
Finding a winning strategy in variations of

Kayles

Simon Prins

ICA-3582809

Utrecht University, The Netherlands

July 15, 2015

Abstract

Kayles is a two player game played on a graph. The game can

be de�ned as follows: both players take turns picking a node from a

graph G. They remove that node and all its neighbors. When there

are no more nodes left, the player whose turn it is loses. An alternate

but equivalent way of phrasing it is to say that both players take turns

picking an unmarked node from graph G and marking it and its neigh-

bors. When all nodes are marked, the player whose turn it is loses. In

this paper a variation of the game Kayles is studied, where instead of

removing or marking just the neighbors of the chosen node, the players

remove or mark the nodes at a certain distance d. Note that in this

variation there is a di�erence between marking and removing a node.

When the players remove nodes, the distance between other nodes can

change, but when the players mark nodes the distances stay the same.

This paper proves that Kayles with marking is PSPACE-complete and

that Kayles with removing is PSPACE-complete for d = 2. Further-

more an O∗(1.5875) algorithm for �nding a winning strategy for Kayles

with marking is given for distance d = 2. It is also shown that both

versions of Kayles can be solved in polynomial time on certain classes

of graphs.

1 Introduction

This paper studies two variations of the game Kayles. Kayles is a two player
game played on a graph. The game can be de�ned as follows: both players

1

take turns picking a node from a graph G. They remove that node and all
its neighbors. When there are no more nodes left, the player whose turn it
is loses. An alternate but equivalent way of phrasing it is to say that both
players take turns picking an unmarked node from graph G and marking it
and its neighbors. When all nodes are marked, the player whose turn it is
loses.

The game of Kayles has been well studied. Schaefer proved it to be
PSPACE-complete, see [1]. The use of Sprague-Grundy theory in �nding
winning strategies for Kayles has also been studied, see [2]. Bodlaender and
Kratsch used this to show that Kayles can be solved in polynomial time on
certain classes of graphs in [5]. In [4], Bodlaender et al. give an exponential
time algorithm for solving it on general graphs.

In this paper a variation of the game Kayles is studied, where instead of
removing or marking just the neighbors of the chosen node, the players re-
move or mark the nodes at a certain distance d. Although the two de�nitions
given for Kayles are equivalent when removing only the neighbors of a node,
they become di�erent when the players remove nodes at a certain distance.
When the players remove the nodes from the graph, the distance between
two nodes u and v can increase. This happens when a node on a shortest
path from u to v is removed. When marking nodes, the distance between
nodes will never change, since the graph itself is never actually altered. The
version of Generalized Kayles with Marking is denoted GKMd, where d is
the distance at which nodes are marked. Generalized Kayles with Removal
is denoted GKRd.

Although the two versions of Kayles are not generally the same, they can
be equivalent on certain graphs. Let Nd(v) denote the set of all vertices at
distance at most d from v.Suppose a graph G has the property that removing
any vertex v and all vertices Nd(v) will not increase the distance between any
two vertices from being smaller then or equal to d to being larger than d.
Suppose that all subgraphs G −Nd(v) that can be obtained by picking any
vertex v and removing it and all its neighbors at distance d or less, recursively
share this property. Denote such a graph d-Kayles equivalent. The following
theorem holds.

Theorem 1. A game of GKMd that is played on a d-Kayles equivalent graph
G is equivalent to a game of GKRd played on the same graph.

Consider a game of GKMd, played on a graph G. The dth powergraph of
G is the graph with the same nodes as G, and where there is an edge between
every pair of nodes u, v i� the distance between u and v is at most d in G.
Note that the following theorem holds:

2

Theorem 2. A game of GKMd that is played on graph G is equivalent to a
game of regular Kayles played on the d-th powergraph of G.

This provides an easy way to reuse some of the results obtained for Kayles.
Particularly, the algorithm described by Bodlaender et. al. in [4] for deter-
mining if a winning strategy exists for Kayles can be used in the following
way. Given a game of GKMd, played on graph G. The algorithm for regular
Kayles described by Bodlaender can be used to determine if a winning strat-
egy exists on the dth powergraph of G. If such a winning strategy exists, then
there also exists a winning strategy for GKMd on graph G, if it does not,
then no winning strategy is possible for GKMd either. Since the powergraph
of a graph can be computed in polynomial time, and the algorithm for regular
graphs can be run in O∗(1.6031n) time, this gives an O∗(1.6031n) algorithm
for �nding a winning strategy for GKMd. In Section 4 an improved upper
bound of O∗(1.5875) is given for GKM2.

In Section 2 some preliminary results for the regular version of Kayles are
provided. These results are also useful for the variations of Kayles studied
in this paper. In Section 3 the complexity of the generalized versions of
Kayles is studied. The section provides a proof that GKMd is PSPACE-
complete. It also proves that GKR2 is PSPACE-complete. Section 4 gives
an exact algorithm for �nding a winning strategy for GKM2 on arbitrary
graphs. Section 5 provides some polynomial time algorithms for solving both
versions of Generalized Kayles on special classes of graphs. Finally, Section
6 provides an overview of the conclusions that can be drawn from this paper.

2 Preliminaries

2.1 PSPACE-completeness of regular Kayles

Schaefer proves Kayles to be PSPACE-complete in [1]. In this section his
proof is given. In Section 3, the graph given in this proof is extended, to
prove GKMd to be PSPACE-complete. It is also used in the proof that
GKR2 is PSPACE-complete.

Schaefer gives a reduction from the game Gω(CNF) to Kayles.

De�nition 1. He de�nes Gω(CNF) as follows: Gω(CNF) is a two player
game, where the input is a pair (A, ξ) where A is a CNF-formula and ξ =
(ξ1, ξ2, ..., ξn) is a list of distinct variables, including all those occurring in
A. Move i consists of assigning to ξi a value of 0 (false) or 1 (true). After
n moves, [the �rst player] wins i� the assignment which has been produced
makes A true.

3

Gω(CNF) is known to be PSPACE-complete, even when restricting it so
that n must be odd and the �rst clause of A must be (x1 ∨ ¬x1).

Next is shown that this restricted version of Gω(CNF) can be reduced to
an instance of a game of Generalized Kayles with Marking, for any even d. An
example of this reduction for the formula (x1∨¬x1)∧(x1∨¬x2)∧(¬x1∨x2∨x3)
is shown in Figure 1.

Figure 1: A reduction from Gω(CNF) to Kayles for the formula (x1∨¬x1)∧
(x1∨¬x2)∧(¬x1∨x2∨x3). Source: On the Complexity of Some Two-Person
Perfect-Information Games, by Schaefer [1].

First the graph G is constructed. This is the same graph that Schaefer
constructs is his proof. Let A = B1∧B2∧...∧Bm, with each Bi a disjunction of
literals. For every Bi a node x0,i is added to the graph. For each variable ξi a
node xi and a node x̄i are added to the graph. Finally nodes yi,0, yi,1, ..., yi,i−1
are added to the graph for each variable ξi. There is an edge between a node
xi and a node x0,j if Bj contains the non-negated literal ξi. There is an
edge between a node x̄i and a node x0,j if Bj contains the negated literal ξi.
Call the nodes x0,1 to x0,mrow0. Call the nodes xi and x̄i and all the nodes
yi,0, yi,1, ..., yi,i−1 row i. Additional edges are added to each row to form a
clique. There is an edge between a node yi,j and every node in the rows 0 to
i− 1 except for row j.

4

There exists a winning strategy for regular Kayles on this graph i� there
exists a winning strategy for the Gω(CNF) game. The idea is as follows. On
turn i, the player whose turn it is, is supposed to pick either node xn−i+1 or
node x̄n−i+1. This is called a legitimate move. This corresponds to assigning
the value true or the value false respectively to variable ξi. Note that the
rules of Kayles allow the player to play on any other node as well. This will
be addressed later. Note that since each row is a clique, the other nodes in
the row will disappear as well. After n turns, if the corresponding assignment
of values to the variables makes A true, then there are no more nodes in row
0 and, since n is odd, it is the second players turn and the �rst player wins.
If the assignment of variables does not make A true, then some nodes will
remain. The second player can pick any of these nodes. Since only nodes
on row 0 remain, all of them will be removed. This means the second player
wins the game.

If a player does not play legitimately, i.e. on turn i, he picks some node
other than xn−i+1 or x̄n−i+1, then the other player can make a move in such
a way that all remaining nodes are removed and he wins. When a player
picks a node in row j with j < n − i + 1, then node yi,j will remain. It is
connected to all nodes except for those on row j. Therefore if one player
plays illegitimately on row j, then the other player can pick this node and
win. If the player played illegitimately on a node in row n − i + 1, i.e. he
picked a node yn−i+1,j, then all nodes will be removed except those on row j.
The other player can pick any of these node to win. This means that if there
is a winning strategy for Kayles on this graph, it can only contain legitimate
moves, thus there must be a winning strategy in the Gω(CNF) game.

2.2 Sprague-Grundy theory

Sprague-Grundy theory provides results that can help analyzing positions in
two player games that are �nite, deterministic, full-information, impartial,
and with the `last player wins rule'. Kayles and the variations of Kayles
discussed in this paper all fall into this category of games. Sprague-Grundy
theory allows us to assign a nimber to any position in such a game. A nimber
is an integer belonging to the set N = {0, 1, 2, ...}. A nimber is de�ned as
0 if there is no move possible. Otherwise it is de�ned as the minimum
excluded nimber of the set of nimbers of positions reachable in one move.
The minimum excluded nimber of a set S is de�ned as mex(S) = min{i ∈
N|i /∈ S}. The following theorem helps us determine whether a player has a
winning strategy:

Theorem 3. [2] [3] There is a winning strategy for player 1 from a position,

5

if and only if the nimber of that position is at least 1.

Another theorem allows us to combine two (�nite, impartial, determin-
istic...) games and get a new nimber for the resulting game. Denote the
nimber of a position p by nb(p). Given two games G1 and G2, the sum of
G1 and G2, denoted G1 +G2 is the game where a move consists of choosing
G1 or G2 and making a move in that game. A player that cannot make a
move in either game looses the game G1 + G2. (p1, p2) denotes the position
in G1 +G2 where the position in Gi is pi.

The binary XOR operation is denoted by ⊕, i.e., i1⊕ i2 =
∑
{2j|(bi1/2jc

is odd)↔ (bi2/2jc is even)} for nimbers i1, i2.

Theorem 4. [2] [3] Let p1 be a position in G1, p2 be a position in G2. The
nimber of position (p1, p2) in G1 +G2 equals nb((p1, p2)) = nb(p1)⊕ nb(p2).

Both Kayles with Marking and Kayles with Removal are impartial, deter-
ministic, �nite, full-information, two player games with the rule that the last
player that moves wins the game. This means that Sprague-Grundy theory
can be applied to them and a nimber can be associated with every position
in either game. For Kayles with Removal this works as follows. A nimber
can be associated with every graph G, the nimber of the start position of the
game Kayles with Removal played on G. This nimber is denoted nb(G), and
it is called the nimber of G. Suppose G1 and G2 are two disjoint graphs and
G = G1 ∪G2. The game of Kayles with Removal played on G is the sum of
the same game played on G1 and G2. Hence the next lemma follows from
Theorem 4:

Lemma 1. nb(G1 ∪G2) = nb(G1)⊕ nb(G2).

Consider a game of Kayles with Removal played on graph G = (V,E).
Suppose a node v ∈ V is played. Then the nimber of the resulting position
is the same as the nimber of G−Nd[v], as its e�ect is the same as removing
v, and all nodes at distance at most d from v. As the nimber of a position is
the minimum nimber that is not in the set of nimbers of positions that can
be reached in one move, the following can be concluded:

Lemma 2. (i) If G = (V,E) is the empty graph, then nb(G) = 0.
(ii) If G = (V,E) is not the empty graph, then nb(G) = mex(nb({G −

Nd[v]|v ∈ V })).

For Kayles with Marking, determining the nimber works slightly di�erent.
If two unmarked regions of the graph become disconnected, there may still
be a node in one region that is at distance at most d from another region.

6

In this case the two regions cannot be considered as separate games, since
a move in one region could in�uence the other region. However, a position
p = (G,X) can be de�ned, where G is the original graph on which the game
is played, and X is the set of vertices which remain unmarked at position p.
Now p1 = (G,X1) and p2 = (G,X2) are two positions on the same graph.
Suppose that X1 and X2 are distinct and no node from one set has a neighbor
in the other set in Gd. A move on a node in X1 can no longer in�uence the
nodes in X2. The position p3 = (G,X1 ∪ X2) is therefore the sum of the
positions p1 and p2. Hence by Theorem 4, the following lemma is obtained:

Lemma 3. nb(p3) = nb(p1)⊕ nb(p2).

Consider a position (G,X) in the game of Kayles with Marking, with
G = (V,E). Suppose a node v ∈ X is played. Then the nimber of the
resulting position is the same as the nimber of (G,X −Nd[v]), as its e�ect is
the same as removing v, and all nodes at distance at most d from v. As the
nimber of a position is the minimum nimber that is not in the set of nimbers
of positions that can be reached in one move, the next lemma follows:

Lemma 4. (i) If p = (G, ∅) then nb(p) = 0.
(ii) If p = (G,X) and X is not the empty set, then nb(p) = mex(nb({G−

Nd[v]|v ∈ X})).

3 Complexity of Generalized Kayles

Regular Kayles has been proven PSPACE-complete by Schaefer in [1]. In
this section it is proven that Generalized Kayles with Marking is PSPACE-
complete as well. It is also proven that Generalized Kayles with Removal is
PSPACE-complete for d = 2.

3.1 Generalized Kayles with marking

In this section the following theorem is proven, based on the proof for regular
Kayles by Schaefer in [1].

Theorem 5. Kayles with Marking is PSPACE-complete for any d.

Proof. In his proof that regular Kayles is PSPACE-complete, Schaefer gives
a reduction from the game Gω(CNF) to Kayles. This proof is the basis for
the following proof.

Here, also a reduction from Gω(CNF) is used. First, construct the graph
G from Gω(CNF), as described in Section 2.1.

7

Graph G′ is constructed by replacing each node in G with three nodes in
G′. These three nodes form a clique and whenever there is an edge between
two nodes v and w in G, there is an edge between every copy of v in G′ and
every copy of w in G′.

The proof that regular Kayles is PSPACE-complete would still work the
same on this graph, only now whenever a player makes a move, he can choose
any of the three copied nodes.

Figure 2: The transformation of a part of graph G′ to G′′ for d = 6.

Now the graph G′′ is constructed from the graph G′. Figure 2 shows a
part of a graph G′ and the resulting part of the graph G′′ for d = 6.

Each edge vw in G′ is replaced with a string of d−1 nodes. Each of these
nodes is connected to the next and the �rst and last nodes are connected
to v and w respectively. The distance between neighboring nodes from the
original graph is now exactly d. These added nodes are called edge nodes.

8

Each edge node is connected to a single hub node by a string of bd/2c−1
nodes, called bridge nodes. For d = 2 and d = 3, each edge node is connected
directly to the hub node. The hub node has another string of dd/2e−1 nodes
attached to it. The last of these is attached to every node in row n. For d = 2,
the nodes in row n are directly connected to the hub node. There is also a
string of d nodes, labeled t1 to td. td is connected to each of the nodes in row
n, and t1 is connected to each node in row 0 except for x0,1. These nodes are
called the tail.

The idea is that the �rst player, on his �rst turn, will pick one of the
nodes on the �rst row. This node is at distance d or less from every other
node that was added in G′′. This means that after the �rst turn, only nodes
from G′ will remain unmarked and the game will continue like the original
game on graph G.

Suppose the �rst move is on one of the original nodes of Graph G, but
not in the �rst row. The opponent can now pick the corresponding counter
move in the �rst row. This marks all remaining nodes.

Suppose the �rst move is to pick a node at distance dd/2e−1 or less from
the hub node. All original nodes are at distance bd/2c+ 1 from the hub, so
they are marked. Only one or more nodes of the tail will remain unmarked.
Picking one of these will mark all the remaining nodes, so the �rst player
loses.

Suppose the �rst move is to pick an edge node. If d is odd, then the
edge node is at distance dd/2e − 1 from the hub node and the previous case
applies. If d is even, then these nodes are at distance d/2 from the hub. This
means that all edge nodes are marked. Also, the entire nth row is marked.
The original nodes will remain, except for row n and the two nodes linked by
the picked edge node. Since there are three of each node, the game played on
the regular nodes still works the same. The second player can now pick the
tail node adjacent to row 0. This will mark row 0, except for node x0,1. It
will also remove all the nodes that were added, so that the remaining game
works the same as the game on G. However, in this new game, the players
have swapped turns. The second player is trying to make the bottom row
empty and the �rst player is trying to prevent this. The only node remaining
in the bottom row is node x0,1 which is connected to both x1 and x̄1. The
second player will always win the game if he plays it out as normal, so the
�rst player has no winning strategy.

Suppose that the �rst move is to pick t1. The distance from this node
the the nodes of row n is exactly d. The distance from this node to the
nodes of row 0 is 1. The distance to the hub node is bd/2c + 2. Since
there are dd/2e − 1 nodes connecting the hub to row n, exactly one of those
will remain. Picking this node will mark every remaining node. The only

9

exception is when d = 2. In this case the hub node is not marked. It can be
picked to mark all remaining nodes.

If the �rst move is to pick one of the nodes t2 to tdd/2e−1 there is always
a bridge node that can be picked to mark all remaining nodes.

If the �rst move is to pick node tdd/2e, then the hub will remain and
picking this marks all remaining nodes.

If the �rst move is to pick on of the nodes tdd/2e+1 to td−1, picking any
bridge node will remove all remaining nodes.

If the �rst move is to pick node td, then the second player can pick any
edge node. If d is odd, then all nodes are now marked. If d is even, then the
game will continue again with the players having swapped turns. Row n is
removed and row 0 is removed, except for node x0,1. The second player can
win this by playing the game out normally.

In conclusion, any illegitimate �rst move will result in a loss for the �rst
player. A winning strategy is only possible if the game is played out as
described by Schaefer. This means that if a winning strategy can be found
for the �rst player, there also exists a winning strategy in Gω(CNF).

3.2 Generalized Kayles with Removal

In this section a proof is given for the following theorem, based on the proof
for regular Kayles by Schaefer.:

Theorem 6. Kayles with Removal is PSPACE-complete for d = 2.

Proof. First, construct the graph G from Gω(CNF), as described in Sec-
tion 2.1.

The set of nodes for graph G′ as de�ned as follows:

V ′ =
n⋃

i=0

X ′i

X ′0 = {x0,k,1|1 ≤ k ≤ m} ∪ {x0,k,2|1 ≤ k ≤ m}
X ′i = {xi, x̄i} ∪ {yi,j,1|0 ≤ j ≤ i− 1} ∪ {yi,j,2|0 ≤ j ≤ i− 1 ∧ ¬(i = 1)}
The edges are constructed as follows:

E ′ =
n⋃

i=0

[X ′i]
2 ∪D′ ∪

n⋃
i=1

i−1⋃
j=0

C ′i,j

D′ = {{xi, x0,k,j}|xi occurs unnegated in Bk, j ∈ {1, 2}} ∪ {{x̄i, x0,k,j}|xi
occurs negated in Bk, j ∈ {1, 2}}

C ′ij = {{yi,j,1, w}, {yi,j,2, w}|w ∈
⋃

0<=k<i
k 6=j

Xk}

This has the e�ect of duplicating all nodes yi,j except for y1,0 and all
nodes x0,i. The proof that Kayles is PSPACE-complete would still work on
this graph, only now when a player makes an illegitimate move, the other

10

player can choose which of the two y nodes to take. Duplicating the nodes
from X0 can be viewed as duplicating the clauses of the formula, which has
no e�ect on the existence of a winning strategy. Adding these nodes ensures
that there are always an odd number of nodes in the graph, which will be
used later.

Now the graph G′′ is constructed from the graph G′. This is done by
replacing each edge uv by the edges u − xuv1, u − xuv2, v − xuv1, v − xuv2.
Note that we have also added two nodes xuv1 and xuv2 per edge. These nodes
are referred to as edge nodes. A node zi is also added for every variable i
of the CNF game. These nodes are all connected to each other. They are
also connected to all edge nodes between nodes from X0 to Xi. They are
also connected to edge nodes between each pair yj,k,1, yj,k,2 with k unequal
to zero. Finally nodes z0,1 and z0,2 are added. These are connected to all the
nodes of X1. z0,2 is also connected to all edge nodes connected to two nodes
in X1.

To show that this reduces an instance of a CNF game to an instance of
a 2-Kayles game, it is �rst shown that if each player only plays legal moves,
i.e. on turn i, he only plays either xn−i+1 or x̄n−i+1, a winning play in the
instance of 2-Kayles is equivalent to a winning play in the CNF game. It
is also shown that if a player plays any illegitimate move, he automatically
loses.

When only legitimate moves are played, on each move i node zn−i+1 will
be removed, since that node is connected to the edge nodes between xn−i+1

and x̄n−i+1 and therefore has distance 2 to each of those nodes. On the
nth turn, z0,1 and z0,2 will also be removed. Finally, all nodes that have
been added will get removed, except possibly for some edge nodes. However
these come in pairs. From Lemma 1 it follows that pairs of identical graph
components sum to zero, so they do not in�uence the existence of a winning
strategy, and can be ignored.

Case 1: A player plays illegitimately on one of the nodes of

graph G If a player plays illegitimately on one of the nodes from graph
G', this move can be countered by playing the corresponding move given in
the proof by Schaefer. If the player picks a node in X0, then z1 to zn will be
removed, since they are connected to all edge nodes between nodes in X0. If
the player picks a node from X1 to Xn−1 the corresponding move is to pick
a certain y node. The edge nodes between y nodes are connected to z1 to
zn, so again they will be removed. If the player picks an illegitimate node
in Xn, the next player picks a node from the corresponding set Xi, which
is the reverse of one of the previously mentioned cases, so again all nodes
z1 to zn will be removed. If one of the nodes in X1 gets picked, then the
nodes z0,1 and z0,2 will both be removed, otherwise they will both remain.

11

The �nal result is that all nodes from the graph G' are gone and that an
even number of disconnected nodes remain. This means that the player who
played illegitimately will lose.

Case 2: A player plays illegitimately on one of the edge nodes Sup-
pose now that a player plays illegitimately on one of the edge nodes. Note:
it is possible that some edge nodes are no longer connected to one of their
endpoints, because it was previously removed. Such an edge node will not
be connected to any of the z nodes.

Case 2.1: A player plays illegitimately on one of the edge nodes

still connected to both its endpoints First assume that the edge node
that was picked is still connected to both its endpoints. If this is turn i, then
node zn−i+1 is connected to all edge nodes, which means that picking an edge
node will remove all other edge nodes. Since all nodes z1 to zn are connected,
they also get removed, as well as the endpoints of the edge node that was
picked. This means that, except for the endpoints of the edge, all original
nodes still remain, but are disconnected. Some edge nodes may also remain,
but they are all disconnected and appear in pairs. If one of the endpoints
was a node in X1 then z0,1 and z0,2 are also removed. Since the graph G′ was
manipulated to have an odd number of nodes, there are now an odd number
of disconnected nodes left. This means that the player who picked the edge
node will lose. Suppose that neither of the endpoints of the chosen edge were
in X1. Then z0,1 and z0,2 remain. Picking either of these will remove both
of them and also the set X1. Since there are an odd number of nodes in X1,
there is an even number of disconnected nodes left and the player who played
illegitimately will lose.

Case 2.2: A player plays illegitimately on one of the edge nodes

of which one of its endpoints has been removed Suppose that one
(but not both) of the endpoints of the edge node has been removed. This
means that selecting one of these nodes will make the total number of nodes
in the graph odd. If the next player now takes an edge node connected to
two nodes in X1, there are an even number of disconnected nodes left and
the player who played illegitimately loses.

Case 3.1: A player plays illegitimately on node zi on the n−i+1th
turn Suppose that a player illegitimately picks node zi on the n− i+ 1th
turn. This node is connected to all edge nodes, so all edge nodes are removed.
All nodes from G' are directly connected to at least one edge node, so they
also get removed. z0,2 is also connected to some edge nodes, so it also gets
removed. z0,1, however is not removed. When the next player picks node
z0,1, no nodes remain except possibly some pairs of edge nodes. This means
that the player who played illegitimately loses.

Case 3.2: A player plays illegitimately on node zj, not on the

12

n − i + 1th turn, where i 6= j Suppose now, that a player picks a node
zj and it is not the n− j + 1th turn. All nodes from X1 to Xj and the edge
nodes between them are removed. All nodes z1 to zi are removed as well,
where i is the number of the current turn. Note that also the edge nodes in
Xj to Xi are removed, since they are connected to zi. z0,2 is also removed,
however, z0,1 is not. This means that an odd number of nodes remains and
the player who played illegitimately loses.

Case 4: A player plays illegitimately on node z0,1 or z0,2 Suppose
the player illegitimately picks z0,1 or z0,2, then they are both removed. Also,
X1 is removed. This means that picking yi,1 will remove all remaining nodes.
If the nodes z1 to zi are not removed because z0,1 was picked and not z0,2,
then they are removed now. Only some edge node pairs may remain, which
means that the player who played illegitimately loses.

4 An algorithm for solving Kayles with Mark-

ing on Arbitrary Graphs

In the previous section it was shown that Generalized Kayles with Marking
is PSPACE-complete. This means that it is unlikely that there exists a poly-
nomial time algorithm for determining a winning strategy. In this section
an exponential time algorithm is given when d = 2. First consider the fol-
lowing algorithm: compute a nimber for every position p = (G,X), where
G = (V,E) is the original graph and X is some subset of V . If these nimbers
are computed in increasing order of the size of X, then the nimber for each
position can be computed in polynomial time using Lemmas 3 and 4. There
are O(2n) subsets of V , and therefore this algorithm runs in O∗(2n) time.

Now an algorithm with a better running time is given.

13

compute_nimber(G, X, d)
if nb(X) already computed then

return nb(X);
else

M := ∅;
for All v ∈ W do

let Z1, Z2, ..., Zr(r ≥ 1) be the sets of vertices in the
components of G[X]d −Nd(v);
nim := 0;
for i ← 1 to r do

nim := nim ⊕ compute_nimber(G, Zi, d);
end

M := M ∪ nim;

end

return mex(M);

end
Algorithm 1: Procedure compute_nimber

Theorem 7. The above algorithm runs in O∗(1.5875) when d = 2.

Proof. The algorithm computes a nimber for every position that can be
reached while playing the game. When the nimber of a position can be
computed from smaller components of the graph using Lemma 3, it does so.
The algorithm computes a nimber only once for every reachable position and
it does this in polynomial time. The following theorem gives an upper bound
on the number of such reachable positions. Theorem 7 therefore follows from
the next theorem.

Theorem 8. The number of reachable positions in Kayles with Marking is
bounded by O∗(1.5875) for d = 2.

The proof for this theorem is algorithmic: we give a branching procedure
that generates all reachable positions. By distinguishing di�erent types of
vertices and assigning these di�erent weights, and considering the di�erent
branching vectors, we obtain a set of recurrences, whose solution gives the
desired upper bound. For information on branching algorithms and their
analysis, in particular branching vectors and the corresponding recurrences
we refer to [6].

We say that a set of nodes X is nontrivial if |X| ≥ 3; otherwise we call it
trivial. There are at most O(n2) trivial sets. During our branching process,
we decide at some points to put some vertices in a set X and forbid for some
vertices to put them in X. Placing a vertex in X means we consider all
positions that can be reached when either player at some point picks that

14

vertex. When placing a vertex in X, we say we select the vertex. The vertices
in G are of six types:

• White or free vertices. Originally all vertices in G are white. We have
not made any decision yet for a white vertex. All white vertices have
weight one.

• Red vertices. Red vertices may not be placed in the independent set
X: i.e..we already decided this during the branching. It is still possible
that a red vertex becomes deleted later, however. Red vertices have to
be neighbors of white vertices. Red vertices have a weight α.

• Blue vertices. Blue vertices may not be placed in the independent set
X: i.e..we already decided this during the branching. It is still possible
that a blue vertex becomes deleted later, however. A blue vertex may
not be the neighbor of a white vertex. blue vertices have a weight β.

• Green vertices. A green vertex is `safe': it never will be removed. I.e.,
we cannot place the green vertex nor any vertex at distance at most
d from the green vertex in the independent set X. Green vertices have
weight zero.

• Black vertices: when a vertex is placed in the independent set, any
vertex at a distance of exactly two will become black. This is a vertex
that will be deleted when the algorithm is done, however it is left as
a black vertex since it may still in�uence other vertices. In particular,
when a white neighbor of a black vertex is placed in X, any other
neighbor of the black vertex is also at distance two and will become
black as well. Black vertices have a weight of γ.

• Removed vertices: these are vertices that will never become green
and have no in�uence on the rest of the game. They either have been
placed in the independent set or are the neighbor of a vertex in the
independent set. Vertices at distance 2 from a vertex in the independent
set may also be removed if they have no white neighbors, since they no
longer in�uence the remainder of the game. All removed vertices have
weight zero. Removed vertices are considered not existing, i.e., when
discussing the neighbors of a vertex, these neighbors will be white, red,
blue, green or black.

The semantics of the colors imply that we can do the following actions:

• Rule 1: a red vertex v has no white neighbors, we can color it blue.

15

• Rule 2: if a blue vertex is not connected to a black vertex, we can
color it green. This is valid as it can no longer be removed.

• Rule 3: if a green vertex v is connected, either directly or through a
black vertex, to a white vertex w, we can color w red. This is valid
since placing w in X would remove v.

• Rule 4: if a black vertex has no white neighbors, we can remove it.
This is valid, as the only purpose of a black vertex is to ensure that its
neighbors remain connected to its white neighbors.

Case 1: There is a white vertex v with at least three white

neighbors Branching on v gives branching vector (4, 1− α).
Case 2: There is a white vertex v with two white neighbors

Case 2.1: The subgraph induced by white vertices contains a

cycle of length r, with r ≥ 5. We number the vertices v1 to vr. We
branch on v1. If we pick v1 we decrease the measure by 5 − 2 ∗ γ. If we do
not pick v1 we decrease the measure by 1− α. We get a branching vector of
(5− 2 ∗ γ, 1− α).

Case 2.2: The subgraph induced by white vertices contains a

cycle of length r, with r == 4. We number the vertices v1 to vr. We
branch on v1. If we pick v1 we decrease the measure by 4. Note that we can
completely remove v3 since it has no white neighbors. If we do not pick v1
we decrease the measure by 1− α. We get a branching vector of (4, 1− α).

Case 2.3: The subgraph induced by white vertices contains a

path of length r, with r ≥ 4. We number the vertices v1 to vr. We
branch on v3. If we pick v3 we decrease the measure by 4. Note that we can
completely remove v1 since it has no white neighbors. If we do not pick v3
we decrease the measure by 1− α. We get a branching vector of (4, 1− α).

Case 2.4: There is a white vertex v with two white neighbors,

neither of which has a white neighbor, except possibly one another

Case 2.4.1: One of the neighbors of v has a red neighbor r1 We
consider each case of placing v or one of its neighbors in x:

• We pick v, the measure decreases by 3 + α− γ.

• We pick the neighbor of v adjacent to r1. The measure decreases by
3 + α.

• We pick the other neighbor of v, the measure decreases by 3.

• We pick neither v, nor any of its neighbors. v and its neighbors are
colored blue. We decrease the measure by 3− 3 ∗ β.

16

Case 2.4.2: One of the neighbors of v has a black neighbor b1 We
consider each case of placing v or one of its neighbors in x:

• We pick v, the measure decreases by 3.

• We pick the neighbor of v adjacent to b1. The measure decreases by
3 + γ.

• We pick the other neighbor of v, the measure decreases by 3.

• We pick neither v, nor any of its neighbors. v and its neighbors are
colored blue. We decrease the measure by 3− 3 ∗ β.

Case 2.4.3: Neither of the white neighbors of v has any neighbor
We consider each case of placing v or one of its neighbors in x:

• We pick v, the measure decreases by 3.

• We pick one of the neighbors of v, the measure decreases by 3.

• We pick the other neighbor of v, the measure decreases by 3.

• We pick neither v, nor any of its neighbors. v can be colored blue and
its neighbors are colored green. We decrease the measure by 3− β.

Case 3: There is a white vertex v with one white neighbor w
Case 3.1: v also has a red neighbor r1
Case 3.1.1: r1 has another white neighbor x We consider each case

of placing v and its neighbor in x:

• We pick v, the measure decreases by 3 + α− γ.

• We pick w, the measure decreases by 2 + α− γ.

• We pick neither v nor w. v and w are colored blue. We decrease the
measure by 2− 2 ∗ β.

Case 3.1.2: r1 has no white neighbor x We consider each case of
placing v and its neighbor in x:

• We pick v, the measure decreases by 2 + α.

• We pick w, the measure decreases by 2 + α.

• We pick neither v nor w. v, w and r1 are colored blue. We decrease
the measure by 2 + α− 3 ∗ β.

17

Case 3.2: v also has a black neighbor b1, which has another white
neighbor x

Case 3.2.1: b1 has a third white neighbor We branch on v, giving
branching vector (4− γ, 1− α).

Case 3.2.2: b1 has exactly two white neighbors and x has another
white neighborWe consider each of the following cases of placing the white
nodes in X:

• We pick x. The measure decreases by 3.

• We pick v, the measure decreases by 3.

• We pick w, but not x, the measure decreases by 3− α + γ.

• We do not pick any of v, w or x. v and w are colored blue, x is colored
red. b1 can be removed. We decrease the measure by 3−α− 2 ∗ β + γ.

Case 3.2.3: b1 has exactly two white neighbors and x has no

white neighbor We consider each of the following cases of placing v or w
in X:

• We pick v. The measure decreases by 3 + γ.

• We pick w, the measure decreases by 2.

• We do not pick any of v or w. v and w are colored blue. We decrease
the measure by 2− 2 ∗ β.

We consider each case of placing v and its neighbor in x:

• We pick v. The measure decreases by 3.

• We pick w, the measure decreases by 2.

• We pick neither v nor w. v and w are colored blue. We decrease the
measure by 2− 2 ∗ β.

Case 3.3: v also has a black neighbor b1, which has a red neighbor
We consider each case of placing v and its neighbor in x:

• We pick v. The measure decreases by 2 + α.

• We pick w, the measure decreases by 2 + γ.

• We pick neither v nor w. v and w are colored blue. We decrease the
measure by 2− 2 ∗ β + γ.

18

Case 3.4: v also has a black neighbor b1, which has a blue neigh-

bor We consider each case of placing v and w in x:

• We pick v. The blue node can be removed The measure decreases by
2 + β + 2 ∗ γ.

• We pick w. We can remove b1 as it is no longer connected to a white
node. The measure decreases by 2 + γ.

• We pick neither v nor w. v and w are colored blue. b1 can be removed.
We decrease the measure by 2− 2 ∗ β + γ.

Case 4: There is a white vertex v without white neighbors
Case 4.1: v has a black neighbor b1, which has a white neighbor

w
Case 4.1.1: There are three white vertices v1, v2 and v3, v1 and

v2 are connected by a black node and v2 and v3 are connected by

a black node. Note that the black node connecting v1 and v2 could be the
same as the one connecting v2 and v3. We branch on v2. This gives branching
vector (3− γ, 1− β).

Case 4.1.2: There are two white vertices v1 and v2, connected
by a black node. We branch on v1. This gives branching vector (2 + γ,
1− β + γ).

Case 4.2: v has a red neighbor r1, which has a white neighbor

w We branch on v. This gives branching vector (2 + α, 1).
Case 4.3: v has a red neighbor r1, which has no white neighbors

We branch on v. This gives branching vector (1 + α, 1 + α− β).
Case 4.4: v has two black neighbors b1 and b2, which are con-

nected to two blue nodes, b3 and b4, respectively We branch on v.
This gives branching vector (1 + 2 ∗ β + 2 ∗ γ, 1 + 2 ∗ γ).

Case 4.5: v has a single black neighbor b1, which has a blue neigh-
bor b2, which has a black neighbor b3, which has a white neighbor

w We branch on v. This gives branching vector (1 + β + γ, 1 + γ).
Case 4.6: v has a black neighbor b1, which has a blue neighbor

b2 We branch on v. This gives branching vector (1 + β + γ, 1 + β + γ).
If no case applies, then there are no white vertices left. This means we

have found a set of vertices that represents a position that can be reached in
a game of GKM2 on graph G. Choosing α = 0.5001, β = 0 and γ = 0.5001
gives the claimed upper bound of 1.5875n solutions. The tight branching
vectors are (3, 3, 3, 3− β) from Case 2.4.3, (3 +α− γ, 3 +α− γ, 2−α+ β)
from case 3.1.1.1, and (3, 3, 3−α+γ, 3−α−2∗β+γ) from Case 3.2.2. From
the above, it follows that there are O(1.5875n) nontrivial reachable positions.

19

As the value 1.5875 is obtained by rounding, and there are at most n + m
trivial positions, the result follows.

5 Polynomial time algorithms for special classes

of graphs

Section 3 it is shown that Kayles with Marking is PSPACE-complete. It is
also shown that Kayles with Removal is PSPACE-complete for d = 2. This
means that it is unlikely that there is a polynomial time algorithm for solving
those problems on arbitrary graphs. In this section it is shown that there
exist polynomial time algorithms for certain classes of graphs.

5.1 Interval Graphs

In [5], Bodlaender and Kratsch have shown that regular Kayles can be solved
in O(n3) time on interval graphs. Using Theorem 2 we have that if a game
of Kayles with Marking with distance d is played on a graph G, and the d-th
powergraph of G is an interval graph, then the game of Kayles with Marking
can be solved in O(n3) time. With the following theorem we have that a
game of Kayles with Marking with distance d played on an interval graph G
can be solved in O(n3) time.

Theorem 9. The power graph of an interval graph is still an interval graph.

Proof. Take an interval graph G. The set S is a set of intervals which repre-
sent graph G. Construct the set of intervals S ′ by taking, for each interval v
in S, an interval v′, which has the same left side as v, but whose right side is
equal to the maximum of the left sides of all intervals at distance at most d
in G. Let G′ be the interval graph corresponding to S ′. Because the intervals
were extended in S ′, all nodes that were at distance d or less from each other
in S, are neighbors in G′.

Suppose there exist a node v and w at distance greater than d in G, and
v is to the left of w in S. Now suppose that these nodes are neighbors in
G′. Let l be the left bound of w in S ′ and let r be the right bound of v in
S ′. Since v and w are connected, it follows that r ≤ l. There exists a node
u for which the left side in S ′ is equal to r, which is at distance at most d
from v in G. Take a path from v to u in G of distance at most d. Take the
intervals representing these nodes in S. l must be contained in one of these
intervals and therefore a neighbor of w. Since the interval containing l is at
distance less than d from v, the distance from v to w is at most d. This is

20

in contradiction with the assumption that v and w are at a distance greater
than d in G. It follows that there exist no two nodes at distance greater than
d in G, which are neighbors in G′.

This means that the powergraph of an interval graph is itself powergraph.

5.2 Kayles with Marking on Cocomparability graphs

In [5], Bodlaender and Kratsch have also shown that regular Kayles can be
solved in O(n3) time on cocomparability graphs. In fact the interval graphs
from the last section are a special class of cocomparability graphs. In this
section the following theorem is proven:

Theorem 10. The powergraph of a cocomparability graph is also a cocom-
parability graph.

Proof. From this theorem it follows that a game of Kayles with Marking
with distance d played on a cocomparability graph G can be solved in O(n3)
time. This works similar as in the previous section. The proof of the theorem
follows:

Suppose that the k-th powergraph of cocomparability graph G is itself not
a cocomparability graph. Then there must be some triple i, j, k, i < j < k,
with and edge between vi and vk, but no edge between vi and vj and no edge
between vj and vk. If the edge between vi and vk was already there in the
original graph, then this is in contradiction with the original graph being a
cocomparability graph. If the edge was added when taking the powergraph
of G, then the distance between vi and vk must be at most k. Consider a
path of length at most k from vi to vk in G. Since i < j < k, this path must
pass node vi at some point. There must be some consecutive nodes vs and
vt on the path such that s < j < t. Since there is an edge between vs and vt,
there must also be an edge from one of these nodes to vj. The distance from
vi to vs is at most k− 1 and the distance from vk to vt is also at most k− 1.
Therefore in the powergraph, there must either be an edge from vi to vj or
an edge from vk to vj. This is in contradiction with the assumption that the
powergraph of a cocomparability graph is not a cocomparability graph.

5.3 Kayles with Removal on Cocomparability graphs

In this section the following theorem is proven:

Theorem 11. Kayles with removal can be solved in O(n3) time on cocom-
parability graphs.

21

Proof. This is shown by using Theorem 1. Since Kayles with Marking can
be solved in O(n3) time on cocomparability graphs, if a game of Kayles with
Removal on a cocomparability graph is equivalent to a game of Kayles with
Marking, the above theorem follows. To prove this, it can be shown that
removing a vertex v and Nd(v) does not increase the distance between two
vertices from smaller than or equal to d to larger than d. This can be shown
as follows:

In a game of GKR on a Cocomparability graph, if a player makes a move
on a node vi, in the resulting graph, all nodes with higher cocomparability
order, that are at distance more than d from that node, will fall in one section
of the graph All nodes with lower cocomparability order, that are at distance
more than d from that node, will fall in another section. There will be no
edges between the sections. This can be proven as follows.

Suppose there is an edge from a node with a lower cocomparability order
to a node with a higher cocomparability than node vi. At least one of these
nodes must have an edge to vi. Removing vi must have removed that node
and therefore the edge.

6 Conclusion

In this section an overview is given of the results from this paper. It also
gives an overview of the problems that remain open.

This paper shows that GKMd is PSPACE-complete. It has also shown
that GKR2 is PSPACE-complete. Whether GKRd is PSPACE-complete for
values of d greater than two remains an open problem.

This paper gives an O∗(1.5875n) algorithm for �nding a winning strategy
in GKM2. We suspect that GKMd for larger values of d will result in even
better upper bounds, but this remains an open question, as only an upper
bound of O∗(1.6031n) has been proven. For GKRd on graph G, the best
known algorithm is to compute a nimber for every subgraph of G. This gives
an upper bound of O ∗ (2n). We strongly suspect that a better upper bound
for an algorithm is possible, however we were unable to prove this.

This paper also shows that it is possible to determine if a winning strategy
exists on a cocomparability graph in O(n3) time for both GKRd and GKMd.

References

[1] Thomas J. Schaefer, On the Complexity of Some Two-Person Perfect-
Information Games, Journal of Computer and System Sciences, Volume

22

16 (1978): 185-225.

[2] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for your
mathematical plays, Volume 1: Games in General. Academic Press, New
York, 1982.

[3] J. H. Conway. On Numbers and Games. Academic Press, London, 1976.

[4] Hans L. Bodlaender, Dieter Kratsch, Sjoerd T. Timmer, Exact Algorithms
for Kayles, Theoretical Computer Science, Volume 562 (2015): 165-176.

[5] Hans L. Bodlaender, Dieter Kratsch, Kayles and nimbers, Journal of Al-
gorithms, Volume 43, Number 1 (2002): 106-119.

[6] F.V. Fomin and D. Kratsch, Exact Exponential Algorithms, Springer,
2010.

[7] Rudolf Fleischer, Gerhard Trippen, Kayles on the Way to the Stars, Com-
puters and Games (2004): 232-245.

[8] Adrien Guignard, Eric Sopena, Compound Node-Kayles on Paths, Theo-
retical Computer Science, Volume 410, Numbers 21-23 (2009): 2033-2044.

23

