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Preface 
 
As far back as I can remember I have always regarded geographical information as a source of 
great utility. For long I have understood geographical information as merely maps that had 
some explanatory power.  As much as the statement that ‘a picture can say more than a 
thousand words’ may be a cliché, it is not less true for that. However, as I learned more about 
geographical information, first during my BSc and later during my MSc at GIMA, I increasingly 
found appreciation for the value of numbers, and how much a good quantitative geographical 
analysis can tell. Geographical information, I believe, holds many treasures of valuable 
quantitative data than can profoundly improve our lives, in particular when large datasets are 
provided on large topics. This triggered me very much into further investigating what I regard 
as one of the biggest issues of the past, present and future; energy.  
 
An earlier research during my MSc education lead me to appreciate the importance of 
geographical information on the supply side, researching the potential for an SDI for an 
energy company. A dataset made available through the ITC faculty of Geo-Information 
Science and Earth Observation via one of its researchers (my supervisor Alexey Voinov), gave 
me the opportunity to now research the demand side of it. 
 
Excited though I was from the beginning to the end of this research (and honestly, really, also 
halfway), I have encountered many challenges I found difficult to overcome. But when solved, 
challenges can eventually only benefit one, as they have for me, increasing my skills, in 
particular in programming, my perseverance, and my focus. 
 
For the programming part I have nobody to thank but myself. For the perseverance and 
focus, I have to acknowledge my deepest indebtedness to my hard-working and incredibly 
supporting mother; not only for the kind and supporting words but also because of her being 
an example on how to achieve the goals one has set for oneself. 
 
I wish to thank my supervisor Dr. Alexey Voinov for his support and patience during my 
thesis. Also I want to thank him for his straightforward and clear critique during the process 
and for the recommendations that were given to me. In addition I want to than Dr. Voinov for 
giving me the opportunity of doing this research.  
This research could not have been done without the help from the James Hutton institute 
that provided me the dataset, in particular Gary Polhill and Tony Craig, who provided the 
temperature feeds and the locations. In addition to that I wish to acknowledge the value of 
the critique and suggestions that Tony, Gary and Alexey have given me, although I wish I 
could have incorporated more of them into the research. 
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Abstract 

 
Many of the world’s governments and citizens are concerned about the use of CO2 emitting fossil 
fuels and high expenditure on energy. Transportation and housing are among the primary sources of 
CO2 emissions and energy expenditure. In Scotland, more than two thirds of domestic energy use is 
used for heating purposes. The relevance of this issue is increased by the fact that large parts of the 
Scottish population are unable to heat their homes to adequate levels without spending at least 10% 
of their income on warmth use (so called ‘fuel poverty’). In the year studied in this research (2011), 
fuel poverty in Scotland was between 25 and 30 percent. Unemployment, old age and retirement 
can make fuel poor persons extra vulnerable to being unable to heat their homes to adequate levels. 
Rural households use significantly more energy than urban households, both for transportation and 
warmth use. The differences in transportation can be explained by the necessity for private 
transport where presence of public transport is low and distance to services and is high. The 
differences in warmth use can partially be explained by higher heat loss (i.e. low thermal efficiency) 
in rural dwellings. However, previous research has shown that warmth demand in the UK has not 
gone down while thermal efficiency has gone up. Causes for this increased warmth demand are 
disputed. Among other things, this research attempted to shed light on this issue. Additionally, 
researched was what implications remote areas may have on CO2 emissions and household 
expenditure through transportation and warmth use.  
 
The stated goal was to develop a method to measure domestic warmth use from inside temperature 
data and to find how various degrees of remoteness influence energy use for households and to 
analyze the implications on CO2 emissions, fuel poverty and vulnerability of households. 
 
This research uses inside temperature data reports derived from smart meters in order to identify 
areas of high warmth use and low thermal efficiency. Identifying these areas by means of improved 
monitoring may help tackle fuel poverty and decrease warmth demand. Smart meters reporting 
inside temperature data are uncommon types although the additional information on inside 
temperatures can add value for monitoring purposes, as this research proves. Monitors reporting 
the inside dwelling temperature at 5 minute intervals were used to estimate and analyze the 
warmth use factors heater activity, thermal efficiency, warmth use and comfort temperature in 369 
dwellings in Eastern Scotland. Data from 2011 in the month of January, April, June, September and 
November and in 2012 during June and September were analyzed from the smart meter reports.  
 
Using kriging to interpolate outside temperature data, thermal efficiency was measured comparing 
the average hourly inside temperature with the average hourly outside temperature when the 
heater was expected to be off. Warmth use was measured as the average monthly amount of time 
the heater was on multiplied with the average temperature increase over the same period. Thermal 
comfort was measured as the stable temperature after a period of temperature increase. Network 
analysis was conducted to create remoteness indices to population centers. Drive time and vehicle 
use per area were used to estimate additional figures regarding CO2 emissions and £ spent on 
transport.  
 
Total domestic warmth use in kWh in the UK was used as an indicator for the amount of warmth 
used in kWh in the area. Total domestic energy use in kWh per Scottish data zone was used in order 
to evaluate whether known energy use tended to correlate with thermal efficiency and warmth use. 
Thermal efficiency showed a weak correlation with average domestic energy use per data zone. 
Warmth use did not show a significant correlation, indicating that reliability of its figures were lower 
than those for thermal efficiency. 
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No relations for warmth use, thermal efficiency or comfort temperature could be found with income 
deprived households. Thermal comfort levels adapted to outside temperature throughout the year 
but varied heavily per household from month to month and did not differ by remoteness. Remote 
areas had significantly lower thermal efficiency and higher warmth use, which is an important 
conclusion in this research. Among the various remoteness indices used, drive distances to public 
services overall showed the strongest correlations with thermal efficiency and warmth use.  
 
For further research the following is proposed; first, if SAP and NHER energy band data per individual 
dwelling can be obtained in combination with similar data as used in this research, it is proposed to 
find what can explain the differences in energy use outcomes between NHER and SAP.  
Second, to conduct a weighted overlay, taking into account the strength of geographical factors that 
correlate with warmth use, in order to predict thermal efficiency and warmth use in other areas. 
Third, conducting spatial autocorrelation to identify areas of low thermal efficiency, high proximity 

to other dwellings, high fuel poverty and high vulnerability, so that areas for prioritized insulation 

may be identified. Further development of that model may also try to identify thermally inefficient 

dwellings that are, although remote, within reasonable distance from each other in order to keep 

costs down. Achieving this would achieve more thermal efficiency where needed without 

disregarding the remote areas as previous insulation projects have turned out to do in the UK. 
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1. Introduction 
 
In the beginning of the year 2013, the European Commission announced a new policy framework for 
climate and energy. Given today’s economic hardships, depletion of fossil fuels and the goal to cut 
energy consumption by 20% of currently projected levels, by 2020 the following was stated: “It will 
be important, therefore, to ensure the support of Member States, MEPs and public opinion, and to 
maximise synergies and deal with trade-offs between the objectives of competitiveness, security of 
energy supply and sustainability.”(EC 2013, p. 2). 

 
The above statement stresses the relevance of saving both energy and money. Given almost two 
thirds of domestic energy is used to heat homes in the UK (Department of energy and Climate 
Change 2013a, table 1.04), an increase in energy efficiency of domestic dwellings can be an effective 
means for savings in terms of money as well as energy. The effect may be even stronger on the 
longer term, as prices may increase as the availability of resources declines (see for instance 
Hotelling 1931). 
 
Taking action on this part in an effective manner requires data on household energy consumption 
and methods to find where to prioritize; that is, where most can be saved in terms of money and 
energy at the lowest possible costs. The introduction of new technologies such as smart meters 
allows for better monitoring of energy use than previously. By using smart meter data, this research 
attempts to provide a method to find areas of relatively high fuel and heat consumption. Scotland is 
used as a case study and particular emphasis is on remote areas, where energy consumption per 
household tends to be higher than in urban areas. Additionally, rural areas have suffered from a 
neglect of attention regarding measures to increase dwellings’ thermal efficiency. 
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2. Theoretical Framework 
 
 “In a carbon-management environment, we believe people will focus on energy efficiency - the 
cheapest form of new energy we have.” David O’Reily, CEO of Chevron (CNN Fortune, November 
28th 2007) 
 
2.1 Energy use on three levels: Europe, the United Kingdom and Scotland 
 
The European Commission has set the goal to cut energy consumption within the EU by 20% of 
projected levels by 2020 (EC Eurostat 2012). However, between 2000 and 2010 there was an 
increase of 0.2% per annum in the EU as a whole. Luxemburg had the largest increase of energy 
consumption (2.5% per annum) and the United Kingdom (UK) had the largest decrease in the EU 
(0.9% decrease per annum) (EC Eurostat 2012). Today, the UK ranks 14 in amount of energy used per 
capita of all EU countries (U.S. EIA 2011). More than two thirds of domestic energy use is estimated 
to be for space heating purposes in Scotland (Energy Efficiency action plan 2009, p.56).  
 
Within the UK, the region of Scotland has the highest domestic gas consumption per household. 
Overall, energy consumption per consumer in Scotland has decreased vastly, from 20.042 kWh in 
2005 to 15.919 kWh in 2010 (Scottish Government 2012, p. 34-35). Home heating however, has 
slightly increased nation-wide and in particular as a share of household expenditure to energy 
(Department of Energy and Climate Change 2011a). Therefore it remains a topic of interest to 
decrease energy use for domestic dwellings particularly.  
 
Energy consumption is still a concern for the UK government and many citizens. The Energy 
Efficiency Action Plan for Scotland (2009) summarizes the issues of highest concern. The issues of 
concern are most importantly: 

- Climate change. Increased carbon emissions can lead to changes in climate. This is also why 
the EU has set goals to have carbon emissions by 2020 and 2050 that are below the 
currently projected growth; 

- Fluctuating prices. Increase worldwide of energy demand results in more fluctuating prices, 
making that supply to Scottish consumers is unstable; 

- Diminished future supply of fossil fuels and concerns about peak oil. 
- Costly investments for increasing the nation’s energy supply. 
- Dependency for energy on politically instable countries. 

 
Aside from decreasing the negative effects of the abovementioned issues, taking action should lead 
to benefits in several ways (Energy Efficiency Action Plan Scotland 2009): 
 

- Being among the first to invest in energy-saving technologies boosts expertise in the field, 
which will turn beneficial when international demand for these technologies rises.  

- Increase of energy efficiency should lead to more savings, which can result in lower fuel 
poverty, allowing households to spend or invest in other ways. 

- It is stated that the measures to tackle the abovementioned should coincide with economic 
growth. Energy efficiency should lead to attractive prices for consumers, businesses and the 
public sector and increased savings. 

- Decreased  energy demand would lead to lower energy bills, which particularly benefits low 
income households, so that they can spend or invest money otherwise, which is particularly 
helpful in times of economic hardship such as these. 

 
Traditionally the UK government has been able to influence the energy market through pricing 
policies. However, the abilities of the UK to influence the energy market and energy prices 
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diminishes with EU regulations, which aim for more privatization and liberalization, hence market 
prices will be more influential where previously they were more influenced by government policies 
(Fouquet 2008). 
Since increasing the supply of energy is stated to be costly, the most logical step is to decrease 
demand, which is prioritized above increased or cheaper supply. Only where demand remains, the 
supply should increase through increase of renewable energy (Energy Efficiency Acton Plan 2009, p. 
6). Domestic energy consumption can be decreased through improvement of the dwelling’s thermal 
efficiency; i.e. the efficiency with which energy is conserved and transported. 53% of the future 
energy savings are estimated to come from the domestic sector (Energy Efficiency Acton Plan 2009, 
p. 37).  
 
Taking action to increase the thermal efficiency of houses, whether privately or publicly, is not a new 
phenomenon in the UK and the thermal efficiency of houses has increased throughout the years. It 
has been stated that the reason why the increase of warmth demand still rises is due to the demand 
for warmer homes in the UK. Recent evidence however, shows that houses have not been any 
warmer between 1984 and 2007 (Shipworth 2011). The research was not able to conclude why 
warmth use has gone up. This suggests that better methods of monitoring may explain why energy 
consumption for warmth use does not appear to go down. Some explanations may be (Shipworth 
2011): 

- Houses have increased in size, requiring more energy to warm the entire house 
- Windows and doors are opened more often, in turn decreasing the warmth inside the house 
- Thermal efficiency of houses have been overestimated, leading to mistaken assumptions 

about the amount of energy saved in a household. 
- Demand for warmer homes has increased in rented homes up to the point that they equal  

owner-occupied homes 
- Demand for warmth over a longer time has increased 
- Dwelling envelope thermal efficiency improvements will have increased average internal 

temperatures over time, resulting in a more even distribution throughout the house, 
followed by an increase in the dwelling’s 24 h temperature when thermostat levels remain 
the same as before the improvement in thermal efficiency. 

- Increased penetration of central heating would have increased average internal 
temperatures over time;  

 
The disputed causes for higher warmth use can be monitored increasingly through smart meters. 
Some smart meters have a thermometer reporting the inside temperature, which can provide 
increased clarity on warmth use and demand for warm houses. Of the above possible explanations 
laid out by Shipworth (2011), inside temperature data can provide insight into: 

- Thermal efficiency of the dwelling and deviations from the expected thermal efficiency, 
where sudden heat loss may be attributed to opening of doors and windows. 

- The period of time with which warmth is demanded, indicating the total warmth demand. 
This research investigates warmth demand by use of smart meters reporting inside temperatures 
(more on this is found in chapter 2.3).  
 
2.2 SAP and NHER 

The British government assesses household energy use through the Standard Assessment Procedure 
(SAP). SAP ratings provide information that is used for policy making (SAP 2013). Energy use is 
estimated by evaluating properties of the houses such as materials used for construction, insulation, 
efficiency and control of the heating system and the fuel used. From that, a score between 0 and 
100 is given with a higher number indicating a lower CO2 output. The goal is to achieve a SAP rating 
of 80 for the average UK household by 2050 (ECI 2005, p. 96) and SAP scores are increasing (figure 
2.1). Rural dwellings in Scotland today have an average score of 53.5 while for urban dwellings this is 
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64.3 (SHCS 2012, p. 20), which is probably explained simply by the fact that compact living in cities is 
more energy efficient than sprawled single-family houses in the suburbia. New homes have typically 
a rating of 80 (Department of Energy and Climate Change 2011b, p. 31).  
 
The SAP method assumes standard use by occupants (Roberts 2008, p. 4483) and the SAP score 
given to the household is independent of household size, composition, ownership and efficiency of 
particular devices used to heat the homes (BRE 2011, p. 4-5). The method is disputed, in particular 
for very low- and low-energy homes and it may be claimed that more knowledge is needed on the 
influence of certain factors on the eventual SAP score. One of those factors is location (AECB 2008), 
which has an important place in the research conducted here. Location is not monitored through 
SAP (BRE 2011).  
 
Figure 2.1: SAP ratings in Great Britain in the average house 

 
Source: Department of Energy and Climate Change 2011b, p. 31 
 
An alternative for measuring SAP scores is National Home Energy Rating (NHER) bands. It came into 
existence before SAP and measures all energy in the home including cooking and electrical 
appliances. Unlike SAP it also takes into account location and its climate conditions and the number 
of occupants of a dwelling. NHER uses a score of 0 to 20 where 20 is the highest possible score 
where no CO2 is emitted and no running costs exist. Like SAP, human behavior is not taken into 
account (SHCS 2012, p. 6 & Nesltd 2010). 
 
A difficulty in assessing the suitability of an assessment procedure is to unite applicability and 
accuracy. Both the degree to which the assessment method is universally applicable as well and the 
accuracy should be as high as possible. However the more accurate, the more complicated the 
assessment becomes and that again results in disinterest among home-owners or consumers to 
adopt or understand the standards (Visscher and Mlecnik, 2009). It could be argued that both SAP 
and NHER may both be poor providers of information for individual consumers. Stein & Meier (2000) 
found that home energy ratings are often a poor indicator for individual actual energy bills. Even 
though on average the energy ratings tend to coincide with eventual use, the results widely vary for 
individual households. This was true especially for old buildings. 
 
2.3 Measuring energy use by smart meters 
 
The measuring of energy use has been facilitated in recent years due to technological 
advancements. An important change has occurred due to the introduction of smart meters. Smart 
meters send data on the use of electricity from a household to the electricity company. Those data 
may be sent on a regular basis, so that energy use can be monitored throughout the day.  Smart 
meters may include the total use of electricity, the amount of energy used for warmth, additional 
features such as humidity and temperature.  
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The new improvements in monitoring energy use can improve the monitoring of different factors 
that relate to domestic energy use. Monitoring climate change and energy use, as well as the 
effectiveness of policies and energy efficiency measures, has, at least until very recently, proven to 
be difficult due to lack of reliable data (Energy Efficiency Action Plan for Scotland 2009, p. 29-35). 
Smart meters allow checking on energy consumption at the individual household level, as opposed 
to current monitoring techniques that often register sector-wide consumption (Energy Efficiency 
Acton Plan 2009, p. 39-40). The monitoring counts not only for the energy providers but also for the 
consumers, so that introduction of a smart meter may by itself encourage consumers to consume 
less energy at certain points in time (Rijksoverheid 2012, Roberts 2008, p. 4486). Smart meters and 
other energy monitors generally do not have a thermometer even though those meters do exist. 
Their usefulness however, is largely still unknown. The James Hutton Institute in Scotland has 
provided temperature data from smart meters for the research conducted here and is interested in 
the question of how the data can be used. This research can be viewed as an addition to the North 
East Scotland Energy Monitoring Project (NESEMP) research conducted by Craig et al. (2014), a 
longitudinal study of household energy consumption patterns. The NESEMP study uses the same 
smart meter dataset but not the thermometer reports that were provided by it, while this research 
does. 
 
2.4 Income and warmth use 
 
On average, house size increases with income. Also, higher income implies the ability to spend more 
on energy. This explains partially why higher income households spend more money on fuel, light 
and power. Nonetheless the richest 10% of British citizens spend less money on these things as a 
percentage of their income than the poorest 10%. Poorer people tend to live in less insulated houses 
and simultaneously have less means to improve the condition of their homes. Conversely, richer 
households have fewer incentives to be energy-efficient since the energy bill is already a smaller 
proportion of their income. The explanations to why there exists a large difference in consumption 
of fuel and electricity however, are crude and knowledge on the subject is limited (Department of 
Energy and Climate Change 2011b, p. 23). Unsurprisingly, although paradoxical when considering the 
aim to reduce fuel poverty through cheaper energy provision, energy use has historically tended to 
increase when prices went down and particularly when income levels went up (Fouquet 2008, p. 
276-277). 
 
Figure 2.2: average UK weekly expenditure on fuel, light and power according to household income 

 
Source: Department of Energy and Climate Change 2011b, p. 23 
 
Average household costs of energy use can give a distorted image of the actual situation. While most 
consumers consume below average energy use, a small number use very large amounts of energy. 
Hence benefits of thermal efficiency increases cannot be found by comparing with the average 
amount of energy use (Harvey 2006, p. 29). The above figure suggests the discrepancies between 
different groups. However it still does not show how the energy use is distributed among the income 
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brackets themselves, and among the richest groups there may be households very far above the 
numbers we see in the graph. Similarly, among the poorest households in the UK there may be a 
number of households that use far more energy than what the above graph indicates. 
 
2.5 Transportation 
 
Transport, households and industry are the categories where most energy is consumed (31.7%, 
26.7% and 25.3% respectively) within the EU as a whole (EC Eurostat 2012). In addition to energy 
being one of the primary causes of pollution, energy use is also one of the primary expenses for the 
household. In the UK, transportation and housing, fuel and power are the categories where 
expenses are highest. Transportation is commonly not taken into account when measuring fuel 
poverty. It nevertheless is the most important expenditure of average UK households (figure 2.3). 
Although transportation is a relevant topic for poor households, it should be noted that high-income 
households spend more time traveling than low-income households (figure 2.4) 
 
Figure 2.3: Average weekly household expenditure on main commodities and services, 2010, UK. 
 Note: 2/3rds of the costs of transportation are spent on running costs. 

 
Source: Office of National Statistics 2011, p. 1 
 
Figure 2.4: Yearly driven kilometers by car (driver and passenger) per income level in 2012 

 
Source: Department for transport 2013, table NTS 0705 
 
 
Transportation issues of rural environments in the UK have attracted attention from geographers 
due to low levels of public transportation, and the danger of hardship and isolation when private 
transport is lacking, with the effect that people can become more vulnerable to isolation and 
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deprivation. Car ownership in rural areas in the UK is not necessarily a result of wealth as it is a 
necessary condition for living. Poverty, old age and disability are assumed to be the only reasons in 
rural areas not to have a car. Significant transportation problems can still occur when single car 
ownership occurs (Nutley 1996, p. 93-94).  This in turn may explain why car ownership tends to 
increase as remoteness increases (figure 2.5) 
 
Figure 2.5: Car ownership by region (UK) 2010.  

 
Source: Department for Transport 2012  
 
Households in rural areas travel longer distances than households in urban areas. The average 
distance travelled in rural areas is 15,714 kilometers compared to 7,543 kilometers in London and 
8491 kilometers in metropolitan areas (Department for Transport 2013, table NTS 9904) when 
walking and cycling are included. When only counting travel by car, the differences become even 
vaster, while public transport use is higher in large cities than in other areas (figure 2.6). 
  
Figure 2.6: Average distance a person travels by mode and area in the UK, 2012 

 
Source: Department for transport 2013 
 
2.6 Remoteness and warmth use 
 
In Scotland, the largest group of households uses the main gas network to heat their homes. Of all 
homes detached from the gas network, the largest group (about 353,000) uses electric heating. 
Some 33,000 use wood or coal, 135,000 households use heating oil, 18,000 use LPG to heat the 
house. The latter two sources are generally more costly for households and prices are particularly 
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volatile for these sources of energy (Consumer Focus Scotland 2012, p. 4). Households with those 
energy sources are more often found in rural areas than in urban areas. Older houses, which are 
plentiful in many rural areas, are often poorly insulated due to the building materials used. Lack of 
knowledge among landlords on how to improve the insulation can also be a reason (Consumer Focus 
Scotland 2012) while insulation is generally the most effective way to tackle energy inefficiency (EST 
2013). 
Unsurprisingly there is a significant difference in the energy efficiency of rural and urban households 
(table 2.1). Scottish urban dwellings also tend to be more environment-friendly; they emit on 
average 5.0 tonnes CO2 whereas rural dwellings emit 8.4 tonnes (SHCS 2011a, p. 24).  
 
Table 2.1: Energy efficiency in rural and urban dwellings in Scotland (2009) 

Energy 
efficiency (%) 

Urban Rural 

Poor 1% 13% 

Moderate 37% 61% 

Good 61% 27% 

Source: SHCS 2009 
 
2.7 Fuel poverty and vulnerability 
 
Fuel poverty is the situation where the household is unable to heat the home at reasonable costs, 
with the usual criterion that 10% of household income is spent on heating the home (Department of 
Energy and Climate Change 2012a, p. 3, Energy Efficiency Action plan for Scotland 2009, p. 31). 
However, different definitions of fuel poverty exist (Department of energy and climate change 
2012a, p. 3). Fuel poverty has not gone down during the Scottish House Condition Survey from 2002 
to 2011 (figure 2.7).  
Fuel poverty is significantly higher in rural areas as opposed to urban areas (Consumer Focus 
Scotland 2012) and fuel poverty is significantly lower among households in the three largest cities in 
Scotland than the rest of the country (SHCS 2011b, table 8.10). Affordable solutions and energy 
efficiency programs have until now mainly been focused on urban areas (Consumer Focus Scotland 
2012, p. 4).  
 
Figure 2.7: energy poverty in Scotland, 2002 to 2011 

 
Source: SHCS 2011a, p. 26 
 
The fluctuations in fuel poverty can partially be attributed to energy prices. Other reasons include 
fluctuations in household incomes and fuel efficiency (SHCS 2011a, p. 26-27). With regards to fuel 
efficiency, the decrease in fuel poverty since 2009 may partially be attributed to the Community 
Energy Savings Programme (CESP), which ran from 2009 to 2012.  
Through CESP, the UK government “*…+ required certain gas and electricity suppliers and certain 
electricity generators to deliver energy saving measures to domestic energy users in specified low 
income areas of Great Britain” (Ofgem 2013, p. 1). One of the reasons for that is that social housing 



15 
 

was targeted in particular, which tends to be more located in urban areas than rural areas 
(Department of Energy and Climate Change 2011a, p. 20). Electricity companies have so far shown 
no interest in tackling specific geographical areas (Department of Energy and Climate Change 2011a, 
p. 7), but cost-effective solutions may be more easily found in urban areas, where economies of 
scale are more easily achieved (Consumer Focus Scotland 2012, p. 4). This gives an incentive for 
companies to prioritize insulation measures in urban areas above rural areas. Houses that were 
targeted in the CESP program fell inside geographically specified areas. These areas were chosen 
based on income levels, and not on fuel poor households in particular. Although exact figures are 
lacking, this may be one of the reasons why the number of rural homes included in this program can 
be said to have been notoriously low, since fuel poor households are predominantly located in rural 
areas. It has also been noted that the measured income level, which is based on the (Scottish) 
multiple deprivation index ((S)MDI), is a poor way of measuring the real degree of poverty in rural 
areas since the index is based on poverty in clustered areas (De Lima 2008). Currently CESP has been 
replaced by the Home Energy Efficiency Programme for Scotland (HEEPS), in which geographical 
targeting is achieved through area-based schemes (ABS). Funds are allocated by the following 
criteria (HEEPS:ABS 2013):  
- 20% for national fuel poor households within a local authority area;  
- 30% for total local authority area population which is fuel poor;  
- 30% for national share of dwellings which have solid walls; and  
- 20% for national share of dwellings with hard-to-treat cavity walls. 
 
While the Area-based Schemes may be more effective than the CEPS programme to tackle fuel 
poverty in rural areas, it should also be noted that merely improving energy efficiency may change 
behavioural patterns in energy use while not alleviating energy expenditure as a percentage of 
income. Increased energy efficiency is known to cause so-called ‘rebound effects’, so that it 
increases the incentive to utilize the saved energy, which in turn does not result in lower energy 
expenditure. Fouquet (2008, p. 365-366) argues that when consumer prices go down, consumers 
react and spend more fuel, while when the prices rise, politicians are expected to take action. 
 
While some households may be fuel poor particularly because their houses are insulated badly, 
others may be fuel poor rather because their income is low. Thus for monitoring fuel poverty and 
CO2 emissions on the one hand, and on the other hand for energy efficiency measures to be 
effective, this means that specifically the individual houses where energy efficiency is low should be 
targeted rather than merely the criterion that a household is fuel poor. 
 
Energy use varies by gender, age and culture (Lück 2012, p. 6). Employment status and household 
size and composition may also matter (figure 2.8). Rural dwelling’s energy sources differ significantly 
from dwellings in urban areas (Craig et al. 2014), but due to fluctuating energy prices it is not 
possible to state that this difference inherently results in a difference in expenditure on warmth. 
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Figure 2.8: Effect on the odds of being fuel poor in England (note: not UK as a whole, so Scotland is 
not included).  

 
Source: Department of Energy and Climate Change (2013b, p. 18) 
 
Unemployment, retirement and old age are factors that diminish the possibilities for residents to 
increase their income in order to become less (fuel) poor. Given that fuel poverty is higher in remote 
areas while thermal efficiency is lower, resident’s risks of being fuel poor in these areas increases 
even further. With the exception of moving (if at all possible and effective), vulnerability to remain in 
fuel poor conditions can be extremely difficult if not impossible. Vulnerability is researched by 
measuring the factors that contribute to these conditions; these factors include income deprivation, 
retirement and old age and unemployment. 
 
2.8 Measuring remoteness 
 
The Oxford English Dictionary describes the phrase ‘remote’ as follows: “1. (of a place) situated far 
from the main centers of population; distant” (Oxford Dictionary 2014). From the earlier chapters it 
can be concluded remote areas have often higher heating costs and that simultaneously, tackling 
fuel poverty through energy efficiency appears to be most difficult in remote areas. However, it is 
difficult to say to what degree the two variables coincide. The distinction between rural and urban is 
not always clear and a variety of ways exists to measure the remoteness of an area.  
 
Services and goods can be said to be accessible to the degree to which one has access to the service 
according to income and in the degree that the service or good is accessible through transport. 
Therefore it may be argued that before accessibility to a service or good (for instance, health care or 
insulation) is raised financially, access for groups of people may more effectively be raised by 
increasing geographical access. Dunne et al. (2001, p. 7) argue that “[…] interventions to deal with 
remoteness should first identify geographically remote areas, then target interventions to the most 
appropriate and disadvantaged groups within those areas (i.e. adopt a two-stage approach)”. 
Although this is not the way that additional (public) services are commonly established, it does give a 
foundation for bringing in the geography of availability before the identification of the group that 
needs the service.  
 
In Australia, a classification scheme has been used for evaluating access to services where data 
collection districts (e.g. census districts) are grouped into zones of access to service centers. Access is 
measured in terms of travel distance by road, and the presence of a service is estimated at the hand 
of population clusters. An index is made at the hand of the access to a service center of a particular 
size and the estimated distance to that service center (Dunne et al. 2001). Since remoteness can be 
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regarded as the opposite of access, methods of accessibility measures may as well be used for 
remoteness measures. 
The Scottish government uses four kinds of ways to measure remoteness, a 2-fold, 3-fold, 6- fold and 
8-fold classification scheme (table 2.2). 
 
Table 2.2: Scottish classification of rural and urban settlements (Higher numbers indicate higher 
remoteness). 

Population Drive time to settlement of 
10.000 inhabitants or more 

Category Classification (lowest number is most 
accessible) 

   8-fold 
scheme 

6-fold 
scheme 

3-fold 
scheme  

2-fold 
scheme 

> 125.000  Large urban 
area 

1 1   

> 10.000 < 
125.000 

 Other urban 
area 

2 2   

> 3.000 < 
10.000  

< 30 minutes Accessible 
small town 

3 3   

> 3.000 < 
10.000  

> 30 minutes Remote small 
town 

4 4   

> 3.000 < 
10.000  

> 60 minutes Very remote 
small town 

5    

< 3.000 < 30 minutes Accessible 
rural 

6 5 2  

< 3.000 > 30 minutes Remote rural 7 6 3  

< 3.000 > 60 minutes Very remote 
rural 

8    

> 3.000  Urban    1 1 

< 3.000  Rural    2 

Source: Scottish Government (2013) 
 
A crucial difference between the Australian and the Scottish measurement scheme is that in the 
former, more categories of remoteness exist, and the distance to population centers is taken into 
account. In the Scottish scheme, the remoteness is related to the distance to one other area. For the 
Australian scheme however, the distance to all population centers matters. So both the distance to a 
nearby small town and the distance to a larger town or city may matter.  
 
The different schemes, it can be argued, all have their advantages and disadvantages. Drive times 
over the road network as a proxy for accessibility to population centers is advantageous because it 
offers a more realistic view of accessibility than the distance in a horizontal line. The disadvantage is 
that none of the existing schemes use accessibility of transport (private or public) and gasoline prices 
are not taken into account. However, accessibility to a service changes when transport costs change, 
due to fluctuating gas prices for instance, or tickets for public transport. Also, it cannot be assumed 
that everybody owns a car so accessibility may change dramatically when car ownership is taken into 
account. 
Taking away proximity to population centers as a whole however, creates new problems. It may be 
argued that the advantage of solely looking at the population size of an area is that it is transparent 
and easy to use since the size of the population is most accurately measured within the census 
district. However, the large disadvantage is that it does not take into account the proximity to other 
larger districts and services. So a sparsely populated district near a metropolitan area may be 
regarded as ‘remote’ as a district with the same sparsely distributed population near even more 
sparsely populated areas, which gives a distorted view of the true accessibility.  
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In conclusion, various means of measuring remoteness can be identified; 

- As the population density of the area 
- As the distance to defined population clusters 
- As the distance to a service 

  
2.9 Climate, housing and their impacts on warmth use  
 
It has been mentioned previously that energy use varies widely across consumers. One of the 
reasons for this is the energy efficiency of the house. The thermal efficiency, which overall has the 
most influence on the energy efficiency, depends on the degree to which heat is influenced by the 
weather outside. Heat loss depends on the temperature difference between the inside and outside 
temperature (a linear relationship exists, where the larger the difference, the quicker the rate of 
exchange; i.e. the more heat has to be added or decreased to maintain the same temperature) as 
well as the rate of air exchange, which is influenced by the dwelling properties (Harvey 2006, p. 38). 
Additionally, humidity appears to impact energy use, even though the effects on warmth demand 
are often unclear. Humidity affects the temperature due to conductivity of air. Higher humidity 
results in higher conductivity, resulting in higher drop of inside temperature when outside 
temperature is lower than inside (Lück 2012). While indoor temperature appears to have a strong 
effect on heat consumption, it is dubious that changes in humidity alone would lead to significant 
changes in heat consumption (Lück 2012, p. 5), rather the increase can be attributed to larger 
conductivity of cold air when the air is humid. It is also known historically that wetter periods drove 
up the demand for heating resources. There is reason to believe that wind also has a real effect on 
the demand for energy but the historical effect this has had, remains unclear (Fouquet, 2008, p. 69-
70).  
 
Costs and savings involved when improving the thermal efficiency of the dwelling is highly 
dependent on the house type (Bell & Lowe 2000, p. 276). Among the most important factors 
influencing thermal efficiency of the building are the following (Harvey 2006, p. 36):  

- Insulation levels in the walls, ceiling and basement,  
- Resistance to moisture migration, 
- Thermal and optical properties of windows and doors, 
- Rate of exchange of inside air with outside air through infiltration and exfiltration 
- Presence of shared walls with other buildings. 

 
Heat loss can be reduced by added materials that are used upon the loft or walls (insulation). 
Simultaneously, air is a poor conductor of heat. This is why double glazing increases thermal 
efficiency and why most post-war buildings have a cavity between the bricks of the inner and outer 
wall (so-called cavity walls). Energy efficiency of houses is often achieved through retrofitting, adding 
insulation such as double-glazing, cavity wall insulation (CWI) and loft insulation. However, there are 
limits to the possibility to increase efficiency. CWI is not effective in very wet climates (Harvey 2006). 
Also, even if possible, insulation is not always economically feasible. Certain homes can be 
particularly hard to treat. The lack of gas supply or loft space and high-rise blocks may often be 
classified as being hard-to-treat, making insulation not an economically feasible option. The same 
counts for Non-cavity wall buildings (Roberts 2008, p. 4483). When these factors are found in 
particular geographies, this will have an impact on expenses and CO2 emissions on warmth. A 
previous study within the same study area (Craig et al. 2014) found that the heating type used for 
urban dwellings emits significantly less CO2 than heating types for rural dwellings. 
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2.10 Behavioral aspects to warmth use 
 
The effect of weather conditions and thermal efficiency on warmth use has been treated in the 
previous chapter. These aspects only tell half the story about warmth use. Sonderegger (1978, p. 
323) found that 46% of differences in house warmth consumption could be attributed to behavior. 
The research concluded that models for predicting the heat demand should not be pushed too much 
in a deterministic fashion and the effect of retrofitting should be tested on many dwellings and 
people. As has become clear from previous chapters, thermal efficiency has increased over the 
years.  
 

As the influence of the dwelling properties on warmth use diminishes through increased thermal 
efficiency, the influence of the behavioral patterns rises if those patterns remain unchanged. On 
behalf of behavioral patterns influencing warmth use, they do so through both cognition (attitude, 
expectations, preferences) and through habits or culture (de Dear 1997, p. 4). A research conducted 
by de Dear et al. (1997) showed that the optimal perceived temperature inside depended on the 
weather outside. As a result of adaptability, the average temperature inside the home tends to be 
colder in winter than in summer, but the degree to which it changes is a slower change than the 
changes in outdoor temperature. Comfort temperature depends aside from outside temperature on 
clothing and seating and air speed. When these cannot be observed, de Dear et al. (1997, p. 161) 
estimated that generally 22.6 degrees inside is desired by an outside temperature of 0 to most 
people. 90% of the people still feel comfortable when the inside temperature at that point is 1.2 
degrees warmer or colder while 80% still feel comfortable at 2 degrees warmer or colder (figure 2.9).  
 
Figure 2.9: adaptive comfort model according to de Dear et al. (1997) 

 
Source (data): de Dear et al. 2007, p. 162-164. 
 
Adaptive Comfort Theory tells us that people adapt (physiological, psychological or behavioral 
adjustment) due to outside weather conditions that modify their perception of thermal comfort. 
The hypothesis from de Dear is that "The adaptive hypothesis indicates that one’s satisfaction with 
an indoor climate is achieved by a correct matching between the actual thermal environmental 
conditions prevailing at that point in time and space, and one’s thermal expectations of what the 
indoor climate should be like." (de Dear 1997, p. 6-7). 
 
De Dear’s model of thermal comfort was originally intended to be applied to office buildings’ HVAC 
(heat, ventilation and air-conditioning) systems. Research has shown that the model can also be 
applied to buildings of all types across all populations (Lück 2012, p. 3). Yet it has also been 
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suggested that the model varies per place and culture. Singh (2011) and Toe & Kubota (2013) for 
instance found that people respond differently due to different climates. Their differences in 
clothing and expected warmth made them respond differently to what they perceived to be the 
most desirable temperature inside the home. One research found that the average monthly 
expected comfort of free-running buildings can be predicted by taking the average outside 
temperature to predict average inside temperature. 
DeDear notes that adaptive ability in the office can have many constrains due to the following issues 
(deDear 1997, p.9):  

- Climate; which has implications for the buildings built hence implications for ability 
to adjust (e.g. ventilation) 
- Economic; not able to afford a warmer home 

- Customs and regulation (energy policy, clothing in office) 
- Task or occupation (influencing the clothes worn) 
- Design of the HVAC system; ability to adjust awnings, windows, etc. 

 
Office and residential buildings can differ strongly. This has implications for the clothes worn and the 
ability to control the heat in the home (e.g. centralized or decentralized; thermostat or not; 
automated or not automated). The factors task and occupation may therefore not be relevant for 
house warmth use. However it should be stressed that customs are; we see that habits and cultures 
influence clothing and thereby warmth use. 
 
The differences in preference are even further backed by the fact that perceptions seem to have 
changed vastly throughout the years. In early 19thcentury Britain it had been stated that 15 °C was 
the most desirable temperature, while it has also been stated at the half of the century that it would 
be 18 degrees. By the end of the 20thcentury, British buildings tended to be heated to 23 °C (Fouquet 
2008, p. 81). 
 
2.11 Conceptual Model 
  
The conceptual model shows how location data can explain (to an extent) the warmth use factors of 
the area and its implications on CO2 emissions, expenditure, vulnerability and fuel poverty (figure 
2.9). Among other things, warmth use and energy use are influenced by location; due to climate and 
due to geographical characteristics in the area.  
Climate factors are location dependent and interfere. This has to be taken into account for 
understanding the relationship between inside and outside temperatures at a specific location at a 
point in time. Although wind and humidity are important factors in analyzing inside temperatures, 
these are not taken into account since it would highly increase the scope of this research which was 
deemed too large for an MSc thesis. 
Warmth use is also influenced by the geographical characteristics of the area. Regarding warmth 
use, an important geographical characteristic is the remoteness of the area as it is a known factor to 
influence warmth use and costs. The amount of warmth required tends to be higher in remote 
areas, typically due to its dwelling properties. The costs differ due to different availability of energy 
for warmth use. In addition, overall energy demand per capita tends to be higher in remote areas 
due to higher demand in fuel. Outside and inside temperatures are used to estimate the amount of 
warmth that was used. Their warmth use may additionally be explained by their dwelling properties 
(figure 2.9). 
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The extent to which these influences are visible however, will depend on the measures of 
remoteness used. Remoteness is measured in terms of population density and estimated 
accessibility to services. In another sense, more remote areas can be said to be less accessible. 
Consequently they make areas where vulnerable people live, more vulnerable due to the lack of 
accessible essential services.  Drive times can be expected to shrink with more accessibility to 
services. 
 
The total of transport expenses and energy required for heating add up to the final CO2 emissions 
and expenditure on fuel in general. 
Energy for house warmth varies per location. The total fuel expenses together with income levels 
add up to a degree of fuel poverty. Fuel poverty is an estimate of the area here since income data 
are known by location but not by individual household. 
Fuel poverty influences areas of vulnerability. In areas where fuel poverty is estimated to be high, 
people are more likely to cut their energy consumption, decreasing their abilities for transportation 
and heating the home. Elderly and disabled people are particularly vulnerable in these situations. 
The danger of isolation or lack of required help decreases with the amount of services that are 
available. Available services are estimated at the hand of zones of relative access, as was done in the 
research conducted by Dunne et al. (2001) in Australia. More remote areas tend to have fewer 
services available. In turn, areas are often perceived as being more remote precisely due to their 
limited amount of services. 
 
The conceptual model shows no direct relation between remoteness and required energy for 
heating; only an assumed relation between remoteness to dwelling properties to required energy 
for heating. The relation between dwelling properties and energy use cannot be tested due to the 
lack of data on the dwelling properties of the houses that were measured. However the warmth use 
and thermal efficiency are tested and compared per remoteness of the area.   
The relation between various measures of remoteness and energy required for heating are 
measured directly; i.e. without taking into account the dwelling properties in advance. In reality 
however the relation is assumed to exist due to differences in dwelling properties, which differ per 
degree of remoteness. Differences in behaviour and demand for thermal comfort may also exist per 
degree of remoteness but no evidence exists to suggest this. The relation between remoteness and 
thermal comfort is tested but its relation cannot be assumed and was therefore not included in the 
conceptual model. 
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Figure 2.9: Conceptual model 

 
 
Pentagons indicate the final results of the research. Oval figures indicate the factors analyzed to get 
to final results. 
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3. Goals and objectives 

 
3.1 Research goals 
 
There are concerns about high energy consumption for heating purposes, thereby increasing costs 
and CO2 emissions. Measures are taken to deal with these developments, but those measures are 
location-dependent. Rural areas in Scotland have suffered relative neglect of attention in spite of the 
significance of the problems that occur in those areas. The main research goal is stated as follows: 
To develop a method to measure domestic warmth use from inside temperature data and to find 
how various degrees of remoteness influence energy use for households and to analyze the 
implications on CO2 emissions, fuel poverty and vulnerability of households. 
 
The relevance of increased understanding of what smart meters can provide as useful information, 
has been addressed in the topic ‘measuring energy use by smart meters’. The first objective is 
related to that topic: 

1. To find what useful information can be derived from temperature data provided by 
 smart energy monitors. 

Useful information refers to information that would remain unknown without the information 
provided by the temperature monitor. Tested are the factors that relate to the eventual warmth use 
of the dwelling. These “warmth use factors” include:  

- Activity of the heater 
- Thermal efficiency of the dwelling 
- Total warmth use 

Thermal comfort levels may also be regarded as a warmth use factor, but in this research warmth 
use factors refer to the above three factors unless mentioned otherwise. 
 
Analyzing locational attributes and their spatial relations can be done using Geographic Information 
Systems (GIS). GIS has been used in previous researches for monitoring energy use, but the influence 
of remoteness on domestic heat loss is largely unknown. A method needs to be developed to find 
how locational attributes are related to remoteness and to domestic heat loss. The second 
objectives are: 
 
2a.  To develop a GIS-based methodology for finding correlations of remoteness on   
 domestic heat loss and fuel consumption. 
2b.  To find how different measures of remoteness (distance to services, classification  
 schemes, population per km2) influence the relation between remoteness and domestic  
 heat loss and fuel consumption. 
 
Completing objective 1 and 2 will allow mapping the locations of dwellings where high levels of heat 
loss occur and where drive times are long. This information can be combined with information 
known about the areas, such as insulation levels, weather conditions and drive times. In addition, 
those location-specific attributes relate to a large extent to remoteness. Finding out the relations 
between remoteness, location-specific characteristics and energy consumption, allows for fulfilling 
the third objective: 
3.  To find what location-specific characteristics of an area have a visible impact on   
 warmth use factors. 
 
In addition to the information acquired by fulfilling the third objective, demographic information 
about the areas can reveal how energy consumption impacts particular demographic groups such as 
elderly and low-income households. Demographics vary per location. A relation exists between 
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location, energy use and its influence on demographics. Mapping the remoteness, location-specific 
characteristics, energy use and demographics allows for achieving the fourth objective: 
4.  To show whether areas with high fuel poverty and existence of vulnerable households tend 
 to coincide with high energy use. 
 
As a consequence of the above stated research goals, the information can be brought together, 
showing where energy use on the one hand and fuel poverty, vulnerability and CO2 emissions on the 
other hand are relatively high. When these factors are tied to different degrees of remoteness, the 
maps may explain why heat consumption is high or low in that area, and what its consequences may 
be. The results may help anticipate where a certain degree of warmth is demanded, based on 
geographical data on dwelling types and demography combined with thermometer data connected 
to a smart meter. These insights can make smart grids work more effectively and efficiently in 
supplying the amount of energy desired. They also can give an indication where more energy can 
possibly be saved through insulation levels by showing where excessive heat loss is signaled. 
 
3.2 Hypotheses 
 
H 1: Warmth use factors increase as remoteness increases.  

The warmth use factors include thermal efficiency, heater activity and total warmth use  
 
H 2: More remote areas tend to have higher warmth use, even when using various measures of 
remoteness. 
 
H 3: A higher degree of remoteness results in a higher degree of;  
CO2 emissions due to:  

- Required energy for heating 
- Higher fuel consumption for transportation 
- Energy sources 

 
H 4: A higher degree of remoteness results in a higher degree of;  
Expenditure in terms of money due to:  

- Required energy for heating 
- Higher fuel consumption for transportation 
- Energy sources 

 
H 5: A higher degree of remoteness results in a higher degree of;  
Fuel poverty due to:  

- Household income levels 
- Higher heating costs 
- Higher fuel costs 

 
H 6: A higher degree of remoteness results in a higher degree of;  
Vulnerability due to:  

- Higher fuel poverty 
- Demography in rural areas (age, disability) 
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4. Method  
 
4.1 Data preparation 
 
Dwelling location estimation 
 
A total of 369 dwellings are measured. Geographical data other than locations of dwellings are given 
on Middle Super Output Area (MSOA), data zone 2001 and data zone 2011 levels. The location of the 
dwellings is known at approximate levels. Each given location is somewhere in an area of 1 km2 of 
the given location (figure 4.1), so a squared area is made of 500 meters left, right, up and down 
around the given point. Since weather conditions do not differ very significantly over a square 
kilometer, the influence of any inaccuracies in the provided dwelling locations should be negligible. 
However, the approximation has significant influence over the demographic and energy use 
statistics assigned to them since those figures are registered by geographic areas, and 1 km2 may fall 
within several geographic areas.  
 
It is known that rural dwellings tend to consume more heat warmth urban dwellings do, among 
other factors due to dwelling conditions. To what extent these conditions vary in the study area can 
be determined with the information available on dwellings’ location and the attribute data of the 
geographical areas these belong to. For increased reliability of the attribute data assigned to the 
dwellings, estimated dwelling locations are relocated in order to retrieve the data from the district 
the dwellings are most likely to be located in. The dwellings are not relocated for transportation 
data; here a network analysis is conducted where the points are snapped to the most approximate 
road in the road network from their original locations. Since the true location of the dwelling 
remains unknown and the influence of 1 km is very little when travelling by road, any distortions 
should be low to negligible. For weather data it is of insignificant importance whether the estimated 
location of the dwelling is off by one kilometer. 
 
Demographic and energy consumption characteristics for individual dwellings are unknown. 
Demographic characteristics are known on 2001 data zone levels (census districts) and energy 
consumption levels on 2011 data zone levels. The procedure of estimating the characteristics of the 
dwellings is done as follows. First, the characteristics of demographics on the basis on location are 
determined (at the 2001 data zone level).  
Dwellings are assigned the characteristics of the data zone they are most likely to be contained in. In 
case the square within which the dwelling is contained is located entirely within one datazone, that 
dwelling is assigned the same attribute data that this data zone has. In case the square overlaps with 
more than one data zone, it is estimated that the dwelling is located in the datazone with the 
highest estimated population in the overlapping area. This is done as follows: 
First, the average population per hectare is calculated for each data zone.  
Second, an intersect operation is done on all data zones that overlap with the square kilometers 
belonging to the dwellings. 
Third, the size of each of these intersected areas is calculated and multiplied with the average 
population.  
Since it is most likely that the dwelling is located in the area where most people live, the dwelling is 
assigned the attribute data belonging to that area. The dwelling’s original point on the map is also 
relocated to the middle of the intersected part of that data zone (Figure 4.1). 
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Figure 4.1: Map of original dwelling locations provided and their relocation based on estimated 
population within its 1km² vicinity. Area of Aberdeen. 

 
The grey areas are datazones, containing 
attributes that are assigned to the dwellings, 
such as type of housing and demographics.  
The attributes of the data zone that the dwelling 
is most likely to be located in, are assigned to 
that dwelling. 
 
The most likely location of a dwelling is within 
the dark brown areas or ‘intersected data 
zones’; these parts have the highest estimated 
population contained within the dwellings’ 
square kilometer (light brown). 
 
The dwelling locations are relocated from their 
initial approximate position (red) towards the 
middle of the intersected data zones (green) as 
an estimate for their most likely position. 
 
 
 
 
 
 
 

 
As approximate locations have been estimated, the dwellings are assigned attribute data according 
to attributes in that data zone. These include among other things drive distances to services, 
dwelling properties, energy use and demographic factors.  
In addition to assigning attribute data, relocated dwellings are used to estimate the dwelling’s 
distances to settlements over 125.000 inhabitants (cities), more than 10.000 inhabitants (towns), 
and more than 3000 inhabitants (villages) over the road network. The results of three network 
analyses (location-allocation towards villages, towns and cities) are merged together so that one 
dataset shows for each dwelling the nearest village, town and city over the road network (source 
data: remoteness). 
A second dataset for transportation is created by analyzing the closest route from a dwelling to any 
settlement. The settlements closest to each dwelling are regarded as the settlement the dwellings 
belong to. Then, dwellings are divided into categories larger than 25.000 (large urban), larger than 
10.000 (medium urban), larger than 3.000 (small urban) and less than 3.000 (rural) (source data: 
transportation). 
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Remoteness indices 
 
Remoteness is not easily defined and levels of remoteness may strongly depend on their criteria. The 
Scottish government uses a variety of levels of remoteness, based on distance to population centers 
of 3000 inhabitants 10.000 and 125.000 inhabitants. Four types of remoteness indices are used: 
 

 The existing 2-fold, 3-fold, 6-fold and 8-fold classification schemes (Scottish Government 
2012b) (ordinal variables). 

A vector layer is provided containing the classifications. With a spatial join with the estimated 
dwelling point locations as target features and the vector map as join feature, the classifications are 
added to the dwellings’ attribute table. As a result, each dwelling has the remoteness index in 
accordance with the existing classification schemes (Appendix I figure 1-3). 
 

 Distance to services (interval variable). 
A variety of average driving distances to services per municipality are provided by Scottish 
Neighbourhood Statistics (SNS 2013). The drive times to services are joined together and divided by 
the number of distance to service indicators. Then the distances are added to the attribute table of 
the dwellings, in accordance with the datazone that they are expected to belong to (Appendix I 
figure 4). 
 

 Drive times towards population centers based on a standardized score (interval variable). 
A standardized score is given to each dwelling according to its estimated location. Through a 
standardized score, the distance to a city, town or village of one location is given in its relation to all 
other location distances involved in this research. A network analysis can give for all locations 
combined the average distance (μ) to a city, town and village and the standard deviation σ from 
these population centers. The dwelling’s distance value x is then used to find the Z value by the 
equation Z = (x- μ)/σ (Appendix I figure 5). The road network data were taken from Ordnance Survey 
(2013). 
 

 Population density (interval variable). 
The population density of the data zone is provided by the Scottish Neighbouthood Statistics (2013).  
 
As the dwellings are assigned the different indices of remoteness, the indices are subsequently 
compared in order to establish the reciprocity between them. Remoteness indices that have 
relatively high reciprocity with other indices may be regarded as more steadily indicating the 
remoteness. If stronger correlations occur for remoteness indices with more steady remoteness 
indicators, this would show that for measuring warmth use indicators, the ambiguous term 
‘remoteness’ can be measured in a way that is most coherent with existing remoteness indices as 
well as being a useful index in evaluating and possibly predicting warmth use indicators in different 
geographical areas. 
Spearman’s correlation is conducted on the reciprocity between the ordinal classifications schemes 
as assigned by the Scottish Government (2012b). Pearson’s correlation is conducted on all other 
indices, which are interval variables. 
 
4.2 Calculation of outside temperature 
 
The weather data are spatially interpolated. For wind data in England, cokriging by using elevation 
data as a multivariate have been proven to increase data accuracy when elevation and wind are 
correlated. Without the correlation, cokriging and kriging accuracy gives about similarly accurate 
results (Luo et al. p. 955, 2008). Hartkamp et al. (1999) conclude that splining and co-kriging for 
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temperature data are preferable to inverse distance weighting (IDW) while Collins & Bolstad (1996) 
conclude that co-kriging and kriging give better results than IDW, and IDW to splining.  
 
The semivariogram (figure 4.3) comparing weather station data with elevation (figure 4.4) shows 
that no correlations were found for elevation with outside temperatures in the area. Ordinary 
kriging therefore was used interpolating weather data. 
 
Figure 4.2: semivariogram of deviations of temperatures as influenced by height. 

  

 
Figure 4.3: Weather stations used for kriging 
 
Vector map    Elevation map 

 
 
Outside weather conditions are retrieved from the UK meteorological office (2013). The given time 
interval is 1 hour, and monthly temperature data of weather stations were used from January 2010 
to April 2013. An OutsideTimeID per month is added as a new field to the attribute table. The 
OutsideTimeID changes from t1 to t+1 for every hour.  
 
The kriging interpolation (spatial interpolation) results in a raster surface. The values of the raster 
surface are subsequently extracted to the points representing the approximate dwelling locations 
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(figure 1 appendix II). The process is iterated according to the amount of hours per month, resulting 
in a maximum number of 720 OutsideTimeIDs; this is the number of hours for months with 30 days. 
The last 24 hours for months with 31 days were not measured; this is not regarded as an issue. 
Measuring 24 hours more or not should not result in significantly different outcomes with the 
amount of data that was used (source data: InsTemp and OutsTemp according to TimeID). 
 
Since time intervals for inside temperature are provided at the 5 minute level, the OutsideTimeIDs 

and their temperature values are interpolated again to a 5 minute interval (this time temporal 

interpolation). Next, new TimeIDs are assigned through temporal interpolation, where TimeID is 1 at 

00:00 day 1 of the month and the TimeID 2 is assigned at 00:05 of the first day of the month. With 

the temporal resolution of a 5 minute interval it is possible at all times to measure whether the 

heater on or off. Lower temporal resolution may have resulted in underestimating the heater 

activity of some of the dwellings, especially when dwellings are relatively small, well-insulated or 

when the heater functions intensely. With the data provided it was not possible to know any of 

these factors so heater measuring heater activity was key and 5 minute intervals are considered to 

be no exaggeration. 

 
Temporal interpolation of TimeIDs at 5 minute level goes as follows: a date and time are provided at 
which a temperature is first measured (for instance: t1 = 1/1/11 0:00). This number can be 
converted into a floating point number (here: 40544.00000000). The next time interval t2 = 1/1/11 
00:05 is converted into floating point number 40544.00347222. The formula 1 + (t2+((t2-t1)*287)-t1) 
results in an increment of t1+1 per 5 minutes. 287 is the number of times 5 minutes pass in a day – 
1. Outside temperatures are assigned linearly to the interpolated TimeIDs. For inside temperatures, 
TimeIDs are already given on the 5 minute interval. As a result inside and outside TimeIDs tables can 
be joined and their temperature data compared (Appendix II, table 1).  
 
4.3 Transportation 
 
The available data on drive distances to services are not used in order to estimate transportation 
costs. This is because when being remote to access to a service, one may decide to visit the service 
less often than when close to it. An example is that one may do more groceries at one time when 
living at a long distance from a supermarket, and fewer groceries more frequently when living 
further away. The available data on access to services shows the drive distances but not the 
frequency with which these services are visited. Transportation figures are known at Local 
Administrative Unit–1 (LAU-1) levels (Department of Energy and Climate Change, 2014) in total 
amounts of fuel used per LAU-1 unit. The per capita fuel consumption in CO2 and £ are calculated 
combining the following datasets; 

 Population data (Scotland’s census 2011b, p.7). 

 Data on the amount of CO2 emitted per fuel amount and £ according to vehicle type 
(Schlömer et al. 2014, p. 1337). 

 Data on the amount of £ spent per vehicle type in the last quarter of 2012 (Department of 
Energy and Climate Change, 2012b, p. 57-58). No earlier data on fuel prices in the UK were 
found, otherwise the year 2011 would have been more applicable since analysis on warmth 
use factors starts in that year. 

 LAU-1 energy use (Department of Energy and Climate Change, 2014).  
 
 
The dwellings are regarded as using the amount of transportation according to the area type they 
are closest to. Factors of driven amounts are assigned to each dwelling according to their area type. 
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The factor is calculated by dividing the amount of kilometers driven per area type with the average 
amount of driven kilometers (table 4.1). 
  
Table 4.1: Amount driven yearly per area type in absolute and proportional numbers, UK as a whole.  

Area type of residence: Car / van 
driver (km) 

Factor 

London Boroughs 915.43 0.420221 

Metropolitan built-up areas 1543.06 0.70833 

Large urban (over 250k population) 1879.25 0.862655 

Medium urban (25k to 250k 
population) 

2121.79 0.973991 

Small / medium urban (10k to 25k 
population) 

2405.28 1.104125 

Small urban (3k to 10k population) 2822.51 1.295651 

Rural areas 3561.82 1.635026 

Average 2178.45 
 

 

Source: Department for Transport (2013), table NTS 9904 
 
After dwellings have been assigned a factor of driven amount of kilometers, they are assigned the 
average amount of fuel used in the LAU-1 area. Fuel use is divided into different types; buses, diesel, 
petrol and motorcycles are distinguished. Figures on freight transport were not taken into account; 
only figures on private transport were used. 
 
The amount of energy for transport is combined with figures indicating the amount of CO2 emitted 
and the average amount of costs made per kilometer according to Schlömer et al. (2014). It is 
assumed that buses are diesel (not hybrid diesel), both diesel and petrol cars are mid-size light duty 
vehicles and motorbikes fall within the same category. This is because no other data was provided in 
the study of Schlömer et al. (2014) in CO2 emissions of motorbikes except for up to 200cm3 cylinder 
types.  
 
4.4 Heater activity 
 
Thermal efficiency of a dwelling is measured by the speed with which the inside temperature 
decreases relative to the outside temperature. Inside temperatures are provided at a 5 minute 
intervals while outside temperatures have been estimated at a 5 minute intervals based on 
interpolated data from a variety of weather stations as explained in chapter 4.2. Thermal efficiency 
can be measured only when there is no interference of an active heater; hence the precondition is 
that the heater should be off. This can be established on the basis of the relation between inside and 
outside temperature. Based on heater activity and increase of the inside temperature relative to the 
outside temperature, warmth use can be measured. Warmth is used only when the heater is on. 
Higher temperature increases when the heater is on, indicate more intense heater activity and 
hence more warmth used. The warmth use factors are thus summarized as heater activity, thermal 
efficiency and warmth use. Measurement of both thermal efficiency and warmth use depend on the 
activity of the heater. Conditions for functioning of the heater are given in table 4.2. 
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Table 4.2 
 

* If increase inside > increase outside 
** Condition: If decrease inside < decrease outside 
 
Data are missing for inside temperatures below 10 degrees. When data were not recorded or 
temperatures were below 10 degrees is not clear. Therefore missing data are not taken into account 
in the analysis. A drawback is that this may give distorted images of warmth use since certain 
dwellings may long have their temperature off while this is not taken into account. However it may 
be argued that its occupants are unlikely to be at home at these inside temperatures. This means 
that warmth use factors of the dwelling were measured unless data was lacking or if it can be 
realistically assumed that occupants are not at home. 
 
No dwelling recording has its inside temperature measured for each 5 minutes each month. The 
amount of times the temperature was on is therefore recorded as a proportional measure; for 
instance where the heater was recorded to be off 20% of the time while recordings took place (i.e. 
while data is available) it is assumed this applies to the whole month. 
 
4.5 Thermal efficiency 
 
Thermal efficiency is defined as the degree to which warmth is conserved in the home. This is 
measured by the velocity of inside temperature change relative to outside temperature change 
when the heater is off. Thermal efficiency cannot be measured when the heater is on, since the 
velocity of inside temperature change will be distorted by the intensity of the heater, while the 
intensity of the heater is unknown. The relation between outside and inside temperature on thermal 
efficiency is measured as a linear equation; hence a decrease of one degree in dwelling A means two 
times more energy efficiency than a decrease of two degrees in dwelling B in case the outside 
temperature is equal both at dwelling A and B. Some time delay is to be expected for inside 
temperature to decrease to the outside temperature, so inside temperature at time t2 should be 
compared to outside temperature before that time (t1). 
 
In an environment with no insulation and perfect conductivity, the inside temperature at time t 
should be equal to outside temperature at time t. The less conductivity, the more time t is required 
before inside temperature reaches the equivalent of outside temperature. The temperature 
difference between the inside temperature at t1 vs. the outside temperature at t2 shows the inside 

Colder inside than outside Outside  
Increase Remains equal Decrease Inside  

Increase ON ON ON 

Remains equal OFF OFF OFF 

Decrease OFF OFF OFF 

Inside and outside equal 
Inside  
Increase 

Outside  
Increase Remains equal Decrease 

ON* ON ON 
Remains equal OFF OFF ON 

Decrease OFF OFF OFF 

Warmer inside than outside 
Inside  

Outside  
Increase 

  
Remains equal 

  
Decrease 

Increase ON ON ON 
Remains equal ON ON ON 
Decrease OFF OFF ON** 
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temperature decrease that is to be expected at t2 if perfect conductivity and no insulation would 
apply. Any degree to which this temperature decrease differs from the actual temperature decrease 
indicates the thermal efficiency (table 4.3). The intensity of the heater is unknown from the raw 
data, and therefore this method works only when the heater can be assumed to be off, so the 
intensity of the heater does not interfere with the inside temperature decline. The result for thermal 
efficiency of all dwellings is found in source data: InitialThermalEfficiency (raw data) and 
InitialThermalEfficiency\Output (summarized statistics per dwelling per month). 
 
Table 4.3: Example of how to measure the decay of inside temperature  

Inside Outside Time Temp. 
dif. 

Change 
ins. 

Thermal 
efficiency 

Loc. A      

20°C n.a. t1 12:00 n.a. n.a. n.a. 

19°C 15°C  t2 12:05 5 1 1/5=0.20 

18°C 13°C  t3 12:10 6 1 1/6=0.17 

Loc. B      

23°C n.a. t1 12:00 n.a. n.a. n.a. 

19°C 18°C  t2 12:05 5 4 5/4= 1.25 

19°C 19°C t3 12:10 0 0 n.a. 

Loc. C      

20°C n.a. t1 12:00 n.a. n.a. n.a. 

16°C 15°C  t2 12:05 5 1 1/5=0.20 

12°C 13°C t3 12:10 3 3 3/3=1 

 
It is possible for temperature to be higher outside than inside in summer, and thereby measuring 
thermal efficiency as well. However in that case there is still no guarantee that the heater is off; it 
may be turned on during the time that the outside temperature is higher than the inside 
temperature.  
Although it is possible that this scenario sometimes occurs, this is not very likely to often be the case. 
Considering the fact that there are usually > 1000 N TimeID instances per dwelling per month when 
the heater is off (the defined precondition for measuring thermal efficiency), there should be 
enough occurrences to adequately measure thermal efficiency only when outside temperature is 
below inside temperature. Taking into account the influence of high outside temperatures on 
relatively low inside temperatures would not add sufficiently to the data quality and these instances 
are therefore disregarded.  
 
4.6 Warmth use 
 
Determination of a warmth use indicator 
The monthly amount of warmth use is measured as the average amount of inside temperature 
increase when the heater is on. For example, a total of 400 degrees increase in 6000 time intervals 
amounts to 400 / 6000 = 0.15 degrees increase per time interval measured. The temperature 
increase during that hour is divided by the difference between the average inside temperature and 
average outside temperature during that hour. Measurement of whether the heater was on or off is 
measured according to the alternative method for measuring heater activity type II (see further in 
this chapter, chapter 4.7), and not according to the method of measuring heater activity as has been 
discussed earlier in chapter 4.4. 
 
Inside temperature is regularly not recorded, so to measure the total amount of temperature 
increase during that month, this figure has to be estimated for those times data were missing. The 
average amount of time the heater is on is measured by dividing the total amount of time the heater 
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was on with the total amount of records recorded, resulting in a number between 1 (heater is 
always on) and 0 (heater is always off). That number is multiplied by the total amount of possible 
time intervals when all records were recorded, which results in the total amount of temperature 
increase that is estimated to have taken place during that month. 8640 possible time intervals of 5 
minutes exist for the months of April, June, September and November. 8928 time intervals exist for 
the months of January and December. 
 
The method does not take into account the influence of outside temperatures on inside 
temperature increases. There is inevitable influence of outside temperature on inside temperature 
increase and thus on warmth use. The degree to which this is the case for each dwelling however, is 
unknown. The intervening factor of dwelling’s thermal efficiency influence on the warmth use 
further complicates the measurement of inside temperature increases when the heater is on.  
This comes down to the decision to take into account the intensity with which the heater operates 
solely on the basis of the amount of temperature increase over time but not controlling for 
simultaneous outside temperatures, whose influence on inside warmth increase is in its turn 
influenced by the dwelling’s thermal efficiency. The resulting amount of warmth use is found in 
source data: warmth use (raw data) and WarmthUse\WarmthUseOutput (summarized statistics per 
dwelling per month). 
 
Estimating the amount of CO2 emissions and expenditure in £ 
The amount of estimated warmth use results in an estimated amount of kWh. Resulting CO2 
emissions and expenditure depend on their energy use types. Energy use types are given at the data 
zone level (Scotland’s census 2011c). The dwellings measured are regarded as representing the 
estimated warmth use of that data zone, resulting in an estimated amount of CO2 emitted and £ 
expenditure per household per data zone. Although it cannot be assumed that single dwellings in 
the area represent the area’s warmth use, by using 359 dwellings it may be possible to find 
correlations of warmth use with properties known at the data zone level such as remoteness, fuel 
poverty, vulnerability or general dwelling properties. A chart of the method estimating CO2 
emissions and £ expenditure is found at the end of this chapter (figure 4.4) 
 
Typical British households used 16,500 kWh of gas in 2011 (ofgem 2011). The average increased 
inside temperature per dwelling per month was 1258.2 °C (the months of January 2011 and 
December 2010 are not taken into account due to the relatively low amount of dwellings monitored 
in these months). Based on these numbers the estimated amount of kWh per degree increase 
(16,500 / 12) / 1258.2 = 1.0928 kWh per degree increase.  
The researcher is aware that this method leads inevitably to at least three errors;  
Firstly, that gas use is not equal to warmth use; households may use gas for various reasons while 
other households may warm their houses with electricity. That means it needs to be assumed that 
households using electricity for heating use the same amount of warmth to heat their homes and 
moreover that where gas is used for heating, this provides a sufficient indicator of warmth use and 
total gas use for other purposes than heating has a limited effect on total gas consumption in the 
UK. 
Secondly, gas use, or warmth use in general, is not geographically equally distributed within the UK. 
As a result gas use or warmth use in general may be significantly higher or lower in the study area 
than the figure of 16,500 kWh used in this study due to a relatively large or small amount of 
presence of dwellings connected to the gas grid. 
Thirdly, regarding the aggregate number of degrees warmth added to the dwelling by the heater, 
this number is likely to be imprecise since not all numbers of the month were taken into account, 
thereby leading to a distortion. Nonetheless the months that are taken into account are from each 
season, thus limiting the distortion compared to using for example only winter months or summer 
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months where for the former, more and for the latter less warmth use is to be expected than when 
accounting for all seasons, or all months. 
 
As explained, the amount of kWh of total temperature increase per month has been estimated per 
dwelling. The amount of CO2 and £ spent on warmth use depends on their energy sources.  
For warmth use, monthly energy prices in £ worldwide are used from a meta-study (Schlömer et al. 
2014, p. 1332-1333). This meta-study provides minimum, maximum and median CO2 and $ 
expenditures; here the median CO2 emissions are assigned to warmth use data.  No data were found 
on domestic energy prices according to their types for the UK individually. CO2 emissions per energy 
source are provided by the same study.  
For solid fuels the statistics are used for CO2 and £ expenditure on dedicated biomass. Electricity 
could come from different types of energy sources and it is assumed that for electricity production 
the division of energy sources within the study area is equal to that as for Scotland as a whole. Data 
on the origins of energy production are derived from the Department of Energy and Climate Change 
(2012c, p.43). The division of electricity use is shown in table 4.4. The category of “other fuels” was 
not taken into account as the type of fuels this category is composed of, is unknown. Oil (making up 
0.74% of supply for electricity) is not taken into account because the study from Schlömer et al. 
(2014) does not provide data on $ expenditure and CO2 emissions on oil for domestic use. Wind 
energy is assumed to be offshore wind. 
 
Table 4.4: proportions of fuel used in electricity generation in the UK 2011, expressed in TWh 

Electricity supplied TWh Percentage gCO2eq / 

kWh 

£ per kWh 

Coal 102.94 31.22% 255.98 0.015630414 

Gas 142.68 43.27% 212.01 0.021942288 

Nuclear 62.7 19.01% 2.28 0.012083548 

Hydro 5.66 1.72% 0.412 0.000385635 

Wind 15.78 4.79% 0.57 0.00522213 

Total 344.61 100.00% 471.26 0.055264015 

Source: TWh per energy source are from Department of Energy and Climate Change 2012c, p.43. 
Other figures are the researcher’s own calulations. gCO2eq/kWh and £ per kWh are taken from 
Schlömer et al (2014). 
 
Since oil is not given in the study of Schlömer et al. (2014), data are taken from Weisser (2007), 
which indicate a CO2 output of 700-800 gCO2eq / kWh for oil. The median of 750 gCO2eq / kWh is 
used as eventual indicator. 
Gas in Scotland, England and Wales in February 2015 cost 4.29 pence while heating oil cost 5.36 
pence, which is about 25% more expensive than gas (EST 2015). It is assumed that the costs for 
heating oil relative to gas are the same for 2011. This assumption was made because more precise 
and reliable data on the cost of heating oil per kWh in 2011 were not found. The price ratio between 
natural gas and heating oil on global markets was more or less similar on January 2011 as it was in 
January 2015 (Nasdaq 2015). 
 
Prices are given in dollars and converted to £ at the exchange rate at the beginning January 1st 2015; 
at this point the exchange rate of 0.641933 $ per £ (XE.com, 2015).  
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CO2 emissions can be measured in costs of CO2 emissions per MWh according to the levelized costs 
of electricity (LCOE). LCOE is a measurement used to express the costs of CO2 emitted by the power 
source, accounting for all costs involved in the process of expropriation of the power source to the 

eventual emission. LCOE is expressed as the following formula;       
                

 
 

where α is the capital recovery factor, I is the investment costs including finance costs for 
construction, OM are the net annual operation and maintenance costs and F are the annual fuel 
costs. E is energy expressed in MWh, and E is the only given figure derived from warmth use data as 
explained above. E depends on the full load hours.  The capital recovery factor α consists of formula 

    
  

           
 where r is the weighted average cost of capital. It is assumed here that r = 5%. 

Similarly to costs expressed in £, minimum, maximum and median figures are provided, and median 
values were chosen in this case to express the costs in LCOE. Schlömer et al. (2014) distinguish high 
and low full load hours, resulting in different LCOE. High full load hours are assumed.  
 
The resulting table per dwelling can be found in source data: HeatUseCosts. A summary of 
measuring warmth use through which CO2 and £ expenditure is measured is displayed in figure 4.4.  
 
figure 4.4: method of estimating warmth use and the CO2 emissions and £ expenditure that follows. 

 
Oval shapes indicate the information that is needed to estimate the kWh consumed per dwelling for 
warmth use. Diamond shapes indicate assumptions. Square shapes indicate the source that provides 
LCOE of kWh.  
 
4.7 Alternative methods of measuring warmth use factors 
 
No more than one decimal was recorded when inside temperatures were measured. Consequently, 
whether the temperature inside the home was rising or not during these five minutes, cannot be 
measured when recorded temperatures don’t change by at least 0.1 degree every five minutes. 
Alternative methods are used to measure thermal efficiency and whether the heater was on or off, 
using temperature changes over a period of one hour. 



36 
 

Two types of measurement for heater activity are used, method I for establishing whether the 
heater was off during the whole hour and method II for establishing whether the heater was on 
during any time interval within the hour; 
 
I: Here the following assumptions are made on the functioning of the heater; 

1. When any of the five minute intervals measure a temperature decrease inside the dwelling, 
the heater is off; 

2. When the temperature over one hour time has not increased, it cannot be established that 
the heater was on or off, since the inside temperature remaining equal may be attributed 
either to a well-insulated dwelling or a minimal difference with the outside temperature, so 
no heater activity is measured in these cases; 

3. Accurate and comparative measurement can only take place when all measurements take 
place over the same amount of time; in this case one hour; 

Thermal efficiency was measured according to this method. Measurement of thermal efficiency was 
discussed previously. Due to the lack of accuracy of data caused by the measurement of only up to 1 
decimal, thermal efficiency was re-calculated on the basis of the alternative method for functioning 
of the heater. The principles of measurement of thermal efficiency remain, but are now calculated 
based on hourly averages. Again, thermal efficiency was only measured when the heater was 
assumed to be off. The inside temperature decrease is divided by the difference of average outside 
temperatures over 1 hour with the average inside temperature during that hour.   
 
II: Here the following assumptions are made on the functioning of the heater; 

1. Measurement of heater activity is conducted per hour increase, so the temperature must 
have increased and the temperature inside must be higher than the outside temperature 
from the first time of measurement to one hour later.  

2. That accurate and comparative measurement can only take place when all measurements 
take place over the same amount of time; in this case one hour; 

Re-calculated warmth use was measured based on this method: the amount of temperature 
increase was measured when these conditions were satisfied. The amount of temperature increase 
multiplied with the amount of time the heater was on constituted the average amount of 
temperature increase while warmth use measurement was conducted. 
 
Alternative method I was used for thermal efficiency because the heater may have been on for a 
short period of time if inside temperature increased during the hour of measuring thermal 
efficiency. In that case the functioning of the heater, even when only during a short period of time, 
would distort outcome in thermal efficiency. 
Alternative method II was used for warmth use because the heater must have been on if outside 
temperature increases while it was colder outside than inside. 
 
4.8 Occuring errors in measurements of warmth use factors 
 
Thermal efficiency results in figures varying between 0 and 1. Thermal efficiency of 0, below 0 or 
above 1 is not considered to be realistic. Yet these figures may occasionally occur. This can have the 
following reasons: 
Thermal efficiency is 0: this means that thermal efficiency is 100%, yet these types of dwellings do 
not exist since some heat is always lost over a period of time. This figure may occur when no 
temperature was recorded at a certain time interval.  
It may also happen when inside temperatures remain equal or rise, but these figures have been 
filtered out previously in the data preparation. Figures were not filtered out in the data preparation 
when no inside temperature was recorded, hence these are filtered out at a later stage. 
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Thermal efficiency is below 0: this would mean that thermal efficiency is higher than 100%. This 
occurs when average inside temperature is lower than average outside temperature, while inside 
temperature decreases within the hour. This can occur due to three factors; 
 
1. Inherent inaccuracy of the method and data. Temperatures over 1 hour are taken into account. 
While it is possible that the average inside temperature is lower than average outside temperature, 
the inside temperature should equal outside temperature over a period of time. Especially for well-
insulated dwellings it may take time for the home (possibly more than one hour) to get to outside 
temperature levels.  
Under these conditions, when outside temperature remains more or less equal, the average outside 
temperature remains to be higher than the inside temperature. On the other hand when outside 
temperature drops significantly, the average temperature decreases, making it more likely that the 
average inside temperature during this period of time ends up being higher. When the average 
outside temperature increases significantly on the other hand, it is impossible for inside temperature 
to decrease when its temperature already was lower than the outside temperature. 
 
2. Incomplete figures regarding inside temperature, measured at one decimal. 
Actual inside temperature may have been slightly higher than outside temperature, but not been 
recorded due to the amount of decimal figures recorded for inside temperature; an inside 
temperature of 14.44 and 12.44 results in an average temperature of  13.44 while the recorded 
temperature would be 14.4 and 12.4, resulting in 13.4 as average temperature. An outside 
temperature of 13.41 would imply a higher outside temperature while actual inside temperature 
should be higher. 
 
3. Errors due to spatial and / or temporal interpolation. 
Interpolation may result in outside temperature that is not in accordance with the actual 
temperatures that occurred. This issue is elaborated further in this chapter, paragraph errors due to 
interpolation.  
 
Thermal efficiency is above 1: this would mean that thermal efficiency is lower than 0%, meaning 
that the dwelling loses heat more quickly than the outside environment. The figure occurs when the 
difference between average outside temperature and average inside temperature is less than the 
decline in inside temperature. The figures turn up when average outside temperatures are close to 
equal to average inside temperature. A slight decrease in inside temperature may then result in a 
high number, indicating low thermal efficiency. Similar to the errors described above, these figures 
may occur due to incomplete decimal numbers and interpolation errors.  
In opposition to numbers occurring with thermal efficiency figures below 0, it may not occur due to 
inherent inaccuracies in the method measuring thermal efficiency over the hour. With thermal 
efficiencies above 1, it is always warmer inside than outside and it can never happen that the 
average inside temperature within the hour is then lower (thus decreased more altogether) than the 
average outside temperature within that hour. 
 
Example: thermal efficiency is first unrealistically high (above 1) and then drops to unrealistically low 
levels (below 0) (table 4.5). Inside temperature is declining while outside temperature rises at some 
moments to above inside temperature levels.  
No inside temperatures are recorded after TimeID 3902 since temperature rises again within one 
hour. In total 10019 of these cases were found and ignored from the analysis. A total amount of 
reports was not made, but considering that for the month of April of only dwelling 0 there were 
3477 reports given on thermal efficiency, it is regarded that data were sufficient to conduct an 
analysis. However, all dwellings with an unrealistically high or low thermal efficiency number 
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reported were excluded from the analysis. The amount of excluded dwellings varies per month 
source data:  ThermalEffAllReports). 
 
Table 4.5: errors in measurement of thermal efficiency. Dwelling ID 11, month of April. 

TimeID 
Inside 
Temp 

Inside 
temp. 
difference 

Outside 
avg. 
temp. 

Outside 
temp. 

Avg. ins. Temp. – 
avg. outs. Temp 

Thermal 
efficiency 

3895 13.7 0.5 13.22409 12.5098 0.209242 2.389581 

3896 13.7 0.6 13.31131 12.67522 0.072025 8.330441 

3897 13.6 0.5 13.38549 12.84063 -0.05216 -9.5862 

3898 13.5 0.4 13.44664 13.00605 -0.15497 -2.58106 

3899 13.4 0.3 13.49476 13.17147 -0.23642 -1.2689 

3900 13.4 0.3 13.52984 13.33688 -0.29651 -1.01178 

3901 13.4 0.3 13.55189 13.5023 -0.34356 -0.87321 

3902 13.4 0.3 13.56091 13.51132 -0.37758 -0.79454 

3903 13.4     13.52033     

3904 13.3     13.52935     

3905 13.2     13.53837     

3906 13.2     13.54738     

3907 13.1     13.5564     

 
Errors due to interpolation  
 
The errors that occur due to interpolation may either be the result of interpolating weather 
temperature data across space using kriging (spatial interpolation), or may be the result of 
interpolating weather temperature data across time (temporal interpolation). The hourly outside 
temperatures have been interpolated in order to measure them relative to inside temperatures 
which were recorded every 5 minutes.  
Where thermal efficiency levels are unrealistic, these figures are filtered out of the analysis of 
measuring thermal efficiency. The amount of occurrences of thermal efficiency figures above 1 and 
below 0 are reported in order to control for data quality. High occurrences of these reports would 
indicate that this method is not a reliable one, at least not in those dwellings these figures frequently 
occur.  
 
Frequent subsequent erroneous data may indicate a lack of accuracy in spatial interpolation; in 
these occurrences outside temperature data would be over- or underestimated for some areas. 
When erroneous data occurs due to a dwelling’s distance from a weather station at a place in time 
and space, it is relatively likely that this error will occur again at the same place in the next time step. 
 
Erroneous data that are not subsequent but occur more individually point to errors in temporal 
interpolation. This is because hourly inside and outside temperatures are compared. Fluctuations 
within the hour are not measured for outside temperatures. A quick drop in inside temperature over 
one hour time will occur due to a quick drop in outside temperature during that same hour. 
However, this quick drop in outside temperature may not have been recorded when between two 
times of measurement. These errors occur more individually because they are less likely to occur in 
the time following, as the time following approaches the actual time of measuring outside 
temperature, thus being influenced less, or not at all, by the temporal interpolation. 
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4.9 Thermal comfort  
 
What is perceived as a comfortable indoor temperature (thermal comfort) varies among individuals 
and groups. Thermal comfort is also changeable. Adaptive comfort theory states that people prefer 
certain inside temperatures while also being dependent on the natural temperature outside. It has 
been established that the desired comfort at home is influenced by outside temperature and varies 
across geographies and cultures (as has been discussed in the chapter 4.10). 
 
Thermal comfort is estimated on the basis of average inside monthly temperature. A precondition 
for measuring the desired inside temperature is that the heater should be on when the inside 
temperature reached a level beyond which no substantial increase is found as long as there is no 
temperature decrease measured. The average figure per month is regarded as the thermal comfort 
level of that month. 
 
Dwellings within the same range of average outside temperatures may be expected to have 
somewhat similar thermal comfort levels according to adaptive comfort theory. The adaptive 
comfort is measured by  

- Comparing average monthly inside temperature with average monthly outside temperature.  
- Comparing percentages of dwellings that fall within the predicted acceptability levels. 

According to Lück (2012) adaptive comfort levels of free running buildings, a predicted 
comfort level is at inside temperature Tc = 13.5 + 0.54 TO where TO is outside temperature 
and Tc is comfort temperature.  
Toe & Kubota (2013, p.284) found Tneutop = 0.18Toutmm + 19.3 where Toutmm is the 
monthly outside temperature and Tneutop is the neutral operative temperature (in this 
research Tneutop is regarded as the thermal comfort temperature, since the study found 
that neutral operative temperature is almost exactly similar to the thermal comfort level 
(Toe & Kubota, 2013, p. 288)). 
Both the formulas of Lück (2013) and of Toe & Kubota (2013) are tested for the area. 
These figures provide an indication whether remote or non-remote areas are more or less 
prone to inside temperatures following acceptability levels. It is expected that 90% of 
occupants have acceptability levels within 1.2 degrees and 80% within 2.0 degrees higher 
and lower. The 80% and 90% levels are based on DeDear et al. (1997). 

 
Heaters do not heat the dwelling to their thermal comfort levels instantly. Thermal comfort is 
applicable only when the heater has heated the dwelling to the occupant’s comfort level. Inside 
temperature is measured as thermal comfort when: 

- The heater is on. 
- The inside temperature does not increase substantially. In order to deal with the ambiguity 

of the word “substantially”, two different conditions may be used; 
o Inside temperature increases no more than 0.2 during the next hour; 
o Inside temperature increases no more than 0.5 during the next hour; 

- Outside temperature is lower than inside temperature. When outside temperature is higher 
than inside temperature, the occupant’s influence over the desired inside temperature is 
very limited so it should not be measured in this case. 

- Temperature hasn’t dropped in the past hour. 
 

The differences in expected comfort temperatures according to theory and actually measured 
temperatures can be tested for their variance across degrees of remoteness. 
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4.10 Demographic and remaining geographical factors 
 
Thermal efficiency, warmth use and heater activity are tested with variables that are known at 2001 
data zone levels; these variables relate to dwelling type, number of rooms, income and demographic 
data.  
The primary factors influencing thermal efficiency of the building according to Harvey (2006, p. 36) 
(see also chapter 2.9) have only been used to a limited extent, but it should be acknowledged that 
with the data accessible to the researcher the research could have taken into account almost all of 
these factors. 
  

- Insulation levels in the walls, ceiling and basement: are not given.  
- Resistance to moisture migration: Humidity data are available from the 

Meteorological Office (2013) database. 
- Thermal and optical properties of windows and doors; these are not given but with 

the amount of data it may be possible to have sufficient data to measure warmth 
use and thermal efficiency only during night time intervals, when windows and 
doors are usually closed. 

- Rate of exchange of inside air with outside air through infiltration and exfiltration: 
these may be influenced by wind speed, which is available through the 
Meteorological Office (2013) database. 

- Presence of shared walls with other buildings; these data are not available per 
dwelling but are on the 2001 data zone level. Dwellings were subdivided in flats, 
semidetached, detached and terraced. 
 

Where data were accessible but not used, the negligence of these factors were due to time 
constrains. The choice was eventually to limit the research to the influence of outside temperature 
on warmth use factors. 
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5. Results 
 
5.1 Remoteness 
 
To measure the implications of remoteness it should be established whether the different degrees 
by which remoteness may be analyzed, coincide with each other so that the definition of 
‘remoteness’ is not used arbitrarily. This is part of the second research goal; 

o To develop a GIS-based methodology for finding correlations of remoteness on domestic 
heat loss and fuel consumption. 

o To find how different measures of remoteness (distance to services, classification schemes, 
population per km2) influence the relation between remoteness and domestic heat loss and 
fuel consumption. 

The choice to start analyzing the results of the second research goal was made because first 
identifying the significance of relations of remoteness allows to better analyze what remoteness 
means with regards to warmth use factors. Warmth use factors are part of the first research goal 
and are related to remoteness.  
 
The correlation among remoteness indices is significant above the 99% confidence interval (table 
5.1). The strongest relation exists with the classification scheme “aggregated distances to services”. 
For the 8-fold classification, no dwellings were located in the 5th and 8th classification type, resulting 
in 6 categories. This explains why the strength of the relationships for the 6-fold categories are equal 
to that of the 8-fold categories. The boxplots in figure 1 Appendix III and figure 2 Appendix III show 
that the spread is equal although the classifications are different. 
 
Table 5.1: Reciprocity between remoteness as classified by the Scottish Government and other 
remoteness indices 
 
 Distance to 

Cities 
Distance to 
Tows 

Distance to 
Villages 

AvgAllDist PopPerSqKM Aggegated 
DistToServices 

Spearman's 
rho 

UR8FOLD 

Correlation 
Coefficient 

.737** .683** .515** .794** -.836** .864** 

Sig. (1-tailed) .000 .000 .000 .000 .000 .000 

N 369 369 369 369 369 369 

UR6FOLD 

Correlation 
Coefficient 

.737** .683** .515** .794** -.836** .864** 

Sig. (1-tailed) .000 .000 .000 .000 .000 .000 

N 369 369 369 369 369 369 

UR3FOLD 

Correlation 
Coefficient 

.601** .560** .605** .702** -.809** .813** 

Sig. (1-tailed) .000 .000 .000 .000 .000 .000 

N 369 369 369 369 369 369 

UR2FOLD 

Correlation 
Coefficient 

.564** .509** .660** .685** -.805** .810** 

Sig. (1-tailed) .000 .000 .000 .000 .000 .000 

N 369 369 369 369 369 369 

 
The correlation between all ratio / interval variables is significant at more than 99% confidence 
interval (table 5.2). Distances to population areas show the highest reciprocity with the exception of 
distances to villages (3000 inhabitants or more). Outside of relations between distances to 
population centers, the aggregated distances to services and aggregated distances to population 
areas show the highest correlation coefficient. Proportional point maps were made of the dwelling 
locations according to all remoteness measures (figure 1 – 9 appendix III) 
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Table 5.2: reciprocity between all interval variables classified. 
 
 Distance 

to Cities 
Distance to 
Towns 

Distance to 
Villages 

AvgAllDist PopPerSqKM AggegatedDistToServices 

Distance to Cities 

Pearson 
Correlation 

1 .821** .380** .891** -.508** .585** 

Sig. (2-tailed)  .000 .000 .000 .000 .000 

N 369 369 369 369 369 369 

Distance to Towns 

Pearson 
Correlation 

.821** 1 .348** .879** -.424** .550** 

Sig. (2-tailed) .000  .000 .000 .000 .000 
N 369 369 369 369 369 369 

Distance to Villages 

Pearson 
Correlation 

.380** .348** 1 .700** -.451** .640** 

Sig. (2-tailed) .000 .000  .000 .000 .000 
N 369 369 369 369 369 369 

AvgAllDist 

Pearson 
Correlation 

.891** .879** .700** 1 -.560** .718** 

Sig. (2-tailed) .000 .000 .000  .000 .000 
N 369 369 369 369 369 369 

PopPerSqKM 

Pearson 
Correlation 

-.508** -.424** -.451** -.560** 1 -.704** 

Sig. (2-tailed) .000 .000 .000 .000  .000 
N 369 369 369 369 369 369 

AggegatedDistToServices 

Pearson 
Correlation 

.585** .550** .640** .718** -.704** 1 

Sig. (2-tailed) .000 .000 .000 .000 .000  

N 369 369 369 369 369 369 

Correlations between aggregated distances and population figures are negative because larger 
distances result in more remoteness, while less population per square kilometer indicates a higher 
degree of remoteness 
 
The Aggregated Distances index shows the highest reciprocity with the other interval remoteness 
indices. For the categorical remoteness indices it may be established that the ordinal remoteness 
factors are sufficiently correlated with other remoteness indices in order to assume that where 
warmth use factors and CO2 emissions and £ expenditure correspond with the interval remoteness 
index, this will do so as well with a categorical remoteness index. 
 
Since the 8-fold classification is not as commonly used as the 6-fold classification but shows the 
same results due to two classifications missing, the 8 fold classification is not used any further in this 
research. Since the 3 fold classification is not commonly used and shows less significant correlations 
with the interval remoteness indices than the 6 fold classification, the 3 fold classification is not used 
any further in this research. The dichotomous classification however is very commonly used and will 
be used further in this research as well, in spite of relatively low correlation with the interval 
remoteness indices.  
 
Regarding the relation between remoteness and the research questions, it may be concluded that a 
GIS network analysis has shown to be effective in analyzing remoteness degrees.  
Simultaneously, correlations show that the various remoteness types are sufficiently dissimilar so 
that the correlation between warmth use will and remoteness will strongly depend on the 
remoteness type that is used. 
 
5.2 Transportation 
 
Having established the relations among remoteness indices, a second part of the second research 
goal is to find how fuel consumption is related to remoteness. In this part the influence of 
remoteness on transportation expenditure and CO2 emissions is analyzed. After that, the 
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implications for CO2 emissions and expenditure on warmth use can be established, providing a full 
indication of the amount of CO2 emissions and household expenditure of both warmth use and 
transportation.  
 
The effect of both the LAU-1 area indicating fuel type use as well as the proximity to population 
centers (note that these are not the same classifications as used for remoteness; see chapter 4.3) is 
visible (appendix I, figure 10). 
 
Student’s t-tests are conducted to find whether carbon emissions are higher for rural than for urban 
households for carbon emissions and £ spent on transport of all types. Both CO2 emissions and £ 
spent on energy were higher for rural than for urban areas for all transport types used (table 5.3 and 
table 1 appendix III). 
 
Table 5.3: t-test for CO2 emitted and £ spent by rural / urban classification 
 
 2 fold classification N Mean Std. Deviation Std. Error Mean 

Estimated CO2 emitted by bus 
transport per capita 

Urban 192 120.400997 31.9433873 2.3053154 

Rural 177 177.722057 21.6597368 1.6280455 
Estimated CO2 emitted by diesel 
per capita 

Urban 192 439.526039 142.7996012 10.3056735 
Rural 177 709.901635 92.5208894 6.9542959 

Estimated CO2 emitted by petrol 
per capita 

Urban 192 633.310428 196.9179555 14.2113293 
Rural 177 1005.598029 128.3722972 9.6490527 

Estimated CO2 emitted by 
motorbikes per capita 

Urban 192 6.800850 2.9334346 .2117024 
Rural 177 12.241060 1.8299700 .1375490 

Estimated CO2 emitted by 
transport per capita 

Urban 192 1200.038313 373.2169787 26.9346154 
Rural 177 1905.462781 244.0225842 18.3418606 

Estimated £ spent on bus 
transport per capita 

Urban 192 54.180448 14.3745243 1.0373919 
Rural 177 79.974925 9.7468816 .7326205 

Estimated £ spent on diesel per 
capita 

Urban 192 197.786718 64.2598205 4.6375531 
Rural 177 319.455736 41.6344002 3.1294332 

Estimated £ spent on petrol per 
capita 

Urban 192 314.619573 97.8260272 7.0599854 
Rural 177 499.566735 63.7735233 4.7935116 

Estimated £ spent on motorbike 
fuel per capita 

Urban 192 3.378565 1.4572884 .1051707 
Rural 177 6.081184 .9091030 .0683324 

Estimated £ spent on transport 
per capita 

Urban 192 569.965304 177.2925061 12.7949845 

Rural 177 905.078581 115.8999194 8.7115714 

 
Spearman’s rho and Pearson’s correlation tests show that estimated CO2 emitted on transport of all 
types increases with remoteness (table 5.4 and table 5.5).  
 
Table 5.4: Spearman’s rho for CO2 emitted and its relation with the 6-fold rural / urban classification 
scheme. 
 
 Bus transport per 

capita (co2) 
diesel per 
capita (co2) 

petrol (car) per 
capita (co2) 

Petrol by motorbikes 
per capita (co2) 

Total transport per 
capita (co2) 

Spearman's 
rho 

UR6FOLD 

Correlation 
Coefficient 

.812** .849** .849** .848** .849** 

Sig. (2-tailed) .000 .000 .000 .000 .000 

N 369 369 369 369 369 

N 369 369 369 369 369 
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Table 5.5: Pearson’s correlation for CO2 emitted and its relation with the 6-fold rural / urban 

classification scheme 

 Bus transport 
per capita (co2) 

diesel per 
capita (co2) 

petrol (car) per 
capita (co2) 

Petrol by motorbikes per 
capita (co2) 

Total transport per 
capita (co2) 

Distance to Cities 
Pearson Correlation .583** .652** .644** .684** .643** 

Sig. (2-tailed) .000 .000 .000 .000 .000 
N 369 369 369 369 369 

Distance to Towns 
Pearson Correlation .479** .536** .531** .548** .529** 

Sig. (2-tailed) .000 .000 .000 .000 .000 
N 369 369 369 369 369 

Distance to Villages 
Pearson Correlation .578** .568** .571** .547** .571** 

Sig. (2-tailed) .000 .000 .000 .000 .000 
N 369 369 369 369 369 

Population per square 
kilometer 

Pearson Correlation -.670** -.695** -.694** -.690** -.694** 

Sig. (2-tailed) .000 .000 .000 .000 .000 
N 369 369 369 369 369 

Average distance to 
population centers 

Pearson Correlation .664** .711** .707** .720** .706** 

Sig. (2-tailed) .000 .000 .000 .000 .000 
N 369 369 369 369 369 

Distance to all services 

Pearson Correlation .754** .792** .788** .797** .788** 

Sig. (2-tailed) .000 .000 .000 .000 .000 

N 369 369 369 369 369 

 
Relations between remoteness were equal for CO2 emitted and £ spent; this is because the degree 
to which the dwelling’s locations influence the estimated amount of CO2 or £ spent are equal (table 
2 and table 3, appendix III). 
Relations are strongest for the distances to services. The relation for distances to population centers 
are weakest, but using the average distance to all population centers rather than the distance to a 
particular type of population center (a city, village or town) results in stronger correlations.  
 
Estimated transportation figures were based on the LAU-1 area and the area type that a dwelling 
belongs to. On the one hand, LAU-1 areas are relatively large and on the other hand, area types 
coincide strongly with the existing classifications of remoteness. The use of LAU-1 areas is inherently 
related to remoteness because LAU-1 areas are larger in remote areas. Area type is inherently 
related to remoteness because the area type constitutes a proximity to a population center. It is 
therefore all the more surprising that distances to population centers are less strongly correlated 
with distances to all services. This may be explained either by one of two factors; 

- Coincidence because dwellings that were located in data zones further from services may 
happen to have been located closer to small population areas (where carbon-fuelled private 
transport use is high) rather than high population areas (where carbon-fuelled private 
transport use is lower). 

- The selected dwellings are close to small population area types that are located in LAU-1 
areas where the fuel type of transport (for example, petrol or LPG) result in low carbon 
emissions and expenditure. In that case the population centers have only a limited amount 
of influence on expenditure and CO2 emissions but are more strongly influenced by the LAU-
1 fuel types used in that area. 

 
 
5.3 Heater activity 
The following chapters (5.3 to 5.7) can explain how and to what extent the first research objective 
was reached; what useful information can be derived from temperature data provided by smart 



45 
 

energy monitors. Moreover it analyzes the relation between remoteness and the warmth use factors 
and thermal comfort. 
Analyzing those factors results in an estimation of CO2 emissions and expenditure based on warmth 
use (chapter 5.6, paragraph Predicted CO2 and £ on warmth use). With this information, it can be 
concluded how remoteness is related warmth use factors, and its CO2 emission and expenditure. 
Adding up the CO2 emissions and expenditure on fuel transport fulfills research goal 2.  
 
In this chapter the activity of the heater is explained using only the alternative methods for 
measuring heater activity. The initial method was regarded as too imprecise because of the 
distortions that occur due to the measurement per decimal as explained in chapter 4.7.  There are 
apparent differences as well as similarities in the results of measured heater activity, as displayed in 
figure 5.1.  
 
Figure 5.1: heater activity per month. 

Method I (inverted)     Method II   

 
 

For method I the results are inverted for visualization purposes; this is because initially the higher the 
number, the less often the heater was regarded as “on”, while for the second method, the higher the 
number, the more often the heater was regarded as “on”.  
Source data: EstimatedHeaterActivity 
 
The correlation between both methods is tested (e.g. June method I with June method II) and also 
the relationships between various months of the year according to the same method (e.g. June 
method I with January method I). The relation between the variables is linear (figure 2-4 Appendix 
III). Pearson’s correlation tables were run for comparing the correlations between method I and 
method II, with all relations significantly correlated at a > 99% confidence level with the exception of 
the month of January (table 4 Appendix III). Average heater activity was not correlated however 
(table 5.6). 
 
Table 5.6: Pearson’s correlation for averages from all months of measuring heater activity through 
method I and II 
 
 ActMethod I ActMethod II 

ActMethod I 

Pearson Correlation 1 -.088 

Sig. (2-tailed)  .120 

N 315 315 

ActMethod II 

Pearson Correlation -.088 1 

Sig. (2-tailed) .120  

N 315 639 
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Comparing months from method I with other months from method I, all months are correlated at a 
99% confidence level, except for the relationship between the month of January and June which is 
correlated at the 95% confidence level (table 5 Appendix III).   
Doing the same for months from method II, all months are correlated at a 99% confidence level, 
except for the relationship between the month of January and September which is correlated at the 
95% confidence level, and the month of January and June which are not correlated at all (table 6 
Appendix III). The low confidence levels for January probably are strongly explained by the lack of 
data, where for January and June there are N=39 cases that are measured. 
Method I results in the highest Pearson’s correlations, indicating that it is likely that the criteria used 
in this method are more related to measuring actual heater activity than the criteria used in method 
II. High levels of correlation among different months for both methods I and II suggest that dwellings 
where the heater is on relatively frequently in one month, are likely to have the heater on relatively 
frequently in another month as well.  
 
It is not possible to validate the reliability of either method I or method II. The correlations between 
method I and method II suggest that both methods do provide some indication of the amount of 
time the heater was on. However, when both methods were reliable to a very high degree, it is to be 
expected that Pearson’s correlation figures turn out significantly higher than what they do now; 
correlations higher than 0.8 do not occur; hence correlations cannot be regarded as strongly 
correlated. Hence it cannot be stated that there is clarity on the degree of accuracy in the results but 
it does appear that the results generally give an indication on where the heater is on more or less 
often relative to the other dwellings that were measured. 
Due to the nature of differences with the month of January and other months it was checked 
whether this month may have influence on the overall results. It should be concluded that the 
differences in outcomes when accounting for January or not accounting for January, are negligible. 
Therefore January was used in all analyses (figure 5.2) (source data: EstimatedHeaterActivity). 
 
Figure 5.2: scatterplot for correlation between distances to all services and the average of all months 
(left), and correlation between distances to all services and the average of all months except the 
month of January  (right).  

 

 
 

Method I uses an inverted method of measuring the amount of time the heater was on. A significant 
negative correlation exists between method I and remoteness indices (table 5.7 and table 5.8). This 
shows that the heater was on more often in remote dwellings than in non-remote dwellings. The 
relation is statistically significant for all relations. 
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Method II uses a method where a higher number indicates a higher number heater activity; the 
reverse is true for method I. The relations between the methods and remoteness indicate a higher 
level of heater activity for more remote dwellings. The correlations are not statistically significant for 
method II however, unlike method I, with the exception of population density of the data zone, 
which is statistically related to heater activity at the 95% confidence level (table 5.7 and table 5.8). 
From the maps there is no clear influence visible regarding heater activity (appendix I figure 11 and 
12). 
 
 
Table 5.7: Spearman’s correlation for the amount of time the heater was on and its relation with 
ordinal remoteness indices. 
 
 UR6FOLD UR2FOLD 

Spearman's 
rho 

 

Average method1 

Correlation Coefficient -.181** -.159** 

Sig. (2-tailed) .001 .005 

N 314 314 

Average method2 

Correlation Coefficient .097 .098 

Sig. (2-tailed) .087 .083 

N 314 314 

 
Table 5.8: Pearson’s correlation for the amount of time the heater was on and its relation with 
interval remoteness indices. 
 
  AvgAllDist PopPerSqKM AggegatedDistToServices 

Spearman's 
rho 

 

ActMethod I 

Correlation Coefficient -.179** .175** -.200** 

Sig. (2-tailed) .001 .002 .000 

N 314 314 314 

ActMethod II 

Correlation Coefficient .046 -.120* .104 

Sig. (2-tailed) .418 .033 .066 

N 314 314 314 

 
For both method I and method II it is clear that in large urban areas the heater is less often on (figure 
5.3). Generally it appears that heater activity tends to increase as remoteness increases. A relatively 
low number for remote small towns is apparent for both methods, but is considerably clearer for 
method II. The apparent differences for both methods cannot be explained but is likely to be due to 
the limitations of reliability of method II. The fact that correlations for method I are stronger and 
more significant for the remoteness indices, which is in line with the assumption that remote areas 
tend to use more warmth, as has been proven in previous researches (chapter 2.6),  seems to point 
towards a higher degree of reliability of method I than of method II. While there is reason to assume 
that remote dwellings will report higher heater activity there is no reason to assume this should be 
vastly different between large urban areas and small urban or remote urban areas.  
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Figure 5.3: Average numbers of heater activity of inverted method 1 (left) and method 2 (right) 
divided according to remoteness categories. 

The results for method I are inverted for visualization purposes; this is because initially the higher the 
number, the less often the thermometer was regarded as “on”, while for the second method, the 
higher the number, the more often the thermometer was regarded as “on”.  
Source data: EstimatedHeaterActivity 
 
The results of method I are more in line with expectations and previous research so it is concluded 
that with the temperature data provided by the smart meters, information on heater activity can be 
derived but precise measurement of heater activity could not be validated nor made plausible. 
Measuring heater activity based on the conditions of method I however, results in more plausible 
results than using method II. In order to have more accurate results it may be suggested that more 
than one decimal can be recorded. When this can be done reliably, heater activity may be based on 
5 minute recordings which would show temperature increases or decreases for every five minutes 
which may result in more accurate results. 
 
5.4 Thermal Efficiency 
 
Thermal efficiency measured for each month is linearly correlated (for example figure 5.4). 
 
Figure 5.4: Scatterplot on thermal efficiency of measured dwellings 
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Pearson’s correlation is applied to measure the correlation between the estimated thermal 
efficiency for each month. All correlations are significant at the 99% confidence level (table 7, 
appendix III). This means that dwellings that are estimated to have a low thermal efficiency in one 
month tend to do so in the other month as well. This is to be expected as thermal efficiency depends 
on the dwelling properties, and these hardly change. 
 
However, as with heater activity, the figures rely on relative numbers so the thermal efficiency 
should be more or less equal (or, when completely correct and doors and windows remain closed, 
completely equal) for each month and for each dwelling. If the measurement of thermal efficiency 
were reliable to a very high degree, it is to be expected that Pearson’s correlation figures turn out 
significantly higher than what they do now; correlations higher than 0.8 do not occur; hence strongly 
correlated relations are nonexistent.  
 
Thermal efficiency is measured per month and its correlation with remoteness is calculated using 
Pearson’s correlation (table 8 Appendix III). Criteria for measurement were that no more than 
N=1000 cases per dwelling per month were allowed to have recorded a thermal efficiency of 0, and 
no cases per dwelling per month were allowed to have recorded a thermal efficiency of either below 
0 or above 1. 
 
The direction of the relation between thermal efficiency and distances (both to services and to 
population centers) is positive in all but one case; January 2011 and its relation to average distances 
to population centers, which is not a significant relationship. Thermal efficiency and relation to 
population per square kilometer was negative in every case. This means that the higher the 
remoteness, the higher the thermal efficiency score tends to be. Since high thermal efficiency scores 
indicate a low actually estimated thermal efficiency, this shows that within the study area, thermal 
efficiency decreases as remoteness increases. 
 
The average thermal efficiency for all months is calculated using the total of all thermal efficiencies 
for all months divided by the amount of months the thermal efficiency was measured while using 
the same criteria per month for a valid dataset (source data: AllThermalEfficiency). There is a 
significant relation (table 5.9 and table 5.10). When plotting the data in scatterplots the relation is 
not clearly visible, but the fit lines do indicate the correlation (figure 5.5 and 5.6).  
 
Table 5.9: Spearman’s rho for thermal efficiency and classification according to the ordinal scheme 
from the Scottish Government. 
 
 UR6FOLD UR2FOLD 

Spearman's rho Average 

Correlation Coefficient .180** .192** 

Sig. (2-tailed) .003 .002 

N 267 267 

 
Table 5.10: Pearson’s correlation for remoteness indices and average measured thermal efficiency 
measured over all months. 
 
 AvgAllDist PopPerSqKM AggegatedDistToServices 

ThermalEff 

Pearson Correlation .179** -.168** .215** 

Sig. (2-tailed) .003 .006 .000 

N 267 267 267 
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Figure 5.5: relation between  remoteness indices and average measured thermal efficiency 
measured over all months, visualized in scatterplots 

The fit line is based on an Epanechnikov kernel with 90% points to fit 
 
Figure 5.6: relation between categorical  remoteness indices and average measured thermal 
efficiency measured over all months, visualized in bar charts 

 

 
Thermal efficiency shows correlations with remoteness, where more remote dwellings tend to have 
lower thermal efficiency. This appears to be in line with the known influence of remoteness on 
thermal efficiency; it is known that rural dwellings are less thermally efficient. Rural areas are 
generally classified according to the 2-fold classification scheme; these are classes 5 and 6 in the 6-
fold classification scheme. The 6-fold classification scheme suggests that thermal efficiency is 
negatively related with remoteness only according to the 2-fold scheme because as far as a relation 
exists, thermal efficiency is positively related with remoteness for the first 4 classifications (figure 
5.6). However, the scatterplots suggest that such a stepwise index does not exist, as the equation 
tends to increase gradually in spite of the fit line being a Loess type; following the average dots 
rather than following the dots by a linear or quadratic equation. Regarding both the bar charts in 
figure 5.6 as well as the charts in figure 5.5 and their simultaneous correlations (table 5.1), it must be 
concluded that remoteness has no increased influence on thermal efficiency up to a point, possibly 
around the point where dwellings are classified as ‘rural’ rather than ‘urban’, after which thermal 
efficiency further decreases as remoteness increases. This is noteworthy especially for the second 
research goal related to remoteness and warmth use factors. Differences in thermal efficiency are 
not clearly visible from the map (appendix I, figure 14) 
 
Regarding insights into what useful data can be derived from temperature data on smart meters, it 
seems that thermal efficiency was measured with accuracy (thermal efficiency correlated positively 
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among months) although with limited precision (strength of thermal efficiency among months was 
below 0.8). It is certain that thermally inefficient dwellings were identified; both because monthly 
thermal efficiency figures correlated and because the results in regards with remoteness is in line 
with expectations (i.e. urban dwellings are significantly more thermally efficient than rural 
dwellings). The accuracy of the thermal efficiency indicators is unclear but may be further 
established by comparing total electricity use in data zones (chapter 5.8) and also explained by 
propensity to other buildings (chapter 5.9). 
 
5.5 Central heating use type 
 
A dataset from Scotland’s Census (2011c) indicating the energy use type per data zone was 
combined with the estimated dwelling locations. The share of energy use type was assigned to each 
dwelling on each location.  
 
It is assumed that none of the dwellings had no central heating at all. Dwellings with more than one 
type of central heating were not used from the Scotland Census (2011c) dataset because these 
different types are not given, so they may be any type of fuel. “Other” types of central heating are 
also not accounted for. The share of energy sources not taken into account is 3.388% (source data: 
CentralHeatingPerDataZone). The other 96.612% were taken into account.  
 
A contrast in oil and gas use is illustrated by the categorical classifications (figure 5.7). Rural towns in 
the area use gas more often than oil. Rural areas that are not within 30 minutes’ drive from towns 
however, do not. Electricity for central heating is more equally divided among remote and non-
remote areas.  
 
 
Figure 5.7: Central heating use type in percentages of households in the study area according to 
categorical classification of the Scottish Government (2012b). 
 

Gas and oil 
The scatterplot (figure 5.8 and figure 5.9) shows that there is a clear link between remoteness to 
services or population centers and the use of oil and gas. A majority of dwellings in the study area 
use oil heating when the distance to services is larger than 10 minutes’ drive. A majority of dwellings 
below 10 minutes’ drive to services in the study area use gas.  
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Figure 5.8: Distance to services and oil and gas use 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.9: gas and oil use for central heating relative aggregated distance to services (left) 
and relative to average distance to villages, towns and cities in one scatterplot (right) 
 

 
 

Solid fuels and Electricity 
There exists a positive relationship between the use of solid fuels and electricity and categorized 
remoteness levels. The relation is strong for solid fuels while it is weak for electricity when using the 
6-fold and 2-fold remoteness schemes (table 5.11 and 5.12).  
 
Table 5.11: Biofuel and electricity use and their relation with remoteness, Spearman’s Rho. 
 
  UR6FOLD UR2FOLD 

Spearman’s rho 

 PropSolFuel 

Correlation Coefficient .824** .789** 

Sig. (2-tailed) .000 .000 

N 369 369 

 PropElec 

Correlation Coefficient .116* .153** 

Sig. (2-tailed) .026 .003 

N 369 369 

 
 
 
 
 
 
 



53 
 

Table 5.12: Biofuel and electricity use and their relation with remoteness, Pearson’s correlation. 
 
 AggegatedDistToServices AvgAllDist PopPerSqKM 

PropSolFuel 

Pearson 
Correlation 

.698** .655** -.531** 

Sig. (2-
tailed) 

.000 .000 .000 

N 369 369 369 

PropElec 

Pearson 
Correlation 

.010 .093 .130* 

Sig. (2-
tailed) 

.841 .075 .012 

N 369 369 369 

 
Clear positive relations exist between solid fuels and the interval remoteness levels. The relation is 
strongest for distances to services. For electricity there only exists a relation with population per 
square kilometer. The fact that this relation is positive is noticeable; it means that within the study 
area, electricity use is more likely to be found in more densely populated areas. This contradicts 
when measuring remoteness in the previous way; the 6-fold and 2-fold categorical schemes found 
that electricity was more likely to be found in areas categorized as ‘rural’. 
It can be concluded that the use of more expensive energy sources, in particular heating oil, will 
result in higher CO2 emissions and expenditure on warmth in more remote dwellings ceteris paribus. 
This conclusion shows that with regards to the second research goal, warmth use contributes to 
higher in CO2 emissions and expenditure in rural areas than in urban areas in the study area.  
 
5.6 Warmth use 
Heater intensity 
 
Warmth increase in the home was highest in January 2011 and lowest in June 2012 and June 2012 
(figure 5.10). There is a negative relation with warm months and warmth use.  
 
Figure 5.10: estimated increase of the heater 
 

 
Source data: WarmthIncrease 
 
Intensity with which the warmth in the house increases correlates significantly at the 99% 
confidence level for all months measured with the exception of January 2011 June 2011, which only 
correlates at the 95% confidence level, and January 2011 and September 2011, which don’t correlate 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Monthly average

Total Average



54 
 

at all (appendix III, table 9). The lack of significance for these relations has probably to do with a 
relatively low number of matching cases (N= 39 for the former and N= 34 for the latter). The result 
means that high or low increases in inside temperature in a dwelling mean likely high or low 
increases in another month as well. This may be due to a heater being quick or slow heating up the 
dwelling but it may also be due to a more limited or larger amount of space that is heated. 
Temperature rises more quickly in a small space than in a larger space under the same conditions.  
 
Heater intensity was found to be higher for rural areas than for urban areas, although the 
correlation is very weak (figure 5.11 and table 5.14 and table 5.15). Heater intensity was only 
recorded when the heater as off according to method II. Heater intensity measurements may be 
inaccurate because occasionally too few cases were measured per dwelling. In order to check if this 
is the case, a division is made between analyzing all cases or analyzing only cases when >1000 
temperatures were reported. The upper rows show the figures when >1000 valid cases of heat 
increase were measured, while the lower rows show this for all temperatures. Significance and 
strength of the relation diminish with less cases but the direction of the relation does not. It seems 
that less than 1000 cases of warmth use measured per dwelling provides reliable results and number 
of analyzed dwellings in this case was more important than larger numbers of analyzed heat increase 
cases. 
 
 
Figure 5.11: scatterplot for average increase and distances to services 

 
A linear fit line type was used 
 
Table 5.14: Spearman’s rho for average increase in temperatures inside the home and its relation 
with ordinal remoteness indices; all cases and cases where at least 1000 time intervals in one month 
were measured 
 
  UR6FOLD UR2FOLD 

Spearman's 
rho 

 

Morethan1000NAvgHeatIncr 

Correlation Coefficient .057 .080 

Sig. (2-tailed) .354 .195 

N 263 263 

AvgHeatIncr 

Correlation Coefficient .143* .109 

Sig. (2-tailed) .011 .054 

N 312 312 
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Table 5.15: Pearson’s correlation for average increase in temperatures inside the home and its 
relation with interval remoteness indices; all cases and cases where at least 1000 time intervals in 
one month were measured 
 
  PopPerSqKM AggegatedDistToServices AvgAllDist 

Morethan1000AvgHeatIncr 

Pearson Correlation -.036 .089 .105 

Sig. (2-tailed) .562 .149 .090 

N 263 263 263 

AvgHeatIncr 
Pearson Correlation -.102 .139* .092 
Sig. (2-tailed) .072 .014 .103 
N 312 312 312 

 
 
 
Warmth use 
Warmth use was highest in January 2011 and lowest in June 2012 (figure 5.12). There is a negative 
relation with warm months and warmth use.  
 
Figure 5.12: warmth use across various months 

 
Source data: HeatUseCosts 
 
Warmth use correlates significantly at the 99% confidence level for all months measured with the 
exception of January 2011 and June 2011 and January 2011 and September 2011, which show no 
correlations (table 10 Appendix III). This again is probably related to a relatively low number of cases 
that was measured. 
 
Warmth use is positively correlated with remoteness (table 5.16 and table 5.17). The correlation 
figures are however very weak for all remoteness indicators.  
Tests were run on average warmth use both including and excluding the month of January. This was 
done due to earlier tests showing no or low significance of correlation between January and other 
months. The results show that overall the difference is limited, but for population density a 
significant correlation was found for higher warmth use in less densely populated areas, while this 
result was not found as a significant correlation when taking into account the average warmth use 
during all months measured. Although the relation between warmth use is not immediately clear 
when visualized (appendixI figure 15), the estimated increased amount of warmth used from the 
correlation tests is apparent. Also apparent is that more remote data zones tend to use more energy 
(appendix I, figure 16) while another study, using samples from the same data set as this research, 
found no significant differences with overall electricity use and rural-urban households (Craig et al. 
p. 499). This makes the idea plausible that higher energy use in more remote areas is can merely be 
explained by the warmth use and that electricity use has a negligible effect on the variance in energy 
use among rural or urban dwellings. It should be noted that in the study cited, the sample of 

0

500

1000

1500

2000



56 
 

electricity heated homes was very small, so warmth consumption in this study should have had a 
minimal effect on electricity use (N=28 (Craig et al. p. 497)).  
 
Concluding from the chapters 5.1 to 5.6 it can be established that the first hypothesis “The warmth 
use factors increase as remoteness increases”, can be answered in the affirmative. Categorical 
remoteness indices suggest that this is only so for remote dwellings outside of population centers 
with a maximum of 3000 inhabitants. However, the interval remoteness indices simultaneously 
suggest that a linear equation exists for areas that can be considered to be more remote (to 
population, services or larger population centers), which is shown in particular by the graphs in 
figure 5.5. So as far as this research can tell, remoteness overall implies increased warmth use and 
heater activity and lower thermal efficiency, except within population centers, where a population 
center can be defined as having 3000 inhabitants or more.  
 
Table 5.16: Spearman’s rho for average warmth use over all months and all months with the 
exception of January; relation with ordinal remoteness indices.  
 
  UR6FOLD UR2FOLD 

Spearman's 
rho 

 

AvgHeatUse 

Correlation Coefficient .138* .140* 

Sig. (2-tailed) .015 .013 

N 314 314 

HeatUseNoJan 

Correlation Coefficient .152** .150** 

Sig. (2-tailed) .007 .008 

N 314 314 

 
Table 5.17: Pearson’s correlations for average warmth use over all months and all months with the 
exception of January; relation with interval remoteness indices.  
 
 PopPerSqKM AggegatedDistToServices AvgAllDist 

AvgHeatUse 

Pearson Correlation -.110 .123* .166** 

Sig. (2-tailed) .052 .029 .003 

N 314 314 314 

HeatUseNoJan 
Pearson Correlation -.117* .126* .168** 
Sig. (2-tailed) .039 .025 .003 
N 314 314 314 

The variables heater increase and heater activity according to method II were taken into account 
when measuring warmth use. It is clear that heat increase has had a much more profound effect on 
the warmth use than heater activity (table 5.18).  
 
Table 5.18: Pearson’s correlations for average warmth use over all months, thermal efficiency over 
all months and activity of the heater measured according to method I and method II. 
 
 ThermalEff AvgHeatIncr HeaterActMethod I HeaterActMethod II 

AvgHeatUse 

Pearson Correlation .595** .717** -.739** .148* 

Sig. (2-tailed) .000 .000 .000 .010 

N 299 298 299 299 

 
Warmth use correlates positively with the variable thermal efficiency; this indicates that less 
thermally efficient dwellings tend to use more warmth. The variable thermal efficiency was not 
taken into account when measuring warmth use, but the correlation may be attributed to the fact 
that less thermally efficient dwellings lose more warmth, increasing its heater activity. Warmth use 
correlates more strongly with method I for measuring warmth use than method II, which is apparent 
because method I was not used for measuring warmth use.  
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Given the results indicating remoteness being positively correlated with warmth use and negatively 
correlated with thermal efficiency, it can be established that the first part of the second research 
goal has been achieved with a degree of accuracy and an unknown degree of precision. It was shown 
that using GIS and smart meter temperature data it is possible to measure the warmth use factors. 
As a second part of the research goal it was shown how the relation between the warmth use factors 
depends on remoteness types used. Given the fact that more remote dwellings use more costly and 
CO2 emitting energy sources it can be established that CO2 and expenditure is significantly higher in 
remote areas. This is further perpetuated by the fact that CO2 emissions and expenditure on 
transport in these areas is also higher. 
 
The second hypothesis “More remote areas tend to have higher warmth use, even when using 
various measures of remoteness” can be answered in the affirmative, although there is an important 
nuance to this with regards to remoteness, which has been concluded from hypothesis 1. The 
degree to which this true is shown in the next paragraph. 
 
Predicted CO2 and £ on warmth use 
 
The estimated amount of monthly CO2 emitted for warmth use purposes per dwelling per 
household was 538 Kg for urban dwellings and 845 Kg for rural dwellings. Average monthly 
expenditure on warmth per household was estimated to be 83£ for urban and 121 £ for rural 
dwellings (table 5.19). For CO2 emissions, relations between all months were significant with the 
exception of January and June and January and September 2011 (table 11 Appendix III). For £ spent, 
all relations were significant (table 12 Appendix III). A weak relation exists between the amount of 
CO2 emitted and £ spent with remoteness (table 5.20 and table 5.21). For all remoteness indices 
used, the relation is stronger for emitted CO2 than for £ spent.  
 
Table 5.19: carbon emissions in rural and urban areas. 
 

 
UR2FOL
D 

N Mean Std. Deviation 

Estimated CO2 emitted on 
warmth use per capita 

Urban 192 538.054773 424.1630303 

Rural 177 845.344744 856.7211823 

Estimated £ spent on warmth 
use per capita 

Urban 192 83.425805 65.5662422 

Rural 177 121.827640 119.0505464 

 
Table 5.20: Spearman’s Rho for estimated CO2 emissions and estimated £ spent on heating and 
relation with ordinal remoteness indices 
 
  UR6FOLD UR2FOLD 

Spearman's rho 

PoundsAvgHeatUse 

Correlation Coefficient .211** .217** 

Sig. (2-tailed) .000 .000 

N 369 369 

KgCO2AvgHeatUse 

Correlation Coefficient .247** .255** 

Sig. (2-tailed) .000 .000 

N 369 369 
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Table 5.21: Peason’s correlation for estimated CO2 emissions and estimated £ spent on heating and 
relation with interval remoteness indices 
 
 AggegatedDistToService

s 
AvgAllDist PopPerSqKM 

PoundsAvgHeatUse 

Pearson Correlation .200** .225** -.156** 

Sig. (2-tailed) .000 .000 .003 

N 369 369 369 

KgCO2AvgHeatUse 
Pearson Correlation .224** .237** -.172** 
Sig. (2-tailed) .000 .000 .001 
N 369 369 369 

 
 
CO2 emissions and £ spent were tested for relation with the share of central heating type in each 
data zone where dwellings were located. Oil use as energy source for central heating has the 
strongest relation with CO2 emissions and £ spent (table 5.22). It can be concluded that oil use and 
gas use also have the largest impact on the CO2 emitted and £ spent since these are the most used 
central heating types in the area; 56.36% for gas, 15.01% for electric heating, 26.52% for heating oil 
and 2.1% for solid fuels (source data: HeatUseCosts). 
 
Table 5.22: Pearson’s correlation for estimated CO2 emissions and estimated £ spent and its relation 
with type of central heating. 
 
 PropGas PropElec PropOil PropSolFuel 

PoundsAvgHeatUse 

Pearson Correlation -.188** -.037 .222** .177** 

Sig. (2-tailed) .000 .483 .000 .001 

N 370 370 370 370 

KgCO2AvgHeatUse 
Pearson Correlation -.228** -.012 .257** .189** 
Sig. (2-tailed) .000 .817 .000 .000 
N 370 370 370 370 

 
Warmth use was tested with its relation to average kWh used per household at the MSOA level 
(table 5.23). Earlier it was established that high energy use appears to be correlated with warmth 
use (chapter 5.6, paragraph warmth use) but it should be concluded that this relation is not 
statistically significant. Pearson’s correlation does show a significant relationship at the 99% 
confidence level for higher energy use and higher degree of remoteness.  
 
Table 5.23: Pearson’s correlation for domestic energy consumption and interval remoteness indices  
 
 AvgHeatUse AvgAllDist PopPerSqKM AggegatedDistToServices 

Average Ordinary 
Domestic Consumption 
(kWh) 

Pearson 
Correlation 

.094 .595** -.693** .788** 

Sig. (2-tailed) .096 .000 .000 .000 

N 314 369 369 369 

Average Economy 7 
Consumption (kWh) 

Pearson 
Correlation 

.083 .623** -.706** .770** 

Sig. (2-tailed) .142 .000 .000 .000 
N 314 369 369 369 

 
The hypotheses 3 and 4 that higher degrees of remoteness result in higher degrees of CO2 emissions 
and expenditure in terms of money due to warmth use, transport and energy source are thereby 
concluded. 
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5.7 Thermal comfort 
 
Using average monthly figures, thermal comfort levels appear to follow outside temperature levels 
(figure 5.13).  
 
Figure 5.13 

 
Condition was stable temperature of 0.2°C 
 
Thermal comfort was tested for its relation with outside temperature. According to adaptive comfort 
theory, comfort temperatures should increase when average outside temperatures increase. Tests 
were conducted for assuming that the temperature should be stable and not rise or fall more than 
either 0.5°C or 0.2°C. The relation between comfort levels and outside temperature were positive for 
all months with the exception of September 2012 (table 12 appendix III). However, none of the 
relations were significant. Differences between a stable temperature of 0.2°C or 0.5°C have a 
negligible influence on the results. 
In addition, the relations between average outside temperature and average inside temperature 
over all months were tested. Estimated comfort levels do not show a relation with the average 
outside temperature when taken over the year as a whole (table 5.24). This suggests that as far as 
this case can show, thermal comfort was dependent of monthly temperature but not of yearly 
temperature, so occupants are more likely to adapt to the outside temperature of their climate at 
that moment and less adaptive (or possibly not at all adaptive) of the general climate of their region. 
 
Table 5.24: Pearson’s correlation for average adaptive comfort levels and average outside 
temperature. 
 
 AllAvgOutsTemp 

AllAVG2 

Pearson Correlation .030 

Sig. (2-tailed) .598 

N 309 

AllAVG5 
Pearson Correlation .031 
Sig. (2-tailed) .583 
N 309 

 
Comfort levels tend to be considerably higher than expected for the dwellings in the area according 
to the theory of Lück on free-running buildings (2012, p. 3) (table 5.25 and table 5.26). A majority of 
the dwellings have an estimated comfort level above the predicted comfort level.  
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Table 5.25: Percentages within 90% expected adaptive comfort levels  according to Lück (2012) 

Month Jan11 Apr11 Jun11 Sep11 Nov11 Jun12 Sep12 

Percentages within 90% adaptive 
comfort level 

7.14% 26.88% 27.43% 18.18% 18.63% 23.29% 14.49% 

Percentage below predicted 90% 
comfort level 

7.14% 9.38% 8.85% 6.36% 9.80% 12.33% 4.35% 

Percentage above predicted 90% 
comfort level 

85.71% 63.75% 63.72% 75.45% 71.57% 64.38% 81.16% 

Average inside temperature for 
all dwellings 

18.26 19.17 19.61 19.76 18.77 19.42 19.2 

Average inside temperature 90% 
comfort dwellings 

14.61 18.06 18.90 17.59 16.07 18.54 18.01 

 
Table 5.26: Percentages within 90% expected adaptive comfort levels according to Lück (2012) 

Month Jan11 Apr11 Jun11 Sep11 Nov11 Jun12 Sep12 

Percentages within 80% adaptive 
comfort level 

10.71% 41.88% 36.28% 26.36% 33.33% 27.40% 26.09% 

Percentages below 80% adaptive 
comfort level 

7.14% 5.63% 7.08% 3.64% 4.90% 10.96% 2.90% 

Percentages above 80% adaptive 
comfort level 

82.14% 52.50% 56.64% 70.00% 61.76% 61.64% 71.01% 

Average inside temperature for 
all dwellings 

18.26 19.17 19.61 19.76 18.77 19.42 19.20 

Average inside temperature 80% 
comfort dwellings 

14.74 18.22 19.16 17.81 16.78 18.45 17.81 

Contrary to the formula derived from Lück (2012), the predicted adaptive comfort levels of Toe & 
Kubota seem to overestimate the figures (table 5.27 and table 5.28). A majority of the dwellings 
have an estimated comfort level below the predicted comfort level. It is also possible that occupants 
prefer warmer temperatures than their thermostat levels indicate, but choose not to do so in order 
to save energy. 
 
Table 5.27: Percentages within 90% expected adaptive comfort levels according to Toe & Kubota 
(2013) 

Month Jan11 Apr11 Jun11 Sep11 Nov11 Jun12 Sep12 

Percentages within 90% 
adaptive comfort level 

25.00% 38.75% 40.71% 40.91% 35.29% 32.88% 43.48% 

Percentages below predicted 
90% adaptive comfort level 

50.00% 48.13% 41.59% 34.55% 45.10% 43.84% 33.33% 

Percentages above predicted 
90% adaptive comfort level 

25.00% 13.13% 17.70% 24.55% 19.61% 23.29% 23.19% 

Average inside temperature 
for all dwellings 

18.26 19.17 19.61 19.76 18.77 19.42 19.20 

Average inside temperature 
90% comfort dwellings 

19.52 20.12 20.31 20.14 19.88 20.14 19.65 
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Table 5.28: Percentages within 80% expected adaptive comfort levels according to Toe & Kubota 
(2013) 

Month Jan11 Apr11 Jun11 Sep11 Nov11 Jun12 Sep12 

Percentages within 80% adaptive 
comfort level 

50.00% 58.75% 61.06% 59.09% 50.98% 52.05% 63.77% 

Percentages below 80% adaptive 
comfort level 

32.14% 34.38% 29.20% 24.55% 36.27% 34.25% 26.09% 

Percentages above 80% adaptive 
comfort level 

17.86% 6.88% 9.73% 16.36% 12.75% 13.70% 10.14% 

Average inside temperature for 
all dwellings 

18.26 19.17 19.61 19.76 18.77 19.42 19.20 

Average inside temperature 80% 
comfort dwellings 

19.11 20.03 20.27 20.12 19.91 20.11 19.76 

 
Spearman’s Rho and Pearson’s correlation were used to find whether a relation exists between 
thermal comfort levels and remoteness (table 5.29 and table 5.30). A correlation was found between 
population per square kilometer and comfort levels in September 2012. It shows a negative relation; 
indicating that the higher the population per square kilometer, the lower the thermal comfort level 
during that month. No other significant correlations were found.  
 
Table 5.29: Spearman’s correlation for comfort levels and ordinal remoteness indices 

 
 Jan11 Apr11 Jun11 Sep11 Nov11 Jun12 Sep12 All 

 

UR6FOLD 

Correlation 
Coefficient 

.241 -.034 -.010 -.075 .104 .011 .050 .050 

Sig. (2-tailed) .208 .669 .914 .438 .297 .883 .684 .684 

N 29 161 114 110 102 175 69 69 

UR2FOLD 

Correlation 
Coefficient 

.297 .002 -.003 -.020 .165 .050 .069 .069 

Sig. (2-tailed) .118 .980 .975 .835 .098 .507 .576 .576 

N 29 161 114 110 102 175 69 69 

 
Table 5.30: Pearson’s correlation for comfort levels and interval remoteness indices 
 
 Jan11 Apr11 Jun11 Sep11 Nov11 Jun12 Sep12 ALL 

PopPerSqKM 

Pearson 
Correlation 

.042 .055 -.073 -.015 -.146 .162 -.287* -.023 

Sig. (2-
tailed) 

.830 .485 .437 .880 .144 .172 .017 .758 

N 29 161 114 110 102 73 69 175 

AggegatedDistToServices 

Pearson 
Correlation 

.174 -.036 -.027 -.043 .139 -.185 .106 .004 

Sig. (2-
tailed) 

.366 .646 .776 .658 .165 .117 .385 .959 

N 29 161 114 110 102 73 69 175 

AvgAllDist 

Pearson 
Correlation 

-.055 -.009 .017 -.058 .197* -.150 .149 .017 

Sig. (2-
tailed) 

.776 .909 .857 .544 .047 .206 .222 .826 

N 29 161 114 110 102 73 69 175 

 
No differences were found for rural or urban dwellings and comfort temperatures are very similar 
(table 13, appendix III). This makes it unnecessary to test the variance in resemblance with the 
formulas used across different degrees of remoteness. 
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5.8 Demography and geographical characteristics  
 
Demographic data per 2001 data zone were tested on their relation with the warmth use factors 
(thermal efficiency, heater activity according to both method I and II, and warmth use). The 
significant relations found are summarized in table 5.31 to 5.33 (source data: Demography (showing 
raw data) and FuelPAndVulnerability (summarized analysis)). No significant relations were found for 
warmth use and thermal comfort (source data: AdaptiveComfortDemography). For warmth use 
there were however individual months where significant relations were found (table 5.34 and table 
5.35).  
 
Variables for vulnerable areas are: percentage of the population above 50 with disability allowance, 
disability allowance in all four quartiles, percentage working / percentage pensioners, health rank, 
percentage of citizens without central heating. 
Warmth use is higher in areas where on average more citizens are working. Thermal efficiency is 
lower in areas where no central heating was found. Absence of a central heater may imply that 
thermal efficiency in those buildings is low, but more plausible is that areas with relatively many 
homes where a central heater is absent, tend to contain less thermally efficient dwellings. 
 
Variables for (fuel) poverty are: Citizen income rank, Household income rank, percentage income 
deprived population, gross weekly income per citizen and gross weekly income per household. No 
geographical data on actual fuel poverty were found.  
Income rank (the higher the number, the lower the rank) is negatively related to warmth use, while 
income deprivation is also negatively related. This indicates that in areas where more income is 
earned, more warmth is used. This is in line with the general numbers from previous researches 
indicating that warmth use increases as income increases. It cannot predict fuel poverty based solely 
on the data; geographical data are needed on fuel poverty for this type of analysis. 
 
Dwelling data that are used are: the median number of rooms, percentage detached dwellings, 
percentage flats, percentage semi-detached dwellings, percentage terraced dwellings, percentages 1 
– 10 or more rooms. 
 
Statistical tests have been colored according to the class of characteristic they belong to. 
Variables indicating vulnerability are colored yellow, fuel poverty red, dwelling related brown, 
additional other data grey 
 
Table 5.31: significant relations between demographic and geographical characteristics and thermal 
efficiency 
 
 AveragekWh 

OrdinaryAndEcon7 DetachedPerc FlatPerc 

NoCentralHeating 

(percent) 

Pearson Correlation .155** .155** -.115* .169** 

Sig. (2-tailed) 0.007136499 0.007 0.046 0.003 

 
Table 5.32: significant relations between demographic and geographical characteristics and heater 
activity (method I) 
 
 AveragekWh 

OrdinaryAndEcon7 DetachedPerc FlatPerc PercHH9Room 

Pearson Correlation -.139* -.113* .160** -.118* 

Sig. (2-tailed) 0.013935775 0.045749727 0.004543024 0.037091192 
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Table 5.33: significant relations between demographic and geographical characteristics and heater 
activity (method II) 
 
 DetachedPerc 

Pearson Correlation .116* 

Sig. (2-tailed) 0.039695045 

 
Table 5.34: significant relations between demographic and geographical characteristics and 
particular months selected for measuring warmth use in June  
 
Jun11HeatUse GR-Percworking 

(notPens) 
DeprivationCS-
incrk(Ranknr) 

DeprivationCS-
housrk(Ranknr) 

DeprivationCS-
healrk(RankNR) 

CS-prginc3b 
INCOMEAVG 

Pearson 
Correlation 

.246** -.710** -.680** -.765** -.743** 

Sig. (2-tailed) 0.000683679 4.19606E-30 7.73851E-27 2.30736E-37 1.02957E-33 

N 188 188 188 188 185 

 
Table 5.34: significant relations between demographic and geographical characteristics and 
particular months selected for measuring warmth use in November 
 
Nov11HeatUse AveragekWhOrdinaryAndEcon

7 IncDepr2011Q4 DetachedPerc FlatPerc 

PercHH2Roo

m PercHH5Room 

Pearson 
Correlation 

.166* 
-.141* .189** -.218** -.147* .173* 

Sig. (2-tailed) 0.018998192 
0.047089189 0.007511005 

0.001943
215 0.03735949 0.014242568 

N 200 200 200 200 200 200 

 
High thermal efficiency levels are positively correlated with detachment of dwellings and negatively 
correlated with flats. High thermal efficiency levels indicate a low actual thermal efficiency; hence 
areas with many flats tend to be more thermally efficient than areas with detached dwellings. The 
heater also tends to be on more often in areas with detached dwellings than in areas with flats 
(again, as with thermal efficiency, high numbers of heater activity for method 1 indicate low actual 
activity). From the month of November it appears that areas with relatively many detached 
dwellings are predicted to use more warmth while in areas with more rooms also more warmth is 
used. 
 
Additional data used were the amount of average kWh per data zone in 2011. 
Total average kWh used per citizen is correlated with both thermal efficiency and heater activity 
(method I) (table 5.31 and table 5.32); average kWh used is higher in those areas where the heater is 
on more often and in those areas where thermal efficiency is lower. This indicates that thermal 
efficiency and heater activity influence the energy bill. However, this should also mean that warmth 
use has an even more profound effect on energy bills. The lack of a significant relation between kWh 
used and (estimated) warmth used however, can be explained by the fact that for warmth use the 
thermal efficiency was not taken into account and also, that the method used for warmth use 
prediction was method II (which has no significant relation) and not method I. 
 
Drive distances to public services have shown the strongest correlations with other remoteness 
indices as well as with warmth use factors. Distance to services by public transport, which up to now 
has been left aside, was therefore analyzed in addition (table 14 and table 15 appendix III). 
Additionally researched remoteness indices were access to the following services by public 
transport: 
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GP, higher education, JobCenterPlus facility, library, nursery, police station, post office, shopping 
center, ATM, bank, Citizens Advice Bureau, chemist, further education, general store and finally, 
aggregated average of access to all these services as was done similarly to the aggregated average 
drive times; all distances were added up for each dwelling individually and then divided by the 
number of distance to service indices. 
Aggregated drive times have proven to be most significantly correlated with the warmth use 
indicators. Drive times are summarized individually similarly to public transport data as in table 16 
appendix III. Closer examination shows that correlations tend to be stronger for public transport 
than for drive time data.  
No data that was provided contradict the supposition that presence of physical dwelling properties 
which lower thermal efficiency, influence warmth use factors negatively. More clearly, that means 
that physical dwelling properties within the area can to some extent explain or predict the warmth 
use in the area. Nevertheless the significant relations with warmth use tended to only apply to 
individual months and correlations were not strong. This makes plausible the idea that this 
information, provided at the data zone level, has predicting power for dwellings but to a limited 
extent. The third research goal was to find what location-specific characteristics of an area have a 
visible impact on warmth use, and it can be concluded that these include detachment, dwelling type, 
amount of rooms and income. Whether absence of a central heater is a predictor of low thermal 
efficiency cannot be stated because there was no reason to assume causality.  
 
Hypothesis 5 stated that a higher degree of remoteness results in a higher degree of fuel poverty 
due to household income levels, higher heating costs and higher fuel costs. Hypothesis 5 could not 
be confirmed. In particular it is apparent that warmth use coincides with higher income levels. Areas 
where income deprivation was relatively high did not tend to coincide with any of the warmth use 
factors, suggesting that fuel poverty may be an effect more of income than of warmth use. Areas 
where people could be considered to be particularly vulnerable were not identified either, thereby 
also not being able to confirm hypothesis 6, which stated that a higher degree of remoteness results 
in a higher degree of vulnerability due to  higher fuel poverty and demography in rural areas (age, 
disability). 
 
Since no relations were found for warmth use factors and vulnerability and fuel poverty, and no 
relations could be researched for vulnerability and fuel poverty and remoteness due to lacking data, 
the effect of remoteness on vulnerability and fuel poverty could not be tested. An arguable 
exception is de lack of central heating which is more prevalent in remote areas and also correlated 
with warmth use at the data zone level. 
  
It may be concluded that research goal 4 was not achieved since it was not possible to show whether 
areas with high fuel poverty and existence of vulnerable households tended to coincide with high 
energy use.  
 
5.9 Revision of the relation between thermal efficiency and remoteness 
 
In chapter 5.4 it was established that estimated thermal efficiency figures tended to decrease as 
remoteness increased up to category 4 (see also: Figure 5.6 in chapter 5.4).  
Category 5 and 6 had higher numbers, which indicates that the fact that remoteness correlated with 
higher thermal efficiency figures is due to these categories but not the increasingly less thermally 
efficient dwellings in category 1-4. Thus it may be said that remoteness is an indicator for lower 
thermal efficiency figures only in accessible rural and remote rural areas, but not in (small) towns, 
villages, or cities, even when the towns are remote.  
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Through chapter 5.4 to chapter 5.8 it became clear that remoteness as a contributor to warmth use 
depends on a variety of factors related to physical dwelling properties (number of rooms and 
dwelling type). These dwelling properties tend to coincide with the building density of the area; 
denser areas have fewer rooms per occupant and are less often completely detached. 
 
A striking conclusion of this research would be that thermal efficiency as measured here can be fully 
explained by the amount of buildings in the close vicinity of the dwelling. Buildings in the vicinity 
may increase the capacity to insulate the dwelling and share warmth across the attached dwellings. 
Dwellings nearby may also provide some ‘shelter’ against wind. This assumption is derived from the 
idea that in category 1-4 many buildings are still close to each other or detached to each other while 
in category 5-6 more buildings are significantly further away from each other, or simply not 
detached. 
To confirm this supposition and to improve the explanatory power of remoteness as an indicator for 
thermal efficiency and warmth use factors in general, an indicator is created for how large the area 
of built-up sites is in square meters in the area. It is not possible to calculate or estimate the amount 
of buildings attached to the dwelling since the location of dwellings is unknown. Estimations on the 
location have been made however, and both the original location data as well as estimated locations 
are used in order to test the supposition.  
 
Method 
For the initially given location, the amount of built up area is calculated within its square kilometer. 
Since the dwelling can be anywhere within the square kilometer, it is not possible to establish with 
certainty the amount of built up area in its closer vicinity. 
As explained in chapter 4.1, dwellings have been relocated according to the data zone where the 
amount of population within the square kilometer was highest. It is assumed that dwellings are 
more likely to be located there than on their initially given location. The degree to which this is true 
however remains unknown and impossible to control. Nonetheless it is possible to compare the built 
up vicinity of the originally provided location data with the built up vicinity of relocated dwellings, 
and find which of both has higher explanatory power regarding thermal efficiency of the dwellings. 
Two different parameters are used in order to estimate the approximate amount of built up area 
around the relocated dwelling; the area 200 meters around the dwelling and the area 500 meters 
around the dwelling. For the initial data, an area of 1 km² is used. Some of the dwellings never were 
relocated because for some cases, no other data zones were close than the data zone within it was 
located initially, thereby not being possible to be relocated at the basis of more densely populated 
data zones nearby. Other dwellings never were relocated because they already were located in the 
area with the highest population density within their km². 
 
The built up area data was retrieved from Ordnance Survey (2015), providing polygons for built up 
area. Polygons indicating a built up area were selected based on 200m, 500m and 1km² buffer zones. 
The total amount of square meters of built up area selected per buffer zone was calculated using 
‘calculate geometry’ tool in ESRI’s ArcMap. Polygons that were only partially within the buffer zone 
area were not cut off; since no justification could be found for either cutting off the part of the 
polygon falling outside the buffer nor taking into account the whole polygon, the latter option was 
chosen because this required one less task (clip) to be carried out.  
 
The hypothesis is that the amount of built up area is negatively correlated with the thermal 
efficiency figure attributed to it. If this hypothesis is correct, this would mean that more built up area 
in the vicinity results in a lower thermal efficiency figure, which means higher actual thermal 
efficiency.  
The built up area data was retrieved from Ordnance Survey (2015). Maps on national grid reference 
squares NO, NJ and NK were merged. A model was built in ESRI’s ArcMap modelbuilder (appendix II, 
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figure 2) to select the buildings within the mentioned radii (1 km², 200m circles and 500m circles) 
and report the number of buildings and the amount of m² of built up area; the sum of that is 
reported in excel along with the ID of the dwelling that belongs to the amount of built up m². These 
numbers are joined in a table with the remoteness indices, thermal efficiency and warmth use.  
 
Results 
The amount of built-up area is highest in large urban areas (figure 5.14). Accessible rural and remote 
rural dwellings (class 5 and 6) have the least built-up area in the neighborhood, but the difference 
with class 1 to 4 is less for the relocated dwellings (200m buffers and 500m buffers) than for the 
initial locations. The difference is also less for 200m buffers than for 500m buffers (figure 5.14). Note 
that class 1 to 4 is equal to class 1 in the 2-fold classification scheme while class 5 and 6 are equal to 
class 2 in this scheme.  
 
Figure: 5.14: bar chart indicating the relation between the average amount of built-up area within 
the different radii in relation to the 6-fold classification scheme of the Scottish Government. 
 
Km² buffers     200m buffers (radii)   500m buffers (radii) 
 

 
More built-up area results in lower thermal efficiency figures; i.e. higher actual thermal efficiency, 
and the correlation is strongest for the smallest buffers (200m radius) measured (table 5.35). No 
correlations were found for warmth use. When calculating these relations among class 1-4, the 
thermal efficiency figure even becomes positive, showing lower thermal efficiency in larger urban 
areas, although not to a statistically significant extent (table 5.36). The opposite is true for class 5 
and 6 where higher remoteness coincides with lower thermal efficiency, while additionally for buffer 
areas of 200m measured, the correlation is significant (table 5.37). 
 
Table 5.35: Pearson’s correlations between the amount of built up area in the estimated vicinity and 
remoteness indices, thermal efficiency and warmth use. 
 
 BuiltUpSquare BuiltUpArea200 BuiltUp500 AvgAllDist PopPerSqKM DistToServices ThermalEff HeatUse 

BuiltUpSquare 

Pearson 
Correlation 

1 .750** .968** -.549** .762** -.758** -.150* -.051 

Sig. (2-tailed)  .000 .000 .000 .000 .000 .014 .371 

N 368 368 368 367 367 367 266 314 

BuiltUpArea200 

Pearson 
Correlation 

.750** 1 .774** -.385** .653** -.520** -.163** -.059 

Sig. (2-tailed) .000  .000 .000 .000 .000 .008 .300 
N 368 368 368 367 367 367 266 314 

BuiltUp500 

Pearson 
Correlation 

.968** .774** 1 -.546** .769** -.762** -.146* -.037 

Sig. (2-tailed) .000 .000  .000 .000 .000 .017 .513 
N 368 368 368 367 367 367 266 314 
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Table 5.36: Pearson’s correlations between the amount of built up area in the estimated vicinity and 
remoteness indices, thermal efficiency and warmth use when selecting only remoteness class 1 to 4. 
 

 ThermalEff HeatUse 

BuiltUpSquare 

Pearson Correlation .106 .111 

Sig. (2-tailed) .216 .165 

N 137 158 

BuiltUpArea200 
Pearson Correlation .069 .094 
Sig. (2-tailed) .420 .242 
N 137 158 

BuiltUp500 
Pearson Correlation .122 .130 
Sig. (2-tailed) .154 .104 
N 137 158 

 
Table 5.37: Pearson’s correlations between the amount of built up area in the estimated vicinity and 
remoteness indices, thermal efficiency and warmth use when selecting only remoteness class 5 and 
6. 
 
 ThermalEff HeatUse 

BuiltUpSquare 

Pearson Correlation -.137 -.012 

Sig. (2-tailed) .121 .880 

N 129 155 

BuiltUpArea200 
Pearson Correlation -.174* -.074 
Sig. (2-tailed) .049 .362 
N 129 155 

BuiltUp500 
Pearson Correlation -.114 .020 
Sig. (2-tailed) .196 .802 
N 129 155 

 
The causal relation between thermal efficiency and warmth use has been empirically proven in 
previous researches. Whether this relation is also causal for the study area cannot be proven 
because sufficient data is lacking. Most importantly lacking may be the exact locations and their 
propensity to built-up areas. It can nevertheless be assumed that the amount of built-up area is 
indeed an explanatory factor for lower thermal efficiency in more remote areas. Assuming this 
causal relation, a stepwise multiple regression is conducted in order to find whether the correlations 
with thermal efficiency and remoteness can be explained through factors other than their distance 
from and amount of built-up areas in the vicinity (table 5.38). Since 200m buffer zones showed the 
highest correlations, and assuming the built-up area is a causal factor, it is most likely that 200m 
buffers provide the highest amount of explanatory power among the different buffer types that 
were used previously. It is assumed that for the independent variable built up area, the dependent 
variable thermal efficiency is normally distributed (figure 5 appendix III). 
 
Table 5.38: multiple regression on interval remoteness indices and thermal efficiency when 
controlling for the amount of built-up area within 200m from the estimated dwelling location. 
 
Model Summaryb 
Model R R Square Adjusted R Square Std. Error of the 

Estimate 

1 .215a .046 .043 .0175661 

a. Predictors: (Constant), AggegatedDistToServices 
b. Dependent Variable: ThermalEff 
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ANOVAa 
Model Sum of Squares Df Mean Square F Sig. 

1 
Regression .004 1 .004 12.810 .000b 

Residual .081 264 .000   

Total .085 265    

a. Dependent Variable: ThermalEff 
b. Predictors: (Constant), AggegatedDistToServices 
 
Excluded Variablesa 
Model Beta In T Sig. Partial Correlation Collinearity Statistics 

Tolerance 

1 

BuiltUpArea200 -.055b -.744 .458 -.046 .652 

AvgAllDist .056b .657 .512 .040 .504 

PopPerSqKM -.028b -.320 .749 -.020 .486 

a. Dependent Variable: ThermalEff 
b. Predictors in the Model: (Constant), AggegatedDistToServices 
Output tables of the coeffiecients and Entered variables were not included here. The complete tables 
were added in table 17 appendix III.  
 
The results show that the amount of built-up area cannot explain the lower thermal efficiency in 
rural areas other than the fact that remote areas tend to have lower thermal efficiency. This may be 
either because other factors than the amount of nearby dwellings play a role in thermal efficiency or 
it may be attributed to the fact that exact dwelling locations are unknown and thus the propensity of 
built-up area and detachment of the dwellings is unknown and cannot be taken into account. 
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6. Discussion 
 
Evaluation 
The first step in the analysis using outside and inside climate data for estimating various warmth use 
factors was interpolation of climate data. Outside climate was estimated using kriging data. It should 
be noted that the use of inverse distance weighting (IDW) is still a matter of discussion in research 
on weather data, although kriging tends to provide more accurate results, and in particular co-
kriging. When time and resources allow for it, it would be recommendable to control whether IDW 
may in a particular case provide better results than kriging. This was not done in this research. 
Although it is clear that the interpolated weather data indirectly provided results that were in line 
with the hypothesis that warmth use is related to remoteness, it is possible that IDW would have 
provided more accurate results. It is also possible that taking into account other factors by using co-
kriging, such as proximity to the sea, may have provided more reliable results on outside weather.  
Wind and humidity were not used in the analysis. Both factors are known to be of high importance 
for thermal comfort (chapter 2.10 and De Dear et al. 1997) and thermal efficiency (Chapter 2.9 and 
Lück 2012). This may explain the limited coherence of comfort temperature across months. 
 
Useful information can be derived from temperature data provided by smart energy monitors, which 
means that the first research goal was achieved; a degree of thermal efficiency, comfort 
temperature, heater activity and warmth use were measured, although the latter two only to a 
limited extent. 
 
The reliability of thermal efficiency over the months was evaluated measuring the coherence of 
thermal efficiency figures over several months. The correlations between months suggest that 
thermal efficiency was measured, but with limited accuracy, arguably due to absence of wind and 
humidity used in the analysis.  
Warmth use was estimated in this research but findings appear to be too inaccurate in order to draw 
strong conclusions on the numbers. The accuracy of warmth use estimates was evaluated by testing 
the geographical relation between the dwelling’s estimated warmth use and known kWh used at the 
2011 data zone level. With accurate warmth use estimates on 314 cases in different 192 different 
data zones it would be expected that warmth use should show a significant relation with energy use 
per data zone if warmth use was accurately measured, especially when thermal efficiency and kWh 
per data zone do correlate. Lack of accuracy for warmth use is likely to have been caused by lack of 
accounting for interfering factors, one of these being the thermal efficiency of the dwellings. 
However, it may be that using more dwellings, warmth use and average energy use per data zone 
would be more strongly correlated. Now however, some outliers in some data zones where there 
are no other dwellings in that same data zone, have a strong effect on the correlation between kWh 
and estimated warmth used.  
Secondly, inaccurate warmth use data may be related to the method used for heater activity, which 
was the alternative method II.  
To measure the heater activity, two different methods were used. Both methods coincided to some 
extent but their average figures were not correlated. This suggests that at least one of the methods 
used was flawed. The first method showed more significant relations among months and more 
strongly with remoteness indices, suggesting this method was more accurate than method II. 
Alternative measures for measuring warmth use had to be developed in addition to the initial 
method, which required more precise temperature data (with at least two decimals recorded). This 
may have improved the outcomes of heater activity and related to it, warmth use. 
Differences in warmth use are, as far as the research can show, not related to comfort 
temperatures, nor do comfort temperatures appear to differ across geographies within the study 
area. The lack of correlation of thermal comfort levels between months might suggest that actual 
thermal comfort levels have not been measured because thermal comfort does not vary widely from 
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month to month within one household. Thermostat levels however may vary much more; hence the 
use of thermostat levels in dwellings (as was done in this research) may not give an effective way to 
measure thermal comfort. It may also be that more cases are needed in order to find significant 
correlations; the research of Toe & Kubota (2013) found r² levels as low as 0.09 for moderate 
climates. The relation may not be clear with a lower number of cases (3213 cases were used in the 
study of Toe & Kubota (2013)). 
 
As far as CO2 emissions and expenditure on energy are concerned, the research identified a variety 
of variables that may be combined to estimate CO2 levels and expenditure, but the results were not 
verified. However since these figures are based on warmth use levels, which are unlikely to be 
accurate, these numbers should be taken with a large grain of salt. For this part the research merely 
achieved to show that it was possible estimating CO2 emissions and expenditure based on empirical 
data; its validity was however not proven. 
For CO2 emissions and cost in transportation data, several variables had to be assumed. Certain 
vehicles, for example new buses, light duty vehicles were assumed to be used in the study area but 
the specifics for light duty vehicle used in the study of Schlömer et al. (2014) were not researched or 
evaluated on the degree to which these vehicle types coincided with the specifics of buses used for 
public transport in the data of Department of Energy and Climate Change (2012). It was also not 
researched whether the car types varied over different geographies or what types of cars are most 
commonly used in Scotland, so the most common car type was assumed for all areas. It was pointed 
out in the literature that households in more remote areas often have more than one car. This was 
not taken into account in the analysis, although more cars per household may result in more car 
purchases, which also increases the amount of CO2 emitted (due to more cars being produced). 
 
For fuel poverty, no relations at all were found with warmth use. This is not because the research 
implies that high warmth use and higher incomes means that fuel poor areas are not in need of 
warmer dwellings. What the research does imply is that low income areas have not been found to be 
less thermally efficient, and neither have lower income areas been found to demand higher comfort 
temperatures. On the other hand, the opposite cannot be proven either. 
This shows one of the shortcomings of the research; no data were obtained from the dwellings’ 
properties or its residents. It remains unclear whether fuel poverty and vulnerability are related to 
thermal efficiency or thermal comfort. But the strong correlations for warmth use and income do 
suggest that income is a factor that is of high significance for the eventual warmth use, (and warmth 
use was proven to occur more in less thermally efficient dwellings) while demographic data are of 
lower significance in explaining warmth use than income. 
 
The initial scope of the research was to find whether the thermometer data could provide valuable 
information for smart grids. The research has not found a cause to make this argument. Prediction 
or at least correlation of warmth use with certain geographical areas is a precondition for its value 
for smart grids. However, the research does show that this information may well be of value when it 
is possible to use the information on thermal efficiency (derived from the temperature data) in order 
to combine this with more of the data which is necessary to be acquired in order to estimate 
warmth use. Thermal efficiency is difficult to measure for individual dwellings; this is shown by the 
variety of energy efficiency bands that result in different outcomes (in Scotland most importantly 
SAP and NHER). The research shows that thermal efficiency starts to increase from a certain degree 
of remoteness. Further research into this area may be able to identify what precisely causes this, 
which can be valuable information into the use of smart grids.  
 
Recommendations for further research 
Furthermore, related to both smart grids and this research would be to make a weighted overlay 
predicting warmth use for areas by a variety of factors that tend to coincide with warmth use or 
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thermal efficiency. Some of these factors have been identified in this research; Dwelling type, 
number of rooms, remoteness, income, outside temperature and vicinity to buildings all impact the 
use of warmth. These factors are of course intertwined and should be controlled for the degree to 
which these interfere with each other. The strength of relations with warmth use varied strongly per 
month. Although it has been noted that warmth use in this research has not been proven to give 
reliable figures, it should come to the researcher’s attention that with a weighted overlay as 
described here, the factors involved for predicting warmth use may vary per month. 
Secondly, for measuring whether the heater is on, method I may be a more recommendable 
approach than method II; this may also improve the reliability of the warmth use measurements 
(which relied on method II in this research). In addition to that it may be recommendable to use the 
initial method for measuring heater activity, which was eventually disregarded, but may be used 
effectively when east 2 decimals of inside temperature are recorded.  
Regarding the primary influences on warmth use as defined by Harvey (2006), a recommendation is 
to add the influence of humidity, wind speed and wind direction; these data are all available through 
the Meteorological Office (2013). With the data available two of the five primary influences of 
thermal efficiency may be explained; resistance to moisture migration and rate of exchange of inside 
air with outside air. 
Certain data are not to be accessed by the researcher but almost certainly are available to some 
public researchers, who may research the extent to which the thermal efficiency of the analyzed 
dwellings coincides with SAP and NHER bands at large scale geographical levels such as 2011 data 
zones or postcode levels. A higher amount of dwellings to be analyzed may also reveal more 
information on the relation of the warmth use factors and geographical criteria other than 
remoteness and information of thermal comfort levels, and adaptability thereof, across Scotland. 
This may result in more information on what location-specific characteristics of an area have a 
visible impact on warmth use factors, as an addition to what the third research goal has achieved. 
Data on fuel poverty and vulnerability, either at the individual level or at large scale geographical 
levels, may also shed light on causes of fuel poverty and vulnerability; this was the fourth research 
goal, which was not achieved. Data on fuel poverty and vulnerability, either at the individual level or 
at large scale geographical levels, may also shed light on causes of fuel poverty and vulnerability; this 
was the fourth research goal, which was not achieved. These figures could prove to be particularly 
useful for public actions for decreased fuel poverty and increased thermal efficiency. The effects of 
area-based schemes such as HEEPS:ABS (2013) may be improved using spatial autocorrelation to 
identify areas of low thermal efficiency, high fuel poverty and high vulnerability. This is a way the 
issues addressed in this research may be applied in practice. Also the costs of these schemes may be 
lowered using a second spatial autocorrelation analysis to identify where dwellings with low thermal 
efficiency may be most proximate to other dwellings to be prioritized, since insulation on several 
buildings in the same area can be more economically beneficial (Consumer Focus Scotland 2012, p. 
4).This is especially relevant for remote areas, where insulation measures have been less applied but 
more badly needed, and where economies of scale are more challenging to achieve due to the low 
proximity of other dwellings. 
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7. Conclusion 
 
Lowering energy use may be an effective to tackle many of the concerns that exist today with 
regards to energy use. In Scotland, warmth use is a large contributor to both pollution and 
expenditure for households. For rural households this is more so than for urban households, due to 
dwelling’s physical properties in rural areas (SHCS 2009, SHCS 2011a). Measuring the thermal 
efficiency of dwellings however is not a straightforward issue and neither is measuring the causes for 
warmth use in different areas; the reasons for why warmth use has gone up in the past decades are 
disputed (Shipworth 2011). 
 
The first research question addressed whether temperature data derived from energy monitors 
could be useful in monitoring warmth use factors (thermal efficiency, heater activity and warmth 
use) and thermal comfort temperatures. Development of a method was successful in estimating 
these factors and to distinguish these factors among the tested dwellings. Correlations were not 
strong enough to make predictions on eventual warmth use within an area. 
For establishing whether the heater was on or off, two different methods were used, the first 
suggesting more reliable results than the second. The first method suggested more reliable results 
due to its stronger and more often significant correlations with remoteness indices, which is to be 
expected since remote dwellings are likely to have a significantly different heater activity than urban 
dwellings primarily due to their higher warmth use (this has been proven to be the case in previous 
research). So although the claim that method I is an effective way to measure heater activity cannot 
be proven, it is suggested to be so due to its significant correlation with other variables that 
according to theory indeed should correlate. For both methods heater activity was higher in colder 
months than in warmer months, which similarly is to be expected according to theory.  
Thermal efficiency was measured when the heater was off according to method I for measuring 
heater activity. For thermal efficiency it was proven that thermal efficiency in one month also 
coincides with thermal efficiency in another month. In theory, thermal efficiency should remain 
equal regardless of the outside temperature. The correlations from one month to the other were, 
although highly significant, not very strong, so the method does provide some information on the 
thermal efficiency but the method is simultaneously limited in its accuracy.  
Warmth use was estimated using the activity of the heater according to method II combined with 
increases in temperature when the heater was regarded as on. Thermal efficiency was not taken into 
account while estimating warmth use, and this may explain why warmth use showed weaker 
relations with remoteness and other geographical factors than thermal efficiency. In addition to 
that, the weakness of relations may be explained by the use of measuring heater activity according 
to method II. 
Comfort temperatures were estimated in order to find whether discrepancies in warmth use and 
thermal efficiency may be the result of differing demand inside temperature in the house. Comfort 
temperature levels did not vary across various levels of geography. Thermal comfort changed 
throughout the year along with the monthly temperature. This coincides with theory on adaptive 
comfort. Nonetheless thermal comfort did not coincide with the predicted comfort levels of previous 
research; thermal comfort levels tended to be underestimated by research assuming thermal 
comfort levels for occupants of free running buildings while it tended to be overestimated for 
occupants of heated and cooled buildings. Possible explanations may be that for the dwellings in this 
study it was unknown whether buildings were free-running or not, thus the combination of both 
cases distorted the data for both analyses, while another explanation may be that actual thermal 
comfort levels were not measured since it was unknown whether the stable temperature levels in 
dwellings were comfortable to the occupant or only thermostat levels (which were possibly not 
directly related to thermal comfort). 
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Estimating the warmth use allowed for estimating the CO2 emissions and expenditure on warmth. 
Since transport and housing are both primary contributors to CO2 emissions and expenditure, 
transportation figures per measured dwelling were estimated.  
Through this information, the research goals 2a and 2b were achieved. For 2a; developing a GIS-
based methodology for finding heat loss and fuel consumption, the method has proven to be able to 
show that CO2 emissions and expenditures on both warmth use and fuel are influenced by the 
remoteness of an area by a variety of factors. A GIS method called kriging was used to interpolate 
weather data. The significance and correlations that were found by achieving research goal 1 show 
that this method was successful in achieving its goal. GIS was also used for establishing the area type 
of each dwelling, which allowed for estimating their fuel consumption. The validity of this outcome 
however, was not tested to empirical data. 
 
In addition, GIS was essential for research goal 2b in finding how different measures of remoteness 
influence CO2 emissions, thermal efficiency and warmth use. It was shown that GIS can be used 
successfully in estimating remoteness at the hand of distance to population centers; using network 
analysis, network distance to population centers showed significant correlations with warmth use, 
thermal efficiency and heater activity. However, the known indicators for distances to services 
showed to be a better predictor for warmth use than distance to population centers, while these are 
merely derived as attribute data rather than obtained through a GIS-based methodology.  
Pearson’s correlations between remoteness factors were at a minimum of -0.424 (population per 
square kilometer and its relation to distance to population centers) and a maximum of 0.864 (drive 
distance to services and its relation to Scottish Government classification). The correlations suggest 
that there is sufficient reciprocity among the remoteness indices while the indices are 
simultaneously dissimilar enough to justify the use of various indicators. Using the various 
remoteness degrees it was shown that warmth use factors start to increase only when dwellings are 
located outside of populated areas (containing more than 3000 inhabitants). 
Distances to individual population centers (villages, towns or cities) were regarded as having too 
little correlation with other remoteness indicators in order to be useful for further analysis on its 
relation to warmth use factors. The aggregate of distances to all population centers combined 
showed a stronger correlation than the individual distances and therefore this aggregate figure was 
used.  
 
Related to research objective 2 was research objective 3; to find what location-specific 
characteristics of an area have a visible impact on warmth use. Demographic data were usually not 
significantly correlated with warmth use. Important exceptions were the variables ratio workers / 
pensioners and the ranking of income deprivation. It is very likely that both variables are related to 
each other as workers may have more disposable income, which for both previous researches and 
this research have shown to result in less warmth use on average. Dwelling type was correlated with 
warmth use in some months, while dwelling type was correlated with heater activity and thermal 
efficiency for the average of all months; Pearson’s correlation for presence of detached dwellings 
showed a significant correlation of 0.155 and flats -0.155 with thermal efficiency. Heater activity was 
significantly higher for detached dwellings (Pearson’s correlation = -0.113 for detached dwellings 
while 0.160 for percentage of flats) Number of rooms was only occasionally significantly correlated; 
this suggests that house type is a better predictor of the used warmth use factors than number of 
rooms or demographic data.  
 
The fourth objective was related to fuel poverty and vulnerability of households. These coincide with 
the data used for research objective 3. It could not be proven that factors related to warmth use 
related to fuel poverty. No actual data on fuel poverty were available and therefore income data 
were used instead. Higher incomes correlated with higher warmth use while presence of income 
deprivation showed no correlations. A likely explanation is that fuel poverty is more determined by 
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income than by warmth use factors of the dwelling. It is also possible that fuel poor households 
happen to be located in data zones with relatively high incomes or on average low income 
deprivation. Another explanation may be that poverty and fuel poverty overall are low in the study 
area and more present in other parts of Scotland. 
For vulnerability, no demographic relations were found with any of the factors influencing either 
uncomfortably low temperatures (taken into account by adaptive comfort temperature) or a high 
energy bill for warmth use (warmth use and heater activity) or a factor that may influence both 
(thermal efficiency). Thermal efficiency however tended to be larger in areas where no central 
heating was found; this may imply (although it does not necessarily do so) that dwellings that 
already are more vulnerable due to lack of central heating also have less ability to keep any warmth 
that the dwelling may have otherwise, inside, perpetuating the vulnerability of its residents. If the 
contrary to this implication is not disproven, it may reasonably alarm Scottish citizens and policy 
makers that the vulnerability of these factors tends to coincide.  
 
The main goal of this research was to develop a method to measure domestic warmth use from 
inside temperature data and to find how various degrees of remoteness influence energy use for 
households and to analyze the implications on CO2 emissions, fuel poverty and vulnerability of 
households. 
Monthly CO2 emitted by transport per household came down to 1200 Kg for urban areas and 1905 
Kg for rural areas. Yearly expenditure on transport per household was estimated to be 570 £ for 
urban and 905 £ for rural areas. The estimated amount of monthly CO2 emitted for warmth use 
purposes per dwelling per household was 538 Kg for urban dwellings and 845 Kg for rural dwellings. 
Average monthly expenditure on warmth per household was estimated to be 83£ for urban and 121 
£ for rural dwellings. For transport, higher figures on CO2 and expenditure for remote areas were 
explained by the drive distances and used fuel types. For dwellings, higher figures on CO2 and £ 
expenditure on warmth use were partially explained by the type of central heating used and partially 
by the amount of warmth used.  
The validity and accuracy of the model can only be tested to a limited extent with the data available. 
Considering that earlier research found no correlation between electricity use and rural or urban 
households (Craig et al. 2014), it is likely that differences in energy use can by and large be 
attributed to warmth use. For the month of November it was shown that higher warmth use was 
correlated with areas with higher average energy use. Although the average yearly warmth use was 
not correlated significantly with energy use in kWh per data zone, average thermal efficiency was. 
This suggests that thermal efficiency was measured more accurately than warmth use. In addition, 
thermal efficiency was not taken into account while measuring warmth use due to lacking data on 
the heater’s properties (primarily the intensity with which the heater was functioning) and therefore 
inherent errors of measurement were assumed for warmth use. In total 369 dwellings were analyzed 
across 7 months in two years, some of which lacked data on inside temperature for some of these 
months and occasionally, for data missed for all months analyzed for some dwellings. The amount of 
dwellings and months analyzed showed sufficient to both draw reliable conclusions on the 
significance and direction of the relation between warmth use factors and remoteness. The amount 
of analyzed dwellings was also high enough on many occasions to find relations between warmth 
use factors and geographical information on the data zone level.  
The research has shown that inside temperature data can provide information along with 
geographical information through which estimates can be made on the thermal efficiency in 
dwellings. With enough data, patterns in various geographies can be found as well. Geographies may 
be based on statistical data known at the geographical level but may also be based on remoteness 
indices, the latter being more strongly correlated with warmth use factors than the former for this 
study area with this amount of analyzed dwellings. The method was able to find possible areas of 
particular vulnerability, but only regarding dwellings with no central heating. The method was not 
able to explain fuel poverty or find areas of possible fuel poverty.  
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Appendix I: Maps and visualization 
 
Figure 1: remoteness according to a 2-fold Figure 2: remoteness according to a 3-fold 
classification scheme      classification scheme 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3: remoteness according to the 6-fold  
classification scheme     
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Figure 4: remoteness according to distance to Figure 5: remoteness according to population per 
drive times to services    square kilometer 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 6: remoteness according to distance to Figure 7: remoteness according to distance to towns 

villages 
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Figure 8: remoteness according to distance to Figure 9: remoteness according to distance to   
cities      all population centers 

 
 
 
 

 

 

 

 

 

 

 

 

Figure 10: CO2 emissions for transportation Figure 11: Heater activity 1   
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Figure 13: Heater activity 2   Figure 14: Thermal efficiency  

 

 

 

 

 

 

 

 

 

 

Figure 15: warmth use    Figure 16: average energy use per MSOA per  

      household (dots represent distance to services) 
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Appendix II: Tables and figures for clarification of data analysis 

 
Figure 1:  

 
 
Table 1: temporal interpolation of outside temperatures belonging to TimeIDs. April 2011, dwelling 4 
 

Date Outside 
TimeID 

TimeID Temporal interpolation formula OutsTemp InsTemp 

1/4/11 0:00 1 1 Temperature measured as a result from 
interpolation of meteorological data 

5.19555 
 

1/4/11 0:05  2 TimeID1-((TimeID1- TimeID13)/12) 5.173960833 17.5 

1/4/11 0:10  3 TimeID2-((TimeID1- TimeID13)/12) 5.152371667 17.3 

1/4/11 0:15  4 TimeID3-((TimeID1- TimeID13)/12) 5.1307825 17.3 

1/4/11 0:20  5 TimeID4-((TimeID1- TimeID13)/12) 5.109193333 17.2 

1/4/11 0:25  6 TimeID5-((TimeID1- TimeID13)/12) 5.087604167 17.2 

1/4/11 0:30  7 TimeID6-((TimeID1- TimeID13)/12) 5.066015 17.2 

1/4/11 0:35  8 TimeID7-((TimeID1- TimeID13)/12) 5.044425833 17.1 

1/4/11 0:40  9 TimeID8-((TimeID1- TimeID13)/12) 5.022836667 17 

1/4/11 0:45  10 TimeID9-((TimeID1- TimeID13)/12) 5.0012475 16.9 

1/4/11 0:50  11 TimeID10-((TimeID1- TimeID13)/12) 4.979658333 16.9 

1/4/11 0:55  12 TimeID11-((TimeID1- TimeID13)/12) 4.958069167  

1/4/11 1:00 2 13 Temperature measured as a result from 
interpolation of meteorological data 

4.93648 
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Figure 2: Model for reporting the amount of m2 of built up area around the data point  
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Appendix III: Statistical tests 
 
5.1 Remoteness 
 
Figure 1: boxplot of 6-fold and 8-fold classification scheme and its dispersion compared to 
aggregated distance to services.  
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5.2 Transportation 
 
Table 1: t-test Table 5.4: t-test for CO2 emitted and £ spent by rural / urban classification, 
significance. 
Independent Samples Test 
 Levene's Test 

for Equality of 
Variances 

t-test for Equality of Means 

F Sig. t df Sig. 
(2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% Confidence Interval of the 
Difference 

Lower Upper 

Estimated CO2 
emitted by bus 
transport per 
capita 

Equal variances 
assumed 

63.998 .000 -20.006 367 .000 -57.3210600 2.8651319 -62.9551957 -51.6869243 

Equal variances 
not assumed 

  
-20.311 337.833 .000 -57.3210600 2.8222352 -62.8724271 -51.7696929 

Estimated CO2 
emitted by 
diesel per capita 

Equal variances 
assumed 

52.789 .000 -21.388 367 .000 
-
270.3755964 

12.6414261 -295.2343154 -245.5168774 

Equal variances 
not assumed 

  
-21.747 330.239 .000 

-
270.3755964 

12.4325837 -294.8326447 -245.9185481 

Estimated CO2 
emitted by 
petrol per capita 

Equal variances 
assumed 

55.979 .000 -21.319 367 .000 
-
372.2876014 

17.4623756 -406.6264715 -337.9487312 

Equal variances 
not assumed 

  
-21.673 331.287 .000 

-
372.2876014 

17.1774882 -406.0783065 -338.4968962 

Estimated CO2 
emitted by 
motorbikes per 
capita 

Equal variances 
assumed 

97.640 .000 -21.166 367 .000 -5.4402108 .2570291 -5.9456455 -4.9347762 

Equal variances 
not assumed 

  
-21.549 323.696 .000 -5.4402108 .2524631 -5.9368865 -4.9435352 

Estimated CO2 
emitted by 
transport per 
capita 

Equal variances 
assumed 

55.887 .000 -21.297 367 .000 
-
705.4244684 

33.1238729 -770.5608734 -640.2880635 

Equal variances 
not assumed 

  
-21.648 331.788 .000 

-
705.4244684 

32.5867666 -769.5271892 -641.3217477 

Estimated £ 
spent on bus 
transport per 
capita 

Equal variances 
assumed 

63.998 .000 -20.006 367 .000 -25.7944770 1.2893094 -28.3298381 -23.2591160 

Equal variances 
not assumed 

  
-20.311 337.833 .000 -25.7944770 1.2700058 -28.2925922 -23.2963618 

Estimated £ 
spent on diesel 
per capita 

Equal variances 
assumed 

52.789 .000 -21.388 367 .000 
-
121.6690184 

5.6886417 -132.8554420 -110.4825948 

Equal variances 
not assumed 

  
-21.747 330.239 .000 

-
121.6690184 

5.5946627 -132.6746901 -110.6633467 

Estimated £ 
spent on petrol 
per capita 

Equal variances 
assumed 

55.979 .000 -21.319 367 .000 
-
184.9471619 

8.6750588 -202.0062220 -167.8881017 

Equal variances 
not assumed 

  
-21.673 331.287 .000 

-
184.9471619 

8.5335307 -201.7339015 -168.1604223 

Estimated £ 
spent on 
motorbike fuel 
per capita 

Equal variances 
assumed 

97.640 .000 -21.166 367 .000 -2.7026190 .1276884 -2.9537117 -2.4515263 

Equal variances 
not assumed 

  
-21.549 323.696 .000 -2.7026190 .1254201 -2.9493604 -2.4558777 

Estimated £ 
spent on 
transport per 
capita 

Equal variances 
assumed 

55.879 .000 -21.298 367 .000 
-
335.1132763 

15.7343445 -366.0540616 -304.1724911 

Equal variances 
not assumed 

  
-21.649 331.759 .000 

-
335.1132763 

15.4791184 -365.5628738 -304.6636789 
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Table 2: Spearman’s correlation for £ spent and its relation with the 6-fold rural / urban classification 
scheme. 
 
Correlations 
 Bus transport 

per capita (£) 
diesel per capita 
(£) 

petrol (car) per 
capita (£) 

Petrol by motorbikes per 
capita (£) 

Total transport per 
capita (£) 

Spearman'
s rho 

UR6FOLD 

Correlation 
Coefficient 

.812** .849** .849** .848** .849** 

Sig. (2-
tailed) 

.000 .000 .000 .000 .000 

N 369 369 369 369 369 

 
Table 3: Pearson’s correlation for £ spent and its relation with distance to population centers 
 
Correlations 

 Bus transport 
per capita (£) 

diesel per 
capita (£) 

petrol (car) per 
capita (£) 

Petrol by 
motorbikes per 
capita (£) 

Total transport 
per capita (£) 

Bus transport 
per capita (£) 

Distance to Cities 

Pearson 
Correlation 

.643** .583** .652** .644** .684** .643** 

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 
N 369 369 369 369 369 369 

Distance to Towns 

Pearson 
Correlation 

.529** .479** .536** .531** .548** .529** 

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 
N 369 369 369 369 369 369 

Distance to Villages 

Pearson 
Correlation 

.571** .578** .568** .571** .547** .571** 

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 
N 369 369 369 369 369 369 

Population per square 
kilometer 

Pearson 
Correlation 

-.694** -.670** -.695** -.694** -.690** -.694** 

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 
N 369 369 369 369 369 369 

Average distance to 
population centers 

Pearson 
Correlation 

.706** .664** .711** .707** .720** .706** 

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 
N 369 369 369 369 369 369 

Distance to all services 

Pearson 
Correlation 

.788** .754** .792** .788** .797** .788** 

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 

N 369 369 369 369 369 369 
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5.3 Heater activity 

 

Figure 2: correlation between April 2011 according to method I and April 2011 according to method 

II 

 
Figure 3: correlation between June 2011 and April 2011 according to method I 

 
Figure 4: correlation between June 2011 and April 2011 according to method II 
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Table 4: Pearson’s correlation for heater activity according to method I and method II 
 
Correlations 
 ActMethodI4/1/2011 ActMethodII4/1/2011 

ActMethodI4/1/2011 

Pearson Correlation 1 -.713** 

Sig. (2-tailed)  .000 

N 287 287 

    

ActMethodII4/1/2011 

Pearson Correlation -.713** 1 

Sig. (2-tailed) .000  

N 287 287 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
Correlations 
 ActMethodI6/1/2011 ActMethodII6/1/2011 

ActMethodI6/1/2011 

Pearson Correlation 1 -.416** 

Sig. (2-tailed)  .000 

N 187 187 

ActMethodII6/1/2011 

Pearson Correlation -.416** 1 

Sig. (2-tailed) .000  

N 187 187 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
Correlations 
 ActMethodI1/1/2011 ActMethodII1/1/2011 

ActMethodI1/1/2011 

Pearson Correlation 1 -.363* 

Sig. (2-tailed)  .012 

N 47 47 

ActMethodII1/1/2011 

Pearson Correlation -.363* 1 

Sig. (2-tailed) .012  

N 47 47 

*. Correlation is significant at the 0.05 level (2-tailed). 

 
Correlations 
 ActMethodI9/1/2011 ActMethodII9/1/2011 

ActMethodI9/1/2011 

Pearson Correlation 1 -.698** 

Sig. (2-tailed)  .000 

N 211 211 

ActMethodII9/1/2011 

Pearson Correlation -.698** 1 

Sig. (2-tailed) .000  

N 211 211 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
Correlations 
 ActMethodI11/1/2011 ActMethodII11/1/201

1 

ActMethodI11/1/2011 

Pearson Correlation 1 -.542** 

Sig. (2-tailed)  .000 

N 199 199 

ActMethodII11/1/2011 

Pearson Correlation -.542** 1 

Sig. (2-tailed) .000  

N 199 199 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Correlations 
 ActMethodI6/1/2012 ActMethodII6/1/2012 

ActMethodI6/1/2012 

Pearson Correlation 1 -.397** 

Sig. (2-tailed)  .000 

N 137 137 

ActMethodII6/1/2012 

Pearson Correlation -.397** 1 

Sig. (2-tailed) .000  

N 137 137 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
Correlations 
 ActMethodI9/1/2012 ActMethodII9/1/2012 

ActMethodI9/1/2012 

Pearson Correlation 1 -.674** 

Sig. (2-tailed)  .000 

N 136 136 

ActMethodII9/1/2012 

Pearson Correlation -.674** 1 

Sig. (2-tailed) .000  

N 136 136 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
Table 5: testing Pearson’s correlation for warmth use of each month mutually with two other 
months. Measurement of heater activity according to method I 
 
Correlations 
 ActMethodI4/1/2011 ActMethodI6/1/2011 

ActMethodI4/1/2011 

Pearson Correlation 1 .268** 

Sig. (2-tailed)  .000 

N 185 185 

ActMethodI6/1/2011 

Pearson Correlation .268** 1 

Sig. (2-tailed) .000  

N 185 185 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
Correlations 
 ActMethodI6/1/2011 ActMethodI1/1/2011 

ActMethodI6/1/2011 

Pearson Correlation 1 .393* 

Sig. (2-tailed)  .012 

N 40 40 

ActMethodI1/1/2011 

Pearson Correlation .393* 1 

Sig. (2-tailed) .012  

N 40 40 

*. Correlation is significant at the 0.05 level (2-tailed). 

 
Correlations 
 ActMethodI1/1/2011 ActMethodI9/1/2011 

ActMethodI1/1/2011 

Pearson Correlation 1 .445** 

Sig. (2-tailed)  .007 

N 35 35 

ActMethodI9/1/2011 

Pearson Correlation .445** 1 

Sig. (2-tailed) .007  

N 35 35 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Correlations 
 ActMethodI9/1/2011 ActMethodI11/1/2011 

ActMethodI9/1/2011 

Pearson Correlation 1 .374** 

Sig. (2-tailed)  .000 

N 173 173 

ActMethodI11/1/2011 

Pearson Correlation .374** 1 

Sig. (2-tailed) .000  

N 173 173 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
Correlations 
 ActMethodI11/1/2011 ActMethodI6/1/2012 

ActMethodI11/1/2011 

Pearson Correlation 1 .592** 

Sig. (2-tailed)  .000 

N 110 110 

ActMethodI6/1/2012 

Pearson Correlation .592** 1 

Sig. (2-tailed) .000  

N 110 110 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
Correlations 
 ActMethodI6/1/2012 ActMethodI9/1/2012 

ActMethodI6/1/2012 

Pearson Correlation 1 .687** 

Sig. (2-tailed)  .000 

N 105 105 

ActMethodI9/1/2012 

Pearson Correlation .687** 1 

Sig. (2-tailed) .000  

N 105 105 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
Correlations 

 ActMethodI4/1/2011 ActMethodI9/1/2012 

ActMethodI4/1/2011 

Pearson Correlation 1 .612** 

Sig. (2-tailed)  .000 

N 129 129 

ActMethodI9/1/2012 

Pearson Correlation .612** 1 

Sig. (2-tailed) .000  

N 129 129 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
Table 6: testing Pearson’s correlation for each month mutually with two other months. 
Measurement of heater activity according to method II 
 
Correlations 

 ActMethodII4/1/2011 ActMethodII6/1/2011 

ActMethodII4/1/2011 

Pearson Correlation 1 .788** 

Sig. (2-tailed)  .000 

N 175 175 

ActMethodII6/1/2011 

Pearson Correlation .788** 1 

Sig. (2-tailed) .000  

N 175 175 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Correlations 

 ActMethodII6/1/2011 ActMethodII1/1/2011 

ActMethodII6/1/2011 

Pearson Correlation 1 .131 

Sig. (2-tailed)  .426 

N 39 39 

ActMethodII1/1/2011 

Pearson Correlation .131 1 

Sig. (2-tailed) .426  

N 39 39 

 
Correlations 

 ActMethodII1/1/2011 ActMethodII9/1/2011 

ActMethodII1/1/2011 

Pearson Correlation 1 .371* 

Sig. (2-tailed)  .034 

N 33 33 

ActMethodII9/1/2011 

Pearson Correlation .371* 1 

Sig. (2-tailed) .034  

N 33 33 

*. Correlation is significant at the 0.05 level (2-tailed). 

 
Correlations 

 ActMethodII9/1/2011 ActMethodII11/1/2011 

ActMethodII9/1/2011 

Pearson Correlation 1 .574** 

Sig. (2-tailed)  .000 

N 163 163 

ActMethodII11/1/2011 

Pearson Correlation .574** 1 

Sig. (2-tailed) .000  

N 163 163 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
Correlations 

 ActMethodII11/1/2011 ActMethodII6/1/2012 

ActMethodII11/1/2011 

Pearson Correlation 1 .531** 

Sig. (2-tailed)  .000 

N 107 107 

ActMethodII6/1/2012 

Pearson Correlation .531** 1 

Sig. (2-tailed) .000  

N 107 107 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
Correlations 

 ActMethodII6/1/2012 ActMethodII9/1/2012 

ActMethodII6/1/2012 

Pearson Correlation 1 .814** 

Sig. (2-tailed)  .000 

N 103 103 

ActMethodII9/1/2012 

Pearson Correlation .814** 1 

Sig. (2-tailed) .000  

N 103 103 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Correlations 

 ActMethodII4/1/2011 ActMethodII9/1/2012 

ActMethodII4/1/2011 

Pearson Correlation 1 .633** 
.000 Sig. (2-tailed)  

N 127 127 

ActMethodII9/1/2012 

Pearson Correlation .633** 1 

Sig. (2-tailed) .000  

N 127 127 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
5.4 Thermal efficiency 
 
Table 7: correlations on estimated thermal efficiency per month. 
 
Correlations 
 Apr2011 Mean Jun2011 Mean 

Apr2011ThermalEff 

Pearson Correlation 1 .605** 

Sig. (2-tailed)  .000 

N 162 162 

Jun2011ThermalEff 

Pearson Correlation .605** 1 

Sig. (2-tailed) .000  

N 162 162 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
Correlations 
 Jan2011ThermalEff Jun2011ThermalEff 

Jan2011ThermalEff 

Pearson Correlation 1 .639** 

Sig. (2-tailed)  .000 

N 40 40 

Jun2011ThermalEff 

Pearson Correlation .639** 1 

Sig. (2-tailed) .000  

N 40 40 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
Correlations 
 Jan2011 Mean Jun2011 Mean 

Jan2011 Mean 

Pearson Correlation 1 .391 

Sig. (2-tailed)  .065 

N 23 23 

Jun2011 Mean 

Pearson Correlation .391 1 

Sig. (2-tailed) .065  

N 23 23 

 
Correlations 
 Jan2011 Mean Sep2011 Mean 

Jan2011 Mean 

Pearson Correlation 1 .425** 

Sig. (2-tailed)  .009 

N 37 37 

Sep2011 Mean 

Pearson Correlation .425** 1 

Sig. (2-tailed) .009  

N 37 37 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Correlations 
 Nov2011 Mean Sep2011 Mean 

Nov2011 Mean 

Pearson Correlation 1 .550** 

Sig. (2-tailed)  .000 

N 178 146 

Sep2011 Mean 

Pearson Correlation .550** 1 

Sig. (2-tailed) .000  

N 146 146 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
Correlations 
 Nov2011 Mean Jun2012 Mean 

Nov2011 Mean 

Pearson Correlation 1 .505** 

Sig. (2-tailed)  .000 

N 123 108 

Jun2012 Mean 

Pearson Correlation .505** 1 

Sig. (2-tailed) .000  

N 108 108 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
Correlations 
 Sep2012 Mean Jun2012 Mean 

Sep2012 Mean 

Pearson Correlation 1 .591** 

Sig. (2-tailed)  .000 

N 112 103 

Jun2012 Mean 

Pearson Correlation .591** 1 

Sig. (2-tailed) .000  

N 103 103 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
Correlations 
 Sep2012 Mean Apr2011 Mean 

Sep2012 Mean 

Pearson Correlation 1 .595** 

Sig. (2-tailed)  .000 

N 107 107 

Apr2011 Mean 

Pearson Correlation .595** 1 

Sig. (2-tailed) .000  

N 107 107 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
Table 8: thermal efficiency and aggregated remoteness indices 
 
Correlations 
 AggegatedDistToServi

ces 
AvgAllDist PopPerSqKM 

Apr2011 

Pearson Correlation .153 .138 -.053 

Sig. (2-tailed) .059 .089 .517 

N 153 153 153 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Correlations 
 AggegatedDistToServi

ces 
AvgAllDist PopPerSqKM 

Jan2011 

Pearson Correlation .123 -.004 -.188 

Sig. (2-tailed) .422 .977 .217 

N 45 45 45 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
Correlations 
 AggegatedDistToServi

ces 
AvgAllDist PopPerSqKM 

Jun2011 

Pearson Correlation .048 .057 -.072 

Sig. (2-tailed) .669 .610 .519 

N 83 83 83 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
Correlations 
 AggegatedDistToServi

ces 
AvgAllDist PopPerSqKM 

Jun2012 

Pearson Correlation .337* .333* -.168 

Sig. (2-tailed) .011 .012 .217 

N 56 56 56 

*. Correlation is significant at the 0.05 level (2-tailed). 
**. Correlation is significant at the 0.01 level (2-tailed). 
 
Correlations 
 AggegatedDistToServi

ces 
AvgAllDist PopPerSqKM 

Nov2011 

Pearson Correlation .238** .177* -.156 

Sig. (2-tailed) .006 .043 .074 

N 131 131 131 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
 
Correlations 
 AggegatedDistToServi

ces 
AvgAllDist PopPerSqKM 

Sep2011 

Pearson Correlation .122 .239* .010 

Sig. (2-tailed) .215 .014 .922 

N 105 105 105 

*. Correlation is significant at the 0.05 level (2-tailed). 
**. Correlation is significant at the 0.01 level (2-tailed). 
 
Correlations 
 AggegatedDistToServi

ces 
AvgAllDist PopPerSqKM 

Sep2012 

Pearson Correlation .069 .214* -.066 

Sig. (2-tailed) .520 .044 .539 

N 89 89 89 

*. Correlation is significant at the 0.05 level (2-tailed). 
**. Correlation is significant at the 0.01 level (2-tailed). 
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5.6 Warmth Use 
 
Table 9: Pearson’s correlation for average increase in temperatures inside the home; relation 
between months. 
 
Correlations 
 Apr11AvgHeatIncr Jun11AvgHeatIncr 

Apr11AvgHeatIncr 

Pearson Correlation 1 .602** 

Sig. (2-tailed)  .000 

N 175 175 

Jun11AvgHeatIncr 

Pearson Correlation .602** 1 

Sig. (2-tailed) .000  

N 175 175 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
Correlations 
 Jun11AvgHeatIncr Jan11AvgHeatIncr 

Jun11AvgHeatIncr 

Pearson Correlation 1 .336* 

Sig. (2-tailed)  .037 

N 39 39 

Jan11AvgHeatIncr 

Pearson Correlation .336* 1 

Sig. (2-tailed) .037  

N 39 39 

*. Correlation is significant at the 0.05 level (2-tailed). 
 
Correlations 
 Jan11AvgHeatIncr Sep11AvgHeatIncr 

Jan11AvgHeatIncr 

Pearson Correlation 1 .111 

Sig. (2-tailed)  .533 

N 34 34 

Sep11AvgHeatIncr 

Pearson Correlation .111 1 

Sig. (2-tailed) .533  

N 34 34 

 
Correlations 
 Sep11AvgHeatIncr Nov11AvgHeatIncr 

Sep11AvgHeatIncr 

Pearson Correlation 1 .457** 

Sig. (2-tailed)  .000 

N 163 163 

Nov11AvgHeatIncr 

Pearson Correlation .457** 1 

Sig. (2-tailed) .000  

N 163 163 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
Correlations 
 Jun12AvgHeatIncr Nov11AvgHeatIncr 

Jun12AvgHeatIncr 

Pearson Correlation 1 .484** 

Sig. (2-tailed)  .000 

N 108 108 

Nov11AvgHeatIncr 

Pearson Correlation .484** 1 

Sig. (2-tailed) .000  

N 108 108 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Correlations 
 Jun12AvgHeatIncr Sep12AvgHeatIncr 

Jun12AvgHeatIncr 

Pearson Correlation 1 .651** 

Sig. (2-tailed)  .000 

N 104 104 

Sep12AvgHeatIncr 

Pearson Correlation .651** 1 

Sig. (2-tailed) .000  

N 104 104 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
Correlations 
 Apr11AvgHeatIncr Sep12AvgHeatIncr 

Apr11AvgHeatIncr 

Pearson Correlation 1 .595** 

Sig. (2-tailed)  .000 

N 128 128 

Sep12AvgHeatIncr 

Pearson Correlation .595** 1 

Sig. (2-tailed) .000  

N 128 128 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
Table 10: Pearson’s correlation for average warmth use; relation between months. 
 
Correlations 
 Apr11HeatUse Jun11HeatUse 

Apr11HeatUse 

Pearson Correlation 1 .718** 

Sig. (2-tailed)  .000 

N 176 176 

Jun11HeatUse 

Pearson Correlation .718** 1 

Sig. (2-tailed) .000  

N 176 176 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
Correlations 
 Jun11HeatUse Jan11HeatUse 

Jun11HeatUse 

Pearson Correlation 1 .260 

Sig. (2-tailed)  .101 

N 41 41 

Jan11HeatUse 

Pearson Correlation .260 1 

Sig. (2-tailed) .101  

N 41 41 

 
Correlations 
 Jan11HeatUse Sep11HeatUse 

Jan11HeatUse 

Pearson Correlation 1 .151 

Sig. (2-tailed)  .395 

N 34 34 

Sep11HeatUse 

Pearson Correlation .151 1 

Sig. (2-tailed) .395  

N 34 34 
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Correlations 
 Sep11HeatUse Nov11HeatUse 

Sep11HeatUse 

Pearson Correlation 1 .511** 

Sig. (2-tailed)  .000 

N 163 163 

Nov11HeatUse 

Pearson Correlation .511** 1 

Sig. (2-tailed) .000  

N 163 163 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
Correlations 
 Jun12HeatUse Nov11HeatUse 

Jun12HeatUse 

Pearson Correlation 1 .518** 

Sig. (2-tailed)  .000 

N 107 107 

Nov11HeatUse 

Pearson Correlation .518** 1 

Sig. (2-tailed) .000  

N 107 107 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
Correlations 
 Jun12HeatUse Sep12HeatUse 

Jun12HeatUse 

Pearson Correlation 1 .793** 

Sig. (2-tailed)  .000 

N 103 103 

Sep12HeatUse 

Pearson Correlation .793** 1 

Sig. (2-tailed) .000  

N 103 103 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
Correlations 
 Apr11HeatUse Sep12HeatUse 

Apr11HeatUse 

Pearson Correlation 1 .618** 

Sig. (2-tailed)  .000 

N 127 127 

Sep12HeatUse 

Pearson Correlation .618** 1 

Sig. (2-tailed) .000  

N 127 127 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
Table 11: Pearson’s correlation for CO2 emissions for heating; relation between months.  
 
Correlations 
 KgCO2Apr11HeatUse KgCO2Jun11HeatUse 

KgCO2Apr11HeatUse 

Pearson Correlation 1 .733** 

Sig. (2-tailed)  .000 

N 175 175 

KgCO2Jun11HeatUse 

Pearson Correlation .733** 1 

Sig. (2-tailed) .000  

N 175 175 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Correlations 
 KgCO2Jun11HeatUse KgCO2Jan11HeatUse 

KgCO2Jun11HeatUse 

Pearson Correlation 1 .325* 

Sig. (2-tailed)  .041 

N 40 40 

KgCO2Jan11HeatUse 

Pearson Correlation .325* 1 

Sig. (2-tailed) .041  

N 40 40 

*. Correlation is significant at the 0.05 level (2-tailed). 
 
Correlations 
 KgCO2Jan11HeatUse KgCO2Sep11HeatUse 

KgCO2Jan11HeatUse 

Pearson Correlation 1 .227 

Sig. (2-tailed)  .196 

N 34 34 

KgCO2Sep11HeatUse 

Pearson Correlation .227 1 

Sig. (2-tailed) .196  

N 34 34 

 
Correlations 
 KgCO2Sep11HeatUse KgCO2Nov11HeatUse 

KgCO2Sep11HeatUse 

Pearson Correlation 1 .528** 

Sig. (2-tailed)  .000 

N 163 163 

KgCO2Nov11HeatUse 

Pearson Correlation .528** 1 

Sig. (2-tailed) .000  

N 163 163 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
Correlations 
 KgCO2Jun12HeatUse KgCO2Nov11HeatUse 

KgCO2Jun12HeatUse 

Pearson Correlation 1 .512** 

Sig. (2-tailed)  .000 

N 107 107 

KgCO2Nov11HeatUse 

Pearson Correlation .512** 1 

Sig. (2-tailed) .000  

N 107 107 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
Correlations 
 KgCO2Jun12HeatUse KgCO2Sep12HeatUse 

KgCO2Jun12HeatUse 

Pearson Correlation 1 .812** 

Sig. (2-tailed)  .000 

N 103 103 

KgCO2Sep12HeatUse 

Pearson Correlation .812** 1 

Sig. (2-tailed) .000  

N 103 103 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Correlations 
 KgCO2Apr11HeatUse KgCO2Sep12HeatUse 

KgCO2Apr11HeatUse 

Pearson Correlation 1 .660** 

Sig. (2-tailed)  .000 

N 127 127 

KgCO2Sep12HeatUse 

Pearson Correlation .660** 1 

Sig. (2-tailed) .000  

N 127 127 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
Table 12: Pearson’s correlation for estimated £ spent heating; relation between months. 
 
Correlations 
 PoundsApr11HeatUse PoundsJun11HeatUse 

PoundsApr11HeatUse 

Pearson Correlation 1 .730** 

Sig. (2-tailed)  .000 

N 175 175 

PoundsJun11HeatUse 

Pearson Correlation .730** 1 

Sig. (2-tailed) .000  

N 175 175 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
Correlations 
 PoundsJun11HeatUse PoundsJan11HeatUse 

PoundsJun11HeatUse 

Pearson Correlation 1 .463** 

Sig. (2-tailed)  .001 

N 47 47 

PoundsJan11HeatUse 

Pearson Correlation .463** 1 

Sig. (2-tailed) .001  

N 47 47 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
Correlations 
 PoundsJan11HeatUse PoundsSep11HeatUse 

PoundsJan11HeatUse 

Pearson Correlation 1 .601** 

Sig. (2-tailed)  .000 

N 181 181 

PoundsSep11HeatUse 

Pearson Correlation .601** 1 

Sig. (2-tailed) .000  

N 181 181 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
Correlations 
 PoundsSep11HeatUse PoundsNov11HeatUse 

PoundsSep11HeatUse 

Pearson Correlation 1 .507** 

Sig. (2-tailed)  .000 

N 107 107 

PoundsNov11HeatUse 

Pearson Correlation .507** 1 

Sig. (2-tailed) .000  

N 107 107 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Correlations 
 PoundsJun12HeatUse PoundsNov11HeatUse 

PoundsJun12HeatUse 

Pearson Correlation 1 .879** 

Sig. (2-tailed)  .000 

N 120 120 

PoundsNov11HeatUse 

Pearson Correlation .879** 1 

Sig. (2-tailed) .000  

N 120 120 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
Correlations 
 PoundsJun12HeatUse PoundsSep12HeatUse 

PoundsJun12HeatUse 

Pearson Correlation 1 .562** 

Sig. (2-tailed)  .000 

N 139 139 

PoundsSep12HeatUse 

Pearson Correlation .562** 1 

Sig. (2-tailed) .000  

N 139 139 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
Correlations 
 PoundsApr11HeatUse PoundsSep12HeatUse 

PoundsApr11HeatUse 

Pearson Correlation 1 .649** 

Sig. (2-tailed)  .000 

N 127 127 

PoundsSep12HeatUse 

Pearson Correlation .649** 1 

Sig. (2-tailed) .000  

N 127 127 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
5.7 Thermal comfort 
 
Table 12: Pearson’s correlations for thermal comfort and  average outside temperature 
 
Correlations 
 JanAVG2 JanAvgOutsTemp 

JanAVG2 

Pearson Correlation 1 .179 

Sig. (2-tailed)  .246 

N 44 44 

JanAvgOutsTemp 

Pearson Correlation .179 1 

Sig. (2-tailed) .246  

N 44 44 

 
Correlations 
 JanAVG5 JanAvgOutsTemp 

JanAVG5 

Pearson Correlation 1 .179 

Sig. (2-tailed)  .244 

N 44 44 

JanAvgOutsTemp 

Pearson Correlation .179 1 

Sig. (2-tailed) .244  

N 44 44 
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Correlations 
 AprAVG2 AprAvgOutsTemp 

AprAVG2 

Pearson Correlation 1 .105 

Sig. (2-tailed)  .080 

N 278 278 

AprAvgOutsTemp 

Pearson Correlation .105 1 

Sig. (2-tailed) .080  

N 278 278 

 
Correlations 
 AprAVG5 AprAvgOutsTemp 

AprAVG5 

Pearson Correlation 1 .104 

Sig. (2-tailed)  .084 

N 278 278 

AprAvgOutsTemp 

Pearson Correlation .104 1 

Sig. (2-tailed) .084 
 

N 278 278 

 
Correlations 
 Jun11AVG2 Jun11AvgOutsTemp 

Jun11AVG2 

Pearson Correlation 1 .094 

Sig. (2-tailed)  .201 

N 189 189 

Jun11AvgOutsTemp 

Pearson Correlation .094 1 

Sig. (2-tailed) .201  

N 189 189 

 
Correlations 
 Jun11AVG5 Jun11AvgOutsTemp 

Jun11AVG5 

Pearson Correlation 1 .090 

Sig. (2-tailed)  .217 

N 189 189 

Jun11AvgOutsTemp 

Pearson Correlation .090 1 

Sig. (2-tailed) .217  

N 189 189 

 
Correlations 
 Sep11AVG2 Sep11AvgOutsTemp 

Sep11AVG2 

Pearson Correlation 1 .084 

Sig. (2-tailed)  .232 

N 204 204 

Sep11AvgOutsTemp 

Pearson Correlation .084 1 

Sig. (2-tailed) .232  

N 204 204 

 
Correlations 
 Sep11AVG5 Sep11AvgOutsTemp 

Sep11AVG5 

Pearson Correlation 1 .086 

Sig. (2-tailed)  .223 

N 204 204 

Sep11AvgOutsTemp 

Pearson Correlation .086 1 

Sig. (2-tailed) .223  

N 204 204 
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Correlations 
 Nov11AVG2 Nov11AvgOutsTemp 

Nov11AVG2 

Pearson Correlation 1 .060 

Sig. (2-tailed)  .413 

N 190 190 

Nov11AvgOutsTemp 

Pearson Correlation .060 1 

Sig. (2-tailed) .413  

N 190 190 

 
Correlations 
 Nov11AVG5 Nov11AvgOutsTemp 

Nov11AVG5 

Pearson Correlation 1 .060 

Sig. (2-tailed)  .408 

N 190 190 

Nov11AvgOutsTemp 

Pearson Correlation .060 1 

Sig. (2-tailed) .408  

N 190 190 

 
Correlations 
 Jun12AVG2 Jun12AvgOutsTemp 

Jun12AVG2 

Pearson Correlation 1 .092 

Sig. (2-tailed)  .290 

N 133 133 

Jun12AvgOutsTemp 

Pearson Correlation .092 1 

Sig. (2-tailed) .290  

N 133 133 

 
Correlations 
 Jun12AVG5 Jun12AvgOutsTemp 

Jun12AVG5 

Pearson Correlation 1 .094 

Sig. (2-tailed)  .283 

N 133 133 

Jun12AvgOutsTemp 

Pearson Correlation .094 1 

Sig. (2-tailed) .283  

N 133 133 

 
Correlations 
 Sep12AVG2 Sep12AvgOutsTemp 

Sep12AVG2 

Pearson Correlation 1 -.014 

Sig. (2-tailed)  .873 

N 128 128 

Sep12AvgOutsTemp 

Pearson Correlation -.014 1 

Sig. (2-tailed) .873  

N 128 128 

 
Correlations 
 Sep12AVG5 Sep12AvgOutsTemp 

Sep12AVG5 

Pearson Correlation 1 -.015 

Sig. (2-tailed)  .866 

N 128 128 

Sep12AvgOutsTemp 

Pearson Correlation -.015 1 

Sig. (2-tailed) .866  

N 128 128 
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Table 13: Student’s T test for urban (category 1) and rural (category 2) thermal comfort. 
 
Group Statistics 
 UR2FOLD N Mean Std. Deviation Std. Error Mean 

DifferenceALLThermComf 
Urban 91 -.058139 2.2245116 .2331922 

Rural 84 .062460 2.2377903 .2441629 

 

Independent Samples Test 
 Levene's Test for 

Equality of Variances 
t-test for Equality of Means 

F Sig. t Df Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

Lower Upper 

DifferenceALLThermComf 

Equal variances 
assumed 

.001 .981 -.357 173 .721 -.1205993 .3375493 -.7868446 .5456459 

Equal variances 
not assumed 

  
-.357 171.716 .721 -.1205993 .3376302 -.7870392 .5458405 

 
5.8 Demography and geographical characteristics  
 
Table 14: Pearson’s correlations for warmth use, adaptive comfort, thermal efficiency, ActMethod I 
and method II and their relations with distances to services by public transport. Data are from 2009. 
 
  ThermalEf

f 
AvgHeatIncr
1 

AvgHeatIncr
2 

ActMethod I ActMethod II WarmthUs
e 

CS-publicgp Pearson 
Correlation 

.249** .176** .131* -.189** 0.098506948 0.083613 

 Sig. (2-tailed) 1.29E-05 0.004926 0.024083 0.00104022 0.0890656 0.149226 

 N 299 255 298 299 299 299 

CS-publichiedu1 Pearson 
Correlation 

.211** .165** .126* -.225** .123* .124* 

 Sig. (2-tailed) 0.000239 0.008261 0.030294 8.47633E-05 0.033280759 0.032081 

 N 299 255 298 299 299 299 

CS-publicjcp1 Pearson 
Correlation 

.179** .129* 0.071817 -0.10975675 .204** 0.013823 

 Sig. (2-tailed) 0.001918 0.038789 0.216406 0.05800596 0.000392113 0.811855 

 N 299 255 298 299 299 299 

CS-publiclibrary1 Pearson 
Correlation 

.191** .223** .140* -.162** 0.107247578 0.057566 

 Sig. (2-tailed) 0.000921 0.000339 0.015909 0.004910924 0.064017026 0.321167 

 N 299 255 298 299 299 299 

CS-publicnursery1 Pearson 
Correlation 

.144* .173** .140* -.155** 0.077741669 0.05798 

 Sig. (2-tailed) 0.0128 0.00559 0.01557 0.007219522 0.18002495 0.317692 

 N 299 255 298 299 299 299 

CS-publicpolice1 Pearson 
Correlation 

.207** .231** .138* -.175** 0.099441076 0.083718 

 Sig. (2-tailed) 0.000309 0.0002 0.017366 0.002411776 0.086061135 0.148715 

 N 299 255 298 299 299 299 

CS-publicpost Pearson 
Correlation 

.166** .209** .124* -.140* .126* 0.059878 

 Sig. (2-tailed) 0.004093 0.000784 0.032682 0.015770806 0.029680304 0.302085 

 N 299 255 298 299 299 299 

CS-publicshopping Pearson 
Correlation 

.189** .220** .131* -.176** .119* 0.086304 

 Sig. (2-tailed) 0.001034 0.000412 0.023749 0.002290549 0.039558037 0.136522 

 N 299 255 298 299 299 299 

CS-publicatm1 Pearson 0.086333 .176** 0.031534 - -9.14094E-05 -0.00705 
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Correlation 0.023533137 

 Sig. (2-tailed) 0.136389 0.004751 0.587678 0.68527344 0.998744134 0.903372 

 N 299 255 298 299 299 299 

CS-publicbank1 Pearson 
Correlation 

.213** .198** .167** -.182** .140* 0.084976 

 Sig. (2-tailed) 0.000208 0.001521 0.003803 0.001554033 0.015608306 0.142685 

 N 299 255 298 299 299 299 

CS-publiccas1 Pearson 
Correlation 

.130* 0.107319 0.111521 -.156** .198** 0.060726 

 Sig. (2-tailed) 0.024555 0.087217 0.054472 0.006817509 0.00059042 0.295273 

 N 299 255 298 299 299 299 

CS-publicchemist1 Pearson 
Correlation 

0.039579 .129* 0.054492 -
0.019205538 

-
0.006392595 

0.004667 

 Sig. (2-tailed) 0.495372 0.038885 0.348543 0.740845214 0.912348766 0.935944 

 N 299 255 298 299 299 299 

CS-publicfuredu1 Pearson 
Correlation 

.255** .125* 0.097186 -.212** .148* 0.083406 

 Sig. (2-tailed) 8.08E-06 0.045628 0.094012 0.000216705 0.010251482 0.150237 

 N 299 255 298 299 299 299 

CS-
publicgenstore1_1 

Pearson 
Correlation 

.168** .185** .121* -.147* .156** 0.065599 

 Sig. (2-tailed) 0.003602 0.003067 0.036501 0.011112878 0.006949412 0.258148 

 N 299 255 298 299 299 299 

aggregatedAll Pearson 
Correlation 

.214** .206** .137* -.187** .147* 0.078411 

 Sig. (2-tailed) 0.000189 0.000942 0.017764 0.00115408 0.010941123 0.176292 

 N 299 255 298 299 299 299 

 
Table 15: Pearson’s correlations for warmth use, adaptive comfort, thermal efficiency, heater 
activity Method I and method II and their relations with distances to services by drive times. Data are 
from 2009. 
  Thermal 

Eff 
AvgHeat 
Inr1 

AvgHeat 
Inr2 

Average 
method1 

Average 
method2 

WarmthUs
e 

CS-drivegp1 Pearson 
Correlation 

0.22 0.119936 0.090033 -0.151 0.048321 0.063177 

 Sig. (2-tailed) 0.000122 0.055783 0.120942 0.008808 0.405111 0.27618 

 N 299 255 298 299 299 299 

CS-drivehiedu1 Pearson 
Correlation 

0.163 0.110348 0.084383 -0.184 0.075473 0.110344 

 Sig. (2-tailed) 0.004834 0.078606 0.146185 0.001412 0.193108 0.056668 

 N 299 255 298 299 299 299 

CS-drivejcp1 Pearson 
Correlation 

0.123 0.019001 -0.00359 -0.03849 0.163 -0.02469 

 Sig. (2-tailed) 0.034186 0.762679 0.950756 0.507295 0.004641 0.670686 

 N 299 255 298 299 299 299 

CS-drivelibrary1 Pearson 
Correlation 

0.195 0.198 0.132 -0.137 0.079201 0.055181 

 Sig. (2-tailed) 0.000693 0.001446 0.022702 0.017554 0.171964 0.341661 

 N 299 255 298 299 299 299 

CS-drivenursery1 Pearson 
Correlation 

0.266 0.217 0.156 -0.193 0.04457 0.075838 

 Sig. (2-tailed) 3.20E-06 0.000492 0.006927 0.000803 0.442583 0.190954 

 N 299 255 298 299 299 299 

CS-drivepolice1 Pearson 
Correlation 

0.202 0.198 0.132 -0.161 0.053601 0.099276 

 Sig. (2-tailed) 0.000453 0.001446 0.022755 0.005285 0.355678 0.086587 

 N 299 255 298 299 299 299 

CS-drivepost1 Pearson 
Correlation 

0.153 0.209 0.102776 -0.116 0.073567 0.038701 

 Sig. (2-tailed) 0.00819 0.000778 0.076489 0.045635 0.204628 0.504993 

 N 299 255 298 299 299 299 

CS-
driveshopping1 

Pearson 
Correlation 

0.145 0.172 0.087911 -0.13 0.08241 0.076576 
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 Sig. (2-tailed) 0.012031 0.005847 0.12999 0.024386 0.155183 0.186664 

 N 299 255 298 299 299 299 

CS-driveatm1 Pearson 
Correlation 

0.189 0.218 0.162 -0.174 0.117 0.099784 

 Sig. (2-tailed) 0.001054 0.000468 0.005137 0.002532 0.043406 0.08498 

 N 299 255 298 299 299 299 

CS-drivebank1 Pearson 
Correlation 

0.192 0.142 0.155 -0.143 0.096954 0.087256 

 Sig. (2-tailed) 0.00087 0.02299 0.00747 0.013095 0.094247 0.132236 

 N 299 255 298 299 299 299 

CS-drivecas1 Pearson 
Correlation 

0.069616 -0.01215 0.060989 -0.08822 0.182 0.035862 

 Sig. (2-tailed) 0.230064 0.846885 0.294002 0.12799 0.001545 0.536767 

 N 299 255 298 299 299 299 

CS-drivechemist1 Pearson 
Correlation 

0.209 0.17 0.116 -0.14 0.099006 0.067334 

 Sig. (2-tailed) 0.000271 0.006426 0.04462 0.01573 0.087452 0.245744 

 N 299 255 298 299 299 299 

CS-drivefuredu1 Pearson 
Correlation 

0.217 0.013414 0.036577 -0.167 0.124 0.068546 

 Sig. (2-tailed) 0.000157 0.831198 0.529365 0.003705 0.032393 0.237323 

 N 299 255 298 299 299 299 

CS-
drivegenstore1 

Pearson 
Correlation 

0.117 0.115689 0.072448 -0.09246 0.156 0.054069 

 Sig. (2-tailed) 0.042724 0.065106 0.21239 0.110616 0.006707 0.351488 

 N 299 255 298 299 299 299 

AllDrive2 Pearson 
Correlation 

0.214 0.131 0.102989 -0.175 0.145 0.082816 

 Sig. (2-tailed) 0.000197 0.035932 0.075879 0.002346 0.01181 0.153155 

 N 299 255 298 299 299 299 
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Table 16: differences in strength of correlations with variables related to warmth use: public 
transport (blue, positive numbers) and drive times by car (red, negative numbers). Empty cells 
indicate that no significant correlations existed for both public transport data and drive time data. 

  
Thermal
Eff 

AvgHeatIn
cr1 

AvgHeatIn
cr2 

ActMeth
od I 

ActMetho
d II 

Warmth
Use 

CS-publicgp 0.029 0.056064 0.040967 0.038     

CS-publichiedu1 0.048 0.054652 0.041617 0.041 0.047527 0.013656 

CS-publicjcp1 0.056 0.109999     0.041   

CS-publiclibrary1 -0.004 0.025 0.008 0.025     

CS-publicnursery1 -0.122 -0.044 -0.016 -0.038     

CS-publicpolice1 0.005 0.033 0.006 0.014     

CS-publicpost 0.013   0.021224 0.024 0.052433   

CS-publicshopping 0.044 0.048 0.043089 0.046 0.03659   

CS-publicatm1 
-

0.10266
7 

-0.042 -0.130466 -0.15047 -0.116909   

CS-publicbank1 0.021 0.056 0.012 0.039 0.043046   

CS-publiccas1 
0.06038

4     0.06778 0.016   

CS-publicchemist1 
-

0.16942
1 

-0.041 -0.061508 -0.12079 
  

  

CS-publicfuredu1 0.038 0.111586   0.045 0.024   

CS-publicgenstore1_1 0.051 0.069311 0.048552 0.05454     

Aggregated Drive Times to above services   0.075 0.034011 0.012 0.002   

Aggregated Drive Times to above and other services -0.001 0.067 0.048 -0.013 0.043 
-

0.044589 

Amount of times public services has a stronger correlation 
than drive times 

4 7 7 7 7 0 

 
Figure 5: histogram of dependent variable thermal efficiency and amount of built-up area as in 

dependent variable 
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Table 17: stepwise linear regression on remoteness indices including amount of built up 
area within a 200m radius. 
 
Variables Entered/Removeda 
Model Variables Entered Variables Removed Method 

1 
AggegatedDistToServi
ces 

. 

Stepwise (Criteria: 
Probability-of-F-to-
enter <= .050, 
Probability-of-F-to-
remove >= .100). 

a. Dependent Variable: ThermalEff 
 
Model Summaryb 
Model R R Square Adjusted R Square Std. Error of the 

Estimate 

1 .215a .046 .043 .0175661 

a. Predictors: (Constant), AggegatedDistToServices 
b. Dependent Variable: ThermalEff 
 
ANOVAa 
Model Sum of Squares df Mean Square F Sig. 

1 
Regression .004 1 .004 12.810 .000b 

Residual .081 264 .000   

Total .085 265    

a. Dependent Variable: ThermalEff 
b. Predictors: (Constant), AggegatedDistToServices 
 
Coefficientsa 
Model Unstandardized Coefficients Standardized 

Coefficients 
t Sig. 

B Std. Error Beta 

1 
(Constant) .030 .002  12.302 .000 

AggegatedDistToServices .001 .000 .215 3.579 .000 

a. Dependent Variable: ThermalEff 
 
Excluded Variablesa 
Model Beta In t Sig. Partial Correlation Collinearity Statistics 

Tolerance 

1 

BuiltUpArea200 -.055b -.744 .458 -.046 .652 

AvgAllDist .056b .657 .512 .040 .504 

PopPerSqKM -.028b -.320 .749 -.020 .486 

a. Dependent Variable: ThermalEff 
b. Predictors in the Model: (Constant), AggegatedDistToServices 
 
Residuals Statisticsa 
 Minimum Maximum Mean Std. Deviation N 

Predicted Value .031592 .047753 .037673 .0038553 267 
Residual -.0333438 .1608172 -.0000133 .0175013 267 
Std. Predicted Value -1.574 2.611 .001 .998 267 
Std. Residual -1.898 9.155 -.001 .996 267 

a. Dependent Variable: ThermalEff 
 


