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Abstract

A model for subtidal estuarine salt and flow dynamics in a 2DV (along-
channel and vertical) domain is developed, describing the evolution of vari-
ables averaged over the estuarine basin. These variables are domain-averaged
horizontal and vertical salinity gradient and domain-averaged angular mo-
mentum in the 2DV-plane. The latter measures estuarine circulation strength.
The model is defined under the assumptions that the lowest-order, in this
case spatially linear, salt- and flow-field contributes dominantly to domain-
integrals. Domain length is here dynamically related to horizontal salt gra-
dient and defined as the furthest up-estuarine salt intrusion.

The methods applied in the current study reduce the governing equa-
tions (partial differential equations) to coupled ordinary differential equations
(ODE’s), i.e. evolution equations for the three basin-averaged variables. A
major advantage is that (steady) solutions to ODE’s are more easily found
and can be readily analysed. All individual terms contributing to the evolu-
tion equations have a clear physical meaning. The influence of all terms on
the model’s analytical and numerical steady state solutions could be inter-
preted. Yet the complexity of the resulting evolution equations and solutions
limits complete physical understanding and comparison to other (modelling)
studies.

At least one steady state solution is associated with the typical estuarine
stratification and circulation and is linearly stable. The estuary evolves into
this state when perturbed from a homogeneous rest state by imposing a weak
horizontal salinity gradient and angular momentum and a strong vertical
stratification. The behaviour of this steady state as a function of depth and
river discharge, for the parameter settings of a partially mixed estuary, is
qualitatively comparable to other model studies. The vertical stratification
is however unrealistically strong, most likely due to the formulated seaward
boundary conditions.

Suggestions are given to improve the seaward boundary conditions and to
reduce the complexity of the model, to further improve understanding of its
solutions. With some adaptations, the constructed model has the potential
to gain more insight into basin-averaged subtidal estuarine processes and to
study its time-evolution.
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Chapter 1

Introduction

1.1 Estuarine subtidal hydrodynamics

An estuary is the transition area between a river and its adjacent sea or
ocean. The river discharges fresh water into the domain, while saline seawater
is introduced advectively and by (mainly tidally induced) turbulent mixing.
Examples of estuaries are the Elbe estuary in Germany (depicted on the
front page), Ems estuary on the Dutch-German border and Western Scheldt
estuary (illustrated in Figure 1.1) on the Dutch-Belgian border.

Figure 1.1: Left: areal view of the Western Scheldt estuary on the Dutch-
Belgian border (from visitholland.nl). Right: idealised estuarine basin (from
Festa & Hansen [1976].

This study aims at understanding the dynamics of the estuarine salt and
flow field at typical time scales longer than the tidal period. Tidal variations
are thus averaged out and the focus will be fully on subtidal dynamics. An
estuary is characterised by an along-channel salinity gradient due to fresh
water run-off from the river. This salinity gradient sets up a baroclinic pres-
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sure gradient force, directed landward along the channel and increasing in
strength with depth [e.g., De Swart, 2012]. The water volume introduced by
the river is forced out by a barotropic pressure gradient force that is directed
seaward along the channel. This pressure gradient is constant with depth and
related to gradients in free surface height. The subtidal force balance between
these two pressure gradients results in the bidirectional along-channel flow
pattern that is typical for many estuaries, as is shown by Hansen & Rattray
[1965]. This so-called exchange flow draws saltier water in from the seaside
at depth and advects fresher water seaward in shallower layers. The along-
channel salinity gradient typically becomes weaker towards the riverward and
seaward edges of the estuarine domain [Talke et al., 2009-a]. Horizontal ex-
change flow strength consequently decreases here. Conservation of volume
ensures that this is compensated by a vertical flow component and a typ-
ical estuarine, or gravitational, circulation cell is the result [e.g., Festa &
Hansen, 1976]. The riverward part of the circulation cell is characterised
by upwelling; downwelling takes place more seaward. An estuarine turbidity
maximum (ETM) may occur near the bottom where landward exchange cur-
rents converge with seaward river flow and accumulates suspended sediment

Figure 1.2: Top figure: width-averaged dimensionless salinity field for an
idealised, partially mixed estuary; salinity s (psu) is scaled with constant
sea salinity s0 = 35 psu. Seaward boundary defined at x = 0, where
s|(x=0,z=−H) = s0. Riverward boundary in this study is defined at intru-
sion length x = L, where s|(x=L,z=−H) ≈ 0. This length is shorter than the
total modelled length in the original figure (120 km in the case of this fig-
ure); estuarine domain for the current study is equal to the green shaded
area. Bottom figure: corresponding streamfunction field ψ (in 103 m2/s).
Figure adapted from Festa & Hansen [1976].
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[e.g.. Burchard et al., 2004].
Many different classes of estuaries exist, as characterized by flow pat-

tern and salinity field, see e.g. Dyer [1997]. Partially mixed estuaries with
their typical estuarine circulation pattern are probably most characteristic,
as illustrated in Figure 1.2. Very weak turbulence allows the fresh water to
flow out on top of the more saline water, as happens in typical salt wedge
estuaries.

1.2 Why studying estuarine dynamics?

Studying estuarine subtidal salinity and flow dynamics is important for many
reasons. Estuaries form important and unique ecosystems. For example,
thanks to their intermediate salinity, estuaries provides an essential stopover
for many types of fish migrating between sea and river during different stages
of their lives. The salinity tolerance of these fish is very specific and thus
they are dependent on the right estuarine salt field [Marshall & Elliott, 1998].
Apart from that, current strength influences turbidity. Increasing turbidity
results in the depletion of dissolved oxygen and can lead to ecologically “dead
zones” [Talke et al., 2009-b].

Apart from the ecological importance, estuarine salt, current and tur-
bidity characteristics are also economically relevant. Currents, turbidity
and resulting sedimentation need to be fully understood and continuously
monitored to ensure safe and sustainable shipping traffic, e.g. on the Ems
and Western Scheldt estuaries in the Netherlands. Moreover, an increased
riverward reach of salt water may negatively affect agricultural land that is
dependent on freshwater uptake [Winterwerp & Wang, 2013].

Concludingly, it is essential to fully understand the response of estuarine
salt and flow field to (natural or anthropogenic) changes in system parameters
such as geometry, tidal forcing and river discharge. Changes in salt field,
turbidity and sedimentation take place over time scales often longer than
the tidal period, hence this study’s focus is on tidally averaged, or subtidal,
dynamics.

1.3 Previous studies

Much research has been done in the field of subtidal estuarine dynamics.
Analytical expressions for cross-channel averaged salt and flow profiles were
obtained by Hansen & Rattray [1965] and MacCready [2004]. Their analyt-
ical relations elucidate the role of individual physical processes and param-
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eters. However, these solutions are restricted to simplified momentum and
salt balances in steady state.

Solving similar but nonsteady cross-channel averaged balances numeri-
cally, see e.g. Festa & Hansen [1976], allows to study time evolution. How-
ever, numerical solutions cannot be explained explicitly as a function of in-
dividual processes and parameters, making them harder to interpret.

Full-scale, three-dimensional numerical models [e.g. Burchard et al., 2004]
yield very realistic views on estuarine dynamics, as well as the system’s time
evolution. Yet the increased complexity of such numerical models makes
isolation and interpretation of the physical processes even more difficult.

Searching the system for the occurrence of multiple steady states is possi-
ble for both two- and three-dimensional numerical models mentioned. How-
ever, due to the system’s large “parameter space” and the absence of an
analytical solution it is hard or even practically impossible to systematically
search for multiple equilibria within this parameter space.

1.4 Challenges

Required is a subtidal estuarine model whose equations are well analysable,
such that the role of individual physical processes and parameters can be
explained and all existing equilibria can be systematically detected. The
model should thus be time-dependent, also to assess the stability of each
equilibrium and the time evolution from one state into another.

The current study will be based primarily on a model introduced by Maas
[1994; 2004]. This model describes the time evolution of basin-averaged quan-
tities in a three-dimensional oceanic domain with closed side walls. Although
this averaging causes the loss of spatial dependencies, the reward is signifi-
cant. Under specific assumptions such as a linearised density field, explained
further in section 2.3 and 2.4, the model depends on six coupled variables.
These are the domain-averaged centre-of-mass position vector, related to the
basin-averaged density gradient, and the basin-averaged angular momentum
vector, a measure for the amount of overturning. Via this method, Maas
[1994; 2004] reduces the system’s original partial differential equations to
a set of coupled ordinary differential equations for the six global variables.
Although restricting assumptions have been made, the ordinary differential
equations yield, under specific circumstances, analytical expressions for mul-
tiple equilibria and show rich and interesting dynamical behaviour.

Maas ’ model has to be altered significantly to make it applicable for
estuaries. Most importantly, the longitudinal (seaward and riverward) sides
should be opened to allow fluxes of mass and momentum, complicating the
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existing model. However a reduction from three to two dimensions can be
made, provided the estuary is relatively narrow.

1.5 Research objectives

The main goal of this thesis is thus to construct a model that describes the
evolution of estuarine subtidal salt and flow dynamics in terms of “global”
variables and that is appropriate for analytical study. These goals are di-
vided into separate research objectives (RO’s), as presented below.

Construct a model for estuarine subtidal hydrodynamics that

1 Is closed in terms of basin-averaged variables only.

2 Has simple enough model equations so that analytic steady
state solutions exist.

3 Allows detection of multiple equilibria, if existing.

4 Has at least one steady state solution whose dependency on
river and tidal influence is physically interpretable.

This model should describe time-evolution of the basin-averaged
variables, so that

5 Linear stability of the steady states can be computed.

6 The variable’s time evolution after perturbation from steady
state can be computed.

1.6 Outline of this thesis

The governing estuarine model equations are explained in chapter 2.1 and 2.2.
Section 2.3 and 2.4 describe further assumptions made on the salinity and
flow field and the basin-averaged variables are introduced. In sections 2.5 to
2.6, evolution equations for the global variables are derived. The individual
terms in these equations are phyiscally interpreted in section 2.7.

To analyse the obtained model, steady states are computed and inter-
preted as a function of changing parameter settings. The methods are ex-
plained in section 3.1; corresponding results shown in section 4.1. To test if
the steady states found are stable to infinitesimally small perturbations, a
linear stability analysis is done, as explained in section 3.2. Results are shown
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in section 4.2 and compared to other model studies. Finally, it is important
to know if the system actually “ends up” in some acceptable steady state
once perturbed by a finite perturbation from another steady state. Hence
a forward time-integration of the evolution equations is done in section 3.3
and shown in section 4.3.

Discussion of the results and attempts to further interpret these are given
in §5.1 and 5.2. Suggestions for model improvement and future research is
presented in §5.3. Finally, conclusions regarding the research objectives and
added value of the constructed model are made in section 6.
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Chapter 2

Model

2.1 Domain

The modelled estuary has length L in the along-channel or landward direction
x, width W in cross-channel direction y and undisturbed water depth H in
vertically upward direction z. The estuarine basin is fully rectangular, with a
flat horizontal bottom, straight vertical and impermeable boundaries on the
lateral (cross-channel) sides and a straight vertical separation between the
estuarine domain and the adjacent sea and river on the longitudinal edges.
The bottom boundary is at undisturbed water depth z = −H; the long-term
averaged reference surface level is at z = 0. Following Festa & Hansen [1976]
and MacCready [2004], the seaward boundary is at x = 0, defined where
estuarine salinity s, measured in practical salinity units (psu), at the bottom
first reaches the reference salinity s0 of the adjacent sea,

s(x = 0, z = −H) = s0, (2.1)

as was illustrated in Figure 1.2. Here s0 is assumed constantly 35 psu within
the entire sea. The riverward boundary is at x = L, defined by the furthest
up-estuarine (landward) reach of salt, as is further explained in section 2.3.

2.2 Governing equations

The balances governing subtidal estuarine salt and flow dynamics are intro-
duced below. Prior to that, the assumptions underlying these balances are
explained.
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2.2.1 A priori assumptions

The focus of this study is on subtidal estuarine dynamics. Changes in free
surface height due to changing river discharge are typically on a tidal time-
scale, hence temporal variations in free surface level are averaged out. Gra-
dients in the tidally-averaged free surface height η(x, z), measured relative to
reference level z = 0, are translated into pressure variations at z = 0. This
reference level is assumed to be a rigid lid [e.g., MacCready, 1999].

The equations are Reynolds-averaged [e.g., Cushman-Roisin & Beckers,
2011] but modified for the estuarine case. In chapter 7 of Dyer [1997] the
total along-channel and vertical velocity components (u,w) are split into
tidal-averaged part, fluctuation with the tidal period and turbulent fluctu-
ations. Dyer showed that the dominant estuarine subtidal x-momentum
balance contains stress terms due to turbulent flow correlations as well as
tidal flow correlations. It is here assumed that these two stress terms are of
similar nature and can thus be combined into one (modified) Reynolds-stress
divergence term.

Channel width W is assumed small compared to the Rossby radius of
deformation, hence Coriolis effects can be neglected. Uniformity in cross-
channel direction is assumed. Cross-channel wind stress is neglected. The
horizontal scales of a typical estuary are much larger than the vertical scale, so
hydrostatic pressure is assumed. Furthermore, the Boussinesq approximation
is applied [e.g., Cushman-Roisin & Beckers, 2011]. A linearised equation of
state is assumed where salinity variations contribute dominantly to density
variations.

2.2.2 Resulting equations

All quantities and equations considered in this study are tidally-averaged.
Under the previous assumptions the governing equations are as follows.

For an average sea salinity s0 = 35 psu and reference temperature of
10 degrees Celcius , the linear equation of state reads [Cushman-Roisin &
Beckers, 2010]

ρ = ρ0(1 + βs), (2.2)

with total density ρ, constant reference density ρ0 ≈ 1000 kg m−3 and salinity
contraction coefficient β ≈ 7.8·10−4 psu−1. From here on, s will be considered
rather than ρ. The salt balance reads

∂s

∂t
+

∂

∂x

(
us−Kh

∂s

∂x

)
+

∂

∂z

(
ws−Kv

∂s

∂z

)
= 0, (2.3)
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where the total horizontal and vertical salt fluxes are hereafter abbreviated

fS = us−Kh
∂s

∂x
and gS = ws−Kv

∂s

∂z
, (2.4)

with horizontal and vertical eddy diffusion coefficients Kh and Kv.
The dominant alongchannel momentum balance becomes [Dyer, 1997]

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= − 1

ρ0

∂p′

∂x
+

∂

∂x
(Ah

∂u

∂x
) +

∂

∂z
(Av

∂u

∂z
), (2.5)

where p′ is the dynamic pressure; Ah and Av are the horizontal and verti-
cal eddy viscosity coefficients. Under the mentioned assumptions the cross-
channel momentum balance reduces to

v = 0, (2.6)

where v is the cross-channel velocity component. Given the absence of cross-
channel variations and flow, estuarine dynamics will only be described in
the (x, z)-plane from here on. The vertical momentum balance reduces to
hydrostatic balance

0 = − 1

ρ0

∂p′

∂z
− βgs, (2.7)

with gravitational acceleration g = 9.81 m s−2. Finally, the continuity equa-
tion reads

∂u

∂x
+
∂w

∂z
= 0. (2.8)

2.2.3 Boundary conditions

The governing equations are closed with the following boundary conditions.

Surface boundary

At z = 0 a vanishing vertical salt flux and vertical velocity (rigid lid) is
assumed, as well as no alongchannel wind stress. Hence

∂s

∂z
|z=0 = 0, (2.9)

w|z=0 = 0, (2.10)

∂u

∂z
|z=0 = 0. (2.11)
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Bottom boundary

At z = −H a vanishing vertical salt flux and vertical velocity is assumed, as
well as a no-slip condition. Hence

∂s

∂z
|z=−H = 0, (2.12)

w|z=−H = 0, (2.13)

u|z=−H = 0. (2.14)

Riverward boundary

The riverward boundary, x = L, is defined as the furthest up-estuarine reach
of salt. Completely fresh water is thus found everywhere at and riverward of
this position, expressed in boundary conditions as

s|x=L = 0, and (2.15)

∂s

∂x
|x=L = 0, (2.16)

so that there is no salt flux through the riverward boundary. From (2.16)
and e.g. MacCready [2004] follows that the baroclinic velocity uc vanishes
here, since there is no baroclinic driving force. Assuming that the vertical
velocity component is purely baroclinic, this yields

u|x=L = uQ (2.17)

w|x=L = 0, (2.18)

with uQ(z) the river discharge velocity field, and u = uQ + uc. Finally, the
river discharge condition reads

uR =
1

H

∫ 0

−H
u dz, (2.19)

with depth-averaged river discharge velocity uR. Note that, by definition of
uc, its depth-average vanishes. For the current model, uR ≤ 0. The discharge
condition is satisfied irrespective of the along-channel position.

Seaward boundary

At the seaward boundary, x = 0, conditions for the salinity and flow fields
are required as well. Contrary to formulations used by e.g. Festa & Hansen
[1976], it is shown in §2.3 and 2.4 that such a closure cannot be adopted for
the current model. After discussing essential additional assumptions on the
estuarine flow and salt field in these sections, alternative boundary conditions
are introduced in section §2.6.
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Horizontal pressure gradient

Finally, an expression for horizontal pressure gradient ∂p′

∂x
is required. The

pressure condition at the rigid lid reads [Cushman-Roisin & Beckers, 2011]

p′|z=0 = patm + ρ0gη, (2.20)

with atmospheric pressure patm at sea level. With this condition, integration
of hydrostatic balance (2.7) and taking the x-derivative yields

∂p′

∂x
=
dpatm
dx

+ ρ0g
dη

dx
+ ρ0βg

∫ 0

z

∂s(x, z̃, t)

∂x
dz̃.

Since vertical variations in the horizontal salinity gradient are typically very
small for estuaries, the pressure gradient is written as

∂p′

∂x
=
dpatm
dx

+ ρ0g
dη

dx
− ρ0βg

∂s

∂x
z. (2.21)

An expression for the free-surface gradient can be found by assuming, only
for this purpose, that the along-channel momentum balance is dominated by
pressure gradient and vertical mixing, with constant eddy viscosity, i.e.

0 ≈ − 1

ρ0

∂p′

∂x
+ Av

∂2u

∂z2
. (2.22)

Substituting (2.21) into (2.22), depth-integrating three times, again assum-
ing for the moment that ∂s

∂x
is approximately independent of z and applying

boundary conditions (2.11), (2.14) and discharge condition (2.19), an expres-
sion for dη

dx
is obtained [MacCready, 2004]. The pressure gradient becomes

∂p′

∂x
= −3Avρ0

H2
uR − ρ0gβ

(
z +

3

8
H

)
∂s

∂x
. (2.23)

2.3 Linear approximation of salinity field

The first step towards deriving a subtidal estuarine model in terms of its
global variables is identification of these global variables. First, a measure
for the estuarine global salinity stratification, both horizontally and verti-
cally, is essential, as will be discussed hereafter. Second, quantification of
the basin-averaged estuarine circulation is required, as is considered in §2.4.

The basin-averaged oceanic model introduced by Maas [1994, 2004] also
identified the global density stratification as one of the involved variables.
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Following Maas, a “global Taylor expansion” of the dynamic density, i.e.
salinity, field is made. This is a multidimensional Legendre series expansion
[e.g., Stienstra, 2009] with expansion coefficients equal to the moments of
the salinity field. Thanks to the physical interpretation of these moments,
Maas and the current study aim at describing density dynamics through the
evolution of these moments.

Maas showed that, owing to the orthogonality of the global expansion,
the evolution of each moment is independent of its higher-order moments.
Therefore, the expansion can be approximated by a version truncated after
any desired order; the higher-order moments need no consideration. Maas
employed this to linearise a three-dimensional oceanic density field and to
reduce its governing partial differential equations to a set of coupled ordinary
differential equations.

In the current study, a similar approach is taken to linearise the estuarine
salt field. The global Taylor expansion of s around the geometrical centre
(x, z) =

(
L
2
,−H

2

)
of the estuarine domain reads

s(x, z, t) = M(t) +X(t)

(
x− L

2

)
+ Z(t)

(
z +

H

2

)
+ HOTs, (2.24)

where “HOTs” denote higher-order terms. The lowest-order moments (LOMs)
are given by

M(t) =
1

LH

∫∫
s dxdz, (2.25)

X(t) =

∫∫ (
x− L

2

)
s dxdz∫∫ (

x− L
2

)2
dxdz

, (2.26)

Z(t) =

∫∫ (
z + H

2

)
s dxdz∫∫ (

z + H
2

)2
dxdz

. (2.27)

Throughout this study and unless specified otherwise, integrals imply inte-
gration over full basin length or depth, i.e.

∫
dx =

∫ L
0
dx and

∫
dz =

∫ 0

−H dz.
Then M is the domain-averaged salinity; X and Z are proportional to the salt
field’s horizontal and vertical centre-of-mass position relative to

(
L
2
,−H

2

)
.

In the model presented by Maas [1994, 2004], a zero net buoyancy flux
is assumed, so that M is constant. It is therefore possible and convenient to
redefine the density field as a linear perturbation field which is zero at the
geometrical centre and whose basin-averaged density perturbation vanishes.
For an estuary, the net buoyancy flux does not vanish in general, so it is
either impossible or unpractical to redefine the salinity field in a similar way.
Numerical model results of [Festa & Hansen, 1976] indicate that linearising
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the salinity profile is only acceptable when estuarine domain length is varied
with the up-estuarine reach of salt, as further motivated in Appendix A.1.
Hence, basin length L is here defined as the salt intrusion length, x = Li (see
Figure 1.2), which changes dynamically with forcing conditions, parameter
settings and internal dynamics.

Substitution of the seaward boundary definition (2.1) into (2.24) yields
an expression for M ,

M(t) ≈ s0 +
L

2
X +

H

2
Z, (2.28)

where HOTs were assumed very small. With this expression, the salt field
(2.24) can be linearly approximated as (see Figure 2.1)

s ≈ s0 + xX(t) + (z +H)Z(t), (2.29)

where HOTs in (2.24) were assumed negligibly small as well.
This linear approximation is only acceptable within the so-called “inner

domain” of the estuarine basin. As illustrated in Figure 2.1, this inner domain
is surrounded by thin “outer layers” in which the HOTs cannot be neglected
and s is assumed to deviate from (2.29). This deviation is such that boundary
conditions, as given in §2.2.3 are satisfied. The outer layers have thickness δs
downwards from the surface, thickness δb upward from the bottom, thickness

Figure 2.1: Left figure: estuarine integration domain, between x = 0, x = Li,
z = −H and z = 0. Blue dashed line at x = x0,top is the most seaward x-
position of estuarine water. Red lines are isohalines of linearised salt field
(2.29). Right figure: distinction between “inner domain” (white), in which
salt field is linearised (and the flow field too, as will be explained in §2.4),
and “outer layers” (green) with thickness δs at the surface, δb at the bottom,
δr seaward from the riverward boundary and δo up-estuary from the position
x = x0,top. In the outer layers, linearisation of salt and flow field is not
applicable. At the edges of the outer layers, boundary conditions, as in
§2.2.3 are satisfied.

16



Figure 2.2: Middle figure: default case, with basin-averaged horizontal and
vertical salt gradient X and Z and domain length L = −s0/X. Left figure:
decreased domain length, hence steeper horizontal salt gradient, while Z is
constant. Right figure: increased vertical stratification, while X is constant.

δr into the estuary away from the riverward boundary at x = L and thickness
δo into the estuary away from some point x = x0,top, which is outside the
estuarine integration domain, i.e. seaward of x = 0. The seaward position
x = x0,top is defined as the most seaward reach of the (s = s0)-isopycnal,
hence from (2.29) this follows as

x0,top = −HZ
X

. (2.30)

From a physical viewpoint, x0,top can be seen as the furthest seaward outflow
of estuarine (less saline) water.

In order to satisfy the boundary conditions at the outward bounds, which
are not compatible with the linear salt and flow field, the HOTs must be
important in the outer layers. However, they are assumed to have only a
small influence on domain-integrals since the outer layers are assumed very
thin. Under this assumption,

X(t) ≈ 1

LH

∫∫
∂s

∂x
dx dz (2.31)

Z(t) ≈ 1

LH

∫∫
∂s

∂z
dx dz, (2.32)

i.e. the first order moments of the salt field are approximately equal
to the domain-averaged horizontal and vertical salinity gradient, idem to
Maas [1994; 2004]. For estuaries, it is hence expected that X ≤ 0 and
Z ≤ 0, i.e. the linear salt field decreases towards the river and the salt
field is stably stratified in the vertical. The domain-averaged salinity equals
s0 in the absence of horizontal and vertical stratification and decreases as
X or Z become more negative. From here on, X and Z will be always
interpreted as (approximately) the domain-averaged horizontal and vertical
salinity gradient.
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Increased tidal energy will enhance vertical mixing both within the estu-
ary and in its adjacent coastal sea. It is expected that such increased mixing
will reduce vertical stratification, so that |x0,top| is reduced. Physically, this
can be seen as a reduction of the extent of seaward outflow of estuarine wa-
ter, as this water is mixed with seawater more rapidly. Note that in the
current model, as long as vertical stratification Z is strong enough, x0,top is
shifted sufficiently with respect to x = 0, so that x = 0 lies inside the “inner
domain”, but if Z is so weak that |x0,top| < δo, position x = 0 is inside the
seaward outer domain.

With (X,Z) ≤ 0, indeed the up-estuary salinity intrusion is furthest at
the bottom. Hence the salt intrusion length Li is here defined as the point
where

s(x = Li, z = −H) = 0. (2.33)

Neglecting HOTs, (2.29) thus yields

L(t) = Li(t) ≈ −
s0

X(t)
. (2.34)

The salinity intrusion increases if the horizontal salinity gradient weakens,
as shown in Figure 2.2.

Note that the model prescribes negative salinity in part of the estuary if
Z < 0 and that also M becomes negative if vertical stratification becomes
very strong. This is inherent to the employed definition of the domain and the
linear salt field. It is assumed here that Z is typically weak, corresponding
to partially or well mixed estuaries. In this case, M will be positive and it
is expected that locally negative salinity values have little influence on the
evolution of X and Z and thus these consequences are accepted here.

2.4 Linear approximation of flow field

Maas [1994, 2004] showed that the evolution equations for global density
stratification are closed by introduction of an additional moment, the domain-
averaged angular momentum vector around the geometrical centre of the
three-dimensional oceanic domain. A similar closure will be pursued here,
introducing J , the basin-averaged angular momentum, as a measure of estu-
arine circulation. Since the estuarine basin is in the (x, z)-plane, J is actually
the cross-channel (y-) component of a three-dimensional angular-momentum
vector. Contrary to the model by Maas, J is not defined relative to the cen-
tre of the domain but with respect to some different rotation axis position
(x, z) = (xj, zj), defined later in this section. At this position, the horizontal
and vertical baroclinic velocity components switch sign.
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For estuaries, one can write (see also Figure 2.3)

u(x, z, t) = uQ(z, t) + uc(x, z, t), (2.35)

with uQ the depth-dependent velocity profile associated with river discharge
and uc the purely baroclinic (density-driven) velocity field. Since J is as-
sumed only to measure the gravitational circulation, its definition should
exclude uQ. Furthermore assuming the vertical velocity component w is
purely baroclinic,

J(t) =
1

LH

∫∫
[(z − zj) (u− uQ)− (x− xj)w] dx dz. (2.36)

Contrary to the Lagrangian perspective that was employed by Maas, a fully
Eulerian perspective is adopted here. Furthermore, multiple “implicit” clo-
sures were employed in Appendix A.2 of Maas [2004] to relate specific inte-
grals to the angular momentum moment and to close the equations. These
closures are based on assumptions of which several are not acceptable for the
estuarine case. For both reasons, an alternative method is required to incor-
porate J into the estuarine equations for X and Z. This method is to derive
for (u,w) an expression explicitly dependent on the moments (X,Z, J), as is
explained below.

2.4.1 Derivation of expression for u and w

Motivated by the typically cubic and quadratic z-profiles for uc and uQ re-
spectively [MacCready, 2004] (see Figure 2.3), the division of depth into an
“inner” or middle layer and a relatively thin surface and bottom layer, as ex-
plained in §2.3 and illustrated in Figure 2.1, is also applied to the horizontal
velocity profile. Baroclinic component uc is approximated as a linear profile,
ûc, in the middle depth-layer. This linearisation is relaxed in the surface and
bottom layers, such that the boundary conditions posed in §2.2.3 are satis-
fied. Further details are given in Appendix A.2.1. Bottom friction affects the
river outflow, uQ, throughout the depth of the column. It is here assumed,
however, that the influence of friction is dominant within the thin bottom
layer but relatively small upward from this layer. It is therefore assumed
that, to lowest order, uQ is a constant, ûQ, at all depths except in the bot-
tom layer, where it decreases to zero at the bottom. Furhermore, the bottom
and surface layers are assumed so thin that the deviations in uc, uQ from
ûc, ûQ in these layers have negligible influence when integrating over the en-
tire domain. Thus in any domain-integral, one might as well replace uQ and
uc by a profile that is constant respectively linear in z, throughout the entire
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basin-depth, i.e. also in surface and bottom layers. These approximations
imply,

uQ → uR and uc → uD ∝ −
(
z +

H

2

)
, (2.37)

hence the vertical rotation axis position is at

zj = −H
2
. (2.38)

Now u is approximated as uR+uD throughout the column. Depth-dependent
flow component uD satisfies the condition of zero net baroclinic transport;
its magnitude is determined next. Notice that this linearisation inevitably
implies that the effect of bottom friction on uQ is “transferred” to uc to yield
uR and uD. Angular momentum J thus becomes

J(t) =
1

LH

∫∫
[(z − zj)uD − (x− xj)w] dx dz , (2.39)

Figure 2.3: Left figure: cyan solid line: scaled river velocity profile uQ/|uR|
versus dimensionless depth z/H, as in equation (A.1), with depth-averaged
(river discharge) velocity uR(≤ 0). Green shaded area: “outer layers” at
surface and bottom. Green dotted line: “initial” low-order approximation of
uQ/|uR|, with uQ/|uR| → ûQ/|uR| in middle and surface layers (ûQ constant
in z) and uQ/|uR| decreasing to zero in bottom layer. Green solid line: “final”
low-order approximation of uQ/|uR|, approximating uQ as a constant, uR, for
all depths. Right figure: orange solid line: scaled baroclinic profile uc/|uE|
versus dimensionless depth z/H, as in equation (A.1), with exchange flow
magnitude uE (constant in z). Green shaded area: “outer layers” at surface
and bottom. Red dotted line: “initial” low-order approximation of uc/|uE|,
with uc/|uE| → ûc/|uE| in the middle layers (ûc linear in z), uc/|uE| satisfying
(∂uc/∂z)|z=−H = 0 in the surface layer and uc/|uE| decreasing to zero in the
bottom layer. Red solid line: “final” low-order approximation of uc/|uE|,
approximating uc as a linear profile uD for all depths.
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and hence also includes the effect of bottom-friction on the river flow. Thus
for a typical estuarine ciculation cell, with baroclinic flow seaward (riverward)
in the upper (deeper) layers and upwelling (downwelling) on the riverward
(seaward) part of the estuary, domain-averaged angular momentum J ≤ 0.

Assume that w can also be approximated as a linear or constant profile
in the middle depth-layer and deviates from this profile in the bottom and
surface layer, to satisy w = 0 at top and bottom boundary. The velocity
components (uD, w) are assumed to constitute a gravitational circulation
cell that is perfectly elliptic to first approximation. This is motivated by the
streamfunction profiles presented by Festa & Hansen [1976]. Further details
are given in Appendix A.2.1.

The circulation cell is confined between the bottom and surface bound-
aries and by the along-channel positions where the baroclinic pressure gra-
dient force vanishes, i.e. where the horizontal salinity gradient ∂s

∂x
vanishes.

It is here assumed that these longitudinal boundaries of the circulation cell
are formed by the thin vertical “outer layers” in which ∂s

∂x
and thus (uD, w)

rapidly decrease to zero. It is assumed that ∂s
∂x

vanished at the most seaward
respectively landward reach of the (s = s0)-isopycnal respectively (s = 0)-
isopycnal, i.e. x = x0,top and x = Li, respectively. Further details are given
in Appendix A.2.2. Hence

∂s

∂x
= 0 at x = x0,top and x = Li, for all z. (2.40)

From e.g. MacCready [2004], the magnitude of the exchange flow is largest
where the depth-averaged salinity gradient is largest. It is then natural to
choose horizontal cell centre xj half-way between x0,top and Li, i.e.

xj =
1

2
(x0,top + Li) = −s0 +HZ

2X
, (2.41)

as shown in Figure 2.4. The streamfunction profile ψD that yields linear
expressions for uD = −∂ψD

∂z
and w = ∂ψD

∂x
and describes this elliptic circulation

cell reads

ψD = ψ0

[(
x− xj
Li − xj

)2

+

(
z − zj
0− zj

)2
]
. (2.42)

Then uD = − 8
H2ψ0

(
z + H

2

)
and w = 4ψ0

X(s0+2xX+HZ)
(s0−HZ)2

. Substitution of these

expressions in definition (2.39) for J yields an expression for streamfunction
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Figure 2.4: Illustration of baroclinic streamfuncion field ψD, as in (2.42),
elliptical and centred around the rotation-axis position {xj, zj}; horizontally
bounded by x = x0,top and x = Li and vertically by z = 0 and z = −H.

magnitude ψ0, so that

u ≈ uR +
6 A(Z) J

H2 B(Z)

(
z +

H

2

)
, (2.43)

w ≈ −3H X Z J

B(Z)
− 6X2 J

B(Z)

(
x− L

2

)
, with (2.44)

A(Z) = (s0 −HZ)2 and B(Z) = (s2
0 +HZ(−s0 + 2HZ)) . (2.45)

These linear expressions for u and w are only acceptable in the “inner do-
main”; HOTs become important in the outer layers in order to satisy bound-
ary conditions. Note that, with the employed expression (2.42) for ψD, the
horizontal velocity is (to lowest order) only dependent on z and the vertical
velocity is only dependent on x.

2.4.2 Interpretation of linearised (u,w)

From here on, assume (X,Z, J) ≤ 0, as expected for estuaries. The expres-
sions for uD and w indeed give a baroclinic flow field that is seaward (river-
ward) above (below) z = zj and upward (downward) riverward (seaward) of
x = xj. Dependencies of (uD, w) on (X,Z, J) are interpreted below.
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Net vertical transport W

Domain-averaged vertical transport,W = −3H X Z J
B(Z)

, is always upward since
the circulation cell is never enclosed completely within the integration domain
for Z < 0 (see Figure 2.4). As Z becomes more negative, an increasingly
large part of the downwelling flow is seaward of x = 0. These currents and
hence W are stronger if J is stronger. For Z < − s0

H
, rotation axis xj is

seaward of x = 0 and thus part of the upwelling region is too. Hence, one
might expect that W decreases again once Z becomes steeper than − s0

H
. In

fact, however, this decrease starts when Z < −
√

2
2
s0
H

. The fact that this
decrease starts already for weaker stratification can possibly be explained by
other effects, such as longitudinal stretching of the circulation cell and hence
weaker w = ∂ψD

∂x
, if Z becomes more negative. Such stretching also happens

when L increases, i.e. when X weakens to zero. Alternatively, W is weaker
when averaged over a longer domain, hence W ∝ −X. The proportionality
to H is probably because the baroclinic pressure gradient force, and thus net
upwelling, is stronger for larger depth.

Horizontal gradient of w

Velocity gradient ∂w
∂x

gives the upwelling/downwelling strength and thus pro-
portional to J . If |X| weakens to zero, so does ∂w

∂x
. This is either due to the

vanishing of the baroclinic pressure gradient force in this case, or because
the domain becomes increasingly long, so that ∂ψD

∂x
= w is reduced. For more

stable stratification, ∂w
∂x

weakens. Also, ∂u
∂z

weakens when Z becomes more
negative than − s0

3H
. Both effects might be interpreted as the surpressing

effect of vertical stratification on the exchange flow. This is illustrated by
the domain-averaged steady salt balance for long (> 30 km) and partially to
well mixed estuaries [equation (2.17) of Valle-Levinson, 2010]. This balance
is between net gain of salt due to the exchange flow acting on a vertically
stratified estuary and net loss of salt due to river flow. A stronger verti-
cally stratified estuary hence requires a smaller exchange flow to balance the
river-induced outflow of salt.

Vertical gradient of uD

As mentioned above, ∂uD
∂z

weakens with strengthening Z, but only for Z <

− s0
3H

. The strengthening of ∂uD
∂z

with strengthening vertical stratification
as long as Z > − s0

3H
is due to other mechanisms. These might include

the coupling between uD and w via ψD, so that uD changes when w changes.
Furthermore, ∂uD

∂z
∝ 1

H2 , contrary to the expectation that the baroclinic pres-
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sure gradient and thus exchange flow increases with increasing depth. This
behaviour is a direct consequence of the assumption of an elliptic stream-
function profile whose semi-major axis is proportional to water depth. The
smaller the depth, the stronger the vertical gradient in ψD, so that uD be-
comes stronger. It is expected, however, that uD is not as strongly weakened
with increasing depth, because |J | is expected to increase with depth. Finally
note that uD is not related to density gradient X. It depends on baroclinicity
indirectly via J however.

2.5 Evolution equations in general form

Now that all dynamic variables s, u and w have been described in terms of X,
Z and J , evolution equations for these low-order moments are pursued. This
is done by taking the time derivatives of their respective definitions (2.26),
(2.27) and (2.39), as is further explained in Appendix B.1. For the Eulerian
perspective employed herein, dx

dt
= 0 and dw

dt
= 0. Some domain-integrals

contain one of the terms ∂s
∂t

, ∂u
∂t

or ∂w
∂t

. There, substitute respectively salt
balance (2.3), x−momentum balance (2.5) and “0”. The latter is based on
the assumption that ∂w

∂t
is negligible, since the vertical momentum balance

(2.7) is assumed to reduce to hydrostatic balance.
Most terms on the right-hand sides of the resulting equations are spatial

integrals containing (products of) s, u or w and their spatial derivatives. If
domain-integrals contain any of the terms

∂2s

∂x2
,
∂2s

∂z2
,
∂u

∂x
,
∂w

∂z
, or higher-order derivatives of s, u, w, (2.46)

the linearised expressions (2.29), (2.43) and (2.44) can not be substituted,
because the constant and linear terms in these expressions would vanish, so
that the unspecified higher-order terms cannot be neglected anymore. In
other words, as long as the lowest-order (constant or linear) approximation
yields nonzero terms, it is acceptable to ignore nonlinearities in the thin
outer layers, when integrating over the entire domain. However, for terms in
(2.46), these nonlinearities may be dominant. Domain-integrals containing
such terms must hence be rewritten with partial integration into boundary
integrals and other domain integrals whose integrand can be computed with
the linearised (s, u, w). Whenever domain integrals contain none of the pre-
vious terms, but only any or several of the terms

s,
∂s

∂x
,
∂s

∂z
, u,

∂u

∂z
, w,

∂w

∂x
, (2.47)
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multiplied by any polynomial in x or z, the linearised (s, u, w) are substituted.
Viscous and diffusive coefficients Ah,v, Kh,v are assumed constant within

the “inner” domain. In the outer layers, these coefficients may differ from
their “inner” values and be spatially dependent. However, as argued above,
the outer layers are assumed so thin that both their local nonlinearities in
(s, u, w) and deviations in Ah,v, Kh,v from the constant “inner” values have
negligible influence on the domain-integrals. Hence, in any domain-integral,
the “inner” values for Ah,v, Kh,v can be used. Only in cases where terms from
(2.46) are involved, the viscous and diffusive “outer layer”-coefficients are
used. Diffusivity and viscosity coefficients in domain-integrals are denoted by
subscript “int”, e.g. Kv,int; in boundary integrals, the boundary is specified
in these coefficients by a corresponding subscript, e.g. Av,bot at z = −H.

Finally, the boundary conditions from §2.2.3 are applied, as is shown
in Appendix B.2. Assuming that uD vanishes in total when the baroclinic
driving force vanishes at x = L and after reducing river profile uQ to a
constant, uR, the boundary condition (2.17) becomes

u|x=L = uR. (2.48)

The evolution equation for X, Z and J are then given by (2.56), (2.64) and
(2.69). For convenience, these equations are presented in §2.7 rather than
here, to present them together with the interpretation of each individually
contributing term. Note that the terms (4), (8), (9), (18) and (19) vanish
when using the boundary conditions.

The linear expressions (2.29), (2.43) and (2.44) for s, u and w must be
substituted to close these equations. In addition, boundary conditions for
s, ∂s

∂x
, uD and w at the seaward boundary and an expression for ∂u

∂z
at the

bottom are required. These conditions are presented hereafter.

2.6 Additional boundary conditions

Bottom boundary

In addition to the no-slip relation, an expression for
(
Av

∂u
∂z

)
|z=−H is required.

Assume that the bottom layer has thickness δb and that u is approximately
linear within this layer. Then(

Av
∂u

∂z

)
|z=−H = Av,bot

û|z=−H+δb

δb
, (2.49)
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where û is the linear profile (2.43) in the inner domain. Hereafter, both δb is
used, as well as its dimensionless counterpart

εb =
δb
H
. (2.50)

Seaward boundary

Festa & Hansen [1976] employ the fact that the circulation cell is well de-
veloped at the seaward boundary, x = 0, to formulate the corresponding
boundary conditions for salt and flow field. As illustrated in Figure 2.1, this
also applies to the current estuarine model, as long as Z is sufficiently strong
that seaward boundary x = 0 is not within the seaward “outer layer” be-
tween x = x0,top and x = x0,top + δo. If Z would always be strong enough,
then the seaward boundary conditions would just be

s|x=0 = ŝ|x=0,

∂s

∂x
|x=0 = X,

uD|x=0 = ûD|x=0,

w|x=0 = ŵ|x=0,

where ŝ is from the linear salt field (2.29) and ûD = û − uR, where û is u
from (2.43) and ŵ is from (2.44).

However, these closure relations do not hold for very weak stratification,
since ∂s

∂x
|x=0, uD|x=0 and w|x=0 all rapidly weaken as soon as x = 0 shifts

into the seaward “outer layer” and vanish completely for vanishing vertical
stratification. The linear expression ŝ does remain valid also for such very
weak values of Z, so its boundary condition reads

s|x=0 = ŝ|x=0 = s0 + (z +H)Z. (2.51)

To ensure that the seaward boundary conditions for salinity gradient
and baroclinic flow field are applicable for any possible vertical stratifica-
tion strength, including vanishing Z, some formulation

∂s

∂x
|x=0 = Ps(Z) X,

uD|x=0 = Pu(Z) ûD|x=0,

w|x=0 = Pw(Z) ŵ|x=0,

is pursued, where Ps,u,w(Z) = 1 for all Z, except when Z becomes very weak,
and Ps,u,w(Z = 0) = 0. The function
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P (Z) ∝
(
−ZH
s0

)1/n

approximates this behaviour increasingly well for increasing constant n >> 1.
However, choosing a large value for n severely complicates the boundary
conditions and thus the model, which will hinder (analytical) study of the
model results. Instead, the simplest possible formulation, where n = 1, is
chosen,

∂s

∂x
|x=0 = −c H Z

s0

X, (2.52)

u|x=0 = uR −
a H Z

s0

ûD|x=0, (2.53)

w|x=0 = −b H Z

s0

ŵ|x=0. (2.54)

Positive constants a, b and c are chosen such that the magnitude of ∂s
∂x
|x=0,

uD|x=0 and w|x=0 never exceeds the magnitude of X, ûD|x=0 and ŵ|x=0,
respectively, i.e.

0 ≤ −{a, b, c}HZ
s0

≤ 1. (2.55)

2.7 Evolution equations in final form

Application of the boundary conditions from §2.2.3 yielded (see §2.5) equa-
tions (2.56), (2.64) and (2.69), which are presented below. The evolution
equations below are divided into separate terms, such that each term has
a distinct physical meaning. Subsequently, the remaining boundary condi-
tions from §2.6 and the linear salt and flow fields (2.29), (2.43) and (2.44)
are substituted in each of these terms. These terms are presented here and
interpreted individually, always assuming that (X,Z, J) ≤ 0.

Several terms on the right-hand side of the evolution equations contain
a time derivative. It is easier to interpret these time-dependent terms all at
the same time, which is done in §2.7.4

Hereafter and throughout this study, descriptions like “stronger”, “weaker”
or “enhanced” always refer to the absolute magnitude of X,Z, J and uR, even
though their values are always ≤ 0. Hence “strengthening J” implies that
the circulation gets stronger, i.e. J becomes more negative. Symbols ↑ and ↓
will be used throughout this report to indicate that some value (mostly zero)
is approached from smaller or from larger values, respectively.
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2.7.1 Evolution of X

After application of the boundary conditions from §2.2.3 (further details in
Appendix B.2), the evolution equation (B.3) for X reduces to (recall that
term (4) vanished in previous steps)

dX

dt
= − 6

L3H

dL

dt

∫∫
s dxdz︸ ︷︷ ︸

(1)

(2.56)

+
12

L3H

∫∫
uR s dxdz︸ ︷︷ ︸

(2a)

+
12

L3H

∫∫
uD s dxdz︸ ︷︷ ︸

(2b)

− 12

L3H

∫∫
Kh,int

∂s

∂x
dxdz︸ ︷︷ ︸

(2c)

− 6

L2H

∫
(uR s) |x=0 dz︸ ︷︷ ︸
(3a)

− 6

L2H

∫
(uD s) |x=0 dz︸ ︷︷ ︸
(3b)

+
6

L2H

∫ (
Kh,sea

∂s

∂x

)
|x=0 dz︸ ︷︷ ︸

(3c)

− 3

L

dL

dt
X︸ ︷︷ ︸

(5)

,

Boundary conditions and linear (s, u, w) are substituted. Then

(2a) =
12uR
L2

M =
12uR
s2

0

X2

(
s0 +HZ

2

)
. (2.57)

Term (2a) is the domain-averaged seaward salt flux due to advection of
domain-averaged salinity M by river flow velocity uR. As long as M > 0, i.e.
for Z > − s0

H
, this flux is negative. The river then causes a seaward retreat of

the intrusion length, or steepening of salt gradient X, i.e. dX
dt

= s0
L2

dL
dt
< 0.

(2b) =
6A(Z)JX2Z

s2
0B(Z)

(2.58)

Term (2b) is the domain-averaged horizontal salt flux due to exchange flow
uD acting on a vertically stratified salt field, importing saltier water and ex-
porting fresher water. In the absence of vertical stratification, the exchange
salt flux vanishes, even though uD may be nonzero. Flux (2b) weakens hor-
izontal salt gradient X due to the net up-estuarine advection of salt by uD,
thus increasing the intrusion length, as illustrated in Figure 2.5.

(2c) = −12Kh,intX
3

s2
0

(2.59)
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Figure 2.5: Positive (inward) basin-averaged horizontal salt flux increases
the up-estuarine reach of salt and hence increases Li, or weakens horizontal
salinity gradient X. This is the case for terms (2b) and (2c). Term (2a) does
the opposite (decreasing L), as long as vertical stratification |Z| < −s0/H.

Term (2c) represents the domain-averaged diffusive horizontal salt flux, spread-
ing salt up-estuary, hence stretching the domain or weakening X.

(3a) = −6uRX
2

s2
0

(
s0 +

HZ

2

)
(2.60)

Since river discharge velocity uR is a constant, it can be taken outside
the integral in term (3a). This term therefore represents the river-induced
outward advection of the salinity, depth-averaged over the seaward boundary,
s̄|0, where

s̄|0 =
1

H

∫ 0

−H
s dz = s0 +

HZ

2
. (2.61)

As long as s̄|0 > 0, i.e. for Z > −2s0
H

, flux (3a) decreases the seaside-averaged
salinity, which reduces the domain-averaged horizontal salinity gradient, i.e.
dX
dt
> 0. Note that the two river-induced salt fluxes, i.e. (2a) acting through-

out the domain and (3a) acting at the seaside only, can have opposite effects
on dX

dt
, for particular values of Z.

(3b) =
3aHA(Z)JX2Z2

s3
0B(Z)

(2.62)

Term (3b) represents the depth-averaged exchange flow-induced salt flux at
the seaward boundary. If Z ↑ 0, the circulation cell is closed at the seaward
bound so that uD vanishes at x = 0.

As long as Z < 0, horizontal exchange flow uD at x = 0 increases the
depth-averaged salinity at the seaward bound. The domain-averaged along-
channel salt gradient X thus becomes larger, i.e. dX

dt
< 0 (see Figure 2.6).

Hence exchange flow uD that transports salt at the seaward boundary only
(3b) has an opposite effect on dX

dt
than uD transporting salt throughout the
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estuary (2b).

(3c) = −6cHKh,seaX
3Z

s3
0

(2.63)

Term (3c) is the diffusive horizontal salt flux, depth-averaged over the sea-
ward boundary. Seaside salinity gradient ∂s

∂x
|x=0 scales with Z, hence so does

(3c). Idem to (3b), s̄|0 is increased, steepening X.

Figure 2.6: Effect of positive depth-averaged salt transport at the seaward
boundary, x = 0 (middle left and right figures). This flux increases the total
salinity at x = 0. Since salinity at the seaward bottom has fixed value,
this results in i) local weakening of vertical salt gradient ∂s/∂z and ii) local
strengthening of horizontal salt gradient ∂s/∂x. Averaged over the domain,
this results in i) a decrease of |Z| (bottom figure) and ii) an increase of |X
(top figure).

2.7.2 Evolution of Z

After application of the boundary conditions from §2.2.3 (further details in
Appendix B.2), the evolution equation (B.8) for Z reduces to (recall that
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terms (8) and (9) vanished in previous steps)

dZ

dt
=

12

LH3

∫
(z uR s) |x=0 dz︸ ︷︷ ︸

(6a)

+
12

LH3

∫
(z uD s) |x=0 dz︸ ︷︷ ︸

(6b)

− 12

LH3

∫ (
z Kh,sea

∂s

∂x

)
|x=0 dz︸ ︷︷ ︸

(6c)

+
12

LH3

∫∫
w s dxdz︸ ︷︷ ︸

(6d)

− 12

LH3

∫∫
Kv,int

∂s

∂z
dxdz︸ ︷︷ ︸

(6e)

(2.64)

+
6

LH2

∫
(uR s) |x=0 dz︸ ︷︷ ︸

(7a)

+
6

LH2

∫
(uD s) |x=0 dz︸ ︷︷ ︸

(7b)

− 6

LH2

∫ (
Kh,sea

∂s

∂x

)
|x=0 dz︸ ︷︷ ︸

(7c)

− 1

L

dL

dt
Z︸ ︷︷ ︸

(10)

Boundary conditions and linear (s, u, w) are substituted. Term (6a, b, c) to-
gether is the “depth-weighted” horizontal salt flux, depth-averaged over the
seaward boundary. This flux is due to river flow (6a), exchange flow (6b) and
diffusion (6c), all evaluated at the seaside. They read

(6a) =
6uRX

Hs0

(
s0 +

HZ

3

)
; (6b) =

6aA(Z)JXZ

Hs0B(Z)
; (6c) =

6cKh,seaX
2Z

s2
0

(2.65)
Term (6b) and (6c) vanish if Z ↑ 0 due to seaward boundary conditions (2.53)
and (2.52).

Note that term (6a) can be both negative and positive, dependent on the
vertical stratification strength. The term is interpreted as follows. River-

Figure 2.7: Domain-averaged vertical transport of salt increases salinity in
shallower layers and decreases salinity in deeper layers. This weakens the
vertical stratification.
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induced salt flux at the seaward bound, uRs|x=0, is weighted with depth z,
so the contribution of this flux in the deepest layers is most important. For
stable stratification Z < 0, uRs|x=0 is always < 0 at the bottom and becomes
less negative (or even positive, dependent on Z) towards the surface. If Z
is weak, uRs|x=0 stays negative over a relatively long range upward from the
bottom. Hence, uRs|x=0 strongly decreases salinity in the deeper layers at
x = 0, which makes stratification less stable, i.e. dZ

dt
> 0. However, as Z be-

comes stronger (Z more negative), uRs|x=0 becomes much more rapidly less
negative, upward from the bottom. uRs|x=0 may even become positive in
relatively deep layers, if Z is strong enough. Hence, as Z becomes stronger,
uRs|x=0 causes less decrease of deep-layer salinity, i.e. dZ

dt
becomes less posi-

tive. If Z becomes strong enough, namely Z < −3s0
H

, term (6a) even stabilises
the stratification, i.e. dZ

dt
< 0.

In term (6b), exchange flux (uDs)|x=0 always increases salinity in deeper
layers at x = 0 and increases salinity less (or even decreases salinity) in
shallower layers. (uDs)|x=0 is also weighted with depth, so the flux in the
deeper layers contributes most. This stabilises vertical stratification.

Diffusive salt flux −Kh,sea
∂s
∂x
|x=0 in (6c) increases salinity at x = 0 but

is constant with depth. However, this flux is weighted with depth, so the
salinity-increase in deeper layers contributes more, i.e. dZ

dt
< 0.

(6d) = − 6JX

H2B(Z)

(
s2

0 + 3HZ[s0 +HZ]
)

(2.66)

Term (6d) is the domain-averaged, vertical advective salt flux due to baro-
clinic flow component w. If the domain-averaged vertical advective salt flux
is upward, this increases (decreases) salinity in the upper (deeper) layers,
weakening the vertical stratification, as illustrated in Figure 2.7. However,
it is found that the Z-dependent part, (s2

0 + 3HZ[s0 +HZ]) /B(Z), is al-
ways positive, so that (6d) is always negative. Hence (6d) strengthens ver-
tical stratification, contrary to the reasoning above. The reason for this is
probably that, towards the river, salinity decreases and finally becomes neg-
ative, whereas w becomes more positive if you move riverward past x = xj.
Hence, more negative salinity is advected more strongly upward, such that
the domain-averaged vertical salt flux is downward.

(6e) = −12Kv,intZ

H2
(2.67)

Term (6e) is the domain-averaged vertical diffusive salt flux. Internal diffu-
sive mixing weakens the existing stratification.

The combined terms (7a, b, c) represent the horizontal salt flux, depth-

32



averaged over the seaward boundary, with

(7a) = −6uRX

Hs0

(
s0 +

HZ

2

)
; (7b) =

3aA(Z)JXZ2

s2
0B(Z)

; (7c) = −6cKh,seaX
2Z

s2
0

(2.68)
Remember that via equation (2.1), salinity at the seaside bottom is fixed.
Hence, for any positive (inward) depth-averaged horizontal salt flux, the
resulting increase of s̄|0 (salinity depth-averaged over seaward boundary, see
(2.61)) can only be obtained by a weakening of the local vertical salt gradient
∂s
∂z
|x=0. So dZ

dt
> 0. Such a positive depth-averaged salt flux can be either due

to exchange flux (uDs)|x=0 in (7b), similar to (3b), or due to diffusive flux
(7c), as illustrated in Figure 2.6. As long as s̄|0 > 0, i.e. for Z > − s0

H
, the

river flux (7a) decreases s̄|0, enhancing Z. For Z < − s0
H

, also (7a) weakens
Z.

2.7.3 Evolution of J

After application of the boundary conditions from §2.2.3 (further details in
Appendix B.2), the evolution equation (B.12) for J reduces to (recall that
terms (18) and (19) vanished in previous steps)

dJ

dt
= − 1

L

dL

dt
J︸ ︷︷ ︸

(11)

+
1

LH

∫ [
(z − zj)u2

]
|x=0 dz︸ ︷︷ ︸

(12)

(2.69)

+
1

LH

∫∫
u w dxdz︸ ︷︷ ︸

(13)

− 1

LH

∫∫
(z − zj)

1

ρ0

∂p′

∂x
dxdz︸ ︷︷ ︸

(14)

− 1

LH

∫
(Ah,sea w) |x=0 dz︸ ︷︷ ︸

(15)

− 1

LH

∫ (
(z − zj)Av,bot

∂u

∂z

)
|z=−H dx︸ ︷︷ ︸

(16a)

− 1

LH

∫∫
Av,int

∂u

∂z
dxdz︸ ︷︷ ︸

16b

+
dxj
dt

1

LH

∫∫
w dxdz︸ ︷︷ ︸

(17)

.

Boundary conditions and linear (s, u, w) are substituted. Getting rid of all
odd terms in the integrand of (12), see Appendix B.2, it reduces to

(12) =
1

LH

∫
(z − zj) (2uR uD) |x=0 dz =

aHuRA(Z)JXZ

s2
0B(Z)

(2.70)

In term (12), angular momentum at the seaward boundary, (z−zj)uD|x=0, is
advectively transported by river flow uR. Since uR is out of the estuary, there
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is loss of angular momentum, hence the estuarine circulation slows down, i.e.
dJ
dt
> 0.

(13) =
1

LH

∫∫
uRw dxdz = −3HuRJXZ

B(Z)
. (2.71)

The first equality is because w only depends on x, such that the odd function
uD cancels in (13). This term is the river-induced advection of w-momentum.
For Z < 0, domain-averaged flow is upward, W > 0, and rotation axis xj
is seaward of the geometrical centre of the integration domain, xj < L/2.
Hence the net upliftW of seaward directed riverflow uR results in a domain-
averaged “counterclockwise” turning of the flow, hence dJ

dt
< 0.

(14) =
1

12
gH2βX. (2.72)

Term (14) is the depth-weighted shear, induced by the baroclinic pressure
gradient force ∝ − 1

ρ0

∂p′

∂x
. As shown in equation (2.23), this force consists of

spatially constant parts, which do not affect J , and a depth-dependent part,
+gβzX. Since the alongchannel, landward acceleration increases with depth
due to X, term (14) generates a shear ∂u

∂z
< 0 that enhances J . The deeper

the estuary, the further this shear can develop.

(15) =
3Ah,seabHJX

2Z(s0 +HZ)

s2
0B(Z)

(2.73)

Term (15) can be interpreted as follows. The boundary value w|x=0 is given
by (2.54), whereas condition (2.40) demands that w = 0 at x = x0,top. Hence
w-momentum is horizontally transferred between x = 0 and x = x0,top, weak-
ening w at x = 0. Hence this is a “Rayleigh-damping”-like term of the vertical
velocity at the seaward boundary [Maas, 2004]. As long as xj > 0, i.e. for
Z > − s0

H
, the baroclinic flow is downward at x = 0, so that a slowdown

of w|x=0 reduces angular momentum, i.e. weakens J . However, xj < 0 for
Z < − s0

H
, so that the flow is upward at x = 0. In that case, a slowdown of

w|x=0 increases ∂w
∂x

and thus enhances J .

(16a) =
Av,botuR

2Hεb︸ ︷︷ ︸
(16a1)

+
3Av,bot(−1 + 2εb)A(Z)J

2H2εbB(Z)︸ ︷︷ ︸
(16a2)

(2.74)

Term (16a1) represents a negative domain-averaged vorticity input due to
bottom-layer shear on river flow uQ, whose magnitude scales with uR. Note
that this enhances J , although it is not related to the gravitational circula-
tion. Term (16a2) weakens J due to bottom-layer friction acting on uD.
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(16b) = −6Av,intA(Z)J

H2B(Z)
(2.75)

Term (16b) represents the effect of friction on uD in the “inner domain”.
The stronger the vertical shear ∂uD

∂z
is, the stronger is the reduction of this

gradient by vertical mixing of momentum. This shear-reduction weakens J .

2.7.4 Interpretation of non-steady terms

The “final form” evolution equations (2.56), (2.64) and (2.69) contain several
time-dependent terms on the right-hand sides of the equations, namely

(1) = − 6

L3H

dL

dt

∫∫
s dxdz = − 6

L2

dL

dt
M = − 6

s0

(
s0 +HZ

2

)
dX

dt
, (2.76)

(5) = − 3

L

dL

dt
X = 3

dX

dt
, (2.77)

(10) = − 1

L

dL

dt
Z =

Z

X

dX

dt
, (2.78)

(11) = − 1

L

dL

dt
J =

J

X

dX

dt
, (2.79)

(17) =
dxj
dt

1

LH

∫∫
w dxdz = − 3HJZ

2B(Z)X

(
(s0 +HZ)

dX

dt
−HXdZ

dt

)
,

(2.80)

where all boundary conditions and the linear expressions for s, u and w have
been substituted after each last equality-sign.

The interpretation of these terms is best started with a look at term (11).
Rename the term 1

L
dL
dt

as α(t). Then

dJ

dt
∝ −α(t)J. (2.81)

Now suppose that the domain-length increases, i.e. dL
dt
> 0, hence α(t) > 0.

Then dJ
dt
> 0, according to the relation above, i.e. circulation J is slowed

down. This is, most likely, due to the “instantaneous” increase in L. Suppose
that the “total circulation”, LHJ , with L the “original” domain length, is
conserved during this instantaneous domain-stretching. Because the same
amount of circulation is now averaged over a longer domain, |J | is weakened,
i.e. dJ

dt
> 0. In the opposite case, i.e. an instantaneous reduction of domain

length, the total circulation is suddenly averaged over a smaller area, such
that dJ

dt
= −α(t)J < 0, since α(t) < 0. Hence the domain-averaged circula-

tion is enhanced. However, in the latter interpretation it is not entirely clear
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why LHJ should be fixed while part of the domain in which this circulation
takes place is “truncated”. The longer the domain initially is, i.e. the smaller
|α(t)|, the less pronounced are these effects.

A similar reasoning can be employed for term (10), since this gives

dZ

dt
∝ −α(t)Z. (2.82)

It can also be imagined that the “total” vertical stratification LHZ is con-
served while domain-length instantaneously increases (decreases), so that
domain-averaged stratification, Z, is suddenly weakened (enhanced).

For horizontal salinity gradient X, the interpretation of term (5) is am-
biguous. On the one hand, an identical reasoning as for J and Z can be
adopted. However, since X is directly coupled to L, it is not sure whether
e.g. an instantaneously decreased domain length L still instantaneously sat-
isfies the condition s|x=L,z=−H = 0, or that salinity at the “new” position
(x = L, z = −H) has not yet adapted and is hence larger than zero.

Since part of term (1) exactly cancels term (5), it could be that, due to
the coupling of X and L, there is indeed no effect on dX

dt
due to solely an

instantaneous change in X. The combination of (1) + (5) involves Z, but
this combined term could not be explained so far.

Finally, term (17) has probably an effect on dJ
dt

that is comparable to term
(11), but as (instantaneous) changes in xj(t) can be due to changes in X as
well as Z, interpretation of term (17) is too complex at this stage.

2.7.5 Final evolution equations in compact notation

With the previously found expressions for all individual terms as functions
of X, Z and J , equations (2.56), (2.64) and (2.69) can be written more
compactly. After taking all time-dependent terms to the left-hand side,

dX

dt

(
1 +

3HZ

s0

)
=

3X2(Hs0uRZ − 2X(cHKh,seaZ + 2Kh,ints0))

s3
0

(2.83)

+
3A(Z)JX2Z(aHZ + 2s0)

s3
0B(Z)

,

dZ

dt
− Z

X

dX

dt
= (2.84)

3JX (HZ (aA(Z)(HZ + 2s0)− 6s2
0(HZ + s0))− 2s4

0)

H2s2
0B(Z)

− 12Kv,intZ

H2
− uRXZ

s0

,
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dJ

dt
−

J
[
2B(Z)dX

dt
+ 3HZ

(
HX dZ

dt
− dX

dt
[HZ + s0]

)]
2B(Z)X

= (2.85)

− 3A(Z)J(−2Av,botεb + Av,bot + 4Av,intεb)

2H2εbB(Z)
+

Av,botuR
2Hεb

+
1

12
βgH2X

+
HJXZ (a uRA(Z) + 3 (Ah,seab X(HZ + s0)− s2

0uR))

s2
0B(Z)

.

The dynamic variables are X(t), which is coupled to domain length L(t) =
−s0/X, Z(t) and J(t). Physical constants are s0, g and β. Physical pa-
rameters, for which typical values have to be chosen, are H, εb = δb/H,
uR, Kh,int, Kh,sea, Kv,int, Ah,sea, Av,int and Av,bot. Constants a, b and c
have to be tuned emperically to obtain appropriate seaward boundary con-
ditions. Omnipresent Z-dependent functions are A(Z) = (s0 − HZ)2 and
B(Z) = s2

0 +HZ(−s0 + 2HZ).
Default values for the physical constants are defined in §3.1. Typical

scales for dynamic variables X (or L), Z and J are determined in §2.7.6.

A system of closed evolution equations for X,Z, J only has been success-
fully constituted, so research objective 1 has been fulfilled.

2.7.6 Scales for dynamic variables

Typical scales for X, Z and J are derived from model studies by Festa
& Hansen [1976], hereafter abbreviated as FH76. For default depth and
river discharge, H = 10 m and uR = −0.02 m/s, the top-to-bottom salinity
difference along the estuary ranges from approximately 1 to 14 psu. Hence
the scale of Z is roughly

[Z] =
∆s

H
∼ 0.1 − 1.4 psu/m, (2.86)

with an average of 0.75 psu/m. A useful alternative variable is the dimen-
sionless vertical stratification,

ζ =
ZH

s0

, (2.87)

where ζ = (s|z=0 − s|z=−H)/s0, i.e. the along-channel averaged salinity dif-
ference between surface and bottom, expressed in numbers of sea salinity s0.
Then typical values for ζ will be

[ζ] ∼ 0.03 − 0.4, (2.88)
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Figure 2.8: Vertical velocity w (in 10−5 cm/s) versus along-channel distance,
for uR = 2cm/s and H = 10 m. Curves represent w at depth z = −0.75H
(wide dashed line), z = −0.5H (solid line) and z = −0.25H (small dashed
line). An estimate of horizontal rotation axis position xj and linear function
w(x) is derived from this. Figure adapted from Festa & Hansen [1976].

with an average of ζ = −0.21.
Next, typical values for intrusion length L are derived from numerical

model simulations by FH76. As shown in Figure 1.2, this length is esti-
mated as the reach of the s = 0.05s0 isopycnal. For the various numerical
experiments shown by FH76, this gives a typical scale

[L] ∼ 50 − 100 km ↔ |X| ∼ 3.5 · 10−4 − 7 · 10−4 psu/m. (2.89)

A typical magnitude for angular momentum J is derived from FH76 as well.
From Figure 2.5, the depth-averaged vertical velocity profile as a function
of x is estimated. Extrapolation of this (linear) estimate yields an estimate
for rotation axis position, xj ≈ −35 km. Next to this, the magnitude of
the horizontal exchange flow uD is estimated from model results in FH76 to
be in the range of 10 to 30 cm/s. Using definition (2.39) for basin-averaged
angular momentum, J , its typical scale is found to be

[J ] ∼ 0.35 − 0.70 m2/s, (2.90)

with an average of about 0.5 m2/s.
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Chapter 3

Methods

3.1 Computing steady states

Now that a closed set of evolution equations has been found, the first analysing
step is the computation of its steady states (X,Z, J). All time-derivatives
in equations (2.83), (2.84) and (2.85) are set to zero, both on the left-hand
side (LHS) and on the right-hand side (RHS) of the equality signs. It was
attempted to find analytical solutions of (X,Z, J) from these full steady bal-
ances. In specific cases, analytic solutions to the steady balances exist, as
shown in §4.1. Remaining cases must be solved numerically.

The following default parameter values are chosen, following Festa &
Hansen [1976]. No distinction has been made between diffusive and viscous
coefficient values in the inner domain and at the boundaries.

H = 10 m

Kv,int = 1 · 10−4 m2 s−1

Kh,int = Kh,sea = 100 m2 s−1

Av,bot = Av,int = 1 · 10−3 m2 s−1

uR = −2 · 10−2 m s−1,

Festa & Hansen found that changing Ah between 1 and 106 times Av does
not change the results significantly, hence a default value of Ah = 103Av is
adopted here, so Ah,sea = 1 m2 s−1.

It is here assumed that bottom layer depth δb scales with total water depth
H, so that dimensionless bottom layer depth εb is constant. Schramkowski
et al. [2010] modelled subtidal estuarine dynamics with a bottom bound-
ary layer thickness δBBL of 1 meter and width-averaged depth of 15.8 m.
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Although the bottom layer in the current model is not a bottom boundary
layer, it is here assumed that the fractions δb/H and δBBL/H are similar, so
δBBL/H = 1/15.8 ≈ 0.06, so εb = δb

H
= 6 ∗ 10−2.

As shown in §2.6, seaward boundary conditions scale with −{a, b, c}HZ
s0

.
It is physically expected that the strongest vertical stratification possible
is Z = − s0

H
, i.e. the maximal alongchannel-averaged salinity difference be-

tween bottom and surface is s0. Since it is also expected that the seaward
boundary values for ∂s

∂x
, uD and w never exceed in magnitude the “inner do-

main” values X, ûD|x=0 and ŵ|x=0, the constants are chosen at a = b = c = 1.

To see if multiple equilibria exist and to fulfill RO3, the steady bal-
ances are solved numerically for (X,Z, J) using the Mathematica command
NSolve. This finds all existing solutions, both real and complex.

To fulfill RO4, steady states are computed as a function of river and
tidal influence. Hansen & Rattray [1966] classify estuaries based on densi-

metric Froude number Fm = |uR|√
gH∆ρ/ρ

and flow ratio P = |uR|
uT

. Density-

difference between river- and seawater, ∆ρ, and estuarine water density ρ
are assumed approximately constant in the current case. Then the only vari-
ables in Fm and P are uR, H and root-mean squared tidal velocity uT . Both
MacCready & Geyer [2010], eq.(13) and Valle-Levinson [2010], eq.(2.6) indi-
cate that Av is proportional to H and depth-averaged tidal flow amplitude.
To conlude, in the estuarine classification proposed by Hansen & Rattray
[1966], the variables uR, H and Av are involved. Although it would suffice
to vary only two of them, the influence of all three variables on the estuarine
dynamics will be considered in this study. Here, assume Av = Av,int = Av,bot.

Steady states (X,Z, J) as a function of uR are numerically computed
with Mathematica command FindRoot. Starting from one of the solutions for
(X,Z, J)|uR,0

found with NSolve, the default uR,0 is perturbed by small ∆uR.
With FindRoot, a new steady solution (X,Z, J)|uR,0+∆uR is found, using so-
lution (X,Z, J)|uR,0

as starting values for the numerical solving procedure.
Then, choose uR,0 + 2∆uR and solve (X,Z, J)|uR,0+2∆uR using starting value
(X,Z, J)|uR,0+∆uR , etc. This numerical continuation procedure is similarly
applied while varying H or Av, fixing all other parameters at their default.
The results are shown in §4.1.
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3.2 Linear stability analysis

It will be shown in §4.1 that both physically acceptable as well as physically
unrealistic steady state solutions exist. To answer RQ5 and to test if the
physically acceptable states are stable to infinitesimally small perturbations,
a linear stability analysis is performed. The left-hand sides of evolution equa-
tions (2.83), (2.84) and (2.85) contain functions of various time-derivatives.
When considering steady solutions, it suffices to set all these time-derivatives
individually to zero. For the dynamical analysis that will be done in this and
the next section however, this is not possible. Thus, the evolution equations
are rewritten so that on their left-hand sides, they read only dX/dt, dZ/dt
and dJ/dt, respectively, and the right hand sides contain only steady terms.

To this end, devide (2.83) by the factor C(Z) = 1 + 3HZ
s0

to obtain an
evolution equation for dX/dt only. Then, substitute the latter equation into
the right-hand side of equation (2.84) and rewrite this as a new evolution
equation for Z only. Finally, both the new evolution equations for X and
for Z are substituted into the right-hand side of (2.85), to yield a new evo-
lution equation dJ

dt
. Notice that all equations contain the factor C(Z) in the

denominators. This function has a root at Z = − s0
3H

. If Z reaches this value,
time-derivatives dX

dt
, dZ

dt
and dJ

dt
go to ±∞. The reason for this should be

sought in the combination of terms (1) and (5) in the original X-evolution
equation. For some reason, which could not be explained thus far, these two
terms exactly balance the term dX

dt
on the left-hand side of equation (2.56).

Then, using these new evolution equations, the steady states (X,Z, J) are
perturbed by infinitesimal perturbations (X ′, Z ′, J ′) and a Taylor-expansion
is made of the pertubed system of equations, i.e.

d

dt

X ′Z ′
J ′

 = J ·

X ′Z ′
J ′

+ HOTs. (3.1)

To determine linear stability, the eigenvalue-equation of Jacobian J is com-
puted and the steady solutions (X,Z, J) are substituted in the eigenvalues
λ1,2,3. The steady solution is linearly stable, unstable or neutral if the max-
imal real part of the eigenvalues is resp. negative, positive or zero [e.g.
Dijkstra, 2013].

3.3 Forward integration of evolution equations

Provided that a physically acceptable steady state is linearly stable, it is
important to know if the system actually ends up in this steady state when it
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is perturbed by some finite amplitude perturbation (dX, dZ, dJ) from another
steady state. Therefore, the new evolution equations (ordinary differential
equations) derived in §3.2 (with only dX/dt, dZ/dt or dJ/dt on the left-
hand sides) are solved numerically as a function of time, using Mathematica
command NDSolve. Choose some value uR and amplitudes for dX, dZ and
dJ . Then, all 8 combinations (X ± dX,Z ± dZ, J ± dJ) are used as initial
conditions for NDSolve.
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Chapter 4

Results

4.1 Steady state solutions

To fulfill RO3, multiple equilibrium steady states solutions were found at
default parameters. These solutions can be divided into three categories,
namely

A. Solutions for which either one (or more) of X,Z or J is positive. This
is physically not expected for the current estuarine model and river
discharge velocity uR ≤ 0;

B. (X,Z, J)hom = (0, 0, Jhom), i.e. non-zero J in homogeneous salt field;

C. (X,Z, J)est < 0, i.e. the expected “estuarine” situation.

To achieve RO4, solutions in all three categories are interpreted below.

4.1.1 Category A: physically unrealistic steady states

Mathematically the model does not forbid steady states that do not meet
these “estuarine” characteristics of (X,Z, J) ≤ 0 for uR ≤ 0. Many of
the expressions defined in this model, e.g. intrusion length Li and boundary
conditions at x = 0, were based on the assumption that (X,Z, J) ≤ 0. These
expressions likely loose their physical meaning for solutions from category A;
yet they are mathematically allowed.

4.1.2 Category B: (X,Z, J)hom = (0, 0, Jhom)

The category B solution has negative J , while the domain is completely
homogeneous in s, i.e. (X,Z) = 0. One expects that density gradients arise
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when uR < 0, but this is not the case for this solution. The reason for
this is that, at X = 0, L = − s0

X
is infinitely long. Almost all terms in the

evolution equations of X, Z and J are averaged over domain size LH, so
their influence on the evolution d

dt
(X,Z, J) is “infinitely dilluted” if L→∞.

Hence, if X = 0,

dX

dt
|X=0 = 0, (4.1)

dZ

dt
|X=0 = −12Kv,int

H2
Z, (4.2)

i.e. when starting from X = 0, any vertical stratification is mixed away, so
that X = 0 also “demands” Z = 0. In this homogeneous estuary, (X,Z) = 0,

dJ

dt
|(X,Z)=0 =

Av,botuR
2δb︸ ︷︷ ︸

(16a1)

− 6

H2

Av,bot
2δb

(
H

2
− δb

)
J︸ ︷︷ ︸

(16a2)

−6Av,int
H2

J︸ ︷︷ ︸
(16b)

. (4.3)

Hence angular momentum J is forced by river-induced shear (16a1) in the
bottom layer. Once J becomes nonzero due to this shear generation, ex-
change flow uD arises, which is damped by bottom friction (16a2) and internal
mixing (16b). The resulting steady state value for J is hence not associated
with a closed, gravitational circulation cell, but only with the river-induced
bottom-layer shear, and reads

Jhom =

Av,botuR
2δb

6
H2

[
Av,bot

2δb

(
H
2
− δb

)
+ Av,int

] =
HuR

3
[
(1− 2εb) + 4εb

Av,int

Av,bot

] . (4.4)

4.1.3 Category C: estuarine situation, (X,Z, J)est < 0

(X,Z, J)est as a function of uR - description of results

“Estuarine” steady state solutions as a function of river discharge velocity
are plotted in Figure 4.1. It shows that, even in the absence of river dis-
charge, the basin contains angular momentum and is horizontally and ver-
tically stratified, contrary to the expectations. Horizontal salinity gradient
|X| increases, or intrusion length Li retreats, with strengthening river dis-
charge. This agrees with model studies, e.g. Festa & Hansen [1976]. ζ is
always ≤ −2, so the top-to-bottom salinity difference is always two or more
times the sea salinity. This is illustrated in Figure 4.2. As expected from
the model formulation, salinity becomes negative landward of the (s = 0)-
isopycnal. However, for ζ < −2, this region of negative salinity is very large
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Figure 4.1: “Estuarine ” steady solutions (X, ZH/s0, J)est versus river
discharge uR. Note that uR varies along the horizontal axis.

and the vertical top-to-bottom salinity difference is more than 2s0, which
is not physically realistic. The choice for (a, b, c) = 1 made in §3.1 is thus
not realistic either, since this implies that the magnitude of ∂s

∂x
, uD and w

at x = 0 is larger than the magnitude that the linearised salt and flow field
would obtain at x = 0. ζ ↑ −2 both in the limit uR ↑ 0 and uR → −∞. J
never approaches “homogeneous” value Jhom, because X and Z never vanish.

The inspected range of river discharge values can be divided into three differ-
ent parts, all three with qualitatively different behaviour of X, Z and J . For
uR ∈ [−0.2, 0] m/s, the strengthening of X with river discharge intensifies
while uR gets more negative. Vertical stratification gets more stable with
strengthening river discharge, but reaches a maximum around uR = −0.22
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Figure 4.2: Spatial representation of the linearised salt and flow field, corre-
sponding to (X,Z, J)est. Domain presented runs horizontally from x = x0,top

to x = L, where the vertical line is at x = 0. The integration domain is
hence on the right of this line. The black dot represents (xj, zj)

m/s. For small uR, the strengthening of J with river discharge intensifies
while uR gets more negative. At uR ≈ −0.13 m/s, there is an inflection
point; from here on the enhancement of J due to uR weakens; J reaches a
local intensity-maximum around uR = −0.28 m/s.

For uR ∈ [−0.6,−0.2] m/s, the strengthening of X with uR is more intense
than in the first region, as is shown in Figure 4.3. uR weakens vertical
stratification, but this weakening effect is reduced as uR approaches −0.7
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Figure 4.3: As in Figure 4.2, but for variable river discharge velocity uR.
Contrary to Figure 4.2, the estuarine domain is here plotted from x = 0 to
x = L.

m/s. The effect of uR on the magnitude of J is similar, the weakening effect
on J being reduced towards uR = −0.6 m/s.

For uR < −0.6 m/s, the strengthening of X with uR is even more in-
tense than in the second region. As uR further strengthens, X approaches
a linear profile. ζ asymptotically approaches the constant −2 and J asymp-
totically approaches a linear profile. The model results for river discharges
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ranging from 1 to 4 cm/s are compared to numerical model simulations done
by Festa & Hansen [1976], hereafter abbreviated as FH76. The results are
shown in Figure 4.3. The salinity field and baroclinic velocity field are com-
puted based on their linear expressions (2.29), (2.43) and (2.44). As river
discharge increases, intrusion length decreases from 11 to 8 km, which is
about an order magnitude shorter than the intrusion length varying from 70
to 35 km found by FH76. As river discharge increases, vertical stratification
and the magnitude of uD and w increase, which agrees with FH76. The hor-
izontal exchange flow is, however, throughout the domain length typically
a factor two stronger than the value maximally reached (at the seaside en-

Figure 4.4: “Estuarine ” steady solutions (X, ZH/s0, J)est versus depth H.
Note that H varies along the horizontal axis

48



Figure 4.5: As in Figure 4.3, but for varying depth.

trance) in the FH76 results. Vertical velocities are typically a factor 10 larger
than modelled by FH76. Despite this, J is only a factor 2 larger than the
typical range estimated in §2.7.6. Most likely, the strong vertical velocities
are compensated by a smaller intrusion length.

(X,Z, J)est as a function of H - description of results

Steady estuarine solutions are plotted versus water depth H in Figure 4.4.
Horizontal density gradient X is infinitely steep for depth H ↓ 0m and X
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asymptotically weakens to zero, i.e. the domain length grows to infinity,
as depth increases. For small depths, about ≤ 1m, dimensionless vertical
straticifation ζ is approximately constantly −2. For depths about 1 to 6m, ζ
becomes more negative, i.e. the weakening of Z with H is less strong in this
regime. For H increasing from about 7m onwards, ζ asymptotically returns
to −2, i.e. the weakening of Z with H slowly becomes stronger again. The
top-to-bottom salinity difference is thus kept approximately constant for all
depths, i.e. Z weakens as H increases. Contrary to expectations, ζ is always
≤ −2, as is illustrated in Figure 4.5.

Circulation J is always < 0, also for H ↑ 0.J intensifies with H; this

Figure 4.6: As in Figure 4.1, but for varying vertical eddy viscosity,Av. Note
that Av varies along the horizontal axis.
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intensification is stronger with growing H. J never approaches Jhom, because
X and Z are nonzero.

For depths ranging from 7.5 to 12.5 m, the results are again translated
back into salinity and baroclinic flow fields and compared to results by FH76.
Intriusion length increases from 5 to 18 km as depth is increased. This is
also modelled by FH76, but their intrusion lengths typically range from 20
to 100 km. Dimensionless stratification ζ slightly weakens as H increases,
but much less than the weakening modelled by FH76. In agreement with
FH76, the horizontal exchange flow becomes stronger with increased depth.
Vertical velocity decreases, but is again a factor 10 larger than modelled by
FH76.

(X,Z, J)est as a function of Av - description of results

Estuarine steady solutions as a function of vertical exchange coefficient Av are
plotted in Figure 4.6. Here, Av,int = Av,bot = Av is assumed. For increasing
vertical eddy viscosity, X becomes increasingly steep, or L increasingly short.
ζ ≤ −2 for all Av. ζ first becomes more negative as Av increases, reaches
a minimum around Av = 0.0025 m2 s−1 and then slowly approaches ζ ↑ −2
again for Av →∞. Increasing Av, i.e. vertical mixing of momentum, weakens
exchange flow uD and hence J . Since X and Z never vanish, J always remains
stronger than Jhom. In the absence of vertical viscosity, X < 0, ζ ↑ −2 and
J << 0.

4.2 Linear stability of steady state solutions

Physically, one expects that in the absence of river discharge, the estuary is
homogenous and there is no circulation, i.e. (X,Z, J, uR) = (0, 0, 0, 0), which
is part of the steady solution (X,Z, J)hom. As soon as a river discharges
into the estuary, one expects (X,Z, J) < 0, which is true for (X,Z, J)est.
Hence to answer RO5, a linear stability analysis will be applied on
the solutions (X,Z, J)hom and (X,Z, J)est.
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4.2.1 Linear stability of (X,Z, J)hom

When steady solution (0, 0, Jhom) is substituted in the eigenvalue-equation,
this equation is of the form (λ− a1)(λ− a2)λ = 0, with solutions

λhom,1 = 0, (4.5)

λhom,2 = −12Kv,int

H2
, (4.6)

λhom,3 = −3 [Av,bot(1− 2εb) + 4Av,intεb]

2H2εb
. (4.7)

Then, all three eigenvalues are always real-valued, and λhom,2 is always neg-
ative. For the current choice Av,int = Av,bot = Av, also λhom,3 < 0. Hence
the maximum of <{λhom,i} is zero, so the “homogeneous” steady solution is
neutrally stable.

4.2.2 Linear stability of (X,Z, J)est

The eigenvalue equation yields (complicated) algebraic expressions for λ1,2,3.
The numerical solutions (X,Z, J)est as a function of uR, H and Av are sub-
stituted in these expressions and the real parts of the eigenvalues are taken.

As a function of uR, all three eigenvalues have negative real parts for all uR
(between 0 and -100 m/s). For strengthening river discharge these real parts
become more negative, i.e. the “estuarine” steady solution becomes more
stable. The estuarine solution is also stable for all depth H (varied between
0 and 10.000m). The real parts of the eigenvalues approach asymptotically
to zero, i.e. stability decreases, for increasing depth. Also for all Av (between
0 and 100 m2/s), the estuarine solution is linearly stable; stability increases
with Av.

4.3 Time evolution of basin-averaged variables

It was shown that neither of the physically relevant solutions (X,Z, J)hom
and (X,ZJ)est are linearly unstable. However, it is physically not expected
that the estuary can remain in the neutrally stable state (X,Z, J)hom when
there is nonzero river discharge. Hence it is expected that, if the estuary
is initially homogeneous despite uR < 0, it evolves into (X,Z, J)est, once
perturbed by finite-amplitude perturbations.

To test this expectation, choose a very small river discharge velocity,
uR = −10−4 m/s and finite-amplitude perturbations

(dX, dZ, dJ) = (± 10−2 psu/m, ± 10−2 psu/m, ± 10−2 m2/s).
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For all eight combinations of initial conditions (X,Z, J)t=0 = (X,Z, J)hom +
(dX, dZ, dJ), the system asymptotically returns to its initial state (0, 0, Jhom).

As a second experiment, keep dX and dJ the same, but instead choose

dZ = − s0

3H
± 10−2 psu/m.

The value Z = − s0
3H

is exactly the singular point of the new evolution equa-
tions derived in §3.2, i.e. the root of function C(Z) = 1 + 3HZ

s0
, which occurs

in almost all denominators. Therefore, since all evolution equations change
sign when Z crosses − s0

3H
, it is expected that this new choice of dZ will dras-

tically change the evolution of a finite-amplitude perturbation starting from
(X,Z, J)hom.

The results are as follows. Irrespective of the sign of small perturbations
(dX, dJ), the perturbed system returns to (X,Z, J)hom for dZ > − s0

3H
, but

evolves into another state for dZ < − s0
3H

.
For negative perturbations dX, the system ends up in (X,Z, J)est, as

expected. For positive dX, the system ends up in a different steady state.
This state has (X, J) ≈ −(X, J)est, i.e. almost (but not exactly) the oppositie
of the estuarine solution for X and J . The solution for Z is approximately
(so not exactly) Zest (but not its opposite value). The sign of small dJ has
no influence on the end state in any of the cases.

To conclude, it appears that dZ should cross its threshold value − s0
3H

before (X,Z, J)hom evolves into another state. It is here assumed that this
“separation” in evolution holds for any 0 > dZ > − s0

3H
and any dZ < − s0

3H
.

The sign of dX determines the sign of the end state for X. The sign of J
seems to follow the sign of X. This is expected, beacuse the circulation-
direction is related to the orientation of the channel. It is further assumed
that this holds for any other (small) perturbations (dX, dJ). To conclude,
the system indeed ends up in the physically expected steady state for uR < 0,
provided the vertical stratification perturbation is strong enough.
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Chapter 5

Discussion

5.1 Discussion of model results

Steady solution (X,Z, J)est has been thouroughly analysed and interpreted
as a function of river discharge, depth and vertical eddy viscosity. For this
analysis, the magnitude of all individual terms from the steady versions of
(2.56), (2.64) and (2.69) is considered as a function of uR, H or Av, after
substitution of the corresponding solutions (X,Z, J)est. For several specific
parameter ranges, e.g. the limits of very weak or exceedingly strong river
discharge, many of the terms in these balances can be neglected. The result-
ing reduced balance often has analytical solutions for X, Z and J separately.
These analytical solutions prove to be good approximations to the numer-
ical solution of the full steady balances. These analytical solutions can be
interpreted in terms of all contributing physical processes; the analysis is
shown in Appendix C. These analyses explain, amongst others, the remark-
able weakening of angular momentum while river discharge increases, around
uR = −0.4m/s. Note that the results for variable depth H and eddy viscos-
ity Av use a larger default river discharge (10 cm/s) rather than the default
value of 2 cm/s adopted throughout the rest of this study. These resuls are,
however, not further discussed here. Although all contributing terms are in-
dividually understandable from a physical perspective, it is not obvious how
to compare the results of this analysis directly to other modelling or observa-
tional studies. This is mostly because vertical stratification in the modelled
results is unphysically strong (as is further discussed hereafter), and because
the coupling of domain length to the horizontal density gradient makes the
results not directly relatable to other studies. In addition, even though ana-
lytical solutions to several reduced balances are found, even these solutions
are often to complex to grasp, mainly due to the complicated Z-dependency.
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Both difficulties will be further addressed later onin this discussion.

5.1.1 Noticeable results

Unphysically strong vertical stratification for (X,Z, J)est

Most remarkable in the steady results for (X,Z, J)estis the unphysically
strong vertical stratification of ζ ≤ −2 that is observed for all values of
river discharge, depth and eddy viscosity. This is particularly unexpected
for weak river discharge of about 2 cm/s, for which the estuary is expected
to be partially or well mixed, with ζ ∼ −0.4 in the most stratified case (see
§2.7.6). A possible explanation comes from Figure 5.1 (at the end of this
section).

This figure shows the magnitude of all individual terms in the steady
versions of (2.56), (2.64) and (2.69), as a function of uR, after substitution of
the corresponding solutions (X,Z, J)est. Considering the steady X-balance,
it can be seen that for very weak river discharge, the river induced horizontal
salt fluxes (2a) and (3a) are indeed very small. The horizontal diffusive
salt fluxes (2c) and (3c) are also very small, because the intrusion length is
very large, so that the horizontal density gradient is negligibly small. The
remaining terms are the horizontal exchange salt fluxes (2b) and (3b). This
balance gives

0 = (2b) + (3b) =
3A(Z)JX2Z

s2
0B(Z)

(
2 +

aHZ

s0

)
. (5.1)

This yields

Z = −2s0

aH
, (5.2)

i.e. when the domain-averaged exchange salt transport (2b) exactly balances
the exchange salt transport at the seaward boundary (3b), since uD|x=0 is
assumed to scale with cHZ

s0
. This solution for Z gives exactly ζ = −2 under

the current parameter choices. Moreover, for weak river discharge, the steady
Z-balance is dominated by terms (6b), (6d) and (7b). This balance yields a
complicated analytical solution for Z, which numerically yields ζ ≈ −2.8.
Hence, for weak river discharge, it is likely that the system has ζ ≤ −2.

More generally, it is remarkable that the estuary is always ζ ≤ −2 and
more often strongly attracted to ζ − 2, namely also in the limit of exceed-
ingly strong river discharge, very small and exceedingly large depth and very
weak and exceedingly strong vertical viscosity. To interpret this, also the
magnitude of the individual steady terms as a function of H and Av shown
in Figures 5.2 and 5.3 (at the end of this section). It can be seen that the
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steady X-balance is also dominated by exchange fluxes (2b) and (3b) in the
case of very large H and very small Av. In both cases, the intrusion length
is very large, so that diffusive fluxes are negligible. The steady X-balance is
dominated by the horizontal diffusive salt fluxes (2c) and (3c). These fluxes
are dominant for very short estuaries, since |X| is large in that case. Short es-
tuaries are observed for very strong river discharge and for very small depths,
which probably explains the limits ζ → −2 in these cases. The diffusive term
(3c) imports salt at the seaward boundary and thus locally increases the hor-
izontal salinity gradient and hence |X|. Diffusive term (2c) transports salt
up the estuary, increasing the intrusion length, hence decreasing |X|. The
balance reads

0 = (2c) + (3c)

= −6X3

s3
0

(2Kh,ints0 + cHKh,seaZ) . (5.3)

The two fluxes balance when

Z = −2Kh,ints0

cHKh,sea

, (5.4)

i.e. when the domain-averaged diffusive salt transport (2c) exactly balances
the diffusive salt transport at the seaward boundary (3c), which is assumed
to scale with cHZ

s0
. This solution for Z gives exactly ζ = −2 under the current

parameter choices.
Apart from that, the steady Z-balance is often dominated by terms (6b),

(6d), (7b) and sometimes also (6a). This balance yields a complicated rela-
tionship for Z, but numerically yields ζ < −2.

Net salt transport in steady state

Because the modelled vertical stratification is unphysically strong, the ques-
tion arises what the effect is on the net salt transport into the estuary. For
steady states, there should be no net salt transport into the estuary. The net
salt transport, FS,net, into the domain takes place only through the seaward
boundary, i.e.

FS,net =

∫ 0

−H

(
us−Kh,sea

∂s

∂x

)
|x=0 dz (5.5)

= HuR

(
s0 +

HZ

2

)
︸ ︷︷ ︸

river

−aH
2A(Z)JZ2

2s0B(Z)︸ ︷︷ ︸
exchange

+
cH2Kh,seaXZ

s0︸ ︷︷ ︸
diffusive

. (5.6)
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The diffusive and exchange salt fluxes are always positive, i.e. into the do-
main. The river-induced salt flux is always outward, as long as the depth-
averaged salinity at the seaward boundary, s̄|0 = s0 + HZ

2
, is positive. This

is the case for |ζ| < 2, hence for the steady solution (X,Z, J)est, the river
flux is always positive as well! To conlude, there is always a net import of
salt through the seaward boundary in the steady state (X,Z, J)est. How
can the system still be in steady state? This is due to the fact that the
steady X-balance also contains the “domain-averaged” horizontal salt flux,
i.e. proportional to terms (2a + b + c). For ζ < −2 these terms cause a
net up-estuary transport of salt, which increases the domain length. This
balances the positive net salt flux at the seaward boundary, which locally
steepens the horizontal salt gradient and thus decreases the intrusion length.

5.2 Attempts to improve physical realism of

steady solution (X,Z, J)est

Several attempts were undertaken to better understand the large values for Z
in (X,Z, J)est and to find more realistic values for this vertical stratification.
These attempts are discussed hereafter.

Decreasing the Péclet number

The unphysically strong vertical stratification is not expected for partially
to well mixed estuaries. In such estuaries, the salt tranport by vertical diffu-
sion is typically much more effective than transport by horizontal diffusion.
The ratio of advectional over diffusional importance can be expressed by the
dimensionless Péclet number [Cushman-Roisin & Beckers, 2011],

Pe =
|uR| H2

Kv L
. (5.7)

In partially to well mixed estuaries, Pe is typically much smaller than 1.
Computing this ratio for default river discharge uR = 2 cm/s, Kv = Kv,int =
10−4 m2/s and H = 10 m, the intrusion length is (according to (X,Z, J)est
at this uR) about 10 km, so that Pe = 2, hence the estuary actually is not
diffusion-dominated, which possibly explains the strong vertical stratifica-
tion.

Therefore, Kv is increased to see if the resulting |Z| is smaller. An increase
in Kv due to increased tidal forcing should logically be accompanied by an
increase in Av. Hence, the known steady solution (X,Z, J)est is computed
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again for default parameter settings (uR = −0.02m/s), but variable Av,int =
Av,bot = Av and Kv,int = Kv. Then Av and Kv are slowly increased as

Av = Av0 µ, (5.8)

Av = Kv0 µ
2, (5.9)

starting at default values Av0 = 10−3 m2/s and Kv0 = 10−4 m2/s and dimen-
sionless constant µ = 1 and slowly increasing µ to 10, so that Av and Kv

are both maximal 10−2m2/s. The results are shown in Figure 5.4 (at the end
of this section). Indeed, the Péclet number decreases, but even at µ = 10,
when Pe ≈ 0.5, the estuary is not diffusion dominated. Correspondingly, |ζ|
becomes smaller with increasing vertical mixing, but still ζ ≤ −2. Moreover,
|X| and |J | become larger for increased vertical mixing. Possibly, the weaker
vertical stratification allows the exchange flow to become stronger, because
uD is less suppressed by vertical stratification, as was also argued in §2.4.2.
The fact that |X| increases with enhanced mixing causes L to decrease, so
that Pe does not become much smaller.

To conlude, for the current parameter settings, simultaneously increasing
vertical eddy viscosity and diffusivity does not result in a significantly weaker
vertical stratification.

Rescaling the steady equations

The unrealistic values for Z would be easier to solve if the origin of the
Z-solution could be directly traced back from the model equations. This
cannot be done, most importantly due to complicated Z-dependencies in
most steady terms. Therefore, the typical magnitude of each individual term
in the steady versions of (2.83), (2.84) and (2.85) is determined. To this end,
the steady equations are first fully expanded, such that none of the individual
terms contain a sum of multiple terms. All three equations have a prefactor
proportional to 1/B(Z). This Z-dependent function in the denominator is
kept unchanged and is not further expanded. After that, default parameters
and the typical scales for X, Z and J found in §2.7.6 are substituted in
these expanded equations. All terms whose magnitude is 10% or less than
the largest-magnitude term is considered small. Each of these small terms
is multiplied by dimensionless factor α. The remaining, large terms are kept
unchanged.

For α = 1, the equations are identical to the original steady equations.
Then, the influence of the small terms is gradually decreased by decreasing
α from 1 to 0 in small steps. Each previously computed result serves as a
first guess value to compute steady solutions to (X,Z, J) for the new value
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of α. Unfortunately, no realistic values for X, Z and J could be obtained via
this method. Most importantly, the vertical stratification becomes infinitely
strong when α is reduced.

The fact that this method does not achieve the desired result is possi-
bly due to the use of one common prefactor in front of all small terms. This
method could be improved by using different prefactors, α1, α2, . . ., for differ-
ent kinds of small terms, e.g. dependent on their X- or J-dependency. Any
way, making the evolution equations dimensionless and identifying typical
magnitudes of each term is essential for future improvement and extension
of the constructed model.

Sensitivity of results on seaward boundary conditions

Both dominant balances 0 = (2b)+(3b) and 0 = (2c)+(3c) yield a solution for
Z that is dependent on the value of (a, b, c), i.e. the tuning parameters in the
seaward boundary conditions. Since it was shown that these two balances are
important in multiple ranges of uR, H and Av, and might explain the strong
vertical stratification, it is expected that the solution for Z is very sensititve
to the choice of these constants in the formulation of the seaward boundary
conditions (2.52), (2.53) and (2.54). From the analytical solutions (5.2) and
(5.4), vertical stratification is expected to become weaker with increasing
values of (a, b, c). From Figure 5.5 can be seen that the weakest possible
vertical stratification is ζ = −1 for (a, b, c) = 2. For (a, b, c) larger than 2,
|ζ| < 1 for small uR; the range |ζ| < 1 becomes wider for increasing (a, b, c).
One might thus expect that, for large enough (a, b, c), ζ can adopt realistic
values for all realistic river discharges. Figures 5.6 and 5.7 show however, that
when (a, b, c) becomes larger than ∼ 2.7, |X| starts to decrease for increasing
|uR|, contrary to the expectation. Hence more elaborate sensitivity studies
should be performed to see if (a, b, c) can be tuned such that i) ζ reaches
physically realistic values and ii) the dependency of steady X, Z and J on
uR, H and Av is still physically understandable.

Further possible explanations for unphysical values of (X,Z, J)est

Another possible explanation for the unphysically strong vertical stratifi-
cation might be that the model has another steady solution that satisfies
(X,Z, J) < 0, but with physically more realistic values. With the numerical
solving procedures performed in this study, such alternative equilibria have
not been found. The possibility can not be ruled out, however, that it does
exist. For example, the Mathematica-command NSolve was used to find all
steady states at the default parameter setting. It might be that different,
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realistic solutions can be found with NSolve, for slightly different default pa-
rameters, though. In that case, such another solution can be used as starting
point for a numerical continuation method, as was done with Mathematica-
command FindRoot.

Secondly, steady solutions were obtained from evolution equations (2.83),
(2.84) and (2.85) by setting to zero all time-derivatives individually, even
though their left-hand sides contain elaborate functions of time-derivatives.
It is possible that additional steady states exist, however, to the steady
equations which are first written in terms of dX/dt, dZ/dt or dJ/dt only,
as explained in §3.2.

5.3 Outlook

One major limitation of the current model is the complexity of the equa-
tions, which complicates (analytical) study and interpretation of its solutions.
There are several causes for this complexity.

A first cause is the complicated Z-dependency in the equations. This
is mainly due to the functions A(Z) and B(Z), which result from relating
streamfunction amplitude ψ0 to angular momentum J . Hence it is key to
find an alternative method to incorporate J (or another measure of estuarine
circulation) into the model equations. Either should an alternative definition
of the baroclinic flow field be pursued, which does not result in complicated
Z-structures. Alternatively, the possibilities of implicitly closing terms ∝ J
similarly to Maas [1994; 2004] could be reconsidered. If appropriate methods,
i.e. physically realistic in the estuarine case, were found, this sidesteps the
encountered difficulties of explicitly defining the linearised flow field.

Secondly, although the coupling of domain length L to the estuarine salt
field is strictly necessary to accept a linear approximation of s, this coupling
is another complicating factor in the model equations. Some terms in the
evolution equations may for example contain X related to the horizontal
salinity gradient, as well as one or multiple powers of X due to some factor
1
L
, 1
L2 or 1

L3 , i.e. related to the size of the averaging-domain. Uncoupling the
two effects is sometimes difficult. To overcome this complex coupling, domain
length could be chosen fixed in time. Proper estimates of the intrusion length,
dependent on river discharge strength and other physical parameters are
given by MacCready & Geyer [2010].

Another possible way to reduce the complexity of the model is to restrict
attention to the estuarine “inner domain”. As argued in §2.5, the “outer
layers”, in which linearisation of salt and flow field is relaxed, are very thin
compared to the inner domain. One might argue that the essence of estuarine
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dynamics lies within this inner domain. When restricting spatial integration
also to this part of the estuary, linear salt and flow field expressions can
in principle be always substituted in these integrals. No distinction has to
be made between integrals that can be computed with the linearised salt
and flow field, and integrals that can not, as was done in §2.5. This will
significantly reduce the number of terms in the equations, as terms like∫∫

z
∂

∂z

(
Kv

∂s

∂z

)
dxdz (5.10)

simply vanish. However, the danger of this approach is that all contact
between the inner and outer layers is lost, by which part of the essence of
estuarine dynamics may be lost.

Apart from the issue of complexity, more physical processes can be included
into the model. In the current approach, the effect of tides is only para-
metrically included through the diffusive and viscous coefficients. These co-
efficients are considered constant. The effect of e.g. stratification on the
effectiveness of tidal mixing, i.e. the effect of tidal straining, is thereby ig-
nored. This effect could be incorporated by parametrically relating mixing
coefficients to e.g. the Richardson number.

Morevover, the current model assumes that the net inflow is always in
balance with the net outflow. Hence the total free-surface elevation, averaged
along the channel, is fixed. Allowing a net nonzero net in- or outflow from th
estuarine domain, such a net flow is expected to be coupled to the dynamics
of the average free-surface elevation; a net outflow of mass will result in a
decrease of the total sea surface height. In addition, viscous and diffusive
coefficients are also expected to vary with this net flow.
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Figure 5.1: Absolute magnitude of steady terms in X-, Z- and J-balance
(2.56), (2.64), (2.69), with “estuarine ” steady solutions (X,Z, J)est substi-
tuted, as a function of river discharge uR.
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Figure 5.2: Absolute magnitude of steady terms in X-, Z- and J-balance
(2.56), (2.64), (2.69), with “estuarine ” steady solutions (X,Z, J)est substi-
tuted, as a function of depth H.

63



Figure 5.3: Absolute magnitude of steady terms in X-, Z- and J-balance
(2.56), (2.64), (2.69), with “estuarine ” steady solutions (X,Z, J)est substi-
tuted, as a function of vertical eddy viscosity Av.
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Figure 5.4: Left three figures: “estuarine” steady solution (X,Z, J)est as a
function of factor µ, that scales the magnitude of Av and Kv. Right figure:
Peclet number Pe versus dimensionless factor µ.
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Figure 5.5: “Estuarine ” steady solutions (X, ZH/s0, J)est, for (a, b, c) = 2,
versus river discharge uR. The remaining parameters are default, as defined
in §3.1. Note that uR varies along the horizontal axis.
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Figure 5.6: As Figure 5.5, but for (a, b, c) = 2.7. Note that uR varies along
the horizontal axis. 67



Figure 5.7: As Figure 5.5, but for (a, b, c) = 3.2. Note that uR varies along
the horizontal axis.. 68



Chapter 6

Conclusions

Below, the research aims posed in §1.5 are recalled and considered.
Construct a model for estuarine subtidal hydrodynamics that

1 Is closed in terms of basin-averaged variables only.
A closed set of three evolution equations (ordinary differential equa-
tions) was derived. These describe domain-averaged horizontal and
vertical salinity gradient, (X,Z), and domain-averaged (baroclinic) an-
gular momentum, J . Domain-length L is defined as the furthest up-
estuarine reach of salt and is directly related to internal dynamics,
L = −s0/X. All individual terms contributing to these equations have
a clear physical meaning.

2 Has simple enough model equations so that analytic steady
state solutions exist.
One physically explainable analytic solution has been found, i.e. (X,Z, J) =
(0, 0, Jhom) has an analytical expression. This solution is for an in-
finitely long estuary, homogeneously filled with sea water. Jhom in-
creases linearly due to bottom-layer shear induced by the river flow and
thus is not related to the gravitational circulation. For several limiting
parameter values for river discharge, depth and vertical eddy viscos-
ity, analytical solutions were found that approximate the full steady
balances. No further analytic solutions to the full steady evolution
equations have been found so far. These must therefore be solved nu-
merically. The diffulty of finding an analytical solution is especially
due to complicated Z-dependencies. Several suggestions are done in §5
to decrease this complexity.

3 Allows detection of multiple equilibria, if existing.
For the default parameter settings, multiple steady states exist, at
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least two of which are physically interesting, i.e. (X,Z, J)est < 0 and
(0, 0, Jhom).

4 Has at least one steady state solution whose dependency on
river and tidal influence is physically interpretable. The depen-
dency of (0, 0, Jhom) on its constituting terms could be fully explained.
The dependency of (X,Z, J)est on river discharge velocity uR, water
depth H and vertical eddy viscosity Av was considered. The solution
(X,Z, J)est was compared to other model studies, for small variations
in uR and H around their default values. This behaviour quilitatively
agrees with this reference study, although the values of X and espe-
cially Z are not of the right order of magnitude. Extremely strong
vertical stratification was found, which is most likely due to the for-
mulated seaward boundary conditions. For several specific parameter
choices the full steady balances could be reduced, so that analytical so-
lutions can be found. The terms contributing to these steady balances
could almost all be explained physically. However, this interpretation
is difficult to compare to other studies.

This model should describe time-evolution of the basin-averaged
variables, so that

5 Linear stability of the steady states can be computed.
Linear stability can be computed for all (numerically) solved steady
states. (X,Z, J)est is linearly stable for all uR ≤ 0, H > 0 and Av ≥ 0.
Stability increases as a function of river discharge or vertical eddy vis-
cosity, but decreases asymptotically for increasing depth. (X,Z, J)hom
is neutrally stable.

6 The variable’s time evolution after perturbation from steady
state can be computed.
It is expected that (X,Z, J) = (0, 0, 0), in the absence of river discharge,
while (X,Z, J) < 0 for nonzero river discharge. Hence the system is
expected to evolve from (0, 0, Jhom) at uR = 0 to (X,Z, J)est at uR < 0.
It is indeed found that the system jumps from the former to the latter
state, for very small and negative uR. This was observed for small
negative X-perturbation, small positive or negative J-perturbation and
a relatively large negative Z-perturbation.
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6.1 Added value of the constructed model

To conclude this study, all limitations and advantages of the constructed
model are considered.

Although the numerical solution (X,Z, J)est could be fully interpreted in
terms of various approximations to the full steady balances (see Appendix
C), it proved difficult to connect these interpretations to physical reality.
Several causes for this difficulty can be identified.

Firstly, the individual terms that contribute to the steady balances in
§2.7 are all physically understandable, but can not be all directly compared
to or tested with other theoretical, modelling or experimental studies. For
example, the coupling of domain-averaged horizontal salinity gradient X to
domain length L could be physically interpreted, but makes the results less
comparable to other studies. Choosing a fixed domain length might hence
be worth considering for future research.

Secondly, the complicated dependency on vertical stratification reduces
the transparancy of model results. Even in some cases where analytical
approximations to the full steady balances exist, the complex Z-structure
hinders the interpretation of these solutions. The Z-dependency is mainly
due to the explicitly formulated baroclinic flow field. Exploring alternative
ways to incorporate a measure of overturning, or angular momentum J into
the model is therefore worthwile.

Thirdly, the model results investigated have unrealisticly strong verti-
cal stratification. Due to this stratification, some individual terms that are
physically undertandable, e.g. the river-induced outflow of domain-averaged
salinity, loose their connection with physical reality in case of such strong
stratification. Formulating more appropriate boundary conditions at the
seaward boundary might solve this problem and should therefore have prior-
ity.
To conclude, at this stage in its development, the constructed model cannot
be used yet to gain more insight into global estuarine subtidal dynamics.
However, it was shown that the attempted description of global variables
has the potential to gain more insight. After all, it has proven possible to
identify and interpret all physical processes individually contributing to the
evolution of global variables. Furthermore, methods have been explored to
sidestep the complexity of the model and to elucidate even very complicated,
numerically obtained steady solutions. This method comprises identifica-
tion of the dominantly contributing terms and solving steady balances in
reduced form. Finally, the model has the capability of predicting the evolu-
tion of global variables, contrary to other analytical models. The existence
of bifurcations between multiple equilibria can hence be investigated. With
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some further simplifications to the model constructed in this study, also the
appearance of multiple equilibria and time-dependence will be physically in-
terpretable.
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Appendix A

Derivation of linear
approximation of the flow-field

A.1 Linearly approximated salt field

Modelling results by Festa & Hansen [1976], Figures 5 and 10, indicate that
the width- and depth-averaged salt profile can be roughly divided into two
alongchannel regions. In the first part, between the seaward boundary and
some point x = L up-estuary, depth-averaged salinity steeply decreases up-
estuary to some small value, about 0.05 · s0, as indicated by the end of the
green area in Figure 1.2. In the second region, from x = L up to some point
far up-river, the horizontal salinity gradient is much weaker and salinity
decreases almost asymptotically to zero. Festa & Hansen let their domain
length vary with the up-estuary reach of the 0.0015 · s0 isopycnal. Hence
their model length dynamically changes with forcing conditions, parameter
settings and internal dynamics. A similar “dynamic” basin length is pursued
here. Yet linearising the salinity profile is only acceptable in the first, seaward
region and not in the second, riverward region. However, since the salinity
at the end x = L of the first region is also relatively small, it is safe to define
the salt intrusion length alternatively, namely up to x = L. To conclude,
basin length L is here defined as the salt intrusion length, x = Li, such that
linearising s is acceptable along the entire estuarine domain.

Linearising the vertical salinity structure is assumed always acceptable,
as motivated by e.g. Figures 4b and 9b in Festa & Hansen [1976].
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A.2 Derivation of linear velocity profiles

A.2.1 Linearisation of u and w

The simplified momentum balances used by e.g. MacCready [2004] yield
quadratic river profile uQ and cubic baroclinic profile uc,

uc = −|uE|
(

1− 9
[ z
H

]2

− 8
[ z
H

]3
)

and uQ ∝ −
3

2
|uR|

(
1−

[ z
H

]2
)
.,

(A.1)

with exchange flow strength uE (constant in depth) and depth-averaged hor-
izontal velocity uR(< 0). uc can be roughly divided into a relatively thin
surface and bottom layer and a large middle layer. ∂uc

∂z
is small in the surface

layer, in the absence of along-channel wind stress; uc changes steadily with
depth in the middle layer and changes sign at z = zj, about halfway the
middle depth layer; in the bottom layer uc decreases to zero at the bottom.

To first approximation, uc can be linearised, say ûc, within the middle
depth layer. uc is different and not strictly linear in the surface and bottom
layers, satisfying ∂uc

∂z
|z=0 = 0 and uc|z=−H = 0. River flow profile uQ is

quadratic due to bottom friction, but here it is assumed that bottom friction
only affects uQ within the bottom layer, decreasing it to zero at the bottom.
It is then convenient to approximate uQ as a constant, ûQ, within surface
and middle layer.

Motivated by several model studies, e.g. Talke et al. [2009-a], Festa
& Hansen [1976], Hansen & Rattray [1965], the depth of the top and bot-
tom layers are relatively small compared to total column depth. The top-
and bottom-layer deviations of uc and uQ from the linear resp. constant
middle-layer profiles is thus assumed here to be of minor importance, when
considering domain-averaged properties. In practice, when integrating uc or
uQ over the entire domain, one can replace them by their linear resp. con-
stant approximations for the entire column-depth. Boundary conditions at
top and bottom are assumed to be satisfied within very thin “outer layers”.

To ensure that this full-depth simplification still obeys the discharge con-
dition and the condition for zero net baroclinic transport, i.e

1

H

∫ 0

−H
uQ dz = uR and

∫ 0

−H
uc dz = 0, (A.2)

assume that uQ = uR and uc ∝ −
(
z + H

2

)
, i.e. zj → −H

2
. Rename uc as uD,

the depth-dependent velocity part, to indicate that it is used for all depths.
The exact expression for uD is found when considering the streamfunction

profiles in e.g Figures 5 and 10 of Festa & Hansen [1976]. Between x = 0 and
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the intrusion length Li (taken at x = L in Appendix A.1), this streamfunction
is almost perfectly elliptic around some rotation axis position (xj, zj), with
w > 0 (w < 0) riverward (seaward) of xj. It is assumed here that also w can
be linearised. The expression for baroclinic streamfunction profile ψD, and
hence w = ∂ψD

∂x
and uD = −∂ψD

∂z
, will be explained in the next section.

A.2.2 Expression for elliptic baroclinic streamfunction

So far, the vertical “outer layers” for u have been specified. However, the
linear approximation of the flow field doesn’t hold for the entire length of
the domain either. On the riverward and seaward edges of the domain,
“outer layers” have to be specified as well, such that boundary conditions
can be satisfied. Physically, salinity is restricted to 0 ≤ s ≤ s0 within
the estuary. Linear salt field (2.29) prescribes that s > s0 seaward of the
(s = s0)-isopcynal, which intersects the bottom at x = 0 and the surface at

x0,top = −HZ
X

. (A.3)

Likewise does it prescribe that s < 0 riverward of the (s = 0)-isopcynal,
which intersects the bottom at x = Li and the surface at

Li,top = −s0 +HZ

X
. (A.4)

The latter position is indicated by the vertical blue dashed line close to x = Li
in Figure 2.1. Now one could imagine that the salt field is linear within this
parallelogram-shaped region, and that linearity is quickly relaxed within in-
finitely thin “outer layers” around the (s = s0)- and (s = 0)-isopycnals.
However, using such a non-rectangular domain would significantly compli-
cate domain-integration. Moreover, linearly approximating the flow field as
explained hereafter would then be impossible. Instead, the riverward inte-
gration boundary was chosen vertically downward at x = Li and the seaward
integration boundary vertically downward at x = 0.

It will thus be accepted here that the linear salinity expansion gives val-
ues s < 0 within the integration domain, between Li,top and Li. However,
physically arguing that s remains zero riverward of the (s = 0)-isopycnal,
one could imagine that depth-averaged salinity smoothly decreases from its
inner-domain value X at Li,top to zero at x = Li. See Figure A.1 for an
illustration. Physically arguing that no salt penetrates further up-river than
Li at all depths, the imposed boundary conditions are

s|x=L = 0 and
∂s

∂x
|x=L = 0 for all z.
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The latter condition implies that baroclinic driving force and hence baroclinic
flow (uD, w) vanishes at x = Li, which agrees with streamfunction figures in
Festa & Hansen [1976] at position x = L. These same figures indicate the
elliptic circulation cell is closed at some point seaward of x = 0, i.e. outside
the adopted integration domain. Using similar arguments as above, one
could physically argue that s remains s0 everywhere seaward of the (s = s0)-
isopycnal, without explicitly imposing this. Then, the depth-averaged salinity
gradient can be thought of as smoothly decreasing from its inner-domain
value X at x = 0 to zero at x = x0,top. See Figure A.1. Then salinity has
reached its maximum value for all depths at x0,top, so that ∂s

∂x
|x=x0,top = 0 for

all z. Similarly, the baroclinic driving force thus vanishes here. To conclude,
the elliptic circulation cell is assumed to be confined between x = x0,top,
z = −H, x = Li and z = 0. For linear (uD, w), this yields expression (2.42).
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Figure A.1: Top figure: Linear salinity-field expansion, following (2.29), but
“keeping in mind” (although not imposing this as a boundary condition) that
s = 0 landward of the (s = 0)-isopycnal and s = s0 seaward of the (s = s0)-
isopycnal. Bottom figure: depth-average (1/H

∫
s dz = s̄(x)) of the salinity

profile from the top figure. It can be seen that, when “keeping in mind” that
0 ≤ s ≤ s0, the depth-averaged salinity gradient weakens of to zero at x0,top

and Li.
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Appendix B

Derivation of evolution
equations

B.1 Derivation of evolution equations in gen-

eral form

Throughout this study and unless specified otherwise, integrals imply inte-
gration over full basin length or depth, i.e.

∫
dx =

∫ L
0
dx and

∫
dz =

∫ 0

−H dz.
Following the explanations in §2.5, all viscous and diffusive exchange

coefficients are assumed constant within any domain-integral. Although
Ah,v, Kh,v are assumed different and spatially dependent in the “outer layers”,
these differences are assumed not to affect domain integrals. However, when-
ever a domain-integral has to be rewritten in terms of domain-integrals, these
different outer-layer values are assumed to play a role. Note that boundary
condition (2.17) has been replaced by (2.48).

Derivation of dX
dt

To derive dX
dt

, take the time-derivative of definition

X(t) =

∫∫ (
x− L

2

)
s dxdz∫∫ (

x− L
2

)2
dxdz

=
f

g
, (B.1)

with f =
∫∫ (

x− L
2

)
s dxdz and g =

∫∫ (
x− L

2

)2
dxdz = 1

12
L3H. Write

dX
dt

=
g df
dt
−f dg

dt

g2
and substitute f = gX therein to obtain

dX

dt
=

df
dt
−X dg

dt

g
. (B.2)
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Then df
dt

and dg
dt

are obtained by employing Leibniz’ differentiation rule for
the time-dependent boundaries x = L(t) and adopting a Eulerian viewpoint,
such that dx

dt
= dz

dt
= 0. Then the evolution equation reads

dX

dt
=− 6

L3H

dL

dt

∫∫
s dxdz︸ ︷︷ ︸

(1)

+
12

L3H

∫∫
x
∂s

∂t
dxdz︸ ︷︷ ︸

(2)

(B.3)

− 6

L2H

∫∫
∂s

∂t
dxdz︸ ︷︷ ︸

(3)

+
6

L2H

dL

dt

∫
s|x=L dz︸ ︷︷ ︸

(4)

− 3

L

dL

dt
X︸ ︷︷ ︸

(5)

,

Salt balance (2.3) is substituted in the integrands of terms (2) and (3). As
explained in §2.5, the linearised expressions (2.29), (2.43) and (2.44) for s,
u and w cannot be substituted in the resulting domain-integrals. Instead,
integrating by parts, they yield

(2) =
12

L3H

[
−L

∫
fS|x=L dz +

∫∫
fS dxdz −

∫
x gS|z=0

z=−H dx

]
, (B.4)

(3) =
6

L2H

[∫
fS|x=L

x=0 dz +

∫
gS|z=0

z=−H dx

]
. (B.5)

Derivation of dZ
dt

Similarly, take the time-derivative of definition

Z(t) =

∫∫ (
z + H

2

)
s dxdz∫∫ (

z + H
2

)2
dxdz

=
j

k
, (B.6)

with j =
∫∫ (

z + H
2

)
s dxdz and k =

∫∫ (
z + H

2

)2
dxdz = 1

12
LH3. Again,

writing j = kZ, one finds

dZ

dt
=

dj
dt
− Z dk

dt

k
. (B.7)

Computing dj
dt

and dk
dt

likewise as for X, one finds

dZ

dt
=

12

LH3

∫∫
z
∂s

∂t
dxdz︸ ︷︷ ︸

(6)

+
6

LH2

∫∫
∂s

∂t
dxdz︸ ︷︷ ︸

(7)

(B.8)

+
12

LH3

dL

dt

∫
z s|x=L dz︸ ︷︷ ︸

(8)

+
6

LH2

dL

dt

∫
s|x=L dz︸ ︷︷ ︸

(9)

− 1

L

dL

dt
Z︸ ︷︷ ︸

(10)

.
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Again, substituting the salt balance in terms (6) and (7) and integrating by
parts, as explained in §2.5,

(6) =
12

LH3

[
−
∫
z fS|x=L

x=0 dz −
∫

(z gS)|z=0
z=−H dx +

∫∫
gS dxdz

]
(B.9)

(7) =
6

LH2

[
−
∫
fS|x=L

x=0 dz −
∫
gS|z=0

z=−H dx

]
(B.10)

Derivation of dJ
dt

Take the time derivative of definition

J(t) =
1

LH

∫∫
[(z − zj) (u− uR)− (x− xj)w] dx dz, (B.11)

employ Leibniz’rule and a Eulerian perspective. Then, treating uR as a
constant in time,

dJ

dt
=− 1

L

dL

dt
J︸ ︷︷ ︸

(11)

+
1

LH

∫∫ [
(z − zj)

∂u

∂t
− (x− xj)

∂w

∂t

]
dxdz︸ ︷︷ ︸

(12−16)

+
dxj
dt

1

LH

∫∫
w dxdz︸ ︷︷ ︸

(17)

−dzj
dt

1

LH

∫∫
(u− uR) dxdz︸ ︷︷ ︸

(18)

(B.12)

+
1

LH

dL

dt

[∫
(z − zj) u|x=L dz − uR

∫
(z − zj) dz − (L− xj)

∫
w|x=L dz

]
︸ ︷︷ ︸

(19)

.

Several of these terms can be specified further, as is explained hereafter. For
the remaining terms, either the linearised salt- and flow field expressions or
boundary conditions are required.

Substitute horizontal momentum balance x−momentum balance (2.5).

Rewrite the advective terms, using continuity relation (2.8) as ∂(uu)
∂x

+ ∂(uw)
∂z

.
Substitute “0” for the term ∂w

∂t
. Then, after integration by parts,

(12) = − 1

LH

∫∫
(z − zj)

∂(uu)

∂x
dxdz = − 1

LH

∫
(z − zj)u2|x=L

x=0 dz, (B.13)

(13) = − 1

LH

∫∫
(z − zj)

∂(uw)

∂z
dxdz

= − 1

LH

∫
(z − zj)uw|z=0

z=−H dx +
1

LH

∫∫
uw dxdz. (B.14)
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The pressure-gradient term reads

(14) = − 1

LH

∫∫
(z − zj)

1

ρ0

∂p′

∂x
dxdz (B.15)

and will be solved later. Using partial integration, the next term becomes

(15) =
1

LH

∫∫
(z − zj)

∂

∂x

(
Ah

∂u

∂x

)
dxdz =

1

LH

∫ [
(z − zj)Ah

∂u

∂x

]
|x=L
x=0 dz,

which can be further simplified using continuity and integrating by parts,

(15) = − 1

LH

[
{(z − zj) Ah w} |x=L

x=0

]
|z=0
z=−H +

1

LH

∫
(Ah w) |x=L

x=0 dz.

(B.16)

Also term (16) must be integrated by parts, to yield

(16) =
1

LH

∫∫
(z − zj)

∂

∂z

(
Av
∂u

∂z

)
dxdz (B.17)

=
1

LH

∫ (
(z − zj)Av

∂u

∂z

)
|z=0
z=−H dx − 1

LH

∫∫
Av
∂u

∂z
dxdz.

Term (18) vanishes by definition of u−uR = uD and vanishing net baroclinic
transport, i.e.

∫
uD dz = 0.

B.2 Further reduction of the evolution equa-

tions in general form

Several of the boundary conditions posed in §2.2.3 are applied here. The
boundary conditions used are

s|x=L = 0, (B.18)

fS|x=L = 0, (B.19)

w|z=−H = w|z=0 = 0, (B.20)

gS|z=−H = gS|z=0 = 0, (B.21)

u|x=L = uR, (B.22)

w|x=L = 0 and (B.23)

∂u

∂z
|z=0 = 0. (B.24)
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Then, the following terms can be reduced.

(2) =
12

L3H

∫∫
fS dxdz (B.25)

(3) = − 6

L2H

∫
fS|x=0 dz (B.26)

(4) = 0 (B.27)

(6) =
12

LH3

[∫
z fS|x=0 dz +

∫∫
gS dxdz

]
(B.28)

(7) =
6

LH2

∫
fS|x=0 dz (B.29)

(8) = 0 (B.30)

(9) = 0 (B.31)

(13) =
1

LH

∫∫
u w dxdz (B.32)

(15) = − 1

LH

∫
Ah,sea w|x=0 dz (B.33)

(16) = − 1

LH

∫ (
(z − zj)Av,bot

∂u

∂z

)
|z=−H dx − 1

LH

∫∫
Av,int

∂u

∂z
dxdz

(B.34)

(18) = 0 (B.35)

(19) = 0. (B.36)

With these simplified terms, the general form evolution equations (B.3), (B.8)
and (B.12) reduce to the “final form” evolution equations (2.56), (2.64) and
(2.69) in §2.7.

Furthermore, term (12) can be further simplified using the fact that
u|x=L = uR is a constant. Then (12) = 1

LH

∫
(z − zj)u

2|x=0 dz. The in-
tegrand contains products of several odd and even terms. Only the part
∝ (z − zj) uR uD hence remains.
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Appendix C

Reduced steady balances:
algebraic relations and plots

C.1 Analysis of reduded steady balances

Finally, some limiting parameter settings will be studied, such as uR ↑ 0 and
uR → −∞. It turns out that for many of these limits, several terms in the
steady versions of (2.56), (2.64) and (2.69) can be neglected. For these re-
duced steady balances, analytical solutions for (X,Z, J) can often be found
that are reasonable approximations to the full numerical solution (X,Z, J)est.
In Figure C.1, C.2 and C.3 at the end of this section, the absolute magnitude
of each of the (non-time-dependent) terms in the evolution equations is plot-
ted as a function of the varying parameter, i.e. uR, H or Av. This is done by
substituting the steady solutions (X,Z, J) and corresponding uR, H or Av in
each of the seperate terms. Any term is neglected whose absolute magnitude
is approximately 10% or less of the largest-magnitude term at that particular
uR, H or Av.
Note that the analyses for varying H and Av below have been
performed with different default river discharge value, namely
uR = −0.10m/s instead of the default uR = −0.02m/s that is used
throughout this study.

(X,Z, J)est as a function of uR - reduced balances

For several ranges of uR, the full steady balances (2.56), (2.64), (2.69) can
be significantly reduced. This is shown in Figure C.1 Four such ranges are
treated here.

Physically, one does not directly expect (X,Z, J) < 0 in the absence of river
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flow. To explain this, consider the reduced balance for uR ↑ 0. All terms
proportional to uR are negligible. The reduced X-balance is between domain-
averaged exchange salt flux (2b), which elongates Li, and exchange salt flux
(3b) through the seaward boundary, which steepens the along-channel den-
sity gradient. The magnitude of the latter flux scales with Z, and balances
the former when

Z|uR↑0 = −2s0

aH
. (C.1)

Now substitute Z|uR↑0 into the reduced Z-balance, which is between (6b),
(6d), (6e) and (7b). Then horizontal exchange flux, depth-weighted over the
seaward bound, term (6b) ∝ −JX, enhancing vertical stratification. Also
term (6d) ∝ −JX. This implies that, although the flow is predominantly
upward in the integration-domain, salinity is predominantly negative, leading
to a negative vertical advective salt flux, which enhances Z. Term (6e)
becomes a positive constant, representing diffusional damping of Z. The
exchange salt flux depth-averaged over the seaward bound, (7b) ∝ +JX,
increases salinity at all depths above the bed, while s|x=0,z=−H is fixed to s0.
Hence, this term weakens domain-averaged vertical stratification, contrary to
the exchange-flow in term (6b). To conclude, for uR ↑ 0, the net effect of the
three exchange fluxes is an enhancement ∝ −JX of the vertical stratification.
This is balanced by diffusional damping, so that J |uR↑0 ∝ +1/X, or L ∝ −J ,
i.e. the combined exchange fluxes transport salt up-estuary, increasing the
salt intrusion Li or weakening X.

Finally, substitute Z|uR↑0 into the J-balance. In balance, J is driven by
baroclinic pressure gradient force (14) ∝ X and damped by friction on uD in
the bottom layer resp. inner domain, (16a2) resp. (16b), both ∝ −J . The
resulting expressions for X,Z and J are, numerically

X|uR↑0 = −0.002811 psu/m, ζ|uR↑0 = −2, J |uR↑0 = −0.7825 m2/s,

which corresponds well to the (non-approximated) numerical value obtained
at uR = 0.

Hereafter, the notation ci will be used for the absolute magnitude (hence
ci ≥ 0) of term number (i), only excluding X, J and uR. Note that ci
hence may contain the absolute value of the Z-dependent part of term (i)
at the specified uR-value and all parameter-magnitudes other than uR. At
default value uR = −0.10 m/s, the Z-balance is between (6b), i.e.
depth-weighted horizontal exchange flux through the seaward bound, ver-
tical exchange flux (6d) and horizontal exchange flux through the seaward
bound, (7b). If the numerical solution to Z is substituted, all three terms
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are ∝ ±JX, and their balance yields a complicated algebraic expression for
Z|uR=−0.1. Numerically,

Z|uR=−0.1 − 9.791↔ ζ|uR=−0.1 = −2.797, (C.2)

hence constant in uR and more negative than the exact result. Nevertheless,
it is the best analytical approximation that can be found for small uR.

The X-balance is dominated by terms (2a), (2b) and (3b). Z|uR=−0.1 is
substituted. Domain length is shortened, i.e. X steepened, due to exchange
flux at the seaward bound, (3b) ∝ +JX2. This shortening is partly compen-
sated by the elongation due to domain-averaged exchange flux (2b) ∝ −JX2.
The resulting net, exchange-flow induced domain shortening is balanced
by river salt flux (2a) ∝ −uRX2, which elongates L because M < 0 for
Z|uR=−0.1. The terms balance as long as

J |uR=−0.1 ∝ +uR. (C.3)

Finally, the J-balance is between (12), (14), (16a1), (16a2) and (16b). Sub-
stitute again Z|uR=−0.1. Then J is driven by baroclinicity, (14) ∝ X, and
river-induced bottom-shear, (16a1) ∝ uR, and slowed down by river-induced
advection of uD-momentum, (12) ∝ −uRJX and friction on uD in bottom
layer and inner domain, (16a2) and (16b) ∝ −J . This yields an expression for
X in terms of J and uR, which is easier interpretable in terms of L = −s0/X,

L|uR=−0.1 = s0
c14 − c12 uRJ

c16a1 uR − c16a2+16b J
. (C.4)

If c14 becomes larger, X must be smaller, i.e. L is stretched, to generate the
same baroclinic pressure gradient force. Weakening of J , either due to an in-
crease in c12 or c16a2+16b, reduces the up-estuary exchange flux and hence the
intrusion length. An increase in c16a1 enhances bottom layer shear and hence
J , so that L increases. In other words, for larger c16a1, weaker uR is required
to generate the same term (16a1), hence reduced river discharge increases Li.

In the region uR ∈ [−0.6,−0.2] m/s, J weakens with strenghening uR,
remarkably opposite to its behaviour for larger or smaller river discharge.
To explain this, consider the dominant balance at uR = −0.4 m/s.
Substitute the numerical Z-value at this uR. Then the X-balance contains
(2a) ∝ −uRX2, (2b) ∝ −JX2, (2c) ∝ −X3, (3b) ∝ +JX2 and (3c) ∝ +X3.
Dividing out the common factor X2 yields

X =
c2a uR − (c3b − c2b)J

c3c − c2c

, (C.5)
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with (c3b− c2b) > 0 and (c3c− c2c) > 0. Then X is steepened, or Li reduced,
if uR is stronger. The net effect of (2b) and (3b) is an elongation of L with
intensified J . Hence X is weakened (Li longer) for increased exchange flow.

The Z-balance is between (6a), (6b), (6d), (7a) and (7b), but the relations
are too complex to further interpret. The J-balance is between (12), (13)
and (14). Substitute the numerical solution Z|uR=−0.4. The combined effect
of (12) and (13) is ∝ −uRJX, i.e. slowing down the circulation, balancing
baroclinic driving force (14) ∝ X, to yield

J |uR=−0.4 =
c14

c12 − c13

1

uR
, (C.6)

with (c12 − c13) > 0. Hence, for uR = −0.4 m/s, uR and J act together to
dampen J . This explains that a strengthening of uR is compensated by a
weakening of J , for uR ∈ [−0.6,−0.2] m/s.

As observed in Figure 4.1, Z approaches a constant and X and J become lin-
ear in uR, as uR → −∞. To see why, compute the dominant balances
at uR = −10 m/s.

The X-balance is then dominated by terms (2c) and (3c), hence the
domain-averaged horizontal diffusive salt flux (2c) extends domain length
L, while horizontal diffusive salt flux (3c), depth-averaged over the seaward
bound steepens the alongchannel salt gradient. The latter flux is proportional
to Z and the two fluxes balance for

Z|uR→−∞ = −2Kh,ints0

cHKh,sea

. (C.7)

The Z-balance is between (6a), (6b), (6d) and (7b). Substitute Z|uR→−∞
in these terms. Then the river salt flux, depth-weighted over the seaward
boundary, (6a) ∝ uRX, weakens vertical stratification, because uR pushes
negative salinity outward, i.e. increases the total seaside-salinity. This can
only be achieved by reduction of the vertical salt gradient at x = 0, since
s|x=0,z=−H is fixed. Vertical stratification is enhanced by depth-weighted
horizontal exchange salt flux at the seaside, (6b) ∝ −JX, and by vertical ex-
change salt flux (6d) ∝ −JX. The latter is idem to the case uR ↑ 0. Finally,
the horizontal exchange flux, depth-averaged over the seaward boundary,
(7b) ∝ +JX, reduces vertical stratification. This is because uD increases
total seaside salinity, and since s is fixed at the bottom, this requires a re-
duction of ∂s

∂z
|x=0. The proportionality ∝ X can be cancelled out in all terms.

The remaining balance is between river discharge in term (6a) and J in the
other three. J has a net strenghtening influence on Z, which can balance the
weakening by uR; a balance arises when J |uR→−∞ ∝ +uR.
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The J-balance is between (12), (13) and (15). First substute Z|uR→−∞ in
these terms. J is driven by river-induced advection of w-momentum, (13) ∝
+uRJX and “Rayleigh-damping” of w at the seaside, (15) ∝ JX2. The
latter “damping” enhances J because, for the current Z < − s0

H
, the rotation

axis xj is seaward of x = 0. J is damped by river-induced advection of
uD-momentum at the seaward bound, (12) ∝ −uRJX. The proportionality
∝ JX can be cancelled out in all three terms. Only term (15) has an “extra”
power of X, hence it can balance with the “extra” uR-dependence of the other
two terms. Hence X|uR→−∞ ∝ +uR, i.e. the intrusion length is reduced as
uR gets stronger. Numerically, the final result is

X|uR→−∞ = 70uR; Z|uR→−∞ = −7↔ ζ|uR→−∞ = −2; J |uR→−∞ = 5.238uR,
(C.8)

which agrees well with the observed linear and constant asymptotes as uR →
−100 m/s.

(X,Z, J)est as a function of H - reduced balances

For specific depth-ranges, the steady balances can be significantly reduced, as
shown by Figures C.2 (for different default river discharge, uR = −0.10m/s).
Three of these ranges are treated here. Hereafter, the notation ci will be
used for the absolute magnitude (hence ci ≥ 0) of term number (i), only
excluding X, J and H. Note that ci hence may contain the absolute value of
the Z-dependent part at the specified H-value and all parameter-magnitudes
other than H.

For exceedingly small depths, i.e. H ↓ 0, the X-balance is dominated
by diffusive salt fluxes (2c) and (3c), which yields

Z|H↓0 = −2Kh,ints0

cHKh,sea

. (C.9)

Z|H↓0 is then substituted into the Z-balance, which has reduced to (6b), (6d),
(6e) and (7b). Vertical diffusive salt flux then is (6e) ∝ 1/H3. The other
three terms are horizontal and vertical exchange fluxes ∝ JX

H2 , where the
combination of J and X is because uD and w depend on J and are divided
by L. The 1

H2 -depedence of uD and w is due to the definition of ψD. The Z-
balance yields X|H↓0 ∝ 1

HJ
or L|H↓0 ∝ −HJ , i.e. the salt intrusion increases

when either the exchange flux (∝ J) or water depth increases.
J-balance is between (15), (16a1), (16a2) and (16b). Friction acting on uD

at the bottom and in the interior, (16a2) and (16b) ∝ − J
H2 . The “Rayleigh-

damping” in the seaward boundary, term (15) ∝ JX2, enhances J because
the currents are upward at the seaward boundary. Finally, (16a1) ∝ −1/H,
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i.e. the effect of river-induced shear is dilluted if the domain is deeper. This
balance gives

J |H↓0 = − c16a1H

c16a2+16b − c15H2X2
,

with ci positive constants. The resulting analytic expressions for X and J
are very complicated, but are reasonable approximations to (X,Z, J)est..

At small depths, say H = 1.5m, the X-balance is between (2c) and

(3c), and hence yields Z|H=1.5 = −2Kh,ints0
cHKh,sea

, idem to H ↓ 0m.

The Z-balance is between depth-weighted exchange flux at the seaward
bound, (6b), depth-averaged seaside exchange flux (7b), domain-averaged
vertical exchange flux (6d) and depth-weighted river-induced seaside flux
(6a). Substituting Z|H=1.5, the first three fluxes, related to uD and w, are all
∝ ±JX

H2 , i.e. proportional to circulation strength J and strongly dependent
on water depth. Their combined effect is ∝ −JX

H2 , i.e. enhancing vertical
stratification. This is balanced by a weakening of Z due to (6a) ∝ −X

H
. Since

river discharge velocity uR is a constant, flux (6a) is less dependent on H than
the other three terms. All four terms scale with X, i.e. their effect is more
dilluted for longer L. Since all three exchange fluxes are stronger when either
J is stronger or H is smaller, channel-deepening should be compensated by
a weakening of J in order to retain balance, i.e. J |H=1.5 ∝ −H.

The J-balance is between (12), (13), (14), (16a1), (16a2) and (16b). This
yields an expression for X, which is more easily interpreted in terms of L,

L|H=1.5 = s0H
c14 H

2 + (c12 − c13)J

c16a2+16b

(
− J
H

)
− c16a1

, (C.10)

with all ci positive-valued constants or functions of Z. Also (c12 − c13) > 0,
implying that the net effect of (12) ∝ +JX and (13) ∝ −JX is a damping
of J . Hence if (c12− c13) is larger, J can be smaller to yield the same amount
of damping. Smaller J implies smaller up-estuary salt flux, so Li shorter, as
can be seen in (C.10). If c14 is larger, density gradient X can be weaker, i.e.
L longer, to generate the same baroclinic pressure gradient force (14) ∝ +X.
If c16a1 becomes larger, the river-induced bottom shear (16a1) ∝ − 1

H
inten-

sifies, enhancing angular momentum J . Hence J and thus the up-estuarine
exchange flux increase, extending Li. If (c16a2+16b) is larger, J can be smaller
to have the same amount of frictional damping (16a2), (16b) ∝ − J

H2 ; smaller
J results in shorter intrusion length.

The balances can also be reduced for e.g. default depth H = 10m and large
depth H = 25m, but the resulting algebraic expressions are too complex to
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interpret further.

For exceedingly large H however, the algebraic expressions can
be interpreted. The X-balance is then dominated by domain-averaged
resp. seaside horizontal exchange flux (2b) resp. (3b), balancing when
Z|H→∞ = −2s0

aH
.

The reduced Z-balance is exactly equal to the Z-balance for H ↓ 0, and
similarly gives X|H→∞ ∝ 1

HJ
after substitution of Z|H→∞.

The J-balance is between (14), (16a2) and (16b). Baroclinic pressure
gradient (14) ∝ +H2X grows with water depth. Substituting Z|H→∞, uD is
decreased by friction at the bottom and in the inner domain, (16a2), (16b) ∝
− J
H2 . uD and hence frictional damping increase when J increases. Gradi-

ent ∂uD
∂z

and thus internal friction become stronger as H becomes smaller.
Concludingly, J is driven by baroclinic pressure gradient force ∝ X and very
strongly dependent on H, because larger depth causes stronger baroclinic
forcing as well as weaker friction, resulting in J |H→∞ ∝ XH4. This strong
H-dependence is tempered by X|H→∞, but J still intensifies with increasing
H, J |H→∞ ∝ −H3/2. The intrusion length is hence strongly increased by
channel-deepening, L|H→∞ ∝ H5/2.

(X,Z, J)est as a function of Av - reduced balances

Reduced balances for three different viscosities Av were deduced, based on
Figure C.3 (for different default river discharge, uR = −0.10 m/s. Hereafter,
the notation ci will be used for the absolute magnitude (hence ci ≥ 0) of
term number (i), only excluding X, J and Av. Note that ci hence may con-
tain the absolute value of the Z-dependent part at the specified Av-value and
all parameter-magnitudes other than Av.

For very weak vertical mixing, Av = 10−5 m2/s, the X-balance is be-
tween exchange fluxes (2b) and (3b), again yielding Z|Av=10−5 = −2s0

aH
.

Substitute Z|Av=10−5 in the Z- and J-balances. The Z-balance is identical
to that at uR ↑ 0, yielding X|Av=10−5 ∝ +1/J . The J-balance yields

J |Av=10−5 =
c14X

(c16a2+16b)Av − (c12 − c13)X
. (C.11)

J is driven by baroclinicity (14) ∝ +X. (c12 − c13) > 0, since the com-
bination of w-induced “rotation” (13) ∝ −JX and river-induced advec-
tion of uD-momentum, (12) ∝ +JX, causes a net damping of J . Friction
(16a2), (16b) ∝ −AvJ damps J . This damping is stronger if exchange coef-
ficient Av is larger.
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For default vertical viscosity, Av = 10−3 m2/s, all reduced balances
are equal to those at uR = −0.1m/s. The expression for Z is obtained from
the Z-balance, and yields numerically Z|Av=10−3 = −9.791 psu/m.

Substitute Z|Av=10−3 into the X-balance. Then, idem to uR = −0.1,
exchange fluxes (2b) and (3b) cause a net steepening of X, i.e. ∝ +JX2.
This is balanced by the domain-stretching effect of (2a) ∝ +X2, i.e. river-
induced ouflow of negative domain-averaged salinity. The balance arises for
J |Av=10−3 = − c2a

c3b−c2b
≈ −2.173 m2/s.

The J-balance yields an expression for X, or for L. This reads

L|Av=10−3 = s0
c14 + c12J

Av [c16a2+16b (−J)− c16a1]
. (C.12)

If c14 is larger, X can be weaker, or L longer, to have the same baroclinic
driving force (14) ∝ +X. If c12 is larger, weaker J is needed to have the same
damping (12) ∝ +JX; weaker J results in less up-estuary salt transport, i.e.
shorter Li. If either c16a2+16b or Av is larger, J can be weaker as well to in-
duce equal friction (16a2), (16b) ∝ −AvJ . However, larger c16a1 induces more
bottom-layer shear (16a1) ∝ −Av, hence enhances J . The up-estuarine salt
intrusion thus becomes larger. For increased Av, however, J can be smaller
to generate the same shear (16a1).

Finally, for very strong vertical momentum exchange, say Av = 0.15
m2/s, the X-balance is again between horizontal diffusive fluxes (2c) and

(3c), yielding Z|Av=0.15 = −2Kh,ints0
cHKh,sea

. Substitute Z|Av=0.15 in Z- and J-

balance. The Z-balance is then equal to that for H = 1.5m, but the com-
bined effect of vertical/horizontal exchange fluxes (6b), (7b) and (6d) is now
∝ −JX, enhancing Z. This is balanced by (6a) ∝ −X. The balance yields
a constant J |Av=0.15. If river discharge is stronger, so is (6a) and hence J has
to be stronger to balance this.

The J-balance yields an expression for X or for L

L|Av=0.15 =
s0 c14

Av (c16a2+16b (−J) − c16a1)
. (C.13)

If c14 is larger, X can be weaker to generate the same baroclinicity (14) ∝
+X. If c16a2+16b or Av is larger, J can be weaker to induce the same amount
of friction (16a2), (16b) ∝ −AvJ . Weaker J reduces the up-estuary salt
intrusion. Yet if c16a1 or Av is stronger, river-induced bottom shear (16a1) ∝
−Av generates angular momentum, J , so that Li increases again. Finally,
substitution of the constant J |Av=−0.15 in (C.13) yields L|Av=0.15 ∝ −Av.
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Figure C.1: Absolute magnitude of steady terms in X-, Z- and J-balance
(2.56), (2.64), (2.69), with “estuarine ” steady solutions (X,Z, J)est substi-
tuted, as a function of river discharge uR.
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Figure C.2: Absolute magnitude of steady terms in X-, Z- and J-balance
(2.56), (2.64), (2.69), with “estuarine ” steady solutions (X,Z, J)est substi-
tuted, as a function of depth H. Note that the different default value for
uR = −0.10m/s is used here.
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Figure C.3: Absolute magnitude of steady terms in X-, Z- and J-balance
(2.56), (2.64), (2.69), with “estuarine ” steady solutions (X,Z, J)est substi-
tuted, as a function of vertical eddy viscosity Av. Note that the different
default value for uR = −0.10m/s is used here.
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