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Abstract

In the Cold Atom Nanophotonics group a Bose-Einstein condensate of photons is
being realized using a dye-filled microcavity. One key element of this experiment
is the high reflectivity of the mirrors forming the microcavity.

In this thesis we report on cavity ring-down spectroscopy. This technique was
used to measure the reflectivity for a set of identical high reflectivity mirrors
from CRD Optics. For wavelengths ranging from 560 nm to 580 nm, we measured
reflectivities of R ≈ 99.8%. This is a factor 1000 less reflective than the expected
reflectivity of R = 99.9998%. We review factors which could contribute to this
difference, most noteworthy being the cleanliness of the mirrors.
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Introduction

1 Introduction

In the field of nanophotonics the interaction of light and matter is studied on a
fundamental level. One of the studied phenomena is the Bose-Einstein condensate
(BEC). A BEC can be described as an overlap of bosonic matter waves in their
quantum mechanical ground state. For massive bosons this is achieved by cooling
them towards temperatures very close to absolute zero [1, 2]. Because photons are
also bosons, it was theorized these could also form a BEC [3]. The first experimental
observation of a photon BEC was made in 2010 [4–6]. Here, a laser was focused
inside a dye-filled optical microcavity, which enabled number-conserving thermaliza-
tion of photons. The cavity mirrors are used to provide a confining potential for the
photonic BEC [4]. For these mirrors both the shape and their reflectivity determine
the magnitude of the trapping potential. It is of importance to use high-reflectivity
mirrors to reach the critical photon density where condensate formation occurs. Cur-
rently two photon BECs exist in the world [7, 8]. The first uses a cavity formed by
two identical spherical mirrors with a reflectivity of R ≈ 99.998% for each individual
mirror [9]. The second uses one planar and one spherical mirror with reflectivities of
R ≈ 99.95%, as can be seen in Appendix A.1.

The cold atom nanophotonics group at Utrecht University is also working to realize
a BEC of photons. The wavelength dependent reflectivities of the to-be-used mirrors
determine which wavelength will be used for the photon BEC. It is therefore impor-
tant to measure the reflectivity of these cavity mirrors for a certain spectrum. In
this thesis a technique called Cavity Ring-Down Spectroscopy (CRDS) [10] is used
to measure the reflectivity for a set of identical spherical mirrors from CRD Optics.
This is performed for a wavelength spectrum ranging from 560 nm to 580 nm.

In ring-down measurements, first, a build up of monochromatic light is formed inside
the cavity. After a certain power is reached, the laser focused inside the cavity is
blocked. This way the exponential decay, or “ring-down”, of the light inside the
cavity can be measured. The ring-down time determines the light leaving the cavity
per round trip, which is the exact quantity needed to determine the reflectivity of
the cavity mirrors [11,12].

We will first explain the basis of the theory needed to understand the behaviour of
light within an optical cavity in Section 2, as well as the relation between ring-down
time and reflectivity. We will then incorporate this theory with the description of
the setup in Section 3. Finally, the results of our experiment are shown in Section 4,
and thoroughly examined by discussing the possible elements which could interfere
with a ring-down measurement in Section 5.
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2 Theory

In this section we will first describe the necessary optics to understand how a cavity
is formed and what its behaviour is. Then we will give a short insight into higher
order modes, after which we will finish with the theory of cavity ring-down.

2.1 Optical Cavity

An optical cavity is created by placing two mirrors some distance from each other on
the optical axis of a laser beam. These mirrors can be flat or curved, which leads to
an arrangement of different light patterns inside the cavity.

The propagation of optical rays through several optical elements can be described by
the ABCD matrix [13]

M =

(
A B
C D

)
. (2.1.1)

In the case of light propagation inside a cavity, we are concerned with the following
two ABCD matrices

• Propagation over a length L (
1 L
0 1

)
. (2.1.2)

• Mirror with curvature R (
1 0

−2/R 1

)
. (2.1.3)

The actual propagation of light in the cavity is now described by the product of the
ABCD mactrices in Equations 2.1.2 and 2.1.3. Hence, for one round trip inside a
cavity,

M =

(
1 0

−2/R1 1

)(
1 L
0 1

)(
1 0

−2/R2 1

)(
1 L
0 1

)
,

=

(
1− 2L

R1
2L− 2L2

R2

− 2
R1

+ 4L
R1R2

− 2
R2
− 4L
R1

+ 4L2

R1R2
− 2L

R2
+ 1

)
.

(2.1.4)

To apply this formalism to gaussian beams, we introduce the q-parameter. This
parameter defines the gaussian beam at a certain point z, i.e. the path along the
optical axis, according to

1

q(z)
=

1

R(z)
+

iλ

πw2(z)
, (2.1.5)
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where R(z) denotes the curvature of the beam, λ the wavelength, and w(z) the beam
waist at a certain path length z. We will use the subscript 0 to denote z = 0, i.e. the
center of the cavity.

If we choose R0 =∞ for q0, then

R(z) = z +
z2R
z
, (2.1.6)

w(z) = w0

√
1 +

(
z

zR

)2

, (2.1.7)

and zR =
πw2

0

λ
. (2.1.8)

Where Equation 2.1.8 denotes the Rayleigh range of the beam. This range is the
distance from z0 for which the beam waist w0 increases by a factor

√
2.

The ABCD parameters then determine the q-parameter after propagation via

qf =
Aqi +B

Cqi +D
, (2.1.9)

where the subscripts i and f denote initial and final, respectively, and the ABCD
parameters are the same as used in the ABCD matrix formalism.

For a stable cavity it has to hold that qf = qi. In other words, the beam must remain
identical after a round trip. This condition allows Equation 2.1.9 to be written as

Aqf +B − Cq2f −Dqf = 0. (2.1.10)

Another boundary condition is given by the curvature of the mirrors. For a stable
cavity the curvature of the gaussian beam has to match the curvature of the mirrors.
Thus, R(z1) = −R1 and R(z2) = R2, where z1 and z2 denote the positions of the
respective mirrors along the optical axis as can be seen in Figure 2.1.

Solving this system of equations while defining the cavity length z2 − z1 = L, yields

z1 =
−L(R2 − L)

R1 +R2 − 2L
, z2 =

L(R1 − L)

R1 +R2 − 2L
, (2.1.11)

z2R =
L(R1 − L)(R2 − L)(R1 +R2 − L)

(R1 +R2 − 2L)2
. (2.1.12)

Using Equation 2.1.8 we find

w4
0 =

λ2L(R1 − L)(R2 − L)(R1 +R2 − L)

π2(R1 +R2 − 2L)2
, (2.1.13)
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Figure 2.1: A visual guide to the relation between beam waist, cavity length and position. The red lines
denote the width of the laser beam, the curved black lines denote the cavity mirrors, and the curved

dashed black line denotes the curvature of the beam.

w1 = w0

√
1 +

(
z1
zR

)2

, and w2 = w0

√
1 +

(
z2
zR

)2

. (2.1.14)

Where w1 and w2 denote the beam waist on the first and second cavity mirror,
respectively. For clarity, the implication of these equations is shown in Figure 2.1.

2.2 Resonant Modes

The electric field inside a cavity for higher order modes is given by [14]

Emn(x, y, z) =
E0w0

w(z)
Hm

(√
2x

w(z)

)
Hn

(√
2y

w(z)

)
eikz−i(m+n+1)φ(z)e

ikr2

2R(z) e
− r2

w2(z) .

(2.2.1)

Here, m and n denote the order of the mode, r =
√
x2 + y2, k the wavenumber of

the transversal wave, and φ the phase. Hm and Hn denote the Hermite polynomials,
and E0 a normalization constant. The corresponding pattern for intensity is

Imn(x, y, z) = I0

[
Hm

(√
2x

w(z)

)
e−

x2

w2

]2 [
Hn

(√
2y

w(z)

)
e−

y2

w2

]2
, (2.2.2)

where I0 denotes a normalization constant.

These different intensity patterns are called the Transverse Electromagnetic Modes
(TEMmn). In Figure 2.2 several TEMmn intensity patterns are displayed. When
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TEM00 TEM10 TEM20 TEM30

TEM01 TEM11 TEM21 TEM31

TEM02 TEM12 TEM22 TEM32

Figure 2.2: Different TEMmn intensity patterns calculated with Equation 2.2.2, where m and n
indicate the order of the mode.

both mirrors are aligned, and the laser is focused in between the mirrors, the only
possible mode is TEM00, the ground state. Due to inherent vibrations of the system,
slight misalignment of the cavity occurs, which can result in higher order modes.

2.3 Cavity Ring-Down

The decay of light within a cavity is due to the non-perfect reflectivity of the mirrors
when absorption is negligible (α ≈ 0). The beam power measured behind the cavity
is given by [9]

I(t) = I0R
κ
1R

κ
2 , (2.3.1)

where I0 denotes the power of the laser, R1 and R2 the reflectivity of the respective
mirror and κ the number of round trips in the cavity. Because κ is the number of
round trips in the cavity, it can also be written as

κ =
t

tr
=

ct

2L
, (2.3.2)

where tr denotes the time needed for one round trip, c the speed of light and L the
length of the cavity.
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The power can then be written as

I (t) = I0e
− t
τ , (2.3.3)

where

τ =
−2L

c lnR1R2
, (2.3.4)

denotes the ring-down time.
There are two possible cases to determine the reflectivity. If both mirrors have the
same specifications, their reflectivities should be the same. Thus, in our case, we
have

• R1 = R2 = R
Rewriting Equation 2.3.4 gives

R = e−
L
cτ . (2.3.5)

If the mirrors are different, their reflectivities are presumably also difference. Then,

• R1 6= R2

Again using Equation 2.3.4 gives

R1 =
1

R2
e−

2L
cτ . (2.3.6)
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3 Methods

In this chapter we will first provide an overview of the setup. We will start with
discussing the laser and the electrical appliances. Next we will discuss the cavity
mirrors and the lenses. We will finish by discussing the determination of the cavity
length.

3.1 Cavity Ring-Down Setup

z

y

x

1

0

Figure 3.1: Setup schematic. The numbers right of the AOM denote the diffraction orders, the red
lines denote the laser beam, the thinner black lines denote signal cables, and the L# the used lenses.

Note the orientation of curvature of the lenses.

The setup used in this experiment is shown in Figure 3.1. For clarity, each individual
aspect is described below in the order the laser passes through them.

First, a dye laser is used to couple light into the cavity. The laser used in this
experiment is a coherent model 899-01 ring laser [15]. It is common for a dye laser
to have a broad bandwidth. For CRDS it is important to reduce this to a minimum,
to counteract the formation of multiple modes inside the cavity. For this purpose an
intracavity element is used to narrow the bandwidth and thus make the laser more
stable. When using a pump laser at a power of 5.5 W, the dye laser has a power
output of ∼800 mW. The laser is stable between 560 nm to 580 nm.

Next, the laser is sent through an acousto-optic modulator (AOM), this is a device
which diffracts light into different orders using the acousto-optics effect [16]. In short,
this effect changes the permittivity of the crystal inside due to a mechanical strain
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TEM00 TEM10 TEM20

Figure 3.2: Camera images of different TEMmn modes on the back cavity mirror, imaged by the CCD
shown in Figure 3.1.

caused by a Piezo-electric inducer. Here we use the first diffraction order of the laser
at its highest power, which is 89.5% of the incoming power, while using a beam stop
to block the other orders. The first order is then focused into the cavity using two
lenses, L1 and L2 as shown in Figure 3.1.

The cavity itself is composed of the first mirror on a regular mirror mount, and the
second mirror on a xyz-translation stage. A Piezo-element is embedded in the z-axis
of the translation stage. By applying a voltage to the Piezo-element, using a tone-
generator, nanoscale adjustments to the cavity length can be made. This allows us
to achieve the perfect distance for the TEM00 resonance [17].

The cavity mirrors are a set of curved 1 inch mirrors from CRD Optics, with a
curvature of R = 1 m. Because the mirrors have the same curvature and should have
the same reflectivity, Equation 2.3.5 can be used as the relation between reflectivity,
ring-down time, and cavity length. The fundamental mode of the cavity can then
be determined using Section 2.1. Using Equations 2.1.12 and 2.1.13, the Rayleigh
range and beam waist in the middle of the cavity are found to be zR = 92 mm and
w0 = 130 µm respectively, for a cavity length of L = 17 mm and a wavelength of
λ = 580 nm. The beam waist on the mirrors is then w1 = w2 = 131 µm.

After the cavity, the beam is sent through a 45:55 (R:T) beam splitter, where one
part of the beam is focused on a photodetector (using lenses L3 and L4), and the
other part is enlarged and imaged on a CCD camera (using lenses L3 and L5). The
CCD images the light on the second cavity mirror, thus telling us if the cavity is
aligned properly when only the TEM00 mode is observed. An example of different
modes obtained with the CCD can be seen in Figure 3.2. From the comparison with
Figure 2.2, the TEMmn∈{00,10,20} can be identified. The used photodetector is an
avalanche type1, sensitive in the regime of 500 nm to 700 nm. An avalanche type was
needed because its sensitivity enables us to measure the signal.

The signal from the photodetector is then sent to the comparator. When the signal

1Thorlabs Temperature-Compensated Si Avalanche Photodetector, model APD130A2/M.
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of the photodetector is above a tunable threshold, the comparator sends a signal to
the AOM. This eliminates any diffraction order of the AOM. This stops light from
entering the cavity, enabling us to measure the ring-down of the light inside the
cavity. The resulting ring-down signal is then displayed on an oscilloscope, which we
use to store the ring-down measurements.

Our measurements are performed for a wavelength range of 564 nm to 579 nm, in
intervals of 3 nm for a fixed cavity length. For each wavelength a set of 500 ring-
down measurements is performed.

3.2 Beam Focusing

To determine which lenses to use and which distances to put them at, the Python
script in Appendix B was used in combination with a set of measurements of the beam
waist on the optical axis. The beam waist along the optical axis is measured by fitting
a gaussian over the CCD image of the beam, whose full width at half maximum is
2w(z). This is done for multiple positions on the optical axis to determine the
curvature of the beam. This curvature describes the course of the beam. The script
then determines the position and focal lengths for L1 and L2, using the measured
beam waists, so the incoming beam is focused on the cavity. For a lens L1 with a
focal length of f1 = 200 mm and a lens L2 with a focal length of f2 = 50 mm, a
beam waist of w0 ≈ 160 µm was determined inside the cavity when the distance of
L1 and L2 to the first cavity mirror is 325 mm and 50 mm respectively. The Rayleigh
range of the laser inside the cavity, using Equation 2.1.8, is zR = 139 mm. Using
Equation 2.1.6, the corresponding position of the cavity mirrors are calculated, this
gives the cavity needed for the laser a length of L ≈ 40 mm. Because the difference
between the fundamental position and the calculated position is a factor 5 smaller
than the Rayleigh range, this difference shouldn’t effect the mode formation inside
the cavity. The beam waist is also a approximately a factor 160 smaller than the size
of the mirrors, so no scattering due to boundary effects should therefore occur.

The lenses after the cavity were chosen such that light leaving the cavity is enlarged
on the CCD and shrunk on the photodetector. Note that the magnification for two
lenses is given by fx

fy
when the distances involved are a distance of fx from the second

lens to the image, a distance of fx + fy between the two lenses, and a distance of fy
from the source to the first lens.

In this setup we used the lenses L3 with f3 = 75 mm, L4 with f4 = 15 mm, and L5
with f5 = 100 mm as can be seen in Figure 3.1. This results in magnifications of 0.2
on the photodetector, and 1.33 on the CCD.
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3.3 Cavity Length Calibration

A high accuracy determination of the cavity length is needed to most precisely deter-
mine the reflectivity of the mirrors. Because our cavity is mounted using two separate
bases, we cannot use only the indicator on the z-axis of the translation stage. An
adjustment is needed to provide the distance difference between the indicated and
the actual length. After this difference is determined, the indicator can be used as it
is then calibrated.

To determine this adjustment we use the relationship given by Equation 2.3.4, where
we note that there is a linear dependence between cavity length L and ring-down time
τ . When measuring ring-down times as a function of different cavity lengths, a linear
fit on a scatter plot can be made to determine for which distance the ring-down time
goes to zero, this point is also where the cavity has length L = 0 mm. The horizontal
translation of the intersection of the fitted line with the horizontal axis to the origin
is exactly the length difference with the indicator.

10
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4 Results

We will first discuss our analysis of the acquired data, after which we will show the
results of the cavity length calibration. Finally the resulting reflectivities for each
wavelength measurement are shown.

4.1 Ring-Down

For each measured ring-down time, a fit was made using the exponential decay model
from Equation 2.3.3. Both I0 and τ are used as free parameters. The initial time from
where the fit is started, corresponds to 70% of the maximum signal. One example of
such a fit is shown in Figure 4.1.

1.0 1.1 1.2 1.3 1.4

Time (µs)

0.0

0.1

0.2

0.3

0.4

V
ol

ta
ge

(V
)

Data

Fit

Figure 4.1: The photodetector signal as imaged on the oscilloscope. The signal as function of time is
visible as the blue line. An exponential fit according to Equation 2.3.3 is visible as the red dashed line,

the τ in this equation denotes the ring-down time.

4.2 Calibration Measurement

Our calibration measurement was performed for lengths of 7, 14, and 20 mm of the
second mirror, as indicated by the translation stage. The result and fit are shown in
Figure 4.2. The fit shows a displacement of (18.07± 4.83) mm, this taken together
with the used indicated translation length of 17 mm, forms a cavity with a total
length of L = (35.07± 4.84) mm.
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Intersection Point

Figure 4.2: Calibration measurement of cavity length. Green dots denote the ring-down times
measured by the photodetector. The blue line is a linear fit to these points. The intersection point at
(−18.07± 4.83)mm, which determines the adjustment of the cavity length, is indicated by the red

triangle.

4.3 Reflectivity

For each measured wavelength, the 500 resulting ring-down times are taken together
in a histogram. An example of such a histogram is visible in Figure 4.3. The mean
and standard deviations of the ring-down times are extracted from these histograms.
Together with the determined cavity length from the calibration measurement, these
are used to calculate the reflectivities of the mirrors using Equation 2.3.5.

The resulting reflectivities are shown in Table 4.1.

Wavelength (nm) Ring-down time (ns) Reflectivity (%)

564.0± 0.5 58.9± 243678.53 99.8016± 820.0443

567.0± 0.5 57.94± 62306.29 99.7983± 216.7168

570.0± 0.5 59.58± 6.41 99.8038± 0.0342

573.0± 0.5 57.3± 5.8 99.796± 0.0348

576.0± 0.5 65.32± 4.93 99.821± 0.0281

579.0± 0.5 59.63± 3.69 99.804± 0.0295

Table 4.1: Measured reflectivities for the used wavelengths.
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Figure 4.3: An example of a histogram of determined ring-down times for 500 single measurement
shots, as shown in Figure 4.1, for a single wavelength. Shown here is the histogram for a wavelength of

λ = (576.0± 0.5) nm.
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5 Discussion

The reflectivities shown in Table 4.1 are smaller by a factor 1000 than we would
expect from the manufacturers data sheet shown in Appendix A.2. Furthermore,
the measurements for a wavelength of λ = 564 nm and λ = 567 nm have deviations
bigger than their mean value. This indicates something unexpected is happening in
the fitting process. The cavity length is about twice as big according to the calibration
measurement in respect to when guessed by eye, this will also be discussed.

An initial test to determine whether the determined reflectivities are of the right
order is to measure the transmitted power for the individual mirrors. This provides
a coarse indication for the reflectivity of the cavity because scattering effects are
ignored. The transmitted power is first measured for a setup where no cavity is
present and only a neutral density filter is placed before the photodetector, this filter
entails a transmission of 0.001% of the incoming beam. The height of this signal is
then compared to when a single cavity mirror is placed in the setup without the use
of a filter. The measured signal when only a filter is placed is 340 mV, the signal
is 275 mV and 380 mV for the first and second cavity mirror respectively. A lower
signal means a higher reflectivity, while a higher signal means a lower reflectivity. An
average for the factor between our mirrors and a neutral density filter is

275+380
2

340
≈ 0.96,

so the transmission is of the same order for both. Therefore the reflectivity should
be of the order of 100 − 0.001% = 99.999%. This gives a hint that the measured
reflectivities shown in Table 4.1 are lower than we expect them to be.

One occurrence we encountered was for the individual ring-down measurements, these
would sometimes show a rise immediately after a ring-down as shown in Figure 5.1.
Because these measurements don’t follow the exponential decay specified in Equa-
tion 2.3.3, our fitting procedure wouldn’t fit these correctly. We manually looked
at all the measurements where such a rise occurred and concluded the only prob-
lem which occurred for our fitting procedure was this rise. We then determined the
reflectivity again when discounting these measurements. The newly determined re-
flectivities are shown in Figure 5.2. For comparison, in Figure 5.3 histograms for
before and after discounting are shown side by side for a single wavelength. Because
the AOM is turned off for 100 µs by the comparator, no rise should be able to occur
after this ring-down until the AOM is turned back on.

When comparing the measured reflectivities before and after the cleaning of outliers,
a decrease in the uncertainty of the ring-down time is shown, while the reflectivity
is of the same order for both. This is therefore no explanation for the magnitude of
difference in reflectivity.

We also measured the time in which the first order of the AOM swtiches off by
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Figure 5.1: An example of a quick rise of the power, immediately after a ring-down. The blue line is
the photodetector signal, the exponential fit is visible as the red dashed line.
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Figure 5.2: Reflectivity spectrum of Table 4.1 after discounting the measurements where no flat ending
slope exists.
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Figure 5.3: A visual comparison of the determined ring-down times before and after the discounting of
outliers.

removing the cavity mirrors, and triggering the comparator manually. The measured
decay is τ = (74.32± 1.31) ns. This is of the same order as the measured ring-down
times for different wavelengths. Because these times are so comparable, it is possible
that the measured ring-down times are mostly due to the speed of the AOM. This
doesn’t explain the linear dependence between decay time and cavity length seen in
Figure 4.2.

Next we look at the calibration measurement. It was discovered that the focus of
beam was not directly in the center of the cavity, but misplaced towards the first
mirror over the optical axis. The distance from the focus is z1 ≈ −2.7 mm and
z2 ≈ 17 mm, to the first and second cavity mirror respectively. To understand the
scope this effect has on the cavity we looked at the Rayleigh range for the cavity,
according to Equation 2.1.12. The Rayleigh range for these parameters is zR ≈ 0.1 m,
five times greater than the cavity length. Using Equation 2.1.7, z1 = −2.7 mm, and
z2 = 17 mm, the beam waist on the mirrors is calculated to be

w(z1) =

√
1 +

(
z1
zR

)2

w0,

≈ 1w0,

w(z2) =

√
1 +

(
z2
zR

)2

w0,

≈ 1.015w0.

The curvature of the beam is then, using Equation 2.1.6 and zR = 139 mm as calcu-
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lated in Section 3.2,

R(z1) = z1 +
z2R
z1
,

≈ −7.12 m,

R(z2) = z2 +
z2R
z2
,

≈ 1.15 m.

While the curvature of the beam at z1 is not close to unity, the beam waist is very
small in comparison to the surface area of the mirrors as shown in Section 3.2.
Therefore the effect of the misplaced focus should not interfere with the mode for-
mation inside the cavity. The misplaced focus could explain the length from the
calibration measurement fit. The cavity length should be twice the distance from the
middle of the cavity to furthest cavity mirror. This would then be a cavity length
of L = 2 × 17 mm, which is in the same order of the relative cavity length offset.
For completeness, we made a prediction for the actual length of the cavity, to show
the effect of this distance modification. For a predicted physical cavity length of
(19.7± 2.5) mm the reflectivities are shown in Table 5.1.

Wavelength (nm) Ring-down time (ns) Reflectivity (%)

564.0± 0.5 76.07± 18.98 99.9137± 0.0242

567.0± 0.5 72.45± 17.98 99.9093± 0.0253

570.0± 0.5 59.11± 5.04 99.8889± 0.017

573.0± 0.5 56.61± 1.34 99.884± 0.015

576.0± 0.5 65.35± 4.64 99.8995± 0.0146

579.0± 0.5 59.28± 2.64 99.8892± 0.0149

Table 5.1: Determined reflectivity for a predicted cavity length of (19.7± 2.5)mm and after
discounting the measurements where no flat ending slope exists.

During the writing of this thesis, work was still being done on the cleaning proce-
dure of the cavity mirrors. A method was developed where the cavity mirrors are
cleaned by using First ContactTM Cleaning Solutions, these are quick drying poly-
mer solutions. The solution is applied to one side of the mirror and removed after
completely drying. For our used 1 inch optics, this time is approximately 15 minutes.
The peeling of the polymerized plastic removes contaminations on the mirrors along
with it. This process is then repeated six times for the front of each mirror and three
times for the back, where the front is defined as the high-reflective surface. A new
ring-down measurement was then performed immediately after cleaning the mirrors.
This measurement was performed at a wavelength of λ = (580.0± 0.5) nm following
the described method in this thesis. The only differences being a cavity length of
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L = (100± 20) mm and an adjusted focus with a beam width of w0 = 200 µm in the
middle of the cavity.

An example of a single measurement for these mirrors is visible in Figure 5.4. In
Table 5.2 the complete result of these measurements is shown. Differences between
this measurement and the ones with the uncleaned mirrors are striking. We observe
a higher signal, a longer slope, and a lower noise to signal ratio. A rise after a ring-
down, as seen in Figure 5.1, is noticeably absent in these measurements. We therefore
suggest the comparator triggers unreliably on low signals, this explains the absence
of a rise for the higher power measurements.

Wavelength (nm) Ring-down time (ns) Reflectivity (%)

580.0± 0.5 2573.79± 58.92 99.987± 0.0026

Table 5.2: Ring-down time and reflectivity for a single wavelength for the CRD mirrors, immediately
after the cleaning procedure. This measurement was done with a cavity length of L = (100± 20)mm.

This reflectivity is still a factor 100 smaller than the manufacturers data. It does
however give an indication that the cleanliness of the mirrors is of the highest impor-
tant in high-reflectivity mirrors. The assumption is that reflectivity can be increased
further when the cleaning process is perfected and both the process and the ring-
down measurements are performed in a lab that is significantly more dust free than
the temporary lab that this work was carried out in.
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Figure 5.4: Decay measurement for the cleaned mirrors with the revised cleaning procedure. The
photodetector signal shown by the oscilloscope is visible as the blue line, the red dashed line is the

exponential fit. The fit visible here has a τ of (2.586± 0.013)µs.
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6 Conclusion

We have been successful in performing cavity ring-down spectroscopy to determine
the reflectivity of our mirrors. Both the modes, and shape of the decay coincide
with what we expect from Section 2. However, when the reflectivity is compared
to the manufacturers data shown in Appendix A.2, a discrepancy is visible. The
expected reflectivity for these mirrors should lie in the order of R = 99.9998%, while
we measure approximately R = 99.8%. This is an order difference of a factor 1000.

We investigated this reflectivity difference by discussing the speed of the first order
elimination of the Acousto-Optics Modulator (AOM), the calibration measurement,
and the cleaning process of the mirrors. Both the speed of the AOM and the cal-
ibration measurement can account for minor differences in reflectivities. These are
not substantial enough to offer an explanation for the order of magnitude difference.
The cleaning procedure is shown to have a greater impact on the reflectivity.

The reflectivity of the cavity mirrors after cleaning them according to our cleaning
procedure, is R = (99.987± 0.026) % for a wavelength of λ = 580 nm. This of the
same order as the R = 99.95 % cavity mirrors used in the second photon Bose-
Einstein Condensate (BEC). Our mirrors can therefore be used for the formation of
a condensate in the measured regime of 560 nm to 580 nm.

Future research can be done on the cleaning process to provide insight in fluctuations
of the reflectivity after cleaning. Using these high-reflectivity mirrors, more research
can be done on the formation and interactions of a photon BEC.
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Transmission Spectrum

Appendix A Transmission Spectrum

Figure A.1: The measured transmission data sheet sent to us by Dr Nyman of Imperial College
London. An estimate on the reflectivity was made on this basis. For a wavelength of λ ≈ 550 nm, an

estimate reflectivity of R ≈ 99.95% is determined.
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Transmission Spectrum

Figure A.2: The reflectivity data sheet as sent to us by CRD Optics. The red line denotes the
Transmission as a function of wavelength. The reflection is determined by neglecting absorption effects,

R = (1− T )× 100%.
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Python Code

Appendix B Python Code

This code was developed by Ole Mußmann. It is routinely used in the Nanophotonics
group.

#!/ usr / b in /env python
# −∗− coding : u t f−8 −∗−

import numpy as np
import matp lo t l i b . pyplot as p l t
import pylab as p l
import i t e r t o o l s
from s c ipy . opt imize import c u r v e f i t

nanometer , micrometer , mi l l imete r , cent imeter , meter = \
1 .E−9, 1 .E−6, 1 .E−3, 1 .E−2, 1 .

# Opt ica l E lements can app ly to the ’ s ’ or ’ p ’ d i r e c t i o n ( i . e
. c y l i n d r i c a l ) ,

# or ’ a l l ’ ( normal ) .
class Optica l Element ( object ) :

# By i n h e r i t a n c e from ’ o b j e c t ’ , t h i s i s a new−s t y l e c l a s s
r e g i s t r y = [ ] # i t e r a t i o n r e g i s t r y , make the c l a s s

o b j e c t s i t e r a b l e

def i n i t ( s e l f , d , matrix , a p p l i e s t o ) :
s e l f . r e g i s t r y . append ( s e l f ) # add s e l f to r e g i s t r y
s e l f . d = d # d i s t a n c e from r e f e r e n c e p o i n t
s e l f . matrix = matrix # abcd matrix
s e l f . a p p l i e s t o = a p p l i e s t o # ’ s ’ or ’ p ’ d i r e c t i o n

or ’ a l l ’

def p l o t t i n g ( s e l f , geometry , prev ious , q , d , n=1.) :
c o l o r = c o l o r s . next ( )
a x i s = np . arange ( prev ious , d , . 1 ∗ m i l l i m e t e r )
beam , R c = waist ( q + a x i s − previous , n ) # r a d i u s

# p r i n t beam . shape
# p r i n t R c . shape

pl . subplot (211)
#p l . p l o t ( [ 0 . 0 3 7 5 , 0 .05 , 0 . 1 , 0 .15 , 0 .1875 , 0 .25 ,

0 .275 , 0 .325 , 0 . 4 ]\
# , [ 0 . 3 5 7 , 0 .347 , 0.3375 , 0.3465 , 0 .342 , 0 .348 , \
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#0.355 , 0 .384 , 0 . 3 9 ] , ’ ro ’ )
#p l . p l o t ( [ 0 . 0 3 7 5 , 0 .05 , 0 . 1 , 0 .15 , 0 .1875 , 0 .25 ,

0 .275 , 0 .325 , 0 . 4 ]\
#,[−0.69 , −0.716 , −0.72 , −0.77 , −0.755 , −0.994 , \
#−0.815 , −0.812 , −0.84] , ’ ro ’ )
pl . p l o t ( [ 0 . 0 3 7 5 , 0 . 05 , 0 . 1 , 0 . 15 , 0 .1875 , 0 . 25 ,

0 . 275 , 0 . 325 , 0 . 4 ] \
, [ 0 . 4 9 3 5 , 0 .5015 , 0 .49875 , 0 .52825 , 0 .5185 , 0 . 641 ,

0 . 555 , 0 . 568 , 0 . 5 8 5 ] , ’ ro ’ )
p l . t i t l e ( ”beam waist ” )
p l . y l a b e l ( ”beam waist [m] ” )

# p l . x l a b e l (” d i s t a n c e [m] ” )
pl . p l o t ( ax i s , beam / mi l l imete r , c o l o r )
p l . p l o t ( ax i s , −beam / mi l l imete r , c o l o r )
i f (min(beam) not in [ beam [ 0 ] , beam [ −1 ] ] ) : # i f

t h e r e ’ s a minimum
ypos = max(beam) i f ( geometry == ”p” ) else −max(

beam)
pl . t ex t ( a x i s [ beam . argmin ( ) ] , ypos / mi l l imete r ,

u”%s \nw = %.3 f micrometer\nd = %.5 f m\
nz R = %.5fm”

% ( geometry , min(beam) / micrometer , a x i s
[ beam . argmin ( ) ] , np . p i ∗ min(beam) ∗∗ 2
/ lambda lase r ) )

global w L
w L = min(beam)
global z wL
z wL = a x i s [ beam . argmin ( ) ]

p l . subplot (212)
p l . t i t l e ( ” rad iu s o f curvature ” )
p l . y l a b e l ( ” rad iu s o f curvature ” )
p l . x l a b e l ( ” d i s t anc e [m] ” )
p l . p l o t ( ax i s , 1 / R c , c o l o r=” black ” )
p l . axh l ine (0 )

# p r i n t R c [ 0 ] , R c [−1] , 1 / R c [ 0 ] , 1 / R c [−1]
#p r i n t ”q : ” , q ##### THIS IS WHERE ALL Q FACTORS

ARE PRINTED ! ! !

def apply e lement ( s e l f , geometry , prev ious , q ) :
s e l f . p l o t t i n g ( geometry , prev ious , q , s e l f . d ) # p l o t

p r e v i o u s q
q += s e l f . d − prev ious # app ly d i s t a n c e
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q = apply matr ix (q , s e l f . matrix )
global q end
q end = q
return s e l f . d , q

class Lens ( Optica l Element ) :
def i n i t ( s e l f , d=0. , a p p l i e s t o=” a l l ” , f=f loat ( ” i n f ” )

) :
super ( Lens , s e l f ) . i n i t (d , [ [ 1 . , 0 . ] , [−1. / f ,

1 . ] ] , a p p l i e s t o )

class Slab ( Optica l Element ) :
def i n i t ( s e l f , d=0. , a p p l i e s t o=” a l l ” , n1 =1. , n2 =1. ,

t =0.) :
super ( Slab , s e l f ) . i n i t (d , [ [ [ 1 . , 0 . ] , [ 0 . , n1 /

n2 ] ] ,
[ [ 1 . , 0 . ] , [ 0 . , n2 /

n1 ] ] ] ,
a p p l i e s t o )

s e l f . n2 = n2
s e l f . t = t

def apply e lement ( s e l f , geometry , prev ious , q ) :
s e l f . p l o t t i n g ( geometry , prev ious , q , s e l f . d ) # p l o t

p r e v i o u s q
q += s e l f . d − prev ious # app ly d i s t a n c e to s l a b
q = apply matr ix (q , s e l f . matrix [ 0 ] ) # app ly f i r s t

i n t e r f a c e
global q s l a b
q s l a b = q
s e l f . p l o t t i n g ( geometry , s e l f . d , q , s e l f . d + s e l f . t , n

=s e l f . n2 )
q += s e l f . t # app ly s l a b t h i c k n e s s
q = apply matr ix (q , s e l f . matrix [ 1 ] ) # app ly second

i n t e r f a c e
global q l e n s
q l e n s = q

return s e l f . d + s e l f . t , q
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def waist (q , n ) :
z , z r = q . r ea l , q . imag
w 0 = np . s q r t ( z r ∗ l ambda lase r / (np . p i ∗ n) )
R c = z ∗ (1 + ( z r / z ) ∗∗ 2)
return w 0 ∗ np . s q r t (1 + ( z / z r ) ∗∗ 2) , R c

def apply matr ix (q , matrix ) :
return ( matrix [ 0 ] [ 0 ] ∗ q + matrix [ 0 ] [ 1 ] ) / \

( matrix [ 1 ] [ 0 ] ∗ q + matrix [ 1 ] [ 1 ] )

###### HERE WE CALCULATE THE BEAM WAIST ##########

l ambda lase r = 565 ∗ nanometer
Lcav = 1 .7 ∗ cent imeter
w l a s e r = 0 .5 ∗ m i l l i m e t e r
f weak = 200 ∗ m i l l i m e t e r
f s t r o n g = 50 ∗ m i l l i m e t e r
d s l ab = 9 ∗ m i l l i m e t e r

s t a r t = 0 . ∗ cent imeter # d i s t a n c e from r e f e r e n c e p o i n t
end = 929∗m i l l i m e t e r+ Lcav +0.02 # p l o t a t l e a s t u n t i l end ,

d i s t a n c e from r e f e r e n c e p o i n t

### or BEGIN s e t q parameters
w 0 cav = ( ( lambda lase r ∗∗2 / np . p i ∗∗2 ∗ Lcav ∗ (1−Lcav ) )
∗∗ ( 0 . 25 ) ) ∗ meter

w 0 i n i t i a l s = 390∗micrometer
w 0 i n i t i a l p = 590∗micrometer
w 0 i n i t i a l = 490∗micrometer

#z r i n i t i a l s = np . p i ∗ w 0 i n i t i a l s ∗∗ 2 / l a m b d a l a s e r
#z r i n i t i a l p = np . p i ∗ w 0 i n i t i a l p ∗∗ 2 / l a m b d a l a s e r
z r i n i t i a l = np . p i ∗ w 0 i n i t i a l ∗∗ 2 / lambda lase r

z i n i t i a l = 1E−40

q i n i t i a l s = z i n i t i a l + 1 j ∗ z r i n i t i a l
q i n i t i a l p = z i n i t i a l + 1 j ∗ z r i n i t i a l

#q i n i t i a l o = z i n i t i a l + 1 j ∗ z r i n i t i a l
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### END s e t q parameters

# O p t i c a l Elements
# d = a b s o l u t e d i s t a n c e to r e f e r e n c e p o i n t
# a p p l i e s t o : ’ s ’ or ’ p ’ d i r e c t i o n ( c y l i n d r i c a l ) or ’ a l l ’ (

normal )
s l ab1 = Slab (d=end−0.02−Lcav−d s lab , a p p l i e s t o=” a l l ” , n1 =1. ,

n2 =1.458 , t =9. ∗ m i l l i m e t e r )
l en1 = Lens ( f=f weak , d=(−0.02+end−Lcav )−2∗ f s t r o n g−f weak
−0.025 , a p p l i e s t o=” a l l ” )

l en2 = Lens ( f=f s t r o n g , d=(−0.02+end−Lcav )− f s t r o n g +0.0 ,
a p p l i e s t o=” a l l ” )

l en3 = Lens ( f =−1.5∗meter , d =1E−24, a p p l i e s t o=” a l l ” )

dummy = Lens (d=end ) # s e t endpoint

# s o r t e lements by d i s t a n c e ( d ) :
Optica l Element . r e g i s t r y . s o r t ( key=lambda x : x . d )
c o l o r s = i t e r t o o l s . c y c l e ( [ ’b ’ , ’ g ’ , ’ r ’ , ’ c ’ , ’m’ , ’ y ’ , ’ k ’ ] )

### PLOT ALL Q FACTORS: ###

for geometry in [ ”p” , ” s ” ] : # c a l c u l a t i n g q , p l o t t i n g w f o r
”p” and ” s ”
#p r i n t
#p r i n t geometry
q = q i n i t i a l p i f ( geometry == ”p” ) else q i n i t i a l s
prev ious = s t a r t # s t a r t drawing from ” s t a r t ” or

p r e v i o u s l e n s p o s i t i o n
for element in Optica l Element . r e g i s t r y :

i f ( element . a p p l i e s t o == geometry ) or ( element .
a p p l i e s t o == ” a l l ” ) :
#p l . v l i n e s ( l e n s . d , −25. , 2 5 . ) # i n d i c a t e l e n s

p o s i t i o n s
previous , q = element . apply e lement ( geometry ,

prev ious , q )

#p l . p l o t ( xdata , ydata / m i l l i m e t e r , ’ o ’ ) # beam s i z e
measurements
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#p l . p l o t ( xdata , w a i s t ( xdata + popt [ 0 ] + 1 j ∗ popt [ 1 ] , 1) /
m i l l i m e t e r ) # f i t

#p l . y l im ( . 0 , 1 0 . )
#p l . x l im ( 1 . 2 5 6 , 1 . 2 6 )

pl . show ( )

print ”−−−−−− i n i t i a l va lues−−−−−−−”
print ” lambda lase r = ” , lambda lase r ∗1E9 , ”nm”
print ”Lcav = ” , Lcav∗1E2 , ”cm”
print ” f weak = ” , f weak ∗1E3 , ’mm’
print ” f s t r o n g = ” , f s t r o n g ∗1E3 , ’mm’
print ”−−−−−−computed values−−−−−−−”
print ” w 0 cav = %.5 f micrometer ” % ( w 0 cav ∗1E6)
print ”z R = ” , z wL
print ” q f , s l ab = ” , q s l a b
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