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In this Thesis, spin-injection from a ferromagnetic to a non-ferromagnetic
region is discussed using drift-diffusion theory. This is an important sub-
ject in spintronics nowadays where the spin of the electron is used instead
of its charge. First, a simple system with a charge current density is pre-
sented. Then, spin-injection due to a constant temperature gradient is stud-
ied. Magnons are then brought into this system to see what effect they have.
The contribution of the magnons is found to be substantial and results in in-
jected spin accumulations that are ∼ 102 higher than without magnons. We
also study the temperature dependence to see in what temperature regimes
magnons and electrons are important. At low temperatures, magnons seems
to have the biggest contribution.
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1 Introduction

Spintronics became popular in the late 1970s when scientists experimented
with transport in various ferromagnetic and non-ferromagnetic materials.
The word spintronics is short for spin electronics. Electronics nowadays uses
the charge of the electron to power computers etcetera, where in spintronics,
the focus is on the spin of an electron and what you can do with it.[1]

In quantum mechanics, a particle has two kinds of angular momenta, the
orbital angular momentum (L) and the spin angular momentum (S). To
visualize this, consider the Earth’s motion around the Sun, where the Earth
is the electron and the Sun the nucleus of an atom. The Earth’s orbit around
the Sun is the orbital angular momentum. The Earth also spins around its
own axis, which can be seen as the spin angular momentum. In quantum
mechanics, these angular momenta are described by so-called quantum num-
bers and they can take several different values depending on which kind of
particle is described.

Any particle can be in different states and so does the electron. These states
can be split into an orbital part and a spin part. The spin part is described
by the spin quantum number (s) and the spin projection quantum number
(ms). Because the electron has a spin quantum number of 1/2 and ms can
take values from −s to s with steps of one, we see that there are 2 possible
values for ms. These states for the electron are called spin up (↑) and spin
down (↓). Now that we know these two states of the electron, we need to use
this if we want to describe systems that contain electrons.

In this Thesis, I am going to look at very simple bilayer systems, one side
being ferromagnetic (F-side) and the other non-ferromagnetic (N-side). Due
to different current polarizations between the ferromagnetic and the non-
ferromagnetic side, a spin accumulation builds up at the interface between
the two metals. The chemical potential profiles of the spin up and down elec-
trons describe this spin accumulation and are found, together with the spin
current density. Different situations are modelled to see what the similarities
and differences are. The main aim of this Thesis is to see what happens if
magnons are thrown into the equation.
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Magnons are so-called quasiparticles. This concept was introduced in 1930 by
F. Bloch. When temperature increases, the magnetization decreases because
the spin particles deviate from perfect alignment which is the case at zero
kelvin. In ferromagnetic materials, the magnetism originates mainly from
the magnetic dipole moments of the electrons. Because most of the electrons
are aligned (most of them are spin up or spin down), every individual little

Figure 1: Different spin orientations. Source[2]

magnetic dipole adds up to a macroscopic magnetic field. So the material’s
magnetic field depends on the alignment of the electrons. If the tempera-
ture rises, all these electrons get a certain orientation, a fluctuation from
their equilibrium point. In other words, they are not perfectly aligned any-
more. These orientations can influence the other spin particles around them
and therefor, a certain orientation can propagate through the material like
a wave. This is called a magnon. This is comparable with phonons. Par-
ticles in a lattice can vibrate a bit and when they do, it also influences the
other particles around it. These vibrations propagate through materials like
a wave, thus very similar to magnons.

The spin transport drift-diffusion equations are numerically solved to model
the different cases. After recalling some basics, the following cases will be
discussed:

• Spin-injection due to a charge current density

• Spin-injection due to a temperature gradient

• Only magnons at F-side, electrons at N-side

• Magnons and electrons at F-side, electrons at N-side

Finally the Seebeck coefficient is taken temperature dependent to see at what
temperature range electrons and magnons are important, albeit that many
assumptions have to be made in this Thesis due to the complexity of real
systems. An Appendix is presented at the end of the Thesis containing all
the constants used and figures made for the different cases.
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2 Theory

2.1 System setup

In this Thesis, only systems with two sides are looked into, a ferromagnetic
(F) and a non-ferromagnetic (N) side. For simplicity, we assume the metals
are infinitely large, so that we only have to look at one dimension due to
translational symmetries in the other directions. The F-side (x ∈ [−∞, 0])
consists of Ni80Fe20, or for short it is called permalloy Py. The N-side
(x ∈ [0,∞]) is made of copper Cu. The interface between these two metals
is at x = 0.

Figure 2: System setup

In all the different scenarios, we will look at how the chemical potentials will
look like. These chemical potentials tells us much about the transport of
magnetic moments in the non-ferromagnetic region. Due to a charge cur-
rent or a temperature gradient, these magnetic moments can be transported
from the ferromagnet to the N-side of the system. This process is called
spin-injection[3]. With the addition of magnons later on, it is interesting to
see what happens to this spin-injection that is quantified by the spin accu-
mulation µs. This accumulation is just the difference between the chemical
potentials of the spin up and down electrons µ↑−µ↓ and comes from the dif-
ferent spin up and down current densities. In the next section, these current
densities are explained.

2.2 Current densities

To describe systems with ferromagnetic materials, the drift-diffusion theory
is used. There are three kinds of current densities (current divided by area)
that are described within this theory. One of them, the heat current den-
sity Q, will be ignored entirely in this Thesis. This heat current depends on
the heat conductivity and on so-called Peltier coefficients that describe the
transport of heat through two different materials when electrical current is
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sent through. I will only model scenarios when there is no electrical current
at all (except the first most simplest case), so it can be ignored.

The two other current densities are the charge current density je and the
spin current density js which consists of currents being carried by the spin
up and spin down electrons, j↑ and j↓. Hence, we have that

je = j↑ + j↓, (1)

js = j↑ − j↓, (2)

j↑ = σ↑(E −
∇µ↑
e

)− σ↑S↑∇T↑, (3)

j↓ = σ↓(E −
∇µ↓
e

)− σ↓S↓∇T↓. (4)

In the formulas above, σ↑ and σ↓ are the spin-dependent electrical conduc-
tivities of a certain material measured in siemens per meter. Siemens is the
inverse of ohm and in SI-units one siemens is equal to kg−1 m−2 s3 A2, which
respectively reads kilogram, meter, second and ampere. Furthermore, E is
the external electric field in volt per meter where volt is kg m2 A−1 s−3. The
elementary charge e is measured in coulomb. We also have S↑ and S↓ which
are the spin-dependent Seebeck coefficients in volt per kelvin. The tempera-
tures of the spin up and spin down electrons, T↑ and T↑, are in kelvin and µ↑
and µ↓ are the spin-dependent electrochemical potentials in joule. The gra-
dients can be seen as m−1. Once these units are plugged into the formulas,
one can see the charge and spin current densities, je and js, are in ampere
per square meter, which is exactly what you would expect. If desired, ∇µ↑/e
and ∇µ↓/e can also be written as a voltage gradient ∇V↑ and ∇V↓ because
joule/coulomb is equal to volt.

Now the current density formulas are known, the charge conservation law,

∂ρ

∂t
+∇je = 0, (5)
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can help to solve these equations. The first term is the change of the free
electric charge densities ρ over time. We assume to be in a steady state so
that the first term can be taken zero for our system. One finds that it is best
to write the chemical potentials the same way as the current densities,

µe = µ↑ + µ↓, (6)

µs = µ↑ − µ↓, (7)

where µs is again the spin accumulation. With use of the Valet-Fert equation
which describes spin diffusion,[4]

∇2µs =
µs
λ2
sr

, (8)

where λsr is the spin relaxation length of the material, these problems can
be solved. The relaxation length tells us to what lengthscale the system goes
to equilibrium. With these two differential equations, basic formulas for µ↑
and µ↓ can be formed. This leads to many constants that have to be solved
with some boundary conditions that can differ a bit for each new case.

2.3 Solving and boundary conditions

With the help of our two differential equations from the previous section we
can construct solutions for µ↑,↓. The charge conservation law leads to,

∇2(σ↑µ↑ + σ↓µ↓) = 0, (9)

and the Valet-Fert equation to,

∇2(µ↑ − µ↓) =
(µ↑ − µ↓)

λ2
sr

, (10)

where the gradients are just d2

dx2
and µ↑,↓ are only dependent on this x co-

ordinate. Note that the external field E does not contribute because it is
taken independent of position and that the Seebeck terms are also gone in
this equation. This is because the temperature gradient is taken constant in
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our systems so that the gradients of ∇T↑ and ∇T↓ are both zero. In the next
section I will explain a bit more about the spin dependent constants. It is
known that in non-ferromagnetic metals, σ↑ = σ↓ = σ. This will make the
equations solvable by hand for the N-side. Solving gives,

µ↑F (x) =
1

2(σ↑,F + σ↓,F )
[2σ↓,F (C1 + C2x) + 2σ↑,F (C3 + C4x)+

ex/λFσ↓,F (−C1 − λFC2 + C3 + λFC4)],

(11)

µ↓F (x) =
1

2(σ↑,F + σ↓,F )
[2σ↓,F (C1 + C2x) + 2σ↑,F (C3 + C4x)+

ex/λFσ↑,F (C1 + λFC2 − C3 − λFC4)],

(12)

µ↑N(x) =
C5x+ C6 + C7e

x/λN + C8e
−x/λN

2
, (13)

µ↓N(x) =
C5x+ C6 − C7e

x/λN − C8e
−x/λN

2
, (14)

which contains eight constants, C1 through C8, that have to be solved. The
λsr are replaced for side-dependent relaxation lengths λN,F because these re-
laxation lengths are dependent on the material. In the first two equations,
all terms with e−x/λF are thrown away because these blow up to ∞ when
x→ −∞. The same can be done for the equations of the N-side. If x→∞
the equation may not blow up, so terms with ex/λF must vanish, therefor
C7 = 0. When this is done, you see that the equations at the F-side have the
same form (except for the exponential terms) as the ones at the N-side when
you add the σ↑,↓,F into these constants. Now that the formulas for µ↑,↓ are
known, it can be solved with the help of the current densities je and js and
some boundary conditions at the interface x = 0.

The system must go continuously from the F- to the N-side. Because our
only boundary is at x = 0, all the boundary conditions are at x = 0. The
first ones are not difficult to see. The charge and spin current densities are
also split into two for the F- and N-side, just like the chemical potentials.
Therefor we can say je,F (0) = je,N(0) and js,F (0) = js,N(0). For simplicity,
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C6 can be taken zero because it is an overall shift in (µ↑,N + µ↓,N). The
same can be done for the F-side where C1 and C3 terms will take care of the
overall shift. So if we take σ↑,FC1 = −σ↓,FC3, this shift will also be zero. We
already have five boundary conditions, so we still need three to solve all eight.

The µ↑,↓ also have to go continuously. Note that these equations will not
go smooth from the one to the other. There will be breaking which you can
compare with the breaking of light when it hits a prism. The same is true
for the current densities. The next equation will make sure all the µ↑,↓ will
connect correctly from the F-side to the N-side,

µ↑F (0)± µ↓F (0) = µ↑N(0)± µ↓N(0). (15)

The last boundary condition will come from the fact we do not want any
charge current through our system. This results in a Peltier effect which
we do not want in these simulations. Therefor je,N(0) = je,F (0) = 0. Now
let’s see how we can calculate the different spin-dependent constants in our
system.

2.4 Calculation of spin-dependent constants

The majority of the constants we use are spin-dependent. Luckily, there
are many known values and formulas.[5][6][7] The conductivity of a metal de-
scribes how it can resist electrical flow through it. When a metal has high
conductivity, currents will go smoothly through the metal. It can be written
as

σ↑,↓ =
σpy(1± Pσpy)

2
, (16)

σpy = σ↑ + σ↓, (17)

where σpy is the conductivity of permalloy of 4.3 ∗ 106 S/m.[5] For a table of
all these known parameters, go to the Appendix at the end of this Thesis.
Together with the conductivity polarization of Py,

Pσpy =
σ↑ − σ↓
σ↑ + σ↓

, (18)
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which also has a known value of 0.25,[6] this conductivity problem can be
solved. Note that this problem is only valid in the ferromagnetic region.
In the non-ferromagnetic material σ↑ = σ↓ = σ holds. The spin-dependent
Seebeck coefficients are also found by this method. The only difference is
that these coefficients are dependent on the conductivities,

S↑,↓ = Spy −
(S↑ − S↓)(Pσpy ∓ 1)

2
, (19)

Spy =
σ↑S↑ + σ↓S↓

σpy
, (20)

PSpy =
S↑ − S↓
Spy

. (21)

Seebeck coefficients describe the buildup of a voltage due to a temperature
gradient throughout a material. The constants, Spy and PSpy , are also ex-
perimentally known and have the following values respectively, −20 ∗ 10−6

V/K [7] and 0.19.[5] One can check, when using Pσpy = 0 and σ↑ = σ↓, one
recovers S↑ = S↓ = S in the non-ferromagnetic region. For convenience, the
temperatures of the spin up and down electrons, T↑ and T↓, are equal. This
is acceptable because in real experiments, ”the spin-conserving inelastic scat-
tering is on a scale much smaller than the device dimensions.” [8] [p.21] With
this theory done, we can start modelling!
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3 Case 1:

Spin-injection with a charge current

3.1 Without Seebeck terms

The first and simplest system will be the one without the Seebeck terms in
the formulas for j↑ and j↓. That means there has to be something else to
make spin-injection into the non-ferromagnetic region even possible. It can
be done with use of a charge current density je. Normally, a electrical charge
current will cause a Peltier effect to build up. This current will carry some
heat which is described by Peltier coefficients. For consistency with the other
cases, this will be ignored here.

A boundary condition will change with the addition of je. The charge cur-
rent densities is non-zero now at the interface where normally (in all the next
simulations) it is zero. This interface charge current density will look like
je,N(0) = je,F (0) = je, with je assumed to be 1 ∗ 109 Am−2. It is taken this
way so that we can compare this with the next case correctly. It is a realistic
value so there should be no problem.[5] Finally the current densities will look
like

je,F = −σ↑
∇µ↑
e
− σ↓

∇µ↓
e
, (22)

js,F = −σ↑
∇µ↑
e

+ σ↓
∇µ↓
e
, (23)

je,N = −σ∇µ↑
e
− σ∇µ↓

e
, (24)

js,N = −σ∇µ↑
e

+ σ
∇µ↓
e
, (25)

and with the help of our boundary conditions, graphics can be made of the
chemical potentials and the spin and charge current densities.

3.2 Application

All the graphics of our models will be presented in the Appendix. In the
first figure for this case, Figure (3), we see the distribution of the chemical
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potentials of the spin up and down electrons. At the F-side the electrons have
a way shorter relaxation length (5 nm) than at the N-side (350 nm).[6] [9] [10]

This can be seen in the figure. The difference between the chemical potentials
of the spin up (blue line) and spin down (orange line) electrons is cut in half at
the relaxation length which is expected. The green line represents the average
chemical potential and is indeed a straight line what you would expect from
the charge conservation law (9). After a couple of relaxation lengths, µ↑ and
µ↓ will go to each other and reach equilibrium. The red line is described by

µc =
σ↑µ↑ + σ↓µ↓
σ↑ + σ↓

, (26)

and only holds for the F-side. Note that when we are at the N-side, σ↑ =
σ↓ = σ, the average chemical potential (green line) is found. Because the
two metals have different conductivities, there is a gap between this red line
and the green line at the interface. This is used for measuring the spin ac-
cumulation µs.

[11]

If we look at the spin and charge current densities in Figure (4), with js
(blue line) and je (orange line), we see that je is just a constant through the
whole material. This is preferred because if we add Seebeck terms later on
and we set je = 0 because we do not want any current flow, a je of zero is
expected everywhere. The spin current density js will change very rapidly at
the ferromagnetic side but will relax at about two relaxation lengths, when
µ↑ will be about the same as µ↓. At the N-side it will go to zero after a
couple of relaxation lengths and it will stay there.
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4 Case 2:

Spin-injection with a thermal gradient

4.1 With Seebeck terms

For the second case we will look at what happens if we change the charge
current for a temperature gradient through the materials. This temperature
gradient will give rise to a Seebeck effect which will add Seebeck terms, i.e.,
terms proportional to temperature gradients, to the charge and spin current
densities,

je,F = −σ↑
∇µ↑
e
− σ↓

∇µ↓
e
− σ↑S↑∇T − σ↓S↓∇T, (27)

js,F = −σ↑
∇µ↑
e

+ σ↓
∇µ↓
e
− σ↑S↑∇T + σ↓S↓∇T, (28)

je,N = −σ∇µ↑
e
− σ∇µ↓

e
− σS∇T − σS∇T, (29)

js,N = −σ∇µ↑
e

+ σ
∇µ↓
e
− σS∇T + σS∇T, (30)

where again the ferromagnetic and the non-ferromagnetic sides are kept
apart. Note that in (29) and (30) the two Seebeck terms can be added
to or subtracted from each other.

4.2 Application

If we look at Figure (5), we see one big difference from the case without See-
beck terms, the slope of the chemical potentials. The reason is the Seebeck
coefficient itself. At the F-side it is negative and at the N-side positive. The
way the Seebeck coefficient is defined causes this. If S is positive, the side
of the metal with the higher temperature has the lowest voltage, or in our
case the lowest chemical potential. Because we defined ∇T to be positive
(so to the left it is colder as to the right), the figure can be understood. At
the N-side S is positive, so at the far right side of N, it has lower chemical
potential than at the interface because it is warmer there. At the F-side this
is turned around because the S there is negative. The relaxation lengths still
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causes the chemical potentials to go to each other at relative long lengths
just as the previous case.

In Figure (6), the charge current density je is zero everywhere which is exactly
what we wanted. The spin current density js has the same shape as before.
In Figure (11) the two spin current densities are shown from Case 1 and 2. It
is clearly they follow the same pattern. This shows that spin-injection indeed
can happen with a charge flow as well as a temperature gradient through the
material. Now it is also clear why a value je = 1 ∗ 109 Am−2 is taken for
Case 1. If it was any lower, these figures will not be near each other. For
the next cases, we will only compare them to this one because they all use a
temperature gradient except for Case 1.

In the figures for the spin current density, we see it transports spin cur-
rent to the non-ferromagnetic region. Because there is no external magnetic
field, the spin particles will not align with it and they stay roughly how they
are. With this, one can try to store data. In 2007, the Nobel prize was
given to A. Fert and P. Grünberg for discovering the GMR (Giant Magne-
toresistance) effect which describes how the electrical resistance fades due to
a applied magnetic field in multi layered ferromagnetic systems. This effect
is used in every hard drive nowadays and it is subject to lots of research for
better utilization and new spin based concepts.

All coupled spin, charge and heat (which is ignored here) transport were
understood with equal temperatures for spin up and down electrons. With
the heat current experiment of Dejene et al, it is shown there is a temper-
ature difference between spin up and down electrons of around 120 mK at
room temperature which is around 10% of the total temperature gradient
through the system.[12] The technique described in this article to measure
the temperature difference allows the study of inelastic spin scattering at
any temperature. This was not doable before that time. In this Thesis,
scattering is completely ignored (aside from a magnon scatter term in the
next case), even though it is a really important feature, since electrons may
scatter with magnons if they are added into the equation.
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5 Case 3: Introducing Magnons

In the next scenario, there will only be magnons at the ferromagnetic side of
the system. There is currently a lot of research going on to fully understand
the role of magnons in magnetic insulators. Because the vast complexity
of describing magnons, the majority of the formulas[13] presented here are
assumptions and simplifications. The N-side has only electrons, just like
before.

5.1 Magnon drag terms

First, we assume magnons propagate with a certain magnon spin propagation
length λm. The relation between this and the chemical potential is similar
to the spin up and down electrons,

∇2µm =
µm
λ2
m

. (31)

This differential equation leads to an equation for µm and can be simplified
further,

µm(x) = C9e
x/λm + C10e

−x/λm (32)

where we introduced two new integration constants, C9 and C10. Magnons
will only appear at the ferromagnetic side, which is the left side of our system,
so when x reaches −∞, the magnon chemical potential may not go to ∞.
Therefore C10 must be zero. At the non-ferromagnetic side, things are still the
same and formulas (13) and (14) still hold. With the addition of magnons,
the currents also change. An extra term contributes to the spin current
density,

js,F = j↑,F − j↓,F − σs
∇µm
h̄

2e

h̄
− L∇T 2e

h̄
, (33)

where σs is the magnon spin conductivity of the magnet and L the bulk spin
Seebeck coefficient. These extra terms are called magnon drag terms and de-
scribe transport from the ferromagnetic to the non-ferromagnetic region. To
make everything in units of Am−2, a factor 2e/h̄ is added to these new terms.
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In this section, there are no electrons at all at the side where the magnons
are, so j↑,F and j↓,F can be ignored entirely just as je,F . Formula (29) and
(30) still hold for the N-side of the system. Together with this new current
density, there will also be a new boundary condition,

js,m(0) =
3g↑↓

2sπΛ3

2e

h̄
(µm(0)− µs(0)). (34)

At the interface, this relation holds between the different chemical potentials
with the help of the spin mixing conductance g↑↓. It describes the efficiency
of spin transport through the interface. For Py/Cu systems, this constant
is around 5 nm−2. One thing to note is that this constant is dependent on
the thickness of the materials used[14] which is ignored here entirely. The
spin density s will assumed to be proportional to a−3 where a is the lattice
constant which is around 0.3 nm.[15]

These new constants due to the addition of magnons can be found with
so-called relaxation time approximation formulas and look like this,

σs ∼
Jsτ

Λ3
, (35)

L ∼ JsτkB
h̄Λ3

, (36)

λm ∼ vm
√
ττsr, (37)

where they all depend on relaxation times τsr, which is the magnon spin
relaxation time, and τ . This time τ originates from many different scattering
processes, which is something that needs further research. For now, lets
assume both time scales are proportional to

τsr ∼ τ ∼ h̄

αkBT
, (38)

with α being the Gilbert damping constant which is around 0.01[16] for our
system. The two other constants,
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vm =
2
√
JskBT

h̄
, (39)

Λ =

√
4πJs
kBT

, (40)

are the magnon thermal velocity and the DeBroglie wavelength for magnons
respectively. Here, Js is the spin stiffness which comes from the dispersion
relation for magnons h̄ω~k = Jsk

2 where magnons have a wave vector ~k. For
this constant 4 ∗ 10−40 Jm2 is used.[17] If we plug these new constants into
(33), we see that the new terms are also in units of Am−2.

5.2 Application

With the use of these new conditions and constants, the figures once again
can be made. In Figure (7), the magnon chemical potential is displayed as a
black line. With the help of (37), we see that λm = 62.1535 ∗ 10−9 m. The
strength of this magnon effect is strongest at the interface and quickly dissi-
pates after two magnon relaxation lengths. At the N-side, the two chemical
potentials, µ↑ and µ↓, have switched places. This is just because we defined
magnons this way, to have negative magnon drag terms in formula (33) for
the spin current density. The slope is still the same at the N-side.

Because there are no electrons at the side of the magnons, the spin current
density js in Figure (8) looks a bit different. It is negative now, just as with
the chemical potentials, but it still follows the same pattern. At the N-side,
the two individual terms are also plotted, −L∇T 2e

h̄
in red and −σs∇µm 2e

h̄2
in

green. The spin current density goes to zero again at relative big values for
x. This shows that if magnons plays the only roll at the ferromagnetic side,
and they describe the formulas above, there still can be spin-injection into
the non-ferromagnetic region.
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6 Case 4: Magnons and Electrons

6.1 All terms

Last, a system with magnons and electrons will be simulated at the ferro-
magnetic region. The non-ferromagnetic side is taken the same as usual. For
clarity, the spin and charge current densities will be given again,

je,F = −σ↑
∇µ↑
e
− σ↓

∇µ↓
e
− σ↑S↑∇T − σ↓S↓∇T, (41)

js,F = −σ↑
∇µ↑
e

+σ↓
∇µ↓
e
−σ↑S↑∇T +σ↓S↓∇T −σs

∇µm
h̄

2e

h̄
−L∇T 2e

h̄
, (42)

je,N = −σ∇µ↑
e
− σ∇µ↓

e
− σS∇T − σS∇T, (43)

js,N = −σ∇µ↑
e

+ σ
∇µ↓
e
− σS∇T + σS∇T. (44)

Note that in (43) and (44) the two Seebeck terms can be simplified again.

6.2 Application

The chemical potentials in Figure (9) once again have the same shape as in
Case 2, but there is a difference now at the interface. In Case 3 we saw that
µm was pretty large while here, the energy is divided between the electrons
and the magnons. The magnons still seems to be the most important con-
tribution at the interface.

In Figure (10), the spin charge current is plotted again. This time, it is
a superposition of the spin current density of the electrons (purple) and the
magnons (green and red). The charge current density je is once again zero
everywhere. Here we also see that the spin current density coming from the
−σs∇µm 2e

h̄2
term (green) has decreased significantly. It also looks more like

the spin current we had in Case 2 but negative, in comparison with Case 3,
where we only had magnons at the F-side.
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7 Temperature-dependent Seebeck coefficient

A nice addition to these models, is to see in what way they are tempera-
ture dependent and in what temperature regime electrons and magnons are
important. To do this we want to know how the spin accumulation at the
interface, µs = µ↑,N(0)−µ↓,N(0), will look like when this temperature is vari-
able. One way to do this is with the Mott relation for the Seebeck coefficients
where a Fermi electron gas is assumed,

S(T ) ∼ π2kB
3e

T

TF
, (45)

TF =
h̄2

2mekB
(3π2n)2/3, (46)

with the right unit for the Seebeck coefficient of V/K and the Fermi temper-
ature TF of the metal used. This TF is the temperature when electrons in a
gas or metal are significantly faster than at absolute zero. Even at this zero
kelvin, fermions, like electrons, are moving at Fermi velocity. In metals, the
Fermi temperature is ∼ 105 K. The Seebeck coefficient is different for each
metal, so is TF due to its dependence of the electron density n with electron
rest mass is me.

For metals, n is ∼ 1028m−3.[18] So for Py the electron density for iron will
be used for simplicity. Iron and nickel will have quite the same n. In the
Appendix, the electron densities of the different metals are displayed.

The temperature-dependence of the conductivities is relatively small, so it
will be ignored here. If these new Seebeck coefficients are put into our models,
one can hopefully see in what temperature regimes magnons and electrons
are important. One thing to note, the melting points for these metals will
be at 1300K and higher, so T will only run from 0K to 1300K.

One thing is pretty clear in Figure (12). If we look at Case 2 (blue line,
only electrons at F-side), the spin accumulation µs is way smaller than in
the other cases. It is just a positive straight line going up and around 100
times smaller. The red line describes the µs of Case 3 (only magnons at F-
side) and the purple line the one of Case 4 (electrons and magnons at F-side).
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Note that the blue and the purple line are the most complete models. If the
blue line was around the same order of magnitude, the purple line is what
you would expect, just the contribution of the blue (electrons) and the red
(magnons) line. The pink line is just the average of the red and blue line for
comparison.

If we look at the values for our new Seebeck coefficients at room temper-
ature with equation (45), SCu(300K) = 1.04199 ∗ 10−6 and SPy(300K) =
−6.54869 ∗ 10−7, we see they are not the same as we saw before. The See-
beck coefficient for copper should be around 1.6 times bigger and the one for
permalloy 30 times. Even if we add these factors into the equation, the blue
line in Figure (12) is still around 100 times smaller then the others. There
is a noticeable increase at higher temperatures though. If we simplify the
formulas for these µs we can see what dependence they have in T . The µs of
cases 2, 3 and 4 are

µs,2 = aT, (47)

µs,3 =
−bT

c+ d
√
T + eT

√
T
, (48)

µs,4 =
fT − g

√
T

h+ iT + j/
√
T
, (49)

where a through j replaced the constants to make it more clearly. It be-
comes very complex with the addition of magnons. With this information
I cannot conclude in what temperature regimes magnons and electrons are
important. One thing I can say is, if we look at Figure (12), the magnon
lines grows way faster than just linearly. So my expectation is that magnons
are very important at low temperatures, but it becomes less important when
a couple of hundred kelvin is reached. At zero kelvin, the spin accumulation
is in every case zero. For the case of magnons it is no surprise. At zero kelvin
all the spin particles are perfectly aligned (no deviations from each other), so
no spin-waves or magnons can exist because they depend on these deviations.

The reason why the spin accumulation is zero in the case of electrons, is
also this perfect alignment. At zero kelvin the system is in ground state with
the lowest energy possible. This lowest energy can only be reached if all spin
particles are aligned (Ising Model). This means there is only one species,
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only up spins or only down spins. This will lead to µs = 0 at zero kelvin. As
a remark, spin-injection due to a temperature gradient is also a bit weird if
we look at zero kelvin at the interface. The temperature gradient goes from
the left metal to the right. If the interface is at zero kelvin, one metal has to
be zero kelvin everywhere, which means spin-injection is impossible without
a charge or heat current.

8 Comparison and Conclusion

In this Thesis, different cases are modelled to see what spin-injection is and
what happens when magnons are added into the system. We showed spin-
injection can be achieved due to a charge current and a temperature gradient.
We started with a system without Seebeck coefficients (Case 1) where the
spin-injection was achieved with a charge current. This charge current is zero
for the other cases where spin-injection was accomplished with a constant
temperature gradient through the system. First, only electrons (Case 2) were
assumed at the ferromagnetic side, then only magnons (Case 3) and finally
both (Case 4). Although it is not really realistic to only have magnons at
one side because they need spin particles as a kind of medium to exist, it is
interesting to see how magnons alone alter the system.

8.1 Results

Cases 2, 3 and 4 have a important similarity, namely the way the electrons
go to equilibrium at some material relaxation length. If their equations are
compared, you see they all go exactly to the same equilibrium at a certain
length. This is seen by the average chemical potential (µ↑ + µ↓)/2. At the
ferromagnetic side, in cases 2 and 4 (3 has no electrons at F-side) they go to
1.28176 ∗ 10−16x and at the non-ferromagnetic side, in cases 2, 3 and 4, they
go to −1.025408 ∗ 10−17x. A noticeable difference occurs when magnons are
added into the system in Case 3 and 4. The chemical potentials of the up
and down electrons switch places. This happens because we defined magnons
in a certain way. The spin current also goes from positive to negative if we
add magnons.

The spin accumulation µs is another thing that can tell us more about the
models. This spin accumulation is the difference between the chemical poten-
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tials. Because the magnons switch these two, I will take the absolute value of
it. In Case 2, we see a µs of 9.33252∗10−26 J . When we replace the electrons
to magnons in Case 3, we get a increase to 1.08229 ∗ 10−23 J . The most in-
teresting thing is the magnon chemical potential at the interface µm(0). This
is exactly the same as the spin accumulation. The same thing happens in
Case 4 with magnons and electrons, where µs and µm(0) are 3.24932 ∗ 10−24

J . So with the addition of magnons, the spin accumulation becomes bigger.

If the spin currents are compared, one sees aside from it being negative,
the same pattern. At the ferromagnetic side, relatively far from the inter-
face, electrons are in equilibrium and have a constant spin current. Reaching
the interface, the spin current is going to the non-ferromagnetic side due to
the temperature gradient, and goes to zero at large x. In real systems this
happens due to scattering which mainly comes from phonons (lattice vibra-
tions). The added magnon drag and the electron terms are of the same order
of magnitude. But in Case 4 one sees a smaller contribution from the first
magnon term (green lines Figures (8) and (10)). One thing to note is that
the formulas for σs and L do not have exact values. A factor of 2 to one of
them will change the whole spin current.

In addition to this, it is interesting to see how effective the spin-injection
is. This is only viable for Case 2 and 4 because these are the most complete
systems described in the Thesis. If we take the current spin density at the
interface in both cases, and divide them by the current spin density at equi-
librium (just a big negative number for x), you get how much percentage
of the spin current is left at the beginning of the non-ferromagnetic region.
For Case 2 this is 23,36% and for Case 4 this is 21,09%. This is a bit odd
because one would expect that it would be higher when magnons are added.
Although no scattering between electrons and magnons is described, one can
imagine electrons are pushed a bit due to the addition of spin waves which
results in a higher spin-injection. Because this spin current is negative, but
has positive terms, this may influence the effectiveness. It is also interesting
to see that the spin current coming from the electrons (purple line Figure
(10)) is going up if it reaches the interface. In Case 2 it went down. This
probably has to do with the magnon drag terms being negative. The result
is pretty similar though to Case 2.
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Finally we described how the spin-injections are dependent on the tempera-
ture if we make the Seebeck coefficient temperature dependent. The question
is in what temperature range electrons and magnons are important. One way
to do that is with the spin accumulation at the interface x = 0. We saw that
the calculated Seebeck coefficients for Cu and Py differ with a factor 1.6
and 30. Even with these factors, µs of Case 2 (without magnons) is ∼ 102

times smaller than the µs of cases 3 and 4. This is mentioned earlier in
this section. One thing that was as expected was the purple line in Figure
(12) which represents Case 4 (electrons and magnons). It is in between the
red(magnons) and the blue(electrons) line. Because the blue line is signifi-
cantly smaller than the others, no good answer can be given to our question.
The only thing you can say is that the magnon lines go really steeply just
above zero kelvin, which imply the magnon drag terms are important at very
low temperatures. At zero kelvin, all µs go to zero. For the magnons this is
right because at 0K, there are no deviations from the alignment of the spin,
so there are no magnons. For electrons, zero kelvin means all electrons are
in the ground state and have the same alignment. This means there is only
one species of spin, up or down, which leads to no spin accumulation at zero
kelvin.

8.2 Discussion

With this, it can be said that the contribution of magnons seems too high in
comparison with the electrons. The idea was to add magnon terms to a well-
defined system, which probably will lead to small corrections. This is clearly
not the case. This is probably due to the vast number of assumptions and
simplifications. We started with the assumption that the external electrical
field E is zero. This cannot be true because a ∇T will cause an electric field
in the conductor.[19] Mentioned before, the temperature difference between
the spin up and down electrons can be up to 10 % of the total temperature
gradient throughout the system.[12]

Other flaws can be traced back with the addition of magnons. The Gilbert
damping constant α is dependent on the atomic magnetization and the thick-
ness of the material.[16] This can range from 0.001 to 0.1. We also ignored
magnon drag terms for the charge current density. One can make similar
looking magnon drag terms for je with a ∇µm term and one with a ∇T term
with different constants than the drag terms already used. The system also
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looks very different when the materials have a certain thickness. You cannot
throw away terms anymore and extra exponential terms shows up with extra
boundary conditions.

With a lot of research going on now in the field of spintronics and magnons,
the motivation was present to make this Thesis. There surely is room for
improvements and expansion of these simulations to systems with finite thick-
ness for example. Because of major potential for spintronic based devices and
quantum computing, this field of research must be expanded and supported.
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9 Appendix

9.1 Parameters

Constant Discription Used Value Unit

λCu = λN Spin relaxation length in Cu [6][10]350 nm

λPy = λF Spin relaxation length in Py [6] [9] [10]5 nm

σCu Conductivity of Cu [5]43 ∗ 106 S/m

σPy Conductivity of Py [5]4.3 ∗ 106 S/m
σ↑ Conductivity of ↑ electrons in Py 2.6875 ∗ 106 S/m
σ↓ Conductivity of ↓ electrons in Py 1.6125 ∗ 106 S/m

SCu Seebeck coefficient of Cu [7]1.6 ∗ 10−6 V/K

SPy Seebeck coefficient of Py [7]−20 ∗ 10−6 V/K
S↑ Seebeck coef. of ↑ electrons in Py −21.425 ∗ 10−6 V/K
S↓ Seebeck coef. of ↓ electrons in Py −17.625 ∗ 10−6 V/K

Pσ Conductivity polarization in Py [6][10]0.25

PS Seebeck polarization in Py [5]0.19
T Temperature 300 K

∇T Temperaturegradient [20]4 ∗ 107 K/m
je Constant charge current density 1 ∗ 109 A/m2

kB Boltzmann constant [21]1.3806 ∗ 10−23 J/K

h̄ Reduced Planck constant [21]1.0546 ∗ 10−34 Js

e Elementary charge [21]1.6022 ∗ 10−19 C

Table 1: Various constants used in the models described above. Spin up and
down conductivities and Seebeck coefficients are calculated with formulas in
this Thesis.
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Constant Discription Used Value Unit

me Electron rest mass [21]9.1095 ∗ 10−31 kg

nFe Electron density in iron [18]17 ∗ 1028 m−3

nCu Electron density in copper [18]8.47 ∗ 1028 m−3

SCu Calculated Seebeck coef. Cu 1.04199 ∗ 10−6 V/K
SPy Calculated Seebeck coef. Py −0.654869 ∗ 10−6 V/K

g↑↓ Spin mixing conductance [14]5 ∗ 1018 m−2

Js Spin stiffness [17]4 ∗ 10−40 Jm2

α Gilbert demping constant [16]0.01

a Lattice constant [15]0.3 nm

Λ DeBroglie wavelength magnons 1.10164 nm
λm Magnon spin prop. length 62.1535 nm
L Bulk spin Seebeck coefficient 9.97281 ∗ 10−14 Jm−1K−1

σs Spin conductivity 7.61794 ∗ 10−25 Js/m

Table 2: Various constants used in the models to describe magnons. The
calculated Seebeck coefficients are calculated with (45) at room temperature.
The four lowest constants are calculated with formulas in this Thesis.
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9.2 Figures

-4. × 10-9 -2. × 10-9 2. × 10-9 4. × 10-9
x → meter

-5. × 10-26

5. × 10-26

1. × 10-25

1.5 × 10-25

2. × 10-25

Energy → Joule

Figure 3: Case 1. In blue and orange, the chemical potentials µ↑ and µ↓ are
plotted. And in green and red, the average (µ↑ + µ↑)/2 and µc are plotted.

-4. × 10-8 -2. × 10-8 2. × 10-8 4. × 10-8
x → meter

2 × 108

4 × 108

6 × 108

8 × 108

1 × 109

Current density →
A

m
2

Figure 4: Case 1. In blue, the spin current density js is plotted. In orange
the charge current density je is plotted and is equal to je = 109 everywhere.
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-2. × 10-9 -1. × 10-9 1. × 10-9 2. × 10-9
x → meter

-3. × 10-25

-2.5 × 10-25

-2. × 10-25

-1.5 × 10-25

-1. × 10-25

-5. × 10-26

5. × 10-26

Energy → Joule

Figure 5: Case 2. In blue and orange, the chemical potentials µ↑ and µ↓ are
plotted. And in green and red, the average (µ↑ + µ↑)/2 and µc are plotted.

-4. × 10-8 -2. × 10-8 2. × 10-8 4. × 10-8
x → meter

5.0 × 107

1.0 × 108

1.5 × 108

2.0 × 108

2.5 × 108

3.0 × 108

Current density →
A

m
2

Figure 6: Case 2. In blue, the spin current density js is plotted. In orange
the charge current density je is plotted and is zero everywhere as expected.
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-4. × 10-7 -2. × 10-7 2. × 10-7 4. × 10-7
x → meter

-1. × 10-23

-5. × 10-24

5. × 10-24

Energy → Joule

Figure 7: Case 3. In blue and orange, the chemical potentials µ↑ and µ↓ are
plotted. And in green and black, the average (µ↑+µ↑)/2 and µm are plotted.
Note the change of positions of µ↑ and µ↓.

-6. × 10-7-4. × 10-7-2. × 10-7 2. × 10-7 4. × 10-7 6. × 10-7
x → meter

-1 × 1010

-5 × 109

Current density →
A

m
2

Figure 8: Case 3. In blue, js is plotted which is a combination of −L∇T 2e
h̄

(red) and −σs∇µm 2e
h̄2

(green). In orange the charge current density je is
plotted and is zero everywhere as expected.
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-4. × 10-8 -2. × 10-8 2. × 10-8 4. × 10-8
x → meter

-6. × 10-24

-4. × 10-24

-2. × 10-24

2. × 10-24
Energy → Joule

Figure 9: Case 4. In blue and orange, µ↑ and µ↓ are plotted. And in green,
red and black, (µ↑ + µ↑)/2, µc and µm are plotted.

-4. × 10-8 -2. × 10-8 2. × 10-8 4. × 10-8
x → meter

-1 × 1010

-5 × 109

5 × 109

Current density →
A

m
2

Figure 10: Case 4. In blue, js is plotted which is the superposition of
the contribution of the electrons (purple), and magnons which consists of
−L∇T 2e

h̄
(red) and −σs∇µm 2e

h̄2
(green). In orange, je = 0 again everywhere.
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-2. × 10-8 -1. × 10-8 1. × 10-8 2. × 10-8
x → meter

1.0 × 108

1.5 × 108

2.0 × 108

2.5 × 108

3.0 × 108

Current density →
A
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2

Figure 11: Spin current due to a charge current and a temperature gradient.

200 400 600 800 1000 1200
T → Kelvin

-1.2 × 10-23

-1. × 10-23

-8. × 10-24

-6. × 10-24

-4. × 10-24

-2. × 10-24

Spin accumulation → Joule

Figure 12: T-dependence of µs in the different cases described in this Thesis.
The blue line (Case 2) is significantly smaller than the red (Case 3), purple
(Case 4) and pink line (average of the blue and red line).
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