problem into multiple smaller problems.
We then compute partial solutions, which we combine into a solution for the original
problem.

One way to use the technique of divide and conquer is through the use of a dynamic
programming algorithm on a decomposition tree of a graph. A decomposition tree of a
graph is a derived structure that captures the necessary information on how to divide
the graph. We can use a bottom up dynamic programming algorithm to compute partial
solutions for each node of the decomposition tree. The running time of computing such
a partial solution is bounded by a graph parameter that is associated to the complex-
ity of the decomposition tree. Such a graph parameter is known as the width of the
decomposition tree, and the width of a graph is the width of an optimal decomposition
tree for that graph. Many NP-hard problems on graphs become easier if such a graph
parameter is small. For instance, given a boolean decomposition of width k we can solve
the maximum independent set problem in O∗(2k) time, compared to the O∗(2n) time
needed for the trivial approach.
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1.1. Boolean-width 2

1.1 Boolean-width

Boolean-width is a recently introduced graph parameter [7]. The decomposition tree for
boolean-width is a binary partition tree called a boolean decomposition. The decom-
position tree is constructed in such a way that the number of distinct neighborhoods
at each partition of the nodes of the decomposition tree is small. In this thesis we
investigate generating boolean decompositions as well as using these decompositions in
practical algorithms for solving problems on graphs.

Algorithms for computing boolean decompositions have been studied before in [24, 15,
18, 2]. In this thesis we mainly consider a special type of decomposition called a linear
boolean decomposition. Linear boolean decompositions are easier to compute and the
theoretical running times of algorithms using linear decompositions are lower than those
using general ones.

Our contribution is inspired by Sharmin [18], who studied the practical aspects of
boolean-width. We look into the benefits of using linear boolean decompositions over
general ones, and give a new heuristic that can be used to compute linear boolean decom-
positions. We consider methods to speed up the computation of linear decompositions
through the use of reduction rules, and we evaluate several algorithms that make use of
boolean decompositions.

1.2 Overview of the thesis

In Chapter 2 we provide an overview of definitions that are used in this thesis. We
also give a number of properties of boolean-width and discuss a few details on our
implementation and on the experiments that we have conducted. In Chapter 3 we
give an introduction to dynamic programming algorithms on boolean decompositions by
explaining the algorithm of Bui-Xuan et al. [7] for solving the maximum independent set
and minimum dominating set problems. In Chapter 4 we discuss the advantage of linear
boolean decompositions and present a new algorithm to compute representatives using
linear decompositions. In Chapter 5 we study a number of heuristics for generating linear
boolean decompositions, including a new heuristic, and evaluate them experimentally.
In Chapter 6 we discuss a number of reduction rules that can be used as preprocessing
steps when generating linear boolean decompositions. The ideas for this chapter were
obtained in collaboration with ten Brinke [21]. In Chapter 7 we study (σ, ρ) vertex subset
problems and a dynamic programming algorithm that solves this class of problems. We
experimentally compare the bounds of this algorithm to theoretical worst case bounds.
Chapter 8 gives a summary of our results and possible topics for future research.

Additionally, in Appendix A we present results on linear boolean-width upper bounds for
a large number of graphs. Appendix B contains a list of the most relevant algorithms
that were implemented as part of this thesis project. In Appendix C we present the
paper Practical Algorithms for Linear Boolean-width.



Chapter 2

Preliminaries

In this chapter we introduce to some basic terminology used throughout this thesis.
We begin with a brief overview of graph theory that is essential for the concept of
boolean-width. For a more extensive introduction to graph theory, we refer the reader
to the book Graph Theory by Diestel [9]. In Section 2.2 we explain the concept of
boolean decompositions and boolean-width, after which we continue to list a number of
properties of boolean-width in Section 2.3. In Section 2.4 we explain how running time
analysis is performed. In Section 2.5 we provide details about our implementations of
the algorithms mentioned in this thesis, and on our machine configuration during the
conducted experiments.

2.1 Graph Theory

Definition 2.1 (Graph). A graph G = (V (G), E(G)) is a pair consisting of a set of
vertices V (G) and a set of edges E(G). The size of a graph is equal to the cardinality
of the set of vertices, i.e., |V (G)|. An edge {u, v} is a pair of vertices u and v. If
{u, v} ∈ E(G), then u and v are adjacent to each other in G. The vertices u and v

are called the endpoints of the edge {u, v}. In this thesis we only work with simple
graphs. Edges in a simple graph are undirected, meaning the edges have no orientation,
and each edge is a pair of two distinct vertices, which disallows self-loops in our graph.
Furthermore, there is at most one edge between every pair of vertices in the graph.

Definition 2.2 (Bipartite graph). A bipartite graph is a graph whose vertices can be
divided into two disjoint sets X and Y , such that all edges have one endpoint in X and
one endpoint in Y .

Definition 2.3 (Induced subgraph). For a subset X ⊆ V (G), we define the induced
subgraph G[X] = (X,E′), where the set E′ of edges consists of edges from E(G) that
only contain vertices in X, i.e., ∀u, v ∈ X : {u, v} ∈ E′ ↔ {u, v} ∈ E(G).

Definition 2.4 (Induced bipartite subgraph). Two subsets X,Y ⊆ V (G), for which
X ∩Y = ∅, can induce a bipartite subgraph on a graph G. We denote this by G[X,Y ] =
(X ∪ Y,E′), where E′ ⊆ E(G) consists of all edges in E(G) that have one endpoint in
X and one endpoint in Y , i.e., ∀u ∈ X, v ∈ Y : {u, v} ∈ E′ ↔ {u, v} ∈ E(G).

3



2.2. Boolean-width 4

Definition 2.5 (Neighborhood). The neighborhood of a vertex v in a graph G, also
called the open neighborhood of v, is defined by NG(v) = {u : {u, v} ∈ E(G)}, i.e.,
the set of vertices that are adjacent to v. The degree of a vertex v, deg(v), is equal to
|NG(v)|. The closed neighborhood of a vertex v is denoted by NG[v] = NG(v)∪{v}. For
a subset X ⊆ V (G), we define the neighborhood NG(X) = ⋃

v∈X NG(v).

Definition 2.6 (Vertex subset complement). For a subset A ⊆ V (G), we define the
complement as the set of vertices A = V (G) \A.

Definition 2.7 (Cut of a graph). Let (A,A) be a partition of V (G). Such a partition
is called a cut of G. Each cut (A,A) of G can induce a bipartite subgraph G[A,A].

Definition 2.8 (Neighborhood across a cut). The neighborhood across a cut (A,A) for
a subset X ⊆ A is defined as NG(X) ∩A.

Definition 2.9 (Twins). Two vertices u, v ∈ V (G) are twins if it holds that NG(u)\v =
NG(v) \u. For a partition (A,A) of V (G), two vertices u, v ∈ A are twins across the cut
(A,A) if NG(u) ∩A = NG(v) ∩A.

Definition 2.10 (Walk, path and cycle). A walk in a graph G is a sequence of vertices,
v1, . . . , vk, such that {vi, vi+1} ∈ E(G), for i = 1 to k − 1. A walk in which no vertex
occurs twice is called a path. If v1 = vk and all other vertices of the sequence are distinct,
then it is called a cycle.

Definition 2.11 (Tree). A graph T = (V (T ), E(T )) is called a tree if T is connected
and contains no cycles. We name the set V (T ) nodes to distinct a tree from a regular
graph. A node v ∈ V (T ) is a leaf of T if deg(v) ≤ 1 and is an internal node otherwise.
A tree is a rooted tree if one node has been designated the root, in which case the edges
have a natural orientation towards the root. On a path from a vertex v to the root
node, the neighbor u of v on that path is called a parent of v. Additionally, v is a child
of u. A binary tree is a rooted tree in which each node in V (T ) is either a leaf or has
two children.

2.2 Boolean-width

Definition 2.12 (Decomposition tree). A decomposition tree of a graph G is a pair
(T, δ) where T is a full binary tree and δ : V (T ) → 2V (G) is a function mapping nodes
to subsets of V (G). For the root node r of T , it holds that δ(r) = V (G). Furthermore,
if nodes v and w are children of a node u, then (δ(v), δ(w)) is a partition of δ(u). For
a decomposition (T, δ) let Vw denote the vertices contained in a node w ∈ V (T )., i.e.,
Vw = δ(w). A decomposition (T, δ) is a full decomposition tree if T has |V (G)| leaves.

Note that in a full decomposition tree, it holds that for each vertex v ∈ V (G), δ(l) = {v}
for a unique leaf l of T . For each node x ∈ V (T ), we can define the cut (Vx, Vx), which
in turn can induce the bipartite subgraph G[Vx, Vx]. Consider the graph G displayed in
Figure 2.1a and the decomposition tree (T, δ) of G in Figure 2.2. Node x4 has Vx4 =
{a, b} and induces the cut (Vx4 , Vx4) = ({a, b}, {c, d, e, f, g}). The bipartite subgraph
that is induced by this cut is shown in Figure 2.1b.
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a b

c

d

e f

(a)

a

b

c

d

e

f
(b)

Figure 2.1: A graph G and the bipartite graph induced by node x4 of the decomposition
given in Figure 2.2, or by node x5 of the linear decomposition given in Figure 2.3.

a, b, c
d, e, f

x1

a, b, c

x2

d, e, f

x3

a, b

x4

c

x5

d

x6

e, f

x7

a

x8

b

x9

e

x10

f

x11

Figure 2.2: A decomposition tree (T, δ) of graph G from Figure 2.1a.

Definition 2.13 (Linear decomposition). A linear decomposition, also referred to as a
caterpillar decomposition [24], is a decomposition tree (T, δ) where T is a binary tree
for which it holds that every internal node of T has at least one leaf as a child. We can
define such a linear decomposition through a linear ordering π = π1, . . . , π|V (G)|, which
consists of all vertices in G, by letting δ map the i-th leaf of T to πi.

a, b, c
d, e, f

x1

ω0ax2
b, c, d
e, f

x3

ω1
bx4

c, d
e, f

x5

ω2
cx6 d, e, f

x7

ω3
dx8 e, f

x9

ω4
ex10 f

x11

ω5

Figure 2.3: A linear decomposition tree of graph G from Figure 2.2 obtained through
the linear ordering π = (a, b, c, d, e, f).
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As an example, let us define a linear decomposition through the linear ordering π =
(a, b, c, d, e, f) for the graph G displayed in Figure 2.2. We split off the vertices in
the order they appear in π. This means that at the root node x1 we have two child
nodes c1 and c2 for which δ(c1) = π1 and δ(c2) = V (G) \ π1. The corresponding linear
decomposition tree is shown in Figure 2.3.

For each internal node y, it is possible to directly construct the set of vertices δ(y) by
looking at what vertices are previously split off in the tree. This motivates the following
definition:

Definition 2.14 (ω-function). Let G = (V (G), E(G)) be a graph and π be a linear
ordering of V (G). Let ωi(π) : π → 2V (G) be a function mapping a linear ordering of
vertices to the complement of the first i vertices appearing in that ordering.

ωi(π) = V (G) \
i⋃

j=1
πj

Let (T, δ) be the linear decomposition tree constructed from π. Let y be the internal
node with the i-th leaf of T as a child. If y has two leaf children, then let i be the one
of lowest index. We obtain the set of vertices δ(y) in the following way:

δ(y) = ωi−1(π) = V (G) \
i−1⋃

j=1
πj

We omit the parameter π and write ωi instead of ωi(π) if π is clear from the context.

For the internal node x5 from the linear decomposition tree of Figure 2.3, we can con-
struct δ(x5) given π. At node x5 the vertices a and b are previously split off, which are
π1 and π2 in our ordering respectively. Thus, δ(x5) = ω2 = V (G) \ {a, b} = {c, d, e, f}.
This makes clear why the ωi function takes the complement of the first i vertices, as
(ωi, ωi) now directly gives us a cut of our decomposition. For another example we refer
to Figure 2.4.

(abcde, ∅) = (ω0(π), ω0(π))

(bcde, a) = (ω1(π), ω1(π))

(cde, ab) = (ω2(π), ω2(π))

(de, abc) = (ω3(π), ω3(π))

(e, abcd) = (ω4(π), ω4(π))

a

b

c

d

e

π = a, b, c, d, e

Figure 2.4: Simple linear decomposition of a graph with V (G) = {a, b, c, d, e} and
corresponding cuts described by the ω function.
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Definition 2.15 (Boolean dimension of a cut). Let G = (V (G), E(G)) be a graph and
A ⊆ V (G). Define the set of unions of neighborhoods across a cut (A,A) as

UN (A) =
{
NG(X) ∩A

∣∣∣X ⊆ A
}
.

The boolean dimension of a cut (A,A) is a function bool-dim : 2V (G) → R.

bool-dim(A) = log2 |UN (A)|.

For the cut induced by node x4 in Figure 2.2, which is equal to the cut induced by
node x5 in Figure 2.3, we have that UN ({a, b}) = {∅, {c, d}}, resulting in the boolean
dimension being log2(|{∅, {c, d}}|) = 1.

Definition 2.16 (Boolean-width). Let (T, δ) be a decomposition of a graph G. We
define the boolean-width of (T, δ) as the maximum boolean dimension over all cuts of
(T, δ).

boolw(T, δ) = max
x∈V (T )

bool-dim(δ(x))

The boolean-width of G is defined as the the minimum boolean-width over all possible
full decompositions of G.

boolw(G) = min
full (T,δ) of G

boolw(T, δ)

Definition 2.17 (Linear boolean-width). The linear boolean-width of a graph G =
(V (G), E(G)) of size n is defined as the the minimum boolean-width over all linear
decompositions of G.

lboolw(G) = min
linear (T,δ) of G

boolw(T, δ)

Note that given a linear ordering π of V (G) we can always construct a unique linear
boolean decomposition corresponding to π. Therefore we can define the linear boolean-
width directly on π.

lboolw(π) = nmax
i=0

bool-dim(ωi(π))

We omit checking the boolean dimension for leaves since this is less than or equal to 1,
which follows from the fact that if x is a leaf node and δ(x) = {v}, then UN ({v}) =
{∅, NG(v)}.

The linear boolean-width of G can be defined as the minimum boolean-width over all
possible permutations of V (G).

lboolw(G) = min
permutation π of V (G)

lboolw(π)

2.3 Properties and bounds

There are a number of known properties and bounds for boolean-width that are used
throughout this thesis. We give an overview of the most relevant ones below.
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Property 2.18. [12, Theorem 1.2.3] The number of unions of neighborhoods is sym-
metric for a cut (A,A). This means that |UN (A)| = |UN (A)|.

Property 2.19. [7] For any graph G, it holds that 0 ≤ boolw(G) ≤ |V (G)|.

Property 2.20. [24, Lemma 3.5.7] For any graph G = (V (G), E(G)) and a vertex
v ∈ V (G), it holds that boolw(G \ {v}) ≤ boolw(G) ≤ boolw(G \ {v}) + 1.

Property 2.21. [24, Theorem 3.5.5] For any cut (A,A) of any graph G, it holds that
|UN (A)| = mis(G[A,A]), where mis(G) is the number of maximal independent sets in
a graph G.

Property 2.22. [15, Proposition 2, Proposition 3] For any graph G of size n, a trivial
upper bound on the boolean-width is n/3, whereas a trivial upper bound on the linear
boolean-width is n/2.

Property 2.23. A linear boolean decomposition is a special case of general boolean
decompositions, thus for any graph G it holds that boolw(G) ≤ lboolw(G).

2.4 Running time analysis

We use big O and O∗ to indicate the running time of algorithms. Let f and g be two
functions, then

• f(n) ∈ O(g(n)) if there exist positive constants c and n0 such that 0 ≤ f(n) ≤
c · g(n) for all n ≥ n0.

• f(n) ∈ O∗(g(n)) if f(n) ∈ O(g(n) · nO(1)).

A graph parameter is a number associated to a graph. Let k be a graph parameter of a
graph G of size n, then we say that an algorithm is parameterized by k if there exists a
function f such that the algorithm runs in f(k) · nO(1). A problem solvable by such an
algorithm is said to be fixed parameter tractable (FPT).

2.5 Implementation details

All algorithms implemented for this thesis project are implemented using the C# pro-
gramming language and compiled using the csc compiler that comes with Visual Studio
12.0.

2.5.1 Bitsets

The algorithms in this thesis make extensive use of sets and set operations, which can be
implemented efficiently through the use of bitsets. By using a mapping from vertices to
bitsets that represent the neighborhood of a vertex, we can store the adjacency matrix of
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a graph efficiently. Figure 2.5 provides an illustration of such a representation through
bitsets. The idea is that each vertex receives a unique identifier, which is used to assign a
unique bit, 2identifier, to each vertex. This way, we can add vertices together to construct
sets of vertices, which we use to represent neighborhoods. Note that we simply store
the integer that represents each neighborhood, and perform bitwise operations directly
on these integers.

a b c d eVertex

Identifier 0 1 2 3 4

Bit 1 2 4 8 16
(a)

a

b

c

d

e

a b c d e

0 1 1 0 0

1 1

1 1 1

0 0 0

0 0

1 1

1

0 0 0

0 0 0 0

=

=

=

=

= 8

20

6

5

11

(b)
a b

c d e

(c)

Figure 2.5: The identifier and corresponding power of 2 are displayed in 2.5a. The
adjacency matrix in 2.5b is used to obtain an integer that represents the neighborhood

of a vertex. The corresponding graph is displayed in 2.5c.

While the C# programming language does have a built-in BitArray class, it has some
unwanted properties. For instance, if we want to perform an and-operation given two
bit arrays A and B, and assign the value to a new variable C, we lose the values of
A or B. The operation of A.And(B) is done in place, which is not a desired property
when we work with set operations on neighborhoods of vertices and cuts of the graph.
For this reason, we have built our own bitset class that uses 64-bit integers to represent
sets of vertices. While we assume that bitset operations take O(n) time and need O(n)
space, in practice this may come closer to O(1) because we perform set operations on
64 vertices at once. If one assumes that these requirements are constant, several time
and space bounds in this paper improve by a factor n.

2.5.2 Experimental setup

All experiments in this thesis were performed on a 64-bit Windows 8.1 computer, with
a 2.20 GHz Intel Core i7-2670QM CPU and 6GB of RAM. The graphs used come from
Treewidthlib [22], a collection of graphs that are used to benchmark algorithms using
treewidth and related graph problems.



Chapter 3

Introduction to boolean
decompositions

In this chapter, we provide an introduction to the practical use of boolean decompo-
sitions. We start in Section 3.1 by explaining the idea behind boolean-width. In Sec-
tion 3.2 we give an overview of the algorithm by Bui-Xuan et al. [7] that uses boolean
decompositions to solve the maximum independent set problem and minimum dominat-
ing set problem.

3.1 Neighborhood equivalence

The unions of neighborhoods of a set A ⊆ V (G) is, as mentioned earlier, a collection of
all distinct neighborhoods that occur across the cut (A,A), i.e., for every set X ⊆ V (G),
the set NG(X) ∩ A is contained exactly once in the unions of neighborhoods. In order
to illustrate how we incorporate these unions of neighborhoods in algorithms, we look
at the maximum independent set problem (MIS).

Definition 3.1. (Independent set) Given a graph G = (V (G), E(G)) and a subset
X ⊆ V (G), X is called an independent set if ∀v, w ∈ X : {v, w} /∈ E(G). Alternatively,
a subset X ⊆ V (G) is an independent set if ∀v ∈ X : |NG(v)∩X| = 0. An independent
set is called a maximal independent set if it cannot be made larger by adding vertices that
are not yet contained in the set. An independent set is called a maximum independent
set if it is the independent set of largest cardinality in the graph.

To solve the MIS we first observe that for an independent setX, it holds that every subset
S ⊆ X is also an independent set. Now assume we are given a graph G = (V (G), E(G))
and a boolean decomposition (T, δ) of G. Let w be a node of T with child nodes a and
b. Let Z be the maximum independent set of the graph. It follows that both Z∩Vw and
Z ∩ Vw are also independent sets. Thus if we have stored all independent sets X ⊆ Vw
and Y ⊆ Vw, then Z = X ∪ Y for some subsets X and Y . This fact holds for every
node w ∈ V (T ), shifting the problem to how to compute all independent sets X ⊆ Vw
and Y ⊆ Vw. We can do this recursively since each independent set of X ⊆ Vw can be

10
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constructed through the union of an independent set S ⊆ Va and T ⊆ Vb, as illustrated
in Figure 3.1. Note that this only works as long as the sets Va and Vb are a partition of
Vw, but this follows from the definition of boolean decompositions.

S

T

Vw = Va ∪ Vb

Vw

Va

Vb

Figure 3.1: Partition of V (G) at a node w.

The described approach leads us to a simple dynamic programming algorithm. We
traverse the decomposition tree in a bottom-up fashion and combine the results at each
step of the tree. Since at each node w we iterate over all independent sets in a and b, we
want to bound the number of distinct sets stored. This is where we make use of equivalent
neighborhoods across a cut. Note that if independent sets S1 ⊆ Vw and S2 ⊆ Vw have
the same neighborhood across the cut (Vw, Vw), i.e., NG(S1) ∩ Vw = NG(S2) ∩ Vw, then
for every set T ⊆ Vw it holds that S1 ∪ T is an independent set if and only if S2 ∪ T is
an independent set. For this reason it is sufficient to store only the largest independent
set over all independent sets with the same neighborhood. A bound on the number of
distinct possible neighborhoods across a cut is the boolean dimension of that cut.

Definition 3.2 (Neighborhood equivalence). Let G = (V (G), E(G)) be a graph and
A ⊆ V (G). Two subsets X,Y ⊆ A are said to be neighborhood equivalent with respect
to (A,A), denoted by X ≡A Y , if it holds that NG(X) ∩A = NG(Y ) ∩A.

Definition 3.3 (Number of equivalence classes). Let G = (V (G), E(G)) be a graph and
A ⊆ V (G). The number of equivalence classes of ≡A is denoted nec(≡A). We define
the number of equivalence classes of a decomposition (T, δ) as the maximum number of
equivalence classes over all cuts of (T, δ), which we denote by nec(T, δ).

Proposition 3.4. [24, Theorem 3.5.5] For any cut (A,A), it holds that |UN (A)| =
nec(≡A).

3.2 Algorithms on boolean decompositions

The strategy used to solve problems such as the maximum independent set problem is
to first find a representative for each distinct neighborhood. These representatives are
used as indices for our dynamic programming table, in which we store partial solutions
to our problem.
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Definition 3.5 (Representative). Assume we are given a total ordering on the vertices
of a graph G. Let (T, δ) be a boolean decomposition. For a node w ∈ V (T ), the
representative of a set X ⊆ Vw is a set R ⊆ Vw such that R is the lexicographically
smallest set for which R ≡Vw X and |R| is minimized. We denote the representative of
a set X by repVw(X).

3.2.1 Maximum independent set

To solve the MIS problem we need to construct a list of all representatives and their
corresponding neighborhoods for each cut (Vw, Vw) induced by a node w of a decom-
position (T, δ). Algorithm 1 can be used to compute such a list. We let LRA be
the list of representatives for the cut (A,A), and LNRA be the list of correspond-
ing neighborhoods. Between each representative and corresponding neighborhood we
create a pointer for quick access. Algorithm 1 was developed by Bui-Xuan et al. [7]
and runs in O(boolw(T, δ) · n2 · 2boolw(T,δ)) time for a single node. Because there are
O(n) nodes in T , the total running time to construct such a list for every node is
O(boolw(T, δ) · n3 · 2boolw(T,δ)). This algorithm can also be used to calculate the width
of a decomposition by keeping track of the maximum number of representatives seen
while computing all lists for all nodes of T .

Algorithm 1 Algorithm by Bui-Xuan et al. [7] for computing a list of representatives
of a cut (A,A) and their corresponding neighborhoods.

1: function ComputeRepresentatives(Graph G, Subset A ⊆ V (G))
2: LRA, LNRA ← {∅}
3: LastLevel← {∅}
4: while LastLevel 6= ∅ do
5: NextLevel← ∅
6: for all R ∈ LastLevel do
7: for all v ∈ A do
8: R′ ← R ∪ {v}
9: N ′ ← NG(R′) ∩A

10: if R′ 6≡dA R and N ′ 6∈ LNRA then
11: NextLevel← NextLevel ∪R′
12: LRA ← LRA ∪R′
13: LNRA ← LNRA ∪N ′
14: Add pointers between R’ and N’
15: LastLevel← NextLevel
16: return LRA and LNRA

We define the following table that stores partial solutions of the MIS problem.

Tabw[R] =





maxS⊆Vw{|S| : S ≡Vw R and S is an IS of G},
−∞ if no such set S exists.

For a leaf node l of T , we brute-force set these values for initialization purposes. While
Bui-Xuan et al. mention that we should set these values to Tabl[∅] = 0 and Tabl[Vl] = 1,
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this is in fact incorrect if there are vertices of degree zero. A vertex v of degree zero
will have {v} ≡Vw ∅, and {v} is a valid independent set of size 1. Thus Tabl[∅] = 1. A
simple solution to this is setting Tabl[∅] = 0 and Tabl[repVl

(Vl)] = 1. Here, the latter
will overwrite the former if needed.

After setting the values for the leaf nodes, we fill the table entries for all other nodes
by combining the values of the child nodes as soon as they are set. For a node w with
children a and b, the combine step is given in Algorithm 2.

Algorithm 2 Algorithm by Bui-Xuan et al. [7] for filling the table entries for a node
w, used to solve the maximum independent set problem.

1: procedure CombineIS
2: for all Rw ∈ LRVw do
3: Tabw[Rw]← 0
4: for all Ra ∈ LRVa do
5: for all Rb ∈ LRVb

do
6: if Ra ∪Rb is an IS in G[Ra, Rb] then
7: Rw ← repVw(Ra ∪Rb)
8: Tabw[Rw] = max(Tabw[Rw], Taba[Ra] + Tabb[Rb])

Theorem 3.6. [7, Theorem 5] Given a graph G = (V (G), E(G)) and a decomposition
(T, δ), we can solve the maximum independent set problem on G in O(boolw(T, δ) · n2 ·
22 boolw(T,δ)) time.

3.2.2 Minimum dominating set

Definition 3.7. (Dominating set) Given a graph G = (V (G), E(G)) and a subset
X ⊆ V (G), X is called a dominating set if X ∪NG(X) = V (G). Alternatively, a set X
is a dominating set if ∀v ∈ V (G) \X : |NG(v) ∩X| 6= 0. A dominating set is called a
minimum dominating set if it is the dominating set of smallest cardinality in the graph.

The reason for looking at this problem in addition to the MIS problem is that the
minimum dominating set problem (MDS) is slightly more complex. This is because a
subset of Vw can be dominated by vertices in both Vw and Vw. It follows that we also
need to iterate over all representatives of Vw when we perform a combine step in our
dynamic programming algorithm.

LRA LNRA

∅ ∅
{v}
{w}

{x, y}
{z}

{v, w} {x, y, z} }
,

,

,{
==

{

},

,

, ↔
↔

↔
↔

A A

v

w

x

y

z

LRA =

{
,

,

,

∅
{x}
{z}
{x, z} }

↔
↔

↔
↔ { ∅ ,

,{v}
{w}
{v, w} }

,

LNRA =

Figure 3.2: The lists LRA, LNRA LRA and LNRA for a cut (A,A), together with the
pointers between the elements of the lists.

We use Algorithm 1 to compute a list of representatives and corresponding neighbor-
hoods for every node w ∈ T . Although the size of the unions of neighborhoods is
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symmetric across a cut (A,A), i.e., |UN (A)| = |UN (A)|, the actual sets of neighbor-
hoods and representatives are not the same. We refer to Figure 3.2 for an example. For
this reason, we need to compute all representatives and corresponding neighborhoods
for both the cut (Vw, Vw) and (Vw, Vw).

Definition 3.8. (Domination) Let G = (V (G), E(G)) be a graph and A ⊆ V (G). For
X ⊆ A, Y ⊆ A the pair (X,Y ) dominates A if A \X ⊆ NG(X ∪ Y ).

An alternative way of saying that (X,Y ) dominates A is ∀v ∈ A\X : |NG(v)∩(X∪Y )| 6=
0. Simply put, we are dealing with a partial solution for A and keeping track of how
many vertices of the dominating set are inside A itself. We use the following table to
store such solutions.

Tabw[Rw][Rw] =





minS⊆Vw{|S| : S ≡Vw R and (S,Rw) dominates G},
∞ if no such set S exists.

For initialization, for a leaf node l of T , we brute-force set the following values, where
we let R be the representative of LRVl

with NG(R) = Vl.

Tabl[∅][∅] =∞, Tabl[Vl][∅] = 1, Tabl[Vl][R] = 1, Tabl[∅][R] = 0

In addition, we need a final check to see if Vl is a vertex of degree zero. If that is the
case, then Tabl[∅][∅] = 1, which will overwrite any previously stored values.

Algorithm 3 Algorithm by Bui-Xuan et al. [7] for filling the table entries for a node
w, used to solve the minimum dominating set problem.

1: procedure CombineDS
2: for all Rw ∈ LRVw do
3: for all Rw ∈ LRVw

do
4: Tabw[Rw][Rw]←∞
5: for all Ra ∈ LRVa do
6: for all Rb ∈ LRVb

do
7: for all Rw ∈ LRVw

do
8: Ra ← repVa

(Rb ∪Rw)
9: Rb ← repVb

(Ra ∪Rw)
10: Rw ← repVw(Ra ∪Rb)
11: Tabw[Rw][Rw]← min(Tabw[Rw][Rw],

Taba[Ra][Ra] + Tabb[Rb][Rb])

Similar to Algorithm 2, we set the table values for a node w with children a and b after
the entries for a and b are set. The combine step for the dominating set problem is given
in Algorithm 3.

Theorem 3.9. [7, Theorem 7] Given a graph G = (V (G), E(G)) and a decomposition
(T, δ), we can solve the minimum dominating set problem on G in O(n2 + boolw(T, δ) ·
n · 23 boolw(T,δ)) time.
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Note that Algorithm 2 and Algorithm 3 are very similar. In fact, the MIS and MDS
problems are contained in a class of problems called (σ, ρ) vertex subset problems, which
are all solvable using boolean decompositions. In Chapter 7 we discuss this class of
problems and give an overview of the algorithm by Bui-Xuan et al. [8] for solving them.



Chapter 4

Linear boolean decompositions

In this chapter we explain why linear decompositions can be more desirable than general
decompositions in practical applications. Recall from Definition 2.13 that linear boolean
decompositions can be defined through a linear ordering of the vertices of a graph. For
this reason, it is often easier to find a linear decomposition - we just need to find a linear
ordering of the vertices of the graph that gives us a low boolean-width. While linear
boolean decompositions are a special case of general boolean decompositions, on certain
graph classes, such as caterpillar trees and cliques, the linear boolean-width is equal to
the boolean-width. This can be observed by noting that, while constructing a linear
ordering for a clique or caterpillar tree, there is always a next vertex for the ordering
such that the number of unions of neighborhoods does not increase. However, for a
simple graph such as a tree, where the boolean-width is 1, finding the linear boolean-
width turns out to be a difficult problem. We therefore investigate a new bound on the
linear boolean-width in terms of a different graph parameter, pathwidth, in Section 4.1.
An advantage of linear decompositions is that algorithms using linear decompositions
have a lower time complexity than those using general decompositions, which we show
in Section 4.2 and 4.3. In Section 4.4 we briefly discuss the topic of how to compute
exact linear boolean decompositions.

4.1 Linear boolean-width related to pathwidth

Treewidth [17] is a graph parameter used in a wide range of applications [3]. Similar to
boolean-width, treewidth is a value associated with a decomposition of a graph called a
tree decomposition. In this section, we relate linear boolean decompositions to a special
case of tree decompositions called path decompositions.

Definition 4.1 (Tree decomposition and treewidth). Given a graph G = (V (G), E(G)),
a tree decomposition of G is a pair (T, δ), where T is a tree and δ : V (T ) → 2V (G) is a
function mapping nodes to subsets of vertices of V (G). A node x ∈ V (T ) is called a bag
of the tree decomposition. A tree decomposition (T, δ) satisfies the following properties.

(i) ⋃x∈V (T ) δ(x) = V (G).

16
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(ii) ∀{u, v} ∈ E(G) : ∃x ∈ V (T ) such that u, v ∈ δ(x).

(iii) For x, y, z ∈ V (T ), if y is on the path of T between x and z, then δ(x)∩δ(z) ⊂ δ(y).

The treewidth of a tree decomposition, denoted tw(T, δ), is equal to max
x∈V (T )

|δ(x)| − 1,

i.e., the size of the largest bag minus one. The treewidth of a graph, denoted tw(G), is
equal to the smallest treewidth over all possible tree decompositions of G.

It is known that for any graph G, it holds that boolw(G) ≤ tw(G) + 1 [24, Theorem
4.2.8]. By restricting the decomposition tree of a tree decomposition to be a path,
we obtain a path decomposition. The width of such a path decomposition is called the
pathwidth [16], or pw for short. Because T is a path, we can define T through a sequence
of subsets X1, . . . , Xn of G, where Xi denotes the vertices contained in bag i.

We present a new bound on linear boolean-width in terms of pathwidth by explaining a
method of construction that gives us a linear boolean decomposition of a graph G from
a path decomposition of G. Recall that a linear boolean decomposition can be defined
through a linear ordering π = π1, . . . , π|V (G)| of V (G). The idea is that, given a path
decomposition X1, . . . , Xn, we select vertices one by one from a subset Xi and append
them to the linear ordering π. We then move on to Xi+1. For shorthand notation we

denote χi =
i⋃

j=1
Xi.

Theorem 4.2. For any graph G it holds that lboolw(G) ≤ pw(G) + 1.

Proof. Let Si = {u |u ∈ χi : NG(u) ∩ χi 6= ∅}. For each u ∈ Si, it holds that ∃j > i :
∃w ∈ Xj for which {u,w} ∈ E(G). By definition of a path decomposition, we know that
there is a subset Xj with u,w ∈ Xj , and since all subsets containing a certain vertex are
subsequent in the path decomposition, it follows that u ∈ Xi and u ∈ Xi+1, implying
that Si ⊆ Xi and Si ⊆ Xi+1. By definition, the unions of neighborhoods of χi can only
consist of neighborhoods of subsets of Si. It follows that |UN (χi)| = 2bool-dim(χi) ≤
2|Si| ≤ 2|Xi| ≤ 2pw(G)+1. What remains to be shown is that while appending vertices
one by one from a subset Xi+1, the number of unions of neighborhoods will not exceed
2|Xi+1| at any point. For each vertex v ∈ Xi+1 there are two possibilities; if v ∈ Si,
then appending v to the linear ordering will not increase the boolean dimension, since
v’s neighborhood was already an element of the unions of neighborhoods constructed so
far; if v /∈ Si, then it is possible that v will contribute a new neighborhood to the unions
of neighborhoods, which will cause factor 2 increase in the worst case. There are at most
|Xi+1\Si| such vertices, and because Si ⊆ Xi+1, it follows that |Xi+1\Si| = |Xi+1|−|Si|.
We conclude that at any point during construction it holds that

UN (χi+1) = 2bool-dim(χi+1) ≤ 2|Si| · 2|Xi+1|−|Si| = 2|Xi+1| ≤ 2pw(G)+1
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4.2 Algorithms parameterized by linear boolean-width

While linear decompositions might have a higher lower bound on the boolean-width
of the allowed decompositions than general decompositions, the time complexities for
algorithms parameterized by linear boolean-width are lower than those parameterized
by boolean-width. A few examples of running times are displayed in Table 4.1.

Problem Parameterized by
Boolean-width Linear boolean-width

Maximum Independent Set O∗(22 boolw) O∗(2lboolw)
Minimum Dominating Set O∗(23 boolw) O∗(22 lboolw)

Maximum Induced Matching O∗(43 boolw2) O∗(42 lboolw2)

Table 4.1: Running time complexities for solving different problems using algorithms
parameterized by (linear) boolean-width [7, 15, 8].

The fact that algorithms using linear decompositions are a factor two faster than those
using general decompositions comes from the following observation. We note that in
Algorithm 3, for each node w of a tree T , three for-loops are used to iterate over all
representatives of Vw, Va and Vb, with a and b being the child nodes of w. In the
case of linear decompositions, we use the fact that the number of representatives for
the leaf child of w is bounded. Assume b is a leaf node, then we only iterate over
∅ and Vb. Since this holds for every internal node, we get a maximum number of
2lboolw · 2lboolw · 2 combinations that we iterate over in contrast to 2boolw · 2boolw · 2boolw

for general decompositions. Thus in general, if we have that 22 lboolw < 23 boolw, then
the theoretical upper bound on linear boolean-width is lower than boolean-width.

w

ab

Vb Vb

{∅, {v}}

{∅, {NG(v) ∩ Vb}}

v

l l
Vb = {v}

Figure 4.1: Representatives and neighborhoods of the cut (Vb, Vb), where b is a leaf of
a linear decomposition.

4.3 Computing representatives for linear decompositions

Linear boolean decomposition give us - besides a lower running time for algorithms
parameterized by linear boolean-width - a faster way to construct representatives. Since
calculating the width of a decomposition can be done by keeping track of the maximum
number of representatives seen while constructing all representatives, we can judge the
quality of a linear decomposition faster than that of a general decomposition. In order
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to compute the representatives, we exploit the fact that at each step only one vertex
changes sides in the bipartite graph induced by a cut.

a

b

c

d

e

f

v

→ b

a

c

d

e

f

v

Left Right Left Right

Figure 4.2: Possible changes in the bipartite graph corresponding to a cut after per-
forming an iteration of Algorithm 4.

Using Algorithm 4 we can compute all lists LRA and LNRA. Note that in the algorithm
we let LastLevel and NextLevel be bidirectional hash maps of representatives and
corresponding neighborhoods. By observing what changes in the bipartite graph induced
by a cut when one vertex moves from Right to Left we can determine the correctness
of the algorithm. See Figure 4.2 for an example of a vertex v being processed by the
algorithm.

Theorem 4.3. Let G = (V (G), E(G)) be a graph and π a linear ordering of V (G).
Using Algorithm 4 we can compute the list of representatives and their corresponding
neighborhoods for each cut (ωi, ωi) in O(n2 · 2lboolw(π)) time.

Proof. Assume that we are processing vertex v at position i+1 of a given linear ordering
π and that all representatives for the cut (ωi−1, ωi−1) are computed correctly. We want
to compute all representatives of the cut (ωi−1 ∪ {v}, ωi−1 \ {v}) = (ωi, ωi). Recall from
Definition 2.14 that at step i of the algorithm, it holds that Left = ωi and Right = ωi.
We first show that each pair of a representative and corresponding neighborhood is
a valid pair for the new cut. There are two ways in which the algorithm constructs
representatives. The first way is by retrieving the neighborhood of a representative R
of step i and removing v from it. This constructs the set NG(R \ {v}) ∩ Right, which
is a valid neighborhood across the cut. The second way captures how v interacts with
each neighborhood of step i: The algorithm constructs new neighborhoods by adding v
to an existing representative, i.e., R∪{v}, and obtains the corresponding neighborhood
by adding NG(v) ∩Right to NG(R) ∩Right, which is also a valid neighborhood across
the cut. Note that if we encounter multiple sets that give us the same neighborhood
across the cut, we only store the actual representative of these sets. This shows that if a
pair of a representative and corresponding neighborhood is contained in the map, then
it is a valid pair for cut (ωi, ωi).

What remains to be shown is that all representatives are contained in the map. Assume
for contradiction that there is a representative R that is not contained in the map. If
v /∈ R, then R was a representative at step i − 1 and we should have encountered it
during our iteration over all previous representatives. If R is not contained in the map
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after encountering it, then it means we found a set R′ for which R′ ≡ωi R, contradicting
that R should be contained in the map. If v ∈ R then R \ {v} was not a representative
at step i − 1, or else we would have encountered R during this iteration. Let R′′ =
repωi−1(R\{v}). At step i we will construct the set R′′∪{v}, for which R′′∪{v} ≡ωi R.
Again, this contradicts that R is a valid representative, since R′′ ∪ {v} will either have
a lower cardinality or be lexicographically smaller than R.

In order to determine the running time, we note that the algorithm iterates over all
elements of the ordering π, of which there are exactly n. For each element of the
sequence, the algorithm iterates over all representatives that belong to the previous
node x of the decomposition, which are at most nec(≡Vx) ≤ nec(T, δ) = 2lboolw(π). For
each representative, we retrieve the current neighborhood across the cut from the map
in O(n) amortized time. Directly computing NG(R) ∩Right is also possible but would
take |R| set operations of O(n) each. Inserting the representative and its neighborhood
using Algorithm 5 can be done by hashing the neighborhood in O(n) time and checking
for containment in the hash map in O(1) amortized time. Checking for containment
can also be done in O(log(nec(≡Vw) · n) time by using a balanced binary search tree.
Validating that the representative is lexicographically smaller than the previously stored
one also takes O(n) time. It follows that the total running time is O(n2 · 2lboolw(π)).

Algorithm 4 Algorithm for constructing all representatives and corresponding neigh-
borhoods for all cuts of a linear decomposition.

1: procedure ComputeLinearRepresentatives(Graph G, Linear ordering π)
2: LastLevel← {∅, ∅}
3: Left← ∅
4: Right← V (G)
5: LRLeft, LRRight ← LastLevel.Representatives
6: LNRLeft, LNRRight ← LastLevel.Neighborhoods
7: i← 1
8: while i ≤ |V (G)| do
9: NextLevel← ∅

10: v ← πi
11: Left← Left ∪ {v}
12: Right← Right \ {v}
13: for all R ∈ LastLevel.Representatives do
14: N ← LastLevel.GetNeighborhood(R) \ {v}
15: NextLevel.Update(R,N)
16: R′ ← R ∪ {v}
17: N ′ ← N ∪ (NG(v) ∩Right)
18: NextLevel.Update(R′, N ′)
19: LastLevel← NextLevel
20: LRLeft ← LastLevel.Representatives
21: LNRLeft ← LastLevel.Neighborhoods
22: i← i+ 1
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Note that this gives us all the representatives and neighborhoods for all cuts (ωi, ωi).
In order to get all representatives for all cuts (ωi, ωi) we can simply invert the linear
ordering that represents our decomposition and run the algorithm a second time.

Algorithm 5 Procedure that updates the representative of a neighborhood. If we did
not encounter this neighborhood before we automatically add it, otherwise a check if
performed to see if the new representative R is lexicographically smaller than R′.

1: procedure Update(Representative R, Neighborhood N)
2: if N ∈ Neighborhoods then
3: R′ ← GetRepresentative(N)
4: if R is a representative of R′ then
5: Remove(R′, N)
6: Insert(R,N)
7: else
8: Insert(R,N)

Even if a binary search tree is used to store the lists of representatives we still achieve
a lower running time than the O(boolw(T, δ) · n3 · 2boolw(T,δ)) used by Algorithm 1.
Moreover, the approach of reusing sets of a previous cut turns out to be very helpful
when finding linear decompositions, which we will elaborate on in Chapter 5.

4.4 Exact linear decompositions

When using boolean decompositions for applications, we want to use decompositions of
low boolean-width. It would be ideal if we could use the optimal decomposition, but find-
ing the optimal decomposition is believed to be NP-hard [24, Section 6.1]. The current
best algorithm for finding an exact decomposition runs in O∗(2n ·2n/3) = O∗(2.52n) [24,
Lemma 6.1.2], which makes generating decompositions unfeasible as soon as the num-
ber of vertices in a graph becomes large. For linear decomposition, we present a simple
algorithm that runs in O∗(2.7284n).

For any boolean decomposition, it holds, by definition, that the boolean-width is equal to
the highest boolean dimension over all cuts induced by the nodes of the decomposition.
Thus for a given subset A, any decomposition that contains the cut (A,A) has at least
a boolean-width of bool-dim(A). This leads us to a simple exact algorithm that for any
subset A ⊆ V (G), keeps track of the maximum boolean dimension found so far over
all paths leading to this subset. This value is either the boolean dimension of the cut
(A,A) itself or the boolean dimension of a cut that was encountered previously in the
decomposition tree. For linear decompositions, we extend our decomposition with one
vertex at a time, thus for a subset A we only need to consider all subsets of A where we
remove one vertex from A. This gives us the following recurrence relation:

P (∅) = 1

P (A) = max(|UN (A)|,min
a∈A

P (A \ {a}))
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A simple implementation of this recurrence relation is given in Algorithm 6. The al-
gorithm computes the boolean dimension of a cut on the fly using an algorithm for
counting the number of maximal independent sets in the bipartite graph induced by
the cut (A,A). For each subset of A, of which there are O(2n), we eventually recurse.
Counting the number of maximal independent sets can be done in O(1.3642n) time [10],
making the total running time O∗(2n · 1.3642n) = O∗(2.7284n).

Algorithm 6 Procedure for computing an optimal linear decomposition. Tab[A] will
contain the value of the best boolean decomposition that can be obtained by decompos-
ing V (G) up until A.

1: procedure ExactLinear(Subset A ⊆ V (G))
2: opt←∞
3: for all a ∈ A do
4: if Tab[A \ {a}] = null then
5: ExactLinear(A \ {a})
6: opt← min(opt, Tab[A \ {a}])
7: Tab[A]← max(MaximalIS(G[A,A]), opt)

There are easier ways to calculate the boolean dimension of a cut, as we will see in
Section 5.2.3. This easier method also allows us to stop a search when the boolean
dimension exceeds a certain threshold, giving us a way to make an exact algorithm with
running time depending on the boolean-width of a graph. For further information we
refer the reader to Appendix C, or [21].

Since linear boolean decompositions are often used when finding general decompositions
is too time consuming, it seems counter-intuitive to use exact algorithms for finding
optimal linear decompositions. This is why in the next chapter we focus on heuristics
to construct linear decompositions of low boolean-width.



Chapter 5

Heuristics for generating linear
decompositions

The running time of algorithms parameterized by boolean-width is dependent on the
boolean-width of the input decomposition. For this reason, we want to be able to
compute a ’good’ decomposition of a graph, with ’good’ meaning a decomposition of
low boolean-width. Obviously, the optimal decomposition of a graph is very desirable,
but it is often not feasible to compute because of the required exponential time. In
this chapter we show different heuristics for finding linear boolean decompositions of
low width, which is a common approach used to bypass the difficulty of finding optimal
decompositions. We compare these heuristics by both the time required to generate a
decomposition and the width of the generated decomposition.

5.1 Generic form of the heuristics

Recall that a linear ordering of the vertices of a graph has a one-to-one correspondence
to a linear decomposition of that graph. The strategy when using a heuristic is to find
a sequence of the vertices in such a way that the resulting decomposition will be of low
linear boolean-width. A simple way to accomplish this is to start the sequence with
some vertex and then append a currently unselected vertex to the sequence by some
selection criteria. This approach is used in the heuristics introduced by Sharmin [18]
and is shown in Algorithm 7.

At any point in the algorithm, we denote the set of all vertices that are contained in the
ordering by Left and the remaining vertices by Right. While Right is not empty, we
choose a vertex from a candidate set Candidates ⊆ Right based on a set of trivial cases
or, if no trivial case applies, by making a local greedy choice using a score function that
indicates the quality of the current state of the cut (Left,Right).

23
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Algorithm 7 Greedily generate an ordering based on the score function and the given
starting vertex.

1: function GenerateVertexOrdering(Graph G, Score function f , Vertex init)
2: Decomposition← (init)
3: Left← {init}
4: Right← V (G) \ {init}
5: while Right 6= ∅ do
6: Candidates← set returned by candidate set strategy
7: if there exists v ∈ Candidates belonging to a trivial case then
8: chosen← v
9: else

10: chosen← argmin
v∈Candidates

(f(G,Left,Right, v))

11: Decomposition← Decomposition · {chosen}
12: Left← Left ∪ {chosen}
13: Right← Right \ {chosen}
14: return Decomposition

5.1.1 Selecting the initial vertex

Selecting a good initial vertex can be of great influence on the quality of the decompo-
sition. Sharmin [18] proposes a double breadth first search (BFS) in order to select the
initial vertex. This is done by initiating a BFS, starting at an arbitrary vertex, after
which a vertex of the last level of the BFS is selected. This process is then repeated
by using the found vertex as a starting point for the second BFS. However, using an
arbitrary vertex for the first BFS already influences the boolean-width of the computed
decomposition. During our experiments we noticed that performing a single BFS some-
times gave better results. Because applications are a lot more expensive in terms of
running time compared to computing a decomposition, we propose to use all possible
starting vertices when trying to find a good decomposition.

5.1.2 Pruning

Starting from multiple initial vertices allows us to do some pruning. If we notice that
the score of the decomposition currently being constructed exceeds the score of the best
decomposition found so far, we can immediately stop and move to the next initial vertex.
For this reason, it is wise to start with the most promising initial vertices, which can be
obtained through the double BFS method, and try all other initial vertices afterwards.

5.1.3 Trivial cases

A vertex is chosen to be the next vertex in the ordering if it can be guaranteed to be an
optimal choice by means of a trivial case.

Lemma 5.1. Let X ⊆ Left. If ∃v ∈ Right such that NG(v)∩Right = NG(X)∩Right,
then choosing v will not change the boolean-width of the resulting decomposition.
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Proof. The choice for v will not change the unions of neighborhoods in any way, which
means that UN (Left) = UN (Left ∪ {v}). Thus for any vertex in Right \ {v}, it
will hold that it will interact in the exact same with with UN (Left) as it would with
UN (Left∪{v}), resulting in the boolean dimension of the computed ordering being the
same.

Lemma 5.1 generalizes results by Sharmin [18]. The two trivial cases given by her
are sub cases of our lemma, namely X = ∅ and X = {u} for all u ∈ Left. Note
that we can add a wide range of trivial cases by varying X, such as X = Left and
∀u,w ∈ Left : X = {u,w}, but this will increase the complexity of the algorithm.

5.2 Score functions

We now present the three score functions used in our experiments. While there ex-
ist many more possible selection criteria, these three provided us with the best results
judging by the boolean-width of the computed decompositions. The first two heuris-
tics, the RelativeNeighborhood and LeastCutValue heuristic, are both designed
by Sharmin [18], while the third heuristic, the Incremental-UN heuristic, is a new
addition.

5.2.1 Relative neighborhood

The idea of the RelativeNeighborhood heuristic is to minimize the ratio between
vertices that are not in NG(Left) ∩ Right and vertices that are. In order to minimize
this we define for a cut (Left,Right) and a vertex v the following two sets.

Internal(v) = (NG(v) ∩NG(Left)) ∩Right
External(v) = (NG(v) \NG(Left)) ∩Right

In the original formulation by Sharmin [18], |External(v)|
|Internal(v)| is used as a score function.

However, if we use |External(v)|
|Internal(v)|+|External(v)| = |External(v)|

|NG(v)∩Right| we get the same ordering
without having an edge case for dividing by zero. Furthermore, in contrast to Sharmin,
we note that we can compute these sets directly by performing set operations, instead
of having to check for each vertex w ∈ NG(v) if w ∈ NG(Left) ∩Right or not. We will
refer to this heuristic by RelativeNeighborhood.

One can easily see that the running time of this algorithm is O(n3) for a single initial
vertex and the required space amounts to O(n). Note, however, that this algorithm
only gives us a decomposition. If we need to know the corresponding boolean-width, we
need to compute it afterwards, which would require an additional O(n2 · 2k) time using
Algorithm 4, where k is the boolean-width of the decomposition.
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5.2.2 Least cut value

The LeastCutValue heuristic by Sharmin [18] greedily selects the next vertex v ∈
Right that will have the smallest boolean dimension across the cut (Left∪{v}, Right \
{v}). The intuition behind this approach is that by selecting the vertex that will in-
duce the lowest boolean dimension for the next cut, we should end up with a good
decomposition overall. The next vertex is obtained by constructing the bipartite graph
BG = G[Left ∪ {v}, Right \ {v}] for each v ∈ Right, and counting the number of max-
imal independent sets of BG. The number of maximal independent sets of BG is equal
to the boolean dimension of that cut (see Property 2.21).

We count the number of maximal independent sets by using the CCMIS algorithm
developed by Manne and Sharmin [13]. The advantage of the CCMIS algorithm over
algorithms that generate all maximal independent sets is that we are not interested in
the sets themselves, but solely in the number of sets. As an example of how this can
speed up the counting process, note that if a graph has two connected components A and
B, the total number of maximal independent sets in G[A∪B] is mis(G[A]) ·mis(G[B]).

To determine the running time, we note that for each vertex in Right, of which there
are O(n), we calculate the boolean dimension of the cut using the CCMIS algorithm. If
the graph never gets disconnected, then generating all maximal independent sets would
be the same as counting them. Since there are O(3n/3) maximal independent sets [14],
the runtime of the CCMIS algorithm is exponential in n [13].

5.2.3 Incremental unions of neighborhoods

The approach of the LeastCutValue heuristic of constructing a bipartite graph and
then calculating the number of maximal independent sets is a computationally expensive
approach. Moreover, we do a lot of unnecessary work, because even for cuts that do not
occur in the final decomposition we calculate the number of maximal independent sets.

A more efficient way to compute the boolean dimension of each cut is by reusing the
neighborhoods of the previous cut. This approach is similar to Algorithm 4, where we
use the representatives of the previous cut to compute the representatives of the current
cut. Our new algorithm is displayed in Algorithm 8, which can be used to compute
UN (X ∪ {v}) given UN (X). In the following it is important that the UN sets are
implemented as hash maps, which will only save distinct neighborhoods.

Algorithm 8 Compute UN (X ∪ {v}) given UN (X).
1: function Increment-UN(Graph G, Subset X ⊆ V (G), Unions of neighborhoods
UNX , Vertex v)

2: U ← ∅
3: for S ∈ UNX do
4: U ← U ∪ {S \ {v}}
5: U ← U ∪

{
(S \ {v}) ∪ (NG(v) ∩ (X \ {v}))

}

6: return U
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Lemma 5.2. The procedure Increment-UN is correct and runs in O(n · |UNX |) time
using O(n · |UNX |) space.

Proof. For proof by induction, assume that all unions of neighborhoods for the cut
(X,X) saved inside the set UNX are computed correctly. For each neighborhood
in UNX , we only perform two actions to obtain new neighborhoods. The first ac-
tion is removing v, since v cannot be in any neighborhood of X ∪ {v}. The sec-
ond operation is adding NG(v) to an existing neighborhood, which also results in a
valid new neighborhood across the cut. It is clear that if a neighborhood is added
to U , then it is a valid neighborhood across the cut (X ∪ {v}, X \ {v}). We now
show that all valid neighborhoods of the cut (X ∪ {v}, X \ {v}) are contained in
U . Assume for contradiction that S is a valid neighborhood not contained in U .
By definition, there is a set R for which NG(R) ∩ (X \ {v}) = S. If v /∈ R, then
NG(R) ∩X ∈ UNX , meaning that we add NG(R) ∩ (X \ {v}) to U , contradicting our
assumption. If v ∈ R, then NG(R\{v})∩X ∈ UNX . During the algorithm we construct
(NG(R \ {v}) ∪NG(v)) ∩ (X \ {v}), which is equal to NG(R) ∩ (X \ {v}). This means
that NG(R) ∩ (X \ {v}) is added to U , also contradicting our assumption. It follows
that a neighborhood is contained in the set U if and only if it is a valid neighborhood
across the cut (X ∪ {v}, X \ {v}).

The running time is determined by the number of sets S saved in UNX . The number of
unions of neighborhoods that we iterate over does not exceed 2k, where k is the boolean
dimension of UNX . The set operations that are performed for each S take at most O(n)
time. This results in the total time for this algorithm to be O(n · |UNX |). The space
requirements amount to O(n · |UNX |) for storing U , which contains at most O(|UNX |)
sets of size at most O(n).

We use Algorithm 8 to compute the sizes of all candidate cuts and select the one that
gives the lowest boolean dimension. The full heuristic that we obtain, called the In-
cremental Unions of Neighborhoods heuristic (IUN heuristic for short), is shown
in Algorithm 9. Note that we need to add some additional bookkeeping when a trivial
case occurs, since the unions of neighborhoods should remain up to date at all times.

Theorem 5.3. The Incremental-UN-heuristic procedure runs in O(n3 · 2k) time
using O(n · 2k) space, where k is the boolean-width of the resulting linear decomposition.

Proof. The running time is determined by the number of sets saved in UNLeft. The
worst case consisting of Candidates = Right will result in at most n iterations and calls
to Increment-UN. This call takes O(n · |UNLeft|) time by Lemma 5.2. By definition
|UNLeft| never exceeds 2k, where k is the boolean-width of the resulting decomposition.
Because we need to make n greedy choices to process the entire graph, we conclude
that the total time for this algorithm is O(n3 · 2k). For the space requirements we
observe that all structures in the algorithm require O(n) space, except for the unions of
neighborhoods. Since there are only stored two of them at any time and they require at
most O(n · 2k) space, the total space requirements amount to O(n · 2k).
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Algorithm 9 Greedy heuristic that incrementally keeps track of the Unions of Neigh-
borhoods.

1: function Incremental-UN-Heuristic(Graph G, Vertex init)
2: Decomposition← (init)
3: Left,Right← {init}, V (G) \ {init}
4: UNLeft ← {∅, NG(init) ∩Right}
5: while Right 6= ∅ do
6: Candidates← set returned by candidate set strategy
7: if there exists v ∈ Candidates belonging to a trivial case then
8: chosen← v
9: UN chosen ← Increment-UN(G,Left,UNLeft, v)

10: else
11: for all v ∈ Candidates do
12: UN v ← Increment-UN(G,Left,UNLeft, v)
13: if |UN v| < |UN chosen| then
14: chosen← v
15: UN chosen ← UN v

16: Decomposition← Decomposition · chosen
17: Left← Left ∪ {chosen}
18: Right← Right \ {chosen}
19: UNLeft ← UN chosen

20: return Decomposition

A useful property of Algorithm 9 is that the running time is output sensitive. It follows
that if a decomposition is not found within reasonable time, then the decomposition
that would have been generated is not useful for practical algorithms.

5.3 Experiments

In order to get an idea of how the IUN heuristic performs compared to existing heuristics,
we judge them by both the boolean-width of the generated decomposition and the time
needed for computation. As mentioned in Section 2.5.2 the graphs in our experiments
come from Treewidthlib [22], and are the same set of graphs used by Sharmin in her
experiments [18, Chapter 8].

We ran the three different heuristics mentioned in Section 5.2 with Candidates = Right

and with an additional two variations on the IUN heuristic by varying the set of starting
vertices. The first variation, named 2-IUN, has two starting vertices which are obtained
through a single and double BFS respectively. The n-IUN heuristic uses all possi-
ble starting vertices. For all other heuristics we obtained the starting vertex through
performing a double BFS search. In Table 5.1 and 5.2 we present the results of our
experiments.

It is expected that the IUN heuristic and LeastCutValue heuristic give the same
linear boolean-width, since both these heuristics greedily select the vertex that minimizes
the boolean dimension. The RelativeNeighborhood heuristic performs worse than
all other heuristics in nearly all cases. While the difference might not seem very large,
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Table 5.1: Linear boolean-width of the decompositions returned by different heuristics,
with Candidates = Right.

Graph |V | Edge Density Relative LeastCut IUN 2-IUN n-IUN
alarm 37 0.10 3.32 3.00 3.00 3.00 3.00
barley 48 0.11 5.70 5.91 5.91 4.70 4.58
pigs-pp 48 0.12 10.35 7.13 7.13 7.13 6.64
BN 100 58 0.17 15.84 11.56 11.56 10.86 10.86

eil76 76 0.08 8.86 8.33 8.33 8.33 8.33
david 87 0.11 9.38 6.27 6.27 6.27 5.86
1jhg 101 0.17 12.86 8.67 8.67 8.49 8.41
1aac 104 0.25 20.29 12.40 12.40 12.40 12.33

celar04-pp 114 0.08 11.67 7.27 7.27 7.27 7.27
1a62 122 0.21 18.92 11.68 11.68 11.28 11.14

1bkb-pp 127 0.18 16.81 9.98 9.98 9.53 9.53
1dd3 128 0.17 16.61 9.98 9.98 9.90 9.90

miles1500 128 0.64 8.17 5.58 5.58 5.58 5.29
miles250 128 0.05 7.95 7.13 7.13 5.39 4.58

celar10-pp 133 0.07 10.32 11.95 11.95 7.64 6.91
anna 138 0.05 12.65 8.67 8.67 8.51 7.94
pr152 152 0.04 12.69 11.19 11.19 10.36 8.29

munin2-pp 167 0.03 15.17 9.61 9.61 9.61 7.61
mulsol.i.5 186 0.23 7.55 5.29 5.29 5.29 3.58
zeroin.i.2 211 0.16 7.92 4.46 4.46 4.46 3.81

boblo 221 0.01 19.00 4.32 4.32 4.32 4.00
fpsol2.i-pp 233 0.40 5.58 6.07 6.07 5.78 4.81

munin4-wpp 271 0.02 13.04 9.27 9.27 9.27 7.61

note that algorithms parameterized by boolean-width are exponential in the width of a
decomposition. The 2-IUN heuristic outperforms IUN in 11 cases while n-IUN gives a
better decomposition in 20 out of 23 cases, which shows that a good initial vertex is of
great influence on the width of the decomposition.

Looking at the running times displayed in Table 5.2 for computing each decomposition,
we see that the RelativeNeighborhood heuristic is significantly faster. This is to
be expected because of the O(n3) time, compared to the exponential time for all other
heuristics. An interesting comparison we can make is the difference between the IUN
heuristic and LeastCutValue heuristic. While both of these heuristics give the same
decomposition, IUN is significantly faster. Additionally, even 2-IUN and n-IUN are often
faster than the LeastCutValue heuristic.

In addition to these experiments, we ran the IUN heuristic on a number of large graphs
that were previously dismissed by Sharmin as being too computationally expensive for
a heuristic that greedily minimizes the boolean dimension [18]. In order to limit the
running time, we only use a single starting vertex which is obtained through a double
BFS search, and let the set Candidates be equal to NG(Left ∪ NG(Left)) ∩ Right.
Vertices not contained in this set will definitely be a worse option than any vertex
in this set, as they will not have any shared neighbors. The results are displayed in
Table 5.3. Note that the values of the two others heuristics are taken from [18]. Missing
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entries are caused by a lack of internal memory which is caused by the O(n · 2k) space
requirement.

Table 5.2: Time in seconds of the heuristics used to find the linear boolean decompo-
sitions of which the boolean-width is displayed in Table 5.1.

Graph |V | Edge Density Relative LeastCut IUN 2-IUN n-IUN
alarm 37 0.10 < 0.01 0.02 < 0.01 < 0.01 0.06
barley 48 0.11 < 0.01 0.18 0.01 0.02 0.16
pigs-pp 48 0.12 < 0.01 0.76 0.02 0.04 0.52
BN 100 58 0.17 < 0.01 25.10 0.41 1.24 17.17

eil76 76 0.08 0.02 5.00 0.13 0.29 8.35
david 87 0.11 0.02 3.15 0.04 0.06 1.62
1jhg 101 0.17 0.03 24.46 0.21 0.48 14.75
1aac 104 0.25 0.04 754.54 5.66 11.81 375.31

celar04-pp 114 0.08 0.04 5.73 0.14 0.23 9.85
1a62 122 0.21 0.06 585.95 3.10 11.57 376.26

1bkb-pp 127 0.18 0.06 198.05 1.14 4.18 107.32
1dd3 128 0.17 0.07 117.21 0.92 2.74 91.19

miles1500 128 0.64 0.06 44.57 0.10 0.14 7.05
miles250 128 0.05 0.02 0.56 0.05 0.10 1.24

celar10-pp 133 0.07 0.06 8.93 1.96 4.72 18.43
anna 138 0.05 0.06 20.81 0.22 0.57 19.95
pr152 152 0.04 0.10 50.74 1.76 5.66 120.06

munin2-pp 167 0.03 0.11 3.81 0.80 3.37 30.21
mulsol.i.5 186 0.23 0.09 37.88 0.13 0.27 8.80
zeroin.i.2 211 0.16 0.06 18.70 0.09 0.11 5.85

boblo 221 0.01 0.29 3.39 0.28 0.56 46.22
fpsol2.i-pp 233 0.40 0.18 189.11 0.36 0.74 56.63

munin4-wpp 271 0.02 0.61 57.87 1.98 6.66 367.37

For more results, we refer to Appendix A, Table A.1, where we have used the IUN
heuristic on a large number of graphs, comparing the obtained linear boolean-width of
the decomposition to the currently known lowest boolean-width and treewidth for that
graph.
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Table 5.3: Width of linear boolean decompositions found with the IUN heuristic using
the starting vertices returned by performing a double BFS, and with candidates =
NG(Left ∪ NG(Left)) ∩ Right in order to decrease the computation time. The last

column indicates the time need by the IUN heuristic.

Graph |V | Edge Density LeastUncommon Relative IUN Time (s)
link-pp 308 0.02 34.81 28.68 17.44 610.09

diabetes-wpp 332 0.01 8.58 18.58 5.32 1.53
link-wpp 339 0.02 35.00 29.03 16.79 374.04
celar10 340 0.02 20.81 15.00 10.17 1.83
celar11 340 0.02 19.54 14.70 10.80 1.88
rd400 400 0.01 34.73 21.32 17.01 1,007.03

diabetes 413 0.01 29.32 19.32 - -
fpsol2.i.3 425 0.10 15.87 8.92 7.67 2.11

pigs 441 0.01 24.04 18.00 12.39 20.08
celar08 458 0.02 24.95 15.00 10.17 2.12
d493 493 0.01 20.29 48.10 16.73 708.57

homer 561 0.01 36.22 28.49 - -
rat575 575 0.01 16.48 37.23 - -
u724 724 0.01 18.72 50.09 - -

inithx.i.1 864 0.05 11.98 7.22 6.81 7.31
munin2 1003 < 0.01 31.25 12.13 11.91 61.17
vm1084 1084 < 0.01 15.21 48.95 - -
BN 24 1819 < 0.01 4.91 2.32 2.58 610.72
BN 25 1819 < 0.01 4.64 2.32 2.58 601.41
BN 23 2425 < 0.01 8.48 3.17 2.58 1,808.29
BN 26 3025 < 0.01 6.98 2.32 3.58 4,532.83

5.4 Conclusion

In this chapter we presented a new greedy heuristic for finding linear boolean decompo-
sitions, called the IUN heuristic. The heuristic has a running time that is significantly
lower than the previous best heuristic and finds a decomposition in output sensitive
time. This means that if a decomposition is not found within reasonable time, then the
decomposition that would have been generated is not useful for practical algorithms.
Because of the improved running time we can run the heuristic multiple times for dif-
ferent starting vertices, resulting in significantly better decompositions compared to
existing heuristics. Furthermore, we have generalized the trivial cases that might occur
during the execution of a heuristic, which makes it easier to detect choices that are lo-
cally optimal. Additional investigation in obtaining even faster heuristics can be proven
to be worthwhile, for instance by finding a good approximation algorithm for the size
of the unions of neighborhoods. Combining properties of the IUN heuristic and the
RelativeNeighborhood heuristic might also lead to better decompositions, as they
make use of complementary features of a graph. Another approach for obtaining good
decompositions could be a branch and bound algorithm that makes use of trivial cases
that are used in the heuristics.



Chapter 6

Reduction rules for linear
boolean-width

Finding decompositions of low boolean-width is a difficult problem in itself, which is
why we have looked at heuristics in Chapter 5. To ease this process, we can make use of
preprocessing steps in order to speed up the computation of decompositions. The idea
behind these preprocessing steps is that we apply a certain number of reduction rules
to our input graph. These rules remove certain vertices and all edges incident to these
vertices from the graph. By doing this we obtain a new graph called the reduced graph,
which can be used as input for a heuristic. We make sure that the linear boolean-width
of the reduced graph is equal to the linear boolean-width of the original input graph.
We then reverse the applied reduction rules to expand the decomposition of the reduced
graph into a decomposition of the original graph of equal boolean-width. A schematic
overview is presented in Figure 6.1, where at each step the linear boolean-width is
required to remain unchanged. Because the reduced graph will have less vertices, it will
speed up the computation of a decomposition, since there are less options when deciding
the next vertex for a linear ordering of the vertices of the graph that is being constructed
by a heuristic.

Graph G reducing−−−−−→ Graph H decomposing−−−−−−−−→ π′ of H expanding−−−−−−→ π of G

Figure 6.1: Steps for applying reduction rules.

We start this chapter with a number of definitions in Section 6.1. In Section 6.2 we
explain how reduction rules can be found and proven to be correct. In Section 6.3
we investigate known reduction rules for boolean decompositions. The rules do not
automatically apply to linear boolean decompositions, since linear decompositions are
more restrictive in their tree construction. In Section 6.4 we look at reduction rules
for treewidth and check their validity for boolean-width. In Section 6.5 we provide a
number of new reduction rules. In Section 6.6 we present ways to combine properties of
linear decompositions with reduction rules for general decompositions.

32
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6.1 Definitions

Definition 6.1 (Reduction rule). A rule r is called a reduction rule if it can do the
following: Given a graph G = (V (G), E(G)), r can derive a reduced graph H =
(V (H), E(H)) by removing a certain number of vertices and all edges incident to these
vertices. We denote G r−→ H to indicate that H is obtained by reducing G using rule r.

Definition 6.2 (Safe reduction rule). Let G = (V (G), E(G)) be a graph and let r be
some reduction rule. Let H = (V (H), E(H)) and G

r−→ H. Then r is called safe if
lboolw(G) = lboolw(H).

Note that by applying a reduction rule to a graph G it always holds that lboolw(H) ≤
lboolw(G). This follows from Property 2.20 of boolean-width which states that removing
vertices cannot increase the boolean-width of a graph.

In order to revert the changes made by a safe reduction rule, there should be a reverse
operation on a linear decomposition obtained from the reduced graph that gives us a
valid linear decomposition of the original graph.

Definition 6.3 (Expansion method). Let G = (V (G), E(G)) be a graph and let r be
some reduction rule. Let H = (V (H), E(H)) and G

r−→ H. A method e is called an
expansion method for rule r if e can construct a linear decomposition (T, δ) of G for
each linear decomposition (T ′, δ′) of H We denote this by (T ′, δ′) e−→ (T, δ).

Since there is a bijection between a linear ordering π and a linear decomposition (T, δ) it
is sufficient if a rule e can construct a linear ordering π of V (G) out of a linear ordering
π′ of V (H), denoted by π′ e−→ π.

Definition 6.4 (Safe expansion method). Let e be some expansion method for a re-
duction rule r. Let G = (V (G), E(G)) and H = (V (H), E(H)) be graphs with G r−→ H.
Then e is called safe if for all linear decompositions (T ′, δ′) of H it holds that if
(T ′, δ′) e−→ (T, δ) then lboolw(T, δ) ≤ lboolw(T ′, δ′).

Even though adding vertices cannot decrease the boolean-width, we do not require strict
equality for expansion methods. Rather, we allow for the obtained decomposition of G
to be of an even lower boolean-width than the decomposition of H on which we are
expanding. The reason for this is that we might reorder a decomposition π′ of H into a
new decomposition π′′ of H, after which we expand into a decomposition π of G with
lboolw(π) = lboolw(π′′) ≤ lboolw(π′). We consider this reordering to be part of the
expansion method.

Definition 6.5 (Position in a linear decomposition). Let π be a linear ordering of the
vertices of a graph. Let v and w be two distinct vertices contained in π. Let i be the
position of v and j be the position of w in π, i.e., πi = v and πj = w. We use v <π w
to denote i < j, meaning that v appears before w in π.
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6.2 Proving reduction rules

In order for a reduction rule to be valid and safe, we need to show that both the
reduction and expansion step will not change anything to the linear boolean-width of a
decomposition. This motivates the following lemma:

Lemma 6.6. Let G = (V (G), E(G)) be a graph and let r be some reduction rule. Let
H = (V (H), E(H)) and G

r−→ H. Let e be the expansion method of r. If e is a safe
expansion, then r is a safe reduction from G to H.

Proof. Let π′ be the optimal linear ordering of V (H) with lboolw(π′) = lboolw(H).
We know that there is some linear ordering π of V (G) for which π′

e−→ π. Since e

is safe, it holds by definition that lboolw(π) ≤ lboolw(π′). We know that by adding
vertices to a decomposition, the boolean-width cannot decrease, so we can conclude
that lboolw(π′) = lboolw(π) = lboolw(G). Thus lboolw(H) = lboolw(G), which makes
r a safe reduction rule.

To prove the safeness of a reduction rule it is sufficient to show that the expansion method
of a reduction rule is safe for all linear decompositions of H to linear decompositions of
G. The safeness of the reduction rule follows from Lemma 6.6.

In order to disprove existing reduction rules, we make use of the following observation
that follows directly from Definition 6.2.

Observation 6.7. For a reduction rule r and two graphs G and H, if G r−→ H and
lboolw(H) < lboolw(G), then r is not a safe reduction rule.

In other words, it suffices to show that after applying the reduction the resulting graph
has a lower linear boolean-width than the original graph. We can also conclude this
from the fact that there is no safe expansion method for this reduction rule, since for
the linear ordering π′,with lboolw(π′) = lboolw(H), there will be no linear ordering π
of V (G) with lboolw(π) = lboolw(π′).

6.3 Validity of general boolean-width reduction rules

A starting point for finding reduction rules for linear boolean decompositions is the
validating or disproving of known reduction rules for general boolean decompositions.
We focus on the three reduction rules described in [18, Chapter 5]. In this section we
show that two of the three rules that hold for boolean decompositions do not hold when
applied to linear boolean decompositions. We consider the following three rules.

1. Islet rule. If deg(v) = 0 then v can be removed.

2. Pendant rule. If |E(G)| > 1 and deg(v) = 1 then v can be removed.

3. Twin rule. If |E(G)| > 1 and NG(u) = NG(v) or NG[u] = NG[v] then u can be
removed.
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6.3.1 Islet rule

Lemma 6.8. Let G = (V (G), E(G)) be a graph and let r be the islet rule. Let H =
(V (H), E(H)) and G r−→ H. We can construct a safe expansion method e for r.

Proof. Let v be the vertex of degree 0 that has been removed from G. By definition of
a degree 0 vertex it holds that NG(v) = ∅. Let π′ be any linear ordering of V (H). For
any value of i, it holds that ∅ ∈ UN (ωi(π′)). It follows that at any position in π′, we
can insert v without increasing the boolean dimension, hence the linear boolean-width
of any linear ordering π where we have inserted v at any position will be equal to the
linear boolean-width of π′, and π is a valid linear ordering of V (G). Thus inserting v at
any position in π′ to obtain π is a safe expansion method.

6.3.2 Pendant rule

Lemma 6.9. Let G = (V (G), E(G)) be a graph and let r be the pendant rule. Let
H = (V (H), E(H)) and G

r−→ H. Applying the pendant rule can result in lboolw(H) <
lboolw(G).

Proof. Assume we are constructing a decomposition of graph H pictured in Figure 6.2.
Any optimal decomposition will have a boolean-width of 1, for instance the decompo-
sition obtained from the linear ordering π′ = (a, b, e, c, d). If we obtained this graph by
applying the pendant rule to some initial graph, then a possible initial graph would be
graph G. However, any optimal decomposition from an ordering π of G will have at
least one cut (ωi, ωi) where |UN (ωi)| = 3, for instance π = (a, b, e, c, d, v), resulting in
a boolean-width of log2(3) ≈ 1.58. Thus lboolw(H) < lboolw(G), meaning we cannot
reduce a graph using the pendant rule without assuring the boolean-width does not
change.

a b

c

d

e v r−→ a b

c

d

e

G(V (G), E(G)) H(V (H), E(H))

Figure 6.2: Counterexample to the pendant rule. The linear ordering (a, b, e, c, d) of
V (H) would have no safe expansion method to obtain a linear ordering of V (G).
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a b

c

v

d e r−→ a b

c

d e

G(V (G), E(G)) H(V (H), E(H))

Figure 6.3: Counterexample to the twin rule. The linear ordering (a, b, c, d, e) would
have no safe expansion method to obtain a linear ordering of V (G).

6.3.3 Twin rule

Lemma 6.10. Let G = (V (G), E(G)) be a graph and let r be the twin rule. Let
H = (V (H), E(H)) and G

r−→ H. Applying the twin rule can result in lboolw(H) <
lboolw(G).

Proof. Assume we are constructing a linear decomposition of graph H pictured in Fig-
ure 6.3. Any optimal linear decomposition will have a maximum boolean-width of 1,
for instance by using the linear ordering π′ = (a, b, c, d, e). If the twin rule is used
to obtain graph H, then it is possible that graph G was our original input graph. If
{c, v} /∈ E(G), then we obtain the same graph as in Figure 6.2, of which the boolean-
width is approximately 1.58. If {c, x} ∈ E(G), then it also holds that we cannot con-
struct a linear decomposition in which we will not reach |UN (ωi)| = 3 for some cut
(ωi, ωi). This means that regardless of {c, x} ∈ E(G) or not, lboolw(G) ≈ 1, 58, thus
lboolw(H) < lboolw(G).

Following from Lemma 6.8, 6.9 and 6.10, we conclude that only the islet rule can be
applied on graphs in order to reduce the number of vertices when finding an optimal
linear boolean decomposition.

Theorem 6.11. The islet rule is a safe reduction rule for linear boolean-width.

6.4 Validity of treewidth reduction rules

There are multiple preprocessing rules known for treewidth [6, 4, 5], that often work
well in practice. While it has been shown that removing simplicial vertices cannot be
used as a preprocessing step for boolean-width [18], for a number of other treewidth
reduction rules it is still an open problem whether they are valid (linear) boolean-width.
In this section we investigate several of these known rules for treewidth.

Definition 6.12. (Almost simplicial vertex) A vertex v is called almost simplicial if all
neighbors of v except one form a clique.
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For treewidth there exists a rule to reduce almost simplicial vertices. This is done by
taking the single neighbor w of v that is not in the clique, after which we remove v
and connect w to every vertex in the clique, see Figure 6.4 for an example. Note that
vertices of degree 2 are always almost simplicial by definition.

v

w

a

b

c

→ w

a

b

c

Figure 6.4: Application of the almost simplicial reduction rule for tree-width.

We present a counterexample to the almost simplicial rule for (linear) boolean-width,
shown in Figure 6.5. If we remove the almost simplicial vertices v1 and v2, then the
remaining graph will be a clique. The boolean-width of a clique is 1, whereas the
boolean-width of the original graph is larger than 1. Therefore we cannot remove almost
simplicial vertices without assuring that the boolean-width does not decrease.

v1

w1

c1

c2

v2

w2

Figure 6.5: Counterexample to the almost simplical vertex rule.

Definition 6.13. (Separator) Let G = (V (G), (E(G)) be a graph. Let S ⊆ V (G). The
set S is called a separator of G if G[V (G) \S] has more than one connected component.
S is called a minimal separator if there is no proper subset of S that is also a separator.

For treewidth we have the following property for separators that are also a clique.

Proposition 6.14. [5] Given a clique separator S and a graph G, the treewidth of G is
equal to the maximum over all connected components Z of G[V (G) \ S] of the treewidth
of G[Z ∪ S].

If a graph has a clique separator then it is possible to compute tree decompositions
for parts of the graph. Afterward, the decompositions for these parts can be merged
together. If one wants to quickly find a bound on the treewidth, then it is sufficient to
check the components induced by these clique separators. A similar property also holds
for minimal almost clique separators. An almost clique separator is a separator in which
all vertices minus one form a clique. It has been shown that reducing minimal almost
clique separators is safe for treewidth [5].

Unfortunately, linear boolean-width does have the property that we can determine the
linear boolean-width by looking at separate connected components. We refer to Fig-
ure 6.6 and Figure 6.7 for a counterexample for clique separators and almost clique
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separators respectively. In both cases, the graph induced by a connected component
together with the separator {s1, s2, s3} will have a linear boolean-width that is strictly
lower than the linear boolean-width of the original graph.

u v s1

s2

s3 w x

Figure 6.6: Counterexample to the clique separation rule.

u v s1

s2

s3 w x

Figure 6.7: Counterexample to the almost clique separation rule.

The boolean-width of a graph H, with H being a minor of a graph G, is not always
smaller than the boolean-width of G itself [18]. This property does hold for treewidth
and is used as a building block for most reduction rules, which lead us to believe that
most treewidth reduction rules do not hold for boolean-width. Furthermore, this result
shows that it is harder to find valid reduction rules for boolean-width, since contracting
edges is often an unsafe operation when reducing graphs.

6.5 New reduction rules

In this section we present two new reduction rules that are valid for linear boolean-
width. We also present a few ideas for other reduction rules for which we omit the
proof of correctness. The approach we take for proving these reduction rules is to show
that there is a safe expansion method for every decomposition of a reduced graph, after
which it follows from Lemma 6.6 that the reduction rule is safe.

When computing a decomposition, a choice is made at every step of which vertex should
be selected at that point. We use the terminology of ’making a choice’ in our proofs; we
investigate the change in the boolean dimension cuts when a vertex gets chosen at that
position, i.e., we consider the influence of a vertex v on all the unions of neighborhoods
of (A,A) and all other cuts when v gets chosen for the cut (A ∪ {v}, A \ {v}).

6.5.1 Sequence rule

Definition 6.15 (Sequence rule). Let G = (V (G), E(G)) be a graph. Let s, u, v, w, x ∈
V (G) such that all are distinct. Let {s} be a separator of the graph. Let NG(u) = {s, v},
NG(v) = {u,w}, NG(w) = {v, x} and NG(x) = {y}. Applying the sequence rule to G
removes the vertex x and the edge {w, x} from the graph.

To clarify, if r is the sequence rule and G
r−→ H, then V (H) = V (G) \ {x} and E(H) =

E(G) \ {w, x}. An example of the sequence rule is illustrated in Figure 6.8.
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s u v w x → s u v w

Figure 6.8: The sequence rule applied to a graph G.

Lemma 6.16. Let G = (V (G), E(G)) be a graph. Let r be the sequence rule and let
G

r−→ H. For any linear decomposition π′ of H we can construct a decomposition π′′ of
H for which lboolw(π′′) ≤ lboolw(π′).

Proof. Let s, u, v, w ∈ V (H) be vertices described as in Definition 6.15. Let y be defined
as the vertex of the set {u, v, w} that has the lowest index in π′, with πi = y. We
construct π′′ by copying π′ up until position i, leaving the boolean dimension for all cuts
up until i unchanged.

Assume s <π′ y. If y = w, then we can see that the boolean dimension can increase
more than when y = u. For π′′ we therefore choose to put vertex u at position i, after
which we directly insert v and w. When v gets inserted, every neighborhood that has v
in it, which are only neighborhoods that have u as a representative, are replaced with
neighborhoods with w and v being the representative. Once w is chosen, the boolean
dimension decreases and the boolean dimension of all later cuts will remain unchanged.
Thus for π′′, we have π′′i = u, π′′i+1 = v and π′′i+2 = w, which will possibly result in a
lower boolean width.

Assume y <π′ s. Regardless of which vertex y represents, the influence on the boolean
dimension is the same. Thus a valid choice for step i for π′′ would be vertex w. We now
apply the same reasoning as in the previous case. After w we can directly insert v and
u without increasing the boolean dimension of any cut prior to step i. Furthermore, the
boolean dimension for all cuts after w, v and u also remains unchanged or will decrease.
Thus for π′′, we let π′′i = w, π′′i+1 = v and π′′i+2 = u.

Both cases lead to lboolw(π′′) ≤ lboolw(π′).

Theorem 6.17 (Sequence rule). The sequence rule is a safe reduction rule for linear
boolean-width.

Proof. Let G = (V (G), E(G)) be a graph and let r be the sequence rule. Let G r−→ H.
We show that a safe expansion method exists for r. Let π′ be any linear boolean de-
composition of H and let s, u, v, w, x ∈ V (G) be vertices as described in Definition 6.15.
We first construct the decomposition π′′ for which lboolw(π′′) ≤ lboolw(π′) by applying
the rearrangement technique described in Lemma 6.16 to π′. In order to construct a
decomposition π of G, we distinguish between two different cases. For both these cases
let π′′i = w.

Assume s <π′′ w. We construct π by copying π′′ and inserting x directly after w. This
will not influence the boolean-dimension of any later cuts, since NG(x) ∩ ωi+1 = ∅.
Any cuts before step i will also remain unchanged, since w is the only neighbor of x.
Only the cut (ωi, ωi) could possibly have an increased boolean dimension, but it can
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be observed that bool-dim(ω′′i−1) = bool-dim(ωi), i.e., the boolean dimension when v is
chosen in π′′ is equal to the boolean dimension of when w is chosen in π. It follows that
lboolw(π′′) = lboolw(π).

Assume w <π′′ s. We construct π by copying π′′ and inserting x directly in front of w.
Because w is the only neighbor of x, no cuts before step i− 1 have a change in boolean
dimension. Both w in π′′ and x in π have one neighbor across their respective cut, which
gives us bool-dim(ω′′i ) = bool-dim(ωi−1), i.e., the boolean dimension when w is chosen
in π′′ is equal to the boolean dimension of when x is chosen in π. The boolean dimension
when w is chosen in π gives us the same situation as when v is chosen in π′′. Since the
remainder of the decompositions are equal, we can conclude that the boolean dimension
remains the same across all later cuts. It follows that lboolw(π′′) = lboolw(π).

In summary, lboolw(π) = lboolw(π′′) and lboolw(π) ≤ lboolw(π′), meaning that we can
safely insert x using this expansion method.

Note that we can reduce any path starting in a separator and ending in a pendant vertex,
with the other vertices of the path being of degree 2, to a path of length 4 by applying
the sequence rule multiple times.

6.5.2 Clique rule

Definition 6.18 (Clique rule). LetG = (V (G), E(G)) be a graph. Let S = {s1, . . . , s|S|}
be a minimal separator of G. Let s1, . . . , s|S|, v, w, c1, . . . , cn ∈ C ⊆ V (G) such that all
are distinct members of the same clique C of size |S| + n + 2. Let v, w, c1, . . . , cn have
no other neighbors besides vertices in the clique. Applying the clique rule to G removes
all vertices c1, . . . , cn and incident edges from G.

In other words, if r is the clique rule and G
r−→ H, then V (H) = V (G) \ {c1, . . . , cn}

and E(H) = {{x, y} | {u, v} ∈ E(G) ∧ u 6= c1 ∨ · · · ∨ cn}. An example is illustrated in
Figure 6.9, where the separator S is the singleton {s}.

s

w

c1

v

(V (G), E(G))

→ s

w

v

(V (H), E(H))

Figure 6.9: Clique rule applied to a graph G.

Theorem 6.19 (Clique rule). The clique rule is a safe reduction rule for linear boolean-
width.
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Proof. Let G = (V (G), E(G)) be a graph and let r be the clique rule. Let G r−→ H. We
show that a safe expansion method exists for r.

Assume we are given a decomposition π′ of H and that we have identified the vertices
s1, . . . , s|S|, v, w, c1, . . . , cn ∈ C ⊆ V (G) as described in Definition 6.18. Let π′i = v.
Without loss of generality, it holds that v <π′ w. To construct π we copy π′ and
leave the order of vertices unchanged. We expand π by inserting all vertices c1, . . . , cn
directly after v, meaning πi+j = cj for j = 1, . . . , n. A change in boolean dimension can
only happen for neighborhoods where a neighbor of a vertex cj suddenly is a unique
representative for this vertex, while it was not a unique representative before. However,
since ∀s, s′ ∈ S : NG[s] ∩ C = NG[s′] ∩ C and because each vertex in S already is
a representative of v, it follows for all cuts before step i the boolean dimension does
not change. Because NG[v] = NG[w] = NG[cj ], every vertex cj will not contribute a
neighborhood to the union of neighborhoods. Thus for every cut (ωi+j , ωi+j), it holds
that bool-dim(ωi+j) = bool-dim(ωi), meaning the expansion method has no influence
on any later cuts either. In summary, no neighbor of cj will have an increase of the
boolean dimension at their corresponding cut, which results in lboolw(π) = lboolw(π′).
We conclude that we can always construct a linear boolean decomposition π of G from
π′ of H while keeping the boolean-width equal.

Additionally, we can apply the same rearrangement technique as we did with the se-
quence rule by assuring that vertex w gets chosen directly after v in π′. This can have
a positive effect on the boolean-width, resulting in lboolw(π) ≤ lboolw(π′).

6.5.3 Other reduction rules

The technique to find reduction rules is to first identify the stage at which a choice
for a vertex is guaranteed to be optimal for a decomposition. We then see if we can
expand this sequence of optimal choices to a larger sequence while keeping the boolean
dimension unchanged. A graph structure that exhibits this property is for instance a
caterpillar tree. A caterpillar tree is a tree in which all vertices are within distance 1
of a central path. We believe that any caterpillar tree that is separated from the rest
of the graph can be reduced through the sequence rule, since we make a sequence of
optimal choices when applying the sequence rule. For structures such as caterpillar
trees or cliques, the optimal choice for a linear decomposition is very obvious, which
led us to the reduction rules of the previous section. Another interesting question is if
we can shorten a path of arbitrary length of degree 2 vertices to a fixed length. For a
path between two separators it also holds that, once we have chosen a vertex of that
path, we consider vertices neighboring to the chosen vertex to be the next vertex for
our decomposition. All in all, we believe that the two reduction rules from the previous
section can be expanded upon and more cases can be found with additional research.
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6.6 Expanding linear decompositions using general reduc-
tion rules

The reason for choosing linear decomposition over general decompositions is that linear
decompositions make dynamic programming algorithms easier and result in a lower
theoretical running time. Furthermore, using the heuristics presented in Chapter 5 it is
much easier to construct a linear decomposition. However, as can be seen in the previous
section, the reduction rules for linear boolean-width are far from practical, in contrast
to the reduction rules that hold for boolean-width. Therefore we propose to combine
the best of both worlds.

1. Start with a graph G = (V (G), E(G)).

2. Apply reduction rules for boolean-width (islet, pendant and twin rule) on G to
obtain a reduced graph H. Since the reduction rules that are valid for linear
boolean-width are sub cases of the reduction rules for boolean-width, we do not
need to apply them.

3. Use a heuristic on H to obtain a linear decomposition (T ′, δ′).

4. Expand (T ′, δ′) to a decomposition (T, δ) of G using expansion methods described
in [18, Chapter 5]. By definition of reduction rules we know that boolw(T, δ) =
lboolw(T ′, δ′).

Note that the decomposition that we end up with at step 4 is not a linear decomposition.
However, this decomposition does exhibit linear properties, and therefore we call them
semi-linear decompositions. Consider the dynamic programming algorithm for solving
the dominating set problem as described in Chapter 3. The advantage of using a linear
decomposition is that instead of a O(23k) algorithm we can get a O(22k) algorithm, with
k being the boolean-width of a decomposition. This follows from the fact that at each
combine step of two nodes of the linear decomposition we know that one of the two nodes
is a leaf node. This bounds the number of representatives that can occur for this node by
two; the empty set and the neighborhood of the vertex itself. When working with semi-
linear decompositions we have added vertices to a linear decomposition in a way that
guaranteed the boolean-width to remain equal. Moreover, the number of representatives
at each cut remains unchanged, which means that even though the decompositions is
not linear anymore, at each combine step we can still guarantee that the number of
representatives in one of the child nodes is bounded by two. We can conclude that
algorithms on semi-linear decompositions have the same theoretical running time as
linear decompositions. We refer to Figure 6.10 for an example of the construction of
such a decomposition.



6.7. Conclusion 43

a b

c

d

e f r−→ a b

c

d

e

HG

(a) Pendant rule applied to a graph G. Note that lboolw(H) <

lboolw(G).
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(b) Expansion of a linear decomposition of H to a semi-linear decomposition
of G by using the expansion method of the pendant rule for boolean-width.

Figure 6.10: Application of the pendant rule.

6.7 Conclusion

The reduction rules described in this chapter occur in very specific cases, which we
believe do not happen often in practical applications. What these rules do show is
that preprocessing for linear boolean-width is much harder than for boolean-width or
treewidth. This can be a barrier when trying to find decompositions for very large
graphs where preprocessing is a necessity. Therefore we suggest the approach of using
reduction rules for general boolean decompositions, after which a heuristic for linear
decompositions can be used on the reduced graph. We believe that this will give very
good bounds in practice, but additional research is required to verify our intuition. For
this reason we propose more investigation into what makes certain rules valid and if
there are more practical rules that can be applied for boolean-width.



Chapter 7

Vertex subset problems

In this chapter we look at how to solve a large class of vertex subset problems, called
(σ, ρ) vertex subset problems, which were introduced by Telle [19]. This class of prob-
lems consists of finding a (σ, ρ)-set of maximum or minimum cardinality and contains
well known problems such as the maximum independent set, the minimum dominat-
ing set, and the maximum induced matching problem. It was shown by Telle and
Proskurowski [20] that they are solvable using treewidth in O∗(2O(tw)). Van Rooij et al.
later improved upon this by by using subset convolutions [23]. Gerber and Kobler [11]
provided an algorithm for solving vertex subset problems using clique-width as a pa-
rameter in O∗(22poly(cw)). Boolean decompositions can be used to efficiently solve these
problems, with the running time exponential in the boolean-width of the decomposi-
tion, and polynomial in the input size. The main motivation to use boolean-width
as a parameter for solving these problems is that boolean-width is considered to be a
practical parameter, which can lead to easy to implement algorithms and easy to find
decompositions of low boolean-width.

In Section 7.1 we start by defining the properties of vertex subset problems and give
a number of definitions that aid in describing the algorithm by Bui-Xuan et al. [8]
for solving these problems. The running time of this algorithm is O∗(necd(T, δ)3) [8],
where necd(T, δ) is the number of equivalence classes of a problem specific equivalence
relation, which can be bounded in terms of boolean-width. In Section 7.2 we give a
number of theoretical bounds on the number of equivalence classes. The algorithm itself
and implementation details are shown in Section 7.3. In Section 7.4 we conduct a number
of experiments on a selection of graphs, such as testing the feasibility of solving vertex
subset problems and how close the value of necd(T, δ) approaches any of the theoretical
bounds.

44
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σ ρ d Standard terminology max min
{0} N 1 Independent set NPC P
N N+ 1 Dominating set P NPC
{0} N+ 1 Independent Dominating set NPC NPC
N+ N+ 1 Total Dominating set P NPC
{0, 1} {1} 2 Weakly Perfect Dominating set NPC NPC
N {1} 2 Perfect Dominating set P NPC
{1} {1} 2 Total Perfect Dominating set NPC P

{0} {1} 2 Efficient Dominating set
or Perfect Code NPC NPC

{0} {0, 1} 2 Strong Stable set or 2-Packing NPC P
N {0, 1} 2 Nearly Perfect set P P
{0, 1} {0, 1} 2 Total Nearly Perfect set NPC NPC
{1} N 2 Induced Matching NPC P
{1} N+ 2 Dominating Induced Matching NPC NPC
N ≥ d d d-Dominating set P NPC
{d} N d+1 Induced d-Regular Subgraph NPC ?

Table 7.1: A selection of vertex subset problems taken from [19, 8], together with the
corresponding values for σ, ρ and d(σ, ρ), with N+ = N \ {0}. The max and min
column indicate the complexity of finding such a (σ, ρ)-set with maximum or mini-
mum cardinality, with P, NPC and ? indicating Polytime, NP-Complete and unknown

respectively.

7.1 Definitions

Definition 7.1 ((σ, ρ)-set). Let G = (V (G), E(G)) be a graph. Let σ and ρ be finite
or co-finite subsets of N. A subset X ⊆ V (G) is called a (σ, ρ)-set if the following holds:

∀v ∈ V (G) : |NG(v) ∩X| ∈



σ if v ∈ X,
ρ if v ∈ V (G) \X.

We refer to Table 7.1 for an overview of some vertex subset problems.

In order to confirm if a set X is a (σ, ρ)-set, we have to count the number of neighbors
a vertex v ∈ V (G) has in X. Let us consider the case where we are interested in an
independent set, which is equivalent to checking if a set X is a ({0},N)-set. Any vertex
v ∈ X cannot have a vertex in X as its neighbor, since if v ∈ X, then |NG(v) ∩ X|
should be 0. If v turns out to have a neighbor in X, then it is irrelevant if v has more
than one neighbor in X, since there is no difference between a vertex having one, two
or n neighbors for this problem instance; any number of neighbors invalidates X being
a ({0},N)-set.

We capture the property of only having to count up until a certain number of neighbors
in the function d : 2N → N, which is defined as follows.

Definition 7.2 (d-function). Let d(N) = 0. For every finite or co-finite set µ ⊆ N, let
d(µ) = 1 + min(max

x∈N
x : x ∈ µ,max

x∈N
x : x /∈ µ). Let d(σ, ρ) = max(d(σ), d(ρ)).
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Definition 7.3 (d-neighborhood). Let G = (V (G), E(G)) be a graph. Let A ⊆ V (G)
and X ⊆ A. The d-neighborhood of X with respect to A, denoted by Nd

A(X), is a
multiset of vertices from A, where a vertex v ∈ A occurs min(|NG(v) ∩X|, d) times in
Nd
A(X). A d-neighborhood can be represented as a vector of length |A| over {0, 1, . . . , d}.

Definition 7.4 (d-neighborhood equivalence). Let G = (V (G), E(G)) be a graph and
A ⊆ V (G). Two subsets X,Y ⊆ A are said to be d-neighborhood equivalent with
respect to (A,A), denoted by X ≡dA Y , if it holds that ∀v ∈ A : min(|NG(v) ∩X|, d) =
(|NG(v) ∩ Y |, d). The number of equivalence classes of a cut (A,A) is denoted by
nec(≡dA). The number of equivalence classes of a decomposition (T, δ) is defined as
max(nec(≡dA), nec(≡d

A
)) over all cuts (A,A) of (T, δ), which we denote by necd(T, δ).

Note that N1
A(X) = N(X) ∩ A. It can then be observed that |UN (A)| = nec(≡1

A) [24,
Theorem 3.5.5]. Furthermore, we have that X ≡dA Y if and only if Nd

A(X) = Nd
A(Y ).

We now generalize the notion of a representative to allow us to define representative for
sets that have equal d-neighborhoods. Note that for d = 1, the definition is equal to the
definition of a representative given in Definition 3.5.

Definition 7.5 (Representative). Let (T, δ) be a boolean decomposition. For a node
w ∈ V (T ), the representative of a set X ⊆ Vw is a set R ⊆ Vw such that R is the
lexicographically smallest set for which R ≡dVw

X and |R| is minimized. We denote the
representative of a set X by repdVw

(X).

7.2 Bounds on the number of d-equivalence classes

In Chapter 3 we only had to store the optimal solution among solutions with equal
neighborhoods. In the case of vertex subset problems we use a similar approach, only
now we store partial solutions with distinct d-neighborhoods. This means that a bound
on the number of d-equivalence classes of a decomposition is important in order to
analyze the running time of algorithms in terms of boolean-width. While it is still an
open problem whether there is a tight upper bound in terms of boolean-width on the
number of d-equivalence classes on a decomposition [8], there are a number of (trivial)
upper bounds known. We present an overview of the most relevant bounds together
with a brief explanation as to why they are valid, for which we make use of a twin class
partition of a graph.

Definition 7.6 (Twin class partition). Let G = (V (G), E(G)) be a graph and let
A ⊆ V (G). The twin class partition of A is a partition of A such that ∀x, y ∈ A, x and
y are in the same partition class if and only if NG(x) ∩A = NG(y) ∩A. The number of
partition classes of A is denoted by ntc(A).

For all bounds listed below, let G = (V (G), E(G)) be a graph of size n and let d be
a non-negative integer. Let (A,A) be a cut of a decomposition (T, δ) of G, and let
k = bool-dim(A).

Proposition 7.7. nec(≡dA) ≤ 2n.
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Proof. This is a trivial bound, since for every equivalence class there is a set R that is
the representative of all sets X ⊆ V (G) with R ≡dA X. The number of subsets of A is
2|A| ≤ 2n, thus there are less than 2n possible distinct representatives.

Proposition 7.8. [1, Lemma 1] nec(≡dA) ≤ 2d·k2.

Proposition 7.9. [24, Lemma 5.2.2] nec(≡dA) ≤ (d+ 1)min(ntc(A),ntc(A)).

Proposition 7.10. nec(≡dA) ≤ ntc(A)d·k.

Proof. In order to prove this bound, we make use of a graph parameter called maximum
induced matching-width [2]. We denote the maximum matching-width of A by mim(A).
It has been shown that for a graph G and for any subset A ⊆ V (G), it holds that
mim(A) ≤ bool-dim(A)[24, Theorem 4.2.10]. From [24, Lemma 5.2.3], we know that
nec(≡dA) ≤ ntc(A)d·mim(A), thus we can conclude that nec(≡dA) ≤ ntc(A)d·k.

7.3 Solving (σ, ρ) problems

In this section we show the algorithm by Bui-Xuan et al. [8] for solving (σ, ρ) problems
using a boolean decomposition (T, δ) of a graph G. While we refer the reader to the
original paper for an in-depth explanation of the correctness of the algorithm, we do
provide an overview of the main pseudo-code and present details on our implementation.
The main idea is to use a dynamic programming algorithm to store partial solutions to
the (σ, ρ) problem that we are solving, similar to the way we solved the maximum inde-
pendent set and minimum dominating set problems in Chapter 3. For (σ, ρ) problems
we make use the following definition given by Bui-Xuan et al.

Definition 7.11 (σ, ρ-domination). Let G = (V (G), E(G)) be a graph, let A ⊆ V (G)
and µ ⊆ N. A subset X ⊆ V (G) µ-dominates A if ∀v ∈ A : |NG(v) ∩ X| ∈ µ. For
X ⊆ A, Y ⊆ A the pair (X,Y ) σ, ρ-dominates A if (X ∪Y ) σ-dominates X and (X ∪Y )
ρ-dominates A \X.

In a bottom-up traversal of the nodes of T , we construct solutions for a node w by iter-
ating over all values saved for the child nodes a and b of w. Using their representatives,
we construct new representatives for the union of these sets, while keeping track of the
size of the optimal set that fulfills the constraint of σ, ρ-dominating Vw. The optimal
size depends on if we are finding a set of maximum or minimum cardinality, which we
indicate through the function opt. The sizes are saved in a table which is defined as
follows.

Tabw[Rx][Ry] =





optS⊆Vw{|S| : S ≡dVw
Rx and (S,Ry) σ, ρ-dominates Vw},

−∞ if no such set S exists and opt = max,

+∞ if no such set S exists and opt = min.

The goal is to fill this table with the correct values, after which the solution to our
problem will be saved at TabV (G)[∅][∅]. The first step is to compute a structure that,
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given a set A, returns a bidirectional map of all representatives together with their
corresponding d-neighborhoods across the cut (A,A). For simplicity we make use of
two lists: one of all representatives LRdA, and one of all corresponding d-neighborhoods
LNRdA and create pointers between the entries of the elements of these lists. We compute
the representatives by applying Algorithm 10 to Vw and Vw, for all nodes w ∈ V (T ).

Algorithm 10 Algorithm by Bui-Xuan et al. [8] for computing a list of representatives
of a cut (A,A) and their corresponding d-neighborhoods.

1: function ComputeRepresentatives(Graph G, Subset A ⊆ V (G), Integer d)
2: LRdA, LNR

d
A ← {∅}

3: LastLevel← {∅}
4: while LastLevel 6= ∅ do
5: NextLevel← ∅
6: for all R ∈ LastLevel do
7: for all v ∈ A do
8: R′ ← R ∪ {v}
9: N ′ ← Nd

A(R′)
10: if R′ 6≡dA R and N ′ 6∈ LNRA then
11: NextLevel← NextLevel ∪R′
12: LRdA ← LRA ∪R′
13: LNRdA ← LNRA ∪N ′
14: Add pointers between R’ and N’
15: LastLevel← NextLevel
16: return LRdA and LNRdA

Algorithm 10 runs in O(n2 · nec(≡dA)), if a hash map is used in order to store the
representatives. This gives us amortized O(n) time to look up if a d-neighborhood is
already contained in LNR in contrast to the O(log(nec(≡dA)) · n) time needed for the
binary search approach used by Bui-Xuan et al. Note that this algorithm is very similar
to Algorithm 1 of Chapter 3.

x

y

u

v

A A

w

(a) Bipartite graph
corresponding to

the cut (A, A).

x y

2 1 2 2

x yVector

Occurences
→

(b) Copy and update oper-
ation on the vector {x, y}.

Figure 7.1: Construction of d-neighborhoods using Algorithm 10. d-Neighborhoods
can be represented as a vector of length |A| over {0, 1, . . . , d}, which is displayed on
the right. Assume that we have R = {u, v} and N2

A(R) = {x, x, y}. If we construct
R′ = R ∪ {w}, then we only need to increase the values of NG(w) ∩ A by 1, as long
as it does not exceed d. Thus, in this case we end up with N2

A(R) = {x, x, y, y}. Note
that even if {w, x} would be an edge, N2

A(R) would still be equal to {x, x, y, y}, since
the number of occurrences is capped at d = 2

.
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The construction of N ′ = Nd
A(R′) can be done in O(n) by copying the d-neighborhood

vector of R and updating the entries for all vertices in NG(v)∩Vw. We refer to Figure 7.1
for an example of this approach of copying and updating the vector. In our implementa-
tion we perform the check of R′ 6≡dA R by checking if Nd

A(R′) = Nd
A(R). Note, however,

that this check can lead to invalid values. If v ∈ R, then Nd
A(R ∪ {v}) is never equal to

Nd
A(R) after applying a copy and update operation. A simple solution to this problem

is to iterate only over the vertices in A \R instead of A.

For initialization purposes we start by setting the table values for the leaf nodes of the
decomposition. For a leaf node l, we know that Vl only consists of one single vertex, by
definition of boolean decompositions. Therefore we also know that there are only two
possible representatives, i.e., ∅ and Vl, and at most two d-neighborhoods, namely ∅ and
NG(Vl). Bui-Xuan et al. propose to brute-force set the values for every representative
R with respect to ≡dV (G)\{v} through the following methods:

• If |NG(v) ∩R| ∈ σ, then Tabl[{v}][R] = 1.

• If |NG(v) ∩R| ∈ ρ, then Tabl[∅][R] = 0.

However, similar to the leaf cases in Chapter 3, we need an additional check for vertices
of degree zero. This check is omitted by Bui-Xuan et al. If a vertex v has degree zero,
but |NG(v) ∩ R| ∈ σ, which in this case comes down to 0 ∈ σ, then we should set
Tabl[∅][∅] = 1, because (Vl, ∅) σ, ρ-dominates Vl, but ∅ ≡dVl

Vl.

In Algorithm 11 we present the pseudo-code that shows how to fill all entries of Tab
for a node w, with children a and b. The lists of representatives and corresponding
d-neighborhoods for every set Vw and Vw for every node w ∈ V (T ) are computed be-
forehand. Note that this algorithm is basically a generic approach of Algorithm 3 for
solving the minimum dominating set problem, as seen in Chapter 3.

Algorithm 11 Algorithm by Bui-Xuan et al. [8] for computing the size of a (σ, ρ) set
of minimum or maximum cardinality. This algorithm shows how all table entries for a
node w of the decomposition tree are filled.

1: procedure Combine
2: for all Rw ∈ LRdVw

do
3: for all Rw ∈ LRdVw

do

4: Tabw[Rw][Rw]←
{
∞ if opt = min,
−∞ if opt = max .

5: for all Ra ∈ LRdVa
do

6: for all Rb ∈ LRdVb
do

7: for all Rw ∈ LRdVw
do

8: Ra ← repd
Va

(Rb ∪Rw)
9: Rb ← repd

Vb
(Ra ∪Rw)

10: Rw ← repdVw
(Ra ∪Rb)

11: Tabw[Rw][Rw]← opt(Tabw[Rw][Rw],
Taba[Ra][Ra] + Tabb[Rb][Rb])
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Theorem 7.12. Given a graph G = (V (G), E(G)) and a decomposition (T, δ) we can
solve any (σ, ρ) vertex subset problem on G in O(n3 ·necd(T, δ)3) time, with d = d(σ, ρ).

Proof. We need to compute all entries for the table for all nodes w of T by applying Al-
gorithm 11 a total of O(n) times. The for-loops of Algorithm 11 each take O(nec(T, δ))
at most, thus O(nec(T, δ)3) in total. For every triplet the construction of a new rep-
resentative can be done in O(n2). For instance, if we need to compute Ra, then we
start by constructing Nd

Va
(Rb ∪Rw) by iterating over all vertices in Va and counting the

number of neighbors each of these vertices has in Rb ∪Rw. We can use Nd
Va

(Rb ∪Rw) to
find the corresponding representative in LRVa

in O(n) amortized time, giving us a total
running time of O(n3 · nec(T, δ)3), improving upon the O(n4 · nec(T, δ)3) time given by
Bui-Xuan et al.

7.4 Experiments

We have used linear decompositions in order to compute the size of the maximum
induced matching (MIM) of a selection of graphs for which the results are presented in
Table 7.2. These are the same graphs that were used in Chapter 5. The decomposition
that we work on is obtained through running the IUN heuristic over all possible starting
vertices. The maximum induced matching problem is defined as finding the largest
({1},N) set, with d({1},N) = 2. The choice for the MIM problem is arbitrary, as any
vertex subset problem with d = 2 will have the same number of equivalence classes and
therefore all require the same running time when computing a solution. We provide
the computed value of necd(T, δ), together with the most relevant theoretical upper
bounds presented in Section 7.2. Note that we take the logarithm of each value, since
we find this value easier to interpret and compare to other graph parameters. We
let UB1 = d · boolw2, UB2 = log2((d+ 1)minntc) and UB3 = log2(ntcd·boolw), with
ntc = max

w∈V (T )
ntc(Vw) and minntc = max

w∈V (T )
min(ntc(Vw), ntc(Vw)).

The column MIM displays the size of the MIM of the graph, while the time column
indicates the time in seconds needed to compute the solution. Missing values for nec and
MIM are caused by a lack of internal memory, which can be explained from the fact that
the space requirement for the algorithm used to compute the MIM is O∗(necd(T, δ)2).

An interesting observation that we can make, for instance by looking at the graphs
zeroin.i.2 and boblo, is that a lower boolean-width does not automatically imply a
lower number of equivalence classes. This leads us to the question of whether this can
happen for decompositions of the same graph - or even decompositions of the same width.
In Table 7.3 we present our findings on the graph barley. We can see that a lower
boolean-width is not a guarantee for a lower number of equivalence classes. What may
be even more unfortunate is that for this instance a boolean decomposition of width 4.81
gave both the best and the worst decomposition in terms of the number of equivalence
classes. This means that if we use a heuristic that tries to minimize the boolean-width
we might still end up with a ’bad’ decomposition for vertex subset problems, even though
there might be a much better decomposition of the same boolean-width.
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Graph boolw log2(nec) UB1 UB2 UB3 MIM Time (s)
alarm 3.00 4.32 18.00 7.92 13.93 18 < 1
barley 4.58 7.00 42.04 12.68 27.51 22 3
pigs-pp 6.64 10.31 88.28 19.02 49.17 22 1147
BN 100 10.86 - 235.93 36.45 105.53 - -

eil76 8.33 12.63 138.81 22.19 65.10 - -
david 5.86 9.37 68.63 22.19 44.61 34 919
1jhg 8.41 13.53 141.58 41.21 81.75 - -
1aac 12.33 - 304.08 72.91 141.25 - -

celar04-pp 7.27 11.15 105.61 28.53 65.74 - -
1a62 11.14 - 248.09 60.23 121.61 - -

1bkb-pp 9.53 - 181.47 52.30 98.49 - -
1dd3 9.90 - 196.11 52.30 103.17 - -

miles1500 5.29 9.30 55.87 34.87 49.69 8 4038
miles250 4.58 7.24 42.04 15.85 31.72 52 37

celar10-pp 6.91 10.34 95.41 25.36 59.70 50 10179
anna 7.94 11.94 125.98 33.28 75.48 - -
pr152 8.29 12.76 137.45 22.19 63.13 - -

munin2-pp 7.61 11.82 115.97 19.02 54.60 - -
mulsol.i.5 3.58 6.11 25.70 14.26 24.80 46 22
zeroin.i.2 3.81 6.58 28.99 20.60 28.18 30 59

boblo 4.00 6.17 32.00 9.51 20.68 148 41
fpsol2.i-pp 4.81 8.07 46.22 22.19 36.61 46 934

munin4-wpp 7.61 12.13 115.97 19.02 57.98 - -

Table 7.2: Results of using the algorithm by Bui-Xuan et al. [8] for solving (σ, ρ)
problems on graphs, using decompositions obtained through the IUN heuristic using

all starting vertices.

boolw(T, δ) log2(nec(T, δ))
4.58 7
4.64 7.51
4.7 7.15
4.7 7.39
4.81 6.75
4.81 12.13
4.91 7.92
4.91 8.44
4.91 10.82

5 7.57
5 7.83
5 8.75

5.09 8.86
5.17 7.67
5.32 8.99

Table 7.3: Boolean-width and number of equivalence classes for a number of decompo-
sitions of the graph barley.
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7.5 Heuristics for minimizing the number of equivalence
classes

We have seen that a low boolean-width of a decomposition does not automatically result
in a low number of equivalence classes for other values than d = 1. Therefore it may be
worthwhile to investigate heuristics that focus on minimizing the number of equivalence
classes. A starting point that we investigated was to modify the IUN heuristic of
Chapter 5, such that it will keep track of the number of equivalence classes instead of
the unions of neighborhoods. Recall that the IUN heuristic selects a vertex out of a
set of not-yet processed vertices (called Right), and adds the one that minimizes the
boolean dimension to the set of processed vertices (called Left). In order to determine
which vertex v we select we generate UN (Left ∪ {v}) out of UN (Left). Because the
size of the unions of neighborhoods is symmetric across a cut (A,A) there is no need to
compute |UN (Right \ {v})|; it follows directly from |UN (Left ∪ {v})|.

v

w

x

A A
LR2

A = {∅, {v}, {v, w}} LR2
A
= {∅, {x}}

LNR2
A = {∅, {x}, {x, x}} LNR2

A
= {∅, {v, w}}

l l l ll

Figure 7.2: The lists LRd
A and LNRd

A for a cut (A,A) for d = 2, together with the
pointers between the elements of the lists.

Unfortunately, the number of equivalence classes is not symmetric. We refer to Figure 7.2
for a simple illustration of this fact. What follows is that if we would apply the same
approach of choosing a vertex that minimizes the number of equivalence classes across a
cut, then we need to compute both nec(≡dLeft∪{v}) and nec(≡dRight\{v}), for each vertex
v. While there is a simple way to obtain nec(≡dLeft∪{v}) out of all equivalence classes
of Left, similar to Algorithm 8 of Chapter 5, there is currently no way of obtaining
nec(≡dRight\{v}) out of the equivalence classes of Right. Thus we have to construct
LRdRight\{v} using Algorithm 10 for each potential cut. Apart from an extra factor
O(n), this leads to the heuristic not being output sensitive. In practice this renders the
heuristic useless because of the running time.

7.6 Conclusion

The algorithm by Bui-Xuan et al. [8] is a relatively easy to implement algorithm for
solving (σ, ρ) vertex subset problems. The space requirement of the algorithm turns out
to be the main bottleneck, but we can still solve a number of problems on graphs with
real applications. Furthermore, our experimental evaluation shows that the algorithm
is much faster, up to several orders of magnitude, compared to theoretical worst case
bounds.

An important observation that we made is that if boolw(T, δ) < boolw(T ′, δ′), then
there is no guarantee that necd(T, δ) < necd(T ′, δ′). While in general it holds that
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minimizing boolean-width results in a low number of equivalence classes, we think that
it can be worthwhile to focus on minimizing necd(T, δ) instead of the boolean-width
when solving vertex subset problems. However, the number of equivalence classes is not
symmetric, i.e., nec(≡dA) 6= nec(≡d

A
) does not always holds for a cut (A,A), which makes

it harder to develop fast heuristics that focus on minimizing necd. This follows from
the need of such a heuristic to keep track of both the equivalence classes of A and A to
make the choice that is locally optimal. We therefore propose additional investigation
in getting a more realistic theoretical upper bound in terms of boolean-width, which can
be of great importance to find a more clear correlation between boolean-width and the
number of equivalence classes. This could possibly lead to more insight into why some
decompositions have a low number of equivalence classes compared to decompositions
of the same width.



Chapter 8

Conclusion

In this thesis we showed numerous algorithms that make use of boolean decompositions
and experimentally verified the applicability of these algorithms on a number of graphs.
We gave motivation for using linear boolean decompositions over general boolean de-
compositions. The running time of algorithms parameterized by boolean-width is the-
oretically lower when using linear decompositions. Additionally, we can compute the
width of linear decompositions faster than for general ones.

In order to obtain decompositions that can be used in practical settings, we introduced
a new heuristic for generating linear boolean decompositions. This heuristic is several
orders of magnitude faster than the previous best heuristic. Furthermore, it returned
decompositions of lower width than any previously known heuristic.

Future research topic 1 - A good approximation algorithm instead of calculating the
exact boolean dimension of a cut can be a good alternative in heuristics that greedily
minimize the boolean-width.

We found reduction rules in order to reduce the running time needed to generate linear
boolean decompositions. However, these reduction rules seem to describe degenerate
graph classes that will not occur often in practical settings, meaning that the benefit
of reducing vertices will be very marginal. We believe that utilizing the properties of
linear boolean decompositions instead of focusing on new reduction rules for them is a
more worthwhile area of research.

Future research topic 2 - The use of reduction rules for general boolean decompositions
in combination with heuristics for generating linear boolean decompositions can lead
to improvements in known upper bounds on the boolean-width of a lot of practical
graphs. This leads to the question if there are more reduction rules for general boolean
decompositions.

We investigated the theoretical upper bound for solving (σ, ρ) vertex subset problems
using an algorithm parameterized by boolean-width. We implemented this algorithm
to solve the minimum induced matching problem on a select number of graphs. This
led to the conclusion that the space requirement of the algorithm is often a bottleneck
when solving (σ, ρ) problems.
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Future research topic 3 - A better theoretical upper bound on the number of equivalence
classes in terms of boolean-width could lead to better understanding of the relation
between the two.

Future research topic 4 - A heuristic that focuses on minimizing the number of equiva-
lence classes for a decomposition rather than minimizing the boolean-width could most
likely lead to more (σ, ρ) problems being solvable on practical graphs.

Future research topic 5 - Since solving (σ, ρ) problems is FPT using other graph parame-
ters, it would be interesting to see if these other parameters lead to practical algorithms
and how the execution time compares to the algorithm parameterized by boolean-width.
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Appendix A

Linear boolean-width upper
bounds on treewidthlib graphs

Table A.1 contains linear boolean-width upper bounds that are obtained through using
the IUN heuristic on all possible starting vertices and candidates = Right on a large
selection of graphs from treewidthlib [22]. The tw column gives a known upper bound
on the treewidth, while the bw column gives an upper bound on the boolean-width, of
which the values are taken from [18]. Cursive graph names marked with an asterisk
indicate the graphs for which, in theory, the linear boolean decomposition will give a
higher bound on the running time than the boolean decomposition, i.e., graphs for which
22lbw > 23bw.

Table A.1

Graph |V | Edge Density tw bw lbw lbw/bw

celar06-pp-003 4 0.5 2 1 1 1.00
diabetes-pp-001* 6 0.8 4 1 1.58 1.58
munin3-pp-001* 7 0.81 5 1 1.58 1.58
munin3-pp-002* 7 0.81 5 1 1.58 1.58
celar06-pp-000 8 0.43 3 1 1 1.00
diabetes-pp-002 8 0.61 4 2.32 2.32 1.00

mainuk-pp 9 0.78 6 1.58 1.58 1.00
rl5934-pp-001 10 0.44 4 2.81 3.17 1.13
fl3795-pp-001 10 0.44 4 2.81 3 1.07
fl3795-pp-003 10 0.44 4 2.81 3 1.07
fl3795-pp-002 10 0.44 4 2.81 3.17 1.13

pathfinder-pp-001 11 0.58 5 2.58 3.32 1.29
myciel3 11 0.36 5 3 3.46 1.15

pcb3038-pp-001 11 0.4 5 3 2.81 0.94
fl3795-pp-004 11 0.42 4 3 3.46 1.15
pathfinder-pp 12 0.65 6 2.58 2.81 1.09
celar11-pp-002 13 0.59 7 2.81 3.17 1.13

celar04-pp-001-000 15 0.74 9 1.58 2 1.27
Continued on next page
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Table A.1 – Continued from previous page
Graph |V | Edge Density tw bw lbw lbw/bw

weeduk 15 0.47 7 1.58 1.58 1.00
fungiuk 15 0.34 4 2 1.58 0.79

pcb3038-pp-002 15 0.3 5 3 2.81 0.94
mildew-wpp 15 0.3 4 2.58 3.32 1.29

celar04-pp-001 16 0.78 10 1.58 2 1.27
celar06-pp 16 0.84 11 1.58 1.58 1.00

celar10-pp-001 16 0.51 8 3 3.46 1.15
celar09-pp-001 16 0.51 8 3 3.17 1.06
celar08-pp-002 16 0.51 8 3 3.32 1.11
celar07-pp-002 16 0.45 7 3 3.32 1.11
barley-pp-001 16 0.42 7 3.32 3.32 1.00
celar11-pp-004 16 0.36 6 3.17 3.58 1.13
munin2-pp-005 16 0.3 5 3 3.58 1.19
munin2-pp-006 16 0.3 5 3 3.58 1.19
munin2-pp-003 16 0.3 5 3.17 3.7 1.17
munin2-pp-004 16 0.3 5 3.17 3.7 1.17
munin2-pp-007 17 0.35 7 3.46 3.58 1.03
munin2-pp-011 17 0.35 7 3.46 3.58 1.03
munin2-pp-010 17 0.35 7 3.46 3.81 1.10
munin2-pp-008 17 0.35 7 3.46 3.58 1.03
munin2-pp-009 18 0.31 6 3.46 3.81 1.10
munin2-pp-012 18 0.31 6 3.46 3.81 1.10
celar01-pp-002 19 0.65 10 2 2.32 1.16

celar02-pp 19 0.67 10 2 2 1.00
celar05-pp-001 19 0.66 11 2 2.32 1.16
celar11-pp-001 19 0.65 10 2 2.32 1.16
fl3795-pp-005 19 0.22 4 3.32 3.58 1.08
water-pp-001 21 0.45 9 3.81 4.09 1.07

anna-pp 22 0.64 12 3.46 3.81 1.10
water-pp 22 0.42 9 4.17 4.32 1.04

water-wpp 22 0.42 9 4.17 4.32 1.04
munin4-pp-001 23 0.26 8 3.58 4 1.12
munin4-pp-002 23 0.26 8 3.58 4 1.12

myciel4 23 0.28 10 5 5.49 1.10
BN 29 24 0.18 5 2 2.32 1.16
BN 28 24 0.18 5 2 2.32 1.16

queen5 5 25 0.53 18 5.29 5.67 1.07
barley-pp 26 0.24 7 3.7 3.46 0.94

fl3795-pp-006 26 0.16 5 3.81 4.17 1.09
david-pp 29 0.47 13 4.09 4.32 1.06

barley-wpp 29 0.2 7 3.81 3.58 0.94
pcb3038-pp-003 29 0.12 5 4.32 4.75 1.10

celar02-wpp 30 0.33 10 2.81 2.58 0.92
water 32 0.25 9 4.39 4.75 1.08

Continued on next page
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Table A.1 – Continued from previous page
Graph |V | Edge Density tw bw lbw lbw/bw

BN 16-pp-015 34 0.28 11 3.58 4.39 1.23
celar06-wpp 34 0.28 11 3 3.17 1.06

BN 16-pp-014 34 0.28 11 3.81 4.86 1.28
1bx7-pp 34 0.31 11 4.7 4.39 0.93
mildew 35 0.13 4 3 3.32 1.11

queen6 6 36 0.46 25 7.65 8.08 1.06
alarm 37 0.1 4 2.58 3 1.16

celar03-pp-001 38 0.34 14 5.81 6.11 1.05
munin4-pp-003* 38 0.16 8 3.58 5.39 1.51
munin4-pp-004 38 0.16 8 4.17 5.39 1.29
celar08-pp-001 39 0.38 16 5.09 5.21 1.02

oesoca 39 0.09 3 2.32 3 1.29
1bx7 41 0.24 11 4.91 4.75 0.97

oesoca42 42 0.08 3 2.32 3.17 1.37
celar07-pp-001 45 0.32 16 5.46 5.86 1.07
celar01-pp-001 47 0.25 15 5.88 6.36 1.08
celar05-pp-002 47 0.25 15 6.07 5.83 0.96

myciel5 47 0.22 19 8.12 6.49 0.80
1ubq-pp 47 0.16 12 5.95 8.79 1.48

pigs-pp-001 47 0.12 9 5.95 7.07 1.19
1brf-pp 48 0.36 22 7.01 7.25 1.03

1rb9 48 0.37 22 6.77 7.17 1.06
celar11-pp-003 48 0.23 15 5.73 4.58 0.80

mainuk* 48 0.18 7 3.58 6.49 1.81
barley 48 0.11 7 4 3.7 0.93
pigs-pp 48 0.12 9 5.7 6.64 1.16

1brf 49 0.35 22 7.01 7.3 1.04
queen7 7 49 0.4 35 10.36 10.97 1.06
1kth-pp 51 0.33 20 7.06 5.86 0.83
1i07-pp 51 0.28 15 5.55 7.18 1.29
eil51.tsp 51 0.11 9 5.78 5.78 1.00
1igq-pp 52 0.37 23 6.74 7.45 1.11

1kth 52 0.32 20 7.04 6.87 0.98
1g6x 52 0.31 19 6.89 7.21 1.05
1igq 54 0.35 23 6.89 7.61 1.10

zeroin.i.1-pp 54 0.89 46 1.58 1.58 1.00
1e0b-pp 55 0.33 24 7.69 8.32 1.08

munin4-pp-006 55 0.11 8 4.32 5.17 1.20
munin4-pp-005 55 0.11 8 4.39 5.17 1.18

1j75 56 0.36 27 8.51 8.94 1.05
1k61-pp 56 0.37 26 8.02 8.37 1.04
1sem-pp 56 0.37 26 8.09 8.5 1.05
1bbz-pp 56 0.35 25 8.18 8.36 1.02
1bf4-pp 57 0.39 26 7.63 7.79 1.02

Continued on next page
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Table A.1 – Continued from previous page
Graph |V | Edge Density tw bw lbw lbw/bw

1cka 57 0.38 27 8.55 8.87 1.04
1sem 57 0.36 26 8.32 8.66 1.04

zeroin.i.2-pp 57 0.69 32 2.81 3.32 1.18
zeroin.i.3-pp 57 0.69 32 3 3.32 1.11

1bbz 57 0.34 25 8.3 8.36 1.01
1oai-pp 57 0.32 22 7.94 8.28 1.04

1jo8 58 0.37 27 8.46 8.73 1.03
1oai 58 0.32 22 7.87 8.15 1.04

celar01-pp-003 58 0.19 15 6.97 6.89 0.99
1g2b-pp 59 0.37 28 8.5 8.99 1.06
1igd-pp 59 0.36 25 7.66 7.9 1.03
1kq1-pp 59 0.35 27 8.63 8.94 1.04
1pwt-pp 59 0.38 29 8.85 9.24 1.04

1i07 59 0.23 15 5.52 5.93 1.07
1k61 60 0.33 26 8.32 8.81 1.06
1kq1 60 0.34 27 8.79 8.89 1.01

1ku3-pp 60 0.33 23 7.46 7.53 1.01
1e0b 60 0.29 24 8.13 8.42 1.04

knights8 8-pp 60 0.09 16 10.77 11.3 1.05
1gut-pp 61 0.33 22 7.19 7.54 1.05

1i2t 61 0.35 27 8.38 9.03 1.08
1igd 61 0.34 25 7.75 7.9 1.02
1pwt 61 0.36 29 8.81 9.27 1.05
1ku3 61 0.32 23 7.53 7.61 1.01
1g2b 62 0.34 28 8.72 9.05 1.04

1fr3-pp 62 0.32 21 7.16 7.29 1.02
celar04-pp-002 62 0.17 16 6.86 7.26 1.06

1bf4 63 0.34 26 7.9 8.09 1.02
1r69 63 0.35 30 9.12 9.51 1.04

munin1-pp-001 63 0.09 11 5.58 6.43 1.15
1gcq-pp 64 0.36 30 8.95 9.38 1.05
queen8 8 64 0.36 45 13.16 14.05 1.07

1a8o 64 0.27 25 9.11 9.3 1.02
knights8 8 64 0.08 16 11.06 11.64 1.05

1fjl 65 0.29 26 7.9 8.49 1.07
1c9o 66 0.34 29 8.75 8.88 1.01
1hg7 66 0.33 29 8.81 9.13 1.04
1ezg 66 0.25 23 8.33 7 0.84

1en2-pp 66 0.21 17 7.46 8.54 1.14
munin1-pp 66 0.09 11 5.58 6.43 1.15

1c4q 67 0.34 31 9.45 9.71 1.03
1fse 67 0.33 27 8.58 8.75 1.02

1kw4 67 0.3 28 9.39 5.73 0.61
1gut 67 0.28 22 7.47 7.36 0.99

Continued on next page
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Graph |V | Edge Density tw bw lbw lbw/bw

1fr3 67 0.28 21 7.29 7.47 1.02
1b67-pp 67 0.25 16 6.61 9.61 1.45

1gcq 68 0.33 30 9.36 9.65 1.03
1ail-pp 68 0.28 24 8.11 8.33 1.03
1d3b-pp 68 0.3 25 8.54 5.78 0.68

1b67 68 0.25 16 6.61 8.52 1.29
1c75 69 0.29 30 9.88 8.31 0.84
1ail 69 0.27 24 8.07 9.68 1.20

1d3b 69 0.29 25 8.44 8.53 1.01
1en2 69 0.2 17 7.24 7 0.97
1cc8 70 0.34 32 9.35 9.63 1.03

1dj7-pp 70 0.3 27 8.12 8.22 1.01
1i27-pp 70 0.3 27 8.67 8.82 1.02

1l9l 70 0.29 29 9.26 10 1.08
1ljo-pp 71 0.31 30 8.92 9.02 1.01
1dp7-pp 71 0.3 27 9.21 9.15 0.99

graph03-pp-001 71 0.11 20 12.53 12.24 0.98
1mgq-pp 72 0.31 28 8.98 9.08 1.01

1i27 73 0.28 27 8.78 9.06 1.03
mulsol.i.1-pp 73 0.83 50 2.32 2.58 1.11

1dj7 73 0.28 27 9.66 8.22 0.85
1ldd 74 0.31 32 9.6 9.73 1.01
1ljo 74 0.29 30 8.88 9.06 1.02

1mgq 74 0.3 28 8.91 9.06 1.02
huck 74 0.11 10 2.81 3.32 1.18
1ubq 74 0.08 12 6.61 7.75 1.17
1ig5 75 0.29 33 10.45 10.64 1.02
1dp7 76 0.27 27 9.01 9.3 1.03

celar10-pp-002 76 0.15 16 7.25 6.58 0.91
celar08-pp-003 76 0.15 16 7.41 6.58 0.89
celar09-pp-002 76 0.15 16 7.46 6.58 0.88

1iqz 77 0.29 33 10 10.1 1.01
1qtn-pp 77 0.25 24 8.56 8.33 0.97

munin3-pp-003* 79 0.09 7 4.17 12.73 3.05
graph03-pp 79 0.1 20 12.99 5.61 0.43

sodoku-elim1 80 0.28 45 9.47 12 1.27
jean* 80 0.08 9 3.91 6.54 1.67

celar05-pp 80 0.13 15 7.2 4.58 0.64
sodoku 81 0.25 45 9 12.7 1.41

celar03-pp 81 0.13 14 6.19 6.11 0.99
graph03-wpp 84 0.09 20 12.74 12.92 1.01

1fk5 85 0.23 31 10.76 10.1 0.94
1aba 85 0.25 29 10.13 10.81 1.07

graph01-pp-001 85 0.09 24 13.4 13.66 1.02
Continued on next page
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Graph |V | Edge Density tw bw lbw lbw/bw

1ctj-pp 86 0.25 33 10.78 11.07 1.03
1ctj 87 0.25 33 10.74 11.04 1.03
1ptf 87 0.3 38 11.21 10.86 0.97
1qtn 87 0.21 24 9.15 8.97 0.98
david 87 0.11 13 5.32 5.86 1.10

graph05-pp-001 87 0.1 24 12.68 13.31 1.05
1awd 89 0.28 38 10.8 11.13 1.03

celar03-wpp 89 0.11 14 6.17 6.49 1.05
celar05-wpp 89 0.11 15 7.52 6.54 0.87
graph01-pp 89 0.08 24 14.62 13.96 0.95
munin1-wpp 90 0.05 11 7.23 7.58 1.05

1jhg-pp 91 0.19 25 8.34 8.41 1.01
graph05-pp 91 0.1 24 13.84 13.49 0.97
celar07-pp 92 0.12 16 6 6 1.00

a280.tsp-pp 92 0.06 14 8.23 7.38 0.90
kroE100.tsp-pp* 92 0.06 10 6.48 14.84 2.29

1g2r-pp 93 0.26 37 11.87 11.51 0.97
graph01-wpp 93 0.07 24 14.69 11.41 0.78

1czp 94 0.27 38 11.47 11.6 1.01
1g2r 94 0.25 37 12.17 14.19 1.17

graph05-wpp 94 0.09 24 14.38 13.18 0.92
1c5e 95 0.26 36 11.06 10.83 0.98

myciel6 95 0.17 35 13.4 7.86 0.59
homer-pp 95 0.17 31 14.61 13.88 0.95

kroA100.tsp-pp 95 0.06 10 7.61 6.58 0.86
celar11-pp 96 0.1 15 6.64 5.98 0.90
munin3-pp 96 0.07 7 4.32 5.86 1.36
celar07-wpp 97 0.01 16 6 7.17 1.20

kroC100.tsp-pp* 97 0.06 10 6.94 11.97 1.72
1plc 98 0.25 35 11.28 11.1 0.98

1lkk-pp 99 0.24 34 11 10.84 0.99
1d4t-pp 99 0.23 35 11.88 6.58 0.55

celar11-wpp 99 0.1 15 7.17 4.91 0.68
1i0v 100 0.24 41 12.21 12.47 1.02

celar02 100 0.06 10 3.32 4.91 1.48
celar06* 100 0.07 11 3.81 14.85 3.90
graph05 100 0.08 24 13.7 13.36 0.98
graph01 100 0.07 24 14.61 14.21 0.97
graph03 100 0.07 20 13.29 8.41 0.63

1erv 101 0.25 41 12.26 12.44 1.01
1jhg 101 0.17 25 8.87 11.97 1.35

1iib-pp 102 0.27 40 11.98 11.76 0.98
1d4t 102 0.22 35 12.87 10.31 0.80
1iib 103 0.26 40 12.62 11.79 0.93

Continued on next page



64

Table A.1 – Continued from previous page
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1b0n 103 0.19 32 10.81 11.17 1.03
1lkk 103 0.22 34 11.89 13.56 1.14
1aac 104 0.25 41 12.29 12.33 1.00

1bkf-pp 105 0.23 36 11.1 11.4 1.03
1bkf 106 0.23 36 11.69 11.44 0.98
1bkr 107 0.24 44 14.4 13.75 0.95
1rro 107 0.23 43 15.36 3.58 0.23
1f9m 109 0.23 45 14.27 13.56 0.95

pathfinder* 109 0.04 6 3.32 10.83 3.26
celar04-pp 110 0.09 16 7.29 7.27 1.00

1fs1 114 0.21 34 13.79 7.36 0.53
celar04-wpp 116 0.07 16 7.95 11.1 1.40

1gef-pp 117 0.22 43 12.93 13.35 1.03
1gef 119 0.21 43 13.6 13.35 0.98

mulsol.i.5-pp 119 0.36 31 3 3 1.00
1a62-pp 120 0.21 37 14.7 11.14 0.76

1a62 122 0.21 37 13.62 9.68 0.71
1dd3-pp 124 0.17 31 14.6 9.25 0.63

ch130.tsp-pp 125 0.05 12 8.67 9.53 1.10
1bkb-pp 127 0.18 30 15.55 9.9 0.64

miles1500 128 0.64 77 4.86 5.29 1.09
1dd3 128 0.17 31 11.68 4.58 0.39

miles500 128 0.14 22 9.42 7.04 0.75
miles250* 128 0.05 9 4.95 9.61 1.94

1bkb 131 0.17 30 14.53 6.91 0.48
celar10-pp 133 0.07 16 9.08 7.7 0.85

anna 138 0.04 12 6.67 7.25 1.09
celar09-wpp 142 0.06 16 8.49 7 0.82
celar01-pp 157 0.07 15 7.39 7 0.95

celar01-wpp 158 0.06 15 7.09 7.61 1.07
munin2-pp 167 0.03 7 5.49 6.91 1.26
mulsol.i.3 184 0.23 32 4.95 3.58 0.72
mulsol.i.4 185 0.23 32 4.81 3.58 0.74
mulsol.i.5 186 0.23 31 4.95 3.58 0.72
mulsol.i.2 188 0.22 32 4.81 3.58 0.74

celar08-wpp 190 0.05 16 9.64 11.48 1.19
mulsol.i.1 197 0.2 50 4 4.17 1.04
zeroin.i.3 206 0.17 32 5.39 3.81 0.71
zeroin.i.1 211 0.19 50 3.7 3.32 0.90
zeroin.i.2 211 0.16 32 5.39 3.81 0.71

fpsol2.i.1-pp 233 0.4 66 4.91 4.81 0.98



Appendix B

Implemented algorithms

We present an overview of the most important algorithms that were implemented as
part of this thesis project.

• Algorithm 4 of Chapter 5 for computing representatives using linear boolean de-
compositions.

• Algorithms for computing optimal boolean decompositions using exact algorithms,
explained in Chapter 4 and Appendix C.

• Algorithm for solving the maximum independent set problem by Sharmin [18,
Chapter 9], using linear decompositions.

• Algorithms for solving the minimum dominating set problem, counting the number
of independent sets and counting the number of dominating sets in a graph by Bui-
Xuan et al. [7], modified to work only on linear decompositions.

• All heuristics described in Chapter 5, with additional scoring functions such as the
least uncommon neighbors [18] and max cardinality search (Appendix C).

• Multiple algorithms for counting the number of maximal independent sets in a
graph, such as the CCMIS algorithm by Manne and Sharmin [13].

• Algorithm 11 of Chapter 7 for solving (σ, ρ) vertex subset problems by Bui-Xuan
et al. [8].
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Practical Algorithms for Linear Boolean-width∗
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Abstract
In this paper, we give a number of new exact algorithms and heuristics to compute linear boolean
decompositions, and experimentally evaluate these algorithms. The experimental evaluation
shows that significant improvements can be made with respect to running time without increasing
the width of the generated decompositions. We also evaluated dynamic programming algorithms
on linear boolean decompositions for several vertex subset problems. This evaluation shows that
such algorithms are often much faster (up to several orders of magnitude) compared to theoretical
worst case bounds.
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1 Introduction

Boolean-width is a recently introduced graph parameter [2]. Similarly to treewidth and other
parameters, it measures some structural complexity of a graph. Many NP-hard problems on
graphs become easy if some graph parameter is small. We need a derived structure which
captures the necessary information of a graph in order to exploit such a small parameter. In
the case of boolean-width, this is a binary partition tree, referred to as the decomposition
tree. However, computing an optimal decomposition tree is usually a hard problem in itself,
because of the required exponential running time. A common approach to bypass this
problem is to use heuristics to compute decompositions with a low boolean-width.

Algorithms for computing boolean decompositions have been studied before in [17, 10,
12, 1, 7], but in this paper we study the specific case of linear boolean decompositions.
Linear decompositions are easier to compute and the theoretical running time of algorithms
for solving practical problems is lower on linear decompositions than on tree shaped ones.
For instance, vertex subset problems can be solved in O∗(necd(T, δ)3) due to a dynamic
programming algorithm by Bui-Xuan et al. [3], but this can be improved to O∗(necd(T, δ)2)
for linear decompositions. Here, necd(T, δ) is the number of equivalence classes, i.e., the
maximum size of the dynamic programming table.
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2 Practical Algorithms for Linear Boolean-width

We first give an exact algorithm for computing optimal linear boolean decompositions,
improving upon existing algorithms, and subsequently investigate several new heuristics
through experiments, improving upon the work by Sharmin [12, Chapter 8]. We then study
the practical relevance of these algorithms in a set of experiments by solving an instance of a
vertex subset problem, investigating the number of equivalence classes necd(T, δ) compared
to the theoretical worst case bounds.

2 Preliminaries

A graph G = (V,E) of size n is a pair consisting of a set of n vertices V and a set of edges
E. The neighborhood of a vertex v ∈ V is denoted by N(v). For a subset A ⊆ V we denote
the neighborhood by N(A) =

⋃
v∈AN(v). In this paper we only consider simple, undirected

graphs and assume we are given a total ordering on the vertices of a graph G. For a subset
A ⊆ V we denote the complement by A = V \A. A partition (A,A) of V is called a cut of
the graph. Each cut (A,A) of G induces a bipartite subgraph G[A,A].

The neighborhood across a cut (A,A) for a subset X ⊆ A is defined as N(X) ∩A.
I Definition 1 (Unions of neighborhoods). Let G = (V,E) be a graph and A ⊆ V . We define
the set of unions of neighborhoods across a cut (A,A) as

UN (A) =
{
N(X) ∩A

∣∣X ⊆ A
}
.

The number of unions of neighborhoods #UN is symmetric for a cut (A,A), i.e.,
#UN (A) = #UN (A) [8, Theorem 1.2.3]. Furthermore, for any cut (A,A) of a graph
G it holds that #UN (A) = #MIS(G[A,A]), where #MIS(G) is the number of maximal
independent sets in G [17, Theorem 3.5.5].

I Definition 2 (Decomposition tree). A decomposition tree of a graph G = (V,E) is a pair
(T, δ), where T is a full binary tree and δ is a bijection between the nodes of T and subsets
of vertices of V . For the root node r of T it holds that δ(r) = V . Furthermore, if nodes a
and b are children of a node w, then (δ(a), δ(b)) is a partition of δ(w). For a decomposition
(T, δ) let Vw denote the vertices contained in a node w ∈ T , i.e., Vw = δ(w).

In this paper we consider a special type of decompositions, namely linear decompositions.

I Definition 3 (Linear decomposition). A linear decomposition, or caterpillar decomposition,
is a decomposition tree (T, δ) where T is a full binary tree and for which each internal node
of T has at least one leaf as a child. We can define such a linear decomposition through a
linear ordering π = π1, . . . , πn of the vertices of G by letting δ map the i-th leaf of T to πi.

I Definition 4 (Boolean-width). Let G = (V,E) be a graph and A ⊆ V . The boolean
dimension of A is a function bool-dim : 2V → R.

bool-dim(A) = log2 #UN (A).

Let (T, δ) be a decomposition of a graph G. We define the boolean-width of (T, δ) as the
maximum boolean dimension over all cuts induced by nodes of (T, δ).

boolw(T, δ) = max
w∈T

bool-dim(δ(w))

The boolean-width of G is defined as the minimum boolean-width over all possible full
decompositions of G, while the linear boolean-width of a graph G = (V (G), E(G)) of size n
is defined as the the minimum boolean-width over all linear decompositions of G.

boolw(G) = min
(T,δ) of G

boolw(T, δ)
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lboolw(G) = min
linear (T,δ) of G

boolw(T, δ)

It is known that for any graph G it holds that boolw(G) ≤ treewidth(G)+1 [17, Theorem
4.2.8]. The linear variant of treewidth is called pathwidth [11], or pw for short.

I Theorem 5. For any graph G it holds that lboolw(G) ≤ pw(G) + 1.

Proof. We give a method of construction that gives us a linear boolean decomposition of a
graph G from a path decomposition of G. Recall that a linear boolean decomposition can
be defined through a linear ordering π = π1, . . . , πn of V . The idea is that given a path
decomposition X1, . . . , Xn we select vertices one by one from a subset Xi and append them
to the linear ordering π, after which we move on to Xi+1. For shorthand notation we denote

χi =
i⋃

j=1
Xi.

Let Si = {u |u ∈ χi : NG(u) ∩ χi 6= ∅}. For each u ∈ Si, it holds that ∃j > i ∃w ∈ Xj

for which {u,w} ∈ E(G). By definition of a path decomposition, we know that there is a
subset Xj with u,w ∈ Xj , and since all subsets containing a certain vertex are subsequent in
the path decomposition, it follows that u ∈ Xi and u ∈ Xi+1, implying that Si ⊆ Xi and
Si ⊆ Xi+1. By definition, the unions of neighborhoods of χi can only consist of neighborhoods
of subsets of Si. It follows that |UN (χi)| = 2bool-dim(χi) ≤ 2|Si| ≤ 2|Xi| ≤ 2pw(G)+1. What
remains to be shown is that while appending vertices one by one from a subset Xi+1, the
number of unions of neighborhoods will not exceed 2|Xi+1| at any point. For each vertex
v ∈ Xi+1 there are two possibilities; if v ∈ Si, then appending v to the linear ordering will
not increase the boolean dimension, since v’s neighborhood was already an element of the
unions of neighborhoods constructed so far; if v /∈ Si, then it is possible that v will contribute
a new neighborhood to the unions of neighborhoods, which will cause factor 2 increase in the
worst case. There are at most |Xi+1 \ Si| such vertices, and because Si ⊆ Xi+1, it follows
that |Xi+1 \ Si| = |Xi+1| − |Si|. We conclude that at any point during construction it holds
that

UN (χi+1) = 2bool-dim(χi+1) ≤ 2|Si| · 2|Xi+1|−|Si| = 2|Xi+1| ≤ 2pw(G)+1

J

The algorithms in this paper make extensive use of sets and set operations, which can
be implemented efficiently by using bitsets. By using a mapping from vertices to bitsets
that represent the neighborhood of a vertex we can store the adjacency matrix of a graph
efficiently. We assume that bitset operations take O(n) time and need O(n) space, even
though in practice this may come closer to O(1). If one assumes that these requirements are
constant, several time and space bounds in this paper improve by a factor n.

In this paper we assume that the graph G is connected, since if the graph consists of
multiple connected components we can simply compute a linear decomposition for each
connected component, after which we glue them together, in any arbitrary order.

3 Exact Algorithms

We can characterize the problem of finding an optimal linear decomposition by the following
recurrence relation, in which P contains partial solutions.

P ({v}) = #UN ({v}) =
{

1 if N(v) = ∅
2 if N(v) 6= ∅

P (A) = min
v∈A
{max{#UN (A),#UN (A \ {v})}}

(1)



4 Practical Algorithms for Linear Boolean-width

The boolean-width of the graph G is now given by log2(P (V )). Adaptation of existing
techniques lead to the following algorithms for linear boolean-width, upon we hereafter
improve:

With dynamic programming a running time of O(2.7284n) is achieved. (See Theorem 6)
With adaptation of the exact algorithm for boolean-width by Vatshelle [17], a running
time of O(n3 · 2n+lboolw(G)) is achieved. (See Theorem 7)

I Theorem 6. A linear boolean decomposition of minimum boolean-width can be computed
in O(2.7284n) time using O(n · 2n) space.

Proof. As a preprocessing step we compute for all cuts A ⊆ V the values #UN (A) by
computing #MIS(G[A,A]). Computing #MIS for any graph can be done in O(1.3642n)
time [6]. Doing this for all A takes O(2.7284n) time.

We solve recurrence relation (1) in a bottom-up fashion. For each iteration, the minimum
of |A| numbers has to be taken. Suppose |A| = k, then this takes O(k) time for each iteration.
When solving the recurrence relation, |A| goes from 1 to n. Since there are

(
n
k

)
subsets of

size k, it takes
∑n
k=1

(
n
k

)
k = O(n · 2n−1) = O(n · 2n) time to compute all values for lboolw.

Because the preprocessing step of computing bool-dim is the bottleneck, the total time is
O(2.7284n). The space requirements amount to O(n · 2n), since bool-dim and lboolw contain
at most 2n entries of integers of at most n bits. J

The currently fastest known exact algorithm for boolean-width runs in O∗(2n+K) [17],
where K is a known upperbound for the boolean-width of the current graph. By performing a
binary search on K, we can achieve an output sensitive asymptotic running time. Theorem 7
is a direct adaptation to linear boolean-width.

I Theorem 7. A linear boolean decomposition of minimum boolean-width for a graph G can
be computed in O(n3 · 2n+lboolw(G)) time using O(n · 2n) space.

Proof. As a preprocessing step we compute for all cuts A ⊆ V the values #UN (A), using a
polynomial time delay algorithm, which lists maximal independent sets in G[A,A] with at
most O(n3) time in between two results [4]. We can use the upperbound K as a limit for
this algorithm, such that computing max(#UN (A),K) takes at most O(n3K) time.

Now consider relation (1). This can be solved in O(n · 2n) time by the same reasoning as
in Theorem 6. This results in a total running time of O(n3 · 2n+lboolw(G)) by binary search
on K. The space requirements amount to O(n · 2n), since the tables bool-dim and lboolw
contain at most 2n entries of integers of at most n bits. J

3.1 Improving the running time
We present a faster and easier way to precompute for all cuts A ⊆ V the values #UN (A),
which results in a new algorithm displayed in Algorithm 2. In the following it is important
that the UN sets are implemented as hashmaps, which will only save distinct neighborhoods.

Algorithm 1 Compute UN (X ∪ {v}) given UN (X).
1: function Increment-UN(G,X,UNX , v)
2: U ← ∅
3: for S ∈ UNX do
4: U ← U ∪ {S \ {v}}
5: U ← U ∪

{
(S \ {v}) ∪ (N(v) ∩ (X \ {v}))

}

6: return U
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I Lemma 8. The procedure Increment-UN is correct and runs in O(n · |UNX |) time using
O(n · |UNX |) space.

Proof. For proof by induction, assume that all unions of neighborhoods for the cut (X,X)
saved inside the set UNX are computed correctly. For each neighborhood in UNX we only
perform two actions to obtain new neighborhoods. The first action is removing v, since v
cannot be in any neighborhood of X∪{v}. The second operation is adding N(v) to an existing
neighborhood, which also results in a valid new neighborhood across the cut. It is clear that if
a neighborhood is added to U , then it is a valid neighborhood across the cut (X∪{v}, X \{v}).
We now show that all valid neighborhoods of the cut (X ∪ {v}, X \ {v}) are contained in U .
Assume for contradiction that S is a valid neighborhood not contained in U . By definition,
there is a set R for which N(R) ∩ (X \ {v}) = S. If v /∈ R, then N(R) ∩ X ∈ UNX ,
meaning that we add N(R) ∩ (X \ {v}) to U , contradicting our assumption. If v ∈ R, then
N(R \{v})∩X ∈ UNX . During the algorithm we construct (N(R \{v})∪N(v))∩ (X \{v}),
which is equal to N(R) ∩ (X \ {v}). This means that N(R) ∩ (X \ {v}) is added to U , also
contradicting our assumption. It follows that a neighborhood is contained in the set U if
and only if it is a valid neighborhood across the cut (X ∪ {v}, X \ {v}).

The running time is determined by the number of sets S saved in UNX . The number
of unions of neighborhoods that we iterate over does not exceed 2k, where k is the boolean
dimension of UNX . The set operations that are performed for each S take at most O(n) time.
This results in the total time for this algorithm to be O(n · |UNX |). The space requirements
amount to O(n · |UNX |), for storing U which contains at most O(|UNX |) sets of size at most
O(n). J

I Lemma 9. Given a graph G = (V,E) of size n and an integer K, Algorithm 2 computes
the linear boolean width, if it is at most logK in O(n ·K · 2n) time using O(n · 2n) space.

Proof. Consider the first part of procedure Incremental-UN-exact, where the call to the
procedure Compute-count-UN is made. It may not be immediately clear that #UN is
always computed when necessary, since there may be X such that #UN (X) is not computed,
while #UN (X) ≤ K. Suppose that X ⊆ V of size i occurs in an optimal decomposition and
#UN (X) has not been computed. Since we are dealing with linear decompositions, there
exists an ordering v1, . . . , vi of X such that for all 1 ≤ j ≤ i, the set Xj =

⋃
0≤j′≤j vj′ also

occurs in the optimal decomposition. Obviously this implies that #UN (Xj) ≤ K for all j.
But this means that for all these Xj the if-statement on line 23 evaluates to true. But that
means that #UN (X) must be computed, contradiction. Thus we conclude that #UN is
computed correctly throughout the algorithm. The second part of procedure Incremental-
UN-exact simply solves the recurrence in a bottom-up dynamic programming fashion.
Finally, the procedure Increment-UN is correct by Lemma 8.

We now analyze the running time. Consider the procedure Compute-count-UN. We
observe that the procedure can only be called once for each X ⊆ V , because as soon as the
call is made, #UN (X) will be defined and line 20 prevents further calls with equal X. At
every call the for-loop has to make at most n iterations, thus we obtain O(n · 2n) iterations
in total. If line 20 evaluates false, the body of the for-loop takes constant time. If line 20
evaluates true, the call to Increment-UN takes O(n·2K) time (by Lemma 8), as |UNX | ≤ K
(otherwise by line 23 the call to Compute-count-UN would not have been made). Because
line 20 only returns true at most O(2n) times, the time of Compute-count-UN amounts
to O(n · 2n+K). Consider the rest of the code in Incremental-UN-exact. The three outer
for-loops account for n ·2n executions of the inner code block, which take O(1) time, resulting
in O(n · 2n) time in total. Thus, in total the time amounts O(n · 2n+K).
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Algorithm 2 Return lboolw(G), if it is smaller than logK, otherwise return ∞.
1: function Incremental-UN-exact(G,K)
2: #UN (∅)← 0
3: Compute-count-UN(G,K,#UN , ∅, {∅})
4:
5: P (X)←∞, for all X ⊆ V
6: P (∅)← 0
7:
8: for i← 0, . . . , |V | − 1 do
9: for X ⊆ V of size i do

10: for v ∈ V \X do
11: Y ← X ∪ {v}
12: if P (X) ≤ K then
13: P (Y )← min(P (Y ),max(#UN (Y ), P (X)))
14:
15: return log2(P (V ))
16:
17: procedure Compute-count-UN(G,K,#UN , X,UNX)
18: for v ∈ V \X do
19: Y ← X ∪ {v}
20: if #UN (Y ) is not defined then
21: UN Y ← Increment-UN(G,X,UNX , v)
22: #UN (Y )← |UN Y |
23: if #UN (Y ) ≤ K then
24: Compute-count-UN(G,K,#UN , Y,UN Y )

For the space requirements, we observe that the tables #UN and S are of size at most
2n storing numbers of n bits. Moreover, the recursion of Compute-count-UN can be at
most n deep, so only n unions of neighborhoods have to be stored, which are at most of size
n · 2K . Since O(n · 2K) ⊆ O(n · 2n/2) ( O(n · 2n), the total space requirements amount to
O(n · 2n). J

I Theorem 10. Given a graph G, Algorithm 2 can be used to compute lboolw(G) in
O(n · 2n+lboolw(G)) time using O(n · 2n) space.

Proof. Iteratively double K in Algorithm 2, starting with K = 1, until it returns a number
that is not∞. By Lemma 9 this will take O(

∑lboolw(G)
logK=1 n·2n+logK) = O(n·2n+lboolw(G)+1) =

O(n · 2n+lboolw(G)) and take O(n · 2n) space. J

This new algorithm improves upon the time in Theorem 7 by a factor n2, while the space
requirements stay the same. Since the tightest known upperbound for linear boolean-width
is n

2 − n
143 + O(1) [10], this algorithm can be slower than dynamic programming, since

O(2n+ n
2− n

143 +O(1)) = O(2.8148n+O(1)) ) O(2.7284n), but this is very unlikely to happen in
practice.
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4 Heuristics

4.1 Generic form of the heuristics

The goal when using a heuristic is to find a linear ordering of the vertices in a graph in such
a way that the decomposition that corresponds to this ordering will be of low boolean-width.
A basic strategy to accomplish this is to start the ordering with some vertex and then by
some selection criteria append a new vertex to the ordering that has not been appended
yet. This strategy is used in heuristics introduced by Sharmin [12, Chapter 8], and a similar
approach is shown in Algorithm 3.

Algorithm 3 Greedily generate an ordering based on the score function and the given
starting vertex.
1: procedure GenerateVertexOrdering(G,ScoreFunction, init)
2: Decomposition← (init)
3: Left← {init}
4: Right← V \ {init}
5: while Right 6= ∅ do
6: Candidates← set returned by candidate set strategy
7: if there exists v ∈ Candidates belonging to a trivial case then
8: chosen← v

9: else
10: chosen← argmin

v∈Candidates
(ScoreFunction(G,Left,Right, v))

11: Decomposition← Decomposition · {chosen}
12: Left← Left ∪ {chosen}
13: Right← Right \ {chosen}
14: return Decomposition

At any point in the algorithm we denote the set of all vertices contained in the ordering
by Left, and the remaining vertices by Right. While Right is not empty, we choose a vertex
from a candidate set Candidates ⊆ Right, based on a set of trivial cases, and, if no trivial
case applies, by making a local greedy choice using a score function that indicates the quality
of the current state Left,Right.

4.1.1 Selecting the initial vertex

Selecting a good initial vertex can be of great influence on the quality of the decomposition.
Sharmin proposes to use a double breadth first search (BFS) in order to select the initial
vertex. This is done by initiating a BFS, starting at an arbitrary vertex, after which a vertex
of the last level of the BFS is selected. This process is then repeated by using the found
vertex as a starting point for the second BFS. However, the fact that an arbitrary vertex is
used for the first BFS already influences the boolean-width of the computed decomposition.
During our experiments we noticed that performing a single BFS sometimes gave better
results. But since we will see in Chapter 5 that applications are a lot more expensive in
terms of running time, it is wise to use all possible starting vertices when trying to find a
good decomposition.
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4.1.2 Pruning
Starting from multiple initial vertices allows us to do some pruning. If we notice during
the algorithm that the score of the decomposition that is being constructed exceeds the
score of the best decomposition found so far, we can stop immediately and move to the next
initial vertex. For this reason, it is wise to start with the most promising initial vertices (e.g.
obtained by the double BFS method), and after that try all other initial vertices.

4.1.3 Candidates
The most straightforward choice for the set Candidates is to take Right entirely. However,
we may do unnecessary work here, since vertices that are more than 2 steps away from any
vertex in Left cannot decrease the size of UN . This means that they should never be chosen
by a greedy score function, which means that we can skip them right away. By this reasoning,
the set of Candidates can be reduced to N2(Left) ∩Right = N(Left ∪N(Left)) ∩Right.
Especially for larger sparse graphs, this can significantly decrease the running time.

4.1.4 Trivial cases
A vertex is chosen to be the next vertex in the ordering if it can be guaranteed that it is an
optimal choice by means of a trivial case. Lemma 11 generalizes results by Sharmin [12], since
the two trivial cases given by her are subcases of our lemma, namely X = ∅ and X = {u}
for all u ∈ Left. Note that we can add a wide range of trivial cases by varying X, such
as X = Left and ∀u,w ∈ Left : X = {u,w}, but this will increase the complexity of the
algorithm.

I Lemma 11. Let X ⊆ Left. If ∃v ∈ Right such that N(v) ∩Right = N(X) ∩Right, then
choosing v will not change the boolean-width of the resulting decomposition.

Proof. The choice for v will not change the unions of neighborhoods in any way, which
means that UN (Left) = UN (Left ∪ {v}). Thus, for any vertex in Right \ {v} it will hold
that it will interact in the exact same with with UN (Left) as it would with UN (Left∪{v}),
resulting in the boolean dimension of the computed ordering being the same. J

4.1.5 Relative Neighborhood Heuristic
For a cut (Left,Right) and a vertex v define

Internal(v) = (N(v) ∩N(Left)) ∩Right
External(v) = (N(v) \N(Left)) ∩Right

In the original formulation by Sharmin [12] |External(v)|
|Internal(v)| is used as a score function.

However, if we use |External(v)|
|Internal(v)|+|External(v)| = |External(v)|

|N(v)∩Right| we get the same ordering by
Lemma 12, without having an edge case for dividing by zero. Furthermore, in contrast to
Sharmin’s proposal of checking for each vertex w ∈ N(v) if w ∈ N(Left) ∩Right or not, we
can compute these sets directly by performing set operations. We will refer to this heuristic
by RelativeNeighborhood.

I Lemma 12. The mapping a
b 7→ a

a+b is order preserving.
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Proof. Suppose a
b ≤ c

d . Then ad− bc ≤ 0. Now we see that

a

a+ b
− c

c+ d
= a(c+ d)− c(a+ b)

(c+ d)(a+ b) = ac+ ad− ac− bc
(c+ d)(a+ b) = ad− bc

(c+ d)(a+ b) ≤ 0

Thus a
a+b ≤ c

c+d . J

Two variations on this heuristic can be obtained through the score functions |External(v)|
|N(v)|

and 1 − |Internal(v)|
|N(v)| , which work slightly better for sparse random graphs and extremely

well for dense random graphs respectively. We will refer to these two variations by
RelativeNeighborhood2 and RelativeNeighborhood3.

One can easily see that the running time of these three algorithms is O(n3) and the required
space amounts to O(n). Notice however that this algorithm only gives us a decomposition.
If we need to know the corresponding boolean-width we need to compute it afterwards, for
instance by iteratively applying Increment-UN on the vertices in the decomposition, and
taking the maximum value. This would require an additional O(n2 · 2k) time and O(n · 2k)
space, where k is the boolean-width of the decomposition.

4.1.6 Least Cut Value Heuristic

The LeastCutValue heuristic by Sharmin [12] greedily selects the next vertex v ∈ Right
that will have the smallest boolean dimension across the cut (Left ∪ {v}, Right \ {v}). This
vertex is obtained by constructing the bipartite graph BG = G[Left ∪ {v}, Right \ {v}] for
each v ∈ Right, and counting the number of maximal independent sets of BG using the
CCMIS [9] algorithm on BG, with the time of CCMIS being exponential in n.

4.1.7 Incremental Unions of Neighborhoods Heuristic

Generating a bipartite graph and then calculating the number of maximal independent sets
is a computational expensive approach. A different way to compute the boolean dimension of
each cut is by reusing the neighborhoods from the previous cut, similarly to Incremental-
UN-exact. We present a new algorithm, called the Incremental-UN-heuristic, in
Algorithm 4. A useful property of this algorithm is that the running time is output sensitive.
It follows that if a decomposition is not found within reasonable time, then the decomposition
that would have been generated is not useful for practical algorithms.

I Theorem 13. The Incremental-UN-heuristic procedure runs in O(n3 · 2k) time using
O(n · 2k) space, where k is the boolean-width of the resulting linear decomposition.

Proof. The running time is determined by the number of sets saved in UNLeft. The worst
case consisting of Candidates = Right will result in at most n iterations and calls to
Increment-UN. This call takes O(n · |UNLeft|) time by Lemma 8. By definition |UNLeft|
never exceeds 2k, where k is the boolean-width of the resulting decomposition. Because we
need to make n greedy choices to process the entire graph, we conclude that the total time
for this algorithm is O(n3 · 2k) For the space requirements we observe that all structures in
the algorithm require O(n) space, except for the unions of neighborhoods. Since there are
only stored two of them at any time and they require at most O(n · 2k) space, the total space
requirements amount to O(n · 2k). J
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Algorithm 4 Greedy heuristic that incrementally keeps track of the Unions of Neighborhoods.
1: procedure Incremental-UN-Heuristic(G, init)
2: Decomposition← (init)
3: Left,Right← {init}, V \ {init}
4: UNLeft ← {∅, N(init) ∩Right}
5: while Right 6= ∅ do
6: Candidates← set returned by candidate set strategy
7: if there exists v ∈ Candidates belonging to a trivial case then
8: chosen← v

9: UN chosen ← Increment-UN(G,Left,UNLeft, v)
10: else
11: #UN chosen ←∞
12: for all v ∈ Candidates do
13: UN v ← Increment-UN(G,Left,UNLeft, v)
14: if |UN v| < #UN chosen then
15: chosen← v

16: UN chosen ← UN v

17: #UN chosen ← |UN v|
18: Decomposition← Decomposition · chosen
19: Left← Left ∪ {chosen}
20: Right← Right \ {chosen}
21: UNLeft ← UN chosen

22: return Decomposition

4.1.8 Unsuccessful ideas
First Improvement — Preliminary experiments pointed out that it not only gave worse
results in terms of boolean-width, but it also increased the time needed to compute a
decomposition, which can be explained by the output sensitivity of the Incremental-
UN-heuristic. In other words, even though the best improvement strategy takes more
time to determine the next vertex for a single iteration, it is worthwhile to put effort in
finding a good cut, as it also decreases the time for future cuts.
Lookaheads — This technique does not only look at the change of UN resulting from
choosing a candidate v, but also recursively considers the changes of the algorithm after v
has been chosen, up to a fixed depth. With each level of depth added, the time complexity
increases with a factor n, but experiments turned out that the benefits were only marginal.
Minimal Neighborhood Cover — This heuristic tries to minimize the number of neighbor-
hoods in Left that are needed to cover the neighborhood of the vertex to be chosen.
Max Cardinality Search — This heuristics selects vertices in such an order that at each
step the vertex with most neighbors in Left is chosen. In practice this heuristic performed
similar to other already known polynomial heuristics.

5 Vertex subset problems

Boolean decompositions can be used to efficiently solve a class of vertex subset problems
called (σ, ρ) vertex subset problems, which were introduced by Telle [13]. This class of
problems consists of finding a (σ, ρ)-set of maximum or minimum cardinality and contains
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well known problems such as the maximum independent set, the minimum dominating set
and the maximum induced matching problem. The running time of the algorithm for solving
these problems is O(n4 ·necd(T, δ)3) [3], where necd(T, δ) is the number of equivalence classes
of a problem specific equivalence relation, which can be bounded in terms of boolean-width.
In Section 6 we investigate how close the value of necd(T, δ) comes to any of the theoretical
bounds.

5.1 Definitions
I Definition 14 ((σ, ρ)-set). Let G = (V,E) be a graph. Let σ and ρ be finite or co-finite
subsets of N. A subset X ⊆ V is called a (σ, ρ)-set if the following holds

∀v ∈ V : |N(v) ∩X| ∈
{
σ if v ∈ X,
ρ if v ∈ V \X.

In order to confirm if a set X is a (σ, ρ)-set we have to count the number of neighbors
each vertex v ∈ V has in X, where it suffices to count up until a certain number of neighbors.
As an example, when we want to confirm if a set X is an independent set, which is equivalent
to checking if X is a ({0},N)-set, it is irrelevant if a vertex v has more than one neighbor in
X. We capture this property in the function d : 2N → N, which is defined as follows:

I Definition 15 (d-function). Let d(N) = 0. For every finite or co-finite set µ ⊆ N, let
d(µ) = 1 + min(max

x∈N
x : x ∈ µ,max

x∈N
x : x /∈ µ). Let d(σ, ρ) = max(d(σ), d(ρ)).

I Definition 16 (d-neighborhood). Let G = (V,E) be a graph. Let A ⊆ V and X ⊆ A. The
d-neighborhood of X with respect to A, denoted by Nd

A(X), is a multiset of vertices from A,
where a vertex v ∈ A occurs min(d, |N(v) ∩X|) times in Nd

A(X). A d-neighborhood can be
represented as a vector of length |A| over {0, 1, . . . , d}.

I Definition 17 (d-neighborhood equivalence). Let G = (V,E) be a graph and A ⊆ V . Two
subsets X,Y ⊆ A are said to be d-neighborhood equivalent with respect to A, denoted by
X ≡dA Y , if it holds that ∀v ∈ A : min(d, |X ∩ N(v)|) = min(d, |Y ∩ N(v)|). The number
of equivalence classes of a cut (A,A) is denoted by nec(≡dA). The number of equivalence
classes necd(T, δ) of a decomposition (T, δ) is defined as max(nec(≡dA), nec(≡d

A
)) over all

cuts (A,A) of (T, δ).

Note that N1
A(X) = N(X) ∩A. It can then be observed that #UN (A) = nec(≡1

A) [17,
Theorem 3.5.5] Also note that X ≡dA Y if and only if Nd

A(X) = Nd
A(Y ).

5.2 Bounds on the number of equivalence classes
We present a brief overview of the most relevant bounds that are currently known, for which
we make use of a twin class partition of a graph.

I Definition 18 (Twin class partition). Let G = (V,E) be a graph of size n and let A ⊆ V .
The twin class partition of A is a partition of A such that ∀x, y ∈ A, x and y are in the same
partition class if and only if N(x) ∩A = N(y) ∩A. The number of partition classes of A is
denoted by ntc(A) and it holds that ntc(A) ≤ min(n, 2bool-dim(A)) [2].

For all bounds listed below, let G = (V,E) be a graph of size n and let d be a non-negative
integer. Let (A,A) be a cut induced by any node of a decomposition (T, δ) of G, and let
k = bool-dim(A) = nec(≡1

A).
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I Lemma 19. [3, Lemma 5] nec(≡dA) ≤ 2d·k2 .

I Lemma 20. [17, Lemma 5.2.2] nec(≡dA) ≤ (d+ 1)min(ntc(A),ntc(A)).
I Lemma 21. nec(≡dA) ≤ ntc(A)d·k.
Proof. We make use of a graph parameter called maximum induced matching-width [1]. Let
mim(A) denote the maximum matching-width of A. It has been shown that for a graph G and
for any subset A ⊆ V it holds that mim(A) ≤ bool-dim(A) [17, Theorem 4.2.10]. From [17,
Lemma 5.2.3] we know that nec(≡dA) ≤ ntc(A)d·mim(A), thus nec(≡dA) ≤ ntc(A)d·k. J

By Lemma 19 we conclude that we can solve (σ, ρ) problems in O∗(8dk2). This shows that
applications are more computationally expensive than using heuristics to find a decomposition.

6 Experiments

6.1 Comparing Heuristics on random graphs
We will look at the performance of heuristics on randomly generated graphs, for which we
used the Erdös-Rényi-model [5] to generate a fixed set of random graphs with varying edge
probabilities. By using the same set of graphs for each heuristic, we rule out the possibility
that one heuristic can get a slightly easier set of graphs than another.

In these experiments we start a heuristic once for each possible initial vertex, so n times
in total. For the RelativeNeighborhood heuristic we select the best decomposition
based upon the sum of the score function for all cuts, since computing all actual linear
boolean-width values would take O(n3 · 2k) time, thereby removing the purpose of this
polynomial time heuristic. For the set Candidates we take N2(Left)∩Right, as opposed to
Sharmin [12], who restricted this set to N(Left) ∩Right.

We let the edge probability vary between 0.05 and 0.95 with steps of size 0.05. For each
edge probability value, we generated 20 random graphs. The result per edge probability is
taken to be the average boolean-width over these 20 graphs, which are shown in Figure 1. It
can be observed that the Incremental-UN-heuristic procedure performs near optimal.
Furthermore we see that the RelativeNeighborhood variants perform somewhere in
between the optimal value and the value of random decompositions.

In Figure 2 we show the performance of different heuristics on random generated graphs
consisting of 50 vertices, with varying edge probabilities. Because of feasibility limitations,
the Incremental-UN-exact algorithm is only used for the graphs in Figure 1. While
the optimal values are now unknown, it is clear that Incremental-UN-heuristic out-
performs all other heuristics. Interestingly enough, RelativeNeighborhood3 peers with
Incremental-UN-heuristic as soon as the edge probability exceeds 0.4. Moreover, Rela-
tiveNeighborhood and RelativeNeighborhood2 do not perform better than a random
decomposition generator after the edge probability exceeds 0.4. We also observe that the
highest boolean-width values are reached when the edge probability is around 0.1–0.2, indicat-
ing that the size of the graphs has an influence on the edge-probability-boolean-width-curve.
Also note that it seems that dense random graphs have lower linear boolean-width than
sparse graphs. Therefore it may be profitable to use RelativeNeighborhood3 when dense
graphs are encountered.

6.2 Comparing heuristics on practical graphs
The experiments in this section are performed on a 64-bit Windows 7 computer, with a 3.40
GHz Intel Core i5-4670 CPU and 8GB of RAM. We implemented the algorithms using the
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Figure 1 Performance of different heuristics on random generated graphs consisting of 20 vertices,
with varying edge probabilities, in terms of linear boolean-width.

Figure 2 Performance of different heuristics on random generated graphs consisting of 50 vertices.

C# programming language and compiled our programs using the csc compiler that comes
with Visual Studio 12.0.

In order to get an idea of how the Incremental-UN-heuristic compares to existing
heuristics we compare them by both the boolean-width of the generated decomposition and
the time needed for computation. We cannot compare the heuristics to the optimal solution,
because computing an exact decomposition is not feasible on these graphs. The graphs that
were used come from Treewidthlib [14], a collection of graphs that are used to benchmark
algorithms using treewidth and related graph problems.

We ran the three different heuristics mentioned in Section 4 with Candidates = Right

and with an additional two variations on the Incremental-UN-heuristic (IUN) by varying
the set of start vertices. The first variation, named 2-IUN, has two start vertices which are
obtained through a single and double BFS respectively. The n-IUN heuristic uses all possible
start vertices. For all other heuristics we obtained the start vertex through performing a
double BFS. In Table 1 and 2 we present the results of our experiments.

It is expected that the IUN heuristic and LeastCutValue heuristic give the same
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Table 1 Linear boolean-width of the decompositions returned by different heuristics.

Graph |V | Edge Density Relative LeastCut IUN 2-IUN n-IUN
alarm 37 0.10 3.32 3.00 3.00 3.00 3.00
barley 48 0.11 5.70 5.91 5.91 4.70 4.58
pigs-pp 48 0.12 10.35 7.13 7.13 7.13 6.64
BN_100 58 0.17 15.84 11.56 11.56 10.86 10.86
eil76 76 0.08 8.86 8.33 8.33 8.33 8.33
david 87 0.11 9.38 6.27 6.27 6.27 5.86
1jhg 101 0.17 12.86 8.67 8.67 8.49 8.41
1aac 104 0.25 20.29 12.40 12.40 12.40 12.33

celar04-pp 114 0.08 11.67 7.27 7.27 7.27 7.27
1a62 122 0.21 18.92 11.68 11.68 11.28 11.14

1bkb-pp 127 0.18 16.81 9.98 9.98 9.53 9.53
1dd3 128 0.17 16.61 9.98 9.98 9.90 9.90

miles1500 128 0.64 8.17 5.58 5.58 5.58 5.29
miles250 128 0.05 7.95 7.13 7.13 5.39 4.58
celar10-pp 133 0.07 10.32 11.95 11.95 7.64 6.91

anna 138 0.05 12.65 8.67 8.67 8.51 7.94
pr152 152 0.04 12.69 11.19 11.19 10.36 8.29

munin2-pp 167 0.03 15.17 9.61 9.61 9.61 7.61
mulsol.i.5 186 0.23 7.55 5.29 5.29 5.29 3.58
zeroin.i.2 211 0.16 7.92 4.46 4.46 4.46 3.81
boblo 221 0.01 19.00 4.32 4.32 4.32 4.00

fpsol2.i-pp 233 0.40 5.58 6.07 6.07 5.78 4.81
munin4-wpp 271 0.02 13.04 9.27 9.27 9.27 7.61

linear boolean-width, since both these heuristics greedily select the vertex that minimizes
the boolean dimension. The RelativeNeighborhood heuristic performs worse than all
other heuristics in nearly all cases. While the difference might not seem very large, note that
algorithms parameterized by boolean-width are exponential in the width of a decomposition.
The 2-IUN heuristic outperforms IUN in 11 cases while n-IUN gives a better decomposition
in 20 out of 23 cases, which shows that a good initial vertex is of great influence on the width
of the decomposition.

Looking at the times displayed in Table 2 for computing each decomposition we see
that the RelativeNeighborhood heuristic is significantly faster. This is to be expected
because of the O(n3) time, compared to the exponential time for all other heuristics. The
interesting comparison that we can make is the difference between the IUN heuristic and
LeastCutValue heuristic. While both of these heuristics give the same decomposition,
IUN is significantly faster. Additionally, even 2-IUN and n-IUN are often faster than the
LeastCutValue heuristic.

6.3 Vertex subset experiments

We have used the linear decompositions given by the n-IUN heuristic to compute the size
of the maximum induced matching (MIM) in a selection of graphs, of which the results
are presented in Table 3. The maximum induced matching problem is defined as finding
the largest ({1},N) set, with d({1},N) = 2. The choice for the MIM problem is arbitrary,
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Table 2 Time in seconds of the heuristics used to find linear boolean decompositions.

Graph |V | Edge Density Relative LeastCut IUN 2-IUN n-IUN
alarm 37 0.10 < 0.01 0.02 < 0.01 < 0.01 0.06
barley 48 0.11 < 0.01 0.18 0.01 0.02 0.16
pigs-pp 48 0.12 < 0.01 0.76 0.02 0.04 0.52
BN_100 58 0.17 < 0.01 25.10 0.41 1.24 17.17
eil76 76 0.08 0.02 5.00 0.13 0.29 8.35
david 87 0.11 0.02 3.15 0.04 0.06 1.62
1jhg 101 0.17 0.03 24.46 0.21 0.48 14.75
1aac 104 0.25 0.04 754.54 5.66 11.81 375.31

celar04-pp 114 0.08 0.04 5.73 0.14 0.23 9.85
1a62 122 0.21 0.06 585.95 3.10 11.57 376.26

1bkb-pp 127 0.18 0.06 198.05 1.14 4.18 107.32
1dd3 128 0.17 0.07 117.21 0.92 2.74 91.19

miles1500 128 0.64 0.06 44.57 0.10 0.14 7.05
miles250 128 0.05 0.02 0.56 0.05 0.10 1.24
celar10-pp 133 0.07 0.06 8.93 1.96 4.72 18.43

anna 138 0.05 0.06 20.81 0.22 0.57 19.95
pr152 152 0.04 0.10 50.74 1.76 5.66 120.06

munin2-pp 167 0.03 0.11 3.81 0.80 3.37 30.21
mulsol.i.5 186 0.23 0.09 37.88 0.13 0.27 8.80
zeroin.i.2 211 0.16 0.06 18.70 0.09 0.11 5.85
boblo 221 0.01 0.29 3.39 0.28 0.56 46.22

fpsol2.i-pp 233 0.40 0.18 189.11 0.36 0.74 56.63
munin4-wpp 271 0.02 0.61 57.87 1.98 6.66 367.37

any vertex subset problem with d = 2 will have the same number of equivalence classes
and therefore they all require the same time when computing a solution. We present the
computed value of necd(T, δ), together with theoretical upperbounds, since for d = 2 a tight
upperbound in terms of boolean-width is not known. Note that we take the logarithm of each
value, since we find this value easier to interpret and compare to other graph parameters. We
let UB1 = 2d·boolw2 , UB2 = (d+ 1)minntc and UB3 = ntcd·boolw, with ntc = max

w∈T
ntc(Vw)

and minntc = max
w∈T

min(ntc(Vw), ntc(Vw)).
The column MIM displays the size of the MIM in the graph, while the time column

indicates the time needed to compute this set. Missing values for nec and MIM are caused by
a lack of internal memory. The reason for this is that the space requirement for the algorithm
used to compute the MIM is O∗(necd(T, δ)2). An interesting observation that we can do, for
instance by looking at the graphs zeroin.i.2 and boblo, is that a lower boolean-width does
not automatically imply a lower number of equivalence classes. We even encountered this for
two decompositions (T, δ) and (T ′, δ′) of the same graph. For instance, for the graph barley
we observed boolw(T, δ) = 4.58 and boolw(T ′, δ′) = 4.81, while log2(nec2(T, δ)) = 7.00 and
log2(nec2(T ′, δ′)) = 6.75.

7 Conclusion

We have presented a new heuristic and a new exact algorithm for finding linear boolean
decompositions. The heuristic has a running time that is several orders of magnitude faster
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Table 3 Results of using the algorithm by Bui-Xuan et al. [3] for solving (σ, ρ) problems on
graphs, using decompositions obtained using the n-IUN heuristic.

Graph boolw log2(nec) log2(UB1) log2(UB2) log2(UB3) MIM Time (s)
alarm 3.00 4.32 18.00 7.92 13.93 18 < 1
barley 4.58 7.00 42.04 12.68 27.51 22 3
pigs-pp 6.64 10.31 88.28 19.02 49.17 22 1147
BN_100 10.86 - 235.93 36.45 105.53 - -
eil76 8.33 12.63 138.81 22.19 65.10 - -
david 5.86 9.37 68.63 22.19 44.61 34 919
1jhg 8.41 13.53 141.58 41.21 81.75 - -
1aac 12.33 - 304.08 72.91 141.25 - -

celar04-pp 7.27 11.15 105.61 28.53 65.74 - -
1a62 11.14 - 248.09 60.23 121.61 - -

1bkb-pp 9.53 - 181.47 52.30 98.49 - -
1dd3 9.90 - 196.11 52.30 103.17 - -

miles1500 5.29 9.30 55.87 34.87 49.69 8 4038
miles250 4.58 7.24 42.04 15.85 31.72 52 37
celar10-pp 6.91 10.34 95.41 25.36 59.70 50 10179

anna 7.94 11.94 125.98 33.28 75.48 - -
pr152 8.29 12.76 137.45 22.19 63.13 - -

munin2-pp 7.61 11.82 115.97 19.02 54.60 - -
mulsol.i.5 3.58 6.11 25.70 14.26 24.80 46 22
zeroin.i.2 3.81 6.58 28.99 20.60 28.18 30 59
boblo 4.00 6.17 32.00 9.51 20.68 148 41

fpsol2.i-pp 4.81 8.07 46.22 22.19 36.61 46 934
munin4-wpp 7.61 12.13 115.97 19.02 57.98 - -

than the previous best heuristic and finds a decomposition in output sensitive time. This
means that if a decomposition is not found within reasonable time, then the decomposition
that would have been generated is not useful for practical algorithms. Running the new
heuristic once for every possible starting vertex results in significantly better decompositions
compared to existing heuristics.

We have seen that if lboolw(T, δ) < lboolw(T ′, δ′), then there is no guarantee that
nec(T, δ) < nec(T ′, δ′). While in general it holds that minimizing boolean-width results
in a low value of number of equivalence classes, we think that can be worthwhile to focus
on minimizing the necd instead of the boolean-width when solving vertex subset problems.
However, the number of equivalence classes is not symmetric, i.e., nec(≡dA) 6= nec(≡d

A
) does

not always holds for a cut (A,A), which makes it harder to develop fast heuristics that focus
on minimizing necd since we need to keep track of both the equivalence classes of A and A.

Further research can be done in order to obtain even better heuristics and better up-
perbounds on both the linear boolean-width and boolean-width on graphs. For instance,
combining properties of the Incremental-UN-heuristic and the RelativeNeighbor-
hood heuristic might lead to better decompositions, as they make use of complementary
features of a graph. Another approach for obtaining good decompositions could be a branch
and bound algorithm that makes us of trivial cases that are used in the heuristics. To
decrease the time needed by the heuristics one can investigate reduction rules for linear
boolean-width. While most reduction rules introduced by Sharmin [12] for boolean-width do
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not hold for linear boolean-width, they can still be used on a graph after which we can use
our heuristic on the reduced graph. Although the resulting decomposition after reinserting
the reduced vertices will not be linear, the asymptotic running time for applications does
not increase [15]. Another topic of research is to compare the performance of vertex subset
algorithms parameterized by boolean-width to algorithms parameterized by treewidth [16].
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