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Abstract

In this thesis laboratory experiments were done to determine the influence of the water
depth, forcing frequency and topography of the water tank on surface waves and resonant
frequencies. The most interesting topic of this thesis is the change in the topography
of water tank, which was done by changing the tank length, putting a partitioning wall
at a tilt and adding a slope or mountain. The partioning wall with a tilt increases the
resonant frequencies with increasing angle of tilt and with increasing order of resonance.
A slope was added to the tank to determine the influence on the frequency domains of
the solitons and the surface elevation. For a small water depth no change in surface
elevation was observed, but at a higher depth the surface elevation became larger for high
forcing frequencies. Adding a mountain to the water tank lowers the resonant frequencies,
that decrease the most in the middle of the water tank. Importantly it was found that
the change in the location of node for the first resonant frequency was discrete and not
symmetric contrary to the expectation of a linear and symmetric change.
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1 Introduction

Surface waves are waves that propagate along the water edge, the interface between the
water and the air. Surface waves have been the subject of research for decades, but still
a lot can be learned about surface waves. Surface waves travelling in the ocean can
range in size from small ripples to tsunamis. An interesting case of surface waves in the
ocean is the case of huge waves, called freak waves, which can occur out of nowhere. For
a long time people believed these freak waves were fiction, but on 1 January 1995 the
first freak wave was recorded by a measuring instrument at the Drauoner platform. The
so-called New Year Wave or the Draupner Wave was close to 25.6 meters high [1]. These
spontaneous occurring surface waves are dangerous for ships, because they are not built
for this strange type of waves. How these freak waves arise is still not understood.
Surface waves also propagate along the interface of two fluids with different densities.
These waves are called interfacial waves and give rise to another interesting phenomenon
called dead water. Dead water was first described by Fridtjof Nansen in August 1893
[2]. When a layer of fresh water is on top of the salt water of the ocean and these layers
don’t mix, a ship can be slowed down or even be stopped completely. The power of the
ship leads to interfacial waves and turbulence between the two layers, leaving no power
for the ship’s transport .

So there are some interesting phenomena related to surface waves, but not all are
understood. Experiments on surface waves hopefully will help solving these problems.
Experiments on the open ocean are expensive and difficult, since not all parameters can
be controlled. Contrary to laboratory experiments where one can control almost all
conditions. The parameters can be varied one by one to determine the influence of an
individual parameter only. There is a large variety of surface waves, but this laboratory
experiment focuses on standing waves and solitary waves. This thesis will elaborate on
the following research question:

What influence do the water depth, forcing frequency and topography of the water
tank have on surface waves and resonant frequencies?

The laboratory experiments took place at the Royal Netherlands Institute for Sea
Research (NIOZ). Not only the forcing frequency was changed in this experiment, also
different types of forcing were used. The influence of the topography of the water tank
was investigated by changing the length of the water tank and by placing slopes inside the
tank. The experiments of changing the topography are particularly interesting because
this is the first time this manner of experiments has been performed at the NIOZ.
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2 Theory

2.1 Derivation of the dispersion relation

In this thesis only 2-dimensional waves are discussed: the wave is only moving in the
x-direction while the water height changes in the z-direction. The derivation of the dis-
persion relation is based on the chapter on linear small amplitude wave theory in the book
‘An introduction to hydrodynamics and water waves’ by Le Méhauté [3]. In the linear
small amplitude wave theory the non-linear convective inertia terms are considered to be
small. Also the motion is irrotational.

2.1.1 Notation and continuity

Figure 1: The notation used to describe the
water surface. The spacevariable z is zero at
the water edge. The water depth is denoted by
H and the symbol η is used for the free surface.

The symbols used are (p) for the pressure,
(ρ) for the density and the gravitational
acceleration is given by g = 9.81 m/s2.
The wave number k is defined as k = 2π/λ,
where λ is the wave length. The water
depth is denoted by H. The space vari-
ables x and z are zero at the water surface
as shown in figure 1. The symbol η is used
for the free surface. The velocity ~V is de-
fined as ~V = (u,w) = (−∂φ/∂x,−∂φ/∂z)
with φ(x, z, t) is the single-valued velocity
potential function.

The momentum equation is given by the following form of the Bernoulli equation:

−∂φ
∂t

+
1

2
V 2 +

p

ρ
+ gz = f(t). (1)

When the velocity V is replaced by the velocity potential function φ the momentum
equation becomes

−∂φ
∂t

+
1

2
[(
∂φ

∂x
)2 + (

∂φ

∂z
)2] +

p

ρ
+ gz = f(t). (2)

The function f(t) may depend on the time t, but not on the space variables x and z.

The continuity equation is given by the following equation:

∇ · ~V =
∂u

∂x
+
∂w

∂z
= ∇2φ = 0. (3)
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2.1.2 General boundary conditions

At a fixed boundary, the velocity normal to the surface needs to be zero. So at the
horizontal bottom the vertical velocity is zero.

w|z=−H = −∂φ
∂z

∣∣∣∣
z=−H

= 0. (4)

At the free surface the time derivative of the local water height z = η(x, t) is called the
free surface equation

dz

dt
=
∂η

∂t
+
∂η

∂x

dx

dt
. (5)

Using the values dx/dt = u = −∂φ/∂x and dz/dt = w = −∂φ/∂z equation 5 becomes

∂φ

∂z

∣∣∣∣
z=η

= − ∂η

∂t
+
∂φ

∂x

∣∣∣∣
z=η

∂η

∂x
. (6)

This equation is called the free surface kinematic condition.

The dynamic condition is obtained by considering the pressure p as constant. The
momentum equation becomes

−∂φ
∂t

+
1

2
[(
∂φ

∂x
)2 + (

∂φ

∂z
)2] + gη = f(t). (7)

2.1.3 The Cauchy-Poisson condition

In very slow motion the convective term is neglected and the Bernoulli equation is written
as

−∂φ
∂t

+
p

ρ
+ gz = f(t), (8)

which at the free surface becomes

− ∂φ

∂t

∣∣∣∣
z=η

+ gη = 0. (9)

When the function f(t) and any additive constant can be included in the value of ∂φ/∂t,
this results in

η =
1

g

∂φ

∂t
. (10)

4



The component of the slope of the free surface ∂η/∂x is small in case of slow motion, so
in the kinematic boundary condition the term (∂φ/∂x)(∂η/∂x) can be neglected.

∂η

∂t
= − ∂φ

∂z

∣∣∣∣
z=0

. (11)

The derivative of η with respect to the time t in the dynamic condition gives

∂η

∂t
=

1

g

∂2φ

∂t2

∣∣∣∣
z=0

. (12)

When ∂η/∂t is eliminated, the Cauchy-Poisson condition at the free surface is obtained[
∂φ

∂z
+

1

g

∂2φ

∂t2

]
z=0

= 0. (13)

2.1.4 General solution

The continuity equation 3 can be solved using separation of variables when φ is given by
the product of the functions of the horizontal component U(x), the vertical component
P (z) and the time f(t). The function f(t) can be written as f(t) = cos[ωt + ε] where ω
is the frequency given by ω = 2π/T with T the wave period. Inserting φ = U(x) · P (z) ·
cos[ωt+ ε] in the continuity equation leads to

−∂
2U/∂x2

U(x)
=
d2P/dz2

P (z)
. (14)

The left-hand side only depends on x, while the right-hand side only depends on z. The
only way a function of x and a function of z can be the same is when they are equal to a
constant. The constant k is chosen to be real and so k2 is always positive. Equation 14
becomes

(
d2

dz2
− k2)P (z) = 0, (15)

(
d2

dx2
+ k2)U = 0, (16)

where the last equation is the well-known Helmholtz equation. Equation 15 is easily
integrated, giving the general solution

P = Aekz +Be−kz. (17)
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The boundary condition at the bottom (equation 4) gives for any fixed value of x and t:

dP

dz
|z=−H = 0.

Applying to the solution for P (z) results in Ae−kH = BekH = D/2 where the constant D
is used for convenience. Multiply P (z) by e−kHekH yields

P (z) =
D

2
(ek(z+H) + e−k(z+H)) = D cosh[k(z +H)]. (18)

The expression of φ becomes after substituting P (z)

φ = D cosh[k(z +H)] · U(x) · cos[ωt+ ε]. (19)

The Cauchy-Poisson condition at the free surface

[
∂φ

∂z
+

1

g

∂2φ

∂t2
]z=0 = 0, (20)

results in

w2 = gk tanh(kH), (21)

which leads to the dispersion relation

ω = ±
√
gk tanh(kH). (22)

In the shallow water limit the water depth H is small, so tanh(kH) ' kH. The dispersion
relation in the shallow water limit is given by

ω = ±
√
gHk. (23)

2.2 Progressive waves

Progressive waves are travelling waves that do not change for an observer that is travelling
at the same speed and in the same direction as the wave.[3] Two waves travelling with the
same speed and amplitude, but in opposite directions, can interfere and create a standing
wave. For a progressive wave the solution of the Helmholtz equation 16 is

U(x) = Aeikx +Beikx. (24)

The velocity potential function can be written as

φ(x, z, t) = c+φ+ + c−φ−, (25)

with c+ and c− constants which depend on the boundary equation and φ± is given by

φ± = ce±ikx cosh[k(z +H)] · cos[ωt+ ε]. (26)
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2.3 Evanescent waves
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Figure 2: The dispersion relation for evanes-
cent waves leads to several options of the wave
number κ

Evanescent waves are localized waves that
are formed at a boundary. The intensity of
these waves decays exponentially with the
distance from the boundary at which they
are formed. Evanescent waves are the solu-
tions of equations 15 and 16 where instead
of choosing the constant real, the equations
are equal to the constant κ which can be
complex.

−U(x)′′

U(x)
=
P (z)”

P (z)
= −κ2. (27)

The general solution for P(z) becomes now

P (z) = A′eiκz +Be′−iκz. (28)

Using the boundary condition 4 and multiplying P(z) this time by eiκze−iκz the expression
for P(z) becomes

P (z) = D′ cos[κ(z +H)], (29)

where the constant D′ = A′e−iκH = B′eiκH is again used for a convience. When κ is
introduced, the Helmholtz equation 16 becomes

(
∂2

∂x2
− κ2)U(x) = 0. (30)

This equation is solved easily

U(x) = Ae−κx +Be−κx. (31)

Inserting U(x) and P (z) in the expression for the velocity potential function φ

φ(x, z, t) = (C1e
−κx + C2e

κx) cos[κ(z +H)] · cos[ωt+ ε], (32)

where C1 en C2 are constants which are determined by the boundary conditions.

The Cauchy-Poisson condition at the free surface 13 leads to the dispersion rela-
tion for evanescent waves

ω2 = −κng tan[κnH]. (33)
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The indexes n are added to the complex wave number κn because there exist several
possibilities for the complex wave number as shown in figure 2. The formula tan[κH] is
plotted in blue and in red is a possible line for the frequency ω2 plotted. The lines have
multiple points of intersection, which lead to multiple possibilities of the complex wave
number κ.

The velocity potential function for evanescent waves can be written as

φ =
∑
j=1

c+j φ
+
n + c−j φ

−
n , (34)

where c±j is determined by the boundary conditions and φ±n is given by

φ±n = e±κnxcos[κn(z +H)] · cos[ωt+ ε]. (35)

2.4 The velocity potential in a water tank with length L

In this section the lateral boundary conditions are applied to obtain an expression for the
wave number and to solve the velocity potential function. The lateral boundary condition
says that no water can flow across a boundary:

∂φ

∂n
= 0. (36)

The total velocity potential for progressive and evanescent waves is

φ = c+φ+ + c−φ− +
∑
j=1

c+j φ
+
n + c−j φ

−
n . (37)

As will be proven in this section there only exist progressive waves for a water tank with
vertical walls, but when a slope is added to one side of the water tank evanescent waves
will be present. This prove is given by trying to solve the velocity potential function for
the absence of evanescent waves (c±j = 0) as given by equation 25. When the velocity
potential function can be solved for progressive waves only, there are nog evanescent waves
present. If no velocity potential function can be found, then there have to be evanescent
waves.

2.4.1 A water tank with vertical walls

For a water tank with vertical walls (90° with bottom) the flow in the x-direction at x=0
and x=L has to be zero.

∂φ

∂x

∣∣∣∣
x=L

=
∂φ

∂x

∣∣∣∣
x=0

= 0. (38)

8



At x=0 the lateral boundary condition leads to c+ = c−. The lateral boundary condition
at x=L leads to eikL = e−ikL. This relation only holds if kL = πn with n an integer. So
the wave number k becomes k = πn/L and the velocity potential function becomes

φ = A cos[ωt+ ε] cosh[
πn

L
(z +H)] cos[

πn

L
x]. (39)

The velocity potential function is solved with only the use of progressive waves, which
means that no evanescent waves are present in a water tank with vertical walls.

2.4.2 A water tank with one slope

Figure 3: The notation used for a water tank
with a slope at the left end

The slope is placed at the left end of the
water tank and the notation used is shown
in figure 3. In this figure can be seen that
tan(θ) = ∆L/h = x0/z, so x0 satisfies x0 =
∆Lz/h. The surface of the slope is given
by F = x+x0 = x+∆Lz/h. The kinematic
boundary condition for a slope is

∂F

∂t
+ u

∂F

∂x
+ w

∂F

∂z
= 0. (40)

When the formula for the slope is inserted in the kinematic boundary condition, the lateral
boundary condition for a slope is obtained:

u = −w∆L

h
. (41)

At x=0 and using u = −∂φ/∂x and w = −∂φ/∂z where φ is described by equation 25,
the lateral boundary condition for a slope (equation 41) becomes

i(c+ − c−) cosh[k(z +H)] = −∆L

H
(c+ + c−) sinh[k(z +H)]. (42)

The space variable z is eliminated by integration over the water depth from -H to 0

i(c+ − c−)

∫ 0

−H
cosh[k(z +H)]dz = −∆L

H
(c+ + c−)

∫ 0

−H
sinh[k(z +H)]dz ⇒

i(c+− c−) sinh[kH] = −∆L

H
(c+ + c−)(cosh[kH] + 1). (43)

At x=L the water tank has a straight wall so the boundary condition used is

∂φ

∂x

∣∣∣∣
x=L

= 0 ⇒
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i(c+eikL − c−e−ikL) cosh[k(z +H)] = 0. (44)

Which is integrated over the water height z to eliminate this variable

i(c+eikL − c−e−ikL)

∫ 0

−H
cosh[k(z +H)] dz = 0 ⇒

i(c+eikL − c−e−ikL) sinh[kH] = 0. (45)

When equation 43 and 45 are solved, the constants of the velocity potential become c+ = 0
and c− = 0 which means no velocity potentiall φ exists. So for a water tank with a slope
you need evanescent waves to solve the velocity potential, so in this topography evanescent
waves are present.

2.5 The dispersion relation in a water tank with vertical walls

Figure 4: The first five resonant frequencies of
a system with two closed ends [4].

In section 2.4.1 is demonstrated that the
wave number is k = πn/L for a water tank
with length L and vertical walls. In this ex-
pression n is an integer which corresponds
to the order of the resonant wave. As
shown in figure 4 if n is odd the waves have
in the middle of the water tank a node, so
the amplitude is minimal. For an even n,
an antinode is located in de middle so the
amplitude is maximal. The dispersion re-
lation becomes for resonant frequencies:

ω = ±
√
g
nπ

L
tanh[

nπ

L
H]. (46)

The dispersion relation in the shallow wa-
ter limit becomes for resonant frequencies:

ωn = ±
√
gH

nπ

L
. (47)
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3 Experimental setup

Figure 5: A mountain is created using two
slopes.

The quasi-1D experimental setup can be
seen in figure 6. A water tank is located
on a carriage. The interior measurements
of the water tank are 198.0 ± 0.5 x 13.7
± 0.1 x 26.0 ± 0.1 cm. The carriage is set
horizontally in motion by a stepper motor
with an amplitude of 5.0 cm. The stepper
motor frequency is operated by the control
panel, which tunes the frequency from
0.00 to 0.35 Hz in steps of 10−4 Hz. A red
colouring agent is added to the water and a light source is placed behind the water tank
for a better contrast between the water and the background. Different lengths of the
water tank are created using vertical partitioning walls. These partitioning walls can
be positioned perpendicular to the bottom of the water tank or with a tilt. Another
way to change the topography of the tank is by adding one or more curved slopes. The
dimensions of the slope are 23.0 ± 0.1 x 10.0 ± 0.1 x 16.0 ± 0.1 cm. The angle of
inclination of the slope is between 13° and 40° with a mean inclination of 25.5°. Putting
two slopes with their backs against each other a little mountain can be created as can be
seen in figure 5. The length of the mountain can be increased by putting blocks with a
width of 3 ± 0.1 cm, 5 ± 0.1 cm or 13.5 ± 0.1 cm between the slopes.

Figure 6: A schematic front view of the experimental setup. The stepper motion sets the
carriage with the water tank in motion. The control panel tunes the stepper motor frequencies
from 0.00 to 0.35 Hz.
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The water tank movement is recorded by a camera. The camera is located approx-
imately 6 meters from but at the same height as the water tank. A movie, consisting
of separate images, is made with a capture speed of 8.0 frames/s using the image pro-
cessing program ‘Digiflow’ [5]. This movie is read in Matlab, which results in images
like figure7a. Next, the command ‘edge’ is used to determine the edges resulting in im-
ages like figure 7b, from which the water height in pixels can be determined. Afterwards
the actual water height in centimeter is calculated for every x-position using the scale 1
pixel=(8.1 ± 0.2) × 10−2 cm. This scale is determined by measuring the height of the
water tank in centimeter and in pixels. When this is done for every frame, we end up
with the water height as a function of place and time. The code for the data analysis can
be found in the appendix 8.

(a) Before the use of the command ‘edge’.

(b) After the use of the command ‘edge’.

Figure 7: The water edge of the water tank for a water depth of 5.3 ± 0.1 cm continuously
forced with a frequency of 0.2 Hz. A surface wave is visible at a position of about 300 pixels.
The lines at the bottom of the picture are the bottom of the water tank and the edge of the
surface on which the tank is standing.

3.1 Types of forcing

In this laboratory experiment different types of forcing are used:

Half oscillation The tank is moved from the far left to the far right or the other way
around. This type of forcing is used to excite the first resonance wave, because in
this way more water is to the left of the tank compared to the right, which gives
rise to half a sine movement.

One oscillation The water tank is moved from the far left to the far right and back
to the far left. It is also possible to do it the other way around, so starting at
right. This type of forcing excites higher frequencies and inserts more energy in the
system.
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By hand using two plates To excite the higher resonant frequencies, the water has to
be forced from both ends. This is done by moving two plates by hand 2 cm above
the bottom from both ends towards the middle over a distance of 25 cm, which
creates a burst of waves. A disadvantage of this type of forcing is that the energy
in the system changes every time, because it is impossible to force the water with
the same strength again by hand

Continuous oscillation The water tank is continuously forced. This method is used to
create solitary waves. Most of the time the tank is oscillated for different forcing
frequencies. The forcing frequency is decreased in steps of 0.002 Hz, starting at a
high frequency where no solitary waves are visible. This ‘high frequency’ is different
for each experiment. The forcing frequency can also be increased in the same steps
starting from a low frequency, which also depends on the type of experiment.

4 Resonant waves

In this section is determined if the shallow water regime holds for resonant waves in a
tank with vertical walls.

4.1 First resonant wave

The first experiment tests the dispersion relation in the shallow water limit (equation
47) for the first resonant wave (n=1). During this experiment a vertical partitioning
wall was placed 51.5 cm from the right end of the water tank, which results in a water
tank length of 146.5 ± 0.5 cm. The tank is forced half an oscillation from left to right
in 2.5 ± 0.2 s. After this displacement the water height is recorded by the camera, from
which the water height over time is determined 20 cm left of the vertical partitioning
wall. This position is chosen because the first resonance wave has the highest amplitude
near the end of the water tank. Close to the end of the water tank sometimes sloshing
takes place, so 20 cm gives a more reliable measurement that is representative for the
whole tank. Figure 8a shows the water height over time for a rest water depth of
7.3 ± 0.1 cm. In this figure the first resonant wave is seen, as well as damping. The
resonant frequency is determined from the time difference between the peaks using
ω = 2π/T . For figure 8a the time difference T is 3.45 ± 0.05 s, which corresponds to
a resonant frequency of ω = 1.82 ± 0.03 rad/s . The measured resonant frequency is
in agreement with the theoretic resonant frequency in the shallow water limit of 1.81 rad/s.
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(a) The water height at 20 cm left of the
vertical partitioning wall over time.

5 10 15
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Ω
Hra
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(b) The first resonant frequency for
different water depths.

Figure 8: (a) The first resonance wave at a 20 cm left of the vertical partitioning wall over time is
shown for a water depth at rest of 7.3 ± 0.1 cm. The frequency ω=1.82 ± 0.03 rad/s is measured
from the time difference T=3.45 ± 0.05 s between the peaks. (b) The first resonant frequency
for different rest water depths. The red and green points correspond to the measurements where
the first resonant wave is excited using a forcing time of 2.5 ± 0.2 s and 3.3 ± 0.2 s respectively.
Equation 47 for n=1 is plotted in blue, which is in good agreement with the measurements.

The first resonant frequency is measured for different depths with the method described
above, using two different forcing times. The results are shown in figure 8b, where also
equation 47 for n=1 is plotted in blue for different depths. The red and green points
correspond to a forcing time of 2.5 ± 0.2 s and 3.3 ± 0.2 s respectively. The measurements
fit the curve of dispersion relation in the shallow water limit, which means that the first
resonant wave of the water tank is indeed in the shallow water limit regime.

4.2 Higher resonant waves

The next thing tested is if the shallow water limit also holds for higher resonant waves.
To excite the higher resonant wave the water is forced by hand using two plates. A
partitioning wall is added to the tank so the length of the water tank is 146.5 ± 0.5
cm. In figure 9a the change in water height over time can be seen for a water depth
of 8.9 ± 0.1 cm measured 40 cm left of the vertical partitioning wall. It is hard to
determine the resonant frequencies out of this signal, so the signal is reduced by the
rest water depth whereafter the resonant frequencies can be found using fourier theory.
The result of fourier theory is plotted in a periodogram, which is used to identify the
dominant frequencies. On the y-axes of the periodogram the power is shown, which
is not a physical quantity but a quantity used to indicate how strong the frequency is
present in the signal. In figure 9b the periodogram of the waves at a water depth of
8.9 ± 0.1 cm can be seen in blue. The red bars are the theoretical resonant frequencies
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predicted by equation 47. The first three measured resonant frequencies are in excellent
agreement with the theortical frequencies. For higher frequencies the relation doesn’t
hold. This can be explained by looking at the wave length λ. The shallow water limit is
also called the long wave limit. For higher frequencies the wave length becomes smaller,
so the theoretical resonant frequencies for the longwave limit and measured resonant
frequencies no longer coincide.

(a) The change in water height measured
40 cm left of the vertical partitioning wall. (b) The periodogram.

Figure 9: The water length is 146.5 ± 0.1 cm and the water depth is 8.9 ± 0.1 cm. The resonant
frequencies of the waves in figure (a) are determined using fourier theory. The results are shown
in a periodogram in figure (b) in blue. The red bars are the resonant frequencies predicted by
equation 47. The first three resonant frequencies are in excellent agreement.

The frequencies are measured 40 cm left of the vertical partitioning wall, where up to
5 resonant waves are found. The resonant frequencies do not change with position,
but at some positions not all modes are found because of nodes. This can be seen
in figure 10 for a tank of length 146.5 ± 0.1 cm and for a water depth of 7.3 ±
0.1 cm. The periodogram in figure 10a is the result of a measurement at the right
end of the water tank where the odd resonant frequencies dominate. Figure 10b is
a result of a measurement in the middle of the water tank. The even resonant fre-
quencies are dominant, because the odd frequencies have a node at the middle of the tank.

The higher resonant frequencies are excited at different water depth. The results
of the fourier analysis for the waves at different depths are presented in figure 11. The
lines are the dispersion relation in the shallow water limit plotted for different modes,
starting at the first resonant frequency in red with n = 1 to the fifth resonant frequency
in blue (n = 5). The points correspond to frequencies found using fourier analysis. They
have the same colour as the corresponding mode. The ‘normal’ dispersion relation is
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plotted as dashed lines.

The transition from the shallow water regime to the ‘normal’ regime is around a
water depth of 12 cm. For smaller depths the measured frequencies follow the shallow
water regime, but for higher water depths the ‘normal’ regime (dashed lines). An
exception is the fifth resonant frequency in blue of which the measured frequencies for
smaller depths as 12 cm are between the two regimes, which means the fifth resonant
wave is never in the shallow water limit because of its small wave length. The reason the
transition from the shallow water to the ‘normal’ regime is not visible in the previous
section for the first resonant wave is because the regimes are close by each other for the
first resonant wave.

(a) Periodogram measured at the right end
of the water tank.

(b) Periodogram measured in the middle of
the water tank.

Figure 10: The water length is 146.5 ± 0.1 cm and the water depth is 7.3 ± 0.1 cm. At the
end of the water tank the odd resonant frequencies are dominant. In the middle of the tank, the
even frequencies are dominant, because odd frequencies have a node in the middle. The resonant
frequencies do not change with position, but at some positions not all resonant frequencies are
found because of nodes.
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Figure 11: The first five resonant frequencies measured at different depths in a water tank
length of 146.5 ± 0.5 cm. Equation 47 plotted in coloured lines for different modes, starting at
n=1 in red to n=5 in blue. The dashed lines correspond to equation 46. The points are the
frequencies found by fourier analysis of the waves measured at different depths.

5 Solitons

Solitons are solitary waves with a permanent form and constant velocity. When solitons
cross each other they remain unaltered. [6] A soliton can exist on its own or with
multiple solitons at the same time, which is called a soliton train. When the water tank
is continuously forced at a high frequency, the system behaves like the first resonant
wave: half a sine is observed. When the frequency is lowered all of a sudden one soliton is
observed. Lowering the frequency results in more and more solitons, until the amplitude
of the solitons becomes to small and the waves are damped. In figure 12 two solitons
are shown moving from left to right at a water depth of 4.8 ± 0.1 cm and a water tank
length of 188.0 ± 0.1 cm when the tank is continuously forced at a frequency of 0.206 Hz.

The emergence of solitons can be explained by the Doppler shift. When the tank
is continously forced, the source (the water tank) moves with respect to the observer (the
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wave). Waves propagating in one direction will see the wall of the tank moving towards
them and cover less distance compared to the waves propagating into the other direction
that see the wall moving away from them. The waves covering different distances results
in a shift of the wave length and solitons emerge. The phenomenon of increasing number
of solitons when the forcing frequency is lowered can be explained by the formula of
the doppler shift. The formula of the doppler shift says that the observed frequency
is inversely proportional to the velocity of the source, which means that if the forcing
frequency increases the resonant frequency decreases. As the resonant frequency is
proportional to the square root of the wave length will lowering the forcing frequency
lead to a decrease in wave length. The horizontal length of the solitons (‘wave length’)
decreases when more solitons appear.

(a) t=0 s (b) t=0.375 s (c) t=0.75 s

Figure 12: Two solitons moving from left to right at a water depth of 4.8 ± 0.1 cm and a water
tank length of 188.0 ± 0.1 cm when the tank is continuously forced at a frequency of 0.206 Hz.
The shape of the solitons remains unaltered.

5.1 Hysteresis

Hysteresis is the history dependence of a system. Two or more equilibrium states are
possible, depending on the behaviour of the system in the past. To demonstrate the
hysteresis the water tank is continuously forced at a water depth of 5.3 ± 0.1 cm.
Starting at 0.230 Hz the forcing frequency is decreased in steps of 0.002 Hz. After
changing the frequency the number of solitons are counted after about 1 minute when a
stable situation is reached. These measurements are shown in red in figure 13 in which
the frequency domains of the solitons are plotted. The frequency domains are plotted as
lines and for all the frequencies of one line the same number of solitons is measured. The
blue points are the number of solitons starting at a frequency of 0.160 Hz and increasing
the frequency in steps of 0.002 Hz.

At a forcing frequency 0.18 Hz two states are possible. When the forcing fre-
quency is decreased from a high frequency (red) there are five solitons measured at 0.18
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Hz. But when the forcing frequency is increased from a low frequency (blue) there are
six solitons measured at 0.18 Hz. Two possible steady states depending on the historyof
the system demonstrate the hysteresis.
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Figure 13: The number of solitons as a function of the forcing frequency. The red points are
determined starting with a frequency of 0.230 Hz which is decreased in steps of 0.002 Hz. The
blue points are determined starting with a frequency of 0.160 which is increased in steps of 0.002
Hz. Hysteresis is visible at e.g. 0.18 Hz for which 6 solitons are measured for starting with a
low frequency and 5 solitons are measured for starting with high frequency.

5.2 The influence of the water tank length

To determine the influence of the water tank length on the frequency domains of the
solitons, the water tank is continuously forced at a water depth of 4.7 ± 0.1 cm. Different
lengths of the water tank are created by the vertical partitioning wall. The forcing
frequency is decreased in steps of 0.002 Hz, starting at a high frequency where no solitons
are visible which is different for each water tank length. After changing the frequency,
the number of solitions is counted after about 1 minute when the situation is stable. In
figure 14 the red, blue, green and yellow bars correspond to the frequency domains of a
water tank length of 198.0 ± 0.5 cm, 168.0 ± 0.5 cm, 146.5 ± 0.5 cm and 127.0 ± 0.5 cm
respectively.
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Figure 14: The influence of length on de frequency domains for the number of soiltons. The red,
blue, green and yellow bars correspond respectively to a tank length of 198.0 ± 0.5 cm, 168.0 ±
0.5 cm, 146.5 ± 0.5 cm and 127.0 ± 0.5 cm. The width of the frequency domains increase with
a decrease in length of the water tank. For a length of 146.5 ± 0.5 cm and 127.0 ± 0.5 cm the
frequency domains get wider for smaller number of solitons.

In figure 14 the frequencies get higher when the length of the water tank becomes
shorter. This can be explained by the dispersion relation which states that the frequency
increases when the water tank length decreases, which can also be the reason that the
frequency domains get wider when the water tank length decreases. Another possible
explanation for the increase in the frequencies for a shorter water tank length is related
to the Doppler shift. Solitons emerge because of waves going into a opposite direction
cover different distances. This difference in distance stays the same for the different
water tank lengths, but this difference becomes relative larger for a shorter water tank
length which results in solitons emerging already at a higher frequency for shorter water
tank length compared to larger water tank lengths.

For a water tank length of 146.5 ± 0.5 cm and 127.0 ± 0.5 cm (green en yellow)
the frequency domains get wider for less number of solitons. For a water tank length of
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127.0 ± 0.5 cm the length of the frequency bar for one soliton is 1.20 · 10−2 Hz and for
eight solitons 0.04 · 10−2 Hz. This can be related to the ‘crest-to-trough’ excursion of the
soliton, which decreases when the number of solitons increases. It could be that due to
the decrease in the ‘crest-to-trough’ excursion of the soliton it is easier to form a new
soliton, which leads to earlier formation of a new soliton when there are already more
solitons. So the frequency domains get smaller for a higher number of solitons because
new solitons are formed easier.

5.3 The influence of the water depth

The frequency domains of the solitons are also determined for different water depths.
The water tank without a partitioning wall (L = 198.0 ± 0.5 cm) is continuously forced
from a high frequency which is lowered in steps in 0.002 Hz. The frequency domains are
shown in figure 15 where the red, blue, green and yellow bars correspond to a water depth
of 4.7 ± 0.1 cm, 5.3 ± 0.1 cm, 6.2 ± 0.1 cm and 7.1 ± 0.1 cm respectively. The increase
in frequency with increasing depth can again be explained by the dispersion relation that
states that the frequency increases when the water depth increases, which is also a pos-
sible explanation for the increase of the width of the frequency domains with increasing
water depth. For higher water depths the frequency domains also get wider for a smaller
number of solitons, because it is easier to form new solitons for a higher number of solitons.

When the depth increases, both the ‘crest-to-trough’ excursion and the horizontal
length of the soliton increase. In figure 16 the ‘crest-to-trough’ excursion is 5.0 ± 0.1 cm
(62 pixels) and the length of the soliton is 55.0 ± 2.4 cm (679 pixels) for a water depth of
7.1 ± 0.1 cm. At a water depth of 5.3 ± 0.1 cm the ‘crest-to-trough’ excursion is 3.2 ±
0.1 cm (39 pixels) and the horizontal length of the soliton is 40.4 ± 1.0 cm (499) pixels.
When the water depth is higher, there is more water available to the solitons which
leads to an increase in the ‘crest-to-trough’ excursion and length of the soliton. The
increase in the ‘crest-to-trough’ excursion and the horizontal length of the solitons can
be another possible explanation for the increase of the width of the frequency domains
with increasing water depth.
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Figure 15: The frequency domains of solitons for different water depths. The red, blue, green
and yellow bars correspond respectively to a water depth of 4.7 ± 0.1 cm, 5.3 ± 0.1 cm, 6.2 ±
0.1 cm and 7.1 ± 0.1 cm .The frequency domains become wider with increasing water depth and
for higher water depths de domains get wider with decreasing number of solitons.

(a) Three solitons at a water depth of 5.3
± 0.1 cm.

(b) Three solitons at a water depth of 7.1
± 0.1 cm.

Figure 16: (a) At a water depth of 5.3 ± 0.1 cm ‘crest-to-trough’ excursion is 3.2 ± 0.1 cm (39
pixels) and the horizontal length of the soliton is 40.4 ± 1.0 cm (499) pixels. (b) At a water
depth of 7.1 ± 0.1 cm the ‘crest-to-trough’ excursion is 5.0 ± 0.1 cm (62 pixels) and the length
of the soliton is 55.0 ± 2.4 cm (679 pixels). Both the ‘crest-to-trough’ excursion and width of
the soliton increase with increasing water depth.
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6 Topography of the water tank

In this section the topography of the water tank is changed by placing the partioning
wall at a tilt creating a tank with a slope as described in the theory in section 2.4.2. A
change in the topography of the water tank is also accomplished by adding the slope and
mountain of which the dimensions and angle of inclination are described in the experiment
setup.

6.1 The partitioning wall at a tilt

Figure 17: The angle convention used to mea-
sure the tilt of the partitioning wall.

The partitioning wall can be placed with
a tilt. The angle of the tilt is measured
in ‘Digiflow’ with a ruler, which uses
the same convention as the unit circle to
measure the angles as shown in figure 17.
From the view of the left compartment for
angles up to 90° the length of the water
tank becomes larger. From equation 47
is expected that the resonant frequencies
become smaller when the water tank
increases. For angles larger than 90° the
length of the water tank becomes smaller,
so the resonant frequencies decrease.

In this experiment is the effect of a slope on the resonant frequencies determined.
The partitioning wall is placed 51.5 ± 0.5 cm from the right end of the tank, so the tank
length L is 146.5 ± 0.5 cm. The water tank is forced for one oscillation with a forcing
time of 3.3 ± 0.2 s at a water depth of 7.3 ± 0.1 cm. The first three resonant frequencies
are measured using fourier analysis for different tilts at 40 cm from the left end of the
tank. In figure 18a is the frequency difference ∆ω = fmeasured − ωn/2π shown for the
different angles of tilt where ωn is the theoretical frequency from equation 47. The red
points correspond to the first resonant frequency (n = 1), the green points to the second
(n = 2) and the blue points to the third resonant frequency (n = 3). The difference ∆ω
becomes larger with increasing angle of tilt, which agrees with our expectation of larger
resonant frequencies for larger angles. The difference ∆ω also increases with the order of
resonance n.

In figure 18b the periodogram is shown for three different angles of tilt. The
colours orange, blue and green correspond respectively to an angle of tilt of 38.8°, 91.5°
and 148.6°. The first two resonant frequencies can be seen around 2.16 Hz and 4.32 Hz.
The third resonant frequency is theoretically predicted around 6.48 Hz, but a clear peak
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is not observed. The frequency shift from the lowest resonant frequency corresponding
to an angle of 38.8° to the highest frequency corresponding to an angle of 146.8° is again
observed. There are no changes in the width of the peaks, but height differences between
the peaks are observed. Particularly interesting is that for the first resonant frequency
the height increases from 38.8° to 146.8° opposite from the second resonant frequency
where the height decreases from 38.8° to 146.8°. So for angles smaller than 90° the second
resonant frequency dominates and for angles larger than 90° the first resonant frequency
dominates. This effect could be explained by the evanscent waves behaving different for
angles larger than 90° compared to the angles smaller than 90° resulting in a different
dominant frequency, but this is not tested in this thesis.
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(a) The frequency difference ∆ω =
fmeasured − ωn/2π for the different angles
of tilt.

(b) The periodogram for the different an-
gles of tilt.

Figure 18: In a water tank with length a water depth of 7.3 ± 0.1 cm a partitioning wall is
placed with different angles of tilt 51.5 ± 0.5 cm from the right end of the tank leading to a
tank length of approximately 146.5 ± 0.5 cm. (a) The red, green and blue points correspond
to the first, second and third resonant frequency measured 40 cm from the left end of the tank.
The frequency difference ∆ω becomes larger with increasing angle of tilt and increasing order
of resonance. (b) The colours orange, blue and green correspond respectively to an angle of
tilt of 38.8°, 91.5° and 148.6°. The resonant frequency increases with larger angles of tilt. The
width of the peaks do not change, but for angles smaller than 90° the second resonant frequency
dominates and for angles larger than 90° the first resonant frequency dominates.

6.2 Changing the location of the mountain

The next topography change that is investigated is the mountain. When the mountain
shown in figure 5 is put inside of the water tank it lowers the resonant frequencies. This
is because the mountain decreases the water depth locally and the resonant frequency ω
in equation 47 is proportional to

√
H, with H the water depth. How much the resonant
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frequencies changes depends on the location of the mountain. The water tank is forced
for one oscillation starting at the left with a forcing time of 3.3 ± 0.2 s. The mountain
consists of two slopes with a total length of 42 cm. The first and fourth resonant
frequency are measured 30 cm next to the end of the mountain using fourier theory. This
is done for several locations of the mountain and for different water depths of which the
results are shown in figure 19. The blue points correspond to water depth of 12.1 ± 0.1
cm, the red points to a depth of 13.1 ± 0.1 cm and the green points to a depth of 14.1 ±
0.1 cm. The location of the mountain is measured from the left end of the water tank to
the middle of the mountain.
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(a) The first resonant frequency for differ-
ent locations of the mountain measured at
three depths.
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(b) The fourth resonant frequency for dif-
ferent locations of the mountain measured
at three depths.

Figure 19: The first and fourth resonant frequency for different positions of the mountain for
three water depths: 12.1 ± 0.1 cm in blue, 13.1 ± 0.1 cm in red and 14.9 ± 0.1 cm in red. The
length of the mountain is 42.0 ± 0.1 cm and the location of the mountain is measured from
the left end of the water tank to the middle of the mountain. The first and fourth resonant
frequency decreases the most in the middle of the water tank. This effect does not depend on
the water height.

The resonant frequency decreases the most if the mountain is placed in the middle
of the water tank. This effect does not depend on the water height. A possible
explanation is the presence of evanescent waves near the mountain, because the
mountain exists of two slopes around which evanescent waves are present. When
the mountain is placed near the end of the water tank there is still enough space
for the propagating waves to propagate freely, but when the mountain is placed in
the middle of the water tank the propagating waves are blocked in the middle of the
tank by the evanescent waves of the mountain which results in a lower resonant frequency.
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In figure 19b the fourth resonant frequency is decreased less than expected at the
location of 140.0 ± 0.5 cm for all three depths. The expectation would be that the
frequency increases when the mountain is moved away from the middle of the tank. For
the blue points corresponding to a depth of 12.1 ± 0.1 cm this is happening, but for
the two other depths there is almost no increase from the location of 128.0 ± 0.5 cm
to 140.0 ± 0.5 cm. This effect is not symmetric, the fourth resonant frequency does
increase at the left end. This antisymmetric behaviour can be caused by the evanescent
waves which behave different at the right end of the tank compared to the left end of
the tank. Evanescent waves can also explain why this behaviour is not visible at the
first resonant waves. In the previous section is thought that evanescent waves cause a
different dominant frequency depending on which side the slope is. It could be that the
evanescent waves at the right end are dominant for even frequencies so only cause the
antisymmetric behaviour at the fourth resonant wave. The antisymmetric behaviour can
also be explained by the forcing which is from left to right. This cause can be tested by
doing the same measurements again for a right to left forcing, which unfortunately is not
done in this experiment.

The strongest decrease of the first resonant frequency in the middle of the tank
raised a question about the location of the node of the first resonant wave. Does the
location of the node, which is normally in the middle of the water tank, also change with
the location of the mountain? At a water depth of 13.1 ± 0.1 cm the water tank is forced
for half an oscillation in a time of 3.3 ± 0.2 cm. In figure 20 the blue points corresponds
to a forcing from left to right and the red points to a forcing from right to left. For the
different locations of the mountain a movie is made, from which the location of the node
and the first resonant frequency is measured. The node displacement is the difference
between the location of the node with and without a mountain. The node displacement is
shown in figure 20a for different locations of the mountain, where zero node displacement
indicates the location of the node without a mountain which is the same for left-right
and right-left forcing. When the node is displaced to the left compared to a tank with no
mountain, the node displacement is chosen to be negative. When the node is displaced
to the right the node displacement is positive.

The expectation was a linear displacement oft the node with the position of the
mountain, but the change in the location of the node is discrete. When the tank is
forced from left to right (blue) the node changes instantly from approximately 8 cm to
the left to approximately 16 cm to the right when the location of the mountain changes
from 75 cm to 87 cm. The change in the location of the node is not symmetric when you
compare the left-right forcing with the right-left forcing. When the tank is forced from
left to right (blue) the jump in the location of the node is between 75 and 87 cm from
the left end of the water tank, while by right to left (red) forcing the jump is between
50 and 60 cm from the right end. Another observation is the change of the location of
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the node is larger to the right (positive) than to the left (negative). In figure 20b the
first resonant frequency is plotted for left-right forcing (blue) and right-left forcing (red).
The black line is the first resonant frequency without mountain, which is the same for
left-right and right-left forcing. The first resonant frequency differs a bit between the
two types of forcing but within uncertainty of the frequency. The lowering of the first
resonant frequency is symmetric.
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(a) The change of the location of the node
for different locations of the mountain.
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(b) The first resonant frequency for differ-
ent locations of the mountain.

Figure 20: The blue and red points correspond to respectively left-right and right-left forcing
(a) The zero line is the location of the node without a mountain. The node has moved to the
left for negative values and to the right for positive values. The change in the location of the
node is discrete and not completely symmetric for left-right and right-left forcing. (b) The black
line is the first resonant frequency of the tank without the mountain. The lowering of first
resonant frequency is symmetric and differs a bit between the two types of forcing but within
the uncertainty of the frequency.

6.3 Changing the length of the mountain

Between the two slopes of the mountain blocks can be placed to change the length of the
mountain. The first resonant frequency is measured for different lengths of the mountain
using fourier theory and again for the three water depths of 12.1 ± 0.1, 13.1 ± 0.1 and
14.9 ± 0.1 cm. The middle of the mountain is placed 87.0 ± 0.5 cm from the left end
of the water tank and the frequencies are measured 30 cm right of the mountain. When
the length of the mountain increases, the first resonant frequency decreases. It looks like
the frequency decrease is discrete, but this is because of the resolution of the frequency
of the matlab program (0.098 Hz for a measured time of 35 seconds). The resolution ∆f
is improved by measuring for a longer period because ∆f=2π/t where t is the measured
time. But the waves are damped after a while so measuring for a long time will be of no
use. Also the longer the measure time, the more data needs to be processed which takes
unnecessary time. At a water depth of 12.1 ± 0.1 cm for a mountain length of 52 and
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55 cm the resonant frequency was determined after measuring for 70 s, twice the normal
time. The first resonant frequency changed from 1.18 ± 0.10 rad/s to 1.13 ± 0.05 rad/s.
After increasing the measured time even more, no resonant frequencies are found because
of the damping. Probably the lowering of the first resonant frequency will be continuous
instead of discrete, but the resolution of the measured frequency of this set up is not high
enough to determine it.
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Figure 21: The first resonant frequency for different lengths of the mountain for three water
depths: 12.1 ± 0.1 cm in blue, 13.1 ± 0.1 cm in red and 14.9 ± 0.1 cm in red. The middle of
the mountain is placed 87.0 ± 0.5 cm from the left end of the water tank. The decrease in the
first resonant frequency looks discrete due to the resolution of the measured frequency.

6.4 Continuously shaking with a slope

The last experiment shows the change in the frequency domains of the solitons and in
the difference between the maximum and minimum surface elevation ∆H when a slope
is added to the tank. The maximum and minimum surface elevation are the maximum
and minimum water level of the whole tank during a measurement, which is different
from the ‘crest-to-through’ excursion which is the difference between the maximum and
minimum water level of one soliton. One half of the mountain is put at the right end
of the tank. This setup is compared to the water tank with a vertical partitioning
wall 10 cm from the right end to correct for the small decrease in water tank length
due to the slope. The tank is shaken continuously starting at a high frequency which
is lowered in steps of 0.002 Hz. After each step in frequency the number of solitons
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are counted and a movie is made to determine the maximum and minimum surface
elevation. These measurements are done for a water depth of 4.8 ± 0.1 cm and 6.3
± 0.1 cm. The results are shown in figure 24 in which the red dots represent the wa-
ter tank with the slope and the blue dots the water tank with the vertical partitioning wall.

As seen in figure 24a the maximum and minimum surface elevation do not differ
between the slope and the partitioning wall at a water depth of 4.8 ± 0.1 cm. Likewise,
no changes are seen in the difference between the maximum and minimum surface
elevation ∆H, which is plotted in figure 24b. However when a slope is added to the water
tank the frequency domains of the solitons, specified by the vertical lines, differ from the
water tank with a vertical partitioning wall. The frequency domains coincide for six and
seven solitons contrary to the domains of less solitons.

A difference in the ‘crest-to-trough’ excursion of the solitons moving to the left or
to the right is observed for the water tank with the slope at a water depth of 4.8 ± 0.1
cm. When the solitons move away from the slope (left) the‘crest-to-trough’ excursion of
the solitons is higher compared to moving towards the slope (right). This can be seen in
figure 22 for a forcing frequency of 0.197 Hz. Because the ‘crest-to-trough’ excursion of
the solitons is smaller, it sometimes appears with the eye like fewer solitons are moving
to the right compared to moving to the left. Fortunately the matlab code was able to
detect all solitons.

In figure 24c the number of solitons and the maximum and minimum surface ele-
vation are shown for a water depth of 6.3 ± 0.1 cm. For low forcing frequencies
the maximum and minimum surface elevation for the case with slope are almost the
same as for the case with partitioning wall. But for higher frequencies the maxi-
mum/minimum surface elevation becomes larger/smaller for partitioning wall, which
leads to a higher ∆H shown in figure 24d . An explanation for this observation is that
the waves constructive interfere when they are reflected from a straight wall, but the
interference pattern becomes more complicated when the waves are reflected from a slope.

When a slope is added at a depth of 6.3± 0.1 cm something unexpected is hap-
pening with the number of solitons, which is stated with 3* in figure 24c. The height
of the slope is 10.0 ± 0.1 cm, so when the ‘crest-to-trough’ excursion of the solitons
becomes too high water flows on top of the slope. Because of this process, three solitons
move towards the slope (right) while only one solitons moves away from the slope ( left)
as can be seen in figure 23. This situation occurs until the ‘crest-to-trough’ excursion of
the solitons becomes too low to flow on top of the slope and six solitons are visible.

At a water depth of 4.8 ± 0.1 cm the frequency domains for six and seven soli-
tons coincide, in contrast to a water depth of 6.3 ± 0.1 cm where the frequency domain
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for one soliton coincides. The frequency domains of the solitons were measured for
starting with a low frequency as well as starting with a high frequency to determine the
influence of the slope on hysteresis. At a water depth of 6.3 ± 0.1 cm for a water tank
with the slope no hysteresis is observed, contrary to the water tank with the partitioning
wall. At a depth of 4.8 ± 0.1 cm a little hysteresis is observed for the slope, but not as
much as for the partitioning wall.

(a) Solitons moving to the right. (b) Solitons moving to the left.

Figure 22: A difference in the ‘crest-to-trough’ excursion of the solitons moving to the left or
to the right is observed when the slope is added to the right-hand end of the tank at a water
depth of 4.8 ± 0.1 cm. (a) The ‘crest-to-trough’ excursion of the solitons at a forcing frequency
is 0.197 Hz from right to left are 2.92 ± 0.06 cm, 1.38 ± 0.03 cm and 1.62 ± 0.04 cm. (b) The
‘crest-to-trough’ excursion of the solitons at a forcing frequency is 0.197 Hz from left to right
are 2.51 ± 0.06 cm, 1.30 ± 0.03 cm and 1.05 ± 0.03 cm. The solitons are higher when they
move to the left end of the tank, so away from the slope.

(a) Three solitons moving to the right
at forcing frequency of 0.218 Hz.

(b) One soliton moving to the left at
forcing frequency of 0.218 Hz.

Figure 23: At a water depth of 6.3 ± 0.1 cm for a forcing frequency between 0.198 and 0.226
Hz there are three solitons moving to the right and one soliton moving to the left.
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(a) The maximum and minimum surface el-
evation and the number of solitons for dif-
ferent forcing frequencies for a water depth
of 4.8 ± 0.1 cm.
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(b) The difference between the maximum
and minimum surface elevation ∆H for dif-
ferent forcing frequencies for a water depth
of 4.8 ± 0.1 cm.
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(c) The maximum and minimum surface el-
evation and the number of solitons for dif-
ferent forcing frequencies for a water depth
of 6.3 ± 0.1 cm.
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(d) The difference between the maximum
and minimum surface elevation ∆H for dif-
ferent forcing frequencies for a water depth
of 6.3 ± 0.1 cm.

Figure 24: Red corresponds to a water tank with a slope to the right. Blue corresponds to the
water tank with a vertical partitioning wall 10 cm from the right end. For a water depth of 4.8 ±
0.1 cm the maximum and minimum surface elevation coincide for the slope and the partitioning
wall, but the frequency domains of the solitons differ except for six and seven solitons. For
a water depth of 6.3 ± 0.1 cm the maximum and minimum surface elevation coincide for low
frequencies, but differ for higher frequencies. Also there are no three, four or five solitons visible
when the slope is in the water tank, because the amplitude of the soltions is so big that water
can flow on top of the slope. The number 3* corresponds to three solitons moving towards the
slope (right) and one soliton moving away from the slope (left).
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7 Discussion and conclusion

In this thesis laboratory experiments were done to determine the influence of the water
depth, forcing frequency and topography of the water tank on surface waves and resonant
frequencies.

Water depth
The influence of the water depth on the resonant frequencies was tested for the first five
resonant frequencies and combined with the dispersion relation. A transition from the
shallow water limit to the normal regime was observed for the resonant waves around a
water depth of 12 cm. The influence of the water depth on solitons was also determined.
An increase in the ‘crest-to-trough’ excursion, the horizontal length and the width of the
frequency domains of the solitons for a increasing water depth was found. Also for higher
water depths the frequency domains got wider for a smaller number of solitons.

Forcing frequency
Different types of forcing were used which all gave rise to different types of surface waves.
The forcing type ‘half oscillation’ only excited the first resonant wave. ‘One oscillation’
and ‘by hand using two plates’ excited also the higher resonant waves. ‘Continuously
forcing’ resulted in solitons of which the number depended on the forcing frequency.
The hysteresis demonstrated the influence of the starting frequency, because a different
amount of solitons was observed for starting at a high frequency compared to starting
with a low frequency.

Topography of the water tank
The innovating topic of this thesis is the change in the topography of the water tank.
This was done by changing the water tank length, putting the partitioning wall at a
tilt and adding a slope or mountain. This manner of experiments was for the first time
done at the NIOZ. The influence of the water tank length was only tested for solitons.
The width of the frequency domains increased for decreasing water tank length and
for smaller tank lengths the width increased with a smaller amount of solitons. The
influence of the partioning wall with a tilt on the resonant frequencies was found to
be increasing the resonant frequencies with increasing angle of tilt and with increasing
order of resonance. For angles smaller than 90° the second resonant frequency dominated
and for angles larger than 90° the first resonant frequency dominated, which could
be caused by evanescent waves. Adding a mountain to the water tank lowered the
resonant frequencies. These decreased the most in the middle of the water tank. This
effect was further examined by looking at the change in the location of node for the
first resonant frequency, which was found to be discrete and not symmetric contrary
to the expectation of a linear and symmetric change. The influence of increasing the
width of the mountain on the resonant frequencies looked discrete due to the resolution
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of the measured frequency. The last topography change of which the influence was
determined is the influence of the slope on the frequency domains of the solitons and the
surface elevation by continuously forcing. For a small water depth no change in surface
elevation was observed, but at a higher depth the surface elevation became larger for
high forcing frequencies because of more constructive interference when the solitons are
reflected on a straight wall compared to a slope. The frequency domains of the soli-
tons also changed when the slope was added to the tank but no clear pattern was observed.

Limitations and future research
The forcing type ‘by hand using two plates’ is not a very exact method because it is
hard to move the plates with the same force over exactly the same distance for a second
time. The higher resonant waves are excited and these frequencies do not depend on the
force and the distance as long as there is enough energy for the waves to propagate. The
quantity power which is used to determine the dominant frequencies is related to how
much energy is put in the system and changes every time when this type of forcing is
used. In section 4.2 it is not possible to compare the resonant frequencies at different
depths on the base of power. It would be nice if it is possible to determine which
resonant frequency (first, second, third, etc.) is the dominant frequency at which depth.
This problem was noticed after the measurements for the section about higher resonant
frequencies, so from that moment on the method of a whole oscillation is used to measure
higher resonant frequencies. For this type of forcing it is possible to compare dominant
frequencies as done in section 6.1.

When the tank is continuously forced for water depths above 10.0 cm, the water
is sloshed over the sides of the water tank which makes no experiments with a high
water depth and continuously forcing possible with this setup. This types of experiments
would be particularly interesting in cases with the slope or mountain. In the case
of continuously shaking with a slope it would be nice to look what will happen with
the number of solitons and the surface elevation if the slope is completely under
water. Also it would be nice to look at the number of solitons and the surface eleva-
tion for a water tank with a mountain, which is only possible if the water depth is
higher than the mountain. This problem can easily be solved by using a higher water tank.

A limitation in the data analysis is the resolution in the measured frequency after
fourier theory, which makes the decrease in the frequency in section 6.3 look discrete. A
linear decrease in the frequency is expected which can hopefully be proved with another
setup that has a higher resolution of the measured frequency. Another limitation of this
set-up is that only horizontal forcing is possible. Vertical forcing is necessary to excite
one individual even resonant wave. Like it is done in section 6.2 for the node of the
first resonant wave it would be interesting to look how the nodes for higher resonant
frequencies change with the location of the mountain. Another interesting topic for
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future research is to look for evanescent waves at the partitioning wall at a tilt or at the
mountain. It would be useful to investigate if evanescent waves are indeed the cause of
different dominant frequencies for different angles of tilt and the greatest decrease of the
resonant frequencies when the mountain is placed in the middle.

8 Appendix: matlab code

The movie made with the camera is read in with the use of the function df dfi read in
matlab. As explained in the experimental setup is the command ‘edge’ used to determine
the water height. With the use of peakfinder the frequency is determined for the first
resonant wave.

%height of waterlevel
file1=fopen('heg.dat','w');
for j=1:length(files)

Str= df dfi read(fullfile(myFolder,files(j).name));
I = Str.image.data(xmin:xmax,ymin:ymax);
BW = edge(I, 'log');
[row,col] = find(BW);
lijn=col(find(row==800));
height=max(lijn)-h;
fprintf(file1,'%d %d\n', j, height);

end
fclose(file1);

load heg.dat
f1= heg(:,1);
hg = heg(:,2);
peak=peakfinder(hg);
last=length(peak);
period=(peak(last)-peak(2))/((last-1)*fs)
frequency=2*pi/period

The higher resonant frequencies are determined using fourier theory. The fast fourier
transform is a standard function of matlab. The power is used to determine the dominant
resonant frequencies.

%De-mean
mhg=hg-mean(hg);
fs = 8;

%Fast Fourier Transform
m = length(mhg); % Window length
n = pow2(nextpow2(m)); % Transform length
f = (0:n-1)*(fs/n); % Frequency range
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y = fft(mhg,n); % DFT
y0 = fftshift(y); % Rearrange y values
f0 = (-n/2:n/2-1)*(fs/n); % 0-centered frequency range
power0 = y0.*conj(y0)/n; % 0-centered power
peak=peakfinder(power0,(max(power0)-min(power0))/32);

%Power
for i=1:length(peak)

w=f0(peak(i))*2*pi; %frequency in rad/s
ph=power0(peak(i)); %power
fprintf('%d %d\n', w, ph)

end

The last piece of code is used for analyses of the solitons. The number of solitons and the
maximum and minimum surface elevation are determined.

%edge
file1=fopen('pos.dat','w');
file2=fopen('npmwl.dat','w');
for j=1:length(files)

Str= df dfi read(fullfile(myFolder,files(j).name));
I = Str.image.data(xmin:xmax,ymin:ymax);
BW = edge(I, 'log');
[row,col] = find(BW);

%positions edge
XY = zeros(xmax-xmin,2);
for i=2:xmax-xmin

place = find(row==i);
list = col(place);
mx = max(list);
height = mx-h;
XY(i,1) = i;
XY(i,2) = height;

end
XY(1,1)=1;
XY(1,2)=XY(2,2);

%position peaks
x = XY(:,1);
y = XY(:,2);
maxwl=max(y);
mwl=min(y);

%minimum water level
peak=peakfinder(y,(max(y)-min(y))/8,hw-h,1);

%position of the peaks
nop=length(peak);

%number of peaks
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if mwl<20
mwl=60;

end

%height of peaks
if peak >0

for i=1:nop
hop=y(peak(i));
fprintf(file1,'%d %d %d \n',j,peak(i),hop);

end
end

if nop>=2
nump=nop;
for i=1:nop-1

npn=nump;
if peak(i+1)-peak(i)>75

nump=npn;
else nump=npn-1;
end

end
else nump=nop;
end

fprintf(file2,'%d %d %d\n',j,maxwl,mwl); fprintf(file2,'%d %d %d\n',j,nump,mwl);
end
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