
MSc Thesis

Faculty of Science
Department of Information and Computing

Sciences

Modeling Race Track Difficulty in
Racing Games

Robin van der Ploeg
ICA-3019934

July 8, 2015

Supervisors:
dr. M. Wand
M. van de Hoef, MSc

Contents
Abstract 1

1 Introduction 3

2 Related Work 7

3 Test Environment 11
3.1 Requirements . 11
3.2 Considered environments . 12

3.2.1 TORCS . 12
3.2.2 Speed Dreams, VDrift and other free / open source projects . 13
3.2.3 Unity / Custom-made racing game 13

3.3 Unity implementation . 14
3.3.1 Terrain generation . 14
3.3.2 Track generation . 14
3.3.3 Racing game . 16

4 Data driven model 19
4.1 Hypothesis . 19
4.2 Model . 19
4.3 Method . 20

4.3.1 Flagging records as off-road 21
4.3.2 Invariant position / rotation 21
4.3.3 Cropping the data to exclude the ends 22
4.3.4 Feeding the data into SVM 24

4.4 Test Results . 24
4.4.1 Results . 24
4.4.2 Analysis . 27
4.4.3 Conclusion . 27

5 Analytical model 29
5.1 Hypothesis . 29
5.2 Model . 30
5.3 Implementation . 33
5.4 Test results . 35

5.4.1 Results . 35
5.4.2 Analysis . 38

i

Contents Contents

5.5 Derivative of maximum velocity . 40
5.6 Subjective analysis . 40

6 Comparison of models 43
6.1 Comparison of the results . 43
6.2 Discussion and limitations of models 44

6.2.1 Discussion of differences . 44
6.2.2 Limitations . 45

7 Conclusion 47
7.1 Future work . 48

Acknowledgments 51

Bibliography 53

ii

Abstract

Recent years have shown a rising popularity of procedurally generated content, such
as automated level design. To ensure the player enjoys the content, game developers
need to make sure it is suitably difficult. This is challenging if at all possible when
the content is generated after the product has shipped. The designers need to
make sure the game can automatically alter the variables that control the difficulty,
depending on the performance of the player. To determine which variables used in
level generation control difficulty, a difficulty model is required. We attempt to find
such a model for the racing game genre.
To identify what parts of the track most define the difficulty, we use two approaches.
First, a data driven model, which uses machine learning to recognize difficult sections
on the track. Second, an analytical model that attempts to predict where cars are
most likely to lose traction, following the rules of physics. Using a custom-made
racing game, our methods are tested empirically through player testing on various
procedurally generated racetracks.
Results show that while we can not perfectly predict all difficult sections of a race-
track, crashes can indeed be predicted with above-average accuracy (over 60%) using
simple algorithms, with relatively sparse data. The varying level of player perfor-
mance is identified as one of the most influential reasons why accurate predictions are
very hard to achieve. Further analysis of the data suggests some increased accuracy
may potentially be achieved with slightly altered approaches.
Our exploratory work helps game developers identify at least the most problematic
sections of tracks. We also believe it can be used as a foundation upon which further
work can be based.

1

1 Introduction

Procedural Content Generation Interest in Procedural Content Generation (PCG)
has risen with recent developments in the game industry [23]. Cited as influential
changes are improving hardware and rapidly increasing costs for big productions.1
Content generation algorithms, such as those for generating levels, can keep devel-
opment costs lower by reducing workload [12].

Many varying methods and implementations of PCG can be found, both in literature
and in practice. Some areas of game development have received relatively little
attention, such as system and world design, or story. Others, including smaller
bits of games (such as vegetation or textures) and terrain have been adopted quite
rapidly in recent years [10].

Indie games are most frequently produced by small studios with very few level
designers, who use these techniques at runtime to increase replayability. After the
introduction of Minecraft in 2009, many “sandbox” and exploration games featuring
procedurally generated worlds have been developed, such as Terraria, Cube World
and Starbound. Most of these games provide gameplay mechanics that can overcome
any issues or unexpected side effects of the algorithm. The terrain might contain
mountains that can not be crossed, but the game then allows players to build over
or tunnel through the mountain instead. Bigger game studios may also use similar
techniques, but are more likely to employ more advanced graphics. This leads to
more complicated algorithms in order to avoid game-breaking corner cases, which
take more time to develop.

Racing games One specific game genre which has received little attention in terms
of procedural generation is racing games. While racing games have been around
for decades, only a select few contain any obvious form of PCG. Gran Turismo 5
contains a feature where the game generates a track based on a few settings. While
Fuel contains an open world which is generated through procedural techniques, it
is not “randomly” generated and will be the same every time. This means it is
mostly used as a compression technique, rather than to add replayability. There are
also some (but not many) indie games that feature racing in procedurally generated
worlds, such as Race The Sun and Infinity Random Race (IRR). Both of these

1C Chapple, "Can the game industry keep a lid on rising development costs?", in Develop. May
14th 2014, viewed on 11 June 2015, http://www.develop-online.net/analysis/can-the-game-
industry-keep-a-lid-on-rising-development-costs/0192815

3

Chapter 1 Introduction

games include game mechanics that allow the player to get around any unforeseen
issues generated by the algorithms: Race The Sun is a game that is not limited to a
track, and IRR allows the player to transform the car into a robot that can fly over
obstacles.
We believe that procedurally generated tracks can add a lot of value to racing
games, but that it is not trivial to do so correctly. An obvious limitation is that
racing games are less forgiving when it comes to terrain smoothness than other types
of games. You usually can not easily change the world or go around obstacles while
you’re playing, unless special features to specifically do so are added (as previously
mentioned). But even when taking only racing tracks that are possible to finish into
account, difficulty is still an important factor.
To assure our work towards generating tracks and analysing the difficulty of these
tracks is useful, we are interested in exactly how difficulty affects the game expe-
rience. Research shows that players like to be challenged, but not overwhelmed
[15, 17]. One of the most essential terms in this field is “Flow”, a theory developed
by M. Csíkszentmihályi [19]. It has been used to better understand how players
react to certain situations. It can be summarized as follows: when players are not
challenged appropriate to their skill level, they either get bored (challenge level too
low) or frustrated (challenge level too high). As neither of these will improve the
player’s experience, we want to be able to adapt the game’s difficulty level to be
more appropriate for the player.

Measuring difficulty Adapting the difficulty to the player requires two things.
First, we need to be able to detect how well the player is doing. This is not the
focus of this work, but could in theory be implemented for racing games by looking
at how often the player crashes, how much progress they make along the track in a
certain amount of time, et cetera. Second, we need to be able to control the difficulty
of the environment around the player. In racing games, the most obvious way to
do so is to change the tracks to make them easier or more difficult to drive on (at
high speeds). But in order to change the difficulty, we first need to determine what
variables control the difficulty of a race track. For traditionally designed tracks this
can be done by play testing, but as procedurally generated tracks are different every
time, this approach is not an option.
This means it needs to be done through computational methods, implemented by the
game developers beforehand. To assess the difficulty of a race track computationally,
we will need a difficulty model, capable of analyzing the difficulty of a given section
of a race track.
To summarize: our main goal is to find a method of predicting difficulty of race
tracks, that can be applied in racing games that use procedural generation to gen-
erate race tracks. Preferably, we want a method that can easily be applied, without
the need of expensive equipment or long term testing, so that it can also be used by
smaller game studios.

4

Introduction

Structure of this thesis After going through some of the most relevant related
work in Chapter 2, we will explore the environment in which we implemented our
methods in Chapter 3. We first discuss the requirements we set in Section 3.1, then
the potential candidates for test environments we explored in Section 3.2, and fi-
nally our eventual Unity implementation in Section 3.3. We continue with our first
approach, the data driven model, in Chapter 4, followed by the analytical model in
Chapter 5. Both of these sections are subdivided into subsections for the hypothesis,
the model, our implementation method and the test results. A comparison between
the models is given in Chapter 6, where we first compare the results in Section 6.1
followed by a discussion of the models and their limitations in Section 6.2. Finally,
our conclusion can be found in Chapter 7, with future work discussed in Section 7.1.

5

2 Related Work

As Procedural Content Generation (PCG) in general is very broad, we will only
discuss related work on PCG related to procedurally generated racetracks. This is
followed by work on suitability and enjoyability. Next we will discuss works on how
we can measure such a quality, including difficulty models for games. Finally, we
take some time to discuss work (or rather, the lack thereof) that contained methods
designed for three dimensions, rather than just two.

Racetracks On the subject of racing games and race tracks in particular, the work
of Julian Togelius is cited very frequently. Togelius has written about computation-
ally evolved track design [4], and AI controlled cars using hand-crafted algorithms
as well as machine learning methods [3, 11], discussing methods on how to both gen-
erate and navigate tracks for racing games. He has also written about more general
forms of procedural content generation in games, such as procedurally generating
various forms of content including game rules [2], and even generating entire games
starting from nothing [14].

Togelius’ work has been the base for many other articles such as those by Cardamone,
Loiacono and Lanzi [7, 8], in which they describe a framework for interactively
generated race tracks using evolutionary algorithms. Wang and Missura [9] also
describe procedural generation of tracks, which they approach as a discrete sequence
prediction problem.

In [1], Cardamone discusses evolutionary learning (for AI) as well as content genera-
tion. He shows techniques that can be applied to racing games, first-person shooters
(FPS) and platforming games. Procedural content generation (PCG) in platforming
games in particular is something that has received attention from other authors who
have written on the subject of racing games, such as Togelius [6]. While our main
focus here will be racing games, some PCG techniques used in other game genres
can give us additional insights.

Generating race tracks is not our main goal, and is only done to quickly generate
tracks for testing purposes, as explained in Section 3.3. Because the methods dis-
cussed above did not meet our requirements or were time consuming implement and
use, we designed a simple method using A* in combination with splines to achieve
this goal.

7

Chapter 2 Related Work

Suitability and enjoyability Aside from generating content, work has also been
done on evaluating it to determine if it is suitable for playing, and enjoyable. One
of the people frequently cited on this is Georgios N. Yannakakis. In [15] a simple
physical game is adapted based on player performance and preference, which is
shown to increase the player’s enjoyment of the game. Something similar is then
done in [16] for a platformer adapted to incorporate similar preference learning.
To determine if a race track is enjoyable, first we need to define what makes a racing
game enjoyable. In [4] (from 2006), Togelius et al. mention that they were “unable
to find any prior research on what makes it fun to play a particular racing game”.
Instead, based on their own experiences and “opinions gathered from unstructured
selection of non-experts”, they define five points they believe are important:

• The sensation of speed; a high maximum speed.
• Not boring; a sufficient amount of challenge.
• Not too difficult; not too challenging.
• Variety of challenges; not repeating the same challenge constantly.
• Drifting or skidding in turns.

In addition to this, they also offer a different perspective, based on Raph Koster’s
work [24]. He says that playing and learning are intimately connected. Applying this
to racing games, they say that “a good racing track is one on which the player does
pretty poorly the first time he plays, but quickly and reliably improves in subsequent
races”. However, in [5] (from 2007) Togelius et al. also mention these and other
hypotheses are just that; hypotheses, with no empirical studies to back them up. We
have not found indications of studies on what makes racing games "fun" performed
since then.
In both the interpretation of Koster’s work and their own list of important factors,
finding the right amount of challenge for the player is a core element. To do so, we
need to know what makes a race track challenging for any particular player.
We made no further advancements in analysing the enjoyability or suitability of
racetracks. Instead, we focussed on methods to determine the difficulty of tracks, in
the hope that this in combination with previous work on enjoyability would prove
useful to improve race tracks in the future.

Difficulty models To our knowledge, no relevant work on race game specific dif-
ficulty models, based on the track, exists. We do know that simple models able to
determine how well the player does compared to previous records, other players or
AI have been used in racing games. Commonly, in single player games, these are
based on how far ahead or behind the player is when compared to AI controlled cars.
Notoriously, in older games in the Mario Kart series, the AI controlled characters
would speed up quite heavily if the player got too far ahead. This is known as "rub-
ber band AI", and is considered by many players to be bad game design. Naturally,

8

Related Work

players are bound to feel cheated if no matter what they do (including skipping big
track sections using glitches in the game), the AI will always catch up, then proceed
to stay a small distance behind the player. The effect is mentioned by several pa-
pers on dynamic difficulty adjustment (DDA) such as by Lopes and Bidarra [13] and
Yannakakis and Hallam [15], mostly as an example of what is considered a wrong
implementation.
None of the referenced work describes a proper implementation of DDA in racing
games, or difficulty models for racing games. Specific difficulty models, such as
those described by Moffett [17], generally use variables that are not applicable to
racing games (such as "enemies" or "obstacles"). Additionally, we found no racing
games that apply dynamic difficulty adjustment to the tracks, only on AI controlled
opponents. This leads us to believe that there is not much, or any, related work on
(predictive) difficulty models for racing games.
General work on the subject includes a thesis by Jeffrey Moffett [17], which focuses
on using causal models for DDA. It describes how to determine player’s enjoyment
of the game, using a directed acyclic graph based on factors and quantities from
within the game and the player. According to this graph, the avatar performance
(that is, the part of the game controlled by the player, such as a character or car) is
influenced by the environment, the player and avatar abilities, the last of which is
in turn influenced by avatar actions and parameters. It is noted that racing games
can have a large set of environmental factors which can be manipulated (such as
the shape and condition of the track). According to the model, this means the
environment has many ways to influence the player performance. Sadly, racing
games and environment factors are not described or explored in more detail.
Jennings-Teats et al. [18] detail a model they call Polymorph, which is used for
dynamic level generation (for a 2D platforming game, in their case). They note
that "nearly all" techniques used by others for DDA are “focused on basic parameter
tweaking, while the difficulty of many games is connected to aspects that are more
challenging to adjust dynamically, such as level design”. As we are looking for a
way to dynamically adjust a race track, this implies that most techniques used by
others do not apply to our case. This seems to confirm our suspicion that not much
research has been done in this field regarding racing games. Additionally, they
also note that “most DDA techniques are based on designer intuition, which may
not reflect actual play patterns”. In an attempt to not have such issues with our
models we avoided designing our models around very specific cases, or depending
on implementation-specific player abilities, as much as possible.
In Chapter 4 and Chapter 5 we discuss the models we designed, which we believe go
beyond the work already done on analysing the difficulty of race tracks.

The third dimension: height One interesting factor of the methods used in most
research mentioned so far is that they are mostly limited to two dimensional space.
We are interested in methods that can be applied to common types of modern racing

9

Chapter 2 Related Work

games, many of which are based in three dimensions. We therefore specifically
searched for work that also took the third dimension, height, into account.
We found that some works, such as those on Trackgen [7, 8] by Cardamone, Loia-
cono and Lanzi, or the recent work by Wang and Missura (from 2014) [9] implement
their tracks in a 3d environment (TORCS and TrackMania: Nations Forever, respec-
tively). However, it seems that this is only the final implementation, as the TORCS
tracks appear to be flat and the TrackMania tracks only change height where they
need to, for example in the case of self-crossing tracks. Height does not seem to be
taken into account before actually generating the physical track: illustrations and
algorithms all seem to imply the methods used work in, and were developed for,
two dimensional space. While this does not mean they can not be used in three
dimensional space, it might mean that height differences are not taken into account
in any of the models described so far. In fact, in the "Simulated Car Racing Com-
petition" API for (TORCS) controllers as mentioned by Cardamone in (Table 5.1
in) [1], height of any point of the track, the car, or any opponent cars does not even
seem to be available in any form to those who would want to use it.
Being limited to 2d space means that applying these methods to certain games
within the racing genre will be challenging. Many games, in particular traditional
racing games on race tracks, such as those about Formula 1 racing, have most action
taking place on a very flat road. Other games, such as those focussing on illegal
street racing or off-road rally driving, combine sharp turns with height differences.
The lack of control while cars are airborne often plays a big part in the experience
these games offer, and we believe it should not be overlooked. However, we could
not find any related work that includes this factor. Nevertheless, we aim to develop
a model that can handle all three dimensions, rather than be limited to just two.

10

3 Test Environment

Based on our initial research (see Chapter 1), as well as our search for related work
(detailed in Chapter 2), we concluded that we did not know (nor could we find)
much about computationally analyzing what made racing tracks fun, or difficult.
As we believed this to be a crucial part of procedurally generated race tracks, we
wanted to find a difficulty model. To test the validity of any difficulty models, a
testing environment was required. The requirements we set for such an environment
are described in Section 3.1. We tried to find existing racing games meeting these
requirements, which is described in Section 3.2. We finally decided on implementing
a simple racing game using the Unity game engine, as described in Section 3.3.

3.1 Requirements

With very little similar work to base our requirements on, we looked at what we
wanted to achieve, and tried to set our requirements based on that. Our goal is
finding a method that can be applied in real racing game development. For this we
need a racing simulation accurate enough to be like typical games in the racing genre,
to help ensure our methods are applicable in practice. This means that ideally, we
use an already existing racing game.
We need many different tracks in order to test various cases and ensure our methods
are not limited to one specific corner case. As designing many different tracks is
very time consuming, doing this by hand would limit the amount of tracks we could
produce in a limited amount of time. As such, it is preferred to be able to easily
generate these tracks computationally, rather than having to create them by hand.
As mentioned in Chapter 2, most related work we managed to find limits itself to
two dimensions. We decided that to check if height differences made much of a
difference in the models, some level of control over the way tracks are generated is
needed.
Finally, the models we designed and our chosen implementations added some extra
requirements for the environment which are not commonly found in racing games. As
explained in the sections on our methods (Section 4.3 for the data driven model and
Section 5.3 for the analytical model), we would have to gather data about the player’s
performance. This means it is important to have some logging functionality, to find
if and where exactly players leave the track ("go offroad" or "crash"). In addition,
our models require information about the shape of the tracks (most importantly,

11

Chapter 3 Test Environment

curvature and banking angle). This data also needs to be available and accessible,
either from logs generated by the game or directly from the track specifications.

3.2 Considered environments

3.2.1 TORCS

As mentioned in Section 3.1, using an existing racing simulator would be preferable
for various reasons. In particular, as we aim to design models for use in fully
functional games, using such a game as our test environment would help ensure we
meet this requirement. Due to the logging functionality requirement, which is clearly
not generally considered a part of standard racing games, a commercial products
with the required features could not be found.

Previous research work involving racing simulations, such as that by Togelius and
Cardamone, was performed either on simple hand-made simulations [4, 5], or open
source software [7, 8]. The most important of the open source simulators used seems
to be TORCS: The Open Racing Car Simulator 1. Its modularity and extensibility
are cited as important factors for its use in research. TORCS has AI racing as a
focus, and while human players can control a car themselves, computer controlled
cars (also known as "robot" or AI cars) is one of the strong features of this simulator.

Limitations One of the features of TORCS that stood out right from the start was
the big focus on AI racing. While not an issue in normal situations, it turns out that
the AI is easily tricked by placing “ramps” in the track. A player could simply drive
over the ramp, across a big gap, and land on the other side with relative ease. The
AI, however, would act like the height difference did not exist and usually crash.
This was also reflected by the AI API used for TORCS bot writing competitions
(as explained by Cardamone in [1]), which we believe lacks any feature to check for
height of points on the tracks. As we were aiming at finding models that could be
used in a wide variety of racing games, no support for height differences was a big
limitation.

While we might have been able to modify TORCS (as it is open source) to include
this support, we would also have had to write a custom AI that could handle the
height differences. And, as all the existing tracks were mostly flat, we would have
needed to either design tracks by hand, or write code to convert procedurally gener-
ated tracks to TORCS’s track file format. Due to a lack of knowledge of the existing
codebase, this was all a big risk. Even if it was possible to modify the code, it would
at least take a long time to read and understand the existing code well enough to
modify it correctly.

1http://en.wikipedia.org/wiki/TORCS

12

3.2 Considered environments

3.2.2 Speed Dreams, VDrift and other free / open source
projects

Speed Dreams is a similar open source project, which started from the same source
code base as TORCS but deviated from it in some ways. In particular, it shifted the
focus from AI to user-oriented racing. Similarly, a different open source racing game
project called VDrift was also available, based on an older project called Vamos.

Speed Dreams and VDrift were both considered as options, but did not contain
any additional features useful for this research project when compared to TORCS.
Their lesser popularity in the scientific world, combined with a seemingly smaller
community, made us discard them as candidates for testing.

The few other similar games that were found were not considered for this research,
mostly due to lacking features or support.

3.2.3 Unity / Custom-made racing game

Unity is currently one of the most popular game development engines amongst
smaller development teams 2. Recently it has even been used by some big developers
such as Blizzard (Hearthstone: Heroes of Warcraft) and Ubisoft (Grow Home) 3.
Previous experience with it had proven it to be simple and effective, with a very
large and active community. This community offered a multitude of tutorials, freely
available code and assets, and many answers to racing game related questions. Unity
itself offered a physics engine, even including built-in support for more complex
things such as wheel colliders, to simulate the physics related to car wheels such as
suspension and friction. Earlier research on procedural terrain and track generation
(see Section 3.3) had already been implemented in Unity. This made it a very simple
task to take some example car implementations and instantly be able to drive around
on our already generated tracks.

These basic car models were not as advanced or sophisticated as that of TORCS.
But with only some small changes it soon felt like a real game, and making further
changes proved very easy and quick. Implementing other required features, such
as logging capabilities, were also no issue. Using Unity also allowed us to easily
implement parts of our analytical model (see Section 5.3) directly in the game. This
meant exporting internal values was not needed, so we could keep the output for
further processing and analysis relatively small.

2https://unity3d.com/public-relations
3http://en.wikipedia.org/wiki/List_of_Unity_games

13

Chapter 3 Test Environment

3.3 Unity implementation

For our case the simplicity and flexibility of Unity, combined with previous experi-
ence and previous progress in it, outmatched the lesser detail of the car model. In
fact, the Unity car model being more basic (and thus less specific) could be seen as
an advantage if we want to keep our models valid for a wide range of race games. It
was accurate enough to feel like a racing game, not show any erratic behavior, and
(despite a lack of proper gameplay features) was even declared to be “quite enjoy-
able” by testers. We decided to expand upon what we already had and implement
our test environment in Unity, as detailed below.

3.3.1 Terrain generation

To quickly generate many different landscapes, we wrote some code that edited
a heightmap, and applied it to a terrain object in Unity for quick visualization.
Texture blending with 4 textures was applied based on height and steepness of the
terrain, to improve the visuals and further clarify potentially problematic areas.
As it was not our main focus, we settled on 3 layers of Perlin noise, with varying
scaling and power values, and left it at that. This generated big, smooth mountains,
smaller yet slightly more irregular hills, and yet smaller but steeper bumps. While
we could have added further detail, we found it unnecessary as placing racetracks
on the terrain would smooth the terrain, removing these details. To make the
valleys bigger, we raised all the values on the heightmap below a set minimum to
that value. This was done to increase the amount of straight roads, to get more
variation between curving and straight roads. Finally, in preparation for our tracks,
we decided that the terrain was too rough. This can be seen in Figure 3.1. To fix
this, we increased the resolution of the heightmap to make the hills smoother.

3.3.2 Track generation

As our next step, we wanted to see if we could easily generate roads without ignoring
the terrain. The road should follow the terrain smoothly. We did not want to go
from one point on the terrain to another in a straight line, building bridges over
valleys and tunnels through mountains, as it would create boring tracks.

To do so, we implemented a basic path finding algorithm, calculating paths be-
tween points on the heightmap. Each point on the heightmap represents a node,
connected to the 8 surrounding nodes in a grid. We tried using A* as our path
finding algorithm, but found it too slow on large maps. Eventually we settled on an
implementation of Dijkstra’s algorithm, using a priority queue for the nodes, which
performed better. The cost function was mostly the distance in the horizontal plane,
but heavily influenced by height differences between points on the heightmap: the

14

3.3 Unity implementation

Figure 3.1: The terrain as generated by our method. The terrain depicted is using
a lower resolution heightmap than our final version.

difference in height is squared, then multiplied by a variable depending on the reso-
lution of the height map. This caused found paths to often snake around mountains,
rather than straight up and down them, in an attempt to have as little height dif-
ference as possible unless absolutely necessary. Roads showing similar behavior can
be found in real-life mountainous areas around the world.
Because the height difference penalty was so high, the road would sometimes fold
over on itself in zigzag patterns while going up steep mountains. This effect can be
seen in Figure 3.2. Since this would create undrivable roads, we wanted to prevent
this from happening. These problematic areas always contained many sharp corners,
so we attempted to fix the problem by reducing those. We gave extra weight to the
next node to explore based on the angle with the node the current node was reached
from. For instance, if a node was reached from the node to its north, the node to its
south would get no penalty. But the nodes to its south-east and south-west would
get a small penalty, and the nodes to its west and east would get a bigger penalty.
We made it impossible for the algorithm to take very sharp corners, that is, go to
nodes next to the node it was reached from in the algorithm. In the above example
case, it could not choose the node to its north-east or north-west as next node to
explore from that node.

Refining the path The paths found by the path finding algorithm, as they are
limited by points on a grid, were very coarse. Taking the points on these paths as
control points, Bézier splines were calculated to find the basic shape of the road.
This removed the sharpest corners from the line of points found by the path finding
algorithm. Based on how detailed the road needed to be, a varying amount of points

15

Chapter 3 Test Environment

Figure 3.2: A* path finding implementation without penalties for sharp corners,
projected on a transparent plane over the terrain. Blue squares indicate the found
path, with white lines to indicate the direction to the next and previous square in
the path. Note the zigzagging pattern of the path where the road moves up and
down hills.

along these splines were used as control points for a cubic spline. This depends on
the density of the heightmap, and the scale of the road and cars, so it varies per
implementation. The terrain below this spline was smoothed out slightly, to remove
uneven terrain coming through the road. The road geometry was then formed by
extruding the spline in two directions to generate the vertices, with the banking
angle based on the heightmap. On sides of hills that were fairly steep even after
smoothing the terrain, this would sometimes generate roads that have a “negative”
banking angle. In other words; with a mountainside to the right, a road with a
curve to the right might actually have the left edge of the road be lower than the
right edge. Clearly, this is not what we can expect in real life, as it makes cars more
likely to lose grip on the road, and crash (see Section 5.2 for more information on the
related physics). However, it does not make the road undrivable, only more difficult
to drive on. Therefore, we did ensure this would not happen, and treated it as an
interesting case for our models to work with.

3.3.3 Racing game

As described in Section 3.2, after comparing different race game implementations we
settled on creating one ourselves in Unity. In the end, our control model included
basic steering, throttle, braking and hand brake. Unity has a physics model built in,
as well as a wheel collider (which functions as a collider for the wheels with the road,

16

3.3 Unity implementation

and includes many variables for suspension and friction). The terrain and tracks
(and fitting colliders) were used as described above. We had no moving objects in
the game other than the car, no other cars, and no obstacles or decorations.
Most values for physics and the car’s controls, such as the values for friction, suspen-
sion, weight and size of the car, were set as close to real-life equivalents as possible.
Some of the more technical values amongst them were kept at the recommended
defaults in the Unity physics engine, unless different values were preferred for rac-
ing games. A few were changed slightly to more accurately act like an arcade-style
racing game rather than an accurate simulation. In particular, changes were made
to handling of the car and the maximum turning angle. As this higher maximum
turning angle made the car far more likely to flip over in corners, the center of mass
was placed unrealistically low to compensate. This made it harder but still not
impossible to flip over the car. In addition to these, gravity was doubled, as the de-
fault value produced unrealistic results despite making sure all other values were set
correctly. It seems this is an issue with Unity, as other users have reported similar
issues4. However, it is also possible that some variables changes were counteracting
each other, especially in an engine as versatile as Unity.

Figure 3.3: A screenshot of the final game implementation.

4http://answers.unity3d.com/questions/395618/gravity-seems-to-be-too-slow.html

17

4 Data driven model

With our test environment set up (see Chapter 3), we were ready to start modeling
and implementing difficulty models. Based on our related work, we knew that
machine learning could be used to construct difficulty models, which is why we
started working on a data driven model. Our hypothesis is described in Section 4.1,
followed by an explanation of the model we designed in Section 4.2. We describe
our implementation method in Section 4.3, and finally report the results we found
in Section 4.4.

4.1 Hypothesis

Mentioned in our related work is the use of machine learning for defining difficulty
models. As shown by Jennings-Teats et al. [18] it is possible to label control pa-
rameters of level generation for a platformer game. Using machine learning you can
then assign them weights based on their influence on difficulty. They note that while
their implementation is for a platformer, the same principles can be applied to other
genres. As they say, the following tools need to be available: “data collection for how
difficulty is impacted by combinations of level components —including structural dif-
ferences— and a level generator to create short segments that can be strung-together
in real time into playable levels”. We believe the latter can be achieved for racing
games. Some popular games such as the TrackMania series allow players to string
road pieces together in a simple editor. So, possibly given some limitations, we
believe stringing together pieces of tracks can be done by an algorithm in real time.

This leaves us the task of collecting, as Jennings-Teats et al. put it, the data on
“how difficulty is impacted by combinations of level components”. Jennings-Teats et
al. used machine learning for this, and we made an attempt at doing the same.

4.2 Model

First, we decided on what we wanted to achieve with our machine learning method.
The goal here was to find not the exact reason why a section was difficult, but to
simply determine if it is difficult or not. Given some input, our method should be
able to make a usually correct prediction on whether or not the player had a high

19

Chapter 4 Data driven model

risk of ending up next to the track. We chose to use a support vector machine
(SVM) implementation, as it is a popular and often used binary classifier.

To keep our models simple, we limited our roads to a non-diverging road with no
obstacles, and no cars except for the player. We also limited our roads so that when
projected on the X-Z plane (with the Y axis being height, so top-down), it does not
self intersect. Simply put, this means the road never goes over or under itself.

As input for the SVM, we chose to use the shape of a section of road. The idea behind
this is that sharp corners are more difficult to drive than straight roads, and sloped
roads again more difficult than flat ones. To train the SVM, we also needed to include
if such a section was indeed dangerous. Because one individual point on the road
does not give any relevant information, we would need information on a continuous
section. We decided to limit our input to just the positions of points along the
middle of a section of road, in 3D space. Other options we considered were the first
and second derivative of these. This would be the vectors between sequential points,
and difference between sequential vectors between sequential points, respectively. As
the derivatives can be calculated from just the positions, we decided to use those.

In order to detect patterns, without being too diluted by variables that would did
not have a big influence, we needed to either keep the amount of variables limited
or gather very large amounts of data. Due to limited time and resources for our
testing, we therefore decided not to include the banking angle. Another reason to
use only the positions is that it is a very general case, rather than applicable to
just one specific game. As mentioned by Jennings-Teats et al., most methods for
DDA are designed on designer intuition, rather than actual play patterns. This is
something we wanted to avoid, as we are specifically trying to find a model that can
be applied to any racing game, or at least a large section.

4.3 Method

Our simple racing game implementation constructed a road procedurally based on
points on a spline. These points, more or less spaced out evenly along the spline,
were used to generate the road geometry. However, as they were an ordered list of
points in the middle of our road, they quite accurately represented the entire road.
This meant we could also use them as input for our data driven model. This list
was cut into overlapping pieces to create representations of road sections. For each
point in the list, that point combined with k points in either direction would form
one section. In our implementation, we went with an initial value of 4 for k, to get
sections of 9 points long.

20

4.3 Method

4.3.1 Flagging records as off-road

Our race game did not have a border next to the road, so rather than crashing,
players would end up next to the road if they missed a turn. In order to train the
SVM to find difficult sections, we needed to know where this would occur. For this
purpose, the raw data on how the road was shaped needed to be combined with
actual player data. To achieve this, we simply drove along each generated road, and
marked the positions where the player left the road.
We then searched for the closest point within the set of points representing the road,
and marked that point as "off-road". Each section in which that point was present,
rather than only the one for which it is the center point, would be marked as off-road
entirely. This was done because players might lose control at a difficult point, but
only leave the actual road slightly further on. It could also be that a player would
see a difficult section coming and try to prepare, but overshoot and end up next to
the road before the hardest part of the section was reached. As such, limiting the
event to only flag one section as off-road might cause the actual cause of the event
to be overlooked. Easy sections which just happened to follow a difficult corner
causing an off-road event could thus also be often flagged as off-road. We did not
expect this to pose a big problem. As there are many similar easy sections which
generally do not contain off-road events, the SVM should qualify the few that are
marked as such as outliers.
One important detail here is that we only drove over each road once. We chose not
to include separate races on the same track as separate data to avoid overfitting the
SVM, due to limited amounts of data.

Defining data records With the data combined, we now had a list of records for
each road we had generated and driven on. One record would be 2∗k+1 positions in
3D space, or 3∗ (2∗k+1) floating point numbers, plus one Boolean value indicating
if the player had ended up off-road somewhere in that section. For instance, a value
of 4 for k would make one record 28 values long. The length of the list of records
depends on the length of the road and the value for k: for n points in a road, the
length of the list of records is n− 2 ∗ k.

4.3.2 Invariant position / rotation

Positionally invariant For our purposes, an identically shaped road or corner in
two different locations can be considered identical. That is to say, their position
in the world does not matter for our difficulty model. Two identical road sections,
one starting at the origin in our game world (0,0,0), and one at (2000,2000,2000),
should be treated by the SVM as equal. To make sure that the overall position of
the points would not influence the SVM, we simply translated each road section by
the inverse of the average position of all points in that section. The middle of every

21

Chapter 4 Data driven model

section is thus placed at the origin. This was an easy solution to make the data
positionally invariant. A two dimensional version of this is shown in Figure 4.1.

Rotationally invariant However, we also wanted to make our sections rotationally
invariant. Two completely straight sections of road, one pointing North to South,
another East to West, should also be treated as identical by the SVM. To achieve
this, we took the angle θ of the average direction of the entire section, and rotated all
points around the midpoint by the inverse of θ. As we had already translated each
section, the midpoint would always be the origin. To calculate θ, we first needed the
average direction. For a set of vectors, this is normally calculated by adding up all
vectors in the set. However, as our points were already in order, this adding up the
vectors from point to point would equal following the road. Thus, we could simply
take the vector from the first point to the last point in the section. The average
angle was then defined as the angle between the normalized average direction and
a target vector (1,0,0). Simply rotating every point around (0,0,0) by the inverse of
this angle produced the desired result. This process is shown in Figure 4.2.

Figure 4.1: Making the road sections positionally invariant

4.3.3 Cropping the data to exclude the ends

While we now had an invariant list of records, there was still one easy way to
reduce the amount of outliers. Our roads were generated based on a spline through
points, which in turn were generated by a path finding algorithm. Due to the simple

22

4.3 Method

Figure 4.2: Making the road sections rotationally invariant

implementation, the very start and end of the road could be very sharp corners,
and hard to drive on. These pieces of road would probably create off-road events if
driven on as usual. However, as in our test environment the player starts a little bit
down the road, the very first section of road was never driven on. This meant that
this section, unless the player drove backwards, would never produce an off-road
event. So the road sections at the start of roads which should often produce an
off-road event almost never would, consistently creating outliers. Similarly, the car
was not automatically stopped at the end of the road. Usually, the very end of the
road was not driven on if the player saw it ahead of time and stopped. Otherwise,
the car would drive off the end of the road and generate an off-road event, even on
an (easy to drive on) straight road. Either way, this would create outliers.

Reducing outliers To make sure these outliers would not spoil our data, we simply
culled the first and last few records on each road. As the amount of outliers created
by these events at the very ends was based on the section length, and the length of
sections was based on k, we based the amount we culled on k. We went with k+1 in
our implementation, which is exactly the amount of records marked off-road when
driving off the very beginning or end of the road. They represent the closest point
to the off-road event, plus k points in the direction of the rest of the road, away
from the end. Based on early test results this seemed to cover all outliers and not
much more. Additionally, we noticed that there were never off-road events at the
very start of the road. We concluded that this was due to the low velocity of the car
right after starting. As the velocity of the car is not known to the model, these data

23

Chapter 4 Data driven model

samples skewed the statistics. To compensate, we culled a few more records at the
start. We made an estimation of how many points would be ideal based on early
test results. We settled on 4, but this of course varies per implementation, based on
the distance between points as well as acceleration of the car.

4.3.4 Feeding the data into SVM

To find out if we could predict off-road events, we used our gathered data as input
for an SVM implementation. We used R [20], with the RStudio IDE, and the e1071
package [21] for its SVM functionality. Additionally, we wanted to draw Receiver
Operating Characteristic (ROC) curves, which are visual representations in a graph
of false positive rates on the horizontal axis versus true positive rate on the vertical
axis. They can be used to get a first impression of how well a model performs in
identifying positives. To generate ROC curves, we used the ROCR package [22]. It
featured parameters that could be tweaked for best results, including several different
kernels, and the option to allow for prediction probabilities. As we mentioned in
Section 4.2, the goal here was to find out if a road was dangerous, or rather, if we
could correctly assess a road’s difficulty using this method. For our purposes we did
not need to know why a section was difficult, only that it was or was not. As such,
we wanted our SVM to just output a Boolean value for each section (3 ∗ (2k + 1)
floating points), representing a prediction for an off-road event. We could then test
this against the results of a player actually driving along the road the predictions
were made for. A prediction for an off-road event on sections where the player
actually went off-road is a true positive, those where the player did not drive off a
false positive. Likewise, sections where no off-road event was predicted were marked
as negatives, with those containing an actual off-road event marked as false negatives
and the rest as true negatives.

4.4 Test Results

4.4.1 Results

Our results are detailed in Table 4.1. They are visualized in Figure 4.3, which shows
the ROC curves of our results. The curve is formed by varying the probability
threshold used to predict off-road events between 0 and 1. A probability threshold
of 1 accepts only results that the SVM believes are 100% certain to contain an
off-road event, which is usually none, resulting in no false positives and no true
positives. This is the lower left corner of the graph. Likewise, a threshold of 0
accepts everything, resulting in all possible true and false positives; the top right
corner of the graph. The AUC column in our table stands for “Area Under Curve”,
which can be seen as a measure for how well our model performs.

24

4.4 Test Results

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 4.3: ROC curves for the results of the data-driven model.

Splitting the data Due to our limited amount of data, we were limited in our
options on how to split the data into a training and testing set. We considered
using 80% / 20% for training / testing respectively, but with our amount of data
this would make the amount of test data too limited. Resampling methods (such
as Jackknifing) were too time-consuming to apply with the many different variables
we wanted to compare. We thus decided to split the data evenly in half to give us
our training and testing data. We started out with a value of 4 for k during testing,
which turned out to perform quite well. As our results show, it performs slightly
better than k = 5 using the full training set. Using k = 3 performed even better
with the full data set, but using even lower values for k decreased the AUC values.
We tried values for k above 5, but they were significantly worse.

Influence of data set size We also tried to reduce the amount of testing data to
see if this would influence our results. As it turns out, using less data for training
and testing improved our results by roughly 0.03 in the case of k = 4, and more

25

Chapter 4 Data driven model

Color train data / test data k AUC SVM parameters
Green 50% / 50% 1 0.5774019 γ = 1/9
Red 50% / 50% 2 0.6110372 γ = 1/15
Blue 50% / 50% 3 0.6365064 γ = 1/21
Black 50% / 50% 4 0.6261912 γ = 1/27
Purple 50% / 50% 5 0.6179377 γ = 1/33
Brown 50% / 50% 7 0.3847989 γ = 1/45
Cyan 40% / 40% 3 0.6285448 γ = 1/21
Gray 40% / 40% 4 0.6558581 γ = 1/27
Pink 40% / 40% 5 0.6587542 γ = 1/33
Yellow 40% / 40% 5 0.5411106 γ = 1/33, kernel = linear
Orange 40% / 40% 5 0.6649638 γ = 0.1, cost = 10

Table 4.1: Details for the ROC curves in Figure 4.3. SVM parameters are cost =
1, kernel = radial, unless otherwise specified.

than 0.04 for k = 5. As more data should generally increase accuracy rather than
decrease it, unless the data contains incorrect information, this suggests the removed
data contains outliers. Varying k for this reduced set of test data shows that k = 4
performs quite a lot better than k = 3, but very slightly below k = 5. To keep the
graph and table clear, the results on the reduced data set for k values above 5 and
below 3 are not listed, but they show patterns very similar to that of the full data
set.

Tweaking SVM parameters After varying k and the amount of data used for
training and testing, we tried changing the parameters of our SVM. The default
SVM kernel in the used implementation is the radial kernel, but it supports several
other kernels. Changing the kernel resulted in lesser results. For instance, a linear
kernel with k = 5, 40%/40% training/testing data and default SVM parameters
resulted in a AUC value of only 0.5411106. This is significantly lower than the
result we got using the radial kernel, which used otherwise identical parameters and
gave us an AUC value of 0.6587542.

Our next step was to tweak the other parameters used by the radial kernel. We did
this by applying a tuning function to the model, and using what was determined
to be the best results for the γ and cost parameters. The resulting ROC curve was
a bit different from the others in that it started with more false positive than true
positive results. After that, it performed slightly better but not significantly so,
resulting in an AUC value roughly 0.006 higher than our previous best result. We
concluded that tweaking the parameters did not make much of a difference for this
model.

26

4.4 Test Results

4.4.2 Analysis

From our results, we conclude that very low k values, as well as those too high,
decrease the results. We believe that values that are too low, resulting in road
sections that are very short, simply do not give enough information about the shape
of the bend. An off-road event might have happened slightly further down the road
from the actual hardest part of a corner, which may not have been included in the
section with a low k value. The opposite, a high value for k, resulted in long road
sections. This decreased the clarity of where exactly on the section an off-road event
took place (or might have taken place, in the case of predictions). To still achieve
good results, a very large quantity of data would be required to more accurately
train the SVM. We did not have the time and resources for this, and while others
might, the need for such large quantities could be seen as a bad requirement for a
model to have. Our goal was to find a model that can be applied in practice by game
designers, in particular for racing games using PCG to generate tracks. As one of
the reasons to use PCG is to save time on designing the levels, a time and resource
intensive method is clearly counterproductive considering the intended purpose.

Choosing parameters Finding the right value for k went hand in hand with finding
the correct spreading of points along the road. Placing these points too densely
resulted in a lot of redundant data, as the shape of the road could be understood
from a subsection of the points. Feeding longer or more densely sampled road
sections into the SVM resulted in more variables, and thus longer calculation times.
As can be seen in the results, increasing the amount of variables did not result in
much better results. Placing them too sparse could result in a loss of important
data, such as sharp corners, in between the points. The distance between points
was based on the amount of detail in the road. Roads with many small bumps and
very sharp corners would require a much smaller distance between points than roads
that emulate highways, for instance.

4.4.3 Conclusion

Player performance factor One conclusion from the AUC scores was that this
model would not be able to pick up every single problem, and would often be wrong.
However, it was to be expected that the SVM would make incorrect positive predic-
tions, as the skill level of players varies wildly. A player’s performance is a significant
factor in what corners they consider difficult, as well as how the SVM is trained.
Even players of similar skill levels often have different techniques, or even specific
corners, they struggle with. Players that are even slightly proficient at racing games
will not crash at every single corner with an above average difficulty level. As such,
even if the SVM correctly declared a corner as difficult, a player that drives well
(or slow) enough would probably stay on the road. Because we only included one
race per track in the data (see Section 4.3.1), this meant that the corner would thus

27

Chapter 4 Data driven model

be flagged as a false positive, even if most players might have went off-road there.
The reverse situation, where players go off-road on easy sections of road, also works
against the model. Because these outliers are not detected and removed before the
data is inserted in the SVM, it will generate many false negatives, reducing the true
positive rate.

Fine tuning the SVM The inaccuracy of the model also explained why changing
other variables and parameters did not seem to influence results significantly. We
believe this was because the model itself was far from accurate. Fine tuning the
implementation of an inaccurate model did not result in much added value, as it
was being tuned on the inaccuracies as well as the actual valuable data. As long as
the values were not too unusual, changing the parameters would result in slightly
different decisions in the SVMs feature space, in particular in the area with very
mixed truth values. Since this area contained so many outliers in both directions,
changing the separating hyper plane would incorrectly classify roughly the same
amount in one direction as it would correctly classify in the other, roughly balancing
the final result.

Conclusion Our aim was finding a model that could be used to detect difficult
(sections of) race tracks. As the model is now, in particular due to the black box
aspect of SVM, we found it very hard to use for its intended purpose. The large
amount of variables makes it hard to analyze what the SVM conclusions are based
on, and we have no easy way of checking if the results are correct. On top of that,
because the SVM only returns classifiers, we do not know how to change a road
section to either increase or decrease the difficulty.
This does not mean that we believe that machine learning, or SVM in particular,
are unfit for this purpose. Our input data is known to contain outliers, and the
model is based on a very basic model of the road (only the basic shape, not even
including the banking angle). Despite this, the SVM managed to produce output
that we consider to be correct more often than not. This is particularly interesting
because crashes are very unlikely events to begin with. Because of this, we believe
improving upon the known shortcomings of the model might result in a method
that could be better used for its intended purpose. In particular, we believe that
reducing the amount of input variables could help, as it would reduce the required
amount of training data as well as make analysis of the results easier.

28

5 Analytical model

With our data driven model, described in Chapter 4, we used machine learning in an
attempt to train a computer to predict which tracks, or track sections, are difficult
for the player. We limited ourselves to just the shape of the road, without making
further assumptions on what kind of sections were difficult, or why. This keeps the
model generic enough to easily apply to many different types of racing games. But
it also limits us: it means we can not easily steer our data driven model towards
situations of which we are quite certain that they are difficult. So, for our second
model, we decided to use this knowledge by analyzing the road and its expected
effects on the player’s performance. We call this our analytical model.
As with our data driven model, our analytical model will be explained starting with
the hypothesis (Section 5.1), followed by the model (Section 5.2) and our implemen-
tation (Section 5.3). After this, our test results are described in Table 5.1. Finally,
we dedicated a section on a possible alternative or additional approach in Section 5.5.

5.1 Hypothesis

Ideally, our difficulty model is as simple as possible, while still producing accurate
results. Preferably, we want to have some small set of road data that we insert
into a function. That would then tell us what sections of the road are difficult to
race on as output. The function would need to be adaptable, so it can be reused
in other games, on other tracks, or with different cars. While games are not fully
equivalent to real world, many years have been spent to make certain aspects as
realistic as possible. In particular, modern racing games often have physics models
that simulate real world physics quite well. This often counts even for non-realistic
racing games, although with different values for things such as gravity or friction.
We expect that while driving a real car is different from driving a car in a game, a
challenging situation in the real world will also be challenging in a game.

Dangerous situations in real life We want our analytical model to be built around
factors that can easily be quantified. To do so, we focus on the road, in particular the
interaction between the car and the road. To keep our model clear and concise, we
have removed other frequent causes of accidents. For instance, we have no obstacles
or vehicles on the road. In addition, the surroundings in our testing environment
is limited to mostly smooth hills, which means most turns in the road can be seen

29

Chapter 5 Analytical model

from relatively far away. This lack of unexpected challenging situations helps limit
the influence of the player’s reaction speed on the performance to a minimum.
With outside influences limited to a minimum, we look at how the road itself influ-
ences difficulty. Almost any race track can be easily driven on at a low velocity, and
become more difficult to drive on as the velocity of the car increases. If drivers try
taking corners at a higher velocity than what is considered the maximum safe veloc-
ity of that corner, the risk of losing grip and crashing is high. However, some tracks
track sections become difficult at a lower velocity than others. Corners that are
considered difficult will generally be driven through at lower velocities than corners
that are considered easy. This means that the maximum safe velocity can be seen
as a measure of difficulty. Or more specifically, the maximum safe velocity before
the car loses its grip on the road.
Without doubt, very sharp corners are harder to drive on at a high velocity than a
long straight stretch of road. Cars will lose grip and end up next to the road if they
try to take corners at very high velocities, with sharper corners allowing for lower
maximum safe velocities. There are some exceptions to sharper corners allowing
for lower maximum velocities, such as corners on many NASCAR tracks, or the
famous “Carousel” corner on the Nürburgring race track. These can be taken at
higher velocities than other corners with the same curvature, because the corners
are sloped inwards: the shorter side of the bend is lower, allowing gravity to help
the cars go around the bend.
While there are other factors, such as the difference between wet and dry roads and
different road materials, the shape and banking angle of a track are fairly universal
and not likely to change between tracks within one game. We therefore limit our
model to just the shape (in particular, the radius of curvature of the road at a
specific section) and the banking angle.

5.2 Model

Forces on a car We base our model on real life physics, so we first define what
forces we will use. A breakdown of these forces (to be specific: the forces in the case
of a velocity above the ideal velocity, as commonly found in racing games) can be
found in Figure 5.1.
A car on a road experiences a gravitational force Fg pulling it down, equal to the
constant of gravity g times the mass of the car m. This is counteracted by the
normal force N , which can be seen as the road pushing back against the car. We are
focused on when the car starts sliding sideways, in particular in corners, due to high
velocity. This is explained by the centripetal force, Fcentripetal, which is the force
generated by objects rotating around a central point. In our case, the centripetal
force is based on the mass of the car m, the radius of the curve r, and the velocity
of the car v, as follows: Fcentripetal = mv2

r
.

30

5.2 Model

N

Fg

f

N cos α

α

α
Road surface

N sin α

f cos α

f sin α

Figure 5.1: Forces on a car on a banked road. The normal force N is shown in
dark blue, gravity Fg (or mg) in green, and friction force f in red. Horizontal and
vertical components, as used in the maximum safe velocity v calculation, for the
normal and friction forces shown in light blue and orange respectively.

A car driving through corners at normal velocities does have a centripetal force
pushing it outward, without the car sliding off the road. On a flat road, this is
mainly because the centripetal force is counteracted by the friction between the
tires and the road. This form of friction, known as dry friction, is approximated
using the Coulomb friction model: f ≤ µN . The frictional force f is based on the
coefficient of friction between the tires and the road, µ, as well as the normal force
N . The car will start skidding towards the outside of a turn (the way the car is not
turning) if the amount of friction force f is not enough to counteract the centripetal
force. Because we are only interested in the situation where the friction force f is
at its highest, we can further simplify this to f = µN .
The friction coefficient in our model depends mostly on game-dependent variables

31

Chapter 5 Analytical model

such as the materials of the road and tires, weather conditions, the type of tire
(rally cars have different tires than Formula 1 cars). While this may change during
gameplay, these variables are constant in our implementation, so for our model
we can consider it to be a constant value set by the game’s designer. Had our
implementation included tracks with wildly varying ground materials (dry asphalt,
wet asphalt, dirt, snow) within the track, the model could have been expanded by
storing a friction coefficient modifier corresponding to the ground material on each
point along the track.

Banking roads On a road that is not perfectly flat, the banking angle of the road
also plays a part: the normal force N now points at an angle. This will act as an
force on the car: the car is pushed towards the lower edge of the road. If the road
is banked towards the inside of a curve, the car is far less likely to start slipping to
the outside, as gravity helps steer the car to the inside of the corner. However, if
the road is banked towards the outside of the corner, it is far more likely to lose grip
and slide off.

Formula for maximum safe velocity As can be seen in Figure 5.1, we have split the
normal force N and the frictional force f into horizontal and vertical components, as
this is required for the calculations. The horizontal components are N sinα for the
normal force, and f cosα for the frictional force: these are the forces that prevent
the car from sliding sideways (horizontally). At the maximum safe velocity before
the car starts sliding sideways, the forces pushing the car towards the outer edge of
the corner (Fcentripetal) equal the net forces Fnet that counteract this (N sinα and
f cosα). If the velocity goes above this maximum safe velocity, the centripetal force
becomes too high and the car starts sliding.
Based on these forces, we can define a formula to calculate the maximum speed a car
can drive without slipping. Using Fnet = N sinα + f cosα, N cosα = mg + f sinα,
and f = µN :
N cosα = mg + µN sinα
=N cosα− µN sinα = mg

=N(cosα− µ sinα) = mg

=N = mg
cosα−µ sinα ,

Fnet = N sinα + f cosα
=Fnet = N sinα + µN cosα
=Fnet = N(sinα + µ cosα)
=Fnet = mg

cosα−µ sinα(sinα + µ cosα)

=Fnet = sinα+µ cosα
cosα−µ sinαmg

32

5.3 Implementation

=Fnet = tanα+µ
1−µ tanαg.

Considering this is equal to Fcentripetal = mv2

r
, as explained on [25], we have now

found the following formula: v2 = tanα+µ
1−(µ tanα)rg, or: v =

√
tanα+µ

1−(µ tanα)rg. We will use
this in our model.

Using the formula We assume a constant value for gravity g, as well as a set value
for the friction coefficient µ. This can be based on the type of car and the amount of
control desired by the game designers. So, to calculate the “maximum safe velocity”
v, we then need radius of curvature r and banking angle α.
We expect to see an important correlation between the maximum safe velocity a car
can drive at a certain point in the road, and the difficulty of the section surrounding
this point. That is, we assume that points with a low value for v increases the
difficulty of the section around it. However, we do not assume that points with
a high value for v decrease the difficulty. For instance, if there is one very sharp
corner at one point, flat and straight sections right before and after this point will
not necessarily decrease the difficulty of driving through that sharp corner. As such,
we are only interested in the points with the lowest values for v, or rather, the
sections in which they are found. Similar to how we apply this to the data driven
model (see Section 4.3), we define a section as a point and the k points in both
directions from that point. Since we are only interested in the lowest values for v in
a section, in our model, the lowest value v found for any of the points in a section
will define the difficulty of the entire section.

5.3 Implementation

As with our data driven model (see Section 4.3), we start with the road as created
in our testing environment. These procedurally generated roads (see Section 3.3)
are based on splines. The points we calculate the maximum safe velocity v for are
vectors along the same spline used to create the vertices of the road geometry. Using
these vectors as points gives us some advantages. For starters, we do not need to do
extra calculations to find points along the spline. The points are all in the middle of
the road, giving a quite accurate representation. It also gives us the banking angle
α we need at each point without extra calculations, as the banking angle is used to
create the road geometry. During testing, we changed the amount of detail of the
road geometry, generating more or less vertices along the same length of road. In
case the road geometry was very detailed, and we felt the amount of points was too
high, we could simply take every second or third point along the spline instead of
every point.
Depending on implementation, the points along these splines may not be evenly
spaced. In extreme cases, this may bias the classification of areas. For example, off

33

Chapter 5 Analytical model

Figure 5.2: Markers floating above the road visualize the calculated maximum safe
velocity v, ranging from high (green) to low (red).

road events on long straight sections may cover much more road than events in sharp
corners. The spread of points should be corrected to prevent this from happening.

Calculating the maximum safe velocity To calculate v, we also need the radius
of curvature r. As the points we use for our calculations accurately represent our
road, we calculate this based on a circle through three sequential points along the
curve. For a point p, r is defined as the radius of a circle through p, and the
points immediately before and after p along the spline. Given a constant value for
g and µ(based on the game implementation, as set by the game designer) we can
now calculate v for all points along the spline. Simply inserting all values into the
formula gives us v for all points. A visualization of this can be seen in Figure 5.2,
where markers hover over the road at the point they represent. The markers are
colored based on how high the (normalized) calculated values for v are: from high
(green) to low (red).

Choosing a speed limit To define what values v are said to be low, and thus what
sections are said to be difficult, we compare the maximum safe velocity v of a section
to a threshold velocity t. If the value for v is below the threshold t, we define the
section as difficult and expect the player to drive off the road, or crash. As with our
data driven model, due to our implementation (which lacks walls on the sides of the
road), we refer to these events as “off-road events”.
Players are expected to go off-road at, or close to, points p with v < t. To test this
hypothesis, as with our data driven model, we combine the road data (including

34

5.4 Test results

the calculated values of v for each point) with data of players driving along the
roads. For each off-road event, the point along the spline closest to where the car
left the road is marked as off-road. We define sections as a point p, and k points
in both directions of the spline from p, resulting in 2k + 1 sequential points. An
off-road prediction for any point p with v < t is marked as a true positive if an
off-road event took place within the section with p as its center. If an off-road
prediction is made, but no such off-road event is present within the section, it is
marked as a false positive. Similarly, if an off-road event happened at a point q, but
no sections containing q predict an off-road event happening, point q is marked as
a false negative. All other points are said to be true negatives.

Setting the correct value of t A correct value for t is important to get valid
results. A value t that is set too high will result in many false positives. That is,
because too many values v are less than the high threshold t, we expect to see the
driver go off-road far more often than will actually happen. If t is set too low, the
opposite happens: very low values v, indicating sharp corners and banked roads, can
still be above t and thus declared as not difficult. Setting the best value for t depends
on many factors within the game world, including but not limited to the handling of
the player’s vehicle, the width of the road, and how well the car could brake. This
emulates real life situations: a safe maximum velocity through a turn for a compact
car is often much higher than that of a truck. Aside from practical reasons, it also
depends on what the results will be used for. For some cases a potentially far higher
amount of false positives may be worth it, as long as it ensures more or all true
positives will also be found. Because of this, a correct value for t should be set by
game designers based on their implementation, and possibly corrected after changes
to the game’s balance. It also means that, while we can at least try to explain what
causes fluctuations in the output based on the value of t, we can not specify a best
practice or best value.

5.4 Test results

5.4.1 Results

Unlike the data driven model, this model has very few variables that can be changed.
The physics formula and its input are quite set in stone, leaving us with only the
value for k to set manually. As the positions on the road are calculated in the
exact same way in the data driven model as they are here, identical values for k
produce identical road sections. Using the same value for both models means we
are comparing the results of the models on identical road sections.
Based on the results we achieved with our data driven model, we decided to start
with k = 4. This value was chosen as it produced good results for the data driven
model, and might make comparing the two models easier.

35

Chapter 5 Analytical model

Figure 5.3: ROC curves for the results of the analytical model with k = 4

One run on several tracks Inserting the same data we used to find the results
for our data driven model into the analytical model gives us the results displayed in
Figure 5.3. The ROC curves are created by taking a manually set threshold value t
increasing at a given interval, and calculating the true positive rate and false positive
rate at each threshold. The average over all tracks is calculated by taking the mean
of all these values for each value of t. The AUC values for these ROC curves are
presented in Table 5.1.

The results for Track 11 are removed due to issues with a corner case in our analytical
model implementation. We verified that this issue did not affect our testing or the
results for other tracks, nor the results of the data driven model. As it only occurred
once, and would have required a significant amount of time to fix, we decided against
rewriting the implementation.

Repeated runs on one track These initial results show wildly varying AUC values.
To help determine if the best and worst AUC results are dependent on the track or
the player’s performance on the track, we decided to do several laps on one track. We
decided to use the track with the worst initial results, named Track 6, as it seemed
to be an outlier. If the AUC score is mostly dependent on the track, it should be
more likely to show similarly low results during following runs. The original results
for this track, as well as the results for the additional 10 runs on the same track, are
presented in Figure 5.4. The corresponding AUC values can be found in Table 5.2.

36

5.4 Test results

Figure 5.4: ROC curves for the results of the analytical model with k = 4, for
multiple runs over Track 6

Figure 5.5: Averaged ROC curves for the results of the analytical model on multiple
runs over Track 6, for varying values of k

37

Chapter 5 Analytical model

Track AUC Track AUC
0 0.949 10 0.685
1 0.577 12 0.656
2 0.636 13 0.589
3 0.616 14 0.821
4 0.776 15 0.558
5 0.487 16 0.959
6 0.290 17 0.906
7 0.437 18 0.960
8 0.473 19 0.914
9 0.544 Average 0.673

Table 5.1: Details for the results of the analytical model with k = 4, highest and
lowest values in bold

Run # AUC Run # AUC
1 (Original run) 0.290 7 0.592

2 0.809 8 0.846
3 0.783 9 0.829
4 0.850 10 0.850
5 0.598 11 0.534
6 0.554 Average 0.692

Table 5.2: Details for the results of the analytical model with k = 4, for multiple
runs over Track 6, highest and lowest values in bold

Variables As mentioned, while there are not many variables to change, we did
manually set the value for k. To see the effect of a varying value for k, we tried
several options based on the averaged result for track 6. The results of this can be
found in Figure 5.5.

5.4.2 Analysis

The average AUC scores in our test results were just below 0.7, which does not seem
very high. However, we have to take into account that this model is designed to be
applied to racing games. We can not expect to find every cause, or even the most
likely cause for players to fail, especially not with just one model. There will always
be outliers, such as objectively easy parts of tracks where players simply did not pay
attention. As such, we can not expect to achieve the very high average AUC scores
that are considered a minimum standard in fields that work with more objective
measurements.

The first set of data, a single run over each of 19 different tracks, showed wildly

38

5.4 Test results

varying results. The second set of data, several runs over the worst performing
track of the first set, show a similar pattern. In fact, the average AUC values for
both sets are quite close together, with a difference of only 0.018 (about 0.02). Both
sets of data show a big spread between best and worst results. From this we conclude
that the model is very inaccurate.

Role of player performance As shown by the second data set, the player’s per-
formance plays a very big role: runs by the same player on the same road with fully
identical settings created wildly differing results. When looking at the ROC curves
for both sets, the lowest result seems to be somewhat of an outlier. But even when
taking the second lowest result (0.534), the difference between that and the highest
AUC value is still 0.316. This much variance (σ2 = 0.031 for the full second set) on a
track with otherwise identical settings shows that the player’s performance is a very
significant factor. This is important because it indicates that while the originally
bad result for Track 6 was not repeated in further runs, the other tracks are also
not guaranteed to always perform better.

Adjusting k The result of adjusting k is quite clear, as shown by Figure 5.5. As
the size of the road section checked for an off-road event increases, the likelihood of
finding true positives increases, while that of finding false negatives decreases. As
such, the entire ROC slowly moves towards the top left corner, increasing the AUC
value. However, at the same time, accuracy is lost. If k is set to roughly half the
length of the road, the road section checked for off-road events is the same length
as the road itself. That means that only one or two sections, surrounding positions
in the very middle of the road, are checked. In almost all cases this will result in an
ROC curve with an AUC of 1.0 if the player left the road at any point during the
run, or an AUC of 0.0 if the player did not. As we assume players will always go
off-road at least once on tracks if they are difficult enough (which in fact happened
in all cases during our testing), clearly this will result in a very high average AUC.
But as the actual accuracy is so low, it gives us no useful data. Therefore, we believe
that in practice a relatively low value of k is actual beneficial for this model.
To conclude, we can say that longer it takes a player to travel the length of one road
section (at maximum velocity), the less accurate the results will be. To keep the
accuracy high enough for meaningful results, we suggest that k is chosen so that the
area of road covered by 2k+1 points (one section of road) does not exceed a certain
distance. This distance can be defined as the distance traveled by the vehicle at its
maximum velocity in, for example, 4 seconds. A similar lower bound is also required:
a road section should cover at least a certain amount of road, similarly depending
on the vehicle’s maximum velocity, as otherwise a correctly identified difficult point
causing an accident just a few tenths of a second later may create false positives.
How high k needs to be to meet these requirements depends on the racing game
implementation (in particular, the maximum velocity), as well as the density of

39

Chapter 5 Analytical model

points along the road. The exact time duration upon which either of these distances
would be based is also dependent on the game’s implementation and balance, as the
car’s handling heavily influences how much time players require to correct mistakes.

5.5 Derivative of maximum velocity

Looking closely at the data showed that off-road events often happened at or close
to points with a value of v of 20 m/s or lower. Points along the track with a higher
value for v usually had no off-road events nearby. As such, we tried setting t to 20
m/s (rather than calculating the ROC curve for a wide range of values for t), which
indeed seemed to produce good results in many cases. Some outliers aside, there
were many true positives, and very few false negatives or false positives. However,
there were some exceptions: at times, off-road events happened around points with
maximum speeds of 35 m/s or higher. As most points with such a high value for
v had no off-road events nearby, our model would generally produce false negatives
in these cases. Increasing t did not improve the results, as this would produce far
more false positives than true positives.

Rapidly decreasing maximum safe velocities It quickly turned out that many
cases of off-road events that we had not predicted followed a consistent pattern.
The off-road events usually occurred at or near points with a value of v between 30
and 40 m/s, with points with a much higher value for v (frequently around 100-140
m/s) not far before it. This means that while the lowest value of v was relatively
high, the difference between the highest and the lowest values was quite large in
a relatively short amount of distance (or points along the track). In practice, this
means that it requires the player to slow down considerably in a short amount of
time, possibly in areas where they did not expect it.
These observations suggested that using the derivative of our calculated maximum
velocity values was important. As our model was not suited to take this into account,
and we could not find an easy way to add this functionality for quick testing, we
did not apply it in our method. However, we do believe it could play a big role in
making our model more accurate in the future.

5.6 Subjective analysis

The results of our analytical model are based on extremes. It only considers situa-
tions where the player lost control to the point the car went off the road, but not
situations where the player barely managed to regain control. Likewise, only the
sections with very low values for v are marked as difficult: anything slightly above
the threshold t is marked as not difficult. This means that by looking just at the

40

5.6 Subjective analysis

objective results, a lot of possibly useful data is lost. By looking at how the rest
of the calculated values compare to the player experience, we hope to provide some
additional insight.
Looking at the data showed that areas that players considered not very difficult
had relatively high values for v compared to more difficult sections. Average values
commonly appeared on banked straight roads, or weak corners, while the highest
values appeared on straight flat pieces of road. Hardly any off-road events occurred
on these sections, and they were mostly considered not difficult by players.
Sharper corners around hills, banked the wrong way (the inside of the corner higher
than the outside) were considered quite hard. Very sharp corners (usually an artifact
of merging two calculated paths, halfway through the road) usually were considered
the most difficult by players, and indeed had some of the lowest values for v as well
as a big portion of the off-road events.
One specific example that players considered difficult, but which was not represented
by the model, was roads over the top of relatively steep hills. At high speeds, this
would sometimes “launch” the car. The wheels would lose contact with the road,
meaning the player lost control of direction and sometimes go off the road. Especially
on road sections that were not banked and mostly straight, the calculated value v
would be quite high, meaning that such sections created some false negatives.

41

6 Comparison of models

In order to properly compare the data driven model to the analytical model, we
can not just look at the results, but need to look at what it takes to achieve those
results as well as what the results represent. In this section we will try to explain
what these differences are and how they affect our interpretation of the results.

6.1 Comparison of the results

We found it very hard to draw conclusions from the results of our data driven
model. The ROC curves we drew were based on the probability of certain sections
containing an off-road event or not, as determined by the SVM. However, it includes
no indication on what these probabilities are based on. Although SVMs are known
for their black box nature, there are methods to provide some insight in how their
classifications are made, such as the work by Barbella et al. [26]. However, as the
SVM has so many factors as input (3 ∗ (2 ∗ k+ 1)), it is hard to identify what is the
most important contributing factor.

In addition to this, at first sight most of the results were less than stellar. Even
with the best settings, the model barely reached an AUC of around 0.65, after
optimization of the SVM on these specific cases. But player performance varies
wildly, and even the most difficult situations may not always cause the player to
fail, as long as the situation is not impossible to pass. As such, perfect results can
not be expected, and expectations should not be set too high. Because of this, and
given the lack of data to compare our results with, we can not easily conclude if
these results are indeed as bad as they seem.

The results for the analytical model were not much higher, with an average AUC
between 0.65 and 0.7 (although this can be increased, at a loss of accuracy: see
Section 5.4). But while the data driven model had ROC curves based on estimates
of a piece of software, the ROC curves for the analytical model were drawn based on
a threshold on the maximum safe velocity we calculated. That data is far easier to
immediately apply to the game’s balance, as the results are based on fewer variables.
Simply looking at the true and false positive rates for a certain maximum velocity
threshold may give a game designer useful information.

43

Chapter 6 Comparison of models

6.2 Discussion and limitations of models

The two models have some key differences. Not only in the results, but also in the
required input.

6.2.1 Discussion of differences

The added cost of training data The most obvious of these differences is the
fact that the data driven model requires training, and thus, a far larger amount
of data. The data driven model requires players to have driven over several tracks
just to train the SVM. In addition to this, to prevent overfitting, these need to
be many different tracks. This makes it rather unsuited for anything but a big,
varied collection of tracks, accompanied by player data. While not a limitation of
the model, it is a disadvantage in practice. Adding a way to reduce the amount of
outliers before inserting the data into the SVM, and gathering results from multiple
races over the same tracks, should greatly improve the results or at least reduce the
amount of data required to achieve results.
There is an increasing amount of games allowing player generated levels that can
be shared with (and played by) other players online. Such games would make an
excellent fit for this method. However, if the track difficulty information is not
required after but during development, this is likely not an option, unless there
is a big amount of playtesters available. In fact, the entire model would be very
difficult to use during development: any changes to the game balance (such as road
width changes, friction changes, or changes to the car’s speed, weight, acceleration,
braking or handling) can influence what is or is not a difficult section. Thus, any
change might require all training data to be discarded, as it is no longer accurate.
Alternatively, it can be stored for later use, but additional data (representing the
new variables) would still need to be gathered. As we have established that (for
accurate results) we need relatively big amounts of data, this might cause issues for
smaller development teams.

Repetition requirement The analytical model could be used with no data to train
or even verify it. But in order to find a threshold velocity t below which accidents
frequently occur, we need the data of at least one track and the record of one player
doing one lap over this track. In practice this is not advised, as it is not guaranteed
to always produce good results. As shown by our results in Section 5.4, results are
very dependent on the player’s performance. For more accurate results, it is advised
to take the average of multiple runs instead. This means that the advantage of not
requiring data for the training phase, as it is in the data driven model, is largely lost.
However, while the data driven model requires different tracks to prevent overfitting
the SVM, the analytical model does not. This will most likely make it easier to
apply in real development.

44

6.2 Discussion and limitations of models

Differences in input data As for the actual data to be inserted into the models,
in our implementations the analytical model required only one more statistic about
the road to be stored compared to the data driven model: the banking angle. For
games that do not have a banking angle in their tracks, this does not apply, and the
required input for the models can be identical. In fact, while we excluded it to keep
the data driven model’s input simple, the banking angle could be used and inserted
into the SVM. This might help increase its accuracy, but also slightly increase the
time required to train new SVM models. Regardless of the exact implementation, if
set up correctly both models can be used side by side with very little or no change
to the input.

Analysis of output The data driven model, as described in Section 6.1, has the
drawback that its results are hard to analyze due to the black box aspect of SVM. A
road, or section of road, may be qualified as difficult, or as not difficult. At most, the
SVM can be configured to return a probability that a section is difficult. Analysis
of why the section is difficult, however, is very hard if at all possible. This lack of
insight into how a conclusion was made may prove to be a very big drawback for
game designers, as it means they can not use this information to change the balance
in the game.
Compared to this, the results of the analytical model are much easier to understand.
In fact, it can be summarized in one sentence: very low threshold velocity means a
section is very likely to be difficult. That is practical information that game designers
could potentially use immediately during development, maybe even without doing
test runs on tracks.

6.2.2 Limitations

Assumptions limiting application field Aside from the input, there is an impor-
tant distinction between the models. The data driven model is based on pure data,
while the analytical model incorporates assumptions on what causes difficulty. The
maximum safe velocity is in reality just the maximum safe velocity before the car
starts sliding sideways. However, as can be seen in rally driving, sliding sideways is
in no way an absolute indication of difficulty. In certain categories of racing it can
even be applied as a mechanic to gain the upper hand. Other physics, such as the
car tipping rather than sliding, have not been included in the model. This might
mean that for some types of race games, the data driven model is actually at a great
advantage. It does not assume anything about what makes a track difficult. The
SVM bases its information purely on player performance and the shape of the track
rather than our interpretation of what that shape means for the player.

Limitations of both models Both models are only based on how the road itself
is shaped, excluding many other potential factors. Our testing environment did

45

Chapter 6 Comparison of models

not include any obstacles, varying road widths or road surfaces, other players or
buildings obstructing view around a corner. These can all easily be explained as
potentially having some influence on the difficulty of the track, such as the road
surface having a direct influence on the friction factor in our analytical model. One
example of this is that even in our mostly wide open testing environment, we believe
some of the unexpected crashes occurred due to the view being obstructed by hills.
But this is not at all reflected in the results of either model. In fact, if any of these
potential factors for difficulty occur on flat, mostly straight roads, our models will
(possibly incorrectly) classify them as not at all difficult to drive on. Clearly, this is
a limitation of both our models.
Possible solutions to this might be to expand the models (include road width and
surface in the road data), combine our models with models which incorporate factors
such as view obstruction and obstacles, or both.

Limitations of test environment While our models were designed to be potentially
useful in a wide range of racing games, we have only managed to test them in one
environment. Although we purposely limited our test environment to not include
any obstacles to allow us to focus on the influence on difficulty of the road, this
means we do not know how our models would perform in a full game environment.
Because our models do not take obstacles, other players or varying road conditions
into account, they might heavily influence the overall performance of our models.
It is currently unknown if the correctly identified difficult sections are equally difficult
in such situations. For instance, players may drive around sharp corners more
carefully if they expect other players to possibly crash into them, or if there can
be unexpected obstacles on the road, or if the road may provide less grip due to
sub-optimal road conditions. While this limitation applies to both our models, as
our analytical model includes more assumptions about the environment (mostly
based on our test settings), it is more likely to be influenced.

46

7 Conclusion

Analytical model We attempted to find a method with which we could identify
the difficulty of a given track. We believe that the analytical model may have some
use to pinpoint particularly tricky sections, by checking if low thresholds result in
high amounts of positives. As explained in Section 6.2.2, our models are limited
to the shape of the road. This means that not all difficult sections (such as those
where hills obstructed the view of a moderately sharp corner) can be expected to
be correctly classified, and indeed they were not.
However, many sections that players found difficult were correctly marked as diffi-
cult. Even for repeated runs by the same player over the same track, almost all of
the most consistently difficult sections (in other words, the sections that were diffi-
cult even with prior knowledge of the track) were marked as having a low maximum
speed, or a high difficulty, by this model. Additionally, we have not been able to
find any comparable models, and consequently nothing to compare our results with.
Because of this, we believe an AUC of nearly 0.7 is a very promising start.
As the analytical model does not have a training phase, it can be instantly applied
to any track, making it easy to use. In practice, we believe this model could be used
by racing game developers to quickly find some of the most tricky corners. These
corners could then be adjusted to be less difficult, or the maximum velocity and
acceleration of vehicles could be changed to make the player less likely to crash.
Alternatively, the opposite could be done: if there are no sections marked as having
a low maximum speed, sharper corners could be added, or the maximum velocity of
vehicles could be increased.

Data driven model The data driven model did not meet our expectations of eas-
ily identifying difficult sections. We believe this is mostly due to our player data
containing many data points that can not be linked to, or explained with, only the
shape of the track as the player’s performance varies too wildly. As such, our model
is inadequate to draw definite conclusions for all our data.
Although the model itself correctly classifies over half the sections it is presented
with, scoring nearly as well as the analytical model on paper, this does not assure
it can be used in practice. The model gives only a binary classifier, or at most a
probability, which stands only for if the player is expected go off road. This is often
not enough to determine if a section is indeed difficult. The many variables make
it harder to analyze how sections were, due to the SVMs black box aspect. This

47

Chapter 7 Conclusion

means that we can not easily assert that the results are correct, or what they are
based on.

Conclusion Our goal was to find a method with which the difficulty of new tracks
could easily be identified. One of our main motivators for this was the increasing
amount of procedurally generated content in games. We believed that racing games
did not often contain procedurally generated racetracks because it is often hard to
determine if a generated track is too easy, too hard or even impossible to drive on.
We designed two models to achieve this. First a data driven model, which takes the
shape of the road and the performance of a player driving over it, and uses this to
train a SVM implementation. Second an analytical model, which takes the shape
of the road as well as the banking angle, and calculates a maximum velocity before
the car would start sliding sideways according to the laws of physics.
Our analytical model has been shown to correctly identify many difficult sections.
The variable on which this difficulty classification is based, the maximum safe ve-
locity, is easily explained and easy to use. It can also easily be applied to any track,
without the need of player data.
While our data driven model performed nearly as well on paper, it is much harder
to draw conclusions from, due to the black box aspect of SVM. There is no clear
variable that shows why a section is difficult, or what the most difficult point in a
section is. In addition to this, it requires a lot of training data to properly function.
To conclude, we believe that while drawing useful information from the data driven
model may be too complicated, the analytical model can indeed help identify the
difficulty of tracks. However, both of the given difficulty models lack a high ac-
curacy, as they are limited to basing their classification on the shape of the road.
Additionally, the player’s performance is a very influential factor in how well the
models perform. Therefore, basing conclusions on only the output of the models is
not advised.

7.1 Future work

Expanding the models We believe the models as presented here would form a
good base to start from. The results we achieved with these models are far from
ideal, and indicate that a lot of work can still be done to improve the models. We
believe that for the data driven model replacing the input with less variables would
be the best place to start. The calculated maximum safe velocity from the analytical
model might in fact be an ideal first option.
For the analytical model, as mentioned in Section 5.5, we believe valuable informa-
tion can be gained by looking at the derivative of the calculated maximum safe
velocities along the track. Using the calculated maximum safe velocity as input for

48

7.1 Future work

machine learning, as suggested, might in fact help in identifying such patterns. We
would also be interested in exploring other physics formulas, to see how they influ-
ence the results. In particular, the maximum velocity before a car starts tipping
over due to centripetal force.
There are many other factors that help determine the difficulty in racing games,
such as road width and surface variation, other cars, obstructed vision and obstacles
on the road. We believe that incorporating these in the model, or combining our
models with models based on these factors, is crucial in more accurately determining
difficulty.

General difficulty models Developing, implementing and using difficulty models
for games in general could also be considered important future work. As shown by
Lopes and Bidarra [13] adaptivity and procedural content generation has seen some
significant progress in recent years. However, as concluded by Hendrix et al. [10]
most implementations focus on a few specific genres, or even just one genre, similar
to how the models described here are specific to racing games.
Work such as that by Pedersen et al. [16] describe how the data gained from player
experience models can be used to improve the experience of the player in a general
way, but the model they implemented was specifically designed for a platformer.
Moffett [17] went one step further, and split up his difficulty model into three layers;
a generic layer, a refinement layer and an instantiation layer. The second and
third layer are specific to a genre and a game respectively. While the generic layer
applies to racing games in theory, not much information on how to proceed with
implementing the second and third layer for game genres other than those described
in Moffett’s own work was given.
In our specific case, we were not able to find any work explaining to apply the
knowledge gained by others in our environment. We have no way to conclude if
models which focus heavily on factors that do not exist in racing games, such as
equipment or enemies, would still work in racing games. As such, we believe that a
lot of progress could be made by looking into ways to apply already existing methods
to more specific genres. In particular, we are interested in work that details the steps
one should go through to correctly apply a general model, such as that by Moffett
[17], to a genre or game specific environment.

Automating difficulty assessment While the methods we described may help
game designers to determine if tracks are indeed difficult to drive on, we do not yet
have a way to automate this so it can be used for procedurally generated tracks. We
believe this would be an interesting goal to aim for in the future.

49

Acknowledgments

I would like to thank my supervisors, Michael Wand and Marries van de Hoef,
without whom I would not have gotten this far. They taught me much, and I am
very grateful for their assistance.
Furthermore, I could not have done this without the support of my parents, who
were always there for me whenever I needed them to be. And much love and thanks
to Grace Ruppert, who supported me and tried her very best to help me in every
way she could.
Finally, there have been many people who helped me in some small or not so small
way, by giving insights or simply listening to what I had to say. They are too many
to list here, and I don’t want to place some people above others, but please know I
am very grateful to all of you nonetheless.
And thank you, the reader, for reading all the way to the bottom here!

51

Bibliography

[1] Cardamone, Luigi. "Evolutionary learning and search-based content generation
in computer games." (2012).

[2] Togelius, Julian, et al. "Search-based procedural content generation: A taxon-
omy and survey." Computational Intelligence and AI in Games, IEEE Transac-
tions on 3.3 (2011): 172-186.

[3] Togelius, Julian, and Simon M. Lucas. "Evolving controllers for simulated car
racing." Evolutionary Computation, 2005. The 2005 IEEE Congress on. Vol. 2.
IEEE, 2005.

[4] Togelius, Julian, Renzo De Nardi, and Simon M. Lucas. "Making racing fun
through player modeling and track evolution." (2006).

[5] Togelius, Julian, Renzo De Nardi, and Simon M. Lucas. "Towards automatic
personalised content creation for racing games." Computational Intelligence and
Games, 2007. CIG 2007. IEEE Symposium on. IEEE, 2007.

[6] Shaker, Noor, Georgios N. Yannakakis, and Julian Togelius. "Towards Auto-
matic Personalized Content Generation for Platform Games." AIIDE. 2010.

[7] Loiacono, Daniele, Luigi Cardamone, and Pier Luca Lanzi. "Automatic track
generation for high-end racing games using evolutionary computation." Com-
putational Intelligence and AI in Games, IEEE Transactions on 3.3 (2011):
245-259.

[8] Cardamone, Luigi, Daniele Loiacono, and Pier Luca Lanzi. "Interactive evolu-
tion for the procedural generation of tracks in a high-end racing game." Proceed-
ings of the 13th annual conference on Genetic and evolutionary computation.
ACM, 2011.

[9] Wang, Jiao Jian, and Olana Missura. "Racing tracks improvisation." Computa-
tional Intelligence and Games (CIG), 2014 IEEE Conference on. IEEE, 2014.

[10] Hendrikx, Mark, et al. "Procedural content generation for games: A survey."
ACM Transactions on Multimedia Computing, Communications, and Applica-
tions (TOMCCAP) 9.1 (2013): 1.

[11] Lucas, Simon M., and Julian Togelius. "Point-to-point car racing: an initial
study of evolution versus temporal difference learning." Computational Intelli-
gence and Games, 2007. CIG 2007. IEEE Symposium on. IEEE, 2007.

53

Bibliography

[12] Iosup, Alexandru. "POGGI: generating puzzle instances for online games on
grid infrastructures." Concurrency and Computation: Practice and Experience
23.2 (2011): 158-171.

[13] Lopes, Ricardo, and Rafael Bidarra. "Adaptivity challenges in games and sim-
ulations: a survey." Computational Intelligence and AI in Games, IEEE Trans-
actions on 3.2 (2011): 85-99.

[14] Togelius, Julian, and Jürgen Schmidhuber. "An experiment in automatic game
design." Computational Intelligence and Games, 2008. CIG’08. IEEE Sympo-
sium On. IEEE, 2008.

[15] Yannakakis, Georgios N., and John Hallam. "Real-time game adaptation for
optimizing player satisfaction." Computational Intelligence and AI in Games,
IEEE Transactions on 1.2 (2009): 121-133.

[16] Pedersen, Christopher, Julian Togelius, and Georgios N. Yannakakis. "Modeling
player experience for content creation." Computational Intelligence and AI in
Games, IEEE Transactions on 2.1 (2010): 54-67.

[17] Moffett, Jeffrey Peter. Applying Causal Models to Dynamic Difficulty Adjust-
ment in Video Games. Diss. Worcester Polytechnic Institute, 2010.

[18] Jennings-Teats, Martin, Gillian Smith, and Noah Wardrip-Fruin. "Polymorph:
A model for dynamic level generation." Sixth Artificial Intelligence and Inter-
active Digital Entertainment Conference. 2010.

[19] Csikszentmihalyi, Mihaly. Flow. Springer Netherlands, 2014.
[20] R Core Team (2014). R: A language and environment for statistical comput-

ing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-
project.org/.

[21] David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel and
Friedrich Leisch (2014). e1071: Misc Functions of the Department of
Statistics (e1071), TU Wien. R package version 1.6-4. http://CRAN.R-
project.org/package=e1071.

[22] Sing T, Sander O, Beerenwinkel N and Lengauer T (2005). “ROCR: visu-
alizing classifier performance in R.” _Bioinformatics_, *21*(20), pp. 7881.
http://rocr.bioinf.mpi-sb.mpg.de.

[23] Shaker, Noor and Togelius, Julian and Nelson, Mark J. Procedural Content
Generation in Games: A Textbook and an Overview of Current Research.
Springer, 2015.

[24] Koster, Raph. Theory of fun for game design. " O’Reilly Media, Inc.", 2013.
[25] Stanbrough, JL. "A Banked Turn With Friction." A Banked

Turn With Friction. N.p., 6 Feb. 2006. Web. 28 June 2015.
http://www.batesville.k12.in.us/physics/phynet/mechanics/
circular%20motion/banked_with_friction.htm.

54

Bibliography

[26] Barbella, David, et al. "Understanding Support Vector Machine Classifications
via a Recommender System-Like Approach." DMIN. 2009.

55

	Contents
	Abstract
	1 Introduction
	2 Related Work
	3 Test Environment
	3.1 Requirements
	3.2 Considered environments
	3.2.1 TORCS
	3.2.2 Speed Dreams, VDrift and other free / open source projects
	3.2.3 Unity / Custom-made racing game

	3.3 Unity implementation
	3.3.1 Terrain generation
	3.3.2 Track generation
	3.3.3 Racing game

	4 Data driven model
	4.1 Hypothesis
	4.2 Model
	4.3 Method
	4.3.1 Flagging records as off-road
	4.3.2 Invariant position / rotation
	4.3.3 Cropping the data to exclude the ends
	4.3.4 Feeding the data into SVM

	4.4 Test Results
	4.4.1 Results
	4.4.2 Analysis
	4.4.3 Conclusion

	5 Analytical model
	5.1 Hypothesis
	5.2 Model
	5.3 Implementation
	5.4 Test results
	5.4.1 Results
	5.4.2 Analysis

	5.5 Derivative of maximum velocity
	5.6 Subjective analysis

	6 Comparison of models
	6.1 Comparison of the results
	6.2 Discussion and limitations of models
	6.2.1 Discussion of differences
	6.2.2 Limitations

	7 Conclusion
	7.1 Future work

	Acknowledgments
	Bibliography

