
Clustering and Dynamic
Invariant Detection

Arno Pol

July 20, 2015

Master’s thesis computing science
Study Line: Algorithmic Data Analysis

Utrecht University

Contents

1 Word of thanks 0

2 Introduction 1
2.1 Invariant detection . 2

2.1.1 Types of invariant detection 3
2.2 Daikon . 3

2.2.1 How Daikon infers invariants 4
2.3 Prior work . 4

2.3.1 Goal functions . 5

3 Research problem 7
3.1 Research question . 7
3.2 Hypothesis . 7

4 Methodology 8
4.1 Process overview . 8
4.2 Mutating the source . 10
4.3 Test Subjects . 11

4.3.1 StackAr . 12
4.3.2 QueueAr . 12

4.4 Testing the test set . 13
4.5 Clustering algorithms and distance functions 15

4.5.1 Clustering functions . 15
4.5.2 Distance functions . 18

4.6 Statistical kills . 19
4.7 Quality measures . 20

4.7.1 Distinct invariants gained 20
4.7.2 Number of false positives 21
4.7.3 Number of implication invariants 21
4.7.4 Mutants detected . 21
4.7.5 Aggregate quality . 22

4.8 Visual Debugging . 22

5 Results 24
5.1 QueueAr . 24
5.2 StackAr . 26

6 Discussion 28

7 Conclusion 28

8 Contributions 29

9 Future work 30

1 Word of thanks

First I would like to thank Professor Wishnu Prasetya for his continued sup-
port during this project. His help was invaluable to my research. His detailed
feedback helped improve this thesis, and his insightful comments and questions
helped improve my understanding of software testing. Without his help and
support I could never have completed this project.

I want to thank Professor Ad Feelders for his support with and insights on the
data mining portion of this research. His feedback, and his insightful courses
over the years helped me understand the field of Data Mining. Furthermore I
would like to thank professor Michael Ernst with his support on Daikon, without
his insight into interning issues debugging my software would have taken much
more time.

2 Introduction

Computers are everywhere, from our cellphones, to our car computers and our
desktops. Each of these systems can contain a vast array of programs, and
these programs are built with a large amount of code. Software failures in these
systems can lead to anything from benign program crashes to missile defense
system failure. [20] Detecting these software failures is thus critically important
to maintaining a modern automated society.

There are many tools and methods to validate software. In this thesis I will
discuss invariant detection. Invariant detection is the automated generation of
necessary conditions for software validation. This automation aims to save the
programmer time and effort in detecting software failures.

This thesis describes a successful attempt at improving the output of dynamic
invariant detection. I will examine a method of clustering the input to Daikon,
a dynamic invariant detection tool. This technique leads to the detection of
more correct invariants, at a minimal cost in invalid invariants. Furthermore I
present a novel technique to quickly identify buggy programs without program-
mer intervention: ”statistical kills”.

This thesis is organized as follows: The introduction section contains informa-
tion about invariant detection (section 2.1), the invariant detection tool Daikon
(section 2.2), and prior research into clustering Daikon inputs by Dodoo, Lin,
and Ernst[7] (section 2.3). This is followed by a section containing an outline of
this thesis’ research area, problem statement and research questions in chapter
3 . Chapter 4 contains an explanation of how my research was conducted, which
samples were used, which quality measures were applied, and justifications for
my methods.

Chapter 5 contains information about the results obtained trough the procedures
described in chapter 4. Chapter 6 explains features of these results. Chapter 7
contains my conclusion about the research questions posed in section 3.1. Chap-
ter 8 contains information about the new insights obtained trough my research.
Finally chapter 9 contains information about avenues for future research I found
interesting.

1

2.1 Invariant detection

An invariant of a set of executions is a property that holds at a certain point in a
program during those executions. [11] Thus invariant detection is the detection
of these properties. These properties take the form of logical statements about
the variables at a certain program point.

In this thesis, I will define the term program point, as either an entry, or an
exit point of a function in a program. An example of a logical statement about
the variables at a program point, or invariant would be x > 0 or abs(x) > y
at myFunction::ENTER . Algorithm 1 shows an example of a program. Figure
1 shows an example of a set of valid invariants of this program. The set of
invariants in figure 1 fully specify the program in algorithm 1.

Algorithm 1 Array copy program

Input:An array X
Output:An array A

1: function Copy(X)
2: A← array[]
3: B ← 0
4: while B < size(X) do
5: A← Append(A,X[B])
6: B ← B + 1
7: end while
8: return A
9: end function

Ideally, an invariant detector would come to the following invariants.

Figure 1: Invariants for array copy
program

Point name Invariant
Copy::ENTER size(X) >= 0
Copy::EXIT B ≡ size(X)
Copy::EXIT X ≡ A

These invariants describe which conditions must be satisfied in a normal execu-
tion of this program. Instrumenting a program with such invariants will reveal
if the behavior of functions changes between revisions of a program. Given a
sufficiently complete set of invariants and test executions, a change in the code
resulting in abnormal behavior will result in an invariant being invalidated. If
a set of inferred invariants is intuitive enough the programmer can review the

2

invariants against his expectations of the program state. This could lead to
early discovery of critical bugs in program code.

In the example above, an array copy program is only valid if the resulting copy
of the input array contains the same elements as the output. Therefore, by
default, any invalid copy program will invalidate one of the invariants.

2.1.1 Types of invariant detection

There are two main types of invariant detection, static and dynamic invariant
detection. The difference lies in the information used to infer invariants. Static
invariant detection attempts to infer invariants directly from the program text.
Whereas dynamic invariant detection attempts to infer invariants from the data
generated by program executions.

Static invariant detection[12][18] is typically done using a symbolic execution
algorithm. In symbolic execution an interpreter steps through a program, and
determines value ranges for each variable at a program point. Unknown values
returned by for example external methods are assigned a symbol.[14] Thus static
invariant detection has no knowledge about the contents of a program’s input
variables or data returned from external functions. When evaluating a program
it has less information about the values variables are likely to have. This relative
lack of information results in very generic invariants.

Meanwhile dynamic invariant detection has it’s own weakness, in the fact that
it infers invariants from data gathered from program executions. Invariants
inferred from this data will reflect the test case this state was computed from.
For instance, we could run a set of executions of the copy algorithm in section
2.1 with as input an array containing the numbers 1 through 20. Then if we use
this data generated from these executions for dynamic invariant detection, our
invariant detector might infer that B always equals 20 once the function exits,
and perhaps even invariants about the contents of X and A.

Thus here we see the main difference, and the main trade-off in invariant detec-
tion. The trade-off between soundness, and completeness. Where static analysis
is always sound, it is usually incomplete. On the other hand, while dynamic
analysis is often unsound, it is more complete.

2.2 Daikon

As explained in section 2.1.1, dynamic invariant detection seeks to extract in-
variants from program state. One of the most well-known tools to do this is

3

Daikon. Daikon was developed as a PhD project at Washington University.
Daikon includes tools to automatically infer invariants for a variety of program-
ming languages.

2.2.1 How Daikon infers invariants

Once one of the Daikon front-ends like Chicory is started with a program as
its arguments it outputs a program trace. This program trace contains the
variable, method and class definitions involved in this trace, as well as func-
tion invocations. Each invocation consists of a list of values of variables at a
function’s entry and exit point. Each function may have only one entry point,
but multiple exit points. Each function invocation has a nonce, an incremental
number, unique to each entry and exit pair.

Once this logging phase is completed Daikon begins its analysis of the program
log file. Daikon reads the log file, and infers all derived values. A derived value
is a value gained by applying a function to a variable, or two variables. These
derived variables allow Daikon to quickly identify invariants that involve multi-
ple variables and functions, invariants such as x[y−1] == null or max(y) >= x.
These derived variables do not need to appear in the Chicory output, or even
the program source, they are simply helper variables for invariant detection.

Then Daikon proceeds to infer invariants in order of complexity, that is Daikon
infers first, second and third order invariants for all supported functions. First
order invariants are simply invariants over one variable. For instance, x >= 0.
Second order invariants, are invariants over two variables, for instance x+y >=
0. And third order invariants are invariants over three variables. These invari-
ants are generated one by one, and checked against the samples for the program
point over which the invariant is inferred. If an invariant is invalidated by any
of the samples for the program point, it is discarded. From these invariants that
are compatible with our dataset, only invariants that are statistically justified
are reported. [3][10]

Invariants are statistically justified when the probability of an invariant appear-
ing in a random input is smaller than a user-specified threshold. The methods
that compute this probability differ per invariant type, and can be found in
Michael D. Ernst’s thesis Dynamically Discovering Likely Program Invariants[9].

2.3 Prior work

Daikon does a good job at detecting invariants. Some invariant types however
still require a lot of user involvement, for instance implication invariants. Im-
plication invariants are implications of the form A ⇒ B, where A and B are

4

individual invariants, and the postcondition B is a logical consequent of the
precondition A. In[7] Dodoo, Lin, and Ernst investigated the use of clustering
to split data trace files into separate clusters to automate the detection of impli-
cation invariants. Their research resulted in the conclusion that cluster analysis
to infer implication invariants is a useful technique.

In their paper, Dodoo, Lin, and Ernst[7] explain that Daikon uses algorithm 2
to infer implication invariants. Its inputs are two lists of invariants, gained by
splitting a dataset using a splitting condition and then deducing invariants from
them.

Algorithm 2 Create-Implications as per Dodoo, Lin, and Ernst[7]

Input:Two sets of invariants S1 and S2

Output:A list of implication invariants

1: function Create-Implications(S1,S2)
2: for s1 ∈ S1 do
3: if ∃s2 ∈ S2 such that s1 ⇒ ¬s2 and s2 ⇒ ¬s1 then
4: { s1 and s2 are mutually exclusive }
5: for s′ ∈ (S1 \ S2) do
6: output ”s1 ⇒ s′”
7: end for
8: end if
9: end for

10: end function

If a dataset is split in two using a Boolean condition, one of the generated
invariant sets computed from this data contains the splitting condition and the
other the negation of it. The above algorithm finds all such splitting conditions,
then sees which invariants were gained by applying them. It then outputs an
implication for each invariant gained from such a precondition.

The rationale behind using a clustering algorithm as the splitting predicate in
the above method is that programs tend to follow different paths depending
on input variables. These different paths contain different operations, and thus
clustering will divide the data in clusters for different program paths taken. The
division between clusters will then represent the conditionals in the program
source.

2.3.1 Goal functions

In [7] Dodoo, Lin, and Ernst applied two test suites. One of them is a computer
generated test suite, from which invariants were inferred with Daikon, and ver-

5

ified with ESC/Java[12]. Their precision and recall functions were constructed
as follows:

precision = number of invariants that are correct
number of reported invariants

recall = number of invariants that are correct
number of invariants in goal set

number of invariants in goal set = number of correct invariants reported
by Daikon

+ number of additional invariants
necessary to validate
Daikon-generated invariant
set with ESC/Java

These metrics measure if automatically generated implication invariants de-
crease the effort necessary by the programmer to verify invariants generated by
Daikon using ESC/Java. Dodoo, Lin, and Ernst[7] show that this is indeed the
case.

6

3 Research problem

Dodoo, Lin, and Ernst[7] confirmed that clustering is a good way to generate
splitting conditions for detecting implication invariants. The problem is then
determining an optimal clustering algorithm for this task. Dodoo, Lin, and
Ernst[7] recommend investigating a clustering function that is more robust to
outliers than the k-means algorithm used in their paper.

Furthermore I believe that clustering by itself has merits, as it exposes invariants
that could not ordinarily be inferred. If indeed splitting separates data in groups
based upon the program flow, splitting itself should be sufficient to improve
Daikon’s output. Therefore I also wish to evaluate the effect of clustering as-is
on the quality of Daikon’s output.

Another problem is that Dodoo, Lin, and Ernst[7] used a rather artificial mea-
sure to determine the value of clustering for implication invariants, as described
in section 2.3.1. Ideally I would like to use a method of determining the effect of
clustering on Daikon’s output that involves verification of real world mistakes
in code.

3.1 Research question

Thus my research questions are threefold. Can I determine a better clustering
function for Daikon log files? Is it possible to determine a better metric for the
quality of a clustering? And does clustering alone, without detecting implication
invariants, have merit?

3.2 Hypothesis

Since Dodoo, Lin, and Ernst[7] are limited in the attributes and distance func-
tions they can evaluate by their choice of tools and algorithm, I should most
certainly be able to find a better clustering algorithm for Daikon log files. By
introducing mistakes similar to those a programmer makes into the code, and
determining which invariants are invalidated, I expect to also be able to learn
more about the quality of a clustering algorithm. Because conditional state-
ments are not likely to be the only source of separate clusters in a program’s
execution trace, I expect simple clustering without implication inference to in-
crease the quantity of useful invariants Daikon infers.

7

4 Methodology

4.1 Process overview

The setup for my experiment is quite involved, and fully automated. In figure
2 you can see a general outline of the process.

Figure 2: Experiment flow

First the source that is to be evaluated is compiled. The source code and binary
class files are then processed using MuJava, generating the necessary mutated
class files for the experiment. These mutated class files, including all other
dependencies are then packaged in an experiment environment. An experiment
environment is simply a large binary archive of all the files necessary to later
reproduce a set of generated Daikon log files.

8

Figure 3: Experiment environment

In figure 3 you can see the structure of an experiment environment file, as
generated by my software. It contains a virtual file system (Vfs) and a set of
mutated classes. This file system contains one or more folders containing all
Java source files and miscellaneous files necessary to run the program used in
the experiment.

This file system is later extracted to a temporary folder, and one of its classes
is replaced by one of the mutants from the list of mutated classes. This list
of mutated classes contains mutants for all classes in the project source folder.
These mutants are generated according to the process specified in section 4.2.
Then a log file is generated by running this program with Chicory. The log files
for all mutants are then combined into a MutantLogs file, the structure of which
is shown in figure 4.

Figure 4: mutantLogs

A MutantLogs file is a collection of named, GZipped Daikon trace files. The
name of each log file contains the class name, the mutation that was applied to
it, and where this mutation was applied.

9

The clustering program loads the log environment, applies a given clustering
algorithm to the logs, generates invariants for a base case, and determines the
strength of the invariants against the generated mutants. Once a set of invari-
ants has been tested against a certain split of the data, the result is computed
and passed on to the graphical user interface.

4.2 Mutating the source

The first step in the experiment process is to generate a set of mutants. For this
I will use a mutation testing engine. Mutation testing[17] is a method to test
the effectiveness of test cases. In mutation testing the source code of a program
is modified in order to introduce flaws. After mutants are generated, test cases
are run against the mutants to see if the mutations are detected. A set of test
cases is said to be strong if the majority of mutations are detected.

The tool I employed for mutation testing is MuJava[17] (Mutation System for
Java). MuJava is the product of a collaboration between the Korea Advanced
Institute of Science and Technology in South Korea, and George Mason Univer-
sity in the USA.

MuJava had two major shortcomings for my project, only one of which could be
mitigated. The first major flaw was that not every mutation leads to an actual
change in program executions. Since the typical Java program contains quite a
bit of unused and unreferenced methods, modifying these will have no effect on
the actual runs of the program.

The second major flaw was the large number of generated mutants resulting
from applying all the available mutation operators in MuJava. As quite a bit
of time is taken per run of the program, and often multiple runs are necessary
to produce good log files, I sought to reduce the number of operators applied
to the program source. Fortunately, my supervisor Professor, Wishnu Prasetya
found a reference to the minimal set of operators necessary for mutation testing
in Java programs. Figure 5 contains information from Introduction to Software
Testing[1] combined with which tests are actually available in MuJava.

10

Figure 5: Sufficient mutations
Ammann & Offutt Description Relevant MuJava oper-

ators
ABS Absolute value insertion (insert abs() instruc-

tion)
None

AOR Arithmetic operator replacement (Replace + -
* / ** and %). Arithmetic operators are also
replaced by their left and right operand.

AORU AORB

ROR Relational operator replacement (Replace <<=
> >= = ! =) and replace relational statements
by true or false.

ROR

COR Conditional operator replacement (replace &
&& | ||) and insert true false as left or right
operand.

COR

SOR Shift operator replacement replace << >> and
replace shift statements by the left operand.

SOR

LOR Logical operator replacement replace bitwise op-
erators. Logical operators are also replaced by
their left and right operand.

LOR

ASR Assignment operator replacement replace all the
special assignment operators like *= with an-
other.

ASRS

UOI Unary operator insertion (insert unary operator
+ - ! ∼) before expressions of the correct type.

AOIU

UOD Delete unary operator (+ - ! ∼) . AODU
SVR Scalar variable replacement replace order of ap-

pearance of variables in multiplication .
None

BSR Bomb statement replacement, insert throw
statements .

Irrelevant and detri-
mental to this research.

As you might notice there I have failed to find an absolute value insertion
operator in MuJava. I have disabled the bomb station inserting operation as
well, since throw statements can easily be detected by other methods than
invariant testing.

Each of the operators shown in the table above might generate multiple mutants.
For instance example the AOR operation, applied to the expression a = b∗c will
generate the following mutated expressions: a = b, a = c, a = b + c, a = b− c,
a = b/c, a = b ∗ ∗c and a = b%c . So even with a strongly reduced set of
mutation operators, there is still quite a large set of possible mutants for each
line of code. Automating the running of each of these mutants however, makes
it feasible to apply this to small and medium sized Java projects.

4.3 Test Subjects

In this thesis I’ll use two of the test suites also used in[6]. Namely StackAr and
QueueAr, two projects that are shipped with the Daikon invariant detector.

I chose these two test suites for their ubiquitous usage in papers about Daikon,
and their good code coverage. The first of those properties will allow future

11

researchers to easily and quickly evaluate my results, while the second hopefully
allows for a large number of mutants to influence the trace files generated by
Daikon.

4.3.1 StackAr

StackAr contains 462 lines of code. 73% of it’s statements are covered by running
StackArTester. In the class MyInteger only the constructor is covered. Thus
any mutations of MyInteger are unlikely to result in changes to Daikon trace
files generated from StackAr.

Figure 6: StackAr coverage graph

4.3.2 QueueAr

QueueAr contains 544 lines of code. 55.3% of it’s statements are covered by
running QueueArTester. The problems with coverage of the MyInteger class
are exactly the same as with StackAr.

Figure 7: QueueAr coverage graph

12

4.4 Testing the test set

In order to determine how well errors in the test suites described in section 4.3
are reflected in the invariants generated from them. I will Run Daikon on a log
file generated by a correct version of the StackAr program, and evaluate the
invariants generated by Daikon on this program against a different set of logs
for this program and it’s mutants .

13

Figure 8: Initial output for StackAr, no clustering
Class Method Mutation Invariants Invalidated in-

variants
- - no mutation 629 13
- - no mutation 629 9
- - no mutation 629 0
StackAr void makeEmpty() AORB 7 629 41
StackAr boolean isFull() ROR 14 629 14
StackAr boolean isFull() ROR 13 629 71
StackAr boolean isFull() ROR 12 629 76
StackAr boolean isFull() ROR 11 629 73
StackAr boolean isFull() ROR 10 629 76
StackAr boolean isFull() ROR 9 629 14
StackAr boolean isFull() ROR 8 629 10
StackAr boolean isFull() AORB 4 629 12
StackAr boolean isFull() AORB 3 629 63
StackAr boolean isFull() AORB 2 629 15
StackAr boolean isFull() AORB 1 629 5
StackAr boolean isEmpty() ROR 6 629 56
StackAr boolean isEmpty() ROR 4 629 13
StackAr boolean isEmpty() ROR 2 629 54
StackAr StackAr() AOIU 1 629 5
MyInteger int hash(int) ROR 29 629 12
MyInteger int hash(int) ROR 28 629 15
MyInteger int hash(int) ROR 27 629 14
MyInteger int hash(int) ROR 26 629 14
MyInteger int hash(int) ROR 25 629 14
MyInteger int hash(int) ROR 24 629 14
MyInteger int hash(int) ROR 23 629 12
MyInteger int hash(int) AOIU 4 629 11
MyInteger int hash(int) AODU 2 629 15
MyInteger int hash(int) AORB 8 629 14
MyInteger int hash(int) AORB 7 629 10
MyInteger int hash(int) AORB 6 629 11
MyInteger int hash(int) AORB 5 629 14
MyInteger int hash(int) AORB 4 629 16
MyInteger int hash(int) AORB 3 629 15
MyInteger int hash(int) AORB 2 629 8
MyInteger int hash(int) AORB 1 629 11
MyInteger boolean equals(java.lang.Object) COR 2 629 17
MyInteger boolean equals(java.lang.Object) COR 1 629 13
MyInteger boolean equals(java.lang.Object) ROR 22 629 14
MyInteger boolean equals(java.lang.Object) ROR 21 629 13
MyInteger boolean equals(java.lang.Object) ROR 20 629 12
MyInteger boolean equals(java.lang.Object) ROR 19 629 6
MyInteger boolean equals(java.lang.Object) ROR 18 629 10
MyInteger boolean equals(java.lang.Object) ROR 17 629 10
MyInteger boolean equals(java.lang.Object) ROR 16 629 8
MyInteger int compareTo(DataStructures.Comparable) ROR 14 629 8
MyInteger boolean equals(java.lang.Object) ROR 15 629 13
MyInteger int compareTo(DataStructures.Comparable) ROR 13 629 15
MyInteger int compareTo(DataStructures.Comparable) ROR 12 629 14
MyInteger int compareTo(DataStructures.Comparable) ROR 11 629 13
MyInteger int compareTo(DataStructures.Comparable) ROR 10 629 14
MyInteger int compareTo(DataStructures.Comparable) ROR 9 629 7
MyInteger int compareTo(DataStructures.Comparable) ROR 8 629 5
MyInteger int compareTo(DataStructures.Comparable) ROR 7 629 17
MyInteger int compareTo(DataStructures.Comparable) ROR 6 629 17
MyInteger int compareTo(DataStructures.Comparable) ROR 5 629 8
MyInteger int compareTo(DataStructures.Comparable) ROR 4 629 14
MyInteger int compareTo(DataStructures.Comparable) ROR 3 629 15
MyInteger int compareTo(DataStructures.Comparable) ROR 2 629 11
MyInteger int compareTo(DataStructures.Comparable) AODU 1 629 15
MyInteger java.lang.String toString() AOIU 3 629 15
MyInteger int intValue() AOIU 2 629 12
MyInteger MyInteger(int) AOIU 1 629 11

14

In figure 8, for entries containing an original program, marked by a value of
no mutation in the operation column, a maximum of 13 invariants are invali-
dated. There are quite a few mutants that invalidate a similar or lower number
of invariants. Looking at the names of the mutants, it becomes obvious why.
The majority of mutations is applied to the class MyInteger, which had very
poor coverage. Thus, by far not every mutation of the source code leads to an
actual change in the log files generated.

In my experiment I will remove all mutants that do not lead to a change in pro-
gram behavior. This ensures that I can accurately measure how many mutants
are recognized by my algorithm.

Another problem is that the number of invalidated invariants even in the case
of a correct program is high.

There are several possibilities to reduce the number of these false positive in-
variants. By far the easiest approach to reduce the number of false positives in
data mining is to gather more data. For this thesis, I will run multiple runs of
each program, then combine the log files. These combined log files contain more
information about the program, and do thus yield more accurate invariants.

Another approach commonly taken is to have a human agent verify the invariant
sets. This is laborious, and in this case unnecessary. Not least of all because
what I am attempting to measure is the increase in the number of distinct
invariants - and the number of false positives generated through clustering.

4.5 Clustering algorithms and distance functions

The next step in my experiment is clustering. This section describes which
clustering functions I applied to the input data. As these functions are applied
to huge datasets, both speed and accuracy are important. Below you will see
information about the functions I used in this experiment.

4.5.1 Clustering functions

The design of the software used in this thesis allows for interchangeability of
clustering and distance functions. This means that I have the freedom to de-
fine and use any arbitrary clustering function. Furthermore, unlike applied in
Dodoo, Lin, and Ernst[7], I also will attempt to cluster on attributes of the data
that are not numeric - for instance strings and arrays. Below I will explain the
clustering algorithms I used, and the reasons for using them.

15

4.5.1.1 K-medoids

K-medoids clustering is a clustering algorithm first described by Kaufman and
Rousseeuw [13]. Whereas k-means, as used by Dodoo, Lin, and Ernst[7], con-
structs a center point from all samples in a cluster, K-medoids picks one of the
data-points as the center of a cluster. This makes it less vulnerable to outliers,
as points far from the center have no influence at all on the location of the
cluster’s center.

Due to the fact that centers are chosen from the dataset, and not constructed,
any distance metric can be applied. As there is no need to average any values
in any distance metrics value space.

This allows us the freedom to experiment with different distance metrics without
having to restructure our clustering algorithm. Below you will see the variant
of k-medoids used to generate the result in this thesis.

16

Algorithm 3 K-medoids clustering

Input:a set of value tuples at function exit points L
Input:a parameter for the number of clusters K
Input:a parameter for the number of restarts R
Output:a set of sets of function executions Outputmeds

1: function Cluster-data(L,K,R)
2: Outputmeds← ∅
3: for Restart ∈ {1, . . . , R} do
4: Meds← RandomMedoids(L,K)
5: for Counter ∈ {1, . . . , sqrt(#L)} do
6: Changed← False
7: Bestmeds←Meds
8: for Medoid ∈Meds do
9: for Iteration ∈ {1, . . . , sqrt(#L)} do

10: Newmedoid← RandomFrom(L)
11: Newmeds← (Meds \ {Medoid}) ∪ {Newmedoid}
12: if Distance(Newmeds, L) < Distance(Bestmeds, L) then
13: Bestmeds← Newmeds
14: Changed← True
15: end if
16: end for
17: end for
18: Meds← Bestmeds
19: if ¬Changed then
20: break
21: end if
22: end for
23: if Distance(Meds, L) < Distance(Outputmeds, L) then
24: Outputmeds←Meds
25: end if
26: end for
27: return Outputmeds
28: end function

As can be seen above a set of runs of k-medoids were completed. For each
medoid, only a subset of data points is tried as a replacement. This was done to
reduce the computation time necessary for my algorithm. Better results could
be had by evaluating every data point for every medoid, but at a massive cost
in program runtime. More restarts will lead to a better clustering. I chose 3
restarts as it was the number of restarts that reduced the computation time
necessary for my experiment to about a day per program.

4.5.1.2 Random clustering

Another clustering algorithm I applied was random clustering, where items are
randomly assigned to an output cluster. Random clustering was used both as a

17

benchmark, and because it was the optimal clustering solution Dodoo, Lin, and
Ernst[7] found for the problem of detecting implication invariants.

4.5.2 Distance functions

In my experiment various distance metrics were applied, and their effect on the
output evaluated. Below I will discuss the various distance metrics, their origins
and merits.

4.5.2.1 Naive distance

The naive distance metric simply compares each entry in the value lists for two
execution states at a program point, and counts the number of values that differ.
Below you can see a recursive definition of this function. This function operates
on recursive sets of values. In this notation, the Java array containing values
1 through 3 would be described as {1,{2,3}} . All following distance function
definitions will follow this model of an array.

Figure 9: Naive distance function
d(∅, ∅) = 0
d({v,X}, {v, Y }) = 0 + d(X,Y)
d({a,X}, {b, Y }) = 1 + d(X,Y)

4.5.2.2 Semi-naive distance

The semi-naive distance metric ignores array-type values, and computes a nor-
malized hamming distance between String values. For numeric values the per-
centage difference between the values is computed. Any other types are simply
compared, and one is counted if they differ, zero if they do not differ. All these
values are summed up, and returned as the Semi-naive distance metric. Below
you can see the semi-naive distance function.

Figure 10: Semi-naive distance function
d(∅, ∅) = 0
d({{a}, X}, {{b}, Y }) = 0 + d(X,Y)
d({”a”, X}, {”b”, Y }) = Hamming(a, b) + d(X,Y)
d({Num(a), X}, {Num(b), Y }) = (Max(a, b)−Min(a, b))/Max(a, b)+d(X,Y)
d({v,X}, {v, Y }) = 0 + d(X,Y)
d({a,X}, {b, Y }) = 1 + d(X,Y)

18

4.5.2.3 SumDistance

Almost the same as the Semi-naive distance metric, however the SumDistance
metric computes distance values for array values too. See below.

Figure 11: SumDistance distance function
d(∅, ∅) = 0
d({{a}, X}, {{b}, Y }) = d(a, b)/Max(#a,#b) + d(X,Y)
d({”a”, X}, {”b”, Y }) = Hamming(a, b) + d(X,Y)
d({Num(a), X}, {Num(b), Y }) = (Max(a, b)−Min(a, b))/Max(a, b)+d(X,Y)
d({v,X}, {v, Y }) = 0 + d(X,Y)
d({a,X}, {b, Y }) = 1 + d(X,Y)

4.6 Statistical kills

As explained in the section on code coverage, a number of false positives were
generated for a correct program. I was determined however to find a way to
automatically deduce if a program has indeed been mutated, or not. Preferably
without the need for human filtering of the invariant sets. This led me to the
notion of a statistical kill.

A statistical kill is an instance of a program where the number of invalidated in-
variants sufficiently deviates from the average number of invariants invalidated
on a run of a correct program to warrant marking the program as buggy. Al-
gorithm 4 shows the algorithm I applied to determine the difference between a
mutant and a correct program.

Algorithm 4 Mutant detection algorithm

Input:a set of log files of a correct program L
Input:a log file that might or might not belong to a mutant M
Output:a boolean B

1: function IsMutant(L,M)
2: l← PickRandomElement(L)
3: N ← Cluster(l)
4: I ← Daikon(N)
5: E ← []
6: for t ∈ L do
7: if t 6= l then
8: E ← Append(E, InvariantsInvalidated(I, t))
9: end if

10: end for
11: return InvariantsInvalidated(I,M) > Max(E)
12: end function

19

This algorithm does the following: It takes as input a set of execution logs of a
correct program. It picks from this set, at random, one log and generates a set
of invariants for it. These invariants are then tested against all the other log
files of the correct program. The number of failed invariants is recorded, and
stored.

The maximum of the number of failed invariants is then computed. Once a
program invalidates a number of invariants, above this number, it is considered
a mutant. This is equivalent to looking up the recall value for 100% precision
in a precision-recall graph.

4.7 Quality measures

As described in section 2.1, invariants represent information about the values
that one or more variables at a program point are likely to have. Increasing the
number of invariants found by Daikon, therefore means that more information
about a program’s variables was captured in its invariants. However optimizing
the output of Daikon is not as simple as maximizing the number of invariants
created. This section discusses the quality measures chosen for this experiment,
and why they were chosen.

4.7.1 Distinct invariants gained

The number of distinct invariants, is simply the size of the set of all invariants
from all clusters. Thus the number of invariants gained is the number of invari-
ants generated with clustering minus the number generated without clustering.
This measure is based upon the idea that an invariant represents a constraint on,
and thus information about a program’s variables. Therefore more information
is better.

However, this quality measure alone is not sufficient. Invariants are only useful
insofar they help the programmer identify program faults. Thus an overly spe-
cific invariant set, might become tailored to the test case and not the program.

In this case many of our invariants will be invalidated by a correct program,
and therefore they will provide no useful information to the programmer. This
is analogous to the data-mining concept over-fitting, where a model of the data
represents the training data in such great detail that it is no longer useful on
different datasets. To avoid over-fitting, the next quality measure is essential.

20

4.7.2 Number of false positives

The number of invariants that fail on a correct program on average. A good
algorithm will minimize the input required by a programmer. Therefore I will
seek to minimize the number of invariants a programmer has to manually filter
out. A bigger number of invalid invariants will also lead to worse results when
deriving anything from these invariants, for example implication invariants.

4.7.3 Number of implication invariants

The number of implication invariants, generated using the method described in
section 2.2. This should give an idea of the number of implications that can
be inferred from this clustering. As implications are inferred from mutually
exclusive invariants, it also gives a good idea of the separation between clusters.
Or in other words how well a clustering algorithm is actually separating the
data into distinct groups.

4.7.4 Mutants detected

The percentage of mutants detected using the statistical kill algorithm specified
in the previous section. This gives us an idea of the noise generated by false
positives. If there are too many false positives in the generated invariant set,
quickly determining the difference between a mutant and a correct program
becomes difficult. Thus, if this number deviates too far from 100% this is a
good indication that false positives are starting to become problematic, or that
my statistical kill algorithm is inaccurate.

4.7.4.1 Verifying actual mutants

To verify the the above quality measure I needed information about which mu-
tations influence the program. In order to determine the mutants that have an
influence on the program path, I extracted the generated mutants from a log
environment file. I removed all the mutant class files, and kept only the source
files. I then filtered out all the files that contained mutants for functions that
were not covered.

I then proceeded to work my way trough the remaining few source files,seeing
if the mutations applied had any effect on the program’s execution. After this

21

I removed all those mutants that did not influence the program from this ex-
periment’s environment files. This leaves a clearly defined set of mutants that
introduce bugs that change program behavior.

4.7.5 Aggregate quality

As described in section 2.3 a good clustering ideally reflects different branches
in the program text. When a clustering closely reflects branch statements in
the code, it will group over properties that appear time and time again in it’s
program logs. Hence the number of false positives will be low. When this same
clustering captures a lot of information about these branches, the number of
invariants gained by assigning items in a dataset to clusters will be high. Hence
the aggregate quality of a clustering is the total number of unique invariants
gained by clustering over Daikon without clustering, divided by the number of
false positives.

4.8 Visual Debugging

During development I ran into a series of issues with my code. As in any
sufficiently complex project debugging turned out to be far from trivial. Most
of these issues were found in the code that read log files and converted them to
an internal representation that was suitable for quick manipulation. Another
big area of potential errors was memory management. This section discusses
one of the tools I used to explore one of these memory management problems.

VisualVM is a visual performance analysis tool for Java. It allows the user to
monitor information about the program, in real time. Using VisualVM to graph
the memory of my software, I get figure 12. This graph contains information
about the program’s memory usage and the objects that occupy its memory
space.

22

Figure 12: Memory Graph of partial execution of experiment.

Looking at figure 12, it appears that the memory usage is linearly increasing
with execution time. Since the system memory available per task is fairly lim-
ited, such an increase is problematic. Below we’ll see which objects occupy the
majority of the program’s memory space.

Figure 13: Classes in memory of partial execution of experiment.

All these structures have something in common, namely that they are objects
generated by reading and manipulating log files. After dealing with an interning
problem in my code, with the help of Professor Michael Ernst, and going over
the temporary solution to the memory management issues, I quickly figured out
the origin of the poor memory management.

Java has an interning system, which means that it has a set of functions that
can ensure that only one copy of the same data is stored in memory. Daikon

23

makes heavy use of interning, to reduce its memory footprint. To store interned
objects Daikon uses a WeakHashMap in its interning system. This class is not
thread safe, thus multi-threaded access wreaked havoc on its internals, causing
it to never forget objects that were allocated!

Thus, to run Daikon’s thread-unsafe code in a multi-threaded manner, I had
to launch a different JVM instance for each thread. This due to the fact
that each JVM instance gets its own interning system. I implemented a quick
MapReduce[4] algorithm, as an elegant way to delegate computation to different
JVM instances.

5 Results

5.1 QueueAr

First I will examine the effects of different clustering algorithms on the log file
produced for 10 runs of the program QueueAr, included in the Daikon source
folder. The QueueAr test suite was modified to use a random number generator
seeded with a static value, and executions were logged in random order. This
to diminish the effect of system time on the internal state of the program.

24

Algorithm No.
clusters

Distance Metric % De-
tected

Invariants
added

Number
of
false
posi-
tives

Number of
implication
invariants

Quality

Random split 1 - 100.0 0 1.0 0 0.0
Random split 3 - 88.24 20 18.3 1664 1.09
Random split 5 - 17.65 140 106.6 19474 1.31
Random split 7 - 0.0 297 246.7 69064 1.20
Random split 9 - 0.0 351 288.3 91840 1.22
Random split 11 - 0.0 434 381.2 150434 1.14
Random split 13 - 0.0 402 390.7 175328 1.03
Random split 15 - 0.0 553 507.7 245254 1.09
Random split 17 - 0.0 751 641.5 320390 1.17
Random split 19 - 0.0 722 662.0 374940 1.09
K medoids 1 SumDistance 100.0 0 1.0 0 0.0
K medoids 3 SumDistance 58.82 0 1.0 0 0.0
K medoids 5 SumDistance 58.82 -2 1.0 0 -2.0
K medoids 7 SumDistance 58.82 -2 1.0 0 -2.0
K medoids 9 SumDistance 58.82 -2 1.0 0 -2.0
K medoids 11 SumDistance 58.82 -2 1.0 0 -2.0
K medoids 13 SumDistance 58.82 -2 1.0 0 -2.0
K medoids 15 SumDistance 58.82 -2 1.0 0 -2.0
K medoids 17 SumDistance 58.82 -2 1.0 0 -2.0
K medoids 19 SumDistance 58.82 -2 1.0 0 -2.0
K medoids 1 Naive Sum Distance 100.0 0 1.0 0 0.0
K medoids 3 Naive Sum Distance 58.82 579 19.4 28900 29.85
K medoids 5 Naive Sum Distance 47.06 957 36.3 82124 26.36
K medoids 7 Naive Sum Distance 41.18 1311 80.3 185888 16.33
K medoids 9 Naive Sum Distance 41.18 1528 74.0 299314 20.65
K medoids 11 Naive Sum Distance 61.76 1794 65.3 511390 27.47
K medoids 13 Naive Sum Distance 44.12 1915 124.4 722384 15.39
K medoids 15 Naive Sum Distance 41.18 2013 122.8 1001608 16.39
K medoids 17 Naive Sum Distance 41.18 2050 139.9 1313582 14.65
K medoids 19 Naive Sum Distance 41.18 2278 157.4 1693116 14.47
K medoids 1 Semi-Naive Sum Distance 100.0 0 1.0 0 0.0
K medoids 3 Semi-Naive Sum Distance 41.18 49 14.7 1760 3.33
K medoids 5 Semi-Naive Sum Distance 41.18 110 17.0 5650 6.47
K medoids 7 Semi-Naive Sum Distance 41.18 187 48.1 19146 3.89
K medoids 9 Semi-Naive Sum Distance 14.71 244 70.4 44546 3.47
K medoids 11 Semi-Naive Sum Distance 29.41 264 48.4 61758 5.45
K medoids 13 Semi-Naive Sum Distance 2.94 308 87.3 143058 3.53
K medoids 15 Semi-Naive Sum Distance 2.94 235 74.3 116262 3.16
K medoids 17 Semi-Naive Sum Distance 2.94 296 101.7 196050 2.91
K medoids 19 Semi-Naive Sum Distance 2.94 258 43.5 226370 5.93

Figure 14: Output for QueueAr
Column 1: the clustering algorithm applied.
Column 2: the number of clusters generated.
Column 3: the distance metric used.
Column 4: the percentage of mutants detected using algorithm 4.
Column 5: the number of additional distinct invariants generated.
Column 6: the average number of false positive invariants generated.
Column 7: the number of implication invariants generated.
Column 8: the aggregate quality metric as described in section 4.7.5.

25

What we see here, is that my initial tests, namely random clustering and
SumDistance produce suboptimal results. Random clustering predictably mas-
sively increased the number of false positive invariants. It also massively in-
creased the number of invariants generated and the number of implications
inferred from this. This happened because when randomly dividing any set of
values over enough clusters, the range of values within each cluster will eventu-
ally drastically differ from the original range of values. K-medoids with SumDis-
tance as distance function on the other hand clusters too strongly, and thus ends
up assigning all samples to one cluster. Therefore it does not provide us with
any extra invariants.

5.2 StackAr

Next I will look at the set of logs generated for 10 runs of StackAr.

26

Algorithm No.
clusters

Distance Metric % De-
tected

Invariants
added

Number
of
false
posi-
tives

Number of
implication
invariants

Quality

Random split 1 - 100.0 0 2.0 0 0.0
Random split 3 - 77.78 32 34.4 3810 0.93
Random split 5 - 77.78 57 55.4 5362 1.03
Random split 7 - 0.0 100 107.9 22364 0.93
Random split 9 - 0.0 151 166.7 65314 0.91
Random split 11 - 0.0 172 185.7 126620 0.93
Random split 13 - 0.0 192 214.4 183126 0.90
Random split 15 - 0.0 238 258.5 285816 0.92
Random split 17 - 0.0 309 329.4 416316 0.94
Random split 19 - 0.0 367 387.5 507270 0.95
K medoids 1 Naive Sum Distance 100.0 0 2.0 0 0.0
K medoids 3 Naive Sum Distance 88.89 269 28.6 12684 9.41
K medoids 5 Naive Sum Distance 88.89 668 50.6 66084 13.20
K medoids 7 Naive Sum Distance 88.89 1068 95.6 176422 11.17
K medoids 9 Naive Sum Distance 77.78 1470 143.9 329548 10.22
K medoids 11 Naive Sum Distance 22.22 1618 138.7 492124 11.67
K medoids 13 Naive Sum Distance 66.67 1869 179.6 782328 10.41
K medoids 15 Naive Sum Distance 77.78 1951 183.9 1013388 10.61
K medoids 17 Naive Sum Distance 44.44 2214 230.3 1397668 9.61
K medoids 19 Naive Sum Distance 77.78 2391 214.4 1805192 11.15
K medoids 1 Semi-Naive Sum Distance 100.0 0 2.0 0 0.0
K medoids 3 Semi-Naive Sum Distance 88.89 201 24.4 13000 8.24
K medoids 5 Semi-Naive Sum Distance 0.0 298 87.3 34458 3.42
K medoids 7 Semi-Naive Sum Distance 88.89 440 84.5 109978 5.21
K medoids 9 Semi-Naive Sum Distance 22.22 430 131.3 123758 3.27
K medoids 11 Semi-Naive Sum Distance 0.0 416 110.4 116168 3.77
K medoids 13 Semi-Naive Sum Distance 44.44 453 113.8 334658 3.98
K medoids 15 Semi-Naive Sum Distance 0.0 492 152.8 312096 3.22
K medoids 17 Semi-Naive Sum Distance 22.22 405 109.4 413016 3.70
K medoids 19 Semi-Naive Sum Distance 0.0 563 170.1 584722 3.31
K medoids 1 SumDistance 100.0 0 2.0 0 0.0
K medoids 3 SumDistance 88.89 10 4.7 314 2.13
K medoids 5 SumDistance 88.89 56 17.1 5486 3.27
K medoids 7 SumDistance 88.89 22 13.1 3358 1.68
K medoids 9 SumDistance 88.89 20 14.1 2960 1.42
K medoids 11 SumDistance 88.89 2 2.0 0 1.0
K medoids 13 SumDistance 88.89 8 2.9 0 2.76
K medoids 15 SumDistance 88.89 6 2.3 0 2.61
K medoids 17 SumDistance 88.89 10 2.7 0 3.70
K medoids 19 SumDistance 88.89 12 2.0 0 6.0

Figure 15: Output for StackAr
Column 1: the clustering algorithm applied.
Column 2: the number of clusters generated.
Column 3: the distance metric used.
Column 4: the percentage of mutants detected using algorithm 4.
Column 5: the number of additional distinct invariants generated.
Column 6: the average number of false positive invariants generated.
Column 7: the number of implication invariants generated.
Column 8: the aggregate quality metric as described in section 4.7.5.

27

What is interesting in the above table is that the ability of the statistical kill
algorithm appears to be highly correlated with the quality metric I selected ear-
lier. Furthermore the downwards trend of the number of false positives above 9
clusters, when clustering with a semi-näıve distance function was also remark-
able. Very noticeable is the difference between random splitting, and actual
clustering functions.

6 Discussion

Daikon with clustering showed a clear increase in the number of valid invariants
inferred from a program. Furthermore optimizing my distance metric led to a
massive decrease in the number of false positives generated, and an increase in
accuracy of mutant detection. Unlike Dodoo, Lin, and Ernst[7] who found only
a small difference between random clustering and their clustering functions, the
difference between k-medoids and random clustering for me is massive.

This difference between clustering and random splitting I noticed might be in
large part due to the measurement procedure I applied, which is completely
different from that of Dodoo, Lin, and Ernst[7]. Where they looked at the num-
ber of additional invariants a human would have to infer to verify the invariant
set generated by Daikon, I looked at the invariants I could gain by clustering
Daikon inputs.

Random clustering performs rather horribly, always coming dead last in my
tests. The biggest improvements over random clustering for QueueAr were
found with a Naive distance function, and K=3. Where there were 19.4 false
positives per cluster on average, however the number of generated invariants
increased by 579.

For StackAr the most impressive results were produced by applying k-medoids
with a naive sum distance function, and k=5 . My technique for statistical kills
performed amicably, returning a realistic number of killed runs for each and
every clustering run. For all of the base cases with k=1 the number of detected
mutants using my statistical kill algorithm equaled the number of mutations
that actually had an effect on the program’s execution path.

7 Conclusion

In this thesis I examined methods of clustering Daikon log files, and their advan-
tages and disadvantages. I evaluated a clustering function that is less sensitive
to outliers than k-means, namely k-medoids, with success. Furthermore trough

28

tweaking the distance function large gains in accuracy were had. Thus to the
first research question, Can I determine a better clustering function for Daikon
log files, the answer is a resounding yes.

The answer to the second research question, namely if it is possible to determine
a better metric for the quality of invariants gained by clustering trace files, is not
so clear. Plain Daikon without clustering invalidated enough invariants to allow
identification of all mutants created by MuJava. Due to my choice of perfor-
mance metric I can however say that the number of mutants left undetected as
a result of clustering is smaller than the number of mutants potentially detected
as a result of clustering Daikon’s input.

To the third research question, does clustering alone, without detecting implica-
tion invariants, have merit, the answer is yes. Valid, new invariants were gained
through the application of clustering operations to log files. Tough, as it turns
out, even a small change in a program often invalidates a huge number of invari-
ants. So many in fact that the notion of statistical kills, or simply determining
if a run was bad by the number of invariants invalidated, works well. This shows
that there is in practice no need to manually remove all false positive invariants.

While evaluation of clustering functions is rather memory and runtime expen-
sive, once a good clustering function is found using it is quick. For my exper-
iment I used a computer running Gentoo, with two Opteron 6272 processors,
each having 16 cores, and 64Gb ram. Generating output for the biggest set of
logs, namely that of QueueAr takes roughly a day. But when a good clustering
function is chosen, it is quick to cluster a log file, and then evaluate each cluster
in parallel, taking only a modest amount of extra time over a regular Daikon
run.

8 Contributions

I verified the work of Dodoo, Lin, and Ernst[7] insofar that clustering does gain
us useful invariants, and therefore information about a program. Through a
smart choice of the clustering algorithm I examined, I managed to make clus-
tering for Daikon more robust to outliers. Furthermore this clustering algorithm
allows for easy evaluation of the effect of different distance functions on cluster-
ing log files. I examined the invariants invalidated by mutation testing, instead
of using ESC/Java as a benchmark, and found that the set of invariants nor-
mally inferred by Daikon is rather complete. This quality of Daikon’s output
allowed me to create an easy algorithm for determining if a program is defective,
namely the statistical kill algorithm.

29

9 Future work

The obvious next step to add a complete implementation of Dodoo, Lin, and
Ernst[7] to my framework, as to evaluate the precision and recall metrics for
implication invariants. Furthermore since the number of clustering algorithms
tested in this thesis is extremely limited, and the distance metrics can certainly
be improved, two other avenues of research would be developing more sensible
distance metrics and clustering functions for program log files.

The notion of a statistical kill was described, however this notion could be
improved upon by for instance cross-validating the generated invariant set. To
verify the quality of a clustering metric, some notion of the information gain
from invariants inferred from a clustering needs to be developed.

Since my framework does not ensure complete code coverage, it would be bene-
ficial to include a testing tool, such as T3[16] in my software, and to evaluate the
results of guaranteeing coverage. It would also be interesting to see the effect
of clustering on other correctness properties, such as algebraic specifications[8].
Furthermore it would be interesting to see how this research applies to differ-
ent programming languages for which mutation testing is convenient, such as
JavaScript. [15].

Due to the problems I’ve experienced with multi-threading, it would certainly
be interesting to see how much speed could be gained by optimizing Daikon for
multi-threaded use. Certainly invariants for different entry and exit pairs could
be computed in parallel. This would help Daikon scale to much bigger programs,
and some measure of thread safety would certainly help future developers who
want to link to Daikon in their own projects. With the price of machines capable
of running a massive number of threads in parallel as low as they are today,
massive performance gains could be achieved. If Java’s networking libraries are
used, even more massive log files could be processed by distributing the load
over several machines.

30

References

[1] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge
University Press, New York, NY, USA, 1 edition, 2008.

[2] James H. Andrews. Testing using log file analysis: Tools, methods, and
issues. In In Proceedings of the 1998 International Conference on Au-
tomated Software Engineering (ASE’98, pages 157–166. IEEE Computer
Society, 1998.

[3] Dana Angluin. Computational learning theory: Survey and selected bib-
liography. In Proceedings of the Twenty-fourth Annual ACM Symposium
on Theory of Computing, STOC ’92, pages 351–369, New York, NY, USA,
1992. ACM.

[4] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data process-
ing on large clusters. In Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation - Volume 6, OSDI’04, pages
10–10, Berkeley, CA, USA, 2004. USENIX Association.

[5] William Dickinson, David Leon, and Andy Podgurski. Pursuing failure:
The distribution of program failures in a profile space. In In Proceedings
of the 8th European Software Engineering Conference held jointly with 9th
ACM SIGSOFT International Symposium on Foundations of Software En-
gineering, pages 246–255. ACM Press, 2001.

[6] Nii Dodoo. Selecting predicates for conditional invariant detection using
cluster analysis. Master’s thesis, MIT Department of Electrical Engineering
and Computer Science, Cambridge, MA, September 2002.

[7] Nii Dodoo, Lee Lin, and Michael D. Ernst. Selecting, refining, and evaluat-
ing predicates for program analysis. Technical Report MIT-LCS-TR-914,
MIT Laboratory for Computer Science, Cambridge, MA, July 21, 2003.

[8] A. Elyasov, I. S. W. B. Prasetya, and J. Hage. Guided algebraic specifi-
cation mining for failure simplification. In Testing Software and Systems,
pages 223–238. Springer, 2013.

[9] Michael D. Ernst. Dynamically Discovering Likely Program Invariants.
Ph.D., University of Washington Department of Computer Science and
Engineering, Seattle, Washington, August 2000.

31

[10] Michael D. Ernst, Adam Czeisler, William G. Griswold, and David Notkin.
Quickly detecting relevant program invariants. In Proceedings of the 22Nd
International Conference on Software Engineering, ICSE ’00, pages 449–
458, New York, NY, USA, 2000. ACM.

[11] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Car-
los Pacheco, Matthew S. Tschantz, and Chen Xiao. The Daikon system for
dynamic detection of likely invariants. Science of Computer Programming,
69(1–3):35–45, December 2007.

[12] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Stata. Extended static checking for java.
SIGPLAN Not., 37(5):234–245, May 2002.

[13] L. Kaufman and P.J. Rousseeuw. Clustering by means of medoids. In
Y. Dodge, editor, Statistical Data Analysis Based on the L1-Norm and
Related Methods, pages 405–416. North-Holland, 1987.

[14] James C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, July 1976.

[15] I. S. W. B. Prasetya, A. Elyasov, A.and Middelkoop, and J. Hage. Fittest
log format (version 1.1). Department of Information and Computing Sci-
ences, Utrecht University, Tech. Rep. UU-CS-2012-014, 2012.

[16] I. S. W. B. Prasetya, T. E. J. Vos, and A. Baars. Trace-based reflexive
testing of oo programs with t2. In Software Testing, Verification, and
Validation, 2008 1st International Conference on, pages 151–160. IEEE,
2008.

[17] Yu seung Ma, Jeff Offutt, and Yong Rae Kwon. Mujava : An automated
class mutation system. Journal of Software Testing, Verification and Reli-
ability, 15:97–133, 2005.

[18] Nikolai Tillmann and Jonathan De Halleux. Pex: White box test generation
for .net. In Proceedings of the 2Nd International Conference on Tests and
Proofs, TAP’08, pages 134–153, Berlin, Heidelberg, 2008. Springer-Verlag.

[19] Anand Yeolekar. Improving dynamic inference with variable dependence
graph. In Borzoo Bonakdarpour and ScottA. Smolka, editors, Runtime
Verification, volume 8734 of Lecture Notes in Computer Science, pages
301–306. Springer International Publishing, 2014.

[20] M. Zhivich and R. K. Cunningham. The real cost of software errors. IEEE
Security and Privacy, 7(2):87–90, March 2009.

32

