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Abstract

Linear artificial viruses (AVs) can be formed through a self-assembly process which is strongly
influenced by assembly signals on their genetic material. In this thesis the description of self-assembly
with multiple assembly signals and variable nucleation cost is assessed. It shows that a combination
of the two determines in which regime the self-assembly is. An assembly signal, position entropy
and nucleation entropy dominated regime can be distinguished. Furthermore, in the zipper regime an
account is given of the assembly kinetics with finite as opposed to infinite protein concentration. Finite
concentration gives rise to overshoots and undershoots. Finally, for a self-competing assembly system
a universal curve is given which can be a valuable tool in determining the strength of an assembly
signal from two measurements.
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Chapter 1

Introduction

At the end of the nineteenth century the experiments of Louis Pasteur pointed towards the existence
of a disease-causing agent which multiplied within organims. In 1892 it was Dimitri I. Ivanovski who
showed in St. Petersburg that the tobacco mosaic disease was caused by an ultrafiltrable agent, that is,
one whose size is significantly smaller than that of bacteria [1, Chapter 1]. Afterwards, in 1898 Martinus
W. Beijerinck showed that a contagious fluid was the cause of the detriment occurring at the leaves of
tobacco plants [2]. This contagious fluid turned out to contain the tobacco mosaic virus (TMV).

With the discovery of TMV the field of virology was born and ever since viruses have captured the
attention of biologists and doctors. First, they were mainly considered as hazardous infectious particles
but with the rise of genetic manipulation they started to receive attention for being potentially useful in,
for example, medical applications. With the coming of genetic manipulation and the progress of synthetic
science the dream of creating an artificial virus (AV), a particle which resembles a natural virus, became a
reality. Such an AV can either be a modified natural virus or a completely synthesized virus like particle.
In the next section some general aspects of viruses will be considered.

1.1 General aspects

Up to date at least 1000 different species of natural viruses which infect man and about 1500 plant viruses
have been identified. Nevertheless, it is speculated that many more virus species exist [3, 4]. The latin
name virus, which refers to poison [5], is well chosen since they are known for they infectious and possibly
deadly powers. For example, the virus family of Potyviridae, which makes up about 20% of the known
plant viruses, inflicts about half the crop damage worldwide [3].

The common feature of all natural viruses is that they are composed of, at least one, template - either
a RNA or DNA molecule - and of, at least one kind of, proteins which form a capsid that surrounds
the template. These proteins are folded polypeptides. The proteins have a limited number of folds,
what gives rise to a limited number of possible structures of the capsid. The capsid usually has, for
linear and spherical capsids respectively, a helical or icosahedral symmetry [6], see figure 1.1. The
experimental knowledge of viruses we have is obtained through the following techniques: transmission
electron microscopy, cryo-electron microscopy, cryo-electron tomography, X-ray crystallography, nuclear
magnetic resonance spectroscopy, atomic force microscopy and possible combinations of the techniques
mentioned.
Viruses do not encode their own protein synthesis machinery, nor their own energy-generating pathways.
Instead, viruses use living host cells for their survival. They are able to use the host for the optimal
execution of their own reproduction [1, Chapter 2]. This happens in the following way. Once a virus
enters a host it disassembles through a number of processes. For example, its capsid is broken down.
This exposes its template to the surroundings. Subsequently, it encodes for, usually one, protein which
enables in some complicated way the use of the host cell for the reproduction of the template and the
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Figure 1.1: Different capsid symmetries of natural viruses. Top: the capsid of the tobacco mosaic virus
(TMV) exhibits helical symmetry. Bottom left: that of the parvovirus (MVM) shows simple icosahedral
symmetry. Bottom right: the capsid of the herpesvirus (HSV-1) has icosahedral symmetry but is more
complex than that of the MVM. Taken from [6]

capsid proteins. New viruses assemble through the coverage of newly created templates with a capsid and
subsequent maturation. Finally, the reproduction of viruses in the host can kill the host [6].

From in vitro experiments it is shown that the assembly and disassembly of viruses is a complex
process. Among the different processes involved, self-assembly may occur, which refers to the spontaneous
building up or breaking down of the capsid. This self-assembly is the main subject of this thesis and will
be introduced below. in the paragraph on viral self-assembly.

As noted above, artificial viruses (AVs) can be created nowadays. These enter, in principle, host cells
as natural viruses do, but they do not need to replicate. This is because their template does not necessarily
contain information for replication, for it is synthesized. Furthermore, they can, in principle, encode for a
protein or chemical at will. This enables, for example, their use as targeted drug deliverers, as will be
explained in the section on AVs. The next section gives a more detailed account of the assembly step in
the generation of a virus. Specifically, it focuses on the subject of this thesis: viral self-assembly.

1.2 Self-assembly

The generation of a virus is a highly complex process which is, for most species, poorly understood.
Nevertheless, in general we can distinguish three stages in the generation: capsid assembly, template
packaging and virus maturation. In this thesis we focus specifically on capsid assembly.

The assembly of a capsid may comprise allosteric switches and irreversible steps. In general, three
assembly strategies are recognized: 1) self-assembly, which merely requires capsid proteins that spon-
taneously assemble to form the capsid, 2) scaffolding protein-assisted assembly, where besides capsid
proteins the assistance of scaffold proteins is required, and 3) template assisted assembly which requires
the simultaneous interaction of the template and capsid proteins such that in a condensation process the
capsid is formed besides the template being packed. Here, we focus on the first strategy.

It turns out that during self-assembly, in general, capsid building blocks (CBBs) are formed which in
turn assemble into the capsid. The pathways through which the CBBs assemble into the capsid is hard to
trace. Nevertheless, some important features of self-assembly are known. It is known that 1) capsids can
self-assemble through nucleation and growth from CBBs where the last happens through a cascade of
second order reactions, 2) it appears that a certain critical concentration exists below which (practically)
no assembly occurs and above which (nearly) all capsids fully formed, and 3) the assembly kinetics can be
represented by a sigmoidal curve which exhibits a lag phase [6]. These observations need to be accounted
for and we will refer to them in the course of this thesis.
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One of the best studied self-assembly processes among viruses is that of the tobacco mosaic virus
(TMV). The model we use in this thesis was originally derived to describe this virus its self-assembly. In
the next section we will introduce this virus in more detail.

1.3 Tobacco mosaic virus

As noted above, natural viruses come in two kinds: spherical and linear. In this thesis we focus on linear
viruses, which make up about 10% of all known natural virus families [6]. In particular, we focus on a
linear plant virus, the tobacco mosaic virus (TMV), as well as artificial viruses (AVs) which are inspired
by TMV. The reason for this is that earlier research has focused on TMV [7], besides that we have access
to experimental data of AVs whose design is inspired by TMV. This research background will be further
explained in the next section.

TMV is a linear helical virus and, as noted above, due to its early discovery the best studied virus. Its
capsid consists of about 2000 capsid proteins and approximately 49 proteins are present within three turns
of the helix [3]. The capsid surrounds its ssRNA which consists of 6395 nucleotides. Each capsid protein
binds to three nucleotides via hydrophobic and electrostatic interactions, as well as hydrogen-bonding [7].
The capsid exhibits, due to the folding of the capsid proteins, a helical symmetry. A helix is characterized
by its pitch, which is the product of the number of capsid proteins per helix turn and the axial rise per
capsid protein. For TMV, the pitch is 2.3 nm. TMV is a stiff, right-handed, rod-like structure of about 300
nm in length and 18 nm in diameter, with a central hole of 4 nm in diameter [8]. Moreover, the RNA is
located about 4 nm from the axis of the helix, see figure 1.2. Because of its stiffness, an aggregate of them

Figure 1.2: A visualization of the tobacco mosaic virus. Capsid proteins are yellow and the RNA is red.
The capsid shows a helical symmetry and the RNA is extended to see its helical shape. Taken from [3].

can form a liquid crystal.
TMV exhibits a hierarchical self-assembly, that is, the capsid is assembled through a sequence of,

in energetic cost decreasing, self-assembly steps. In the first step capsid proteins interact to form larger
aggregates and discs. First, a two layered disc (20S) binds to the origin of assembly located at about 1

6 -th
of the RNA its length. This origin of assembly is an assembly signal. It is defined by a special sequence of
nucleotides which is such that the capsid proteins favourably bind to it. Subsequently, the disc transforms
into a short helix and incorporates the RNA between the capsid protein layers. There has been some
discussion on the precise nature of the 20S aggregate, but its precise nature is not important to the form
of the assembly process. Afterwards, energetically less costly steps are the elongation of the capsid. At
one end, the capsid is completed via stepwise addition of further discs. At the other end capsid protein
mono- and oligomers complete the capsid, though at a much slower pace [3, 7, 9]. This is visualised in
figure 1.3. Because the self-assembly of TMV is relatively well understood is has provided inspiration for
the development of artificial capsid proteins. This has been done and presents one of the motivations of
this thesis, as will be outlined in the next section. However, in the next section we discuss the possible
beneficial applications of artificial viruses.
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Figure 1.3: Different self-assembly processes of the tobacco mosaic virus. First, in (a) the capsid proteins
form small aggregates. Afterwards, in (b) these assemble to form oligomers, discs and the 20S aggregate
which binds to the origin of assembly. Subsequently, the capsid is completed through bidirectional
assembly, as shown in (c). One end is completed through the addition of further discs, the other through
the addition of mono- and oligomers. Taken from [9].

1.4 Artificial viruses

Viruses have several outstanding characteristics. Among others, they feature: capsid self-assembly; the
targeting of cells through precise molecular recognition; chemical and mechanical actions for delivery of
its genome into the host; a precise nanoscale structure which is geometrically well defined; a variety of
shapes; an adjustable template; and they can undergo mass production [6, 9]. This make them especially
suitable to be used in fields like medicine and nanotechnology. They can be put to use by either genetically
modifying a natural virus or by synthesizing all components. In both cases one acquires an artificial virus
(AV). Now we will first comment on some major applications of artificial viruses.

First, AVs have great biomedical potential [10–12]. They are often very stable against changes in pH,
temperature, ionic strength and solvent. This gives a broad range of conditions for their isolation, storage
and use. Moreover, they have regular surface properties which are, in principle, alterable [9]. Therefore,
one needs little imagination to see that through the alteration of the surface properties of the virus it could
be made cell specific. This could give rise to gene therapy [13–15], which comprises the delivery of
therapeutic genes into specific cells. Moreover, they can be used as targeted drug deliverers. That is, they
could be used as nanocarriers, where they bring a certain chemical to a specific cell type [6, 16]. Also,
their genetic material could be manipulated in such a way that they can encode for a particular chemical
needed in a cell.

A concrete example of an AV in biomedical use would be one which enters a (potential) cancer cell. It
could make a chemical which can be readily measured for detection of the cell. Otherwise, it could encode
for a chemical which kills the cell. The first possibility implies that cancer could possibly be diagnosed in
an earlier stage. The second possibility implies that chemotherapy would become cell-specific. Thereby
the required dose would be lowered and the well-known side effects of chemotherapy would decrease
drastically. Finally, many therapeutic chemicals are not in use at the moment due to their systemic
toxicity when used in cell non-specific treatments. Possibly, these could be put to use with a cell-specific
treatment [17].

Another large field of application of AVs are nanomaterials [18]. This is an upcoming field of material
science at which the material is designed at the nanoscale. AVs have properties which make them well-
suited as scaffolds in the design of a nanomaterial. For example: the capsid exhibits constrained internal
cavities which are accessible to small molecules but not for larger ones [9]. A possible application of
AVs would be to enhance the conduction properties of a material [19]. This could be done by growing
metal particles in a regular manner at the surface of the AV. This is already possible for TMV [20]. In
case of linear AVs which exhibit a nematic phase, the particles could be aligned and thereby enhance
the conductivity of the material. With these beneficial applications in mind we introduce the concrete
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research background of this thesis in the following section.

1.5 Research background

As pointed out above the tobacco mosaic virus (TMV) was at the cradle of the field of virology. Con-
sequently, much research has been conducted after its characteristics, in particular, after the assembly
and disassembly pathways it follows. Quite recently research has started on how self-assembly of TMV
occurs in solution as a function of time by Kraft et al [7]. This thesis builds on their work an extends the
scope of their analysis, as will be explained below. Although this work was done in the context of TMV it
is applicable to self-assembly processes which are similar to that of TMV.

The idea to describe the self-assembly as a function of time is to model the template as a one
dimensional structure with a number of binding sites available for capsid building blocks (CBBs). A
number of templates are in solution together with a number of CBBs. The precise form of the CBBs
depends on the experimental system one considers, but is irrelevant for the description. In time, the system
relaxes to equilibrium such that the CBBs are distributed over the templates. This gives rise to a certain
distribution. That is, some fraction of the templates will be fully encapsulated, while others do not have a
fully grown capsid. This is depicted in figure 1.4.

Figure 1.4: Schematic representation of a self-assembly process. Initially a number of templates, the
rods, and a number of capsid building blocks (CBBs), the circles, are in solution. The templates have a
number of binding sites for the CBBs available. After the system is relaxed into equilibrium the CBBs are
distributed in a definite way among the templates. Some templates have one nucleation, others can have
two. In principle, every binding site can have a CBB bound independently of its neighbours. This gives
rise to the equilibrium distribution of the proteins.

In the paper of Kraft et al. a statistical equilibrium model, the zipper model, is proposed to describe
the binding of proteins to the RNA template of TMV. This gives rise to a quantitative prediction of
the formation of viral capsids. That is, the distribution and average coverage of the proteins over the
templates is probed. Subsequently, they use this model to derive dynamical equations which describe
the self-assembly as a function of time. These dynamical equations were derived for a special case - an
infinite supply of proteins - wherefore the following question remains open: how does assembly occur
with a finite supply of proteins? This question will be addressed in this thesis.

The research question of finite protein supply became more prominent due to a large collaborative
research project which focused on the creation of an artificial virus made of artificial dsDNA and artificial
capsid proteins [21]. The design of this AV was inspired by TMV. Thus the model of Kraft et al. [7], the
zipper model, can be applied readily. Within this research project measurements on the assembly of AVs
were made. Hereby providing data with which the theoretical predictions of the assembly dynamics could
be compared. This puts forward another question we will cover: how do the dynamics of the zipper
model compare to experiment?

Next, a motivation of this research comes from the fact that assembly signals play a major role in
self-assembly. An assembly signal is a certain sequence of bases in the template which is such that a
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protein has energetic advantage upon binding to it. These signals occur naturally in TMV and can be built
into artificial templates. The artificial dsDNA of Hernandez-Garcia et al. [21] seems to have an assembly
signal at the end of the template. This is one reason wherefore we expect the zipper model, as noted above,
to describe the assembly of this artificial DNA.
Nevertheless, multiple assembly signals can in principle be built into an artificial template. To describe
their effect an extended statistical equilibrium model is needed which allows for multiple assembly
signals. Therefore, we propose the Ising-S model which we calculate for at most three assembly signals.
Furthermore, the Ising-S model accounts for the occurrence of nucleations at a normal binding site. A
normal binding site being defined as one which does not contain an assembly signal. These kind of
nucleations also occur and should be taken into account, for they imply an entropic contribution. The
question we will answer with regard to the Ising-S model is: what is the influence of assembly signals
on the distribution of capsid proteins over the templates in equilibrium?

Finally, in experiments is competition often important. For example, energy rich assembly states can
compete with entropy rich states on a single template in case of self-competition. Otherwise, a binding
energy rich template species can compete for the available CBBs with an entropy rich species. Therefore
we answer the question: what is the influence of competition on the formation of capsids?

With these main questions in mind we give in the next section a detailed outline of what will be
covered.

1.6 Outline

For convenience, we give an outline of what will be covered in this thesis.
In chapter two we first introduce the statistical framework in which we describe the assembly process

in equilibrium and the equilibrium quantities which can be derived. Also, we introduce the zipper model,
as proposed by Kraft et al. [7], which should account for the equilibrium characteristics of TMV as well
as the AVs of Hernandez-Garcia et al. [21]. Besides, we introduce the models describing self-competition
and species competition. Next, we introduce the Ising-S model which will be analysed in chapter four.
This model accounts for the occurrence of multiple assembly signals on a template together with entropic
effects. Finally, the chemical kinetics framework used to describe the dynamics of zipper self-assembly in
chapter three is presented.

In chapter three we focus on the zipper model. First, we calculate the partition function and relevant
equilibrium quantities. Second, we derive the dynamical equations which govern the assembly dynamics.
Then, before we describe the dynamics, we give an overview of the equilibrium properties of the zipper
model. With that in mind we show the rich dynamical behaviour which the zipper model comprises by
numerically solving the dynamic equations. Finally, we compare the theoretical predictions of the zipper
model with experimental data and therefrom give an estimate of the parameter values.

In chapter four we first calculate the general partition function of the Ising-S model. Second, as a
check, we show how for a single assembly signal, short templates and a strong protein-protein interaction
the Ising-S model reduces to the zipper model. Next, we focus on the distribution of the proteins on the
templates. This is a key quantity because it gives what fraction of templates is fully covered and thus what
fraction of templates forms a fully covered AV. We do this for two and three assembly signals respectively.

In chapter five we focus on competition. We show how self-competition gives rise to a universal curve.
Moreover, we give a very short note on the essence of species competition.

Finally, in chapter six we summarize our results, draw conclusions, discuss the validity of our results
and provide recommendations for future research.
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Chapter 2

Theory

In this chapter we will outline the theory needed to answer the questions we have put forward in the
introduction. The first two questions concern the zipper model which was proposed by Kraft et al [7], so
we define it in the third section. Next, we introduce the Ising-S model which we propose to answer the
third question posed in the introduction on the effect of entropy and the existence of multiple assembly
signals on a template. Finally, we present chemical kinetics to describe the dynamics of zipper self-
assembly. However, in the following we first outline the statistical mechanical theory which describes the
self-assembly of viruses in a solution. We will show how one can calculate the equilibrium distribution of
capsid proteins over the templates and give how one can predict the average occupation of binding sites.
Also, we will give the physical motivation for the zipper and Ising-S model by discussing the energetic
aspects of the binding of capsid proteins to the templates in the second section.

2.1 Statistical self-assembly description

Based on the existing body of research we use the following theory to describe the solution in which
the self-assembly of viruses takes place [7, 22]. We have a solution of volume V in which NP capsid
proteins - or simply proteins - and a number of templates are dissolved. At any template n ≡

∑q
i=1 ni

proteins can be bound where n is an integer from 0 up to and including q, ni = 0, 1 and q the total number
of binding sites on a single template. If ni = 0 there is no protein bound on the i-th site and if ni = 1
there is a protein unit bound. So, n = 0 corresponds to a completely uncovered - an empty - template
and n = q refers to a fully capsulated templated. The proteins are bound to the template in a certain
configuration, denoted by {ni}i∈P ≡ {ni}, where P is the position vector defined as P ≡ {1, 2, ..., q}.
This is visualised in figure 2.1. It shows a template whose binding sites all have a certain occupation
number. Together, the occupation numbers define a configuration. We denote the number of templates with
a given protein configuration {ni} on them as NT ({ni}). We wish to describe this system in the grand
canonical ensemble, so we write down the grand potential, Ω′. One might be bothered by a description
in the grand canonical ensemble for the self-assembly systems we want to describe are not in contact
with a particle bath. Therefore, although in the thermodynamic limit the grand canonical and canonical
descriptions are equivalent, we show in appendix A how to describe the system in the canonical ensemble.
In the grand canonical ensemble we have as independent variables V , T and the chemical potential of the
proteins and the templates, µ′P and µ′T respectively. So, Ω′ = Ω′(V, T, µ′P , µ

′
T ) and both NT ({ni}) and

NP are implicit functions of V ,T ,µ′P and µ′T . We may write

Ω′ = F ′ − µ′T
∑
{ni}

NT ({ni})− µ′PNP − µ′P
∑
{ni}

nNT ({ni}),

where F ′ is the Helmholtz free energy of the system and
∑
{ni} is the sum over all allowed configurations

that the interaction model allows. With interaction model we concretely mean either the zipper or the
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Ising-S model, but it may be any model which describes the energies of the different configurations it
allows. To write down F ′ we make the simplifying assumption that the components in the solution have
ideal solution statistics. For every template with {ni} proteins bound to it the system gains an interaction
energy E′int({ni}). This interaction energy will be left unspecified for now for its details are not necessary
to derive the equilibrium properties we are interested in. At least, as long as the interaction does not
depend on the densities of the proteins and/or the templates. These considerations give

F ′ = F ′id + F ′int,tot

= F ′int,tot + kBTNP

[
ln
(NP

V
VP

)
− 1
]

+

kBT
∑
{ni}

NT ({ni})
[

ln
(NT ({ni})

V
VT ({ni})

)
− 1
]

(2.1)

F ′int,tot =
∑
{ni}

NT ({ni})E′int({ni}),

where VT ({ni}) is the typical volume scale of a template in the solution with {ni} proteins bound to it
and VP is the typical volume scale of a protein in the solution. These typical volume scales depend on
the solvent and the effective volume which a molecule occupies after integrating out the interactions
with the solvent. There is discussion about the precise nature and method to calculate this volume scale.
Nevertheless, as far as we are concerned we take the typical volume scales for all molecules in the solution
to be equal, so VT ({ni}) = VP ≡ Vmol.

By making the following definitions: Ω ≡ Ω′

kBT
Vmol
V , µT ≡

µ′T
kBT

, µP ≡
µ′P
kBT

, Eint({ni}) ≡
E′int({ni})

kBT
, ρP ≡ NP

V Vmol, ρT ({ni}) ≡ NT ({ni})
V Vmol,P , we obtain the following expression

Ω = ρP

[
ln ρP −1−µP

]
+
∑
{ni}

ρT ({ni})
[

ln
(
ρT ({ni})

Vmol,T ({ni})

Vmol,P

)
−1−µT −nµP +Eint({ni})

]
.

In equilibrium the grand potential is minimized by the densities, so we consider Ω to be a function of
the densities Ω = Ω(ρP , {ρT ({ni})}), where {ρT ({ni})} is the set of the densities of templates with
allowed configurations. Minimizing gives

ρT,eq({ni}) = exp[−Eint({ni}) + µT + nµP ], (2.2)

ρP,eq = exp[µP ].

The hessian of the grand potential around this point is diagonal and has only positive eigenvalues.
Therefore, we conclude that the grand potential is indeed minimal at this values. Furthermore, the total
dimensionless protein density at equilibrium, φP =

NP,tot
V Vmol with NP,tot = NP +

∑
{ni} nNT ({ni}),

may be calculated as
φP = ρP,eq +

∑
{ni}

nρT,eq({ni}) (2.3)

Now that we have found the equilibrium densities of the components in the solution we can focus on the
quantities which describe the self-assembly.

2.1.1 Equilibrium quantities

In a self-assembly process the proteins are distributed among the templates in a certain way. Some
templates will have a fully grown capsid, others have only a partially grown capsid. The distribution of the
proteins is of the utmost importance for it determines what fraction of the templates will be fully covered.
Therefore, we define the fraction of templates having n proteins bound to it as P (n) ≡ ρT (n)∑q

n=0 ρT (n)
.

Another important quantity to know is what fraction of the available binding sites is occupied by proteins.
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We define this quantity as 〈θ〉 =
∑q

n=0
n
qP (n). These definitions hold in and outside of equilibrium.

With the equilibrium results found above we can write

〈θ〉eq ≡
〈n({ni})〉eq

q
=

1

q

∑
{ni} n({ni})ρT,eq({ni})∑

{ni} ρT,eq({ni})
=

1

q

∑
{ni} n exp[−Eint({ni}) + nµP ]∑
{ni} exp[−Eint({ni}) + nµP ]

,

Peq(n) ≡
∑
{ni} δ

∑q
i=1 ni,n

ρT,eq({ni})∑
{ni} ρT,eq({ni})

=

∑
{ni} δ

∑q
i=1 ni,n

exp[−Eint({ni}) + nµP ]∑
{ni} exp[−Eint({ni}) + nµP ]

,

where we sum over all possible configurations since different configurations can have the same number of
proteins bound. These expressions inspire us to define the, so called, semi-grand partition function

Ξ ≡
∑
{ni}

exp[−Eint({ni}) + nµP ], (2.4)

where Eint({ni}) is the dimensionless interaction energy for a template with protein configuration {ni}
and n =

∑q
i=1 ni. Interestingly, this function is exactly the grand canonical partion function of a single

template in contact with a heat and particle bath with a chemical potential µP , see figure 2.1.

Figure 2.1: The system described by the semi-grand partition function. A single template is in contact with
a heat and particle bath with a chemical potential µP . On the template a number of proteins can be bound
which define a configuration given by the set of the occupation numbers {ni}. The partition function is
found by summing the Boltzmann factors of all configurations. From it the equilibrium quantities can
found.

Using this function we obtain

〈θ〉eq =
1

q

∂ ln Ξ

∂µP
, (2.5)

Peq(n) =

∑
{ni} δ

∑q
i=1 ni,n

exp[−Eint({ni}) + nµP ]

Ξ
. (2.6)

These relations shows that the crucial function for our interests is the semi-grand partition function, Ξ and
the relative sizes of the terms where it consists of. This function may be calculated exactly for both the
zipper and the Ising-S model which we will introduce further below. The following section introduces
two important processes which are found during the binding of proteins to the template. This gives the
physical background of the models introduced thereafter.
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2.2 Allostery and cooperativity

In this section we will outline the energetic model we use to describe the process of capsid protein binding
in self-assembly. This binding to the template is complicated and depends on the kind of template, coat
protein etc. The self-assembly of the tobacco mosaic virus (TMV) as described in the introduction is,
for example, different from the way the AVs of Hernandez-Garcia et al [21] bind to the templates. One
difference is that TMV has a RNA template while the AVs have an dsDNA template. Another aspect is
that the capsid building blocks (CBBs) for TMV are discs made of 17 capsid proteins, while for the AVs
the CBB is simply one capsid protein. For simplicity we refer in the rest of this thesis to the CBBs as
proteins. These two aspects imply that the precise assembly pathways of the two systems should differ
very much. Nevertheless, to describe self-assembly we only need to consider two processes which involve
energetic differences and which are found in many self-assembly processes. The precise nature of these
processes is unnecessary to know for we only describe energetic differences. The magnitude of these
differences may be determined through experiment.

In order to introduce the processes involved we consider a template, as given in figure 2.1, which is in
contact with a heat and particle bath. First, suppose we have an empty template, as pictured in figure 2.2,

Figure 2.2: An empty template with identical binding sites. At every binding the system has to pay a
conformational switching cost h′ > 0 upon binding of a protein while it also gains a free energy g < 0
because of attractive interactions between the template and the protein.

where all binding sites are identical. The reason we assume that all sites are identical is to illustrate the
two binding processes. More realistically the sites are typically not identical. For example, an assembly
signal implies a site which is different from all others. The role of assembly signals in this decription will
be outlined below with regard to the zipper and the Ising-S model. At every site the energetic change of
the interaction energy upon binding of a protein is depicted.

The first protein to bind pays a free energy h′ > 0 which factors in that the template and/or the protein
typically have to make some kind of conformational switch. A conformational switch implies an energy
barrier. Therefore, h′ accounts for this energy barrier or any other process which represents a hurdle
for nucleation. We will refer to this as allostery because, for TMV, the conformational switching is an
allosteric process.

Furthermore, at every site the first protein gains a free energy g < 0 because, disregarding the energy
barrier, the protein and the template generally have an attractive interaction. This can be a result of
electrostatic, hydrophobic or any other kind of interaction.

After the first protein binds a number of changes occurs for the binding of the next protein, as shown
in figure 2.3. The second protein to bind still requires a free energy h′ + g, except for the sites adjacent to
the first protein. On these sites it has no energy barrier. This is called cooperativity: the second protein
does not have to pay the conformational switching cost at sites adjacent to an already bound protein.

With the binding of a second protein adjacent to the first, as given in figure 2.4, the interaction
energy is changed by ε+ g. The two proteins which are bound adjacent to each other have an attractive
protein-protein interaction wherefore the system gains a free energy ε < 0. The next protein to bind
at the empty site adjacent to the second protein also changes the energy by ε + g, this can in principle
proceed indefinitely. This gives rise to a preference of the system for sequential binding. The state with
one protein bound, n = 1, is a high energy state due to h′. The state with n = 2 has a lower interaction
energy than the n = 1 state. All subsequent states reached through cooperative binding have a lower
interaction energy than their precursor. Therefore, with regard to the interaction energy, the n = q state is
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Figure 2.3: A template with one protein bound. Another protein can bind cooperatively or not. Cooperative
binding is next to the first protein bound and gives a free energy g < 0 plus an interaction free energy
with the first protein of ε < 0. Non-cooperative binding gives a free energy h′ + g to the system, like for
the first protein to bind.

Figure 2.4: A template with two proteins cooperatively bound. Due to cooperatively can a third protein
bind cooperatively next to the already bound proteins such that the system gains a free energy ε+ g. At
all other sites the system has to pay a conformational switching cost h′ > 0 upon binding and does it not
gain an protein-protein interaction free energy ε < 0.

most favourable. As will be shown in chapter three, cooperative binding gives rise to realization of the
law of mass action for the zipper model.

From the above one might guess that the state where all sites are occupied due to cooperative binding
is the most favourable state. However, this is not necessarily true because taking a protein out of the
particle bath costs an energy µP , as depicted in figure 2.1. This chemical potential arises from the fact
that the proteins have translational and mixing entropy when they are unbound in the solution. In chapter
three we will show how cooperative binding of a protein gives rise to the following Boltzmann factor
s ≡ eµP−ε−g. Therefore, if s > 1 the binding of a protein is energetically favourable for the system, while
it is not if s < 1. Moreover, for s = 1 there is no energetic difference in having protein in the particle
bath or cooperatively bound. Therefore, one would expect a phase transition to happen from completely
empty templates to completely filled templates upon increasing s in the limit that q →∞. In this limit,
for s > 1 the state with n = q would become infinitely advantageous.

Taking into account this critical behaviour and recalling from the previous section that ρP,eq = eµP , it
makes sense to define a critical density φc ≡ eε+g such that s =

ρP,eq
φc

. So, the concentration of unbound
proteins in the solution determines for finite q roughly and for q →∞ exactly whether we have empty or
filled templates.

In chapter three will be shown that the nucleation of the capsid on the template gives rise to a
Boltzmann factor of σ = e−h+ε. So, a state which has one or more proteins bound - a state with a
nucleated capsid - has factor σ in the semi-grand partition function. This includes in the statistics that both
the conformational cost and the protein-protein interaction which the first protein does not have, impede
the nucleation.

2.3 Zipper model

As explained in section 2.1 the crucial ingredient in determining the semi-grand partition function is the
interaction energy Eint. In this section we give the motivations and explicit form of Eint for the zipper
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model. By doing so we will refer to the previous section for the concepts of allostery and cooperativity.

Figure 2.5: A zipper template with an assembly signal at the end of the template. This causes the energy
barrier to be equal to h� h′. This causes the first protein to bind at the assembly signal. Thereafter, the
other states are accessed through cooperative binding.

The zipper model describes the self-assembly of the tobacco mosaic virus (TMV) and that of artificial
viruses (AV) [21] which is sequential for both. The sequential binding starts at the assembly signal which
is approximately located at one end of the template. Afterwards, the self-assembly cooperatively proceeds
up to n = q, which corresponds to a whole capsid. The start of the assembly at the end of the template
can be modeled by assuming a greater attraction between the protein and the template at the assembly
signal. This can be factored in by assuming that the energy barrier for the first protein to bind at the
assembly signal is lowered by an amount h− h′, where h′ is the energy barrier at any normal site - that is
a site where no assembly signal is - and h is the lowered energy barrier. This is represented in figure 2.5.
The difference between h and h′ must be such that the entropic advantage of binding at a normal site is
negligible compared to binding at the assembly signal. The entropic free energy of nucleation at a normal
site goes as ln q − 1 ≈ ln q because the protein has q − 1 possibilities for binding at a normal site and q is
assumed to be large. So, we require ln q � h′ − h. This condition also ensures that no second nucleation
is favourable. The reason is that for the n-th protein to bind cooperatively, ln(q− n)� h′ − g is required
where g < 0 is the attractive interaction between a protein and the template. Under these conditions
we expect only cooperative binding starting at the end of the template to occur. We will refer to this as
zipper-like assembly. Zipper-like because it resembles the zipping of a jacket. From these considerations
we can define the zipper states, which were first proposed by Kittel [23], in the following way

Eint({ni}) = EZip(n) = h+ ε(n− 1) + gn, for 1 ≤ n ≤ q (2.7)

Eint({ni}) = EZip(0) = 0, forn = 0, (2.8)

Ξzip =

q∑
n=0

exp[−EZip(n) + nµP ] = 1 + σ

q∑
n=1

sneq, (2.9)

with g < 0 the protein-template interaction which is generally attractive, ε < 0 the protein-protein
interaction which is also generally attractive, seq ≡ eµP−ε−g =

ρP,eq
φc

, σ ≡ eε−h, φc ≡ eε+g the critical
concentration and ρP,eq as defined in section 2.1. What is striking is that ε and h make up one parameter in
the partition sum. It implies that they have the same effect: they both impede nucleation, that is, binding of
the first protein. This is to be understood because the first protein has, compared to the other proteins, an
energy barrier h besides not gaining a protein-protein interaction energy ε upon binding. In the previous
section we noted that the law of mass action dictates that the density of a template with n proteins bound
scales as sneq. This is indeed the case for the zipper model. With Eint defined and the semi-grand partition
function written down, all equilibrium properties of the system can be calculated, as will be done in
chapter three.

As noted in the introduction AVs can be made which have more than one assembly signal. Moreover,
the condition ln q � h′ − h may be violated by large q and/or small energetic advantages of binding at
an assembly signal. To model these possibilities we propose the Ising-S model as introduced in the next
section.
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2.3.1 Competition

Above we introduced the zipper model. It accounts for sequential binding of proteins to a template. The
condition for this to occur is ln q � h′ − h. In relation to this model there is an interesting phenomenon
to consider: competition. This comes in two kinds: self-competition and species competition. The first
kind implies that for one kind of template not only zipper states are available but also competitor states.
This would be due to a partial relaxation of the above mentioned zipper condition. The second comprises
two kinds of templates competing for proteins from the same pool. That is, the two kinds of templates
are in the same solution. We consider a species with assembly signal to be in competition with a species
without assembly signal. In chapter five these two kinds of competition will be covered. Below we will
introduce the energy states and semi-grand partition function for both kinds of competition.

For species competition one species would have energy states as defined by the zipper model and the
other would have competitor states. The competitor states are assumed to have only one nucleation, like
the zipper model, but the nucleation can be at any of the sites, for they are all equivalent. This implies that
these states have a multiplicity factor since a cluster with n proteins can have q − n+ 1 positions. With
these considerations we obtain

Eint({ni}) ≡ Ecomp(n) = h′ + ε(n− 1) + gn, for 1 ≤ n ≤ q (2.10)

Eint({ni}) = Ecomp(0) = 0, forn = 0, (2.11)

Ξcomp(q) = 1 + σ′
q∑

n=1

(q − n+ 1)sneq, (2.12)

where σ′ = e−h
′+ε and seq = eµP−g−ε. The energy barrier is equal to h′ since no assembly signal is

present.
For self-competition the competitor states contribute to the same partition function as the zipper states

because they are states of the same kind of template. The self-competition partition function can thus be
written as

Ξsc = 1 + (Ξzip(q)− 1) + (Ξcomp(q − 1)− 1). (2.13)

So, the states where nucleation is not at the assembly signal, thus having q − 1 binding possible binding
sites, are competitor states while all others are zipper states. The self-competition partition function will
be encountered in section 4.2. There will be shown that the first order approximation of the Ising-{1}
model is equal to Ξsc. Here, {1} = S because S is the set of special positions of the Ising-S model. This
will be introduced further in the next section.

For both kinds of competition mass conservation determines the value of seq. In this way the
connection between, respectively, the different species and states is made. In chapter five a short analysis
of the effects of competition will be made.

2.4 Ising-S model

As noted in the introduction we propose the Ising-S model to account for multiple assembly signals and
the effect of entropy. Below we will introduce this model.

Like for the zipper model we assume a free energy barrier for nucleation and the possibility of
cooperative binding. Unlike the zipper model we do not impose a strong assembly signal at the end of the
template. Instead, we let the energetic differences and the number of assembly signals be unconstrained.
In this way the energetic advantage of the assembly signal(s) can be tuned as well as the entropic effects.

As for the zipper model we take protein-template interaction between one protein and the template to
be given by g < 0 and the protein-protein interaction of two proteins to be given by ε < 0. The energy
barrier upon binding at a normal binding site - where there is no assembly signal - is h′ > 0 and the
barrier at the i-th assembly signal is hi such that at the assembly signal the energy is lowered by hi − h′.
This might seem a needless complicated definition but it will turn out to be useful when considering the
reduction of the Ising-S model to the zipper model.
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For reference we group the special sites as S = {p1, p2, ..., pm} where pi ∈ P ≡ {1, 2, ..., q} and m is
the number of assembly signals. So, in principle the assembly signals can be anywhere located at the
template. In general we refer to this model as the Ising-S model but for a particular case, say p1 = 1 and
p2 = q, we have S = {1, q} and thus one can refer to the Ising-{1, q} model.

From these considerations we can write down the interaction energy

Eint({ni}) = ε

q−1∑
i=1

nini+1 + gn+ h′
q−1∑
i=0

(1− ni)ni+1 +
∑
i∈S

(hi − h′)ni, (2.14)

where n0 ≡ 0 because otherwise the first cluster is not counted. For the i-th binding site is ni unity if
occupied by a protein and zero if unoccupied. The first term accounts for the protein-protein interactions,
the second for the protein-template interactions, the third for the nucleation costs by counting the number
of protein cluster and the fourth gives the energy lowering due to the occupation of assembly signals. We
can write down the semi-grand partition function as

ΞS =
∑
{ni}

exp
[
− h′

q−1∑
i=0

(1− ni)ni+1 − ε
q−1∑
i=1

nini+1 + (µP − g)n−
∑
i∈S

(hi − h′)ni
]
.

For any configuration with a given n and a given number of protein clusters, k ≡
∑q−1

i=0 (1− ni)ni+1, is
the Boltzmann factor fully determined. This can be seen as follows. Every cluster of n proteins gives
n− 1 protein-protein interactions. Therefore, with the n proteins divided into k clusters there are in total
n− k protein-protein interactions. The Boltzmann weight can thus be written as

exp
[
− h′k − ε(n− k) + n(µP − g)−

∑
i∈S

(hi − h′)ni
]

= σksneqχ
np1
p1 χ

np2
p2 ...χ

npm
pm ,

with seq ≡ eµP−ε−g =
ρP,eq
φc

, σ ≡ eε−h
′
, χi ≡ eh

′−hi , φc ≡ eε+g the critical concentration and ρP,eq as
defined in section 2.1. This expression of the Boltzmann factor is well suited for the cluster expansion
of the partition function because it gives the multiplicity of states with n proteins and k clusters. This
expansion will be used in the calculation of the equilibrium distribution in section 4.3. This form of the
Boltzmann weights shows that at least three independent parameters which determine it, instead of two
for the zipper model. The reason is that nucleation can take place at any site, whether it is special or
not. Therefore are the energy gain of binding at an assembly signal and the energy barrier of nucleation
not necessarily connected. To clarify this we consider the S = {1} model, where we have σksneqχ

n1
1 .

In the configurations of n proteins bound adjacent to each other starting at the special site we have for
the Boltzmann factor σsneqχ1 = e−(h′+h1)−n(ε−1)−gn+nµP . Compare this to equation (2.7) taking into
account that the Boltzmann factor is equal to e−Eint+nµP and one sees that the Ising-{1} has, among
others, the same configurations as the zipper model. These zipper configurations can be dominating, but
this depends on the value of σ. If σ is very small, the configurations with more than one cluster will be
suppressed for they scale as σk with k the number of clusters. Suppose, for example, that the n proteins
are divided into two clusters. One of the clusters starts at the special site, the other at any other site. These
configurations will have a Boltzmann factor of σ2sneqχ1. Therefore, if σ is small these configurations will
be suppressed. This hints that if σ → 0 and if χ1 is large, such that the entropic gain of not binding at
the assembly signal is negligible, the Ising-{1} reduces to the zipper model. We will show in section
4.2 that this is indeed the case. The great advantage of this model is that for small σ one can see exactly
whether entropy is of any effect. The effect of entropy depends on q, because if it is large enough one
would expect that due to entropy there will be nucleation at non-special sites. We will show in chapter
four that the question whether entropic effects are important can be roughly answered considering the
correlation length ξ. This is the typical length of a protein cluster for some given conditions. If ξ � q one
would not expect entropic effects to be relevant while for ξ � q they would be relevant.

In chapter four we will calculate the semi-grand partition function of this model and we will give
expressions for 〈θ〉 and Peq(n). In the following section the kinetic theory used for calculating the
dynamics of the zipper model will be explained.
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2.5 Dynamical equations

In the above sections we outlined the zipper and Ising-S model which describe self-assembly. These
models can predict the equilibrium properties of the system. However, in what way the system reaches
equilibrium is a wholly different question. To answer this question we use the theory of chemical kinetics.
The binding of a protein to a template can be viewed as a chemical reaction. The way to describe the
evolution of a system where a number of reactions takes place between its components is by means of rate
equations. We will introduce this chemical theory below.

Suppose we have N species of molecules taking part in a number of reactions with Xi denoting the
i-th species. Furthermore, we assume we have a total number of R reversible reactions, since we assume
to have only reversible reactions in self-assembly. Also, we define the coefficient of species i in the j-th
forward reaction as aij and in the j-th backward reaction as bij . This gives for the system of reactions

a1jX1 + a2jX2 + ...+ aNjXN

k+(j)
−−−⇀↽−−−
k−(j)

b1jX1 + b2jX2 + ...+ bNjXN, (2.15)

where j = 1, 2, ..., R. To write the rate equations we infer the law of mass action for both the forward and
backward reactions. To denote this, we define the vector containing the concentrations of all components
as ~[X] ≡ {[X1] [X2] ...[XN ]}. We can write the flux of respectively the forward (+) reaction, the backward
(-) reaction and the net flux as

f+
j ( ~[X]) = k+

j

N∏
i=1

[Xi]
aij , (2.16)

f−j ( ~[X]) = k−j

N∏
i=1

[Xi]
bij , (2.17)

fj( ~[X]) ≡ f+
j ( ~[X])− f−j ( ~[X]), (2.18)

where k+
j and k−j are, respectively, the forward and backward rate constants of the j-th reaction. Also,

we may define the a matrix M as Mij = bij − aij , which gives the net consumption and production of
each component in all reactions. Finally, we can write, with the Einstein summation convention, the rate
equations

∂t[Xi] ≡ Mijfj ,

=

R∑
j=1

Mij(k
+
j

N∏
l=1

[Xl]
alj − k−j

N∏
l=1

[Xl]
blj ). (2.19)

In these equations we may take all concentrations to be dimensionless by multiplying them with time-
independent quantities and redefining the rate constants. This poses no problem since the rate constants
are experimentally determined and may always be multiplied with some constant. In chapter three we
will introduce what chemical reactions are occurring at self-assembly and we will derive the dynamical
equations.
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Chapter 3

Zipper model

In this chapter we will first calculate the semi-grand partition function of the zipper model and subsequently
derive the 〈θ〉eq and Peq(n): the average fraction of occupied binding sites and the equilibrium distribution
respectively. Afterwards, the previously found equilibrium quantities will be used to derive the dynamical
equations which describe the zipper self-assembly as a function of time. Next, we give after a short
overview of the equilibrium properties of the system a description of the dynamics which the zipper model
comprises. Moreover, we note some possible approximations to the dynamical equations which can serve
as inspiration for future research. Finally, acquired data will be fit to the dynamical model to see whether
the model fits reality.

3.1 Equilibrium quantities

As outlined in section 2.1 we can calculate Ξ(µp) and subsequently 〈θ〉eq and Peq(n). From equation
(2.9), Ξ(µp) is calculated with the geometric sum formula as

Ξzip = 1 + σseq
1− sqeq
1− seq

, (3.1)

where σ ≡ eε−h and seq ≡ e−ε−g+µP = ρP,eqe
−ε−g =

ρP,eq
φc

with φc the critical concentration, ρP,eq the
equilibrium concentration of unbound proteins and σ the Boltzmann factor for nucleation. The value of
seq roughly determines whether the system is assembled, seq > 1, or disassembled, seq < 1. The value of
σ strongly influences what fraction of templates is nucleated. So, which fraction has n > 0 in equilibrium.
The reason for defining seq instead of simply s is, as will be shown in section 3.2, that s is time dependent.
From equation (2.5) we calculate the average occupation of the templates

〈θ〉eq =
σ

q

seq
(1− seq)

1− (q + 1)sqeq + qsq+1
eq

1− seq + σseq(1− sqeq)
, (3.2)

in the same way as Kraft et al. [7]. Furthermore, with equation (2.6) we may find the equilibrium
distribution of the templates

Peq(n) =

{
1
Ξ , forn = 0
σsneq

Ξ , for 1 ≤ n ≤ q
(3.3)

This distribution gives what fraction of templates has n proteins bound to it. This fraction - and thus
concentration - follows the law of mass action since it is proportional to sneq =

(
ρP,eq
φc

)n
. In the next

section we will use these equilibrium quantities to derive the dynamical equations.
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3.2 Dynamical equations

To derive the equations wich describe zipper self-assembly we use the chemical theory of section 2.5 and
the equilibrium quantities of the previous section.

We first note that the molecule species which react in the system are proteins and templates with
a given number of proteins bound to them. This can be summarized into the species vector ~X =
{TEM0,TEM1, ...,TEMq, P}. Here, P denotes an unbound protein unit in the solution which may bind
at one binding site on the template, TEM0 denotes an uncovered template in the solution, TEM1 denotes
a template with one protein unit bound, etc. We assume only unbound proteins to react with templates, so
we have no template-template reactions. The reactions taking place may be written down as follows

P + TEMn−1

k+(n)
−−−−⇀↽−−−−
k−(n)

TEMn, (3.4)

for 1 ≤ n ≤ q. From these reactions we can write the a, b and M matrices, as defined in section 2.5,
which are (q + 2)× q matrices since we have q + 2 components and q reactions. Furthermore, we write
~[X](t) = {ρT (0, t), ρT (1, t), ..., ρT (N, t), ρP (t)}, with ρP (t) the concentration of unbound protein units

in the solution at time t, ρT (0, t) the concentration of TEM0 molecules, etc. We can write the fluxes as

f+
n ( ~[X])(t) = k+

n

N∏
m=1

[Xm]amn = k+
n ρT (n− 1, t)ρP (t), (3.5)

f−n ( ~[X])(t) = k−n

N∏
m=1

[Xm]bmn = k−n ρT (n, t), (3.6)

fn( ~[X])(t) ≡ f+
n ( ~[X])(t)− f−n ( ~[X])(t), (3.7)

with n = 1, 2, ...q. Now we can write the rate equations using the M matrix and we drop for simplicity
the ~[X] arguments

∂ρT (0, t)

∂t
= −f1(t), (3.8)

∂ρT (n, t)

∂t
= fn(t)− fn+1(t), (3.9)

∂ρT (q, t)

∂t
= fq(t), (3.10)

dρP (t)

dt
= −

q∑
j=1

fj(t), (3.11)

with 1 ≤ n ≤ q − 1. In order to write the equations in a more convenient way we define the total
density of templates ρT ≡

∑q
n=0 ρT (n, t) and the distribution of the templates as a function of time

P (n, t) ≡ ρT (n,t)
ρT

. Furthermore, as noted in section 2.2 in equilibrium the concentration of the unbound
proteins relative to the critical concentration, defined as seq =

ρP,eq
φc

with φc ≡ eε+g, determines the
probability of having a protein cooperatively bound to the template. Since the concentration of unbound
proteins is now a function of time we define s(t) ≡ ρP (t)

φc
. Also, we define the total concentration of

proteins relative to the critical concentration as S ≡ φP
φc

. Finally, the ratio of the number of available
binding sites to the total concentration of proteins present in the system should be important in the
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dynamics, so we define λ ≡ qρT
φP

. With these definitions we may write

∂P (0, t)

∂t
= −v1(t), (3.12)

∂P (n, t)

∂t
= vn(t)− vn+1(t), (3.13)

∂P (q, t)

∂t
= vq(t), (3.14)

1

S

ds(t)

dt
= −λ

q

q∑
n=1

vn(t), (3.15)

where vn(t) ≡ fn(t)
ρT

= v+
n (t) − v−n (t), v+

n (t) ≡ f+
n (t)
ρT

= k+
n P (n − 1, t)ρP (t) = k+′

n P (n − 1, t) s(t)S ,

v−n (t) ≡ f−n (t)
ρT

= k−n P (n, t) and k
′+
n ≡ k+

n φP . We assume the total mass of the proteins to be conserved,
so for all times

φP = ρP (t) +

q∑
n=0

nρT (n, t), (3.16)

1 =
s(t)

S
+
λ

q

q∑
n=0

nP (n, t). (3.17)

To check that this relation is respected by the rate equations we take the time derivative and by using
equation (3.12) up to and including (3.15) we see that

q∑
n=0

n
∂P (n, t)

∂t
=

q∑
j=1

vj(t),

so the rate equations indeed conserve the protein mass in time. One may also check that ρT , and thus the
probability of the distribution, is conserved by the rate equations.
A constraint on the reaction rate constants can be found by considering the following. If t goes to
infinity limt→∞ P (n, t) = Peq(n) and limt→∞

∂P (n,t)
∂t = 0, for 0 ≤ n ≤ q. This gives the relation

k+(n+ 1)
seq
S Peq(n) = k−(n+ 1)Peq(n+ 1) for 0 ≤ n ≤ q − 1, where for notational convenience we

let k′+ → k+. This allows to write the equilibrium constants as

K1 =
k+(1)

k−(1)
= σS, (3.18)

Kn =
k+(n)

k−(n)
= S, (3.19)

for 2 ≤ n ≤ q. Furthermore, like Kraft et al. [7], we make the simplifying assumption that k+(1) = κk+

and k+(n) = k+, with κ a measure for the kinetic probability that nucleation occurs. We define τ ≡ k+t,
y(τ) ≡ s(τ)

seq
, f(n, τ) ≡ P (n,τ)

Peq(n) for 0 ≤ n ≤ q and use the equilibrium relations from section 3.1 to obtain
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the following dynamical equations

∂f(0, τ)

∂τ
= −κseq

S

(
y(τ)f(0, τ)− f(1, τ)

)
, (3.20)

∂f(1, τ)

∂τ
= −seq

S

(
y(τ)f(1, τ)− f(2, τ)

)
+

κ

σS

(
y(τ)f(0, τ)− f(1, τ)

)
, (3.21)

∂f(n, τ)

∂τ
= −seq

S

(
y(τ)f(n, τ)− f(n+ 1, τ)

)
+

1

S

(
y(τ)f(n− 1, τ)− f(n, τ)

)
, (3.22)

∂f(q, τ)

∂τ
=

1

S

(
y(τ)f(q − 1, τ)− f(q, τ)

)
, (3.23)

dy(τ)

dτ
= − λ

qΞeq

[
κ
(
y(τ)f(0, τ)− f(1, τ)

)
+

σ

q−1∑
n=1

sneq

(
y(τ)f(n, τ)− f(n+ 1, τ)

)]
. (3.24)

These equations imply that if λ→ 0 we obtain equation (16) up to and including (19) from Kraft et al. [7].
In this limit there is an infinite supply of proteins and from mass conservation we have y(τ) = 1, so
seq = S. For λ > 0 we can not solve this set of equations exactly for they are non-linear and coupled.
However, they can be solved numerically as will be done in the following section.

For later convenience and as a check of the validity of the above dynamical equations we show that
equation (3.24) is really mass conservation in disguise. From equation (3.20) up to and including (3.23)
we find that

y(τ)f(n, τ)− f(n+ 1, τ) = − S

seq

( 1

σsneq
∂τf(0, τ) +

n∑
m=1

s−(n−m)
eq ∂τf(m, τ)

)
, (3.25)

for 1 ≤ n ≤ q − 1, with which we can write

∂τy(τ) =
λS

q

1

seq

(
q∂τP (0, τ) +

q∑
n=1

(q − n)∂τP (n, τ)
)
,

where we used the definition of f(n, τ). From equation (3.12) up to and including (3.14) we have that∑q
n=0 ∂τP (n, τ) = 0 and thus we find

∂τs(τ)

S
= −λ

q∑
n=1

n

q
∂τP (n, τ) = λ∂τ 〈θ〉(τ).

This expression may be integrated from τ = 0 to arbitrary τ to give

s(τ)

S
+ λ〈θ〉(τ) =

s(0)

S
+ λ〈θ〉(0) ≡ 1. (3.26)

Since the mass conservation equation derives from the dynamical equations we can use it in the approxi-
mations to the dynamical equations in appendix C.

3.3 Numerical analysis

In the previous section the dynamical equations which govern the assembly kinetics of the zipper model
were derived. Below, an introduction into the richness of the dynamics will be given. In particular, the
influence of a finite protein concentration, λ > 0, on the dynamics will be considered. As a preparation,
the equilibrium properties - which determine the end point of the assembly - will be outlined and all
parameters will be defined. Afterwards, these will be used in analysing the observed peculiarities of the
assembly kinetics.
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Figure 3.1: For λ = 0 characteristic equilibrium quantities are given as a function of S for two limiting
values of σ. Here, seqS is the fraction of unbound proteins relative to the total concentration, Peq(q) is the
fraction of templates which are fully covered and 〈θ〉 is the average occupation number of the binding
sites. At S < 1 (practically) no assembly occurs for the (unbound) protein concentration is smaller than
the critical concentration. After some value of S does σ not have any influence. The reason is that nearly
all templates are nucleated. Finally, from mass conservation it is given that seq = S with λ = 0.

3.3.1 Equilibrium properties

The parameters which govern the equilibrium properties of the system are S = φP
φc
, λ = qρT

φP
, σ = e−h+ε

and q, with S the relative total concentration of proteins, φP the total concentration of proteins, φc = eε+g

the critical concentration, λ the stoichiometric ration, q the number of bindings sites per template and
ρT the concentration of templates. Together, they determine seq = seq(S, λ, σ, q) =

ρP,eq
φc

, the relative
concentration of unbound proteins, through mass conservation - seq = S(1− λ〈θ〉(seq, σ, q)) with 〈θ〉
from section 3.1 - which in turn determines the equilibrium properties seq

S , 〈θ〉 and Peq(q). In appendix
B is an analysis of the mass conservation equation given for more insight in the function seq(S, λ, σ, q).
Respectively, the first property gives the fraction of proteins which is unbound, the second what fraction
at the binding sites of the templates is covered with proteins, and the third what fraction of templates is
completely covered.

In figure 3.1 are the properties given as a function of S, for two limiting values of σ - σ1 = e−5 and
σ2 = e−16 - for λ = 0 and q = 51. As explained below, in this entire section we take q = 51, for q
mainly influences the lag time but not the essence of the dynamics. The figure shows that seqS = 1 for
all S and σ. This is to be expected since λ = 0 implies an infinite supply of proteins. Furthermore, the
value of 〈θ〉 increases from zero to unity for S > 1. This is to be expected since seq = S and only for
seq = eµP−ε−g > 1 is cooperative binding energetically favourable. For σ2 does the increase start at
a higher value of S. One can show the cause of this by expanding seq(S, λ, σ, q) up to first order in σ.

Afterwards, by calculating the value S∗ at which 〈θ〉 starts to grow, one can see that S∗ ∝ σ
1
q . This will

not be done explicitly though.
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Finally, the value of Peq(q) shows, similarly to 〈θ〉, a lag for σ2 and an independence of σ after some
value of S. This implies that almost all templates are nucleated for the following reason. From section 3.1
we have for the equilibrium distribution

Peq(n) =
σsneq

1 + σ
1+sqeq
1−seq

,

where in the denominator is the partition sum. The partition sum is made up of two contributions. The first
term is for empty templates, the second is for nucleated templates. Obviously, if the second contribution
is much greater than the first, the distribution is independent of σ. In other words, if almost all templates
are nucleated does σ not have an influence on the distribution.

Figure 3.2: For λ = 1.5 characteristic equilibrium quantities are given as a function of S for two limiting
values of σ. At S < 1 (practically) no assembly occurs for the (unbound) protein concentration is smaller
than the critical concentration. After some value of S does σ not have any influence on 〈θ〉. The value
of Peq(q) is σ dependent however. The reason is that a significant portion of the templates is uncovered.
Finally, seqS decays to zero because an ever larger portion of the proteins is bound to the templates.

With these properties for λ = 0 in mind does figure 3.2 give the properties for λ = 1.5. This figure
shows, like figure 3.1, that for S < 1 there is barely any assembly. But for S > 1 does the fraction of
unbound proteins go to zero as S increases. The reason is that 1.5 times more binding sites are available
than proteins. Therefore, all proteins which can bind will be bound such that the concentration of unbound
proteins will be close to the critical concentration - so seq ≈ 1 - for all S > 1. Furthermore, 〈θ〉 does
not go to unity but to 2

3 since λ = 1.5. Finally, Peq(q) does depend on σ because, as explained above, a
considerable fraction of the templates is uncovered. This is caused by λ being greater than unity. In the
next paragraph will these equilibrium properties turn out to be helpful in understanding the dynamical
properties.

3.3.2 Dynamical properties

To see the dynamical properties of zipper assembly we will first discuss the role of σ and the role of q.
Therefrom, we argue that they can be chosen fixed. Afterwards, we will give a reference assembly graph
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for λ = 0 in order to understand a phase diagram which shows how the dynamics are altered for λ > 0.

Figure 3.3: The typical timescale of the dynamics is very much influenced by σ. For different values of σ
is the assembly time of the same order when expressed in στ . For σ = e−11 and σ = e−9 the dynamics
are almost equal. However, this only holds for high S such that 〈θ〉eq is independent of σ.

In the previous paragraph was shown what the influence of σ on the equilibrium properties of the
system is. To see its influence on the dynamics we recall from section 3.2 that K1 = σS and Kn = S,
with 2 ≤ n ≤ q, and Kn being the equilibrium constant of the n-th chemical reaction. Per definition,
we have Kn = k+(n)

k−(n) with k+(n) the forward rate constant for obtaining the species on the right hand
side of the n-th reaction and k−(n) vice versa (see equation (3.4)). Since all forward rate constants were
taken to be equal and σ much smaller than one, does K1 imply that k−(1) is very large as compared to all
other k−(n). Informally, this means that the first reaction, the nucleation reaction, is slow: it is the rate
determining step. Next, in all simulations do we take P (0, 0) = 1, that is, at τ = 0 only empty templates
are present. Therefore, all nucleated templates in the assembly arise through the first reaction. This makes
the first reaction indeed rate determining. Moreover, this is exactly the expected effect of σ since it is
exponentially inversely proportional to the nucleation cost which acts as an energy barrier. Therefore, as
shown in figure 3.3, does σ determine the time scale of the dynamics. For the two smallest values does
〈θ〉 show universal behaviour, but also for the two greatest values is σ a major time scaling factor. Though,
the universal behaviour only arises when the equilibrium value of 〈θ〉 is the same for different values of
σ. Therefore, in the rest of this analysis we consider only σ = e−4 ≈ 0.02 whose dynamics should be
representative for all smaller value of σ.

Next, the value of q determines the number of equations and thus how much time is minimally needed
to fill a template completely. In fact, the lag time - the time required before the fraction of fully covered
templates starts to deviate from zero appreciably - scales with q. However, this lag time is typically much
smaller than 1

σ , the typical time scale dictated by σ, wherefore it does not have a great influence on the
dynamics. Therefore, we consider only q = 51.

In the paper of Kraft et al [7] were the dynamics of the zipper model probed for λ = 0. Therefore, we
focus on how the dynamics of λ > 0 differs. For reference, is in figure 3.4 as a function of στ the value
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Figure 3.4: Typical assembly kinetics with λ = 0, S = e2, σ = e−4 and q = 51. It shows P (0, τ) to be an
(approximately) exponentially decaying function. The intermediate template occupancies, P (10, τ) and
P (30, τ), show a peak when the assembly wave passes them. The fully filled template fraction, P (q, τ),
exhibits a sigmoidal increase with the lag time determined by the time the assembly wave needs to reach
n = q. The concentration of proteins relative to the equilibrium concentration, y(τ) = s(τ)

seq
, is constant

because λ = 0. However, for λ > 0 it typically (approximately) decays exponentially to unity.

of a few distribution values and y(τ) given for λ = 0. It shows that P (0, τ) is a monotonically decaying
function, P (q, τ) has a sigmoidal shape with a lag time and y(τ) = s(τ)

seq
is constant. If λ > 0 will y(τ)

not be a constant but typically decrease exponentially to unity. Furthermore, the values of n = 10 and
n = 30 respectively show a maximum. This could be called an assembly wave.

With this typical behaviour of P (0, τ), P (q, τ) and y(τ) specified we consider how it changes for
λ > 0. First thing to note is that the behaviour generally does not change but some peculiarities do arise.
In figure 3.5 a phase diagram of peculiarities for λ > 0 is shown. The peculiarities we consider are:
an overshoot in P (q, τ), an undershoot in P (0, τ) and an undershoot in y(τ). The first implies that the
system forms too many fully formed templates and needs to dismantle some. The second says that too
many templates are nucleated, whereas for the third too many proteins are used and need to be taken
from templates again. By determining whether a peculiarity is present or not we use as criterion for
the first P (q,τ)

Peq(q)
> 1.01, for the second |Pmin(0)− Peq(0)| > 0.05 and for the third ymin < 0.99, where

Pmin(0) is the minimum value of P (0, τ) and ymin that of y(τ) during the simulation. These criteria are
necessary to distinguish between numerical errors, negligible peculiarities and true peculiarities. In the
figure is in the (λ, S) plane depicted which peculiarities are present for a number of points. First, for
0 ≤ λ < 0.7 and S ≤ 1 no peculiarities are observed. For S ≤ 1 does negligible assembly take place
while for λ < 0.7 apparently the excess of proteins is such that no peculiarities happen. With increasing
λ an overshoot first occurs for S = e1 until for λ = 1 it happens for all values of S. Furthermore, for
λ > 1.25 no overshoot is observed. This clearly shows that the overshoot occurs around λ = 1. So
proteins should neither be too scarce nor too abundant. The reason for this is not easily seen since λ = 1
is not a particularly special value as judged from the dynamical equations. The cause of the overshoot is
probably caused by some kind of ’overshoot momentum’ the system has. This momentum is arguably
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Figure 3.5: A phase diagram of peculiarities occuring in the dynamics for λ > 0 with σ = e−4 and q = 51.
An overshoot in P (q, τ) arises for λ values around unity and S > 1. For λ > 1, when a significant portion
of templates remains uncovered, undershoots in y(τ) and P (0, τ) set in. Intuitively, the cause of these
over- and undershoots is the system having a kind of inertia. For λ > 0 it acts for small times as if λ = 0
and has to correct for an over- or undershoot later on.

proportional to y(0) for all forward rates in the dynamical equations are proportional to it at small times.
The value y(τ) at τ = 0 is important because the cause of the overshoot should lie at small times. Thus a
greater y(0) should give a greater momentum for overshooting. Furthermore, as Peq(q) becomes small for
λ > 1.25 overshoots disappear. Therefore, this momentum should scale with Peq(q). Furthermore, the
value of Peq(q) also should not be too large for if it goes to unity there is no possibility for an overshoot
by probability conservation. Therefore, the momentum should also scale as 1− Peq(q). This gives rise to
the overshoot momentum function g(S, λ, σ, q) = y(0)Peq(q)(1− Peq(q)) which is shown in figure 3.6.

Next, for λ > 1.05 undershoots of both P (0, τ) and y(τ) occur. This clearly shows that it only occurs
in case of a shortage of proteins. In this case too many templates get nucleated. The possibility of this
to happen can be seen as follows. As noted above, is for λ > 1 the amount of uncovered templates not
negligible as compared to the fraction which is covered. Therefore, too many templates can get nucleated
in the assembly which later have to be disassembled again.

The cause of the over- and undershoots are, qualitatively speaking, because for small times the system
behaves as if λ = 0. Afterwards, at later times it has to correct for the excessive binding of proteins. To
understand more quantitatively where the overshoot and undershoots arise the conditions for them to
occur should be probed in a more detailed manner. However, this is left for future research.

3.4 Comparison with experiments

As noted in the introduction we have experimental data available with which we can test the validity of
our model. The data comprises the self-assembly of artificial dsDNA with artificial capsid proteins. In
total we have three sets of data: SQ10, SQ14 and NP3. The names SQ10 and SQ14 refer to the kind of
capsid proteins used. The proteins of SQ14 have a stronger protein-protein interaction. NP3 refers to
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Figure 3.6: A contourplot of the overshoot momentum function, g(S, λ, σ, q), for σ = e−4 and q = 51.
The function gives a rough indication of the appearance of overshoots in P (q, τ). It approximately agrees
with figure 3.5 for λ < 1. However, for λ > 1 it fails to explain why overshoots disappear when increasing
λ.

the ratio of available positive chargers on all the capsid proteins together and the number of available
negative charges on all the dsDNA molecules. Each data set comprises of measurements of the lengths of
the capsids at different times. From this a binned distribution of the templates can be derived. Below we
will first describe how the data was generated. Afterwards, we will show how we fitted our model to the
data and what results it generated.

3.4.1 Data acquisition

The acquisition of the three data sets introduced above has the following in common. The concentration
of dsDNA molecules, or simply templates, was cT = 1µg(mL)−1, or 0.65 nM. Each template was
built of 2500 base pairs. The buffer used was sodium phosphate of 10 mM at pH 7.4. To avoid the
formation of disulfide bridges - the capsid proteins carry a cysteine - was dichloordiphenyltrichloroethane
(DDT) added in 0.1 mM concentration. The experiments were conducted at room temperature ≈ 20 ◦C.
Finally, the number of binding sites per template was identical for the following reason. Every template
has 2 × 2500 = 5000 bases which all have charge -1. Furthermore, a capsid protein has charge +12.
Because the charge of the template needs to be neutralised by that of the proteins for a full capsid we have
q = 5000/12 ≈ 417.

Next, the measurement procedure was identical for all data sets. To make a measurement of the
distribution of the templates at a given time, a sample of a few micro liters was taken from the solution.
This was put on a silica surface for 2-3 minutes. Afterwards, the sample was rinsed with 1 mL demiwater
such that the unbound capsids proteins were removed. Subsequently, it was dried with nitrogen steam
such that the assembly was frozen down. Finally, the lengths of the (partly) assembled capsids in the
sample was measured. This measurement was done through atomic force microscopy (AFM). That is, the
length of the partly assembled capsids was measured under the microscope.

The variable conditions among the different data sets was the concentration of capsid proteins, cP , and
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the kind of capsid protein used. For SQ10 and SQ14 the concentration of capsid proteins is on purpose
almost the same such that the influence of the different capsid proteins on the assembly can be seen.

To make a fit one first needs to solve the dynamical equations. For this a number of parameters has to
be determined. Some of these can be known by measurement while others have to be fitted. Below we
will give an overview of these parameters and how there value can be found.

3.4.2 Parameter determination

In the previous section we outlined how the measurements were made. Here we will give an overview of
how the parameters present in the dynamic equations can be found such that we can fit our model to the
data.

The following parameters have to be determined: 1) λ, the ratio of the total number of available
binding sites on the templates and the number of capsid proteins, 2) κ, the kinetic barrier for nucleation
which we set to 1 since the effect of nucleation is already captured in σ, 3) S, the relative concentration of
the total number of capsid proteins in the solution which is determined by seq, σ and q, 4) seq, the relative
concentration of unbound proteins in equilibrium, 5) σ, the Boltzmann factor of nucleation, 6) k+, the
forward rate constant, and 7) t0: an offset time which we add to the time of every measurement in order to
account for the 2-3 minutes waiting time, as well as to account for the processes which disturb the sample
during rinsing and drying. Now we will review all these parameters on how they can be determined.

The stoichiometric ratio λ was different for every experiment for it can be calculated as

λ =
5000× cT
12× cP

=
qcT
cP

=
qρT
φP

,

with, respectively, cT and cP the concentration of templates and total concentration of proteins. These can
have arbitrary units. We used the definition of q as explained in the paragraph above and we could write
λ in terms of the dimensionless concentrations because both concentrations are made dimensionless by
multiplying with the characteristic volume scale of the system Vmol. Concluding, we can determine λ
directly from the measurement of cP and cT .

Furthermore, to calculate the dimensionless density φP =
NP,tot
V Vmol we need to know what the

typical volume scale is of the proteins in the solution. This is quite hard to calculate, but luckily we do not
need to know it. If we assume that the capsid proteins have the same volume scale as the solvent, then we
can say

φP =
NP,totVmol

(NP,tot +Nsolvent)Vmol
≈

NP,tot

Nsolvent
=

cP
csolvent

.

For water molecules csolvent = 55.6M and the protein concentrations we work with are of the order of a
few µM, so the approximation is justified.

The value of S can be found directly from mass conservation

S =
seq

1− λ〈θ〉(seq, σ, q)
,

since it is totally dependent on the other parameters. By combining S and φP the critical density and a
combination of the relevant energies can be found. Since φc = S

φP
= eε+g we can find what ε+ g is.

The value of seq can be determined in the following way. The zipper equilibrium distribution is solely
determined by seq, σ and q. Therefore, by considering a measurement at very late time and by fitting it to
a zipper equilibrium distribution one can find information on seq. However, the distribution of equation
(3.3) can not be used because the uncovered templates have not been counted in the measurements. To
correct for this we consider ∑q

n=1 Peq(n)

1− Peq(0)
= 1,

where we used
∑q

n=0 Peq(n) = 1 which is implied by equation (3.3). Thus, if we define Peq,cor(n) =
Peq(n)

1−Peq(0) for 1 ≤ n ≤ q, we have a normalised corrected distribution which can be written explicitly as
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Peq,cor(n) =
sneq

seq
1−sqeq
1−seq

. So, σ has no influence on the corrected distribution and we are free to determine

seq. The independence of Peq,cor(n) on σ is to be expected because σ only influences which part of the
templates is nucleated in equilibrium. Since Peq,cor(n) gives the distribution of nucleated templates only
it should not depend on σ.

Finally, σ, k+ and t0 can only be found through trial and error, educated guesses and choosing the
relevant features of the distribution to fix a fit at. Therefore, we will refer to seq, σ, k+ and t0 as the
fitting parameters. Since there are three fitting parameters, three features of the distribution can always be
accounted for. The value of the fit is in how well it describes other features.

3.4.3 Fits

In the previous paragraph we showed what parameter values can be readily determined from a data set
and what are the fitting parameters. In the following subparagraphs we will give the fits made of the three
data sets which are at our disposal. For SQ10 we will show in full detail which procedure we followed.
This will not be done for SQ14, for the procedure is almost exactly the same. Therefore, we only mention
what differs from SQ10. Also for NP3 do we only note what differs from SQ10.

SQ10

Figure 3.7: Visualisation of the measurement at 3000 minutes of the SQ10 data set. The measured
aggregate lengths have been binned. The distribution is for increasing length first exponentially increasing.
Afterwards, it exponentially decreases.

For SQ10 measurements are available at 10 different times: 2, 8, 15, 25, 85, 180, 360, 480, 1500
and 3000 minutes. On purpose there is a higher density of measurements at short times because we
expect non-trivial behaviour to occur. A measurement at a given time consists of a list of the lengths of
all measured capsids. The number of measured capsid aggregates per measurement is 92 - 130, so the
uncertainty in each time measurement is quite large. To analyse the data we bin the lengths for every
measurement. The uncertainty per bin is large for the number of aggregates per bin is of the order 10. The
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binning enables us to plot the fraction of aggregates versus the length of the aggregate. This is shown in
figure 3.7 for the measurement at 3000 minutes.

The first step in the fit is to determine seq. To do so we consider the measurement of 3000 minutes
because we expect the system to be in equilibrium by then. In figure 3.7 we see first for increasing
aggregate length exponentially increasing probability. Afterwards, there is exponential decay. By the
law of mass action only exponential increase would be expected. Therefore, we assume that either the
templates in the experiment are not mono disperse, or that some fully encapsulated templates have some
sort of micelles structure attached to it such that they seem to have a larger length. The way to get around
this ambiguity is to put all data points with a length longer than 300 nm - the length where exponential
increase stops - in the bin which ends at 300 nm. In this way we enforce exponentially increasing
behaviour.

Figure 3.8: A visualisation of the exponentially enforced measurement at 3000 minutes together with
an equilibrium distribution fit. The measurement has been made exponentially increasing by putting all
data points of figure 3.7 which are larger than 300 nm in the bin which ends at 300 nm. The equilibrium
distribution is fitted ath this time since the system is expected to be in equilibrium. The fit is focused on
the two middle bins for they are assumed to be most reliable.

Next, we can fit the 3000 minutes measurement to the corrected distribution, Peq,cor(n), in the
following way. We assume that a capsid of 300 nm is a fully formed capsid with n = q = 417. Then, to

bin Peq,cor(n) we, for example, have for the probability of first bin, Pbin,1 that Pbin,1 =
∑ b

L
q

n=1 Peq,cor(n).
Here, b = 20nm is the breadth of a bin and L = 300nm is the maximum length of the aggregates. It
poses no problem that b

Lq is not an integer since the sum then simply continues up to the last integer. In
this way we find the fit shown in figure 3.8, which implies seq = 1.027.

With seq found through the experimental equilibrium distribution we are are ready to fit the dynamics.
From the densities we have λ = 0.1006. To make the fit we choose σ = 0.004, k+ = 200 and t0 = 7min
to obtain the fit shown in figure 3.9. The way we chose this parameter requires some explanation though.
Since we have three fitting parameters we focused on three features of the dynamical distribution to make
the fit: the peak of the measurement of t = 15 minutes, the peak at t = 2 minutes, and the breadth of the
distribution at 2,8 and 15 minutes. We will explain below how we controlled these three features. We
optimised the fit to have the least discrepancy between the data and the model with regard to the three
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Figure 3.9: A fit of the SQ10 data set. The fitting parameters are seq = 1.027, λ = 0.1006, σ = 0.004,
k+ = 200min−1, t0 = 7min and S = 1.131. The four fitting parameters have been determined by
focusing on the position of the peak at 2 and 15 minutes, the breadth of the distribution and the form of
the equilibrium distribution.
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fitting features. We judged the optimal point in parameter space by eye, so we used no least square method
or whatsoever. The reason for this is that we have a large uncertainty in the data for every bin. The reason
for this is that for one time measurement we have between 92-130 lengths measured. This implies that per
bin we have on average only 10 measured lengths. Therefore we have a very large uncertainty. Another
reason is that we are dealing with a biological system described by a very crude model while in reality
such a system is highly complex. Another aspect of the fitting is that in the measurements the uncovered
templates - the aggregates of length zero - were not measured. Therefore, in the same way we defined
Peq,cor(n) we have to correct the calculated probabilities by a factor 1

1−P (0,τ) . Now we will explain in
detail how we pinned down σ, k+ and t0.

To start, we made a change of variables to σ, τ2min and t0, where τ2min = (2 + t0)k+, such that we
could easily fit the peak at 2 minutes. We fitted the peak at 2 minutes by imposing that the fit showed the
same asymmetry as the data does. This asymmetry comes from the fact that we see the assembly wave is
at low aggregate length values.
In general, σ influences the breadth of the distribution and also the speed of the assembly wave travelling
from 0 to 300 nm (at 2,8,15 minutes). By accounting for these two properties we could pin down σ.
Finally, we find the τ -values of the measurement at t = 8,15,etc. min in the following way

τt =
t+ t0
2 + t0

τ2min = (t+ t0)k+.

By tuning the value of t0 we could fit the peak at 15 minutes.
To see how well this fit is, we evaluate the fits of all times we did not use to fit the parameters. For 8

minutes the agreement is very good. At 25 minutes it is good for aggregates which are not fully covered
but bad for the last bin. With 85, 180, 360, 480 and 1500 min the agreement is good. Therefore, we would
say that the fit does get the timescales correct and gives quite accurate predictions. of the distribution. With
the fitting parameters found we obtain S = 1.131. We have that cP = 2692nM and thus, as explained
in the paragraph on parameter determination, φP = 4.84× 10−8 and ε+ g = −16.97 in units of kBT .
Furthermore, from σ = e−h+ε we find −h+ ε = −5.521.

SQ14

For the SQ14 data set are measurements made at t = 2, 8, 15, 30, 64, 373, 1440 and 2925 min. The
fitting can be done in exactly the same way as for SQ10. The only difference is that as fitting features
the peak of the measurements at 2 and 15 minutes was used. The peak at 15 minutes pinned down σ
and t0. With seq = 1.038, k+ = 129min−1, σ = 0.05 and t0 = 12min we obtain the fit from figure 3.10.
These parameters give with λ = 0.134 that S = 1.187 and with cP = 2016M we have φP = 3.63×10−5.
This gives through the critical concentration ε + g = −10.40. Furthermore, from σ = e−h+ε we find
−h+ ε = −3.00.

NP3

For the NP3 data set there are two aspects to consider. One is how the dynamical equations fit with λ > 0.
The other is how with λ = 0 a fit can be made. The reason for the last aspect is that with the model of
Kraft et al [7] this data set has ben fit, as noted in the paper of Hernandeze-Garcia et al. [21]. Therefore, it
is interesting to see how the parameter values change by going fitting with λ = 0 instead of λ > 0.

The data set has six measurements at t = 10, 60, 350, 1485, 2880 and 7440 minutes. There were
micelles structures in the solution which were also measured. Therefore, for the last four measurements
all lengths shorter than 100 nm were excluded. At these times they disturbed the exponential increasing
behaviour and were therefore identified as micelles. For λ = 0.324 we found the fit shown in figure 3.11
with σ = 0.005, seq = 1.016, k+ = 33min−1 and t0 = 5min. From these values we obtain S = 1.40,
ε+ g = −18.36 and −h+ ε = −5.30. These energy values are quite close to the values calculated by
Hernandez-Garcia [21]. In making this fit we used as fitting features the form and position of the peak at
10 min and the absolute increase in the last three bins between 140 and 235 nm. That the fit lies under the
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Figure 3.10: A fit of the SQ14 data set. The fitting parameters are seq = 1.038, λ = 0.134, σ = 0.05,
k+ = 129min−1, t0 = 12min and S = 1.187. The four fitting parameters have been determined by
focusing on the position of the peak at 2 and 15 minutes, the breadth of the distribution and the form of
the equilibrium distribution.
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Figure 3.11: A fit of the NP3 data set. The fitting parameters are seq = 1.016, λ = 0.324, σ = 0.005,
k+ = 33min−1, t0 = 5min and S = 1.40. The four fitting parameters have been determined by focusing
on the position of the peak at 10 and 60 minutes, the increase of the distribution at 60 minutes for the last
three bins and the form of the equilibrium distribution.

data of first bin(s) at 10 and 60 minutes is not a problem for there are probably already some micelles
structures present.

If we take λ = 0 instead, we obtain the fit shown in figure 3.12 which has been constructed after the
same features as for λ = 0.324. It satisfies seq = S = 1.016, k+ = 220min−1, t0 = 12min, σ = 0.03
and gives ε+ g = −18.04 and −h+ ε = −3.51.

The calculated energy values for λ = 0 and λ = 0.324 are close to each other. There is only a few
kBT difference in −h+ ε. Furthermore, the λ = 0 fit has a much greater rate constant than the λ > 0
fit. In the former case an infinite supply of proteins is assumed. Therefore, intuitively it is plausible that
this fit gives rise to a larger k+ since the effect of a larger concentration can be understood as effectively
heightening the rate constant for the forward reaction to happen.
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Figure 3.12: A fit of the NP3 data set with λ = 0. The fitting parameters are seq = S = 1.016, σ = 0.03,
k+ = 220min−1 and t0 = 12min. The four fitting parameters have been determined by focusing on the
position of the peak at 10 and 60 minutes, the increase of the distribution at 60 minutes for the last three
bins and the form of the equilibrium distribution.
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Chapter 4

Ising-S model

As outlined in the introduction and theory we introduce the Ising-S model to account for multiple assembly
signals and the effect of entropy in self-assembly. One could say that this model is in essence a one-
dimensional Ising model with the assembly signals causing impurities. We will solely focus on the
equilibrium properties of the assembly system within this model, the dynamics are out of the scope of this
thesis. Below we will first calculate the general semi-grand partition function. Afterwards, the reduction
of the Ising-{1} model to the zipper model is shown. Next, the equilibrium distribution is calculated
exactly and thereafter approximated in the high energy barrier limit to show it comprises zipper like
behaviour.

4.1 General partition function

To find the general partition function of the Ising-S model, we first consider the partition function of the
Ising-∅ model, that is, a one-dimensional Ising model without impurities. This will be done in such a way
that the one can, in principle, straightforwardly calculate the partition function in the general case. From
the theory of section 2.4 we have for the Ising-∅ model with free boundary conditions

Ξ∅ =
∑
{ni}

exp
[
(−h′ + ε)

q−1∑
i=0

(1− ni)ni+1 + (µP − g − ε)n
]
, (4.1)

where we did a little bit of rewriting, defined n0 ≡ 0 and recall that n ≡
∑q

i=1 ni. Furthermore, h′ > 0 is
the free energy barrier for nucleation, ε < 0 is the free energy protein-protein interaction, g < 0 is the
free energy template-protein interaction and µP is the chemical potential of the unbdound proteins. To
proceed we introduce the transfer matrix Tnini+1 = e(−h+ε)nini+1+(µP−g−ε)ni such that

Ξ∅ =
∑
nq=0,1

(T q)n0nq , (4.2)

T =

(
1 σ′seq
1 seq

)
,

where seq ≡ eµP−g−ε is the Boltzmann factor for having a protein cooperatively bound and σ′ ≡ e−h′+ε
is the Boltzmann factor for a nucleation. Equation (4.2) shows that the semi-grand partition function
consists of only two distinct terms. This reflects that there are only two distinct boundary conditions.
Namely, at one of the ends we have a protein or we do not have a protein. In the matrix corresponds
ni = 0 to the first row or column and ni = 1 to the second row or column. Next, we can calculate Tq as

Tq = c3

(
c2λ

q
+ + c1λ

q
− σ′seq(λ

q
+ − λ

q
−)

λq+ − λ
q
− c1λ

q
+ + c2λ

q
−

)
, (4.3)
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where c1 ≡ λ+ − 1, c2 ≡ 1 − λ− and c3 ≡ 1
λ+−λ− with λ± = 1

2(1 + seq ± ζ) the eigenvalues of the

transfer matrix and ζ ≡
(

(1− seq)2 + 4σ′seq

) 1
2 . By using the defining relation of the eigenvalues we find

Ξ∅ =
1

λ+ − λ−

(
(1− λ−)λq+1

+ + (λ+ − 1)λq+1
−

)
. (4.4)

Next, we show that the matrix Tq can be used to find the partition function in general. To do so, it is
instructive to first find the partition function for the Ising-{1} model. This model has the following
expression for Ξ{1}

Ξ{1} =
∑
{ni}

exp
[
(−h′ + ε)

q−1∑
i=0

(1− ni)ni+1 + (µP − g − ε)n− (hi − h′)n1

]
,

=
∑
n1,nq

(TC(1))n0n1(T q−1)n1nq ,

where we introduced the matrix C(pi)
ninj = δninje

−(hpi−h
′)ni ≡ δninjχnipi for the i-th special site at position

pi. The partition sum can be written down in an expression consisting of four terms. This is to be expected
for the symmetry is broken and therefore we now have four relevant boundary conditions

Ξ{1} = T q−1
00 + T q−1

01 + σ′seqχ1(T q−1
10 + T q−1

11 ). (4.5)

The expression shows that the template can be thought of as a template with q− 1 binding sites connected
with a single assembly site. The first two terms correspond to the states where the assembly site is not
occupied and the last two to the states where the assembly signal is occupied. If the energetic advantage
of binding at an assembly signal goes to infinity the last two terms dominate. This expression can be
generalized for one special site at any position p1 ∈ P ≡ {1, 2, ..., q} in the following way

Ξ{p1} =
∑
np1 ,nq

(T p1C(p1))n0np1
(T q−p1)np1nq . (4.6)

Subsequently, the general semi-grand partition function with pi,m ∈ P can be written as

ΞS =
∑

{ni}i∈S ∪{nq}

(T p1C(p1))n0np1
(T p2−p1C(p2))np1np2 · ... · (T

q−pm)npmnq , (4.7)

where S ≡ {p1, p2, ..., pm} is the set of assembly signal positions.
Below we show how one can calculate the partition function with the cluster expansion such that

the equilibrium distribution can be calculated. However, this does not give the partition function in
closed form. Therefore is the general expression of the partition function useful. Also, one can easily
calculate 〈θ〉 from the partition function. In fact, one should be able to find the equilibrium distribution
by expanding the partition function in a power series of seq. This should give a polynomial of order q
where a term of order n gives the probability of having n proteins bound. Nevertheless, this will be left
for future research.

In the next section the reduction of Ξ{1} to the partition function of the zipper model will be shown.
This shows that the zipper model is contained within the Ising-S model.

4.2 Reduction to Zipper model

The Ising-S model contains the same parameters and the same physical processes as the zipper model.
Therefore, one could suspect some connection between the two models. Furthermore, the one-dimensional
Ising model exhibits a certain correlation length which gives the approximate size of a cluster with the
same sign. Since the Ising-S model is a Ising like model it should have that characteristic either. In addition
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to that, the zipper model is in essence protein cluster of variable length. This points to a correspondence
between the Ising-{1} and the zipper model in the limit of large correlation length. This only holds for
the Ising-{1} model for the zipper model has only one assembly signal at the end of the template. The
parameter which governs the correlation is σ′ = e−h

′+ε. If it goes to zero the energy barrier is high, so no
nucleation at normal sites is to be expected, and/or the protein-protein interaction is very strong which
favours cluster forming, i.e., a large correlation length. Below we will show that in the σ′ → 0 limit and
under further appropriate conditions the Ising-{1} indeed reduces to the zipper model.

From equation (4.3) and (4.5) we find, using the defining relation of the eigenvalues, that the semi-
grand partition sum of the Ising-{1} model is

Ξ{1}(σ′) =
1

λ+ − λ−

(
[seqσ

′χ1 + 1− λ−]λq+ + [−seqσ′χ1 + λ+ − 1]λq−

)
, (4.8)

where λ± = 1
2(1+seq±ζ), ζ ≡

(
(1−seq)2 +4σ′seq

) 1
2 , σ′ ≡ e−h′+ε, χ1 ≡ e−(h1−h′), seq ≡ e−ε−g+µp .

To take the limit of σ′ → 0 we Taylor expand around σ′ = 0. For σ′ = 0 we have ζ → ±(1− seq) and
one may pick any of the two signs because Ξ{1} is invariant under ζ → −ζ. We arbitrarily pick the plus
sign, such λ+ → 1 and λ− → seq, and obtain for the zeroth order

Ξ{1}(0) = 1. (4.9)

This is to be expected because for infinite nucleation cost one would expect that the probability of having a
nucleation is zero and thus is the only contribution to the partition function that of an uncovered template.
Including the first order term we obtain

Ξ{1}(σ′) ≈ 1 + χ1σ
′seq

q
χ1

+ (1− sqeq)(1− 1
χ1(1−seq))

1− seq
= 1 + χ1σ

′seq

q−1
χ1

+ 1− sqeq +
seq
χ1

sq−1
eq −1
1−seq

1− seq
,

= 1 + χ1σ
′seq

1− sqeq
1− seq

+ σ′seq

( q − 1

1− seq
+ seq

sq−1
eq − 1

(1− seq)2

)
. (4.10)

The last form of the expression shows that the partition sum is composed of three terms. The first term
gives the empty template contribution and is therefore equal to unity. The next gives the zipper states
contribution because χ1σ

′ = σ and therefore exactly corresponds to the zipper partition function from
section 3.1. The third term corresponds to competitor states. In fact, the first order approximation is equal
to the partition function of a self-competing system, Ξsc, which was introduced in section 2.3.1 and will be
calculated in chapter five. This is to be expected for the following reason. The self-competition partition
function contains all states with one nucleation: the zipper and the competitor states. Furthermore, every
nucleation generates a factor σ′. Therefore, the first order approximation in σ′ should give the zipper as
well as the competitor states.

To see when the competitor states are negligible we can put several conditions on the parameters. By
doing so we find

Ξ{1}(σ′) ≈ 1 + χ1σ
′seq

1− sqeq
1− seq

, (4.11)

for the conditions seq 6= 1, |1− seq|χ1 � 1 and χ1 � q. The second condition prevents the competitor
states to dominate if seq is close to unity. It ensures that the assembly signal is strong enough to withstand
the entropic attraction of the competitor states. The third condition ensures that a nucleation at a normal
site is not favourable. This is the proof of the condition for the zipper model which was quoted in section
2.3: ln q � h′ − h, identifying h = h1. For completeness, the condition χ1 � q guarantees that the
competitor states are negligible for seq → 1.

This analysis shows that the Ising-{1} model indeed reduces to the zipper model under appropriate
conditions. Also, it shows that the first order approximation of Ξ{1} comprises the zipper model together
with competitor states. That is, the first order approximation contains all states with one nucleation.
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4.3 Probability distribution

In this section we calculate the equilibrium probability distribution, Peq(n), of the Ising-S model. To
do so we introduce the cluster expansion in the footsteps of [24, 25]. The advantage of this method is
that it gives for a state with a fixed number of protein clusters k and proteins n what its multiplicity is.
That is, how many configurations exist with the same value of k and n. The Boltzmann weight of states
we consider in the Ising-S model can be expressed in terms of k and n. Therefore, one can in principle
calculate the partition function with the cluster expansion by adding up the Boltzmann factor of all states
multiplied with their respective multiplicity.
In section 4.1 we already found the partition function. However, we could not write the partition
function as a sum of the n = 0, n = 1, etc. contributions. This is possible with the cluster expansion
because by fixing n and summing over k one can find the contribution of any n. Subsequently, one
can write ΞS =

∑q
n=0W (n), with W (n) the portion of the partition function having n proteins, and

Peq(n) = W (n)
ΞS

. In the following we will first give a recipe to calculate the partition function with the
cluster expansion in general. Afterwards, we give for some special cases a detailed form of Peq(n).
Nevertheless, we do not succeed in obtaining a closed form expression of Peq(n).

4.3.1 Exact probability distribution

To find the probability distribution of the Ising-S model we will first determine the multiplicity factors
for different boundary conditions. These multiplicity factors give for a fixed number of protein clusters
k and number of proteins n how many configurations are possible. One can picture this possibility by
imagining one protein cluster of size n = q − 1 and imagining it has two configurations which both have
k = 1 and n = q − 1. We denote the multiplicity as Ωn1nq where n1 and nq are the occupation numbers
of the boundaries and therefore specify the boundary conditions.

First, consider a protein at both boundaries. The multiplicity of a chain of q sites can be written as

Ω11(n, q) =


0, n = 0, n = 1(
n−1
k−1

)(
q−n−1
k−2

)
, 2 ≤ n ≤ q − 1

1, n = q

, (4.12)

where q ≥ 3. Furthermore, the number of protein clusters satisfies 2 ≤ k ≤ k11
max = Max(Min(n, q −

n+ 1), 2). For the boundary conditions n1 = 0, nq = 1 or n1 = 1, nq = 0 we find

Ω10(n, q) = Ω01(n, q) =


0, n = 0(
n−1
k−1

)(
q−n−1
k−1

)
, 1 ≤ n ≤ q − 1

0, n = q

, (4.13)

where the number of protein clusters is given by 1 ≤ k ≤ k10
max = Max(Min(n, q − n), 1). Finally,

n1 = nq = 0 gives

Ω00(n, q) =


1, n = 0(
n−1
k−1

)(
q−n−1
k

)
, 1 ≤ n ≤ q − 2

0, n = q − 1, n = q

, (4.14)

where the number of spin up clusters satisfies 1 ≤ k ≤ k00
max = Max(Min(n, q − n− 1), 1). The sum of

the different multiplicities adds up to 2q, provided q ≥ 3. Of course, this is what to be expected for an
Ising like model.

The next step is to rewrite the general partition function as derived in section 2.4 such that we can put
it in the right form. With a little rewriting, as we did for the general partition function calculation, we
obtain

ΞS(µP ) =
∑
{si}

exp
[
(−h′ + ε)

q−1∑
i=0

(1− ni)ni+1 + (µP − g − ε)n−
∑
i∈S

(hi − h′)ni
]
. (4.15)
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To handle the special sites we now imagine breaking up the template into parts which have at the ends
special sites. Here we assume site 1 and q to be special no matter the value of h1 and hq for notational
convenience. This implies that for m ≥ 2 special sites we have m − 1 parts. Therefore, we define the
bare partition function Ξ

npx ,npy
bare (qxy) to be the partition function over all sites between special site px and

py. This partition function only depends on whether or not we have proteins occupying the special sites at
the ends of the part. By using this bare partition function we can rewrite ΞS as

Ξ
npx ,npy
bare (qxy) ≡

∑
npx+1,...,npy−1

exp
[
(h′ − ε)

py−1∑
i=px

nini+1 + (µP − g − h′)
py−1∑
i=px+1

ni

−bpx
2
npx −

bpy
2
npy

]
, (4.16)

ΞS(µP ) =
∑
{ni}i∈S

Ξ
n1,np2
bare (q12)Ξ

np2 ,np3
bare (q23) · ... · Ξnpm−1 ,nq

bare (qm−1,m), (4.17)

where we defined py − px + 1 ≡ qxy, bp1 ≡ b1 = 2(h1 − µP + g), bpm ≡ bq = 2(hq − µP + g) and
bi = hi − µP + g for i ∈ S/{1, q} and px, py ∈ P ≡ {1, 2, ..., q}. In order to find the general partition
function we first calculate the bare partition function with the cluster expansion such that we can calculate
the weight functions. We have to calculate the bare partition function for all values of npx and npy , that is,
for all boundary conditions. To do this we may use equation (4.12) up to and including (4.14). This gives
for the part of the template, having n proteins on it, from px to py

Ξ
npxnpy
bare (qxy) = e−

bpxnpx+bpynpy
2

qxy∑
n=0

Wnpxnpy (n, qxy), (4.18)

W 11(n, qxy) =


∑k11

max(n,qxy)
k=2 Ω11(n)σ′k−2sn−2

eq , 2 ≤ n ≤ qxy − 1
s
qxy−2
eq

σ′ , n = qxy

0, otherwise

, (4.19)

W 10(n, qxy) = W 01(n, qxy) =

{∑k10
max(n,qxy)
k=1 Ω10(n)σ′k−1sn−1

eq , 1 ≤ n ≤ qxy − 1

0, otherwise
, (4.20)

W 00(n, qxy) =


∑k00

max(n,qxy)
k=1 Ω00(n)σ′ksneq, 1 ≤ n ≤ qxy − 2

1, n = 0

0, otherwise

. (4.21)

With the expression for the bare partition function found we can calculate the partition function ΞS for a
few special cases. We will focus on the case S = {1, q} and S = {1, q∗, q}, where in the latter case q is
odd and q∗ = q+1

2 . Afterwards, we will discuss the influence of the assembly signals on the equilibrium
distribution.

4.3.2 Ising-{1, q} model

Suppose we have two special sites which are located at the ends of the template. Then we have S =
{1, q} = {p1, p2} and we obtain for the partition function the following

Ξ{1,q}(q) =

q∑
n=0

(
χ1χqs

2
eqσ
′2W 11(n, q) + χ1seqσ

′W 10(n, q) +

χqseqσ
′W 01(n, q) +W 00(n, q)

)
,

≡
q∑

n=0

W {1,q}(n), (4.22)
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where seq = eµP−ε−g, σ′ = e−h
′+ε and χi = e−(hi−h′). Now we may easily find the equilibrium

distribution for this case

P {1,q}eq (n) =
W {1,q}(n)

Ξ{1,q}
,

=
1

Ξ{1,q}

(
χ1χq(1 + δn,q(

1

σ′
− 1))

k11
max(n)∑
k=2

Ω11(n, q)σ′ksneq +

(χ1 + χq)

k10
max(n)∑
k=1

Ω10(n, q)σ′ksneq +

k00
max(n)∑
k=1

Ω00(n, q)σ′ksneq + δn,0

)
. (4.23)

From this expression we can see immediately that the weight of n = q is the same as for the zipper model
if χq = 1 and one identifies χ1σ

′ = σ. This is to be expected because for n = q there is only one possible
configuration in the Ising-S model as well as in the zipper model.

4.3.3 Ising-{1, q∗, q} model

Suppose q is odd, we have two special sites at the ends and one exactly in the middle at q∗ ≡ q+1
2 . Then

we obtain from equation (4.17) with S = {1, q∗, q}

ΞS(µP ) =
∑

n1,n∗,nq=0,1

Ξ
sl,sq∗
bare (q∗)Ξ

sq∗ ,sr
bare (q∗), (4.24)

where we defined nq∗ ≡ n∗. From equation (4.18) we obtain

ΞS(µP ) =
∑
{ni}i∈S

e−
b1
2
n1−b∗n∗−

bq
2
nq

nl,max∑
ml=nl,min

nr,max∑
mr=nr,min

Wn1n∗(ml, q∗)W
n∗nq(mr, q∗),

≡
∑
{si}i∈S

e−
b1
2
n1−b∗n∗−

bq
2
nqΓ, (4.25)

where l stands for the left part of the template between site 1 and q∗ and r stands for the right part. Also,
we defined nl,min = n1 +n∗, nl,max = q∗−2 +nl,min, nr,min = nq +n∗ and nr,max = q∗−2 +nr,min.
To calculate the equilibrium distribution we wish to rewrite this double sum as a double sum over the total
number of proteins on the entire template and over the number of proteins on either the left or the right
part. It turns out that this requires to sum over the part which has the least possible proteins given the
boundary conditions. Therefore we introduce α

α = α(n1, nq) =

{
l, nq ≥ n1

r, n1 > nq
, ᾱ =

{
r, α = l

l, α = r
.

This allows us to write

Γ =
[ n1,b,f−1∑
n=nmin

n−nᾱ∑
mα=nα,min

+

nmax∑
n=n1,b,f

nα,max∑
mα=n−n1,b,f+nα,min

]
·

[
δα,lW

n1n∗(mα, q∗)W
n∗nq(n−mα + n∗, q∗) +

δα,rW
n1n∗(n−mα + n∗, q∗)W

n∗nq(mα, q∗)
]
,

≡
[ n1,b,f−1∑
n=nmin

n−nᾱ∑
mα=nα,min

+

nmax∑
n=n1,b,f

nα,max∑
mα=n−n1,b,f+nα,min

]
W (n1, n∗, nq, n,mα, q∗) (4.26)
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where n = ml +mr, nmin = nl + n∗ + nr, nmax = q − 3 + nmin and the number of proteins needed to
fill the α part is n1,b,f = q∗ − 2 + nmin. The idea of this rewriting is that the first double sum holds for
all n at which the α part can not be completely filled. The second sum holds for all n at which the α part
can be completely filled. Now we introduce the bare weight function

W
{1,q∗,q}
bare (n1, n∗, nq, n, q∗) ≡


0, n < nmin∑n−nᾱ

mα=nα,min
W (n1, n∗, nq, n,mα, q∗), nmin ≤ n < n1,b,f∑nα,max

mα=n−n1,b,f+nα,min
W (n1, n∗, nq, n,mα, q∗), n1,b,f ≤ n ≤ nmax

0, n > nmax

,

such that

ΞS(µP ) =
∑
{si}i∈S

e−
b1
2
n1−b∗n∗−

bq
2
nq

q∑
n=0

W
{1,q∗,q}
bare (n1, n∗, nq, n, q∗),

≡
q∑

n=0

W {1,q∗,q}(n). (4.27)

Now one may find the equilibrium distribution exactly by calculating: P {1,q∗,q}eq (n) = W {1,q∗,q}(n)
ΞS(µP )

.
Because the expression is not closed it is not easy to calculate by hand. However, a program like
Mathematica would suffice.

In the next paragraph we will consider what the influence of the special sites is on the equilibrium
distribution.

4.4 Analysis

In the previous section expressions were obtained for the equilibrium distribution of the Ising-{1, q} and
the Ising-{1, q∗, q} model. To analyse its behaviour we take for simplicity χ1 = χ2 = χ3 ≡ χ. Therefore,
q, seq, σ and χ are the relevant parameters. In the following will first the interchangeability of σ and q
be shown, with regard to their effect on having strong correlation or not. Subsequently, to see the effect
of the assembly signals, nucleation entropy and positional entropy only, we put seq = 1 such that their
is no energetic advantage/disadvantage of having a protein cooperatively bound at a ’normal’ site. The
influence of assembly signals is opposed to that of positional entropy. For if the assembly signal is strong
there will be a single posible position for a protein cluster of given size. Therefore, solely the effect of the
assembly signals and entropy can be studied.

First, we consider the effect of σ′ and q. For larger q one would expect more nucleation entropy
driven behaviour for there are more possibilities for nucleation. Next, for large σ′ = e−h

′+ε - so low
nucleation cost - one would also expect more nucleation entropy driven behaviour. To make an estimate of
the parameter values of q and σ′ at which entropic or energetic dominated behaviour occurs we consider
the correlation length of the partition functions which were calculated in section 4.1. There we see that the
partition function comprises of a linear combination of λq+ and λq− over a chain of length q. Furthermore,
if seq → 1 is λ+− λ− ≈ 2σ′

1
2 . So for low values of σ′ - which implies high nucleation cost, long clusters

and thus a high correlation - we expect λ+ ≈ λ−. Therefore, the relative sizes of the eigenvalues signify
in which regime the system is. To obtain an expression of the correlation length we rewrite the quantity(
λ−
λ+

)q
, for σ′ < 1, as (λ−

λ+

)q
= e

q ln
λ−
λ+ ≡ e−

q
ξ , (4.28)

with ξ ≡ −1

ln
λ−
λ+

the correlation length. From this expression one can see that if λ+ ≈ λ− there is a long

correlation length because then ξ � q is required. On the other hand, for λ+ � λ− the correlation length
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is much smaller than q. The value of ξ at which the crossover between the two regimes lies is q. So, if we

consider seq = 1 for the above mentioned reason, we obtain the following relation q ln
(

1 +
2
√
σ′c

1−
√
σ′c

)
= 1,

where σ′c is the crossover value at which ξ = q. Since typically q � 1 it is from this relation safe
to assume that

√
σ′c � 1. Therefore, we have 2q

√
σ′c = 1. This shows clearly that for larger q the

crossover lies at a lower value of σ′. This is to be expected because for larger q there should be a greater
nucleation cost in order to suppress entropic nucleation effects. From this analysis we conclude that it
is only necessary to analyse one value of q at different values of σ′ around σ′c in order to see nucleation
entropic effects or not.

Furthermore, in section 4.2 it was shown that for seq → 1 the competitor states - the position entropy
favourable states - are suppressed for χ� q. To see the influence of positional entropy we will cover the
cases where this condition is either satisfied or not. With these considerations we choose two parameter
sets which should give all interesting behaviour of the system. For the position entropy dominating
regime we choose q = 75, seq = 1, χ = e3 and for the assembly-signal-dominated regime we choose
q = 75, seq = 1, χ = e9. We plot the logarithm of the equilibrium probability, Peq(n) versus n, which
is scaled to the probability of having an empty template for graphical convenience. See for example
figure 4.1. In the following paragraphs the Ising-{1, q} model will first be analysed. Afterwards, will the
Ising-{1, q∗, q} model be covered.

4.4.1 Ising-{1, q} model

Figure 4.1: The equilibrium probability distribution of the Ising-{1, q} model for q = 75, various σ′,
χ = e3 and seq = 1. It shows the logarithmic probability of having a template with n proteins attached,
relative to the the probability of an empty template, versus the number of proteins attached. The value of
n does not specify a position on the template but the number of bound proteins which can be distributed
in many different configurations. The crossover value is σ′c = e−10. For lower σ′ a ln q − n dependence
is visible because of the multiplicity of competitor states. For higher values the distribution becomes
Gaussian.

To analyse the probability distribution we first consider the position entropy dominated regime. The
resulting distribution is given in figure 4.1 for multiple values of σ′. In this regime we have σ′c = e−10.
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Therefore, if we consider lnσ′ = −12, we expect strongly correlated behaviour. For this σ′ value there
could, in principle, be a nucleation at both assembly signals. However, since we are in the position entropy
dominated regime, these states gain a factor σ′χ = e−7 � 1 relative to a single assembly signal nucleated
state. Therefore, the states with two nucleations are negligible and we expect the Ising-{1, q} model to
behave as the Ising-{1} model for n < q. For n = q both assembly signals are necessarily occupied.
From section 4.2 we have that the Ising-{1} model contains up to first order in σ′ - so for one nucleation -
zipper as well as competitor states. That is, assembly-signal-dominated and position-entropy dominated
states. This is what is observed in figure 4.1 because, unlike figure 3.1, the distribution is not horizontal.
Instead, it shows a ln(q − n) behaviour which is to be expected because from the theory of section 2.3.1
we know that the competitor states have a multiplicity factor of q − n.

For higher values of σ the nucleation entropy slowly starts dominating for σ′ > σ′c. At lnσ′ = −8
the distribution has a local maximum at n = 20. Next, for σ′ = e−6 a parabolic shape of the distribution
arises for 1 < n < q. Finally, at σ′ = e−4 a very clear parabolic behaviour is visible. This parabolic
behaviour implies that the distribution is is Gaussian for we plotted the logarithm of the distribution. This
Gaussian behaviour is to be expected because the binomial distribution - which determines the multiplicity
as given by equation (4.12) up to and including (4.14) - can be approximated for large q by a normal
distribution.

Another aspect is the energetic advantage of binding at an assembly signal. As noted above, for
0 < n < q there is only one nucleation, thus only one assembly signal is occupied. Therefore, the second
assembly signal only favours the state n = q where both signals are occupied by the same cluster. This is
a significant effect for σ′ ≤ σ′c. For higher values its effect diminishes.

Figure 4.2: The equilibrium probability of the Ising-{1, q} model for q = 75, various σ′, χ = e9 and
seq = 1. It shows the logarithmic probability of having a template with n proteins attached, relative to
the the probability of an empty template, versus the number of proteins attached. The crossover value
is σ′c = e−10. For lower σ′ a lnn dependence is visible due to two-cluster states. For higher values the
distribution becomes Gaussian.

For the assembly signal dominated regime is the distribution given in figure 4.2. It shows in the
strongly correlated regime, σ′ = e−12, a lnn − 1 behaviour. This is new compared to the position
energy dominated regime. It originates from two nucleations at the ends, such that both assembly signals
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are occupied. This gives a multiplicity factor of n − 1 because the proteins can be arranged in n − 1
equivalent ways. For σ′ = e−8 this two nucleation behaviour is even more apparent. At larger values of
σ′ the nucleation entropy takes over such that the distribution becomes nearly Gaussian for σ′ = e−4 at
2 < n < q. At n = q the probability exhibits a jump. This is because the two clusters merge into one
cluster. Therefore, the system gains a factor 1

σ .

4.4.2 Ising-{1, q∗, q} model

Figure 4.3: The equilibrium probability of the Ising-{1, q∗, q} model for q = 75, various σ′, χ = e3 and
seq = 1. It shows the logarithmic probability of having a template with n proteins attached, relative to
the the probability of an empty template, versus the number of proteins attached. The crossover value is
σ′c = e−8.66. For lower σ′ a lnn dependence is visible at n < q∗ due to multiplicity of one nucleation at
position q∗. A ln q − n dependence occurs for n > q∗ due to competitor states. For higher values of σ′

the distribution becomes Gaussian.

To analyse P {1,q∗,q}eq in the position entropy dominated regime, which is given in figure 4.3, we first
note that with q = 75 we have q∗ = 38 wherefore σ′c is larger than for the Ising-{1, q} model. It gives
lnσ′c = −8.66. Therefore, with σ′ = e−10 we expect strongly correlated behaviour. In this regime we
see more complicated behaviour than for the Ising-{1, q∗, q} model. There is ln q − n behaviour for
n ≥ q∗ and some other entropic behaviour for n < q∗. This behaviour stems from the fact that with three
assembly signals a new entropic factor comes into play. The states with one nucleation, namely that of the
assembly signal at q∗, carry a multiplicity factor of n since the cluster can have n equivalent positions.
Therefore, the distribution shows lnn behaviour for these values of n. Furthermore, for higher values of
σ′ the Gaussian behaviour sets in like for the Ising-{1, q} model.

The energetic advantage of binding at an assembly signal is interesting. For σ′ ≤ σ′c a jump in the
probability is observed at n = q∗. This comes from the fact that the cluster which occupied the central
assembly signal ’reached’ an other assembly signal. Therefore, for n ≥ n∗ the states where one cluster
covers two assembly signals while the third is unoccupied dominate. Finally, for n = q, the third assembly
signal is reached which gives another probability jump.

50



Figure 4.4: The equilibrium probability of the Ising-{1, q∗, q} model for q = 75, various σ′, χ = e9 and
seq = 1. It shows the logarithmic probability of having a template with n proteins attached, relative to
the the probability of an empty template, versus the number of proteins attached. The crossover value
is σ′c = e−8.66. For lower σ′ a 3 lnn dependence is visible at n < q∗ due to multiplicity of the three
nucleation state. For n > q∗ this state give rise to a dominant lnn dependence. For higher values of σ′

the distribution becomes Gaussian.

For the assembly signal dominated regime is the distribution given in figure 4.4. In the strongly
correlated regime, for σ′ = e−10, there is similar behaviour as for the position entropy dominated regime
at n < q∗, but very different behaviour for n ≥ q∗. This can be understood by considering three dominant
states which mainly contribute in this regime. First, the states with one nucleation at position 1,q∗ or q.
Moreover, the states with two of the three assembly signals nucleated. Finally, the state where all assembly
signals are nucleated. Since every nucleation at an assembly signal gives a factor χσ′ one could expect the
three and two nucleation states to be unfavourable. However, this is not the case for the multiplicities are
not to be neglected. As a rule of thumb does the multiplicity of a state scale as nx−1, with x the number of
loose ends of that state. A loose end being an end of a cluster which is not at an assembly signal. This rule
of thumb only holds in the assembly signal dominated and strong correlated regime. Therefore, for n < q∗
does the three nucleation state multiplicity, for example, scale as n3 while that of the two nucleation state
at position 1 and q∗ scales as n2. From this two nucleation state one can understand this rule of thumb.
It has two loose ends at the left part and one loose end at the right part. For a given number of proteins
at the right part, proteins of the left part can be arranged in a number of ways which scales roughly as
n. Independently, the right part can have n proteins such that the total multiplicity goes as n2. One can
calculate the multiplicity exactly and finds n(n−1)

2 ∝ n2. Therefore, in this regime for n < q∗ = 38 does
n3, for increasing n, quickly start to dominate over n2. Also, the cost of nucleation is only e−1. These
two reasons combined make the three nucleation state dominant and explains the the 3 lnn behaviour of
the distribution for n < q∗. For n < q∗ this state is also dominant. The reason is that for these values the
probability is increasing like lnn instead of decreasing as ln q − n. The only possible state to give this
behaviour is the three nucleation state since its multiplicity predominantly scales as n− q∗ while the two
nucleation states have a multiplicity of either n0 or q − n.

Furthermore, for higher values of σ′ the Gaussian behaviour starts dominating. The jump of the
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probability at n = q∗ is mainly caused by the merging of two clusters of the three nucleation state at either
the left or the right part. This gives a factor 1

σ′ . The jump at n = q is for the same reason.
In this chapter we encountered twice competitor states, more precisely, the self-competition states

as introduced in section 2.3.1. In the first order approximation of the partition function of the Ising-{1}
model they occurred. Afterwards, they were found to be dominant in the equilibrium distribution of
both the Ising-{1, q} and the Ising-{1, q∗, q} model for the position entropy dominated regime. The
next chapter will focus in more detail on competition. It will cover both self-competition and species
competition.
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Chapter 5

Competition

As introduced in section 2.3.1 we consider two kinds of competition: self-competition and species
competition. Both kinds of competition are between position entropy rich states - the competitor states -
and binding energy rich states - the zipper states. In self-competition both kind of states are encountered
on the same template. For species competition one species only has competitor states while the other only
has zipper states. In the following we will first consider self-competition. Afterwards, we will have a
short word on species competition.

5.1 Self-competition

The self-competition partition function, as introduced in section 2.3.1, can be calculated as

Ξsc = 1 + χσ′seq
1− sqeq
1− seq

+ σ′seq
−1 + q(1− seq) + sqeq

(1− seq)2
, (5.1)

with σ′ = e−h
′+ε the Boltzmann factor of the nucleation cost, χ = e−(h−h′) the factor for binding at the

assembly signal and seq = eµP−g−ε the factor for having a protein cooperatively bound. This partition
function was encountered in section 4.2 as the first order approximation of the partition function of the
Ising-{1} model. To see the competition between the competitor and zipper states we define, respectively,
the fraction of templates in a competitor and zipper state as

Pzip ≡
Ξzip(q)− 1

Ξsc
, Pcomp ≡

Ξcomp(q − 1)− 1

Ξsc
, (5.2)

where the definitions of the zipper and competitor partition functions from section 2.3.1 was used.
Moreover, the average occupation numbers of both kind of states are important measurable quantities

〈θ〉zip ≡
∂ ln

(
Ξzip(q)− 1

)
∂µP

, 〈θ〉comp ≡
∂ ln

(
Ξcomp(q)− 1

)
∂µP

. (5.3)

All these quantities depend on seq which is determined by mass conservation

S = seq + Sλ〈θ〉sc,

with S = φP
φc

the total concentration of proteins relative to the critical concentration, λ = qρT
φP

the
stoichiometric ratio of the number of available binding sites in the system to the total number of proteins
and 〈θ〉sc the occupation number of all templates. This equation determines seq = seq(S, λ, σ

′, χ). The
expression of 〈θ〉sc is naturally given by

〈θ〉sc ≡
∂ ln Ξsc
∂µP

= Pzip〈θ〉zip + Pcomp〈θ〉comp. (5.4)
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Figure 5.1: For any value of S, λ, σ′ and χ the values of αo and αf
χ appear to lie on this curve. The origin

of this universality is not known. However, the curve can be used to determine the strenght of the zipper
assembly signal: χ.

With these definitions we introduce the specificity ratios, αf ≡
Pzip
Pcomp

and αo ≡ 〈θ〉zip
〈θ〉comp , to character-

ize the competition. Once could ask whether the specificity ratios have some relation. It turns out that for
given S, λ, σ′ and χ the specifity ratios lie somewhere on the curve given in figure 5.1. For increasing
values of αf

χ greater than unity, αo slowly goes to unity. In this limit λ → 0 wherefore the occupation
ratio goes unity and αf goes to infinity. Furthermore, it shows that αf scales with χ. This scaling relation
can easily be seen by computing αf . The universality observed in figure 5.1 is in essence a characteristic
of the mass conservation equation. Namely, it gives seq = seq(S, λ, σ

′, χ) and subsequently determines
αf and αo. Therefore, in principle one should be able to show this universality arising from the mass
conservation equation. however, this is left for future research.

The universality curve is useful for the following reason. If one measures both αf and αo, one can
infer with this curve two possible values of χ. However, this does not specify χ uniquely. A way to get
around this is by considering two different systems with the same χ and making measurements of both of
them, so one with {σ′1, λ1, S1} and the other with {σ′2, λ2, S2}. These parameters can have any value. For
both systems αf and αo can be measured experimentally. So for system one αf,1 and αo,q are measured,
likewise for system two. Subsequently, from the universal curve does αo,1 gives two possible values of χ
- one left of the maximum and one right of the maximum - as well as αo,2 does. The value of χ which
is possible for both systems is the value which the system has. In this way the strength of an assembly
signal can be readily measured.

To have a visualization for the point at the curve which a given combination of S, λ, σ′ and χ gives,
we show in figure 5.2 αf as a function of λ for S = 2, σ′ = e−4 and various values of χ. It shows that αf
is largest for λ→ 0. In this limit there is no competition, for seq = S and thus the competitor and zipper
states are not influenced by each other. Therefore, the amount of fully covered templates is largest and
thus αf is largest since fully covered templates are per definition zipper like. For 0 < λ < 1 the ratio is
for increasing λ first relatively constant and subsequently drops sharply around λ = 1. For λ > 1 the ratio
steadily decreases. This is to be expected since competition should become important if the number of
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Figure 5.2: For S = 2 and σ′ = e−4 is αf given as a function of λ. It shows that αf indeed scales with χ.
Also, if χ = q − 1 we have αf → 1 in the limit of infinite competition λ→∞. This is to be expected
because under this condition are the entropic and energetic gain of binding the first protein at, respectively,
the zipper and competitor states equal.

available proteins is of the order of the available number of binding sites. Furthermore, for χ = q − 1 one
observes that αf → 1 for λ→∞. The reason is that in this limit the competition will mainly be among
states with only one protein bound. For the zipper states the binding of a protein at the assembly signal
gives χ while the binding of one protein in a competitor state has a multiplicity factor of q − 1. Therefore,
if these two contributions are equal one would expect none to have an advantage wherefore αf = 1. In
the next section, a very short note will be given on the essence of species competition.

5.2 Species competition

In species competition one species has a template with a (strong) assembly signal - therefore giving
rise to zipper states only - while the other species has no signal and thus only competitor states. The
system can be well characterized from figure 5.3, where σ′ = e−12, χ = e9 and λc,zip = λc,comp = e4

where λc ≡ qρT
φc

is the number of available binding sites on a template species relative to the critical
concentration. It shows that for S > 1 only the zipper templates are being filled up to S ≈ λc,zip, the
point where the system has enough proteins to, in principle, fill all zipper templates. Nevertheless, for
increasing S the growth halts at 〈θ〉zip ≈ 0.96. While it halts the competitor templates are filled and
finally both occupancies rise to unity. The flatness of the plateau is dependent on σ′ and the breadth on χ.
This is the most important characteristic of species competition. Varying λc,zip and λc,comp gives rise to
the same kind of behaviour. An interesting feature is the value of 〈θ〉zip at which the filling halts. The
investigation of this property is left for future research.
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Figure 5.3: For both species is 〈θ〉 given as a function of S for λc,zip = λc,comp = e4, σ′ = e−12 and χ =
e9. It shows for increasing S that the zipper templates are first filled up to soe treshold value 〈θ〉 = 0.96.
Afterwards, the competitor templates are filled until both species are filled at S ≈ λc,zip + λc,comp.
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Chapter 6

Conclusion and discussion

In this thesis on linear self-assembly four main topics have been discussed. The dynamics of zipper self-
assembly, the agreement of these calculated dynamics with experiment, the equilibrium distribution of the
Ising-S model and the competition between energy versus entropy rich states. In the following a summary
of the results of all topics will be given, their range of validity will be discussed and recommendations for
future research will be given.

Summary

The dynamics of zipper self-assembly show surprising behaviour when probed with a finite protein
concentration. It turns out that an overshoot in the concentration of fully covered templates can occur.
Also, undershoots in the concentration of empty templates and proteins are found. The cause of this
behaviour is not yet clear.

Experimental data which shows zipper like behaviour can be fitted reasonably well with the zipper
dynamics. For the SQ10 data set is found that ε + g = −16.97, −h + ε = −5.521 and for SQ14
ε+ g = −10.40, −h+ ε = −3.00, with all energies in units of kBT . All these values are of the expected
orders of magnitude for the binding energy scales of self-assembly are of the order of 100. Furthermore,
for NP3 the fits of λ = 0 and λ = 0.324 give similar results which is to be expected because both have
excess protein concentration. For λ = 0.324 we find ε+ g = −18.36, −h+ ε = −5.30. With λ = 0 is
ε+ g = −18.04, −h+ ε = −3.51 found.

For the Ising-S model the general partition function can be calculated. The Ising-{1} partition function
reduces in first order of the nucleation cost to the self-competition partition of the zipper model. This
is to be expected because for a single nucleation only zipper and competitor states are possible. For the
Ising-{1, q} and Ising-{1, q∗, q} model the equilibrium distribution can be calculated, though not in a
closed form. Upon analysis of this distribution it was found that three regimes occur. The first, where
nucleation entropy dominates, has a Gaussian distribution due to low nucleation cost. The other regimes
have high nucleation cost. The second regime is position-entropy-dominated with weak assembly signals
and costly nucleation. The third is assembly-signal-dominated and the nucleation of all assembly signals
gives rise to new entropic behaviour.

Finally, in self-competition it turns out that the specificity ratio of the fractions of zipper and competitor
states obey a universal curve. This curve can be used to determine the strength of an assembly signal
through measurements. Furthermore, filling of templates when increasing protein concentration shows a
plateau for species competition. The zipper states are filled up to some particular value which defines
the height of the plateau. Afterwards, the competitor states start to be filled also. Finally, they are both
completely filled simultaneously.

Discussion

With these main results given we now discuss their validity.
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The peculiarities in the zipper assembly dynamics are criterion dependent. The reason is that for some
assemblies the overshoot can be very small. The question is whether one defines this to be an overshoot or
not. At a certain point uncertainty in the numerical simulation comes into play. This makes boundaries in
the peculiarities phase diagram uncertain.

Next, for the comparison of data to the zipper assembly a great uncertainty arises because the data
is obtained by counting. This obeys Poisson statistics and since the counts are of the order 101 per
bin, the uncertainty is very large. This translates into a large uncertainty in the the calculated energies.
Furthermore, due to the availability of four fitting parameters the predictive value of the fit is questionable.
The main features of the data could be fitted by pinning down the fitting parameters. Discrepancy with
other features can be attributed to uncertainty in the data.

Moreover, the calculated equilibrium distributions for the Ising-{1, q} and Ising-{1, q∗, q} model
are exact but for more assembly signals the calculations become ever more complex. This makes them
unsuitable for investigating the effect of more assembly signals.

Recommendations

For future research we provide the following recommendations.
To obtain a better understanding of the dynamical equations we propose that approximations, for

example those of appendix C, are worked out and that a more mathematical approach is used to analyse
the system of non-linear, first order couple differential equations. Possibly, more general theorems can
shed light on the occurrence of over- and undershoots.

Furthermore, to be able to judge better the validity of the fit of experimental data we propose data
with more length measurements, of the order of 103 per bin, such that the model can possibly be refuted.
Also, an accurate estimation of the offset time would be helpful because it gives one fitting parameter less.
This would also increase the possibilities of refutation.

Next, for the Ising-S model we recommend to expand the partition function in a power series of
seq. This should give rise to a polynomial since the cluster expansion is essentially such a polynomial
expansion and it is exact. By expanding the partition function, however, one does not need to sum over the
number of clusters. Therefore, starting from a closed form expression, one should be able to find the terms
of the polynomial expansion in a more explicit form than the result obtained with the cluster expansion.
In this way the equilibrium distribution can possibly be found in closed form. This possibility can be seen
by using Mathematica to make such an expansion of the partition function for definite parameter values.

Finally, for self-competition should it be possible to derive the universal curve from mass conservation.
However, this implies that seq = seq(S, λ, σ

′, χ) needs to be found which is non-trivial. Therefore, some
novel method of attacking this problem should be used.
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Appendix A

Canonical multi-component derivation

In section 2.1 we derived the sub-grand canonical partition function describing our system in the grand
canonical ensemble. One might object that this is a strange description because in any self-assembly
experiment one does not have an infinite bath of particles which determines the chemical potential, but one
has a given V , T and N . Therefore we will give in this appendix a derivation in the canonical ensemble.
Of course, in the thermodynamic limit a description in the grand canonical ensemble and in the canonical
ensemble should be give the same results. Nonetheless, it is instructive to make the derivation in the
canonical ensemble also. We will do this both for one kind of templates and for two kinds of templates.

A.1 Lagrange formalism

To calculate the equilibrium quantities in the canonical ensemble we write down the Helmholtz free energy
in the same way as in section 2.1 with exactly the same definitions. This gives

F = ρP

[
ln ρP − 1

]
+
∑
{ni}

ρT ({ni})
[

ln
(
ρT ({ni})

Vmol,T ({ni})

Vmol,P

)
− 1 + Eint({ni})

]
,

To find the equilibrium values of ρP and ρT ({ni}) we should minimize F with regard to the densities.
Nevertheless, to do so we should take into account that we have a finite amount of both templates
and proteins. The fixed total concentration of templates is ρT =

∑
{ni} ρT ({ni}) and the fixed total

concentration of protein is φP = ρP +
∑
{ni} nρT ({ni}). To take this into account we use the Lagrange

multiplier formalism to define FL. We obtain

FL = F + λ0

(
φP − ρP −

∑
{ni}

nρT ({ni})
)

+ λ1

(
ρT −

∑
{ni}

ρT ({ni})
)
,

To find the equilibrium densities we minimize FL

ρP = exp[λ0], (A.1)

ρT ({ni})
Vmol,T ({ni})

Vmol,P
= exp[−Eint({ni}) + nλ0 + λ1], (A.2)

from which we see that the λ0 simply takes the role of µP and λ1 = µT .

A.2 Multi-component

One might conduct an experiment with multiple templates species. This can be, for example, the case if
one uses zipper model templates together with competitor zipper model templates. If one mixes these two
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kinds of templates the difference between the two with regard to occupation should be observable. In this
case we have conservation of the two kinds of templates and of the proteins. This gives for the Helmholtz
free energy

F = ρP

[
ln ρP − 1

]
+
∑
{ni}

ρT,1({ni})
[

ln
(
ρT,1({ni})

Vmol,T1({ni})

Vmol,P

)
− 1 + Eint,1({ni})

]
+

+
∑
{ni}

ρT,2({ni})
[

ln
(
ρT,2({ni})

Vmol,T2({ni})

Vmol,P

)
− 1 + Eint,2({ni})

]
,

where the sums runs over the allowed configurations of the respective model. To take into account the
finite amount of templates and protein we write

FL = F + λ0

(
φP − ρP −

∑
{ni}

nρT,1({ni})−
∑
{ni}

nρT,2({ni})
)

+ λ1

(
ρT,1 −

∑
{ni}

ρT ({ni})
)

+

λ2

(
ρT,2 −

∑
{ni}

ρT,2({ni})
)
,

To find the equilibrium densities we minimize FL

ρP = exp[λ0], (A.3)

ρT,1({ni})
Vmol,T1({ni})

Vmol,P
= exp[−Eint,1({ni}) + nλ0 + λ1], (A.4)

ρT,2({ni})
Vmol,T2({ni})

Vmol,P
= exp[−Eint,2({ni}) + nλ0 + λ2], (A.5)

from which we see that λ0 = µP , λ1 = µT,1 and λ2 = µT,2 in the same way as for the one-component
case. These results show that the distribution of the two different templates species is connected through
λ0, or ρP . The density of unbound proteins determines of both templates species the distribution.

60



Appendix B

Mass conservation analysis

In section 3.1 we found 〈θ〉 and Peq in equilibrium as a function of seq, that is, s in equilibrium. From the
definition of s = ρP

φc
we can see that its the density of unbound proteins relative to the critical density

φc = eε+g. Nevertheless, experimentally we do not impose the density of unbound proteins but the total
density of proteins S ≡ φP

φc
. This total density must constant - we do not consider protein degradation -

and the sum of the unbound and bound proteins. This gives

φP = ρP (t) +

q∑
n=0

nρT (n, t),

S = s(t) + λc〈θ〉(t),

where λc = ρT q
φc

, φc = eε+g, ρT =
∑q

n=0 ρT (n) and 〈θ〉 =
∑q

n=0
n
q
ρT (n)
ρT

. This expression holds in and
out of equilibrium. In particular, when the system has reached equilibrium we have that s = seq and from
equation (3.2)

〈θ〉(seq, σ) =
σ

q

seq
(1− seq)

( 1− (q + 1)sqeq + qsq+1
eq

1− seq + σseq(1− sqeq)

)
. (B.1)

With this expression we have the following equation for seq = seq(S, λc, σ)

S = seq + λc〈θ〉(seq, σ). (B.2)

This is an implicit equation for seq(S, λc, σ). One would like to know seq(S, λc, σ) exactly because it
gives the concentration of unbound proteins and with that also the equilibrium properties of the system.
To obtain a more explicit equation we rewrite the mass conservation equation to

S + seq

(
S(σ − 1)− (1 + S)− λcσ

q

)
+ s2

eq

(
1− (1 + S)(σ − 1)

)
+ s3

eq(σ − 1) +

σsq+1
eq

(
λc
q + 1

q
− S + seq(1 + S − λc)− s2

eq

)
= 0, (B.3)

which we can use to obtain approximations for seq(S, λc, σ), or seq(S) for simplicity.
However, first we take a closer look at equation (B.2). First thing to note is that for all S, seq(S) < S,
since λc〈θ〉(seq(S), σ) > 0 for all values of seq. Second, if λc � 1 then we have that seq(S) ≈ S
because 〈θ〉 ∈ [0, 1] for all values of seq. This implies that for λc � 1 we know 〈θ〉(S) because we
know 〈θ〉(seq). Furthermore, if λc � 1 we have three seperate S regions depending on the relative
size of seq compared to 〈θ〉. The first region defined by λc〈θ〉 � seq has from mass conservation that
〈θ〉(seq(S), σ) = S

λc
, so 〈θ〉 grows linearly. The second and third have λc〈θ〉 � seq. In the second region

we have seq
S = 1− λc

S 〈θ〉 ≈ 1 because 〈θ〉 ∈ [0, 1] and S > seq � λc. So we have seq(S) ≈ S. In the
third region we have S � 1. From equation (B.1) we see that if seq � 1, we have 〈θ〉 ≈ seq

σ
q . This
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implies that seq(S) ≈ S
1+λcσ

q

, because seq < S � 1.

The above considerations show that a transition from one region to another happens when λc〈θ〉 =
seq. This defines two crossover points since we have three different regions. Furthermore, from mass
conservation we immediately obtain seq = S

2 at the crossover points. We may find what this value of S is
by putting seq = S

2 in the defining equation for seq. The result is shown in B.1. This figure shows for
σ = e−8 what the two crossover values for S, Sc,1 and Sc,2, are and also what Sn is as a function of λc.
Below we will explain what Sn is. As explained above we expect for S � Sc,2 and for S � Sc,1 that
seq ≈ S. For Sc,1 � S � Sc,2 we expect to find linear growth of 〈θ〉. From this figure we see that it
appears that Sc,2 ≈ 2λc. The validity of this relation may be shown by putting seq = S

2 in equation (B.3)
and by considering only the leading terms in S for S � 1 and λc � 1. This gives:

S

2
(S − λc)−

S2

4
= 0,

from which we find indeed S = 2λc. Also, we see that Sc,1 disappears if λc becomes very large. This
is to be expected because if λcσ

q � 1, then we have in the third region that seq(S) = S
λcσ
q

� S. This

implies that the third region becomes practically non-existent and therefore does also Sc,1 go to zero.

Figure B.1: The different regimes where seq(S) can be in for σ = e−8 and q = 51. For a given value
of λc two crossover points, Sc,1 and Sc,2, can be distinguished. For S > Sc,2 and S < Sc,1 we have
respectively seq(S) ≈ S and seq(S) ≈ S

1+λcσ
q

. For Sc,1 < S < Sc,2 does 〈θ〉 depend linearly on S. The

value of Sn gives the value of S around which 〈θ〉 can be approximated. If Sn is in the linear regime the
approximation of 〈θ〉 in section B.3 is expected to be accurate.
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B.1 Large seq(S)

For large seq, or seq, we assume that σsq+1
eq � s3

eq such that we have

λc
q + 1

q
− S + seq(1 + S − λc)− s2

eq = 0. (B.4)

The solutions are given by

seq,± =
1 + S − λc

2

(
1±

√
1− 2

S − λc
(1 + S − λc)2

)
, (B.5)

where we assumed that q � 1. The minus solution is unphysical. In figure B.2 we show the validity of
the approximation. This figure shows that the approximation breaks down around the point S = Sc,2.

Figure B.2: For S > Sc,2 we can solve for seq(S) by assuming σsq+1
eq � s3

eq and considering the
dominant terms in the mass conservation equation. The parameter values are λc = e16, σ = e−5 and
q = 51. After the steep descent does the approximation break down.

B.2 Small seq(S)

For small seq we assume that σsq+1
eq � σs3

eq and we are left with a cubic polynomial which may be
solved exactly. The result is shown in figure B.3. This figure shows that the approximation breaks down
somewhere around S = Sc,1.

B.3 Around seq(S) = 1

For high and low values of seq(S) the approximation breaks down around the crossover points. This
implies we have a good approximation for region two and three but not for region one. To get a grib on
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Figure B.3: For S < Sc,1 we can solve for seq(S) by assuming σsq+1
eq � s3

eq and considering the
dominant terms in the mass conservation equation. The parameter values are λc = e16, σ = e−5 and
q = 51. The approximation holds up to seq ≈ 1.

region one we use the fact that seq = 1 is a special point and in fact a critical point if q → ∞. In the
large q limit we have a phasetransition at seq = 1. We call this point the nuclation point, because then
seq = seq = eµP−ε−g = 1. This means that the energy cost to get a protein out of the solution is equal to
the energy gain a protein gets upon binding. Therefore, we write seq(S) = 1 + δ(S), with δ(S) some
function yet to be determined. Putting this in equation (B.3) we find

0 =

(
−λc

2
σ(1 + q)− qσ − 1 + (qσ + 1)S

)
+

δ

(
σ

[
1

6
λc(q − 1)(q + 1) +

1

2
(q + 1)q(−λc + S − 1)− q

]
− 1

)
+O(δ2), (B.6)

from which we obtain by neglecting all orders higher than one

seq(S) = 1 +
λc
2 σ(1 + q) + qσ + 1− (qσ + 1)S

σ
[

1
6λc(q − 1)(q + 1) + 1

2(q + 1)q(−λc + S − 1)− q
]
− 1

. (B.7)

With this expression we may calculate approximatly the value of Sn at which we have seq(Sn) = 1. The
result is

Sn = 1 + λc〈θ〉(1, σ),

where we used that 〈θ〉(1, σ) = σ
2

1+q
1+σq . Remarkably, this result is exact because we can use mass

conservation to obtain S exactly if seq = 1. This approximation only holds for values of seq close to
one and thus for S close to S = Sn. In figure B.4 we see that this is indeed the case. Nevertheless,
this approximation may be used to approximate 〈θ〉(seq(S), σ) in some parameter region. If we write

64



Figure B.4: In first order approximation we can find seq(S) for S around Sn. This figure shows that the
approximation is tangent to the exact curve. If we use seq,approx(S) to find 〈θ〉 up to first order in S and if
〈θ〉 behaves linearly at S = Sn, we have a valid approximation of the linear behaviour of 〈θ〉.

〈θ〉(seq(Sn + (S − Sn)), σ) and taylor expand for small S − Sn we obtain up to first order

〈θ〉(seq(S), σ) = 〈θ〉(1, σ) + (S − Sn)
1

λc + a(σ, q)
+O((S − Sn)2), (B.8)

=
1

λc

(
Sn(1− 1

1 + a(σ,q)
λc

)− 1

)
+

S

λc

1

1 + a(σ,q)
λc

+O((S − Sn)2), (B.9)

where a(σ, q) ≡ 12+24qσ+12q2σ2

σ(q3σ+4q2−qσ+6q+2)
. This expression may be used because the exact 〈θ〉(seq(S), σ) has

a range of S values where it grows linearly with S. This implies that if Sc,1 � Sn � Sc,2 we expect our
approximation of 〈θ〉(seq(S), σ) to hold for the whole of region one, that is, Sc,1 � S � Sc,2. This is
because we already derived that in region one we have approximately 〈θ〉(seq(S), σ) ≈ S

λc
. From our

approximation we see that indeed if λc � a(σ, q), we have the approximate result derived earlier.
The validity of this approximation is wholly dependent on whether Sn is indeed within region one.
Because if it is not then our linear approximation of 〈θ〉(seq(S), σ) will not be very good. To know
whether Sn is within the region one we refer to figure B.1. There is a value for λc where Sn = Sc,1. Since
Sn is determined for seq = 1 and we also have that Sc,1 = 2seq we must conclude that Sn = Sc,1 if
Sn = Sc,1 = 2. When Sn = 2 we say that λc = λc,min and this minimum value may be calculated from
the expression for Sn to be

λc,min =
1

〈θ〉(1, σ)
=

2

σ

1 + q

1 + σq
.

So for any combination of (σ, q) we know the minimum value of λc for which our linear approximation
for 〈θ〉(seq(S), σ) can be expected to hold.
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Appendix C

Analytical approximations

In section 3.2 we derived the dynamical equations for zipper assembly and in section 3.3 we showed
numerical solutions of these equations. To obtain a better grip on the properties of these solutions we
propose a number of approximations. These are mere propositions and in no way fully worked out
approximations with well defined ranges of validity and accuracy.

C.1 Coupled equations

To find how the system behaves at early times, especially during the assembly wave as seen in figure 3.4
we use the coupled reactions approximation (CRA). This comprises that we consider all forward rates to
be much greater than the backward rates such that we obtain the following set of equations

∂f(0, τ)

∂τ
= −κseq

S
y(τ)f(0, τ), (C.1)

∂f(1, τ)

∂τ
= −seq

S
y(τ)f(1, τ) +

κ

σS
y(τ)f(0, τ), (C.2)

∂f(n, τ)

∂τ
= −seq

S
y(τ)f(n, τ) +

1

S
y(τ)f(n− 1, τ), (C.3)

∂f(q, τ)

∂τ
=

1

S
y(τ)f(q − 1, τ), (C.4)

dy(τ)

dτ
= − λ

qΞeq

[
κy(τ)f(0, τ) + σ

q−1∑
n=1

sneqy(τ)f(n, τ)
]
. (C.5)

If we consider κ = 1, we can write equation (C.5) to be

dy(τ)

dτ
= −λ

q
y(τ)

[
1− P (q, τ)

]
, (C.6)

where we used that
∑q

n=0 P (n, τ) = 1. From this we see that if P (q, τ) << 1, we can solve this equation.
This condition simply means that the assembly wave has not yet reached n = q, so we specialize to the
regime where the fraction of fully covered templates is negligible. The solution is

y(τ) = y0e
− τ
T , (C.7)

where we defined T ≡ q
λ to be the typical timescale. from which we can immediately make an estimate

for the time after which this approximation does not hold anymore, τm. Namely, in equilibrium, when
τ →∞, we have y(τ) = 1, so the above expression is certainly invalidated when it is equal to 1. This
gives

τm = T ln y0. (C.8)
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So we have that the validity of the approximation is dependent on the starting conditions. Below we
will assume that as a starting condition we have P (0, 0) = 1 and thus that s(0) = S. This implies that
y0 = S

seq
. As can be seen in figure 3.2 we have that y0 ≡ S

seq
is large when S is much larger than unity

and λ = 1.5. So neither in excess nor shortage of proteins we expect this approximation to hold well.
Now we can solve equation (C.1) to be

f(0, τ) = f(0, 0) exp[−seq
S
y0T (1− e−

τ
T )].

To solve the other equations we assume that initially we have only empty templates, which is quite a
reasonable assumption with regard to a real experiment. Therefore we have f(n, 0) = 0 for n > 0 and
y0

seq
S = 1. If we define an auxilary function g(τ) as

g(τ) = T (1− e−
τ
T ), (C.9)

we find
f(n, τ) =

1

n!

(y0

S

)n 1

σ
f(0, 0)g(τ)ne−g(τ),

for 0 < n < q and we can rewrite it to obtain

P (n, τ) =
1

n!
g(τ)ne−g(τ), (C.10)

for 0 ≤ n < q. Obviously, if q →∞ we can check that
∑q−1

n=0 P (n, τ) = 1. To see what the maximum
normalisation error is when q is finite we calculate

1 = ege−g = e−g
∞∑
n=0

1

n!
gn = e−g

( q−1∑
n=0

1

n!
gn +Rq−1

)
,

where Rq−1 is the remainder. The remainder is given by Rq−1 = ex

q! g
q with x ∈ [0, g]. If we allow the

error to be maximally α, so α = e−gRq−1, and we take x = g such that the remainder estimation is
maximum, then we can find a very safe upper limit on the time up to which the approximation is valid.
This limit is given by

τs = −T ln
[
1− (αq!)

1
q

T

]
. (C.11)

Another interesting thing is how the top of the wave behaves in time. The top can be found by considering
∂τP (n, τ)|τ=τ∗ = 0 and gives

n = g(τ∗). (C.12)

So for a given n this equation gives the time at which this P (n, τ) is maximum, that is, when the wave
passes this value of n. For small times τ � T we have that n = τ∗, so we find classic wavelike behaviour.
Furthermore, the wave actually slows down

dn

dτ∗
= e−

τ
T .

Nevertheless, this will only be significant is T is sufficiently small.
The above considerations show that, at least, qualitatively the CRA can account for the wavelike behaviour
which is seen figure 3.4. Nevertheless, it remains a question for which parameter values the approximation
holds well. What seems to be the case is that for large values of S and values of λ around unity the
approximation holds best. This is to be expected because, as noted above, y0 is largest in this parameter
regime.
Another interesting feature of our result of the CRA is that σ does not enter wherefore the dynamics are
universal in τ .

We have seen that the CRA does not hold for the entire relaxation process. Namely, it breaks down
when P (q, τ) becomes significant. This brings us to the interesting question of how P (q, τ) behaves at
later times, so how the fraction of fully covered templates behaves as a function of time. This question
will be covered as much as possible in the following two sections.
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C.2 Steady state

There are times at which the P (n, τ) of the intermediate states, so 0 < n < q, do not vary strongly while
P (q, τ) grows strongly. At these times one may invoke the steady state approximation (SSA) to find
how P (q, τ) behaves. This approximation asserts that ∂τf(n, τ) = 0 for 0 < n < q. Furthermore, for
convenience we choose for these values of n: f(n, τ) = 1. From equation (3.23) and (3.26) we then
obtain

∂τf(q, τ) =
1

S

(
y(τ)− f(q, τ)

)
, (C.13)

s(τ) + λc〈θ〉(τ) = seq + λc〈θ〉eq, (C.14)

where we used the fact that equation (3.26) holds for any time τ and thus also in equilibrium. Using that
y(τ) ≡ s(τ)

seq
we obtain from equation (C.14)

y(τ) = 1 +
λc
seq

(〈θ〉eq − 〈θ〉(τ)) = 1 + λcPeq(q − 1)(1− f(q, τ)), (C.15)

with which we find for equation (C.13)

∂τf(q, τ) =
K1

S

(
1− f(q, τ)

)
.

Here we defined K1 ≡ 1 + λcPeq(q − 1). The solution, while assuming that f(q, 0) = 0, is

f(q, τ) = 1− exp[−K1

S
τ ],

from which we find using
∑q

n=0 P (n, τ) = 1 and equation (C.15)

P (q, τ) = Peq(q)
(

1− exp[−K1

S
τ ]
)
, (C.16)

P (0, τ) = Peq(0) + Peq(q) exp[−K1

S
τ ], (C.17)

y(τ) = 1 + (K1 − 1) exp[−K1

S
τ ]. (C.18)

From these results we see that greater λc, so more templates, enhances the growth of fully covered
templates. This is to be expected because a higher template concentration gives for fixed S a lower value
of Peq(q). Thus, the covering will take less time. Also, for higher K1 we have that y(τ) is higher at τ = 0
and thus that there is a greater assembly ’force’ from the protein concentration. On the other hand, for
fixed λc and increasing S we have that Peq(q) is increased. Thus it is to be expected that it takes longer to
fill the templates. Nevertheless, the exact range of validity of this approximation is still to be examined
and this will not be covered here.

C.3 Pre-equilibrium

In the previous section we found how P (q, τ) shows exponential behaviour for late times. Nevertheless,
it is observed in numerical simulations that P (q, τ) typically has a sigmoid-like shape. Moreover,
often f(q − 1, τ) and f(q, τ) are almost equal while they increase significantly as opposed to the other
probabilities. These considerations give rise to the pre-equilibrium approximation (PEA) which asserts
the following approximations: ∂τf(n, τ) = 0 for 0 < n < q − 1 and f(q − 1, τ) = f(q, τ). Also, we
assume that f(n, τ) = 1 for 0 < n < q − 1. With these approximations we obtain from equation (3.23)
and (3.26)

∂τf(q, τ) =
1

S

(
y(τ)− 1

)
f(q, τ), (C.19)

s(τ) + λc〈θ〉(τ) = seq + λc〈θ〉eq. (C.20)
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From equation (C.20) we obtain

y(τ)− 1 =
λc
seq

(〈θ〉eq − 〈θ〉(τ)) = K2(1− f(q, τ)), (C.21)

where we defined K2 ≡ λcPeq(q − 2)(1 + seq). This gives for equation (C.19)

∂τf(q, τ) =
K2

S

(
1− f(q, τ)

)
f(q, τ),

which can be solved, using A ≡ 1
f(q,0) − 1, to find

f(q, τ) =
1

1 +A exp[−K2
S τ ]

.

When using probability conservation and equation (C.21) one obtains as results

P (q, τ) =
Peq(q)

1 +A exp[−K2
S τ ]

, (C.22)

P (q − 1, τ) =
Peq(q − 1)

1 +A exp[−K2
S τ ]

, (C.23)

P (0, τ) = Peq(0) +
(
Peq(q − 1) + Peq(q)

) A exp[−K2
S τ ]

1 +A exp[−K2
S τ ]

, (C.24)

y(τ) = 1 +K2
A exp[−K2

S τ ]

1 +A exp[−K2
S τ ]

. (C.25)

From these equations we see qualitatively the same behaviour as for the SSA: again for higher λc the
relaxation is faster while for higher S it is slower. Also, we see that P (q, τ) is an S-shaped curve. For
late times, when e−

K
S
τ � 1, we have the same exponential behaviour as for the SSA but with a different

typical timescale since in general K1 6= K2. But if Peq(q − 1)λc � 1 and seq � 1 then K1 ≈ K2. So
for large template concentration and excess protein concentration - such that λ � 1 and seq ≈ S - we
have that the SSA and PEA coincide for late times. Nevertheless, to have a sound understanding of the
range of validity of this approximation, more research is required.

C.4 Transition state theory

In section 3.2 we have seen how the dynamical equations could be made dimensionless by scaling the time
to k+. This allowed to calculated all dynamical quantities as a function of dimensionless time τ = k+t.
Nevertheless, real experiments are a function of real time t and thus an estimation for k+ would be helpful
for knowing the timescale of an experiment. In this section we use transition state theory (TST) to find an
expression for k+ in case of the zipper model. This derivation is by no means complete and is, like the
preceding approximation sections, meant to provide inspiration for future research. First we will sketch
the picture of a protein and a template forming a transition state (TS) and then we will give two routes to
calculate k+.

An unbound protein has three translational degrees of motion - for we assume it to have ideal gas
behaviour in the solution - and vibrational plus rotational internal degrees of freedom. When the TS if
formed we picture the protein to move in a space close to the template. This gives rise to new, more
restricted, translational degrees of freedom for the protein. Also, both the internal degrees of freedom of
the protein and the template may change in the TS. With this picture in mind we can write the forward
rate of the n-th reaction of equation (3.4) as

vnP
#(n),
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with vn the attempt frequency of a protein in the TS to bind to the template and P#(n) the (non-
normalised) probability that a protein and a template with n proteins already attached to it form a TS. To
proceed we assume that the transition reaction to bring about the TS occurs much faster than the binding
of a protein from the TS to the template. This implies that the transition reaction is in equilibrium and
thus that

k#
+,nρPP (n) = k#

+,nP
#(n),

which gives
P#(n) = K#

n ρPP (n).

Furthermore, we have for the protein, the template and the TS that their chemical potential in a certain
state is given by

µ = −kBT ln
Z

N
,

with Z the partition function of a given reactant in a certain state and N the number of that reactant in
this state present in the solution. In chemical equilibrium the chemical potential of the constituents in the
unbound and in the TS should be equal and thus we have

K#
n =

k#
+,n

k#
−,n

=
P#(n)

ρPP (n)
=
Z#(n)

Z(n)
, (C.26)

with Z#(n) the combined partition function of the protein and the template in the TS and Z(n) being
the combined partition function in the unbound state. So by knowing how the partition function of the
protein-template complex changes by going from the unbound state to the TS, we know what the TS
equilibrium constant is. Once we know K#

n we can also know k+
n = vnK

#
n . Now we will propose two

different ways of calculating k+
n which, remarkably, give almost the same result.

C.4.1 Route 1

On the first route we assume that the protein moves on a two dimensional cylindrical surface of which
the axis is given by the template. This gives rise to two translational degrees of freedom of the protein in
the TS. One degree is parallel to the template and has length a(q − n) with a the distance between two
neighbouring binding sites. The other degree is on a circle with circumference Lcir of which the diameter
is determined by the thickness of the template. This gives the following for the TS equilibrium constant

K#
n =

a(q−n)
λth

Lcir
λth

V
λ3
th

S0(T ) = λth
a(q − n)Lcir

V
S0(T ),

with V the volume of the solution, λth ≡ h√
2πmP kBT

the thermal wavelength and S0(T ) the sticking
coefficient which accounts for the change in internal degrees of freedom for both the protein and the
template by going from the unbound state into the TS. Finally, since we are considering the zipper model
the protein can only go from the TS to the bound state on the template when it is at the binding site next
to the last bound protein. This implies a characteristic time equal to v−1

n in which the protein gains one
attempt to bind. This should approximately be given by

1

vn
=
a(q − n)√
〈v2〉

,

with 〈v2〉 the average squared velocity in the transition space. Since this space is two dimensional we
have from the equipartition theorem that

2
1

2
kBT =

mP

2
〈v2〉,
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with mP the mass of the protein. So we find

vn =
h

λth
√
πmPa(q − n)

,

and finally

vnP
#(n) =

h√
πmP

Lcir
V

S0(T )ρPP (n) ≡ k+
n ρPP (n). (C.27)

This forward rate turns out to be independent of n which means that the number of already bound proteins
does not influence the adsorption rate of unbound proteins. This is exactly what we already assumed in
the derivation of the dynamical equations.

C.4.2 Route 2

On the second route we assume the proteins not to be moving in a two dimensional cylindrical space but in
a one dimensional circular space around the binding site of the template where the protein can bind. Also,
we assume that the restriction of the movement of the protein implies a vibrational mode perpendicular
to the template and the circle with a frequency νn. The reason for this is that we assume the protein to
be in a local energy minimum which causes the protein to vibrate perpendicular to a point on the circle.
Furthermore, this vibration will bring the protein closest to the template with a frequency νn wherefore
we assume that the attempt frequency is equal to νn, so vn = νn. This then gives

K#
n =

kBT

hνn

Lcir
λth
V
λ3
th

S0(T ) = λ2
th

Lcir
V

kBT

hνn
S0(T ),

where kBT
hνn

is the partition function of the vibrational mode. Finally, we find

vnP
#(n) = vnK

#
n ρPP (n) =

kBT

h
λ2
th

Lcir
V

ρPP (n) =
h

2πmP

Lcir
V

ρPP (n) ≡ k+
n ρPP (n). (C.28)

So up to a factor 1
2
√
π

we find the same result for k+
n on both routes. This factor could possibly be caused

by, on route 1, simply taking a(q − n) to be the typical length which the protein should travel upon
binding. Since the protein moves on a cylindrical surface the typical distance could well be different.
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