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Abstract. The increasing global mean temperature will have a fargoing impact on the climate sys-

tem. Especially systems that contain bifurcations are very vulnerable. The Meridional Overturning

Circulation (MOC) in the Atlantic Ocean is such a system. The system is sensitive for the increasing

amount of meltwater in the ocean due to meltdown of the big icesheets. At some point, only a small

increase of the freshwater flux can result in a big transition of the circulation. There is a need for5

early warning indicators that can predict when a transition will happen, so that we can either prepare

for this or, even better, prevent a transition from happening. The autocorrelation lag-1 indicator is

the most well known indicator and should show an increase before the bifurcationpoint. However,

this indicator shows only a smooth and linear increase. This makes it hard to set a proper level

for an alarm. In this paper we show the link between the autocorrelation indicator and the transfer10

operator. The transfer operator is a tool that is used to study a system’s ensemble behaviour, also

called its Liouvillian dynamics. We will see that the autocorrelation reflects only a small piece of

the rich information that this transfer operator can provide. Transfer operators haven’t been used

much in studies on climate physics before, but deserve to be studied more. Their spectra reveal a

lot of the dynamics of a system and contain signatures of bifurcations. In future, indicators could be15

developed that capture more of the information that transfer operators can provide.
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1 Introduction

Since the beginning of the industrial revolution the Earth’s climate system has been exposed to a

big increase in the amount of greenhousegases. A lot of research has been done on the implications

that this increase may have on different components of the system. One of these subsystems that20

is of great interest is the Meriodional Overturning Circulation (MOC) in the Atlantic Ocean. In the

current situation the MOC transports a lot of heat from the equator towards northern regions and is

therefore very important for the heat distribution on Earth. Moverover, it is responsible for the rela-

tively warm winters of western Europe compared to that of the east of North America. But the MOC

can be strongly influenced by climate change. The current increase of the global mean atmospheric25

temperature will lead to more melt of ice sheets, causing an increased freshwater flux in northern

(and southern) basins. The freshwater flux is a key parameter in the salt advection feedback, one of

the most important positive feedback mechanisms of the MOC. Due to this positive feedback mech-

anism the system contains bifurcations. Increasing the amount of freshwater inflow can cause the

system to undergo one of these bifurcations. If this happens, the circulation will change drastically30

and this will have major implications for the northward heat transport. Therefore, it is important to

know how far the system is from such a transition.

A lot of research has been done on the development of early warning signals which should be able

to predict from climate data when a bifurcation will happen. Most indicators are based on the idea35

of critical slowdown: just before the bifurcationpoint the system becomes less and less responsive

to pertubations. This induces certain changes in some statistical quantities of the timeseries, which

can therefore be used as indicators for the approach of a bifurcation. The most wel known indicator

based on these ideas is the autocorrelation lag-1 indicator. The autocorrelation of a timeseries should

increase before a bifurcation. However, it is questioned how good this indicator is. Ditlevsen and40

Johnsen (2010) show that conclusions based on solely this indicator are invalid and that it is hard to

observe an increased autocorrelation with statistical significance. There is an ask for more trustful

indicators that show a sharp change before a bifurcationpoint. Recently, there are also indicators

developed based on complex networks (van der Mheen et al., 2013; Feng et al., 2014). The big

difference between this approach and the classical one is that the network approach uses timeseries45

from different points in the basin. Therefore not only temporal correlations are taken into account,

but also spatial correlations. This makes them potentially better indicators because they are based on

physical changes of the circulation itself. In van der Mheen et al. (2013) the network indicators are

compared with the classical indicators. A remarkable difference is that the network indicators show

nonlinear changes before the approach of a saddle node bifurcation, while the classical indicators50

show a more or less linear increase. This makes the network indicators stronger indicators because

it is more clear where to set the alarmlevel than in the case of a smooth and linear change. However,

the reason for this different behaviour is not well understood.

2



Another method that is used to study bifurcations is the method of transfer operators. This method55

is less well known in climate physics, but it can provide a lot of information about the system and

is therefore a strong tool. There are analyses done on the normal forms of the pitchfork bifurca-

tion (Gaspard et al., 1995), the Hopf bifurcation (Gaspard and Tasaki, 2001) and the saddle node

bifurcation (Tantet and Dijkstra). However, so far as known there are no studies on the transfer oper-

ator of the Atlantic MOC, although this could give us a lot of information about the dynamics of the60

system. Moreover, it could provide a lot of insight in the behaviour of the system before different

types of bifurcations. This information will be important if one wants to find a more suitable bifur-

cation indicator, or even more powerful, a bifurcation specific indicator. We will show here that the

autocorrelation indicator is directly linked to the spectrum of the transfer operator.

65

In this paper we will study the autocorrelation indicator and its relation to the transfer operator.

Further, we will show how rich the information extracted from the transfer operator is. In the end

we will show the strength of the network based indicators, although we cannot relate them yet to

the transfer operators. The paper is organised as follows: in section 2 we explain the methods we

used. In section 3.1 we present the bifurcationdiagram, in section 3.2 we present the results of the70

autocorrelation indicator and link it to the transfer operator based on one observable. In section 3.3

we discuss the richer spectrum of the transfer operator based on two observables. Section 3.4 shows

network based indicators for the pitchfork bifurcation. The conclusions and discussions can be found

in section 4.

2 Model and methodology75

2.1 THCM

To simulate the MOC we use the 2 dimensional ThermoHaline Circulation Model (THCM) (den

Toom et al., 2011), which is a fully implicit ocean model. Here we will summarize the most impor-

tant model configurations. A more detailed model description can be found in appendix A1.

80

The model can be used to make timeseries, but it can also be used to follow an equilibrium while

changing a certain parameter. In this way one can obtain a bifurcation diagram. All of our sim-

ulations were done on a meridional cross section in the Atlantic ocean bounded in the meridional

direction by 60◦ S and 60◦ N and in the vertical direction by a flat bottom at a depth of 4000 m and

a flat surface. The grid consists of 32 gridboxes in the meridional direction and 16 gridboxes in the85

vertical direction. In all the simulations windstress forcing will be absent and the Earth’s rotation is

set to zero.
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At the bottom and lateral boundaries no slip and no flux conditions are applied. At the ocean’s

surface we impose mixed boundary conditions. The surface temperature Ts is restored according to90

the following formula:

Ts = T0 +
∆T

2
cos

πθ

θn
(1)

Here, T0 = 15◦ C, ∆T = 20◦ C, θn = 60◦ N and θ is latitude.

The surface freshwater flux Fs is prescribed by:

Fs = β
cos πθθn
cosθ

(2)95

In this formula β is the amplitude of the freshwater forcing and will be used as the bifurcation param-

eter. Notice that the freshwater forcing is symmetrical around the equator. We choose this because

then we won’t only obtain a saddle node bifurcation, but also a pitchfork bifurcation due to symme-

try. Taking an asymmetrical flux with a bigger freshwater forcing in the northern hemisphere than

in the southern hemisphere would be more realistic, but will only result in a saddle node bifurcation.100

We want to study both types of bifurcations because they will have very different implications for

the change of the circulation and might show different signatures in the spectrum of the transfer

operator.

2.2 Transfer operators

Transfer operators are used in many mathematical studies, but are not so common in climate physics105

yet. They are used to study the ensemble behaviour of a dynamical system, also called Liouvillian

dynamics. They can provide a lot of information about the system and are therefore interesting to

study. Loosely speaking, the transfer operator estimates for every i and j what the chance is that

an observable, which is initially at position xi in phase space, is at position xj in phase space a

time τ later. Especially the spectrum of the transfer operator is of great interest. To understand110

the relevance of this operator better, we provide some more background information. Consider the

following dynamical system:

ẋ = F (x), x ∈X, x(0) = x0 (3)

Here, X = Rd is an Euclidean vector space and F: X→ X a smooth vector field with associated flow

{Sτ}τ≥0. The evolution of the density of the trajectories ρ(x) in phase space is described by the115

Liouville equation:

ρ̇(t) =−∇ · (ρF ) =Aρ(x), ρ(0) = ρ0 (4)

The operator A is called the generator. It generates a one-parameter semigroup of transfer operators

Lt. The system of equation 4 has a unique solution given by: ρ(t) = Ltρ0. The transfer operator Lt,
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which is also known as the Perron-Frobenius operator, yields the evolution of an initial distribution120

after a time t. More precisely, it is defined such that

< Lτf,g >=< f,g ◦ Sτ >, for all g ∈ C∞ (5)

where ◦ is the composition operator and < f,g > is the action of the distribution f on the smooth

test function g. The test function g can also be interpreted as an observable.

125

It is known that the point spectrum of the generator is related to the statistical properties of sev-

eral mixing dissipative systems, such as the decay rate of correlations (Butterley and Liverani, 2007;

Gouezel and Liverani, 2006). It can be shown that the rate at which correlations between two observ-

ables decay is given by −Re(α)> 0 (Tantet et al., 2014), where α is an eigenvalue of the generator

A. The closer an eigenvalue of the generator is to the imaginary axis, the slower the rate of decay of130

correlations will be. From this, one would expect the eigenvalues to come closer to the imaginary

axis when a bifurcationpoint is approached, because then the system undergoes a critical slowdown

and so the rate of decay of correlation decreases. In studies of normal forms of bifurcations it has

been shown that the eigenvalues of the generator get indeed closer to the imaginary axis when a

bifurcationpoint is approached. The way the eigenvalues approach the imaginary axis is bifurcation135

specific, at least, this is what happens in the case of normal forms of bifurcations. Before the pitch-

fork the eigenvalues of the generator are multiples of the Liapunov exponent (Gaspard et al., 1995),

which is on the stable branch before the supercritical pitchfork bifurcation given by the bifurcation

parameter itself. So, the eigenvalues are given by: sn = n ·λ, where sn are the eigenvalues, n ∈ N

and λ is the bifurcation parameter. On the stable branch of a saddle node bifurcation the eigenvalues140

are also multiples of the Liapunov exponent (Tantet and Dijkstra), but here the Liapunov exponent

is given by
√
λ. So the eigenvalues are given by: sn = n ·

√
λ. Before a Hopf bifurcation the eigen-

values form complex pairs which lie in a triangle around the real axis (Gaspard and Tasaki, 2001).

One has to realise that these results are based on studies of normal forms of bifurcations without

noise. Here, we will study a more complex, stochastic system which contains multiple bifurcations,145

so the results of studies of normal forms might not hold in this case. However, we would expect to

see some of the signatures of the different bifurcations back in the spectrum.

Only the transfer operator can be directly approximated from timeseries, the generator not. There-

fore, the Specral Mapping Theory is needed which tells that the point spectrum Pσ(A) of the gen-150

erator is related to the point spectrum Pσ(Lτ ) of the transfer operator according to

Pσ(Lτ )\0 = eτPσ(A) (6)

So, an eigenvalue λ of Lτ is related to an eigenvalue α of the generator A as: λ= eτα. With this for-

mula the eigenvalues of the generator can be calculated from the eigenvalues of the transfer operator.
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Note that the eigenvalue λ= 1 of the transfer operator corresponds to the eigenvalue α= 0 from the155

generator. This eigenvalue is the first eigenvalue of the spectrum and it will be always there because

the corresponding eigenvector v is the invariant distribution, i.e., vLτ = v. The invariant distribution

respresents the stationary distribution to which all initial density distributions ρ0 will converge after

a long time.

160

We will approximate the transfer operator at different points before the pitchfork and saddle node

bifurcation and from different timeseries as will be explained in section 2.4. Here we explain how

the tranfer operator based on two observables is calculated from the timeseries of the full grid. The

transfer operator can’t be calculated directly from these observables because for this the observables

should be independent of each other. Further, the phase space needs to have a lower dimension.165

Therefore, we project the data on a two dimensional phase space spanned by two independent ob-

servables. To do this we project the data on the first and second EOF of the covariance matrix of the

different timeseries. This gives the first and second principal component as two orthogonal observ-

ables, so the phase space is then reduced to two dimensions. Then, we devide the two dimensional

phase space into gridboxes and calculate for each box xi and for each j, what the chance is that170

an observable in box xi is in a box xj a time τ later. This gives a transition matrix which is an

approximation of the transfer operator. We will do the same analysis for another, one dimensional

observable, namely a timeseries of the maximum of the streamfunction. The transfer operator can

be calculated directly from this timeseries by discretising the one dimensional phase space into grid-

boxes. Although we expect this spectrum to be less rich than the two dimensional one because of175

the lower dimension it is based on, it makes sense to study. The autocorrelation indicator is usu-

ally calculated from a timeseries of a single observable like the maximum streamfunctionvalue and

will therefore probably be more related to the spectrum of the transfer operator of the same one

dimensional observable.

2.3 Networks180

We will study the behaviour of network indicators based on the ideas of van der Mheen et al. (2013);

Feng et al. (2014). The networks are constructed from timeseries of the different gridpoints. First

we detrend the data in order to eliminate trends in the data. This is necessary because we are only

interested in the short term variability in the timeseries and not in long term trends. We detrend the

data using sliding windows and for each window we detrend the data linearly. After detrending the185

data we calculate the (0-lag) correlation between all the timeseries. If the correlation between two

timeseries exceeds a certain threshold, we consider the corresponding gridpoints as linked. How-

ever, self connections are not allowed. So, the gridpoints form the nodes of the network and a link

between two nodes means that the correlation between the timeseries of these nodes is sufficiently

high. We will analyse the changes in the topological properties of the networks as the value of the190
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bifurcation parameter increases. We will focus our network analysis on the network degree. The de-

gree is calculated for each node and is the total number of links that a node has. There are a lot more

network measures like the clustering coefficient, the betweenness and the closeness. The network

degree is, however, the most intuitive network measure and has proven its power many times before,

which makes it the favorite choice.195

It is necessary to choose a right threshold. The correlations between the timeseries must be statis-

tically significant, so the threshold should be a least the smallest correlation value that is statistically

significant for a certain confidencelevel. The statistical significance of correlations is determined by

the t-distribution. The t-value can be calculated from200

t= r

√
N − 2

1− r2
(7)

where r is the correlation value and N is the number of observations, i.e. the length of each time-

series. The number of degrees of freedom is given by N − 2. The observed correlations should be

high enough such that the corresponding t-value exceeds the critical t-value for which correlations

are significant under a certain confidence level. This critical value of t can be looked up in tables205

from the one-tailed t-distribution or can be calculated from the cumulative distribution function. For

a confidence level of 0.1% and 4998 degrees of freedom (we will take timeseries of 5000 years),

the critical t-value is 3.0902. This gives a minumum correlation value of 0.044 and this is the mini-

mum value of the threshold. We will take a much higher threshold because with such a low threshold

the whole network will be connected. However, the results were tested for different threshold values.210

We will use timeseries of the streamfunctionvalue at each gridpoint. The streamfunction is calcu-

lated on the borders of each gridbox, so the 16 gridboxes in the vertical give us 17 streamfunction-

values in this direction. However, we apply no slip conditions on the boundaries of the domain so

the streamfunctionvalues at the surface and bottom will always be zero. We will omit these bound-215

arypoints because we are only interested in the variability in the timeseries. This leaves us with 15

nodes in the vertical. In the same way the 32 gridboxes in the meridional direction result in 31 nodes.

So in total the network will contain 15 ·31 = 465 nodes. The maximum degree of a node is therefore

464. If all nodes have a degree of 464 we say that the network is fully connected.

2.4 Simulations220

We will select 5 points in the bifurcationdiagram before both the pitchfork and saddle node bifurca-

tion. The points are all equilibrium solutions of the system but for different values of β. These points

will all be used as starting points for the timeseries. In these timeseries the bifurcation parameter is

fixed. To represent the variability induced by other parameters which are not involved in the model,

we put noise on the freshwater forcing. The formula we will use for the freshwater forcing with225
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noise is:

Fs = (1 + 0.1 ·∆wr)β
cos πθθn
cosθ

In this formula θ is the latitude and ∆wr represents white noise with zero mean and standard devia-

tion one.

230

We will make two types of timeseries: timeseries of the maximum of the streamfunction and time-

series of the streamfunction at each gridpoint. The timeseries of the maximum of the streamfunction

are used to calculate the autocorrelation indicator from and the one dimensional transfer operator.

The timeseries of the streamfunction at each gridpoint are used to calculate the two dimensional

transfer operator and to calculate the networks. All timeseries have a length of 50000 years and a235

resolution of 1 year, except for the timeseries used for the networks, they have the same resolution

but have a length of 5000 years.

3 Results

3.1 Bifurcation diagram

The bifurcation diagram can be found in figure 1. On the x-axis in the figure is the bifurcation param-240

eter β, which is the amplitude of the freshwater flux. On the y-axis the sum of the maximum and min-

imum of the streamfunction is given. Both before the supercritical pitchfork at β = 1.54 m year−1

and the saddle node on the upper branch at β = 16.10 m year−1 there are 5 points marked, which

are the starting points for the timeseries as explained in section 2.4. The β-values of the marked

points before the pitchfork can be found in table 1 and those before the saddle node in table 2. Ini-245

tially, when β is very small, there is only one stable solution. This solution describes a symmetrical

circulation with two circulation cells which are equal in strength. There is upwelling around the

equator and sinking near the northern and southern boundaries of the basin. When β is increased

to about 1.54 m year−1 the system undergoes a supercritical pitchfork bifurcation: the stable solu-

tion becomes unstable for bigger values of β and two new stable solutions appear. The new stable250

solution with positive Ψsum is a circulation with one overturning circulation cell. It has a sinking

region in the north, and an upwelling region in the south. This situation is comparable to the present

circulation of the Atlantic MOC. The other stable solution that has appeared is the reverse of this cir-

culation: it is a one-cell circulation with a sinking region in the south and an upwelling region in the

north. The two asymmetrical circulations have equal strength and are stronger than the symmetrical255

circulation. At a value of β equal to 12.52 m year−1, there is second pitchfork bifurcation, but this

one is subcritical: the unstable symmetrical solution becomes stable again and two new asymmetri-

cal and unstable solutions appear. The two unstable branches of the second pitchfork are connected

to the two stable branches of the first pitchfork at a value of β equal to 16.10 m year−1. This forms
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a saddle node bifurcation on each of the two stable branches of the first pitchfork. In a saddle node260

bifurcation a stable and an unstable solution come together in a critical point. After the critical point

both solutions cease to exist.

From the paper by den Toom et al. (2011) we know that there is also a Hopf bifurcation at β =

15.62 m year−1, just before the saddle node bifurcation. In the bifurcation diagram this should265

be between point 9 and 10. This bifurcation is not indicated in figure 1, but its dynamics will

be present in the observations. In a Hopf bifurcation a stable solution becomes unstable after the

critical point and a stable limit cycle appears. So, an observable will show oscillatory behaviour

after the critical point of this bifurcation. We checked the presence of the Hopf bifurcation in our

model by calculating the eigenvalues of the Jacobian. From this spectrum, a Hopf bifurcation can be270

recognised by a complex conjugate pair of eigenvalues that crosses the imaginary axis. The values

of the complex pairs and their corresponding eigenvalue number at the different points before the

pitchfork and saddle node can be found in table 3 and in table 4, respectively. We see that there

is indeed a complex pair crossing the imaginary axis between point 9 and 10. The complex pair is

already present before the pitchfork bifurcation. There, they form the fourth and fifth eigenvalues at275

most points. From point 7 on they are the two leading eigenvalues of the Jacobian spectrum.

3.2 Autocorrelation indicator and corresponding transfer operator

Figure 2 shows the timeseries of the grid mean streamfunction at each of the 5 points before the

saddle node. The timeseries of point 9 and 10 contain a transition. In point 9 the timeseries makes

a big oscillation before it transits. This oscillation is due to the Hopf bifurcation. One would ex-280

pect that the system would stay on the stable limit cycle, but apparently the stable orbit is not stable

enough for the amount of noise that is applied. In the bifurcationdiagram it was already seen that

at point 9 there are multiple equilibria. Therefore the system can leave the stable orbit and can find

another branch instead. In this case the system has turned into a symmetric circulation. Because of

the transitions, we will not take point 9 and 10 into account here.285

Usually, the autocorrelation at lag 1 is calculated. This value should increase before a bifurcation

and can therefore directly be used as an indicator. To be able to show the relation between the auto-

correlation indicator and the transfer operator, we will calculate an autocorrelation based indicator

in a slightly different way, but the underlying thought is exactly the same. Furthermore, calculating290

the autocorrelation at lag 1 gives usually very high values and it is the question if changes in these

values are then statistically significant. It is better to calculate the timelag for which the autocorre-

lation has decayed to 1
e . This is the e-folding timelag τe. The e-folding timelag will increase before

a bifurcationpoint because it takes more and more time to recover from pertubations when the bi-

furcationpoint is approached. From the e-folding timelag, we calculate the decay rate which is then295
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given by 1
τe

and this should decrease before the bifurcation.

We expect the autocorrelation rate to be linked to the rates of the generator, which are given by:

−Re(α), where α is an eigenvalue of the generator. As explained in section 2.2, the eigenvalues of

the generator can be calculated from the eigenvalues of the transfer operator. The transfer operator300

itself can be approximated from the timeseries. The transfer operator was calculated on a grid of

1600x1 and with a timelag of 51 years. Note that we use here the same timeseries as we used to

calculate the autocorrelation rates, namely the timeseries of the maximum of the streamfunction.

The spectrum of the transfer operator based on more than one observable will be more complete

than the spectrum of only one observable. Therefore, the full spectrum of the generator will only be305

discussed for generators based on 2 observables (see section 3.3). Here, we only focus on the rates

of the generator.

The two upper plots in figure 3 show the first 10 rates of the generators at the different points

before the pitchfork and saddle node bifurcation. In both figures (almost) all rates decrease when the310

bifurcationpoint is approached. This is what was expected and what is observed in studies of normal

forms as well. The rates are related to the decay rate of correlations and these decrease before a

bifurcationpoint due to critical slowdown. The decreasing rates give a clear sign that the bifurcation

is approached. The strong point of the rates of the generator is that not only one eigenvalue is chang-

ing, but that there are many eigenvalues affected by the bifurcation.315

In the plots at the bottom of figure 3, the rates of the autocorrelation are plotted as well, they

are indicated by the red squares. The rates are almost exactly the same as the leading rates of the

generator, they follow the same linear decrease. This shows that the autocorrelation is strongly

linked with the spectrum of the transfer operator: the autocorrelation is mainly determined by the320

first eigenvalue of the corresponding transfer operator based on one observable. However, not only

this first eigenvalue is of interest. As we saw, the rest of the spectrum is affected by the approach

of the bifurcation as well. Because the autocorrelation indicator is mainly determined by the first

eigenvalue of the transfer operator, and not by the other eigenvalues, it misses a lot of information

which could potentially be used for the early detection of tipping points.325

3.3 Transfer operator from two observables

Above the transfer operator was calculated from one observable. We expect the transfer operator

based on two observables to capture more of the information of the system. Here we use the first and

second principal component as our two observables. The transfer operator was calculated on a grid

of 40x40 and the timelag we used is 51 years. The results for the pitchfork are robust for timelags330

between 31 and 71 years and those before the saddle node for timelags between 31 and 91 years.
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For shorter lags the spectra change due to the limited length of the timeseries and the projection on

a low dimensional observable. The robustness of the results is also tested for different gridsizes and

shorter timeseries. The results are robust for different gridsizes and for the chosen grid size of 40x40

they are also robust for timeseries with a length equal to or bigger than 40000 years. The robustness335

of the spectra is shown in the appendix in section A2.

In figure 4 the spectra of the generator at the different points before the pitchfork are shown. The

leading eigenvalues (those which are closest to the imaginary axis) are the most robust ones and they

are the most important ones for the dynamics of the system. Furthermore, one has to be careful with340

drawing conclusion from eigenvalues which are far away from the imaginary axis since we calcu-

lated the transfer operator for a lag of 51 years so we might not be able to capture eigenvalues with

a much smaller corresponding timescale. At point 1 the two leading eigenvalues form a complex

pair. This complex pair is present at all 5 points and it doesn’t seem to be affected by the pitchfork

bifurcation because it has always a real part of 0.007 yr−1. Behind this complex pair is a second345

complex pair with a larger imaginary part. This one seems to stay on the same place as well. There

are more complex pairs in the back of the spectrum, but one has to be carefull with these since they

are less robust. The complex pairs seem to lie in a triangle around the real axis. It is known that the

generator of the normal form of a Hopf bifurcation has a spectrum that consists of complex pairs

which lie in triangle (Gaspard and Tasaki, 2001). This, and the fact that the complex pairs are not350

affected by the pitchfork bifurcation make it very likely that the complex pairs in the spectrum are

the signature of the Hopf bifurcation. It is very interesting that we can see the signature of the Hopf

already far before the bifurcation actually takes place.

There are also multiple eigenvalues which are affected by the pitchfork bifurcation. These have a355

small imaginary part and move towards the imaginary axis. The approach of the eigenvalues to the

imaginary axis can be better seen in figure 6, which shows the first 10 rates at each point before the

pitchfork bifurcation. The shift of the rates towards zero can already be seen far before the bifur-

cation takes place. The first rate in point 1 to 4 is the complex pair, which has a constant rate. In

point 5 the complex pair isn’t the leading pair anymore. The smallest moving rate seems to depend360

linearly on the bifurcation parameter. The other rates that move to the imaginary axis don’t seem to

move in a particular way. However, as argued above, one has to be careful with drawing conclusions

from them. Longer timeseries are needed to be able to say more about them. The linear approach of

the first moving rate towards zero is in accordance with the results from studies on the normal form

of the pitchfork. There, it is found that the rates depend linearly on the bifurcation parameter before365

a pitchfork bifurcation (Gaspard et al., 1995).

In the spectra of the generators at each of the three points before the saddle node (figure 5) we
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observe a shift of eigenvalues towards the imaginary axis as well. This gives again a strong sign

that the bifurcationpoint is approached. Now, also the complex pairs move, although they move370

very slowly. This is probably again the signature of the Hopf bifurcation. The Hopf lies between

point 9 and 10, so we would also expect that the complex pairs move to the imaginary axis at points

which are so close to the Hopf bifurcation. From figure 7 it can be clearly seen how the first 10 rates

evolve when approaching the bifurcation. The rates seem to move linearly to the imaginary axis.

From studies on the normal form of the saddle node bifurcation we know that the eigenvalues are375

multiples of the square root of the bifurcation parameter (Tantet and Dijkstra), but we don’t observe

that here. Of course, we are looking to a more complex system here so this relation doesn’t need to

hold here. The analysis is even made more complicated by the closeness of the Hopf bifurcation,

so that it is hard to distinguish the signature of the saddle node and that of the Hopf bifurcation.

Further, to have a better idea of what is happening one needs more than these three points.380

3.4 Network indicators

In this last section of the results we present network based indicators based on the network degree.

In van der Mheen et al. (2013); Feng et al. (2014) the strength of the kurtosis of the network degree

distribution as an indicator for the saddle node bifurcation has already been shown. Here, we will

do the same analysis for the pitchfork bifurcation. The runs we use for this purpose have a length385

of 5000 years. We use shorter timeseries here than we used before to show that these indicators also

work with a more realistic timeseries length. We detrend the data linearly per sliding window and

use a window size of 500 years and a sliding size of 10 years. The results are robust for different

window- and sliding sizes. We calculate one network at each of the different points using a thresh-

old of 0.65. So, a link between two nodes means that the correlation between the timeseries at these390

nodes is at least 0.65. From these networks we can calculate the degree of each node in the network.

Figure 8 shows the degree field of the networks at the 5 points before the pitchfork bifurcation.

In the network at point 1 we see different bands of degree over the length of the basin. The highest

values are found in the middle of the basin at a depth of about 1500 meters. Above and below this395

band are other bands which have a decreasing degree towards the top and the bottom of the basin.

At each point closer to the pitchfork bifurcation the bands with the highest degree in the middle

spread out to the top and bottom, so the degree in the whole basin increases. Remarkable is that

the networks are not completely symmetric in the equator, as one would expect from a symmetrical

circulation. This might be due to the limited length of the timeseries. However, the results were400

tested for shorter timeseries length and the results were qualitatively the same.

The increase of the degree in the basin can also be seen from the degree distributions in figure 9.

As the bifurcationpoint is approached, there are less nodes with a low degree. Furthermore, the
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peak of the number of nodes with a very high degree at the right end of the distribution increases.405

The approach of the bifurcation leads to a deformation of the shape of the degree distribution as the

left tail becomes shorter. From this we expect the kurtosis to be a good indicator for the pitchfork

bifurcation as well. We also expect the mean degree to increase so this might also be used as an

indicator. In figure 10 the mean, variance, skewness and kurtosis of the degreedistributions at each

point before the pitchfork bifurcation is given. All moments of the degreedistribution are affected by410

the pitchfork bifurcation. The mean and kurtosis increase and the variance and skewness decrease.

In this sense they can all be used as bifurcation indicators. However, the way the moments change

differs. The kurtosis and skewness show a clear nonlinear change. The mean and variance change

more or less linearly. It seems that the higher the moment, the more nonlinear the behaviour of the

indicator is. A good early warning indicator should show a sharp change before the bifurcationpoint415

because this makes it clear when the alarm signal should be given. This makes the kurtosis of degree

a very good choice as an early warning indicator, especially when it is compared with the linear

behaviour that we saw for the classical autocorrelation indicator.

The result above shows that the kurtosis of degree is not only a good indicator for the saddle node420

bifurcation, but that it also works before the pitchfork bifurcation. Unfortunately, we are not sure

yet how to link the nonlinear behaviour of this indicator to the spectrum of the transfer operator.

4 Conclusions & Discussion

The autocorrelation indicator shows a very smooth and linear change before a bifurcationpoint. This

makes it a quite poor indicator because it is hard to set a threshold at which an alarm signal should425

be given. In this paper we linked this linear behaviour to the spectrum of the transfer operator.

The autocorrelation indicator follows mainly the first eigenvalue of this spectrum, which evolves

linearly. In this way, it focusses only on a small piece of information that could be extracted from

the spectrum. We saw that the spectrum of the transfer operator contains a lot of information about

the dynamics of the system, especially when it is based on two observables. The signature of the430

Hopf bifurcation could already be seen long before the bifurcation actually happened. The shift of

the multiple rates that are affected by the pitchfork and saddle node bifurcation could be seen well

before the bifurcations took place as well. This makes the transfer operator a very powerful tool

which can help us to understand the system better. Moreover, it could give more insight about what

happens before different types of bifurcations in complex systems. This information will be useful435

for the development of better early warning indicators. One could think for example about indicators

that capture more of the evolution of the other eigenvalues of the spectrum. The change of the spec-

tra before the different bifurcations might also be bifurcation specific, such that bifurcation specific

indicators could possibly be developed.
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However, before we can do this, a lot of research must be done on the transfer operators in com-

plex systems. Here we were only able to calculate the spectra at different points before the pitchfork

reasonably. The analysis before the saddle node was made difficult due to the closeness of the Hopf

bifurcation. We could only use three of our five selected points because of early transitions at the

other two points. In future research one should study the spectra before the saddle node in more445

detail by taking more points. It will help to do simulations with less noise, or to study a different

saddle node bifurcation without a Hopf in front. Further, the shown spectra before the pitchfork

could be improved as well by taking longer timeseries. Although timeseries with a length of 50000

years might sound long, one actually needs even longer timeseries. It is therefore also not the idea

that the spectrum of the transfer operator itself could serve as early warning indicator. Timeseries of450

that length are not available so this is not of practical use. The idea is more to find indicators that

reflect more of the spectrum than only the first eigenvalue.

We have shown that the kurtosis of the network degree distribution might be a good indicator for

the pitchfork bifurcation as well. The kurtosis showed a nonlinear increase before the bifurcation,455

which makes it more powerful indicator than the autocorrelation indicator. However, it is still the

question why this indicator works so well. There is a theory which links the spectral gap to the

roughness of parameters (Chekroun et al., 2014). The spectral gap is the difference between the

zero eigenvalue and the first non-zero eigenvalue of the spectrum of the generator. The theory states

that big changes in the statistics of an observable are only possible if the spectral gap is small.460

In our results we found that the spectral gap decreases before the bifurcation points, because the

eigenvalues came closer to the imaginary axis. This makes it possible that some parameters show a

more rough behaviour. It might be possible that the kurtosis is sensitive for this and that this is why

it can increase in a nonlinear way. However, it is not clear how small the spectral gap has to be in

order to give this rough behaviour. Further, we are not sure that the nonlinear increase in the kurtosis465

is indeed linked to this theory. More study is needed to have a better understanding of this indicator.
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5 Tables

Point number: β (m year−1)

1 0.248

2 0.434

3 0.6448

4 0.992

5 1.426

Table 1: β-values of the marked points before the pitchfork bifurcation

Point number: β (m year−1)

6 13.64

7 14.88

8 15.31

9 15.52

10 15.77

Table 2: β-values of the marked points before the saddle node bifurcation

Point number: Value of complex pair: Eigenvalue number:

1 −0.11 · 10−1 ± 0.34 · 10−2i 4th and 5th

2 −0.11 · 10−1 ± 0.34 · 10−2i 4th and 5th

3 −0.11 · 10−1 ± 0.34 · 10−2i 4th and 5th

4 −0.11 · 10−1 ± 0.34 · 10−2i 4th and 5th

5 −0.11 · 10−1 ± 0.35 · 10−2i 5th and 6th

Table 3: Values of the complex pair of eigenvalues of the Jacobian at the different points before the

pitchfork bifurcation and their corresponding eigenvalue number.
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Point number: Value of complex pair: Eigenvalue number:

6 −0.58 · 10−2 ± 0.11 · 10−1i 3rd and 4th

7 −0.41 · 10−2 ± 0.43 · 10−2i 1st and 2nd

8 −0.16 · 10−2 ± 0.45 · 10−2i 1st and 2nd

9 −0.58 · 10−3 ± 0.41 · 10−2i 1st and 2nd

10 +0.68 · 10−3 ± 0.32 · 10−2i 1st and 2nd

Table 4: Values of the complex pair of eigenvalues of the Jacobian at the different points before the

saddle node bifurcation and their corresponding eigenvalue number.
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6 Figures490

Fig. 1: The deterministic bifurcationdiagram for the symmetrically forced Atlantic MOC. On the

y-axis is the sum of the minimum and maximum of the streamfunction, on the x-axis is the bifur-

cationparameter β. Stable equilibria are indicated with solid lines, unstable equilibria are indicated

with dashed lines. The marked points before the pitchfork and saddle node bifurcation are the start-

ing points for the timeseries.
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Fig. 2: Timeseries of the 5 different points before the saddle node bifurcation.
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(a) Rates of the generator before pitchfork (b) Rates of the generator before saddle node

(c) Rates of the generator with rates of autocorrelation

before pitchfork

(d) Rates of the generator with rates of autocorrelation

before saddle node

Fig. 3: The plots at the top show the rates of the generator, calculated from one observable, versus

the bifurcation parameter. In the plots at the bottom the rates of the e-folding timelag of the auto-

correlation are indicated as well by the red squares. The vertical lines at β = 1.54 m year−1 before

the pitchfork bifurcation and at β = 16.10 m year−1 before the saddle node bifurcation indicate the

position of the bifurcationpoint.
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(a) Point 1 (b) Point 2

(c) Point 3 (d) Point 4

(e) Point 5

Fig. 4: Eigenvalues αi of the generators at the different points before the pitchfork bifurcation in

complex space. The transfer operator is calculated on a 40x40 grid and for a lag of 51 years.
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(a) Point 6 (b) Point 7

(c) Point 8

Fig. 5: Eigenvalues αi of the generators at the different points before the saddle node bifurcation in

complex space. The transfer operator is calculated on a 40x40 grid and for a lag of 51 years.
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Fig. 6: The first 10 rates of the generator at each point before the pitchfork bifurcation, calculated on

a 40x40 grid and for a lag of 51 years. The vertical line at β = 1.54 m year−1 indicates the position

of the bifurcation point.

Fig. 7: The first 10 rates of the generator at each point before the saddle node bifurcation, calculated

on a 40x40 grid and for a lag of 51 years. The vertical line at β = 16.10 m year−1 indicates the

position of the bifurcation point.
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Fig. 8: The degreefield of the networks at the 5 points before the pitchfork bifurcation. On the x-axis

is the latitude in degrees, on the y-axis the height in meters.
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Fig. 9: The degree distribution of the networks at the different points before the pitchfork bifurcation.

On the x-axis is the degree, on the y-axis is the number of nodes given as a part of the total number

of nodes.
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Fig. 10: Mean, variance, skewness and kurtosis of the degree distribution of the networks at the

different points before the pitchfork bifurcation. On the x-axis is the bifurcation parameter β, on the

y-axis is one of the moments of the degree distribution. The vertical lines at 1.54 m year−1 indicate

the position of the deterministic bifurcationpoint.
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Appendix A

Model description

A1 THCM

The ThermoHaline Circulation Model (THCM) is a fully implicit ocean model. We use a two di-

mensional version of this model with no wind-stress forcing and zero rotation. The governing model495

equations are the hydrostatic primitive equations which are then given by

0 =− 1

ρ0r0

∂p∗
∂θ∗

+AV
∂2v∗
∂z2∗

+
AH
r20

( 1

cosθ∗

∂

∂θ∗

(
cosθ∗

∂v∗
∂θ∗

)
+ (1− tan2 θ∗)v∗

)
(A1)

∂p∗
∂z∗

= ρ∗g, (A2)

0 =
∂w∗
∂z∗

+
1

r0

∂v∗
∂θ∗
− v∗ tanθ∗

r0
, (A3)

dT∗
dt∗

=
KH

r20 cosθ∗

∂

∂θ∗

(∂T∗
∂θ∗

cosθ∗

)
+KV

∂2T∗
∂z2∗

, (A4)500

dS∗
dt∗

=
KH

r20 cosθ∗

∂

∂θ∗

(∂S∗
∂θ∗

cosθ∗

)
+KV

∂2S∗
∂z2∗

. (A5)

Here, d
dt∗

= ∂
∂t∗

+ v∗
r0

∂
∂θ∗

+w∗
∂
∂z∗

is the material derivative, θ∗ the latitude and z∗ depth. The radius

of the Earth is represented by r0, v∗ and w∗ are the meridional and vertical velocity components,

respectively, pressure is represented by p∗, temperature by T∗ and salinity by S∗. The density ρ∗ is505

related to the temperature and salinity by the linear equation of state

ρ∗ = ρ0(1−αT (T∗−T0) +αS(S∗−S0))

with expansion coefficients αT and αS and reference temperature T0, salinity S0 and density ρ0.

Mixing is represented by eddy diffusivities, with horizontal and vertical diffusivities KH and KV510

for both heat and salt, and friction coefficientsAH andAV for momentum. At the lateral and bottom

boundaries, no-slip and no-flux conditions are imposed. At the ocean-atmosphere interface mixed

boundary conditions are imposed. The surface temperature is restored to a temperature profile TS ,

TS = T0 +
∆T

2
cos

πθ

θN
,

where ∆T = 20◦C and θN = 60◦N . The freshwater forcing is symmetrical around the equator and515

is prescribed by

FS = β
cos πθθN
cosθ

.

β is the amplitude of the freshwater forcing and is used as bifurcation parameter.
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The equations are discretised in space using an Arakawa B-grid that places p, T and S in the520

center of a grid cell and the v and w on its boundaries. This is decribed in more detail in den Toom

et al. (2011). To calculate branches of steady states directly as a function of the control parameter,

pseudo-arclength continuation is used. With this technique, unstable solutions can also be deter-

mined. To converge to individual solutions, the Newton-Raphson method is used. The model also

implements the Jacobi-Davidson QZ method to solve linear stability problems.525

We consider a two dimensional, meridional cross section in the Atlantic Ocean with a width of

64◦, which is relevant for the value of the strength of the MOC. The cross section is bounded in the

vertical by a flat bottom at a depth of 4000 meters and a flat surface. In the meridional direction it

is bounded by the latitudes 60◦S and 60◦ N. The grid contains 32 points in the meridional direction530

and 16 points in the vertical direction. This gives then a meridional resolution of 3.75◦ and a vertical

resolution of 250 m.

All model parameter values can be found in the table below.

r0 = 6.37 · 106 m ρ0 = 1.0 · 103 kg m−3

g = 9.8 m s−2 αT = 1.0 · 10−4 K−1

AH = 2.2 · 1012 m2 s−1 αS = 7.6 · 10−4 psu−1

AV = 1.0 · 10−3 m2 s−1 T0 = 15◦C

KH = 1.0 · 103 m2 s−1 S0 = 35.0 psu

KV = 1.0 · 10−4 K−1 H = 4000 m

θN = 60◦

Table 5: Parameter values of the two-dimensional model.

A2 Robustness of the 2D transfer operator535

The robustness of the spectra of the generator was checked for different gridsizes, different timelags

and shorter timeseries length. This was done for point 3 and point 7.
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A2.1 Robustness for the chosen gridsize

(a) Spectrum for a 40x40 grid (b) Spectrum for a 30x30 grid

(c) Spectrum for a 45x45 grid

Fig. 11: Spectra at point 3 for different gridsizes. The spectrum with a grid of 40x40 was shown in

the results. All spectra are calculated for a timelag of 51 years and for a timeserieslength of 50000

years.
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(a) Spectrum for a 40x40 grid (b) Spectrum for a 30x30 grid

(c) Spectrum for a 45x45 grid

Fig. 12: Spectra at point 7 for different gridsizes. The spectrum with a grid of 40x40 was shown in

the results. All spectra are calculated for a timelag of 51 years and for a timeserieslength of 50000

years.

The spectra are quite robust for different gridsizes. At least the first 6 rates stay approximately the

same. Important is as well that the complex pairs are also observed for different gridsizes.540
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A2.2 Robustness for the chosen timelag

(a) Spectrum for a 51 year timelag (b) Spectrum for a 31 year timelag

(c) Spectrum for a 71 year timelag

Fig. 13: Spectra at point 3 for different timelags. The spectrum for a lag of 51 years was shown in

the results before. All spectra are calculated on a 40x40 grid and for a timeserieslength of 50000

years.
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(a) Spectrum for a 51 year timelag (b) Spectrum for a 31 year timelag

(c) Spectrum for a 91 year timelag

Fig. 14: Spectra at point 7 for different timelags. The spectrum for a lag of 51 years was shown in

the results. All spectra are calculated on a 40x40 grid and for a timeserieslength of 50000 years.

The spectrum of the pitchfork is quite robust for timelags in a range of 31 to 71 years. For this

range, the first few rates stay qualitatively the same. The spectrum of the saddle node is more robust

for the chosen timelag, it is robust in a range of 31 to 91 years. Theoretically, the spectra shouldn’t

be dependent on the chosen timelag. However, because of the limited length of the timeseries, the545

projection on a lower dimensional observable and the discretisation of the phase space they become

a bit more lag dependent.
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A2.3 Robustness for shorter timeseries

Last, we check the robustness for shorter timeseries.

(a) Spectrum for a timeseries of 50000 years. (b) Spectrum for a timeseries of 40000 years.

Fig. 15: Spectra at point 3 for different timeseries length. The spectrum with a timeseries length

of 50000 years was shown in the results. Both spectra were calculated on a 40x40 grid and for a

timelag of 51 years.

(a) Spectrum for a timeseries of 50000 years. (b) Spectrum for a timeseries of 40000 years.

Fig. 16: Spectra at point 7 for different timeseries length. The spectrum with a timeseries length

of 50000 years was shown in the results. Both spectra were calculated on a 40x40 grid and for a

timelag of 51 years.

The spectra are both quite robust for shorter timeseries length. Again, the most important eigen-550

values, namely the leading ones, are most robust.
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