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Abstract

Bose-Einstein condensates - a state of matter at low temperature in which a macroscopic
amount of bosons occupy the quantum-mechanical ground state- were originally trapped
magnetically. The drawback of this trapping method is that only the weak-field seeking
spin state is trapped and we therefore only have a one component i.e. scalar condensate.
In contrast, optical trapping confines atoms of all spin state and therefore allows for spin
degrees of freedom, resulting in spinor Bose Einstein condensates. In this thesis, density
profiles of these spinor condensates have been calculated in Thomas-Fermi approximation.
The profiles show areas with strict phase separation, but also areas with spin mixtures.
For sodium atoms we get a strict separation between the mF = ±1 and the mF = 0
spin state in Thomas-Fermi approximation. This however causes discontinuities in the
transition between spin domains and thus these interfaces were studied further. We found
that the density profile of a spin state behaves roughly like a hyperbolic tangent at such
an interface. Finally, a differential equation is proposed that could be solved as a starting
point of follow-up research.
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1 Introduction

1.1 History

In 1924 it was predicted by Albert Einstein and Satyendra Bose that a phase transition occurs at
temperatures close to absolute zero, in which a macroscopic amount identical particles with in-
teger spin occupy the ground state[1]. The particles are now called bosons and the phenomenon
Bose-Einstein condensation(BEC). It was not until 1995 that BEC found experimental verifi-
cation for dilute atomic gases of rubidium cooled to 170 nK by Eric Cornell and Carl Wieman
of the JILA institute. In 2001 they shared at Nobel price with Wolfgang Ketterle of MIT, who
realized a condensate of Sodium particles 4 months later as well as doing fundamental research
on Bose-Einstein condensation. Enabling this research was the combination of the technique of
laser cooling and evaporative cooling in a magnetic trap, of which the realization of the first of
these techniques was also awarded a Nobel price in 1997.

Following its first experimental realization was a great surge of both experimental and theo-
retical research in the field of Bose-Einstein condensation. This is because it enables us to study
quantum phenomena more closely as well as provide some interesting applications, of which the
most notable is possibly quantum computing. But there are also benefits for different fields. For
instance, the trapping of BEC particles in an optical lattice simulates the crystalline structures
that solid-state physicists work with, but in BEC the conditions can be controlled much more
easily.

Amidst all of these intriguing aspects of in the field of Bose-Einstein condensation, is a
special field concerning condensates with atomic spin degrees of freedom: spinor Bose-Einstein
condensates. We can consider them as multi-component BECs with some special properties.
For instance, the number of particles per spin state is not conserved, since particles can change
spin as long as the total spin number is conserved and quantum phenomena like spin-mixing,
spin waves and spin dynamics occur. On top of that there is also a dependence on the quadratic
Zeeman effect. This differentiates these condensates from regular BECs or mixtures of different
type of particles in one BEC. Both spin-1 and spin-2 spin condensates have been prepared, and
it is expected that more research will be done in the future.

1.2 Cooling techniques

In order to fabricate a BEC, one of the most important elements is to cool our sample as much
as possible. Two important techniques form the basis of this cooling process and will be briefly
discussed below.

1.2.1 Laser Doppler cooling

As we know, the energy of a photon is given by E = ~ν where ~ is the reduced Planck constant
and ν the frequency. Suppose a particle has a velocity v = vv̂ in the lab frame. We introduce
two laser beams derived from the same source such that they have the same energy in the
lab frame, one pointing at the particle in direction v̂ and the other pointing at the particle in
direction hatv. When the photon hits the particle, momentum will be exchanged such that the
speed of the particle will change according to δvP = pl

mp
with pl = ~

λ the momentum of the

photon and mp the weight of the particle.
If the particle is at rest in the lab frame, nothing will happen as the same force is applied

in both directions. If however v 6= 0, Doppler shift will cause a difference in both forces such
that the particle will be slowed close to zero velocity in the lab frame. We have to also keep
in mind that a particle will only absorb a photon if it is within a certain Lorentzian shaped
frequency band. We have to tune the lasers accordingly. If we do this on a macroscopic scale,
we have effectively cooled our sample down. An image elucidating this process is shown in figure
1 Temperatures as low as 35µK have been achieved using this technique on a sample of sodium
[2].
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Figure 1 – Self explanatory image elucidating the technique of laser cooling. Taken from
the website of the Australian national university [3]

1.2.2 Evaporative cooling

After the atoms have been laser-cooled, evaporative cooling will be used to reach the critical
temperature for Bose-Einstein condensation. The technique of evaporative cooling will be ex-
plained on the basis of figure 2. Suppose a group of atoms is trapped in an optical or magnetic
trapping potential like in part (a) of the image. Just like with evaporation, high energetic
particles can escape this potential thus lowering the average energy of the atoms in the trap.
We can then gradually lower the potential as shown in part (b) and (c) of the image. Again
the most energetic atoms will escape the trap. The remaining atoms will exchange momentum
through collisions and thus reach a new lower temperature equilibrium. This process is called
rethermalization. After all atoms are rethermalized, we can keep repeating this process until
the critical temperature is reached.

1.3 Spinor Bose-Einstein condensates

As has been discussed, a Bose-Einstein condensate is a state of matter in which a non-zero
fraction of particles occupy the ground state. Using the cooling techniques discussed in last
paragraph, we can reach temperatures low enough for Bose-Einstein condensation to occur. As
shown in figure 3, hyperfine splitting causes different energy levels for different values of the total
angular momentum quantum number F . If we choose a magnetic trapping potential, only the
atoms in the weak-field seeking spin state will be trapped, thus giving as a single component BEC
[5]. We will refer to these single component condensates as scalar Bose-Einstein condensates.
If however we would use an optical trap, the hyperfine splitting will not occur since we are not
using any magnetic field. In this way, an optical trap can confine all spin components, which is
crucial for creating a spinor Bose-Einstein condensate: a Bose-Einstein condensate with different
spin components. Spinor BECs will be the main focus of this paper.
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Figure 2 – Image explaining the process of evaporative cooling. Taken from the website
of the university of Michigan [4]

Figure 3 – Image showing Zeeman splitting of the 5s level of Rb-87 as an illustration of
this effect. Here F = J + I where I is the nuclear spin, J is the total electronic angular
momentum and F is the total angular momentum of the atom. [6]

1.4 Outline

In chapter 2, a general theory of Bose-Einstein condensates will be developed. In this theory we
will derive some general properties that are needed for a BEC to exist, like critical temperature
and the energy equation for a BEC. In chapter 3, this information will be used to derive den-
sity equations for spinor Bose-Einstein condensates in one dimension using the Thomas-Fermi
approximation which will be introduced in the same chapter. Here, it will be assumed that the
condensate has the temperature of absolute 0. In chapter 4, results in chapter 3 will be improved
by studying the interface between a spin −1 domain and a spin 0 domain. Finally, it will be
shown how numerical methods can be used to enhance these results.
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2 Bose-Einstein condensates

Predicted in 1924 and only experimentally realized in 1995, the Bose-Einstein condensate in
dilute atomic gases is a fairly new discovery. BEC of many atoms have been made, for instance
1H, 7Li, 23Na, 85Rb, 87Rb and 133Cs. Putting these atoms into optical lattices has provided
condensed matter physicists with the opportunity to study many body systems more easily, for
it is easy to manipulate the condensate.

As a gas gets colder, a greater proportion of its atoms will occupy the lower energy state as
described by the Bose-distribution in paragraph 2.1. If the gas reaches its critical temperature
Tc derived in paragraph 2.2 , a non zero fraction of the atoms will occupy the ground state.
These atoms in the ground state can now be described by the same wave function and together
they share some of the same properties a single atom has, hence the term ”superatom” was
coined. Using the Gross-Pitaevskii equation derived in paragraph 2.5, we can now find the wave
function that describes the density profile of this gas.

These quantum gases deviate from ordinary gases in some properties. They have a density
of about 1013-1015 particles a cm−3 as opposed to the density of molecules in air at room
temperature and atmospheric pressure of order 1019 particles a cm−3 and in liquids and solids
of order 1022cm−3[7]. Next to that temperatures have to be of the order of 10−5K or less in
combination with densities like this for quantum phenomena to occur. This is contrasted with
quantum effect in liquid helium or order 1 K and quantum effects for electrons in metal below
the Fermi temperature of around 104-105 K. As we know, bosons are integer spin particles.
Their wave functions are symmetric under exchange of every two particles, unlike that of a
fermion. Therefore, bosons can occupy the same quantum state such that it is possible to find
many bosons in the ground state. This fact is essential for Bose-Einstein condensation. In this
chapter we will derive some fundamental properties of the BEC.

2.1 Bose distribution

One of the fundamental frameworks that describe Bose-Einstein condensation is the Bose-
Einstein distribution or Bose distribution. This statistical formula describes a quantum system
of non-interacting and indistinguishable bosons. It gives us the amount of particles N in an
energy state as a function of the energy ε. We will derive it from the grand canonical ensemble,
in which the system is allowed to exchange particles with a reservoir.

Using the properties of indistinguishability and non-interactivity, we can consider every en-
ergy level ε as a separate thermodynamic system in contact with a reservoir[8]. In other words,
we can find a distribution for the amount of particles per energy level. Each energy level corre-
sponds to one micro state due to indistinguishability and for bosons therefore there is no limit
to the amount of particles per energy state. Using the known results of the geometric series
results in the following partition function

Z =

∞∑
N=0

expβN(µ− ε) =
1

1− eβ(µ−ε) (1)

From this partition function, we can easily calculate the expected value for the mount of particles
N .

< N >=
1

β
ln

(
∂Z

∂µ

)
V,T

=
1

eβ(ε−µ) − 1
≡ f(ε) (2)

A plot of this so called Bose distribution is shown in figure 4. Note that it is valid for every
energy level and that it approximates the Boltzmann distribution for high temperatures.

2.2 Critical temperature and Bose-Einstein condensation

In the previous paragraph we derived an equation for the expected amount of particles N as
a function of the energy of a certain state. In this paragraph, we will use this equation to
understand some of requirements of Bose-Einstein condensation. Denote the ground state - the
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Figure 4 – Plot of Bose distribution for µ = kBT = 1. Notice that the function goes to
infinity as ε goes to µ = 1.

lowest value for ε - as εmin. If µ > εmin then the expected amount of particles N takes a negative
value according to equation 2. Because this is unphysical, we require that µ ≤ εmin. We are
interested in knowing the amount of particles that populate the ground state N0. We can find
this by calculating the total number of particles in the excited state Nex and subtracting it from
the total number of particles NT such that N0 = NT −Nex. If we find a macroscopic amount
of particles in the ground state, then it we can say the system has a Bose-Einstein condensate.
Note that for larger T, µ decreases.

2.3 BEC in anisotropic harmonic-oscillator potential

We will now calculate the critical temperature for a k-dimensional harmonic potential V (r) =
m
2

∑k
i=1(ωix

2
i ) with Hamiltonian operator Ĥ = p̂2

2m + V . Using ladder operators we can then
derive that the energy levels are given by

ε(n1, n2, ..., k) =

k∑
i=1

~ωi(ni +
1

2
) (3)

. Here ni are integers greater than or equal to 0.
We are now going to determine the number of states G(ε) that have energy smaller than ε. If

the energy is large compared to ~ωi, we can to a very good approximation treat ni as a continuous
variable and neglect the ground state. Motivated by equation 3, we define εi = ~ω(ni + 1

2 ) such

that dni = dεi
~ωi Noting that ε = ε1 + ...+ εk is the surface of constant energy, we integrate over

all positive values of εi such that

G(ε) =
1

~k
∏k
i=1 ωi

∫ ε

0

dε1

∫ ε−ε1

0

dε2...

∫ ε−ε1−...−εk

0

dεk

=
εk

k!
∏k
i=1 ωi

(4)

The density of states is then given by

g(ε) =
εk−1

(k − 1)!
∏k
i=1 ωi

≡ Ckεk−1 (5)

Finally, using this information we can calculate the amount of particles in the excited state

Nex =

∫ ∞
0

dεg(ε)f(ε) (6)
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This integral is maximal for µ = 0, so we pick this value. The transition temperature is defined
as the temperature on which the total number of particles can just exist in the ground state and
thus. – transform to x!!!!

N = Ck(KbTc)
k

∫ ∞
0

dx
xk−1

ex − 1
(7)

Solving this integral and noting that Γ(k) ≡=
∫∞

0
tk−1e−tdt is the gamma function, one can

prove by partial integration that Γ(k) = (k − 1)! if k ∈ N and note that ζ(k) =
∑∞
n=1 n

−k

the Riemann-zeta function. We solve the integral in equation 7 by taylor expanding the Bose
distribution in terms of e−x, such that

∫ ∞
0

dx
xk−1

ex−1
=

∫ ∞
0

dxxk−1
∞∑
n=1

e−nx

=

∞∑
n=1

∫ ∞
0

dx
(nx)k−1

nk−1
e−nx

=

∞∑
n=1

1

nk

∫ ∞
0

dttk−1e−t = ζ(k)Γ(k)

(8)

Note that ζ diverges for k ≤ 1. This means that there is no macroscopic fractions of particles in
the ground state and therefore the only Bose-Einstein condensate that exists in this situation is
one at temperature T = 0. Using this equation, we can now calculate the critical temperature:

kBTc =
N

1
k

(CkΓ(k)ζ(k))
1
k

(9)

The Riemann-zeta function has exact values for even k and can be approximated for easily for
other values. This formula proves that for the case of a harmonic potential in 1 dimension i.e.
k = 1, Bose-Einstein condensations only occurs for T = 0.

Finally, it is interesting to know the fraction of of particles in the excited state. Combining
equation 7 and 8 gives us that

Nex ≡ NT
(
T

TC

)k
(10)

together with the fact that N0 = NT − Nex, we end up with a fraction for the amount of
particles in the ground state:

N0

NT
= n0 = 1−

(
T

TC

)k
(11)

for T ≤ T0 and k > 1. Note that the fraction at T = TC is still 0 as required, and that also n0

tends to 1 as T tends to 0, as expected.

2.4 Interactions

In dilute gases, interatomic interaction is very unlikely because the range of interaction is small
compared to the separation. When however a pair of atoms do interact, the resulting forces are
strong. The configuration of such a system is constantly changing and that makes it hard to
calculate each interaction. This can however be avoided by introducing an effective two body
interaction Ueff . We will now consider two particles from their center of mass frame with
reduced mass mr. To first order in the interaction, the scattering length is given by

aBorn =
mr

2π~2

∫
drU(r), (12)
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which we call the Born approximation[7]. After this assumption, which we shall treat as an
axiom, it is easy to see that ∫

drUeff (r) =
2π~2a

mr
=

4π~2a

m
≡ U0. (13)

Here we used that for particles with equal mass, mr = m/2.
In our case of cold atoms, the complicated interatomic interaction can be replaced by an

effective interaction that is proportional to the scattering length. In our model, atoms only in-
teract when they are very close, which approximately means they should have the same position.
We can therefore replace our potential by one of the following form

Ueff (r, r′) = U0δ(r− r′) (14)

with δ the Dirac delta. This final identity will be used in next paragraph to construct the
hamiltonian for a BEC.

2.5 The Gross-Pitaevskii equation

In the previous paragraphs we have discussed that a Bose-Einstein condensate is obtained from
a collection of bosons very close to the absolute 0 of temperature. Therefore, it is interesting to
know more about the ground state energy of the system. In a dilute gas with particles of the
same species, we can say that particles only interact with each other when they have the same
location, so we can model this behavior with the Dirac delta as discussed in previous paragraph.
Just like a hard sphere potential with radius zero, for which the potential is U0. In addition
we also have the standard kinetic energy term and we will add an external potential or trap
potential Vext to the equation. Therefore, the Hamiltonian operator of this system becomes:

Ĥ =

N∑
i=1

(
p2
i

2m
+ Vext(ri)

)
+
U0

2

N∑
i=1

N∑
j 6=1

δ(ri − rj) (15)

Here U0 =
4π~2aij
m where aij is the scattering length that can be determined in experiments.

Notice that for the first 2 terms we sum over all N particles of the system, and the final term
is a summation over all pairs of particles, for which we have to divide U0 by 2 as to not count
the pairs double. Now, since we have a BEC, we can to a good approximation assume that
all particles are in the same state: the ground state. Therefore, we can write in mean field
approximation that

ψ(r1, r2, ..., rN) =

N∏
i=1

ζ(ri) (16)

And we can define that ζ(r) is normalized at 1 and we can define Ψ =
√
Nψ, which makes

|Ψ|2 normalized at the total number of particles N . The mean field approximation is valid
when the gas is dilute. Otherwise, the interactions with the particles that are closer would
be much stronger than the ones that are far away. We now want to minimize the free energy

F = E − µN or F (Ψ) = 〈Ψ|Ĥ|Ψ〉
〈Ψ |Ψ〉 − µ 〈Ψ |Ψ〉 . Using the wave function Ψ, we can calculate the

energy according to [12]

E =
〈Ψ| Ĥ |Ψ〉
〈Ψ |Ψ〉

= 〈ψ| Ĥ |ψ〉 (17)

Firstly, we calculate E. We know that p̂ = ~
ι∇ such that

〈ψ|
N∑
i=1

p2
i

2m
|ψ〉 =

~2N

2m

∫
dr|∇ζ(r)|2 (18)
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Now the term with the external potential becomes

〈ψ|
N∑
i=1

Vext |ψ〉 = N

∫
drζ∗(r)Vextζ(r) (19)

And finally the term with the interaction potential can be written as

〈ψ| U0

2

N∑
i=1

N∑
j 6=1

δ(ri − rj) |ψ〉

=
N(N − 1)

2
U0

∫
dr1

∫
dr2ζ

∗(r1)ζ∗(r2)r2δ(r1 − r2)ζ(r1)ζ(r2)

=
N(N − 1)

2
U0|ζ(r)|4

(20)

We can combine all this equations to get an equation for the energy as a function of the wave
function Ψ(r) =

√
Nψ(r). If we use that N is big, such that N − 1 ≈ N , this results in the

following energy functional:

E(Ψ) =

∫
dr

(
~2

2m
|∇Ψ(r)|2 + Vext(r)|Ψ(r)|2 +

1

2
U0|Ψ(r)|4

)
(21)

Note that N =
∫

dr|Ψ|2 is constant. Taking this into account we should minimize the free

energy F (Ψ) = 〈Ψ|Ĥ|Ψ〉
〈Ψ |Ψ〉 − µ 〈Ψ |Ψ〉. This free energy can be written as

F (ψ) =

∫
dr

(
~2

2m
|∇Ψ(r)|2 + (Vext(r)− µ)|Ψ(r)|2 +

1

2
U0|Ψ(r)|4

)
(22)

Which is an equation that will often be used. We can now minimize this equation by taking the
functional derivative to ψ∗. For instance

δ 〈Ψ |Ψ〉
δψ∗

= N

(∫
drψ∗(r)ψ(r)

)N−1 ∫
drψ(r)

= N

∫
drψ(r)

(23)

Doing this for all terms and putting them to 0, gives us the well known time independent
Gross-Pitaevskii equation.(

− ~2

2m
∇2 + Vext(r) +

4π~2as
m

|Ψ(r)|2
)

Ψ(r) = µΨ(r) (24)

Here we chose U0 =
4π~2aij
m where aij is the scattering length that has been determined experi-

mentally. From next chapter onwards, Ψ will always be referred to as ψ, as is standard notation.
Because the old ψ definition of ψ will not be used anymore, this should not cause too much
confusion.
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3 Spinor Bose-Einstein condensates

In the first gaseous BEC that was created, atoms in a single spin state of rubidium-87 were used.
In these systems a magnetic trap was utilized in which only atoms in a week field seeking state
were trapped and therefore their spin degrees of freedom are frozen. In optical traps however,
spin internal degrees of freedom are not frozen which allows for spinor Bose-Einstein condensates
i.e. BECs with spin degrees of freedom to exist.The first spinor BEC was created in 1998, just
three years after the creation of the first BEC and was realized in a gas of spin-1 23Na particles.

As a result of the degrees of freedom in spin, there are now 2F + 1 components in the
BEC. These result in a rich variety of phases governed by different spin textures, which is
extended because of the Zeeman effect when a magnetic field is introduced. Spin dynamics
makes it possible to switch between spin states, as long as the total spin is conserved. Via a
spin-exchange collisions in a spin-1 spinor BEC, a particle with magnetic spin number MF = 1
and one with MF = −1 can collide resulting in 2 MF = 0 particles and vice versa and in this
way a spinor BEC differentiates itself from other multi-component condensates.

3.1 Free energy equation: spin-1 BEC

In this paragraph, we will derive a phase diagram for the general case of a F = 1 spinor Bose-
Einstein condensate. To do this we will use the Gross-Pitaevskii equation together with an the
energy functional derived in paragraph 2.5.These results can be extended to describe the spin-1
spinor BEC. The difference with a standard BEC is that the scattering lengths aij may be
different for every particle interaction. This constant may be different for interaction between
mF = 1,mF = 0 and interactions between to particles with mF = 1 etc. In other words,
a1,0 6= a1,1. For this reason, U0 is different for different particle interactions. We therefore now
have to deal with a three component system.

For a F = 1 spinor BEC, our wave function can be described by the following vector

ψ(r) =

ψ↑(r)
ψ0(r)
ψ↓(r)

 (25)

In which we denoted ψ1(r) = ψ↑(r) and ψ−1(r) = ψ↓(r)
.

We can therefore write the result for the free-energy functional taking into account every
single component:

F =

∫
dx

 ∑
i∈{−1,0,1}

~2

2m
|∇ψi(r)|2 + (V − µi)|ψi(r)|2 +

1

2

∑
i,j∈{−1,0,1}

gi,j |ψi(r)|2|ψj(r)|2

(26)

If however the number of particles in a gas is very large, the interatomic interaction becomes
very large such that the kinetic energy term can be neglected from this equation. This is called
the Thomas-Fermi approximation. In this approximation, the energy functional is given by:

F =

∫
dx

 ∑
i∈{−1,0,1}

(V − µi)|ψi(r)|2 +
1

2

∑
i,j∈{−1,0,1}

gi,j |ψi(r)|2|ψj(r)|2
 (27)

With which we have found the free energy equation for a spinor BEC.

3.2 Phase diagrams for three component spin-1 BEC

We will now proceed to find phase diagrams for the three component spinor BEC as has been
illustrated by W. Ketterle et al [9]. In this case also the presence of an external magnetic
field will be considered. Density profiles of these condensates will not be elaborated on, as the

11



purpose of this paragraph is just to give some general information. For this the previous free
energy equations are not important, as we will only minimize the spin part of the free energy
equation in a more general form. We will therefore introduce the Zeeman energy Eze which can
be written in the following form:

Eze = E+|ζ↑|2 + E0|ζ0|2 + E↓|ζ↓|2 (28)

where E↑, E0 and E↓ are the Zeeman energies for the mF = +1, 0,−1 states and ψi ≡
√
Nζi

such that |ζ|2 = 1[10]. In these condensates, the total spin is conserved. As mentioned earlier,
spinflip collisions, that is reactions of the form

|mF = 0〉+ |mF = 0〉 ↔ |mF = +1〉+ |mF = −1〉 (29)

can occur at collision. The Zeeman energy difference Eflip can now easily be calculated

Eflip ≡ 2q = E↑ + E↓ − 2E0. (30)

Next to that we will define 2p̃ = E↓ − E↑.We can now rewrite the equation for q using the
eigenvalue equations F 2 |f,mf 〉 = f(f + 1)~2 |f,mf 〉 and Fz |f,mf 〉 = mf~ |f,mf 〉 from which
we derive the following matrix representation of these operators

Fz = ~

1 0 0
0 0 0
0 0 −1

 , F 2
z = ~2

1 0 0
0 0 0
0 0 1

 , F = (Fx, Fy, Fz) (31)

In which

Fx =
~√
2

1 0 0
0 0 0
0 0 −1

 and Fy =
~√
2

0 −i 0
i 0 −i
0 i 0

 (32)

From which we can show that

2q = E0 − p̃ < Fz > +q < F 2
z > (33)

We can now proceed and find the Free energy in our new notation. note that < F >2 is
equivalent to the interaction term up to a constant, that we now have an additional Zeeman
energy in the equation. We will now use the same notation as Ketterle used in his paper and
and instead of chemical potential use a Lagrange multiplier p0 that conserves the total amount
of spin. We then get a new equation for the free energy in Thomas-Fermi approximation given
by

F =

∫
dx N

[
V +

c0N

2
+
c2N

2
< F >2 +Eze − p0 < Fz >

]
(34)

In which the constants are defined as c0 = 4π~2a/m, c2 = 4π~2∆a/m with a = (2a2 +a0)/3 and
∆a = (a2−a0)/3. Here, ak is the scattering length for two atoms with total angular momentum
F = k. It can be shown that this free energy differs from our old free energy equation 27 because
it has a different Lagrange multiplier and an additional Zeeman energy. We can now take the
spin dependent part from this equation which gives us

FSpin = c < F >2 −p~ < Fz > +q < F2
z > (35)

In which we defined that p~ = p̃+ p0 and c ≡ c2N/2.
Minimization of FSpin for parameters |ζ↑|2, |ζ0|2, |ζ↓|2 now gives us us a phase diagram as

a function of p, q and c. For c we can clearly separate three cases: The antiferromagnetic case
c > 0, the case without interaction c = 0 and the antiferromagnetic case c < 0. We will now
minimize this equation for the case with zero interaction and draw the phase diagram. Because
the other cases can be derived in a similar fashion, we will only discuss their phase diagrams.
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3.2.1 Case 1: zero interaction

In the case of zero interaction we have c = 0, which reduces the free energy equation to

FSpin = −p~ < Fz > +q < F2
z > (36)

substituting < Fz >= ζTFzζ = ~(|ζ↑|2 − |ζ↓|2) and < F 2
z >= ζTFzζ = ~2(|ζ↑|2 + |ζ↓|2), where

ni = N |ψi|2, gives us the following equation.

FSpin/~2 = −p
(
|ζ↑|2| − |ζ↓|2

)
+ q

(
|ζ↑|2|+ |ζ↓|2

)
= |ζ↑|2 (q − p) + |ζ↓|2 (q + p) (37)

In which |ζ↑|2 + |ζ0|2 + |ζ↓|2 = 1. Minimizing this equation for |ζ↑|2 and |ζ↓|2 can not simply
be done by differentiating to these variables and putting them to zero, for differentiating to
one of these variables yields a constant. Instead we have to consider all areas in the space
{p, q} and then minimize the free energy for these values, while also considering the constraint
|ζ↑|2 + |ζ0|2 + |ζ↓|2 = 1 together with the fact that the amount of particles cannot be a negative
number. For example, take q > 0 together with −q < p < q. In this space, both q − p > 0 and
q + p > 0 and thus the free energy is strictly bigger than 0. Therefore choosing |ζ0|2 = 1 and
thus |ζ↑|2 = |ζ↓|2 = 0 yields a free energy of 0 which is the minimum. In this area, there are
therefore only spin 0 particles as is illustrated in part b of figure 5. Calculating the presence of
the spin 0 phase for the whole domain yields

|ζ0(p, q)|2 =


1 if q > 0 and p ∈ (−q, q)
undetermined if q ≥ 0 and |p| = q

0 elsewhere

(38)

When |ζ0(p, q)|2 is undetermined, any value in [0, 1] suffices as long as the appropriate constraints
are considered. Considering all of these cases by hand is a long but simple process, and therefore
it is convenient to use a software package to calculate these. Analogously, calculating the
presence of other domains yields.

|ζ↑(p, q)|2 =


1 if (q > 0 and p > −q) or (q ≤ 0 and p < 0)

undetermined if (q < 0 and p = 0) or (q ≥ 0 and p = q)

0 elsewhere

|ζ↓(p, q)|2 =


1 if (q > 0 and p > q) or (q ≤ 0 and p > 0)

undetermined if (q < 0 and p = 0) or (q ≥ 0 and p = −q)
0 elsewhere

(39)

Drawing these solutions is equivalent to phase diagram b of figure 5. Notice that all spin states
are demixed.

3.2.2 Case 2 and 3: antiferromagnetic and ferromagnetic

In the antiferromagnetic case or equivalently when c > 0 we again need to minimize the free
energy as defined in 35. This minimization is a similar but more elaborate process as in the case
without interaction, and can easily be performed by a software package. This yields us with the
results shown in diagram a of figure 5. Note that sodium is also antiferromagnetic.

Interestingly, there is now an area with spin-mixing between the mF = ±1 states, but these
states do not mix with the mF = 0 state. We will again see similar behaviour for sodium in the
next paragraphs.

Similarly the phase diagram for the ferromagnetic case can be derived, as is shown in phase
diagram c of figure 5. In addition, we now see the gray area in which the spin 0 component can
either mix with the spin 1 component for p > 0 or the spin -1 component for p < 0

13



Figure 5 – Phase diagram as a function of linear Zeeman energy p and quadratic Zeeman
energy q for different values of the constant c[10]. In a the antiferromagnetic case is shown.
The gray area here indicates a spin mixture of the mF = ±1 states. In b we chose zero
interaction and finally in c, the ferromagnetic case, the gray area indicates a spin mixture
between the mF = 0 and the mF = 1 state when p > 0 and the mF = 0 and the mF = −1
state when p < 0. This image was taken from [10].

3.3 Density profiles for two spin components

We will now examine the case in which we choose the chemical potentials in such as way that
only particles with mF ∈ {−1, 0} are present in the condensate. It can be seen that there are in
principle 4 different states for this freedom in spin. We can find places where only the mF = 0
or the mF = −1 state occur, mixtures of mF = 0 and mF = −1 and can find places for which
there are no particles present at all. Denote n−1(x) = n↓(x). To find this profile we firstly
rewrite equation 27 for this scenario and define ni(x) = |ψi(r)|2 such that

F =

∫
dx

(
(V − µ0)n0(x) + (V − µ↓)n↓(x) +

1

2
g00n

2
0(x) +

1

2
g↓↓n

2
↓(x) + g↓0n↓(x)n0(x)

)
(40)

In this paragraph only the case in which g00g↓↓ − g2
↓0 > 0 is considered. The Hessian matrix

of this free energy equation is given by (
g00 g↓0
g↓0 g↓↓

)
(41)

With eigenvalues λ± = 1
2 (g00+g↓↓±

√
(g00 − g↓↓)2 + 4g↓0). Both of these eigenvalues are strictly

positive for g00g↓↓ − g2
↓0 > 0. Therefore, the hessian matrix is positive definite which means the

extreme values are minima.
Minimizing the free energy as a function of n0 and n↓ now amounts to taking the functional

derivative of these variables and putting them equal to 0. However, the constraints that n0(x) >
0 and n−1(x) > 0 still holds for all x. Taking the functional derivatives with respect to n↓(x)
and n0(x) and putting them to 0 gives us the set of equations

V − µ0 + g00n0(x) + g↓0n↓(x) = 0

V − µ↓ + g↓↓n↓(x) + g↓0n0(x) = 0
(42)
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If we solve the set of equations in 42 we arrive at the following solutions

n0(x) =
(g↓0 − g↓↓)V + g↓↓µ0 − g↓0µ↓

g00g↓↓ − g2
↓0

n↓(x) =
(g↓0 − g00)V + g00µ1 − g↓0µ0

g00g↓↓ − g2
↓0

(43)

Note that it is physically prohibited that n0(x) < 0 or n−1(x) < 0, so whenever we find a
minimum for n0(x) or n↓(x) smaller than 0, we choose it to be 0. We will choose the potential
to be harmonic, which means that V (x) = κx2 for some constant κ. n0(x) now has the roots

x = ± 1√
κ

√
g↓0µ↓−g↓↓µ0

g↓0−g↓↓ ≡ ±R0 and n↓(x) has the roots x = ± 1√
κ

√
g00µ↓−g↓0µ0

g00−g↓0 ≡ ±R↓. We

must now factor in that in these formulas we did not factor in the fact that these populations
can not be smaller than 0. we find that R0 ≥ R↓ if µ↓ > µ0. this means that for |x| > R↓ and
µ↓ > µ0 we get n↓ = 0 such that

n0(x) =


(g↓0−g↓↓)V+g↓↓µ0−g↓0µ↓

g00g↓↓−g2↓0
if x ∈ I↓ and µ↓ > µ0

µ0−V (x)
g0,0

if x ∈ [−
√

µ0

κ ,
√

µ0

κ ] \ I↓
0 elsewhere

(44)

and the density profile of the mF = −1 profile is given by:

n↓(x) =

{
n↓(x) =

(g↓0−g00)V+g00µ1−g↓0µ0

g00g↓↓−g2↓0
if x ∈ I↓

0 elsewhere
(45)

Here we defined I↓ = [−R↓, R↓]
In the case that µ↓ ≤ µ0 we get the set of equations

n0(x) =

{
(g↓0−g↓↓)V+g↓↓µ0−g↓0µ↓

g00g↓↓−g2↓0
if x ∈ I0

0 elsewhere

n↓(x) =


(g↓0−g00)V+g00µ1−g↓0µ0

g00g↓↓−g2↓0
if x ∈ I0

µ1−V
g↓↓

if x ∈ [−
√

µ1

κ ,
√

µ1

κ ] \ I0
0 elsewhere

(46)

In which we defined I0 = [−R0, R0] For certain choices of gij graphs of this function have been
drawn in figure 6.

We can now proceed by drawing phase diagrams for a certain choice of g00, g↓0 and g↓↓. Let
us for instance choose g00 = g↓↓ > g↓0 > 0 which satisfies the required condition g00g↓↓−g2

↓0 > 0.
In this case we see that (g↓0 − g↓↓)V = (g↓0 − g00)V such that n0(x) and n↓(x) have the same
derivative when both are nonzero and we note that we need µ0 >

g↓0
g↓↓
µ↓ in order for n0(x) to

be nonzero and we need µ↓ >
g↓0
g00
µ0 =

g↓0
g↓↓
µ0 for µ↓ to be nonzero. So for both of them to

be nonzero we need µ0 ∈ (
g↓0
g↓↓
µ↓,

g↓↓
g↓0
µ↓). This results in the phase-diagram given in figure 7

The final thing we will do is calculate the amount of particles in the trap N. This is simply
found by integrating the functions found in figure 6. We will only derive this for the case that
g00 > g↓↓ = g↓0. Then we find thatn−1 =

8
√
κ
(
g−1,0µ0−g0,0µ1
g−1,0−g0,0

)
3g−1,0

n0 = 4
3
√

2κg0,0(g1,0−g0,0)

(
g−1,0µ0

(√
µ0 −

√
g−1,0µ0−g0,0µ1

g−1,0−g0,0

)
+ g0,0

(
µ

3/2
0 − µ1

√
g−1,0µ0−g0,0µ1

g−1,0−g0,0

))
(47)
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Figure 6 – Plot of amount of particles as a function of the position x in the case that
g00 = g↓↓ > g↓0 > 0, all in units of m5kg/s2. the dotted line(red) represents the amount of
particles in the mF = 0 phase and the striped line the amount of particles with mF = −1.
Specifically in the left figure, g↓↓ = g00 = 1 > g↓0 = 0.9, µ0 = 7, µ↓ = 6.7 and κ = 1. In
the right figure we g00 > g↓↓ and µ0 > µ↓.

3.4 Density profiles with saddle point for two spin components

In the previous paragraph, density profiles were calculated for the case that g00g↓↓ − g2
↓0 > 0.

In this paragraph, we will assume that g00g↓↓ − g2
↓0 < 0. As a consequence, the Hessian matrix

calculated in 41 now has one positive and one negative eigenvalue. Therefore, the extremum
found by using equation 42 gives a saddle point instead of a minimum and any minima must be
on the boundaries of the space spanned by {n0(x), n−1(x)}. If n0 or n−1 goes to infinity, the
free energy according to equation 40 will also go to infinity when we choose the potential to be
V = κx2 with κ > 0 . We can therefore reduce the free energy equation to The energy goes to
infinity for either n0 or n−1 goes to infinity, so we require for every x that either n0(x) = 0 or
n−1(x) = 0. Therefore, the energy equation reduces to:

F (x) = (V − µ0)n0(x) + (V − µ↓)n↓(x) +
1

2
g00n

2
0(x) +

1

2
g↓↓n

2
↓(x) (48)

and we require that for every x that either n0(x) = 0 or n−1(x) = 0 such that we are still on
the boundary of the space. Therefore we can rewrite this equation and seperate two cases

F (x) =


(V − µ0)n0(x) + 1

2g00n
2
0(x) if n0 > 0

(V − µ↓)n↓(x) + 1
2g↓↓n

2
↓(x) if n↓ > 0

0 elsewhere

(49)

This means that there will never be a mixture of the mF = −1 and mF = 0 states. We will now
proceed by calculating the density profiles n0 and n↓ by minimizing the free energy equation.
The Hessian matrix of the new free energy equation is then given by(

g00 0
0 g↓↓

)
(50)

Which has the two positive eigenvalues g00 and g↓↓ such that it is a positive definite matrix. We
know from mathematical theory that the extreme values of a positive definite matrix are minima,
so we can find the minimum of the free energy by taking the partial derivative of F (n0, n↓) in
n0 and n↓ and putting them to 0. This gives us a set of equations:

(V − µ0) + g00n0(x) = 0 if n0 > 0

(V − µ↓) + g↓↓n↓(x) = 0 if n↓ > 0
(51)

They are easily solved for either n0(x) = µ0−V (x)
g00

and n↓(x) = 0 with F (x) = − (µ0−V (x))2

2g00
≡

F0(x) or n0(x) = 0 and n↓(x) =
µ↓−V (x)
g↓↓

with F (x) = − (µ↓−V (x))2

2g↓↓
≡ F↓(x). Note that n0(x)
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Figure 7 – Phase diagram at x = 0 in the case that g00 = g↓↓ > g↓0 > 0 and with the
constraint that there are only mF = −1 and mF = 0 particles. Here µ0 is chosen on
the vertical axis and µ↓ is chosen on the horizontal axis. Area 1 symbolizes the area in
which there are only particles in the mF = 0 state, area 2 symbolizes the area in which
all particles are in the mF = −1 state and in area 3 we find a mixture of both states.
When x > 0, samples with starting value of {µ↓, µ0} will move in the direction of the
dashed arrows visible in the diagram. This symbolizes the phase change as a result of the
harmonic potential. Note that the arrows are parallel to the line µ0 = µ↓ such that it is
possible to find a mixture of both states around x = 0 and mF = −1 on the outsides if
µ↓ > µ0, or mF = 0 on the outsides if µ↓ < µ0.

and n↓(x) should always be bigger than or equal to 0, as before. For every x we can now choose
the function in 49 that minimizes the free energy, i.e. we can take the minimum of F0(x),
F↓(x) and 0. We again choose V = κx2 to be the harmonic potential, µ0(x) = µ0 − V (x) and
µ↓(x) = µ↓ − V (x). With this we can rewrite the minimum of the free energy equation as

F (x) =


F0(x) = −µ0(x)2

2g00
if n0 > 0 and n↓ = 0

F↓(x) = −µ↓(x)2

2g↓↓
if n0 = 0 and n↓ > 0

0 elsewhere

(52)

There are now three cases to consider.

1. We get the mF = 0 phase at a point x0 if min [F0(x0), F↓(x0), 0] = F0(x0) and n0(x0) =
µ0(x0)
g00

> 0 or µ0(x0) > 0. We therefore require firstly that F0(x0) < 0 which is true for

all µ0(x0). Secondly, it is required that F0(x) < F↓(x) or we need n↓ ≤ µ↓(x)
g↓↓

. Therefore

we either need that µ0(x) > ±
√

g00
g↓↓
µ↓(x) or µ↓ ≤ 0. Combining this gives that we need
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either µ0(x) >
√

g00
g↓↓
µ↓(x) if µ↓(x) > 0 or µ0(x) > 0 and µ↓(x) ≤ 0.

2. Analogously, we find the mF = −1 phase at a point x0 if min [F0(x0), F↓(x0), 0] = F↓(x0)

and n↓(x0) =
µ↓(x0)
g↓↓

> 0 or µ↓(x0) > 0. We therefore require firstly that F↓(x0) < 0 which

is true for all µ↓(x0). Secondly, it is required that F↓(x) < F0(x) or we need n0 ≤ µ0(x)
g00

.

Therefore we either need that µ↓(x) > ±
√

g↓↓
g00
µ0(x) or µ0 ≤ 0. Combining this gives that

we need either µ↓(x) >
√

g↓↓
g00
µ0(x) if µ0(x) > 0 or µ↓(x) > 0 and µ0(x) ≤ 0.

3. We find a vacuum for both µ0 < 0 and µ↓ < 0.

This results are shown in the form of a phase diagram in figure 8. Now we calculate explicitly

Figure 8 – Phase diagram of spinor BEC with F = 1 and g00g↓↓ − g2↓0 < 0. Because
µ0(x) and µ↓(x) have the same derivative in x, once starting values µ0 and µ↓ have been
chosen, the point moves down over the line µ0(x) = µ↓(x) as V (x) increases. This makes
it possible to change phase as |x| increases. In the left diagram we chose g↓↓ > g00 such

that the mF = 0 state turns into the mF = −1 state for 0 <
√

g00
g↓↓

µ↓ < µ0(x) < µ↓(x).

Note that the converse, i.e. the mF = −1 state turns into the mF = 0 state is not
possible for the left diagram, because V (x) can only increase. In the right diagram
g↓↓ < g00 was chosen such that the mF = −1 state turns into the mF = 0 state for

0 < µ↓(x0) < µ0(x0) <
√

g00
g↓↓

µ↓(x0) for some x > x0. sketch of phases with the dashed

line a possibility of transition for different V

the n0(x) and n−1(x) density profiles for different cases for a harmonic potential for the case
g00 < g↓0 = g↓↓ :

1. Suppose that 0 <
√

g00
g↓↓
µ↓ < µ0 < µ↓ such that we find the mF = 0 phase in x = 0. As

can be seen from the phase diagram, we can then find an x such that the mF = −1 state
is found. Firstly, define the following constants as

a ≡

√√√√√ 1

κ

µ0 −
√

g00
g↓↓
µ↓

1−
√

g00
g↓↓

b ≡
√
µ↓
κ

(53)

We can calculate that F0(x) = F↓(x) for x = ±a. Therefore, we find the mF = 0, state

for x ∈ [−a, a]. For |x| > |a| we find the mF = −1 state as long as F↓(x) = −µ↓(x)2

2g↓↓
< 0
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. This is true for x ∈ (−b,−a) ∪ (a, b). For other x, i.e. |x| > b, we find a vacuum. It is
now a simple but tedious exercise to calculate n0 and n↓ by integrating over these areas.

2. Suppose that µ0 > µ↓ and µ0 > 0. Then F0 < F↓ for all x. Next to that we find that

n0(x) = µ0−κx2

g00
> 0 for x ∈ (−

√
µ0

κ ,
√

µ0

κ ). This means that we find the mF = 0 phase

for x ∈ (−µ0

κ ,
µ0

κ ) and a vacuum for all other x. Furthermore, we can find the amount of
particles by integrating:

n0 =

∫ µ0
κ

−µ0κ
dx
µ0 − κx2

g00
=

2

3

µ
3/2
0

g00
√
κ

n↓ = 0

(54)

3. Finally, suppose that 0 < µ0 <
√

g−1,0

g0,0
µ−1 then we find the n↓ phase for x ∈ [−b, b]

a summary of these results can be found in figure 9.

Figure 9 – Plots of density profiles n0(x) which is represented as a dotted red line and
n↓(x) represented as a dashed blue line. In the top left figure, situation 1 is shown: we
find the mF = 0 phase close to x = 0 and then suddenly the phase changes to mF = −1.
Note the discontinuity at the interface of the mF = 0 and mF = −1 phases. On the
bottom left case 3 is considered, with only the mF = −1 phase occurring. On the bottom
right only the mF = 0 phase is present. We can see that at the roots of both the bottom
left and bottom right plots there is no discontinuity, but they are not differentiable in the
points shown in the plot. The top right plot shows a fourth situation in which g↓↓ < g00
such that the mF = −1 phase occurs close to 0 with the mF = −1 phase on the outside.
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4 Approximations of the interface.

In the previous chapter we derived equations and phase diagrams for the density profiles of
different spin states. The Thomas-Fermi approximation was used, which assumes that the
kinetic part of the Gross-Pitaevskii equation is much smaller than the interaction part and
can thus be neglected. As a consequence of this, the functions n0(x) and n↓(x) could get
infinitely steep derivatives in x at their interfaces. Therefore, the Thomas-Fermi approximation
is not valid in this neighborhood and a new method of approximation should be found. In this
chapter, we will try approximating the solution of the GPE by using the results found in chapter
3. Subsequently these results will be refined using numerical methods.

4.1 Adding the kinetic energy term

Instead of using the free Thomas-Fermi approximation, we could try minimizing the free-energy
equation introduced in equation 22 and adapted for the case of a multi component system in
equation 27. We then get the following equation:

F (ψ0(x), ψ↓(x)) =

∫
dx

[
~2

2m

(
∂ψ0(x)

∂x

2

+
∂ψ↓(x)

∂x

2
)

+ (V − µ0)n0(x) + (V − µ↓)n↓(x)

+
1

2
g00n

2
0(x) +

1

2
g↓↓n

2
↓(x) + g↓0n↓(x)n0(x)

] (55)

We now want to focus on the interface between the mF = 0 phase and the mF = −1 phase.
To do this, we introduce a potential together with two chemical potentials such that on the
negative side of the x axis we find the mF = −1 phase and on the positive side of the x axis we
find the mF = 0 phase in Thomas-Fermi approximation.For this, we choose V (x) = −εx with

ε arbitrarily small and we choose µ0 =
√

g00
g↓↓
µ↓ > 0. This is basically a Taylor approximation

on the harmonic potential. As long as we are close to the interface, this approximation is valid.
Since we are only interested in the behaviour around the interface there is a valid reason to use
this potential. We can take V = 0 as a simplification and remind ourselves that we are looking
for a solution with mF = −1 if x < 0 and mF = −1 if x > 0. This gives us

F (ψ0(x), ψ↓(x)) =

∫
dx

[
~2

2m

(
∂ψ0(x)

∂x

2

+
∂ψ↓(x)

∂x

2
)
−
√
g0

g1
µ1|ψ0(x)|2 − µ↓|ψ↓(x)|2

+
1

2
g00|ψ0(x)|4 +

1

2
g↓↓|ψ↓(x)|4 + g↓0|ψ↓(x)|2|ψ0(x)|2

] (56)

We now want to minimize this free energy equation. In paragraph 3.4 of the previous chapter we

found that n0(x) = µ0−V (x)
g0

and n1(x) = µ1−V (x)
g1

in Thomas-Fermi approximation. Choosing

V (x) = 0 now gives us the solutions ψ0(x) =
√

µ0

g0
and ψ1(x) =

√
µ1

g1
. Defining c ≡

√
g↓↓µ0

g00µ↓
, we

note that ψ0(x) = cψ↓(x). However, for V (x) = −εx we find that in Thomas-Fermi approxima-
tion

ψ0(x) =

{
0 if x < 0√

µ0

g00
if x > 0

and ψ↓(x) =

{√
µ↓
g↓↓

if x < 0

0 if x > 0
(57)

Therefore, the function ψ0(x) + cψ1(x) = ψ0 + cψ1 is a continuous and constant func-
tion with derivative 0 in Thomas-Fermi approximation. Also note that ψ↓(x)/2 − ψ0(x)/2c is an
anti-symmetric function because of the minus sign. This inspires us to define the following
transformation functions

ψ+(x) = ψ0(x) + cψ↓(x)

ψ−(x) = −ψ0(x)

2c
+
ψ↓(x)

2

(58)
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With c =
√

g↓↓µ0

g00µ↓
. Note that ψ+(x) is equal to the constant value

√
µ0

g00
and using that µ0 =√

g00
g↓↓
µ↓ > 0 we can rewrite that c =

(
g↓↓
g00

) 1
4

. Plots of ψ0(x) together with ψ↓(x) and ψ+(x)

together with ψ−(x) can be found in figure 10.

Figure 10 – In the left figure, a plot of the function ψ↓(x) is shown as a dashed blue line
and a plot of the function ψ0(x) is shown as a red dotted line. discontinuities are clearly
visible for both phases. In the right figure, a plot of the function ψ+(x) is shown as a
dashed red line and a plot of the function ψ−(x) is shown as a dotted blue line. In this
figure, it can be seen that ψ+(x) is now a continuous and differentiable function.

The Jacobian matrix of this transformation can be written as(
1 c
− 1

2c
1
2

)
(59)

Which has determinant 1. We can solve this set of equations for ψ0(x) and ψ↓(x) which gives
us the set of equations:

ψ0 = ψ+/2− cψ−
ψ↓ = ψ+/2c + ψ−

(60)

We will now try to solve the free energy equation without the Thomas-Fermi approximation.

From now on, we will consider ψ+(x) to be completely constant such that ∂ψ+(x)
∂x = 0, but we

will take into account that ∂ψ−(x)
∂x 6= 0. First of all, defining that P = (1 + c2) ~2

2m , we get that

~2

2m

(
∂ψ0(x)

∂x

2

+
∂ψ1(x)

∂x

2
)

= P

(
∂ψ−(x)

∂x

)2

(61)

We use the fact that ψ+(x) =
√

µ0

g00
and continue substituting the equations for ψ0(x) and

ψ↓(x) into the free energy equation such that we get the following equation after some simple
yet tedious algebra.

F (x) =

∫
dx

[
P

(
∂ψ−(x)

∂x

)2

+Aψ4
− −Bψ−(x)2 − C

]
(62)

Here the constants A, B and C are strictly bigger than 0 and are given by

A = g↓↓

(
1 +

√
g↓↓
g00

)
B =

µ0

2

(
g↓↓
g00

+

√
g↓↓
g00

)
C =

µ2
0

16g00

(
7−

√
g↓↓
g00

) (63)
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What we now have is the simplified form of the free energy as a function of ψ−. We now
want to minimize the free energy to find the optimal value for ψ−(x) Since this is a functional,

we can take the functional derivative of F . Write F (x) = E(x, ψ−(x), dψ−(x)
dx ) := F (ε) . Then

it follows that

δE

δψ−
=
∂E(ε)

∂ψ
− ∂

∂x

∂E(ε)

∂ ∂ψ∂x
= −2P

∂2ψ−
∂x2

+ 4Aψ3
− − 2Bψ− (64)

Now we equal this to 0 to find the minimum energy for ψ− Notice that this is equivalent to
putting.

P

(
∂ψ−
∂x

)2

=
(
Aψ4
− −Bψ2

− + C1

)
(65)

This is a nonlinear differential equation for which we will find analytical solutions in the next
paragraph.

4.2 Boundary conditions and solutions

In the previous paragraph we have found a non-linear differential equation for ψ−(x). we are
now going to solve this equation, starting by determining the appropriate boundary conditions.
As we get further from the interface, the solutions will be more like the solutions found using the

Thomas-Fermi approximation. We therefore know that in x = −∞, ψ− = ψ1/2 = 1
2

√
µ1

g1
=
√

B
2A .

Secondly, in the limit that x goes to ∞, the derivative of ψ− goes to 0 which forms the second
boundary condition. Summarizing this we have the following boundary conditions:

ψ−(∞) =

√
B

2A
∂ψ−
∂x

(∞) = 0

(66)

To solve the differential equation as defined in 65, we will make our variable dimensionless. This

inspires us to define the transformations x =
√

P
B x̃ and ψ− =

√
B
2A ψ̃−. Substituting this into

equation 65 and rewriting it gives:

B2

2A

(
∂ψ̃−
∂x̃

)2

=
B2

4A
(ψ̃2
− − 1)2 − B2

4A
+ C1 (67)

We know from the boundary conditions that ψ−(∞) =
√

B
2A such that ψ̃−(∞) = 1 as well as

∂ψ−
∂x (∞) = ∂ψ̃−

∂x̃ (∞) = 0. From this we conclude that C1 = B2

4A elimination both the constant

terms −B
2

4A and C1. Taking the square root, this leaves us with the equation

√
2
∂ψ̃−
∂x̃

= ψ̃2
− − 1 (68)

This can easily be solved, providing us with the solution ψ̃− = − tanh x̃√
2
. When we transform

the variable x̃ and ψ̃− back to their original counterparts, we arrived at the final solution for
ψ−(x.

ψ−(x) = −
√

B

2A
tanh

√
B

2P
x (69)

As we expected, this solution satisfies the boundary conditions, making it an anti-symmetric
continuous and differentiable function. However, we originally set out to find solutions for ψ0(x)
and ψ↓(x). If we now apply the transformation in equation 58 , we arrive at the solutions for
these wave functions.
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ψ0(x) =
1

2

µ0

g00
(1 + tanh(ξx))

ψ↓(x) =
1

2

µ↓
g↓↓

(1− tanh(ξx))

ξ =

√
mµ↓
2~2

(70)

Plots of ψ+(x) together with ψ−(x) and ψ0(x) together with ψ↓(x) are shown in figure 11.

Figure 11 – In the left figure, a plot of the function ψ+(x) is shown as a dashed red line
and a plot of the function ψ−(x) is shown as a dotted blue line. Both ψ+(x) and ψ−(x)
are now continuous and differentiable functions. In the right figure, a plot of the function
ψ↓(x) is shown as a dashed blue line and a plot of the function ψ0(x) is shown as a red
dotted line. There are no longer any discontinuities and both functions are differentiable.

The functions we found form a better approximation of the interface than in the case of
the Thomas-Fermi approximation. There are however ways to improve this approximation by
finding a better approximation of ψ+(x). We see that there is an area in which the mF = 0
and mF = −1 states mix. The factor ξ in the solutions for ψ0(x) and ψ↓(x) gives us some
information about the with of the interface. If this interface is relatively big compared to the
size of the spin domains, then the Thomas-Fermi approximation is not valid.

4.3 Numerical enhancements

In this final paragraph we will show how to improve the approximation made in last paragraph
by using numerical methods. We have found a better description of the interface, but earlier
we assumed that ψ+(x) is completely constant. This assumption may indeed be correct in
first approximation, but in order to improve our model of the interface we will now assume

that ψ+(x) is not constant and we assume that ψ−(x) = −
√

B
2A tanh

√
B
2P x is still the correct

solution. We are going to substitute this solution into the free energy equation 56 and then
minimize it as a function of ψ+(x). Before we continue, we are firstly going to define some
constants and functions that will be convenient later in this paragraph

geff =
1

4
(g00 +

√
g00g↓↓)

V ∗(x) =
[
3
√
g00g↓↓ − g↓↓

]
ψ−(x)2 − µ0

J(x) =
~2

2m

(
1

c
− c
)
∂2ψ−(x)

∂x2

R =
1

2

(
1 +

1

c2

)
~2

2m

(71)
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Let us now rewrite the free energy equation. After some tedious algebra in which earlier
mentioned algebraic identities for c en µ↓ are used substituted, we arrive at the following equation
for the free energy.

F (ψ+(x)) =

∫
dx

[
R

2

(
∂ψ+(x)

∂x

)2

+
~2

2m

(
1

c
− c
)(

∂ψ−(x)

∂x

)(
∂ψ+(x)

∂x

)

+
geff

4
ψ4

+(x) +
V ∗(x)

2
ψ2

+(x) + T (ψ−(x))

] (72)

In which T (ψ−(x)) is some kind of function that does not depend on ψ+(x). As in previous
paragraph, the free energy can now be minimized by taking the functional derivative in ψ+(x)
and putting it equal to zero. This gives us the equation:{

R
∂2

∂x2
+ V ∗(x) + geff (ψ+(x))2

}
ψ+(x) = J(x) (73)

This equation is nonlinear and therefore hard to solve. Note that we can compare V ∗(x) to a
potential and geff to an effective interaction constant. Then, this equation has a similar form as
the Gross-Pitaevskii equation, but includes the extra term J(x) Plots of both V ∗(x) and J(x)
are shown in figure 12. Note that in the figure, J(x) is antisymmetric. This will also cause some

Figure 12 – In the left figure, a possible plot of J(x) is shown. Note that this is an
antisymmetric function. In the right figure, V ∗(x) is shown. This function is symmetric.

antisymmetry in the solution for ψ+(x) . Luckily, J(x) goes to zero for both very high and very

low values of x, and thus we expect ψ+(x) to behave like the constant function ψ+ =
√

µ0

g0
. We

can therefore impose the following boundary conditions.

ψ+(±∞) =

√
µ0

g0

∂ψ+

∂x
(±∞) = 0

(74)

Solving this differential equation numerically could be a good starting point for a follow-up
research on this topic. This will give some further information about the interface as well as
show for which conditions earlier approximations of this interface are valid.
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5 Conclusion

In this thesis we started by deriving some general properties of Bose-Einstein condensates.
Using the Bose-distribution we were able to derive the critical temperature as given in equation
9. From this equation we can conclude that Bose-Einstein condensation can occur at non-zero
temperatures for some potentials such as the harmonic potential in 3D. However, the same
harmonic potential in 1D would require that T = 0, such that all our calculations in one
dimension with the harmonic potential could only happen at the absolute zero temperature.
Expanding the theory to 3D could improve the compatibility with the experimental situation.
Furthermore the Gross-Pitaevskii equation was derived together with a free energy functional
for Bose-Einstein condensates. We found that interactions play an important role in in these
equations. In the case of spinor Bose-Einstein condensates in which there are spin degrees of
freedom, the different interactions between different spin states causes either mixing or demixing
of these states.

Subsequently the case of spinor BEC with F = 1 such that there are mF = −1, 0 and 1
particles were considered in Thomas-Fermi approximation. In this approximation the kinetic
terms are neglected, since we assume they are relatively small compared to the interaction
terms for a BEC. We found that in the case of sodium, the antiferromagnetic case, there was no
mixing between the mF = ±1 state and the mF = 0. On the other hand we found that in the
ferromagnetic case there are mixtures of mF = 1 with mF = 0 and also mF = −1 with mF = 0,
but the mF ± 1 states do not mix. We then considered the case in which a sample was prepared
in which there are only spin 0 and spin −1 particles, as is the case we are most interested in.
This translated into mixed states of mF = 0 and −1 for the ferromagnetic case, and demixing
for the case of sodium. We calculated the density profiles of both spin states from which we are
also able to calculate the total number of particles. This is a known quantity in experiments.

The density profiles however contained some discontinuities in the transition between phases.
This is a product of the Thomas-Fermi approximation that was used to derive these density
profiles and we have to conclude that this approximation is not valid at these interfaces. We
then proceeded to find density profiles without using the Thomas-Fermi approximation. This
gave us the solutions given in equation 70. Increasing the factor ξ in this equation makes the
interface smaller, and thus we can say that 1/ξ is proportional to the penetration depth of
this interface. Therefore, for the Thomas-Fermi approximation to be accurate, we need the
spin domains to be relatively big compared with this penetration depth, else our solutions will
be governed the kinetic terms in the free energy equation. Finally a differential equation was
derived that could be solved in further research to check the validity of the approximations made
on the interfaces as well as give a better approximation of this interface.

25



References

[1] P. Panahi Thermodynamic Properties of F= 1 Spinor Bose-Einstein Condensate

[2] Website with general information about physics, viewed on 23-12-2015 http://

hyperphysics.phy-astr.gsu.edu/hbase/optmod/lascool.html

[3] Image from the Australian national university website, taken on 09-01-2015. http://

sciencewise.anu.edu.au/articles/qed

[4] Image from the university of Michigan website, taken on 09-01-2015. http://cold-atoms.
physics.lsa.umich.edu/projects/bec/evaporation.html

[5] J. Jiang et al. A simple and efficient all-optical production of spinor condensates

[6] Image from Wikipedia page on Zeeman splitting, taken on 29-12-2014. http://en.

wikipedia.org/wiki/Zeeman_effect

[7] C.J. Pethick, H. Smith; Bose-Einstein condensation in dilute gases

[8] Article on Bose-statistics, viewed on 13-11-2014 http://en.wikipedia.org/wiki/Bose%

E2%80%93Einstein_statistics#Derivation_from_the_grand_canonical_ensemble

[9] W. Ketterle - SPINOR CONDENSATES AND LIGHT SCATTERING FROM BOSE-
EINSTEIN CONDENSATE

[10] J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur and W. Ketterle-
Spin domains in ground-state Bose-Einstein condensates

[11] S. Knoop, T. Schuster, R. Scelle, A. Trautmann, J. Appmeier, and M. K. Oberthaler -
Feshbach spectroscopy and analysis of the interaction potentials of ultracold sodium.- (http:
//arxiv.org/pdf/1102.0572v1.pdf)

[12] Article on GPE, viewed on 15-10-2014. http://arxiv.org/pdf/1301.2073v1.pdf

26

http://hyperphysics.phy-astr.gsu.edu/hbase/optmod/lascool.html
http://hyperphysics.phy-astr.gsu.edu/hbase/optmod/lascool.html
http://sciencewise.anu.edu.au/articles/qed
http://sciencewise.anu.edu.au/articles/qed
http://cold-atoms.physics.lsa.umich.edu/projects/bec/evaporation.html
http://cold-atoms.physics.lsa.umich.edu/projects/bec/evaporation.html
http://en.wikipedia.org/wiki/Zeeman_effect
http://en.wikipedia.org/wiki/Zeeman_effect
http://en.wikipedia.org/wiki/Bose%E2%80%93Einstein_statistics#Derivation_from_the_grand_canonical_ensemble
http://en.wikipedia.org/wiki/Bose%E2%80%93Einstein_statistics#Derivation_from_the_grand_canonical_ensemble
http://arxiv.org/pdf/1102.0572v1.pdf
http://arxiv.org/pdf/1102.0572v1.pdf
http://arxiv.org/pdf/1301.2073v1.pdf

	Introduction
	History
	Cooling techniques
	Laser Doppler cooling
	Evaporative cooling

	Spinor Bose-Einstein condensates
	Outline

	Bose-Einstein condensates
	Bose distribution
	Critical temperature and Bose-Einstein condensation
	BEC in anisotropic harmonic-oscillator potential
	Interactions
	The Gross-Pitaevskii equation

	Spinor Bose-Einstein condensates
	Free energy equation: spin-1 BEC
	Phase diagrams for three component spin-1 BEC
	Case 1: zero interaction
	Case 2 and 3: antiferromagnetic and ferromagnetic

	Density profiles for two spin components
	Density profiles with saddle point for two spin components

	Approximations of the interface.
	Adding the kinetic energy term
	Boundary conditions and solutions
	Numerical enhancements

	Conclusion

