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Notation

γ rad/s/T gyromagnetic ratio

r, t cm, ms spatial and temporal variables

L - number of radiofrequency transmit coils

T1, T2 ms longitudinal and transversel relaxation rates

M0 A/m equilibrium magnetization vector

M A/m magnetization vector

λ - costate vector

G mT/m gradients

B0 T static magnetic field strength

∆B0 Hz static magnetic field inhomogeneity

b
(l)
1 mT radiofrequency waveform of coil l

sl - transmit field sensitivity of coil l

B1 mT radiofrequency magnetic field

Ns, Nt - number of discretized spatial and temporal points
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Introduction

Magnetic resonance imaging (MRI) is a tool used mostly in the medical world
for creating images of the human body for diagnosis. An advantage of MRI
over other medical imaging modalities is that it does not require the use of
ionizing radiation.
Images are based on magnetization dynamics of hydrogen protons in the
body. The dynamics indicate the type of biological tissue the protons are
a part of. Radiofrequency (RF) pulses bring the magnetization into an ex-
cited state, where it generates a signal. The response of the magnetization
to an RF pulse is described by the Bloch equation. Radiofrequency pulse
design deals with the inverse problem of finding an RF pulse that transfers
the magnetization to a desired state. Most pulse design methods invert the
Bloch equation under some strict assumptions. The optimal control method
allows for more freedom in pulse design, at the cost of requiring the repeated
calculation of the magnetization dynamic. Calculating the magnetization
dynamic is computationally costly, and so is the optimal control method as
a consequence. Finding a method for model order reduction of the Bloch
equation can greatly reduce the simulation time. Leading to a more efficient
optimal control method.

The thesis is organized into three parts. In the first chapter, the basics
of MRI are introduced, a mathematical framework based on the Bloch equa-
tions is set up, the magnetization response for a given RF pulse is calculated,
and a standard method for RF pulse design is introduced and tested.
In the second chapter, the optimal control framework is set up, different
numerical methods for reducing computation time are discussed and imple-
mented, and the method is used for improving the RF pulses of the first
chapter.
In the third chapter, both spatial and temporal domain reduction are dis-
cussed in the context of the Bloch equations, and numerical results of tem-
poral reduction technique are shown.
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Chapter 1

Basics of magnetic resonance

The focus of this first chapter is analysing the Bloch equation, which de-
scribes the magnetization dynamics that are measured in MRI. This differ-
ential equation will be the basis of the whole thesis and this chapter de-
scribes its physical background, properties of the mathematical model and
the numerical solution. At the end of the chapter a standard method for
radiofrequency pulses design is introduced.

1.1 Physics

In this section, the physics that explain the magnetic resonance imaging
process are discussed by following the treatment of [11]. The goal is not to
give a full account of all physics involved but rather to give the rationale
behind the Bloch equations and the functioning of an MR scanner. Some
elements are skipped or simplified. The reader can find a more thorough
description in the book by Haacke [11].

1.1.1 Magnetization

The magnetic moment of an object is represented by a three-dimensional
vector and is used to describe the behaviour of the object under the influ-
ence of an external magnetic field. A single hydrogen atom or proton has
both a charge and an inherent spin that together lead to a magnetic moment
pointed along the rotation axis.
A group of protons that spin at the same frequency is called an isochromat.
The protons within the isochromat have an average magnetic moment called
the magnetization. It is denoted by the vector M , and measured in amperes
per meter (A/m).
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In our description of MRI, the scanned object is discretized into voxels of size
V , where each voxel is supposed isochromat and thus has a single magneti-
zation vector. This assumption is more accurate for small V . The response
to an external magnetic field of all protons in a voxel can then be described
by the response of the magnetization vector.
The external magnetic field B is represented by a three-dimensional vector
field with units given in tesla (T). The field is spatially variable but the voxel
size V is supposed to be small enough that the magnetic field is approxi-
mately constant within it and the local discretization error is neglected. The
generation of the magnetic field by the MRI scanner system is the subject of
the next section, first its effect on the magnetization is explained.

When considering the magnetization vector M of a voxel subject to a con-
stant external magnetic field B, its dynamic is described by the Bloch equa-
tions :

dM

dt
= γM ×B +

1

T1

(M0 −M‖)−
1

T2

M⊥. (1.1)

Where × denotes the outer product between two vectors in R3, M0 the equi-
librium magnetization state, M‖ and M⊥ respectively the components of M
parallel and orthogonal to B, T1 and T2 the longitudinal and transversal
relaxation times in seconds, and γ the gyromagnetic ratio in radians per sec-
ond per tesla. All elements will be discussed in more detail in the following
sections. Here it is noted that values of the spatial-dependent variables T1,
T2 and M0 are coupled to the tissue type the protons are found in, allowing
identification of different biological features. The value of the constant γ is
the same for each voxel.

The dynamics of the magnetization M as given by equation (1.1) can be
split in two effects:

1. rotation around B, due to the magnetic moment of the spins,

2. decay to an equilibrium state M0, due to the energy loss of the protons
through interaction of their magnetic moments.

The first effect is given by the first term of (1.1) and will be discussed in the
following section, while the second effect is described by the other two terms
and treated after.
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Figure 1.1: Rotation of the magnetization vector M around the external
magnetic field B.

Rotation

Neglecting the decay effect for the moment and focusing only on the rotation
effect, the magnetization dynamic is described by:

dM

dt
= γM ×B. (1.2)

The gyromagnetic ratio, γ, relates the strength of the magnetic field with the
speed of clockwise rotation given by the angular frequency ω (rad/s). For a
hydrogen proton the gyromagnetic ratio is:

γ = 2.675× 108 rad/s/T. (1.3)

For a given magnetic field B, the angular frequency ω equals:

ω ≡ |dφ
dt
| = γ‖B‖2, (1.4)

where φ denotes the phase of the magnetization in radian. Figure 1.1 illus-
trates the solution of equation (1.2).

To simplify notation, the vectors are represented in the Cartesian coordinate
system with basis vectors x̂, ŷ and ẑ. Setting:

M = Mxx̂+Myŷ +Mz ẑ, B = Bxx̂+Byŷ +Bz ẑ,
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equation (1.1) can be represented in matrix form:

d

dt

 Mx

My

Mz

 = γM ×B = −γB ×M

= −γ

 0 −Bz By

Bz 0 −Bx

−By Bx 0

 Mx

My

Mz


= −γBM,

(1.5)

where the minus sign is used such that the matrix B, defined in equation
(1.5), generates a positive, counterclockwise, rotation. Note that all co-
ordinates in (1.5) are real valued, and the matrix B is skew-symmetric:
BT = −B, with eigenvalues λ = 0,±i‖B‖2. The matrix B can be de-
composed as:

B = BxSx +BySy +BzSz, (1.6)

with:

Sx =

 0 0 0
0 0 −1
0 1 0

 , Sy =

 0 0 1
0 0 0
−1 0 0

 , Sz =

 0 −1 0
1 0 0
0 0 0

 .

The matrices Sx,Sy,Sz form a basis for the space of real skew-symmetric
3 × 3 matrices, which in the following will be shown to generate rotations.
The basis matrices have eigenvalues λ = 0,±i, and give counterclockwise
rotation around respectively x̂, ŷ and ẑ. Furthermore, the matrices satisfy
the special commutator rules:

[Sx,Sy] = Sz, [Sz,Sx] = Sy, [Sy,Sz] = Sx, (1.7)

with [X,Y] := XY −YX. And furthermore: S3
k = −Sk, for k = x, y, z.

Supposing the magnetic field B is constant over time, the solution of the
homogeneous differential equation (1.5) with initial value M(t0) is given by:

M(t) = e−γ(BxSx+BySy+BzSz)tM(t0) = e−γBtM(t0). (1.8)

To be consistent with Figure 1.1, the matrix exponential in equation (1.8)
is proven to define a rotation around B. A rotation matrix is defined as a
an orthonormal matrix with determinant equal to 1. The exponent of the
skew-symmetric matrix X is orthonormal since:

eX
(
eX
)T

= eXeXT

= eXe−X = I. (1.9)
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The determinant equals:

det(eX) = etr(X) = 1, since tr(X) = 0. (1.10)

Setting X = −γBt, it follows that the matrix exponential e−γBt from equa-
tion (1.8) is a rotation matrix. The matrix can be described by a simple
formula, by noting that B3 = −‖B‖2

2B, such that:

e−γBt = I +
∞∑
i=0

(−γBt)2i+1

(2i+ 1)!
+
∞∑
i=1

(−γBt)2i

(2i)!

= I +
1

‖B‖2

∞∑
i=0

(−1)i(−γ‖B‖2t)
2i+1

(2i+ 1)!
B +

1

‖B‖2
2

∞∑
i=1

(−1)i−1(−γ‖B‖2t)
2i

(2i)!
B2

= I +
sin(−γ‖B‖2t)

‖B‖2

B +
1− cos(−γ‖B‖2t)

‖B‖2
2

B2.

(1.11)

Equation (1.11) is known as Rodrigues’ rotation formula.

The matrix exponential e−γBt leaves B fixed since by equation (1.5):

BB = B ×B = 0, (1.12)

and therefore by equation (1.11), e−γBtB = B. Furthermore, the exponent
is an orthogonal matrix and hence length preserving.

Since there is some freedom in choosing the basis vectors x̂, ŷ, ẑ, here the
direction of the z-axis is chosen to be aligned with the magnetic field B:

B = Bz ẑ, (1.13)

leading to the rotation taking place in the xy-plane. The magnetization is
split into a component aligned with the magnetic field, M‖, and a component
orthogonal to it, M⊥:

M‖ := Mz ẑ, M⊥ := Mxx̂+Myŷ. (1.14)

In this case, equation (1.2) can be decomposed into two parts:

dMz

dt
= 0,

dM⊥
dt

= γM⊥ ×B. (1.15)
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Decay

The rotation does not describe the whole magnetization dynamics, since there
is also slowly decays to an equilibrium state. The equilibrium state, M0, is
given by:

M0 := m0ẑ, with m0 = cPD‖B‖2/T. (1.16)

In the equilibrium state the direction of the magnetization is aligned with
B while the magnitude is a function of the voxel-dependent proton density
PD, field strength ‖B‖2, and temperature T (c is a physical constant). The
decay can be split into two effects: longitudinal and transversal relaxation.

Through longitudinal relaxation, the aligned magnetization, M‖ = Mz ẑ,
grows to its equilibrium state M0 over time due to spin-lattice interaction.
This is equivalent to Mz returning to m0. The rate at which the magne-
tization Mz returns to m0 is proportional to the inverse of the so-called
longitudinal relaxation time T1, given in seconds:

dMz

dt
=

1

T1

(m0 −Mz). (1.17)

Note that this is equivalent to the second term in equation (1.1). The longi-
tudinal relaxation time T1 is measurable with experiments and depends both
on the magnetic field strength and temperature, but most importantly on
the tissue type the proton is found in.

The transversal relaxation describes the loss in magnetization in the xy-
plane and it is due to relaxation to the equilibrium state and dephasing of
the protons within the voxel V . The magnetization vector is the sum of a
large number of magnetic moments. The moments will have a slight dif-
ference in rotation frequency. As a consequence, the protons accumulate a
phase difference over time, or dephase, reducing the length of the average
transversal magnetization as shown in Figure 1.2. The loss of transversal
magnetization is described by:

dM⊥
dt

= − 1

T2

M⊥. (1.18)

There are two reasons for the dephasing. First there is spin-spin interaction
which means that the magnetic field generated by one proton influences the
rotation of another proton causing them to dephase. The rate at which this
happens equals the inverse of T2 as shown in equation (1.18) and it is tissue
dependent. It is supposed that the spin-spin interaction between voxels is
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Figure 1.2: Illustration of loss of transversal magnetization due to dephasing
of spins.

negligible, such that the T2 relaxation can be considered at a voxel level.
The second effect is due to small inhomogeneities in the external magnetic
field within V . This last effect will be ignored for now, but it is useful to
know that it can be removed by using appropriate pulse sequences. In gen-
eral it is the case that T2 ≤ T1.

The Bloch equations (1.1) are a combination of the rotation from equation
(1.2) with the relaxation effects in equations (1.17) and (1.18). In the fol-
lowing, the Bloch equations will be described in matrix form:

d

dt

 Mx

My

Mz

 =

 −1/T2 γBz −γBy

−γBz −1/T2 γBx

γBy −γBx −1/T1

 Mx

My

Mz

+

 0
0

m0/T1

 ,

(1.19)

which is shortened to:

Ṁ(t) = Ω(t)M(t) +M0/T1. (1.20)

As mentioned at the beginning of the section, equation (1.19) forms the basis
of MRI and this thesis. Images can be created based on the different values
of T1, T2 and the proton density which scales with m0. These values can be
determined by measuring the transverse magnetization dynamic for a given
external magnetic field B. Generating the magnetic field using the scanner
system is the topic of the next section.

1.1.2 Generating the magnetic field

A schematic overview of an MRI scanner is given in Figure 1.3. The magnetic
field is controlled using a superposition of three different types of magnetic
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Figure 1.3: Schematic of MRI scanner

field whose directions are either aligned with the z-axis or orthogonal to it.
Aligned with ẑ and part of Bz are both the main magnetic and the so-called
gradient field, while the radiofrequency pulses are played out orthogonally
to the main field and form Bx and By. The main magnet generates a time-
independent magnetic field, while both the gradient and radiofrequency field
are generated using smaller coils that can be varied over time.

Main magnetic field

The main or static magnetic field is denoted by B0 and has a strength of
1.0-3.0 T for clinical scanners while experimental scanners can go up to 11
T. Since B0 has a constant magnetic field strength which is much higher than
the other magnetic fields, the z-axis is associated with the direction of B0

and in the equilibrium state, M0, the magnetization is aligned with B0. The
rotation frequency of the magnetization due to the static magnetic field as
given by equation (1.4) is called the Larmor frequency ω0:

ω0 = γ‖B0‖2. (1.21)

In practice, there is an uncontrollable spatial variation in the main magnetic
field called field inhomogeneity ∆B0 . These variations are generated by both
imperfections of the scanner system as physical properties of the object, and
are usually measured at the start of scanning. An example inhomogeneity
map of a spherical phantom at 7T is given in Figure 1.4. The field inhomo-
geneity is converted from tesla to frequency offset in hertz through equation
(1.21).
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Figure 1.4: Example of field inhomogeneities for a slice of a disk-shaped
phantom, in case of a two-coil 7T system. Spatial resolution in centimetres.

The gradient magnetic field is generated by the so-called gradient waveforms
which are defined by a vector-valued function G with units in tesla per meter:

G(t) := (Gx(t), Gy(t), Gz(t))
T ∈ R3. (1.22)

The time derivative of the gradient waveform is called the slew rate. The
gradient magnetic field lays in the ẑ-direction and varies linear in strength
along each spatial direction. Denoting the spatial position r := (x, y, z)T ,
the gradient magnetic field at this position at time t equals:

(G(t) · r)ẑ ∈ R3, (1.23)

where · denotes the inner product of two vectors in R3. Due to system lim-
itations, the gradients have a maximal amplitude: |G(t)| ≤ Gmax, and slew
rate: |dG

dt
(t)| ≤ Smax.

Superimposing the field inhomogeneities ∆B0 and gradient field on the main
magnetic field, gives the following formula for the z component of the external
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magnetic field at position r and time t:

Bz(r, t) = ‖B0‖2 + ∆B0(r) +G(t) · r. (1.24)

Radio-frequency magnetic field

The magnetic field generated by the radiofrequency (RF) coils is orthogonal
to the B0 field. Interpreting R2 as the complex plane, with values in the
x̂-direction as real part and in the ŷ-direction as imaginary part, allows the
convenient representation of the vector Bxx̂+Byŷ, as complex number B1:

B1(r, t) := Bx(r, t) + iBy(r, t). (1.25)

The value of B1 is a weighted average of the magnetic fields produced by the
different coils:

B1(r, t) =
L∑
l=1

sl(r)b
(l)
1 (t). (1.26)

Here sl is the transmit field sensitivity of the lth coil and b
(l)
1 is the cor-

responding RF waveform; both are complex numbers. The transmit field
sensitivities at high-field MR are due to interference and reflection of the ra-
diofrequency fields within the object, and can be measured. The RF pulses
are essential for manipulating the magnetization which is required for imag-
ing. High RF pulse amplitude should be avoided since it leads to heating of
the tissue.

1.2 Solving the Bloch equation

Equation (1.19) allows the calculation of the magnetization through time
for given radiofrequency and gradient waveforms. This solution is called
the response of the magnetization and the subject of this section is how to
explicitly determine it. This is done in three steps: first a change of variables
is performed, followed by a numerical solution, and since this solution is
computationally expensive, an efficient approximate solution is given.

1.2.1 The rotating reference frame

The static magnetic field B0 is large in comparison with the other variables
and can lead to relatively large numerical (round-off) errors when evaluating
the magnetization response. As explained in the previous section, the static
magnetic field induces a clockwise rotation of the magnetization around the
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Figure 1.5: Magnetization vector in laboratory and rotating reference frame.

z-axis at the Larmor frequency ω0 = γ‖B0‖2. In a basis that rotates at
the same frequency, the effect of B0 on the magnetization is not perceived.
A vector is rotated around the z-axis at the Larmor frequency using the
following rotation matrix, calculated using equation (1.11):

Rz(ω0t) = eω0Szt =

 cos(ω0t) − sin(ω0t) 0
sin(ω0t) cos(ω0t) 0

0 0 1

 . (1.27)

Note that a positive rotation is counter-clockwise. A new basis is defined,
denoted by primes, by applying Rz to the original basis: x̂′

ŷ′

ẑ′

 := Rz(ω0t)

 x̂
ŷ
ẑ

 =

 cos(ω0t)x̂− sin(ω0t)ŷ
sin(ω0t)x̂+ cos(ω0t)ŷ

ẑ

 . (1.28)

The system in the original basis will be called the laboratory reference frame,
in contrast to the rotating reference frame with basis defined in equation
(1.28). A magnetization vector in the laboratory frame is expressed in the
rotating reference frame:

M ′(t) := Rz(ω0t)M(t) = eω0SztM(t). (1.29)

By inverting the equation, a fixed vector M ′ in the rotating reference frame
is shown to be rotating clockwise at the Larmor frequency in the laboratory
frame, as shown in Figure 1.5. Hence a vector rotating at the Larmor fre-
quency due to the B0 field is fixed in the rotating reference frame. This can
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also be seen by describing the dynamic of the magnetization in the rotating
frame due to the Bloch equation:

dM ′

dt
(t) =

d

dt

[
eω0SztM(t)

]
= eω0Szt [Ω(t)M(t) +M0/T1] + ω0Sze

ω0SztM(t)

= eω0Szt [Ω(t) + ω0Sz] e
−ω0SztM ′(t) +M0/T1.

(1.30)

The rotation matrix eω0Szt commutes with Sz and leaves M0 invariant. Here
the Bloch equation in the laboratory frame (1.19) is used.

Equation (1.30) can be simplified by decomposing the matrix Ω(t):

Ω(t) = D− γ(Bx(t)Sx +By(t)Sy +Bz(t)Sz), (1.31)

with D := −diag( 1
T2
, 1
T2
, 1
T1

). The rotation matrix eω0Szt commutes with both
D and Sz, but not with Sx and Sy. It follows that:

Ω′(t) := eω0Szt [Ω(t) + ω0Sz] e
−ω0Szt

= D− γeω0Szt [Bx(t)Sx +By(t)Sy] e
−ω0Szt + (ω0 − γBz(t))Sz.

(1.32)

For the Sz component, ω0 cancels against γ‖B0‖2, which annihilates the B0.
And the Sx and Sy components can be simplified:

eω0Szt [Bx(t)Sx +By(t)Sy] e
−ω0Szt

= eω0Szt
[
(−By(t), Bx(t), 0)T eT3 − e3 (−By(t), Bx(t), 0)

]
e−ω0Szt

= B′x(t)Sx +B′y(t)Sy,

(1.33)

where the following definition is used:(
B′x(t)
B′y(t)

)
:=

(
cos(ω0t) − sin(ω0t)
sin(ω0t) cos(ω0t)

)(
Bx(t)
By(t)

)
, (1.34)

Identifying R2 with the complex plane, as in equation (1.25), allows us to
express equation (1.34) in complex notation: B′1(t) := eiω0tB1(t).

Equation (1.33) allows equation (1.32) to be written in matrix form:

Ω′(t) =

 −1/T2 γ(G(t) · r + ∆B0) −γB′y(t)
−γ(G(t) · r + ∆B0) −1/T2 γB′x(t)

γB′y(t) −γB′x(t) −1/T1

 . (1.35)
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Figure 1.6: Magnetization response to radiofrequency and gradient wave-
forms in the rotating reference frame. View along the y′-axis. Static field
inhomogeneities are neglected.

Substituting equations (1.32) into equation (1.30), the Bloch equation in the
rotating frame is given by:

dM ′

dt
(t) = Ω′(t)M ′(t) +M0/T1 (1.36)

Note that the gradient field and the field inhomogeneity are in the ẑ-direction
and therefore not affected by the change of basis.

In order to rotate the magnetization out of equilibrium using a radiofre-
quency pulse, it is most efficient to have a fixed rotation axis B′1 in the
rotating reference frame. Inverting equation (1.34), it follows that a con-
stant rotation axis can be achieved by giving the RF pulses the frequency
ω0. This case is called on-resonance.

The combined effect of a constant B′1 vector and the spatially varying gradi-
ent in the rotating reference frame is shown in Figure 1.6. Note that the view
is along the y′-axis and that in the laboratory frame the illustrated magne-
tization trajectory is rotated around the z-axis at the Larmor frequency.
Since it is always possible to move from one basis to the other, in the follow-
ing the magnetization and its dynamics are modelled in the rotating frame,
and to ease notation the apostrophes for this case will be dropped.

19



1.2.2 Discretized solution

Equation (1.36) is the Bloch equation in the rotating reference frame and
in this section the equation is solved to give a numerical expression of the
magnetization response. The duration of the radiofrequency pulses is given
by T and the initial magnetization M(0) is fixed. In most cases the initial
magnetization M(0) will equal the equilibrium magnetization M0, but this
is not a necessary condition. Equation (1.36) defines a system of differential
equations which can be classified as inhomogeneous and linear with time-
dependent coefficients.
A numerical solution requires the discretization of the given time-dependent
RF and gradient waveforms. The time domain is discretized into Nt intervals
of length ∆t on which the time-dependent RF and gradient waveforms are
piecewise constant, which means for i ∈ {0, 1, . . . , Nt − 1}:

ti = i∆t, with ∆t =
T

Nt

, (1.37)

G(t) = G(ti) for t ∈ [ti, ti+1), (1.38)

and, for l ∈ {1, 2, . . . , L}:

b
(l)
1 (t) = b

(l)
1 (ti) for t ∈ [ti, ti+1) (1.39)

It follows from equation (1.35) that in this case Ω(t) = Ω(ti) for t ∈ [ti, ti+1).
Differential equation (1.36) becomes:

Ṁ(t) = Ω(ti)M(t) +M0/T1 for t ∈ [ti, ti+1) (1.40)

Now that the differential equation has constant coefficients it is solvable on
each interval if the matrices Ω(ti) are assumed invertible. The solution for
the homogeneous part is given by:

M(t) = eΩ(ti)(t−ti)M(ti) for t ∈ [ti, ti+1) (1.41)

The magnetization is required to have a continuous response, thus the end
points of the intervals are connected:

M(ti+1) = eΩ(ti)∆tM(ti), for i ∈ {0, 1, 2, . . . , Nt − 1} (1.42)

This defines the homogeneous solution for all t ∈ [0, T ]. To solve for the
inhomogeneous part, equation (1.40) is multiplied with e−Ω(ti)(t−ti) and some
terms are shifted:

e−Ω(t−ti)M0/T1 = e−Ω(ti)(t−ti)Ṁ(t)− e−Ω(ti)(t−ti)Ω(ti)M(t)

=
d

dt

[
e−Ω(ti)(t−ti)M(t)

]
for t ∈ [ti, ti+1)

(1.43)
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Switching and integrating both sides and noting that initial value M(ti) is
given:

e−Ω(ti)(t−ti)M(t) = M(ti) +

[∫ t

ti

e−Ω(ti)(τ−ti)dτ

]
M0/T1 (1.44)

Giving the solution of the inhomogeneous equation:

M(t) = eΩ(ti)(t−ti)M(ti) + eΩ(ti)(t−ti)
[∫ t

ti

e−Ω(ti)(τ−ti)dτ

]
M0/T1

= eΩ(ti)(t−ti)M(ti) +
[
eΩ(ti)(t−ti) − I

]
Ω−1(ti)M0/T1

(1.45)

And for the grid points:

M(ti+1) = eΩ(ti)∆tM(ti) +
[
eΩ(ti)∆t − I

]
Ω−1(ti)M0/T1 (1.46)

1.2.3 Approximate solution

To determine the response of the whole object, equation (1.46) has to be
solved for each voxel and time point. In the following, an approximation of
equation (1.46) is made with an accuracy of O(∆t2), which does not require
the inversion or exponent of the matrix Ω(ti).

Homogeneous part

Calculating the matrix exponential of a general matrix can be costly, but
fortunately Ω(ti) has some structure. The matrix can be split into the re-
laxation effects D on the diagonal, and the magnetic field effects Bi:

Ω(ti) = D− γBi, (1.47)

with:

D :=

 −1/T2 0 0
0 −1/T2 0
0 0 −1/T1

 ,

Bi :=

 0 −Bz(ti) By(ti)
Bz(ti) 0 −Bx(ti)
−By(ti) Bx(ti) 0

 .

(1.48)

The exponents of the matrices in (1.48) are easily calculated. The exponent
of a diagonal matrix is calculated element-wise:

eD∆t =

 e−∆t/T2 0 0
0 e−∆t/T2 0
0 0 e−∆t/T1

 . (1.49)
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For the skew-symmetric matrix Bi, the exponent is given by Rodrigues’ ro-
tation formula in equation (1.11). A more efficient method for determining
the rotation matrix e−γBi∆t, is by describing the rotation in the so-called
spin-domain. Assuming there is no relaxation, the Bloch equation can be
described in the spin-domain using the so-called Cayley-Klein parameters.
A rotation around unit vector B

‖B‖2 with angular velocity ωj = −γ‖B‖2∆t,
is described by the complex parameters:

α = cos(ωj/2)− i Bz

‖B‖2

sin(ωj/2), β = −i( Bx

‖B‖2

− i By

‖B‖2

) sin(ωj/2).

(1.50)

The rotation matrix e−γBi∆t can be expressed in α and β, see [10] and [17]:

e−γBi∆t =

 1
2
(α2 + ᾱ2 − β2 − β̄2) − i

2
(α2 − ᾱ2 − β2 + β̄2) −(αβ + ᾱβ̄)

i
2
(α2 − ᾱ2 + β2 − β̄2) 1

2
(α2 + ᾱ2 + β2 + β̄2) −i(ᾱβ + αβ̄)

−αβ − ᾱβ̄ i(αβ − ᾱβ̄) αᾱ− ββ̄

 .

(1.51)
Here ᾱ and β̄ denote the complex conjugates. The spin-domain version of
the rotation matrix has an advantage over the Rodrigues’ rotation formula
in equation (1.11): when relaxation effects are ignored, the Bloch equations
can expressed in α and β:

d

dt

(
β
ᾱ

)
=
iγ

2

(
G(t) · r B̄1(r, t)
B1(r, t) −G(t) · r

)(
β
ᾱ

)
. (1.52)

This spin-domain version of the Bloch equation will be useful for the design
of radiofrequency pulses.

The exponent of Ω(ti) is not equal to the product of the exponent of D
and Bi, since these matrices do not commute. For square matrices X and Y
the Zassenhaus formula [6] is used:

e(X+Y)∆t = eX∆teY∆t

∞∏
k=2

eCk(X,Y)∆tk . (1.53)

Here Ck is a polynomial in nested commutators of order k of X and Y. For
k = 2, 3, the polynomial Ck is calculated explicitly in [6] and equals:

C2(X,Y) = −1

2
[X,Y] = −1

2
(XY −YX) ,

C3(X,Y) =
1

3
[Y, [X,Y]] +

1

6
[X, [X,Y]].

(1.54)
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See [6] for proof and how to calculate Ck for higher k. By the definition of
the matrix exponential:

∞∏
k=2

eCk(X,Y)∆tk =
∞∏
k=2

[
I + Ck(X,Y)∆tk +O(∆t2k)

]
= I + C2(X,Y)∆t2 + C3(X,Y)∆t3 +O(∆t4).

(1.55)

Splitting the exponential eΩ(ti)∆t in (1.46) using the Zassenhaus formula leads
to a first-order approximation in ∆t of the solution:

eΩ(ti)∆t = e(D−γBi)∆t = eD∆te−γBi∆t +O(∆t2). (1.56)

In the following this first-order approximation will be used. Note that taking
more terms in (1.55) leads to a higher-order approximation of the exact
solution. Furthermore, when there is no RF power, B1 = 0, the matrices D
and Bi commute and the higher order terms in (1.58) are zero, in this case
the response of the magnetization can be exactly determined for arbitrary
large time steps.

Inhomogeneous part

Similar to the splitting of the exponent, the calculation of the inhomogeneous
part can be simplified by making a first-order approximation in ∆t:

[
eΩ(ti)∆t − I

]
Ω−1(ti)M0/T1 =

[
∞∑
k=1

(D− γBi)
k−1 ∆tk

k!

]
(−D)M0

=
[
I− eD∆t

]
M0 +O(∆t2).

(1.57)

Note that M0/T1 = −DM0. Taking more terms in the sum in (1.57) leads
to a higher-order approximation of the exact solution.

Complexity

The magnetization response to a radiofrequency pulse given in equation
(1.46) is approximated by using equations (1.55) and (1.57) and ignoring
the O(∆t2) terms:

M(ti+1) ≈ eD∆te−γBi∆tM(ti) +
[
I− eD∆t

]
M0. (1.58)

Most of the work is contained in calculating the rotation matrix. Using the
Cayley-Klein parameters from equations (1.50) and (1.51), calculating the
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rotation matrix and multiplying it with M takes 45 flops, while the relax-
ation effects can be done in 5 flops. Since equation (1.58) has to be solved for
each voxel and time interval, the total complexity of the response calculation
equals 50NtNs flops.

1.3 Radiofrequency pulse design

In the previous section the magnetization response was calculated for given
radiofrequency and gradient waveforms. In the following this line is reversed:
find the radiofrequency pulse that transfers the magnetization from a given
initial state to a desired state. The difference between the initial and desired
state is typically described by the flip angle θ which equals the angle in
radians between both states around the x-axis. Note that this does not
mean that the rotation axis has to be fixed during the radiofrequency pulse.
Since the radiofrequency and gradient waveforms are time dependent, the
same is true for the rotation axis, see Figure 1.6. Furthermore, allowing the
rotation axis to be free over time makes it possible to have spatially selective
pulses: the same radiofrequency pulse has different effects for different voxels
through the gradients and field inhomogeneities.
Radiofrequency pulses are grouped based on their flip angle and initial state.
There are three types, see also Figure 1.7:

Excitation pulse Rotates the magnetization from the equilibrium state to
a state with transverse magnetization, usually with θ ∈ [0, π

2
] rad. Since

MR signal is based on the rotating transversal magnetization, every MR
method requires the use of an excitation pulse.

Inversion pulse Rotates the magnetization from the equilibrium state π
rad such that the longitudinal magnetization is inverted and there is
no transverse magnetization. These pulses are used to enhance the
difference in T1 relaxation rate between tissues.

Refocusing pulse Transfers the magnetization from an out-of-equilibrium
state π rad around the x-axis. Used to cancel accumulated phase dif-
ferences due to the T ′2 effect.

The MRI process can in general be split into two parts: the excitation where
radiofrequency pulses are used to create transverse magnetization, and the
acquisition where the transverse magnetization is measured in order to gen-
erate an image.
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Figure 1.7: Examples of the three types of radiofrequency pulses.

1.3.1 Excitation

In discussing the magnetization excitation, the focus is changed from a single
voxel and magnetization vector to a two-dimensional spatial domain or slice
in the xy-plane. In practice, focusing on such a single slice is possible if the
scanned object is small in this direction, or by using a so-called slice-selecting
gradient.
The slice-selecting gradient gives a linearly variant rotation frequency along
the z-axis, such that there is a certain slice approximately on-resonance with
the RF pulse and hence excited. For more details see [11] or [4].
Within the slice, we focus on spatially-selective pulses which excites only a
subset of the slice. This is useful since the MR signal will be based only on
the magnetization in this region.

1.3.2 Acquisition

As mentioned before, the MR signal is generated by the rotating transverse
magnetization. Proton density and T1/T2 relaxation rates determine the
dynamics of the transverse magnetization. MR methods are designed to show
the difference between voxels of these parameters. This allows the generation
of contrast based on proton density or on different relaxation rates. Figure
1.8 shows examples of different types of contrast of the same slice of a human
brain. Gradients are used during signal readout to determine signal strength
at different positions.

1.3.3 Standard methods

Two often used methods for spatially-selective pulse design are small-tip-
angle (STA) and the linear class large-tip-angle (LCLTA) method, which
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Figure 1.8: Different contrast MR images of a slice of a human brain.

were introduced by Pauly et al. in respectively [16] and [17]. Both methods
approximate the magnetization response by a function linear in B1, such that
the desired RF pulse can found by solving a linear system. Note that the
Bloch equation is not a linear but a bilinear system: it is linear in B1 if M
is fixed and vice versa.
Both methods make use of the following assumption:

• The relaxation times are supposed to be much larger than the pulse
duration: T1, T2 � T .

In this case the relaxation effects are small and can be removed by setting
the diagonal to zero. This is applicable in most cases, and by the discussion
of the previous section makes the response to an RF pulse a rotation.

The two methods make assumptions in order to approximate the magne-
tization response as a linear function of B1. For the STA method:

1. The flip angle θ is small, such that sin(θ) ≈ θ,

2. The initial magnetization equals the equilibrium state: M(0) = M0.

Under these assumptions the longitudinal magnetization is approximately
constant during the pulse, and hence bilinear terms with Mz can be approx-
imated using Mz = M0. In practice, this approach is sufficiently accurate for
excitation pulses with a flip angle θ of up to π

2
rad. But for large-tip-angle

pulses, such as the inversion pulse with θ = π, the error is significant due
to the non-linear effects. Furthermore, the method can not be applied to
the refocusing pulse since the initial magnetization is not the equilibrium.
This is why in a follow-up article Pauly et al. introduced the linear class
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large-tip-angle (LCLTA) method [17] which generalizes the STA method by
allowing starting magnetization out of equilibrium.

For the LCLTA method, the rotation of the magnetization is described in
the spin-domain using the Cayley-Klein parameters α and β given in equa-
tions (1.50) and (1.51). The spin-domain version of the Bloch equation,
shown in (1.52), is a coupled differential equation in the complex parameters
α and β. It is solved by decoupling α using the following assumption:

The RF pulse can be decomposed into subpulses, such that:

1. The effect of each subpulse on the excitation is small,

2. During each subpulse the gradient is inherently refocused: its in-
tegral equals the zero vector.

The first condition leads to B1(r, t)β ≈ 0, and setting this term to zero
in equation (1.52) decouples α. The second condition ensures that each
subpulse rotates the magnetization around the same axis, see [22]. Under
these assumptions, the spin-domain version of the Bloch equation (1.52) is
simplified and the flip angle θ of the magnetization due to the effective B1

radiofrequency pulse is given by:

θ(r) = γ

∫ T

0

B̄1(t)e−iγ∆B0(r)(t−T )eir·k(t)dt, (1.59)

where B̄1 denotes the complex conjugate of B1 and:

k(t) = −γ
∫ T

t

G(s)ds. (1.60)

Here k(t) defines the so-called k-space trajectory with unit cm−1, and is used
to invert equation (1.59) using a Fourier transform. Suppose the desired flip
angle at each position is defined by the function θD for each position. Invert-
ing equation (1.59) works if the Fourier transform of θD is sampled densely
at positions with significant power by the trajectory of k(t). Requiring the
gradient to be inherently refocused is equivalent to demanding k = 0 at the
end of each subpulse.

The LCLTA method was initially introduced for the case of one radiofre-
quency transmit coil, and Xu et al. extended the method to the multichannel
case [22]. Setting the effective B1 equal to the sum of the L radiofrequency
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pulses of the different coils, b
(l)
1 with 1 ≤ l ≤ L, weighted by their transmit

sensitivities sl as in equation (1.26), equation (1.59) becomes:

θ(r) = γ

L∑
l=1

s̄l(r)

∫ T

0

b̄
(l)
1 (t)e−iγ∆B0(r)(t−T )eir·k(t)dt. (1.61)

The Fourier transform is no longer applicable to this case, and the equation
is solved for the RF pulses, b

(l)
1 , by discretizing the integral. In this case

equation (1.61) becomes:

θ(r) = γ∆t
L∑
l=1

s̄l(r)
Nt∑
i=1

b̄
(l)
1 (ti)e

−iγ∆B0(r)(ti−T )eir·k(ti)

=
L∑
l=1

S(l)(r) · b(l),

(1.62)

with S(l)(r), b(l) ∈ CNt , defined by:

S(l)(r) := γ∆t


e−iγ∆B0(r)(t1−T )eir·k(t1)

e−iγ∆B0(r)(t2−T )eir·k(t2)

...
e−iγ∆B0(r)(tNt−T )eir·k(tNt )

 , and b(l) :=


b̄

(l)
1 (t1)

b̄
(l)
1 (t2)

...

b̄
(l)
1 (tNt)

 .

Furthermore, since the equation has to be correct for a number of spatial
positions ri, with i ∈ 1, 2, . . . , Ns, we get a system of equations:

θ(r1)
θ(r2)

...
θ(rNs)

 =
L∑
l=1


(S(l)(r1))T

(S(l)(r2))T

...
(S(l)(rNs))

T

 b(l), (1.63)

which is equivalent to:
θ(r1)
θ(r2)

...
θ(rNs)

 =


(S(1)(r1))T (S(2)(r1))T · · · (S(L)(r1))T

(S(l)(r2))T (S(2)(r2))T · · · (S(L)(r2))T

...
...

. . .
...

(S(l)(rNs))
T (S(2)(rNs))

T · · · (S(L)(rNs))
T




b(1)

b(2)

...
b(L)

 .

This can be written as:

θ = Sb, (1.64)
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where θ ∈ RNs , S ∈ CNs×Nt , and b ∈ CNt . In practice, the system (1.64) is
often overdetermined (Nt < Ns) and there is no exact solution. Instead, a
radiofrequency pulse b is calculated by solving the system in the least squares
sense, minimizing the residual:

b = arg min
x

(
‖Sx− θ‖2

2

)
. (1.65)

Since the matrix S is typically ill-conditioned and overdetermined, a regu-
larization term λ is added to prevent large noise components in b:

b = arg min
x

(
‖Sx− θ‖2

2 + λ‖x‖2
2

)
. (1.66)

This regularization also reduces the RF amplitude and therefore heating. In
order to find an appropriate value for λ, equation (1.66) has to be solved
for different values, where methods such as conjugate gradients for the least
squares problem (CGLS) can be used. Plotting for different λ, with solution
bλ, the RF amplitude, ‖bλ‖2, against the residual norm, ‖Sbλ − θ‖2, typi-
cally leads to an L-curve as shown in Figure 1.9. The best λ value for the
regularization parameter usually is in the corner. Compared with this value
for λ, a small increase or decrease leads to a large increase in respectively
the residual norm or the solution norm. A fast method for computing the
solution b for different regularization parameters is by using the multi shift
CGLS algorithm as described in [21].

Figure 1.9: L-curve for the conjugate gradients least squares problem in
equation (1.66).
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1.4 Numerical tests

In the following, the LCLTA method is tested for spatially-selective excita-
tion, inversion and refocusing pulses. The spatially dependent parameters
are defined on a 128 × 128 grid. For the inhomogeneity maps the spherical
phantom depicted in Figure 1.4 is used. The two B+

1 maps are defined on a
square with edges of 12 cm, giving a voxel size of just less then 1 mm2.
Since we are only interested in the response within the phantom, a disk-
shaped mask with a radius of 4.5 cm is placed over the relevant part of the
phantom, and voxels outside of the phantom are ignored. The mask contains
7120 voxels for which the magnetization response will be considered.

The gradients follow a inherently refocused outward spiral as shown in Figure
1.10. Without proof we state that this trajectory satisfies the requirements
of the LCLTA method given in the previous section. The associated gradient
waveforms are bounded by Gmax = 30 mT/m and the slew rates of the gradi-
ents by Smax = 140 mT/m/ms. Both are shown in Figure 1.11. The duration
of the pulse is determined by the minimum time the k-space trajectory can
be completed under these constraints.

The spatially-selective desired flip maps θD were determined using the fol-
lowing function:

θD(r) = µ

(
1

e
ρ−α
β

− 1

e
ρ+α
β

)
. (1.67)

with:

ρ =
√

(rx/a)2 + (ry/b)2

Here a and b determine the elliptic shape of the profile, α and β determine
respectively the width and steepness of the transition region, and µ scales the
flip angle. Equation (1.67) was used for the creation of two flip maps: one
for a π

2
rad rotation used for the excitation pulse, and one for π rad rotation

for both the inversion and refocusing pulses. Both maps are shown in Figure
1.12. The parameters for these maps were: a, b = 3, α = 1, β = 0.05 and µ
was equal to respectively π

2
and π.

For given initial magnetization profile M(0) and flip map θD, the desired
magnetization profile D is given by:

D(r) = Rx(θD(r))M(r, 0). (1.68)
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Figure 1.10: Inherently refocused outward spiral k-space trajectory with
kmax = 4.

Figure 1.11: The gradient waveform and slew rate of the k-space trajectory
shown in Figure 1.10.
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Figure 1.12: Flip maps for spatially selective π
2 (a) and π (b) rad rotation.

Dashed black line indicates the border of the mask.

with:

Rx(θD(r)) =

 1 0 0
0 cos(θD(r)) sin(θD(r))
0 − sin(θD(r)) cos(θD(r))

 (1.69)

Note that the LCLTA method does not take the initial magnetization state
into account and will create the same radiofrequency pulse for both the in-
version and refocusing case.

The results are evaluated based on the relative error of the magnetization
response at time T compared with the desired magnetization profile D:

ϕ(M(T )) :=
‖M(T )−D‖2

2

‖D‖2
2

. (1.70)

Here all voxels are concatenated to express the whole magnetization profile:

M(t) :=
[
M(r1, t)

T ,M(r2, t)
T , . . . ,M(rNs , t)

T
]T
,

D :=
[
D(r1)T , D(r2)T , . . . , D(rNs)

T
]T
.

(1.71)

Furthermore, the radiofrequency amplitude of both channels are shown since
high values lead to heating.
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1.4.1 Excitation pulse

The desired magnetization profile D for the π
2

rad excitation pulse is created
by applying flip map a from Figure 1.12 to M0 using equation (1.68). The
result is shown on the right in Figure 1.13. On the left is the magnetization
at the end of the radiofrequency pulse designed using the LCLTA method.
The figure seems to indicate that the LCLTA method performs well for this
type of pulse. The relative error, defined in equation (1.70), equals 0.091.
Figure 1.14 shows the RF amplitude of the two channels.

1.4.2 Inversion pulse

Figure 1.15 shows on the right the desired magnetization profile for the in-
version pulse which was calculated by applying flip map b from Figure 1.12
to M0. Note that in the flip map there is a smooth transition between π rad
in the center and 0 rad at the edge of the mask. As a consequence, there are
values θ(r) ∈]0, π[ in the transition region, leading to the ring of transversal
magnetization as shown in Figure 1.15. The magnetization response of the
inversion pulse calculated using the LCLTA method is shown on the left.
There is still significant transverse magnetization in the center of the mask.

Figure 1.16 shows the RF amplitudes of the different channels. The calcu-
lated pulse is also used as the refocusing case in the following section, since
the LCLTA method is based on the flip map (Figure 1.12) and not the initial
magnetization. The RF amplitude profile looks similar to the profile of the
excitation pulse in Figure 1.14, but with double the amplitude. The reason
for this can be found in equation (1.66) which defines the LCLTA solution.
The only difference between the excitation and the inversion/refocusing case
is that the value of θ in the second case doubles. As a consequence of the
linear system in equation (1.66), the calculated pulse amplitude also doubles.
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Figure 1.13: The transverse and longitudinal magnetization response at time
T of the LCLTA excitation pulse compared with the desired magnetization.

Figure 1.14: RF amplitude of both channels for the π
2 rad excitation pulse

calculated using the LCLTA method.
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Figure 1.15: The transverse and longitudinal magnetization response at time
T of the LCLTA inversion pulse compared with the desired magnetization.

Figure 1.16: RF amplitude of both channels for the π rad inversion and
refocusing pulse calculated using the LCLTA method.
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1.4.3 Two-state refocusing pulse

As mentioned in the previous section, the refocusing pulse of the LCLTA
method is the same as the inversion pulse and the RF amplitude is shown in
Figure 1.16. The relative error of the magnetization in the refocusing case is
tested in this section. Since the goal of the refocusing pulse is to rotate any
vector in the transverse plane π rad around the x-axis, the pulse is tested for
two different initial states for each voxel:

1. An initial state MA(0) := ŷ, that at the end of the pulse should be
rotated to MA(T ) = −ŷ.

2. An initial state MB(0) := x̂, that should be left fixed by the pulse:
MB(T ) = x̂.

Both effects are illustrated in Figure 1.7. Note that since the two initial
states span the whole xy-plane, good refocusing of both states leads to good
refocusing of any vector in the plane.
For both cases the magnetization vectors start and end within the transverse
plane. To distinguish the different initial and end states the phase of the
magnetization within the transverse plane will be evaluated apart from the
transversal and longitudinal magnetization. The phase is relative to the ŷ
direction. In practice, for a refocusing pulse to be useful it is crucial that the
phase is correct, such that all magnetization vectors were effectively rotated
around the same axis.

The results for respectively the first and second case are shown in Figure
1.17, and Figure 1.18. Most noteworthy are the large errors in the phase of
the magnetization in the transverse plane for both cases.
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Figure 1.17: Comparison of the magnetization after the LCLTA refocusing
pulse with the desired magnetization, for initial state MA(0) := ŷ.
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Figure 1.18: Comparison of the magnetization after the LCLTA refocusing
pulse with the desired magnetization, for initial state MB(0) := x̂.
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1.5 Summary

At the start of this chapter, the Bloch equation and its parameters were in-
troduced and a numerical solution was given. In order to do fast simulations,
this numerical solution was approximated by a function with an accuracy of
order O(∆t2), allowing for the response calculation to be done in 50NtNs

flops.

Radiofrequency pulse design was introduced and applied using the linear
class large-tip-angle (LCLTA) method. The method showed good results for
the π

2
rad excitation pulse, but significant errors for the inversion and re-

focusing pulses. Finding a method for improving these pulses will be the
subject of the next chapter.
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Chapter 2

Optimal Control

In the previous chapter it was shown that radiofrequency pulses can be used
to bring the magnetization to a desired state. The pulses were found by
linearising and “inverting” the Bloch equation. But for larger flip angles,
the error of the linear approximation increases. The optimal control method
is able to iteratively improve the RF pulses, taking into account the non-
linearity of the Bloch equation. In this chapter, the optimal control method
will be introduced for radiofrequency pulse design and shown to improve
the accuracy of the desired magnetization response, especially for refocusing
pulses.
Most of the theory on optimal control in this chapter is based on the lecture
notes by Chachuat [7]. Optimal control was initially introduced to pulse
design for magnetic resonance by Conolly et al [8] and the extension to the
multichannel case was described by Xu et al [23].

2.1 Basic framework

As the name suggests, optimal control is an optimization method, which at-
tempts to minimize a cost function. In our case, the relative error between
the desired magnetization profile D and the magnetization profile M(T ) at
the end of the radiofrequency pulse. The relative error is quantified by the
function ϕ in equation (1.70).
In the previous chapter, it was shown that the profile of M(T ) is the result
of the application of radiofrequency and gradient waveforms, which can be
defined by the user to fulfil certain constraints. In optimal control terminol-
ogy the waveforms are the control variables, the magnetization is the state
variable and the Bloch equation is the differential equation that relates the
control to the state. The goal is to find the control function which brings
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the magnetization from its initial state, M(0), to the desired state D. Since
this is not always exactly possible due to the relaxation of the magnetization
over time, the optimal control functions are those that minimize the relative
error ϕ.
In the following, our focus will be on RF pulse design and the gradient wave-
forms are left fixed. Although it is possible to include the gradients in the
control, they are subject to additional constraints and it will be shown that
only optimizing the RF pulse already gives good results.

In order to make the dependence of the magnetization dynamics on the RF
pulses explicit, the Bloch equation (1.36) is rewritten for the L-channel case:

Ṁ(r, t) =

(
A(r, t) +

2L∑
k=1

Nk(r)uk(t)

)
M(r, t) +M0(r)/T1(r), (2.1)

where:

A(r, t) :=

 −1/T2(r) γ(G(t) · r + ∆B0(r)) 0
−γ(G(t) · r + ∆B0(r)) −1/T2(r) 0

0 0 −1/T1(r)

 ,

and for l = 1, 2, . . . , L:

u2l−1(t) := Re(b
(l)
1 (t)), N2l−1(r) := γ

 0 0 −s(I)
l (r)

0 0 s
(R)
l (r)

s
(I)
l (r) −s(R)

l (r) 0

 ,

u2l(t) := Im(b
(l)
1 (t)), N2l(r) := γ

 0 0 −s(R)
l (r)

0 0 −s(I)
l (r)

s
(R)
l (r) s

(I)
l (r) 0

 .

Here s
(R)
l (r) := Re(sl(r)) and s

(I)
l (r) := Im(sl(r)). All terms in equation (2.1)

are real-valued, and all are known except the RF pulses, ul, of the different
channels which will be described by the single control variable u:

u(t) = (u1(t), u2(t), . . . , u2L(t))T ∈ R2L. (2.2)

Since the radiofrequency pulses should minimize the relative error of all voxels
simultaneously, the Bloch equation is extended to describe to response of all
voxels, by defining the block diagonal matrices:

A(t) := diag (A(r1, t),A(r2, t), . . . ,A(rNs , t)) ∈ R3Ns×3Ns ,

T1 := diag ([0, 0, 1/T1(r1)], . . . , [0, 0, 1/T1(rNs)]) ∈ R3Ns×3Ns .
(2.3)
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and for k = 1, . . . , 2L:

Nk := diag (Nk(r1),Nk(r2), . . . ,Nk(rNs)) ∈ R3Ns×3Ns . (2.4)

Then the Bloch equation becomes for t ∈ [0, T ]:

Ṁ(t) =

(
A(t) +

2L∑
k=1

Nkuk(t)

)
M(t) + T1M0

= Ω(t)M(t) + T1M0.

(2.5)

with M(t),M0 ∈ R3Ns the concatenation of the magnetization vectors at all
spatial positions, as defined in equation (1.71). The initial value M(0) ∈ R3Ns

is determined by the user and equals M0 for the excitation and inversion
pulses. Note that the magnetization response can still be calculated per
voxel, but equation (2.5) will prove useful in describing the optimal control
algorithm.

For use in the following chapter, a translated system is defined such that
the equilibrium state, M0, equals the zero state:

M̂(t) := M(t)−M0, M̂0 := 0. (2.6)

Noting that A(t)M0 = −T1M0 for all t, equation (2.5) becomes:

˙̂
M(t) = A(t)M̂(t) +

2L∑
k=1

Nkuk(t)M̂(t) + Bu(t), (2.7)

with:
B := [N1M0,N2M0, . . . ,N2LM0] ∈ R3Ns×2L. (2.8)

This translated system (2.7) emphasizes the bilinear response of the system.

Since the heating of tissue increases quadratically with the RF field strength,
a regularization term on the pulse power is added to the cost function, leading
to:

J(u) := ϕ(M(T )) +
α

2

∫ T

0

‖u(t)‖2
2 dt, with u ∈ C1([0, T ],R2L). (2.9)

Here α is a fixed regularization parameter and M(T ) is determined by u
through equation (2.5). Note that different costs can be added to the cost
function, for instance to minimize the duration of the RF pulse. The problem
of finding the optimal control results in a constrained optimization problem
with cost functional (2.9) and constraint (2.5).
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2.2 Optimization

The function u which minimizes J in equation (2.9) will be determined using
an iterative method of the following form:

u(k+1) = u(k) + µkdk, (2.10)

where in iteration k the intermediate solution u(k) is improved in the search
direction dk, both in C1([0, T ],R2L), with step size µk ∈ R. For u(0), an
initial guess is taken, such as the LCLTA solution described in the previous
chapter. The procedure is stopped once the decrease of the cost function
is smaller than a given tolerance value, such that it is suspected that the
current solution is a local minimum of J .

Gradient-based methods will be used for selecting the search direction dk.
If the gradient direction ∇uJ(u) for given u can be calculated, then setting
dk = −∇uJ(u(k)), leads to a decrease of J for small step sizes. This method
of optimization is called steepest descend. More advanced methods increase
convergence rate by taking into account the search directions of the previous
iterations, such methods as: non-linear conjugate gradients (CG) method,
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and limited-memory
BFGS (LBFGS) method (see [18]).

For the step size, µk, a backtracking line search algorithm will be used,
which starts by taking a large step and reducing it until a reduction of the
cost function is found. The method is shown in algorithm 1, where the values
of umax, β0 and β1 are to be user defined with 0 < β0 ≤ β1 < 1.

Algorithm 1 Backtracking line search
µ = µmax

while J(u(k) + µdk) ≥ J(u(k)) do

µ = β0µ

end while

while J(u(k) + β1µdk) ≤ J(u(k) + µdk) do

µ = β1µ

end while

µk = µ

At the end of the chapter, the different methods for selecting the search di-
rection are tested in combination with the backtracking line search. There
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is a large number of alternative methods available for both the search direc-
tion dk and the step size µk. The tests therefore do not give a conclusive
result on which method is most appropriate for RF pulse design through
optimal control. Rather, an indication is given if there is a large difference
in performance and result between methods.

2.2.1 Adjoint method

A standard approach to minimizing the cost functional (2.9) with constraint
(2.5) is by minimizing a related functional J̄ , defined through the Lagrange
formalism:

J̄(u,M, λ) := ϕ(M(T )) +

∫ T

0

α

2
‖u(t)‖2

2

+ λ(t)T

[(
A(t) +

2L∑
k=1

Nkuk(t)

)
M(t) + T1M0 − Ṁ(t)

]
dt. (2.11)

Here λ(t) ∈ R3Ns is called the costate or adjoint variable, which is a yet to
be determined continuously differentiable function on [0, T ]. Equation (2.11)
defines a functional on u, M , and λ. Candidate solutions of minimizing J̄
unconstrained will be shown to be a candidate solution for the minimum of
J with constraint (2.5).

In the following, notation is simplified by setting:

H(t, u,M, λ) :=
α

2
‖u(t)‖2

2 + λ(t)T

[(
A(t) +

2L∑
k=1

Nkuk(t)

)
M(t) + T1M0

]
.

(2.12)

Substituting H in equation (2.11) gives:

J̄(u,M, λ) = ϕ(M(T )) +

∫ T

0

H(t, u,M, λ)− λ(t)TṀ(t) dt. (2.13)

A necessary condition for the minimum (u∗,M∗, λ∗) of J̄ , is that all di-
rectional derivatives are zero. For a functional such as J̄ , the directional
derivatives equal the Gâteaux derivative, which is defined for functional F
and functions x and φ as:

dF (x, φ) = lim
τ→0

F (x+ τφ)− F (x)

τ
=

d

dτ
F (x+ τφ)|τ=0. (2.14)
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The variables x and φ are respectively the position and direction of the
derivative and both are supposed to lie in the same linear space. Setting the
directional derivatives of u, M , and λ at the minimum to zero, gives three
equations a local minimum should fulfil.

First, the partial derivative of J̄ with respect to λ is calculated at the min-
imum. Here it is supposed that λ, φλ ∈ C1([0, T ],R3Ns), and the following
shorthand notation is used:

dJ̄(λ∗, φλ) := dJ̄(u∗,M∗, λ∗, 0, 0, φλ). (2.15)

Similar notation will be used for the other partial derivatives. In this case:

dJ̄(λ∗, φλ) =
d

dτ
J̄(u∗,M∗, λ∗ + τφλ)

∣∣∣∣
τ=0

= lim
τ→0

∫ T

0

dH

dτ
(t, u∗,M∗, λ∗ + τφλ)

− d

dτ
[λ∗(t) + τφλ(t)]

T Ṁ∗(t) dt

=

∫ T

0

φλ(t)
T
[
∇λH(t, u∗,M∗, λ∗)− Ṁ∗(t)

]
dt,

(2.16)

with:

∇λH(t, u∗,M∗, λ∗) :=[
dH

dλ(r1)
(t, u∗,M∗, λ∗), . . . ,

dH

dλ(r3Ns)
(t, u∗,M∗, λ∗)

]T
∈ R3Ns . (2.17)

From equation (2.16) it follows that the derivative is zero for all directions
φλ, if and only if for t ∈ [0, T ]:

Ṁ∗(t) = ∇λH(t, u∗,M∗, λ∗)

=

(
A(t) +

2L∑
k=1

Nku
∗
k(t)

)
M∗(t) + T1M0.

(2.18)

This equals the Bloch equation (2.5), which leads to the following important
observation: at the minimum of J̄ , the variables M∗ and u∗ are coupled by
the Bloch equation and hence u∗ satisfies the constraint for minimizing J .
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Two notes are made before calculating the directional derivative with re-
spect to the magnetization. First, the cost function J̄ is rewritten using
integration by parts to make the dependence on M explicit:

J̄(u,M, λ) = ϕ(M(T )) +

∫ T

0

H(t, u,M, λ)− λ(t)TṀ(t) dt

= ϕ(M(T )) + λ(0)TM(0)− λ(T )TM(T )

+

∫ T

0

H(t, u,M, λ) + λ̇(t)TM(t) dt.

(2.19)

Second, since the initial magnetization M(0) is given, it is a constant in the
cost function and therefore M,φM are functions in C1(]0, T ],R3Ns). Taking
the derivative at the minimum using equation (2.19):

dJ̄(M∗, φM) =
d

dτ
J̄(M∗ + τφM)

∣∣∣∣
τ=0

=
[
∇Mϕ(M∗(T ))T − λ∗(T )T

]
φM(T )

+

∫ T

0

[
∇MH(t, u∗,M∗, λ∗)T + λ̇∗(t)T

]
φM(t)dt,

(2.20)

which is equal to zero for all directions φM if:
λ∗(T ) = ∇Mϕ(M∗(T )) = 2 (M∗(T )−D) /‖D‖2

2,

λ̇∗(t) = −∇MH(t, u∗,M∗, λ∗)

=
(
−A(t) +

∑2L
k=1 Nku

∗
k(t)
)
λ∗(t).

(2.21)

It follows that at the minimum of J̄ , a differential equation closely similar to
the Bloch equation (2.5) determines λ∗, with boundary value given a time T
instead of time 0.

Finally, for the partial derivative of u in direction φu, both in C1([0, T ],R2L):

dJ̄(u∗, φu) =
d

dτ
J̄(u∗ + τφu,M

∗, λ∗)

∣∣∣∣
τ=0

=

∫ T

t=0

∇uH(t, u∗,M∗, λ∗)Tφu(t)dt.

(2.22)

Since this must equal zero for all directions φu, a necessary condition for the
minimum is:

0 =
dH

dui
(t, u∗,M∗, λ∗) = αu∗i (t) + λ∗(t)TNiM

∗(t), for 1 ≤ i ≤ 2L. (2.23)
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Equations (2.18), (2.21), and (2.23) are collectively known as the Euler-
Lagrange equations, and finding variables that satisfy all three constraints
gives a candidate minimum of J̄ , what in extension will also be a candidate
minimum of J .

To find variables that satisfy the Euler-Lagrange equations, the following
remark is made: For given u and initial magnetization M(0), the magneti-
zation response is determined uniquely through the first necessary condition
given in equation (2.18). Consequently, also λ is uniquely determined by sec-
ond necessary condition in equation (2.21). Hence J̄ with constraints (2.18)
and (2.21) can be considered a functional on only u. This will be supposed
from this point on, giving the following problem statement for finding the
minimum (u∗,M∗, λ∗) of J̄ :

Find u ∈ C1([0, T ],R2L), such that equation (2.23) is true for all t ∈ [0, T ],
where M and λ as defined by equations (2.18) and (2.21) for given u and
M(0).

Note by definition of J̄ in equation (2.11), defining the magnetization over
time through the Bloch equation gives:

J̄(u) = J(u), for all u. (2.24)

And furthermore:

dJ(u, φu) = lim
τ→0

J(u+ τφu)− J(u)

τ

= lim
τ→0

J̄(u+ τφu)− J̄(u)

τ
= dJ̄(u, φu).

(2.25)

It follows that in this case dJ(u, φu) = 0 if and only if dJ̄(u, φu) = 0, leading
to the important observation:

Equation (2.23) is a necessary condition for the minimum u∗ of J , when
M∗ and λ∗ are calculated through equations (2.18) and (2.21).

Finding an u that satisfies equation (2.23) then gives us a candidate solution
for the minimum of J . For this the function H is used, which is defined in
equation (2.12) and is a Hamiltonian function from control theory. As with
J̄ , the function H can be considered only dependent on t and u, if M and λ
are constrained by equations (2.18) and (2.21). Furthermore, equation (2.23)
gives the gradient of H with respect to u, and shows that the minimum of J
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is a critical point of H. Minimizing H then gives a candidate minimum for
J . Setting in the iterative procedure (2.10):

dk(t) = −∇uH(t, u(k)), (2.26)

it follows from equation (2.22) that:

dJ̄(u(k), dk) =

∫ T

t=0

−∇uH(t, u(k))T∇uH(t, u(k))dt ≤ 0, (2.27)

with dJ̄(u(k), dk) = 0 if and only if equation (2.23) is fulfilled and u(k) is a
candidate minimum. Updating the control in the direction which decreases
H also decreases J , if the step size µk is chosen small enough, since:

J(u(k) + µkdk)− J(u(k)) = µkdJ(u(k), dk) +O(µ2
k)

= µkdJ̄(u(k), dk) +O(µ2
k)

< 0, for small µk.

(2.28)

The above equation motivates the choice of the backtracking linesearch (Alg.
1) for the step size µk.

2.2.2 Algorithm

In the previous section it was shown that a candidate minimum of J , defined
in (2.9), can be found by minimizing H, defined in (2.12), where constraints
(2.18) and (2.21) determine respectively M and λ. The calculation of the
gradient ∇uH in each iteration of (2.10) requires three steps:

1. For given initial state M(0) and intermediate solution u(k), determine
M(t) for t ∈ [0, T ] through equation (2.18). This will be called the
forward step.

2. Using the calculated M(T ) from step 1 and intermediate solution u(k),
determine λ(t) for t ∈ [0, T ] through equation (2.21). This will be
called the backward step.

3. Calculate ∇uH(t, u(k),M, λ) for t ∈ [0, T ], using equation (2.23).

In order to do these steps numerically, the variables u, M , λ and H are
discretized in time, according to the discretization in equation (1.37). This
gives the adjoint method shown in algorithm 2.

The computational complexity of this method is O(NtNs). In section 1.2.3 it
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Algorithm 2 Adjoint method for gradient calculation

input for i := 1, 2, . . . , Nt : ti, u(ti), G(ti),

for j := 1, 2, . . . , Ns : rj,M(rj, t0), D(rj), T1(rj), T2(rj),∆B0(rj),

and Nl(rj) for 1 ≤ l ≤ 2L,

output for i := 1, 2, . . . , Nt :
dH

du
(ti).

setting :

Dj := −diag(1/T2(rj), 1/T2(rj), 1/T1(rj)),

Bi,j := γ(G(ti) · rj + ∆B0(rj))(e1e
T
2 − e2e

T
1 ) +

∑2L
l=1 Nl(rj)ul(ti).

for j := 1, 2, . . . , Ns, do

for i := 1, 2, . . . , Nt, do . 1: forward

M(rj, ti) = eDj∆teBi,j∆tM(rj, ti−1) +
[
I− eDj∆t

]
M0,

end for

λ(rj, tNt) = 2 (M(rj, tNt)−D(rj)) /‖D‖2
2,

for i := Nt, Nt − 1, . . . , 1, do . 2: backward

λ(rj, ti−1) = e−Dj∆teBi,j∆tλ(rj, ti),

end for

end for

for l := 1, 2, . . . , 2L, do . 3: gradient calculation

for i := 1, 2, . . . , Nt, do
dH

dul
(ti) =

∑Ns
j=1 λ(rj, ti)

TNl(rj)M(rj, ti),

end for

end for
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was shown that the complexity of calculating the response of M was of this
order, and this is supposed approximately the same for λ since the differen-
tial equation (2.21) is solved in a similar manner. Furthermore, calculating
the ∇uH for each time point is also O(NtNs), according to equation (2.23).

A standard method for the numerical approximation of the gradient at time
t is using finite difference methods, such as:

dH

dui(tj)

∣∣∣∣
u′

=
H(u′)−H(u′ + hui(tj))

h
. (2.29)

For some small h. Calculating H(u′+hui(tj)) for the 2L control variables and
Nt time points requires 2LNt response evaluations, giving a total complexity
of O(N2

t Ns). Thus the adjoint method is expected to require much less time.

2.2.3 Improving search direction

Since the number of time and spatial points are typically large, calculating
the response of a radiofrequency pulse and thereby the gradient through al-
gorithm 2 is computationally expensive. The steepest descend method takes
the opposite to the gradient of H as search direction, which locally equals
the direction of fastest decrease of H. However, more advanced methods
are able to increase the convergence speed by taking the search directions
of the previous iterations into account. The methods that are implemented
in the following section are: non-linear conjugate gradients (CG), Broyden-
Fletcher-Goldfarb-Shanno (BFGS) and limited-memory BFGS (LBFGS) al-
gorithm. The description is based on [18].

In this section, all control variables will be represented by a single vector
u:

u :=
[
u(t1)T , u(t2)T , . . . , u(tNt)

T
]
∈ R2LNt . (2.30)

In this case H is a function on R2LNt , where H is defined in (2.12) with M
and λ defined by constraints (2.18) and (2.21). Supposing that in iteration
k of the iterative method (2.10), H is twice differentiable at position u(k).
Then by Taylor’s theorem:

H(u(k) + x) = f(x) +O(|x|3), for x ∈ R2LNt , (2.31)

where:

f(x) = c− bTx+
1

2
xTAx, (2.32)
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with c := H(u(k)) ∈ R, b := −∇uH(u(k)) ∈ R2LNt , and A ∈ R2LNt×2LNt

is the Hessian of H at u(k), which is symmetric and positive definite with
Ai,j := d2H

duiduj
(u(k)).

Choosing an update x∗ that minimizes f approximately also minimizes H, if
x∗ is supposed small. The gradient of f is given by:

∇f(x) = Ax− b, (2.33)

and at the minimum x∗ of f , it is required that∇f(x∗) = 0 and thus Ax∗ = b.
The optimal step x∗ in iteration k can thus be found by solving a linear
system. The Hessian matrix of H is unknown to us, and the CG and the
BFGS methods differ in how the matrix product Ax is calculated. Either
implicitly or through the construction of an approximate Hessian matrix.

Non-linear conjugate gradients

The conjugate gradients method is aimed at iteratively solving the linear
system Ax = b. for x ∈ R2LNt , where A ∈ R2LNt×2LNt is a symmetric and
positive definite matrix. The step size µk and search direction dk are given
by the recurrence relation:

µk =
rTk rk
dTkAdk

∈ R, (2.34)

dk+1 = rk+1 + βkdk ∈ R2LNt , (2.35)

with rk+1 = rk − µkAdk ∈ R2LNt , and βk =
rTk+1rk+1

rTk rk
∈ R, and initial values

for given x0:
d0 = r0 = b−Ax0 (2.36)

These recurrences lead to the following properties:

rTk rj = 0, dTj Adk = 0, rTk dj = 0, for j < k. (2.37)

Furthermore, rk equals the residual of the approximate solution xk, rk =
b−Axk, and since each new residual is orthogonal to all previous ones:

lim
k→∞

rk = lim
k→∞

(b−Axk) = 0 (2.38)

Applying conjugate gradients to find the minimum of H directly is not pos-
sible since the Hessian matrix A in (2.32) is unknown, and hence equation
(2.34) is not directly solvable. But this step can be performed implicitly, not
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requiring the explicit knowledge of A at the cost of a line search for deter-
mining µk.

Suppose the gradient of f is calculated at position xk:

∇f(xk) = Axk − b = −rk. (2.39)

Moving from xk in an unspecified direction dk with step size µk, defined by:

µk := arg minµ {f(xk + µdk)} . (2.40)

At position xk+1 := xk + µdk, the gradient of f equals:

∇f(xk+1) = Axk+1 − b = A(xk + µkdk)− b = ∇f(xk) + µkAdk (2.41)

Since xk+1 lies at the minimum of f along line xk + µdk, at this position
dTk (∇f(xk+1)) = 0 and thus by equation (2.41):

dTk∇f(xk) = dTk µkAdk (2.42)

Noting ∇f(xk) = −rk, it follows that the step size follows equation (2.34),
and the recurrence relation for rk can be replaced with equations (2.39) and
(2.40).

Different choices for βk lead to different methods and influence the conver-
gence of the algorithm to the minimum. An overview of the different methods
is given in [12]. In this thesis the method of Polak and Ribière is chosen,
since it is often used in practice:

βk =
∇H(u(k+1))T (∇H(u(k+1))−∇H(u(k)))

‖∇H(u(k))‖2
2

. (2.43)

Limited-memory BFGS

The gradient of f in equation (2.33) implies that the step dk that minimizes
f has Adk = b, and if A is invertible:

dk = −A−1∇f(xk). (2.44)

Equation (2.44) defines Newton’s method. The BFGS method is a quasi -
Newton method since instead of using the inverse Hessian in equation (2.44),
an approximate matrix Bk ≈ A−1 is used and updated after each iteration.
The update is based on how the positions xk and gradients ∇f(xk) change
between iterations. Define:

sk := xk+1 − xk, yk := ∇f(xk+1)−∇f(xk), ρk := (yTk sk)
−1. (2.45)
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Note that for small sk, it follows from equation (2.33) that:

Ask = Axk+1 −Axk ≈ ∇f(xk+1)−∇f(xk) = yk, (2.46)

and thus sk ≈ A−1yk. The matrix Bk is constructed to approximate A−1,
by requiring:

1. sk = Bkyk,

2. the matrix Bk is symmetric and positive definite.

Furthermore, to do the calculations efficient, the matrix Bk is improved every
iteration by a low rank update. A update formula that fits these requirements
is the following BFGS formula:

Bk+1 = Bk + ρk
[
ρky

T
k Bkyk + 1

]
sks

T
k − ρk

[
sky

T
k Bk + Bkyks

T
k

]
, (2.47)

where B0 is an initial guess for the inverse Hessian matrix which should be
symmetric and positive definite. And after k iterations:

Bk = B0 +
k−1∑
i=0

ρi
[
ρiy

T
i Biyi + 1

]
sis

T
i − ρi

[
siy

T
i Bi + Biyis

T
i

]
. (2.48)

The limited-memory BFGS method (LBFGS) was developed in order to re-
duce the memory requirements by not storing the whole matrix Bk or all the
vectors required for the low rank updates in equation (2.48), but only the
vectors used in the last m updates. If only the last m updates are used, the
lower limit in equation (2.48) is set to i0 := min(0, k −m), and Bk0 = B0.
Updating the matrix Bk only based on the last m updates still requires the
computation of Bk for i ∈ i0 + 1, . . . , k − 1 using formula (2.48). However
the updates can also be written as:

Bk+1 = (I − ρkyksTk )TBk(I − ρkyksTk ) + ρksks
T
k

= vTk Bkvk + ρksks
T
k ,

(2.49)

where vk := (I − ρkyks
T
k ). In this case the formula for the approximate

Hessian matrix Bk at step k is given by:

Bk =

[
k−1∏
k=0

vk

]T
B0

[
k−1∏
k=0

vk

]
+

k−1∑
k=0

[
k−1∏
j=i+1

vj

]T
skρks

T
k

[
k−1∏
k=j+1

vj

]
. (2.50)

Determining Bk based only on the last m steps is equal to setting vk = I and
ρk = 0 for i < k −m. This is the algorithm that will be used to calculate
the approximate inverse Hessian matrix Bk and as a consequence the search
direction dk = −Bk∇uH(u(k)). The method is shown in algorithm 3. Here,
B0 := I was used as initial guess for the inverse Hessian.
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Algorithm 3 Determine search direction dk through limited-memory BFGS
with m vectors

input for i0 := max(0, k −m) ≤ i ≤ k − 1 :

si = u(i+1) − u(i),

yi = ∇H(u(i+1))−∇H(u(i)),

ρi = 1/yTi si,

B0 := I,

q = ∇H(u(k)).

output dk.

for i = k − 1, k − 2, . . . , i0 do

αi = ρis
T
i q

q = q − αiyi
end for

dk = B0q

for i = i0, i0 + 1, . . . , k − 1 do

β = ρiy
T
i dk

dk = dk + si(αi − βi)
end for
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2.3 Numerical tests

Two different tests with the optimal control method are performed in this
section. First we attempt to improve the pulses that were calculated in sec-
tion 1.4, where it was shown that the LCLTA method was well able to design
the π

2
rad excitation pulse but was less successful with the inversion and re-

focusing pulses. Secondly the effect of varying the regularization parameter
α in J (see eq. (2.9)) is investigated for refocusing pulses. Similar to the
L-curve if the LCLTA method, a high value of α is expected to promote
solution with a small l2-norm at the cost of a larger relative error between
the magnetization profile at the end of the pulse, M(T ), and the desired
magnetization D.

2.3.1 Method

For the following tests, the same parameters as the numerical tests in the
previous chapter are used. The optimal control method are tested using
the following numerical methods for the search direction dk in each itera-
tion: steepest descent (SD), nonlinear conjugate gradients (CG), the limited-
memory BFGS method with two (LBFGS2) or three (LBFGS3) updates, and
the normal BFGS method.
For the backtracking line search (see algorithm 1), parameters µ0 = 0.5,
β0 = 0.5 and β1 =

√
β0 are used. The regularization parameter α is initially

set to 10−2.

The methods are compared by the number of function evaluations (Bloch
equation solutions) required to find a local minimum. A local minimum is
supposed to be found if the change in objective value was less than 10−3 in
the last 10 iterations. The methods that use previous search directions for
the calculation of a new direction are restarted before exiting, which means
that all previous search directions are set to zero.

For a given control variable u, determining the cost J(u), given in equa-
tion (2.9), requires M(T ) and therefore one response evaluation of the Bloch
equation, while determining the gradient ∇uH(u), given in (2.21), addition-
ally involves determining λ(t) for t ∈ [0, T ]. Since the response computation
requires the most computation time of the method, the number of response
evaluation is a good indicator for the total simulation time.
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2.3.2 Excitation pulse

Section 1.4.1 showed that the LCLTA method performed well for the π
2

rad
excitation pulse, but according to the convergence graph in Figure 2.1 and
the results in Table 2.1 the optimal control method was still able to slightly
improve it. Comparing the convergence of the different optimization meth-
ods, the BFGS method is the fastest and SD the slowest. BFGS seems to
have approximately converged to the minimum after 300 response evalua-
tions, while SD requires 800 response evaluations.

Table 2.1 shows a summary of the results of the different optimization meth-
ods compared with the LCLTA method. All optimal control methods have
the same relative error and approximately the same RF norm. Compared
with the LCLTA method, the optimal control methods reduce the relative
error at the cost of a higher radiofrequency pulse norm.

The RF channel amplitudes of the optimal control solutions of the differ-
ent methods are compared with the LCLTA case in Figure 2.2. All optimal
control methods find approximately the same minimum, not distinguishable
from each other in the graph, but distinct from the LCLTA solution.

For the CG solution, the magnetization response profile at time T is com-
pared with that of the LCLTA method in Figure 2.3. There is no observable
difference in magnetization response between the two methods. Note that the
desired magnetization profiles are shown in Figure 1.13. This result indicates
that the optimal control method does not significantly improve the LCLTA
solution and therefore is not required for the design of π

2
rad excitation pulses.

excitation pulse
method LCLTA optimal control

SD CG LBFGS2 LBFGS3 BFGS
J(u) 0.097 0.067 0.067 0.067 0.067 0.067
φ(M(T )) 0.091 0.059 0.059 0.059 0.059 0.059
‖u‖2 11.1 12.2 12.2 12.3 12.1 12.4

Table 2.1: Results of the LCLTA and optimal control methods for the π
2 rad

excitation pulse, with J the cost function (2.9) and φ(M(T )) the relative error
(1.70).
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Figure 2.1: Convergence of the optimal control method for different opti-
mization methods for the excitation pulse (π2 rad). The graph is truncated at
1000 response evaluations.

Figure 2.2: RF amplitudes of both channels for the π
2 rad excitation pulse,

calculated using LCLTA and different optimal control methods.
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Figure 2.3: The transverse and longitudinal magnetization response at time
T of the excitation pulse (π2 rad) designed by LCLTA and optimal control
method using conjugate gradients.
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2.3.3 Inversion pulse

The LCLTA inversion pulse designed in Section 1.4.2 showed large errors
in the transverse magnetization at the end of the pulse. For the different
optimal control methods the convergence graph is given in Figure 2.4, and
shows a large reduction of the cost function for all cases. Most methods have
approximatedly converged after 200 response evaluation. Much faster than
in the excitation pulse case. The BFGS method converges the slowest with
a sudden reduction after 900 response evaluation. This reduction occured
after a restart of the BFGS method (Bk = I, see Section 2.2.3).

The results of the different optimal control methods are compared with the
LCLTA method in Table 2.2. In contrast to the excitation pulse case, the
optimal control methods lead to different solutions. However, all the optimal
control pulses greatly reduce the error in the magnetization at the cost of a
small increase of the RF norm. The BFGS method is the most extreme case,
with the lowest relative error at the cost of a highest RF norm. Determining
which result is best depends on the practical limit of the RF amplitude.

The difference between the optimal control solutions is also illustrated in Fig-
ure 2.5, where the RF amplitudes of the different methods are shown. The
optimal control pulses are more distinguishable than in the excitation pulse
case. The BFGS pulse clearly has the largest RF amplitude with a peak at
the end of the pulse.

inversion pulse

method LCLTA optimal control
SD CG LBFGS2 LBFGS3 BFGS

J(u) 0.290 0.166 0.166 0.167 0.167 0.160
φ(M(T )) 0.266 0.140 0.140 0.140 0.138 0.112
‖u‖2 22.1 22.5 22.6 23.0 24.3 31.0

Table 2.2: Results of the LCLTA and optimal control methods for the in-
version pulse, with J the cost function (2.9) and φ(M(T )) the relative error
(1.70).
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Figure 2.4: Convergence of the optimal control method for different opti-
mization methods for the inversion pulse. The graph is truncated at 1000
response evaluations.

Figure 2.5: RF amplitudes of both channels for the inversion pulse, calcu-
lated using LCLTA and different optimal control methods.
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Figure 2.6 shows the magnetization response of the CG pulse compared with
the LCLTA case. The optimal control method leads to a much more ho-
mogeneous transverse magnetization through the center of the disk. Note
that the BFGS method has the lowest relative error, but the result of CG is
shown since in this case the RF amplitude is approximately the same as in
the LCLTA case. The results of this section shows that a large reduction of
the magnetization error is possible without requiring a large increase in RF
norm.

Figure 2.6: The transverse and longitudinal magnetization response at time
T of the inversion pulse designed by LCLTA and optimal control method using
conjugate gradients.
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2.3.4 Two-state refocusing pulse

Designing the refocusing pulse through LCLTA method resulted in large
errors in the magnetization profile after the pulse, most observable in the
phase of the transverse magnetization, see Section 1.4.3. In order to apply
the optimal control method to design refocusing pulses with two initial states
per voxel, the two magnetization profiles are concatenated:

M(t) :=

(
MA(t)
MB(t)

)
for t ∈ [0, T ], and D :=

(
DA

DB

)
, (2.51)

where MA(r, 0) = ŷ, DA(r) = −ŷ, MB(r, 0) = DB(r) = x̂, for each position
r as illustrated in Figure 1.7. Note that compared to the inversion and ex-
citation pulses the length of the magnetization vector doubles, and therefore
also the simulation time of the Bloch equation.

The convergence of the different optimal control methods is shown in Figure
2.7. The SD method converges the slowest, requiring approximately 600 re-
sponse evaluations. The other method converge in half the time.
The results of the optimization methods are shown in Table 2.3. Compared
to the LCLTA pulse, the optimal control methods greatly improve the rela-
tive error of the magnetization at the cost of higher RF amplitude. Balancing
the RF amplitude while obtaining a desired magnetization pattern through
regularization in the cost function J will be the subject of the next section.

The RF amplitudes of the optimal control methods are compared with the
LCLTA solution in Figure 2.8. It shows that indeed the RF amplitude is high
compared to the LCLTA case. The difference betweeen the optimal control
solutions is small.

two-state refocusing pulse
method LCLTA optimal control

SD CG LBFGS2 LBFGS3 BFGS
J(u) 0.650 0.260 0.260 0.260 0.259 0.262
φ(M(T )) 0.626 0.207 0.207 0.199 0.199 0.198
‖u‖2 22.1 32.5 32.7 34.9 34.6 35.6

Table 2.3: Results of the LCLTA and optimal control methods for the re-
focusing pulse, with J the cost function (2.9) and φ(M(T )) the relative error
(1.70).
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Figure 2.7: Convergence of the optimal control method for the refocusing
pulse using different optimization methods.

Figure 2.8: RF amplitudes of both channels for the refocusing pulse, calcu-
lated using LCLTA and different optimal control methods.
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The effect of the optimal control pulse (CG) on the two different initial states
are shown in respectively Figures 2.9 and 2.10. These results show that the
optimal control method greatly improves the magnetization profile compared
to the LCLTA case. Especially the phase profile is improved compared with
the LCLTA method.
However, Table 2.3 showed that all optimal control solutions have a much
higher RF norm than the LCLTA pulse. Limiting the RF norm is required
for using the optimal control refocusing pulse in practice.



Figure 2.9: Comparison of the magnetization after the LCLTA refocusing
pulse with that of the optimal control method (CG), for initial state MA(0) :=
ŷ. The desired response is shown in Figure 1.17.
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Figure 2.10: Comparison of the magnetization after the LCLTA refocusing
pulse with that of the optimal control method (CG), for initial state MB(0) :=
x̂. The desired response is shown in Figure 1.18.
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2.3.5 Effect of the regularization parameter α

In the previous experiments, the cost function J (eq. (2.9)) was minimized
using α = 10−2. Compared to the LCLTA method, this led for each pulse
type to a reduction in relative error of the magnetization at the cost of an
increase in the RF amplitude. In practice, a low RF amplitude is required to
prevent heating of the object. In this section, the effect of varying the reg-
ularization parameter α on the RF amplitude and magnetization response
error is investigated.

For given value of α, the solution of the optimal control method is denoted
uα and its associated magnetization response, Mα. All other parameters are
the same as for the two-state refocusing pulse in Section 2.3.4. It is expected
that the RF norm and magnetization error for different α follow an L-curve
as in Figure 1.9, with a high or low value of α leading to respectively a small
RF amplitude or small magnetization error. The optimal control method was
applied using conjugate gradients method since it showed relatively good re-
sults in the previous sections.

Table 2.4 shows the results of the optimal control method for different values
of α. Figure 2.11 places the RF amplitude against the relative error of the
magnetizatio, giving indeed an L-curve. An increase in the value of α leads
to a decrease of the RF norm and an increase of the relative error in the mag-
netization. Furthermore, Table 2.4 indicates that the number of iterations
to find the minimum seems to have an inverse relationship with α. For small
values of α the convergence is slower. This could be due to the fact that for
small values of α the RF amplitude becomes less important in the cost and
hence the solution space grows.

The best value of α depends on the maximum allowed pulse amplitude. Com-
pared with the LCLTA solution, taking α = 0.1 leads to a large decrease in
the relative error at the cost of a small increase in the RF amplitude while
α = 0.5 both decreases the relative error and the amplitude.
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two-state refocusing pulse

α 0.001 0.005 0.010 0.050 0.100 0.500 1.000
ϕ(Mα(T )) 0.200 0.208 0.207 0.260 0.315 0.442 0.723
‖uα‖2 35.5 33.4 32.7 26.7 23.4 18.5 13.7
fun. eval. 588 476 616 308 196 238 112

LCLTA solution: relative error = 0.622, ‖u‖2 = 22.1

Table 2.4: Effect of the regularization parameter α on the relative error,
radiofrequency amplitude and number of response evaluations of the optimal
control solution (CG) for the two-state refocusing pulse.

Figure 2.11: L-curve of the squared amplitude of the optimal control solu-
tion, uα, against the squared relative error of its magnetization response Mα,
for different values of α as indicated in the graph.
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2.4 Discussion

The subject of this chapter was to apply the optimal control method for RF
pulse design. The motivation of the method was the inability of the LCLTA
method to design accurate inversion and refocusing pulses as presented in
the previous chapter. Furthermore, the optimal control method allows the
inclusion of relaxation effects, which can be important when attempting to
simulate larger sequences.

The results in sections 2.3.3, and 2.3.4 show that the optimal control method
was able to greatly improve the magnetization response of the inversion and
refocusing pulses compared with the LCLTA method. The optimal con-
trol method did increase RF amplitude and thus heating compared with the
LCLTA method. However, results from Section 2.3.5 showed that balancing
RF amplitude and magnetization response error can be effectively done using
the regularization parameter α. An interesting method for future research, is
performing regularization on the iteration number as described in [13]. The
idea is that in each iteration the magnetization error decreases at the cost
of an increase of the RF norm. If a line graph is made of the magnetization
error against the RF norm of each iteration, it might follow an L-curve which
allows for selection of the optimal solution.

A large part of this chapter was focused on different numerical methods for
determining the search directions of the iterative process. Calculating the
gradient and the value of the cost function for different RF pulses is compu-
tationally expensive, and decreasing the number of search directions required
to find the minimum can greatly increase convergence speed. The tests in this
chapter did not indicate a clear superior between methods, but more numer-
ical experiments are required for a conclusive result. Steepest descend had
slow convergence in each numerical test and thus looking into more advanced
numerical methods is worthwhile. Furthermore, a good idea for further re-
search would be to investigate when to restart the BFGS method, since this
method seems to lose convergence speed when it has not been restarted in a
number of iterations.

Even when using more advanced numerical methods, it takes hundreds of
computationally costly repetitions of solving the Bloch equation in order to
find the optimal RF pulse. This is the motivation for attempting to reduce
the simulation time of the Bloch equation through model order reduction in
the next chapter.
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Chapter 3

Model order reduction

In the previous chapter, it was shown that the optimal control method can
greatly improve the inversion and refocusing pulses. However, the method is
computationally costly since it requires the repeated evaluation of the mag-
netization response through the solution of the Bloch equation. Simulation
time scales with the number of spatial and temporal points. Controlling
the magnetization in a large region or with high resolution quickly leads to a
large number of spatial positions, while the radiofrequency pulses are defined
on the microsecond scale, giving thousands of time points for pulses of a few
milliseconds.
The focus of this chapter is determining the response of the magnetization
using fewer spatial or temporal variables, thus reducing simulation time.
In Section 3.1, projection techniques for the spatial domain are discussed and
attempted. No previous work on spatial reduction of the Bloch equations has
been found and such a method would be easily included in the optimal con-
trol framework.
In Section 3.2, temporal domain reduction is discussed. Two ideas from re-
cent articles are presented, and in Section 3.2.2 an original method for rapid
MR sequence simulations is shown.

3.1 Spatial domain

In this section, we attempt to find a method for projecting the Bloch equa-
tion (2.1) for all spatial positions, or full order model (FOM), to a reduced
order model (ROM). The motivation of creating such a ROM is discussed,
and two different projection methods are shown. First, the principle orthog-
onal directions (POD) method based on the singular value decomposition
of the data. And second, moment matching methods based on the Krylov
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space of the Bloch equation matrix. The discussion is largely based on the
book by Antoulas [2] and the lecture notes by Amsallem [1].

The magnetization dynamic will be described using the translated Bloch
equations (2.7) such that the equilibrium state equals the zero vector. For
spatial domain reduction, it is assumed that the dynamics of magnetiza-
tion response of all voxels is contained in a k-dimensional subspace S with
k � 3Ns. Then there is a basis VS = [V1, V2, . . . , Vk] ∈ R3Ns×k and a time-
dependent coordinate vector C(t) ∈ Rk×1, such that:

M̂(t) = VSC(t), for t ∈ [0, T ] . (3.1)

The vector C(t) is called the reduced state vector and can be substituted in
the translated Bloch equations (2.7) to get:

VSĊ(t) =

(
A(t) +

2L∑
k=1

Nkuk(t)

)
VSC(t) + Bu(t). (3.2)

In practice, the matrix VS might not be known or the magnetization tra-
jectories are only approximately contained within S. Suppose we have the
matrix V with span(V) = V , and the same substitution is done, then since
the Bloch equation might move the state out of V , there is a residual R:

R(t) =

(
A(t) +

2L∑
k=1

Nkuk(t)

)
VC(t) + Bu(t)−VĊ(t). (3.3)

If a matrix W ∈ R3Ns×k is found such that its columns span a subspace
orthogonal to the residual:

WTR(t) = 0 for t ∈ [0, T ] . (3.4)

Then the following reduced system can be defined:

WTVĊ(t) = WT

(
A(t) +

2L∑
k=1

Nkuk(t)

)
VC(t) + WTBu(t). (3.5)

The columns of V and W are called respectively the trial and test basis.
If WTV ∈ Rk×k is non-singular, both sides in equation can be multiplied
with its inverse to find the reduced-order model:

Ċ(t) =
(
WTV

)−1
WT

(
A(t) +

2L∑
k=1

Nkuk(t)

)
VC(t) +

(
WTV

)−1
WTBu(t).

=

(
Ã(t) +

2L∑
k=1

Ñkuk(t)

)
C(t) + B̃u(t).

(3.6)
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with:

Ã(t) =
(
WTV

)−1
WTA(t)V ∈ Rk×k,

Ñk =
(
WTV

)−1
WTNkV ∈ Rk×k,

B̃ =
(
WTV

)−1
WTB ∈ Rk×2L.

(3.7)

The matrices V and W uniquely define a projection Π with R(Π) = V and
N (Π) =W⊥:

Π = V
(
WTV

)−1
WT . (3.8)

If all trajectories of M̂ in the full order model are invariant under the pro-
jection of Π:

ΠM(t) = M(t), for t ∈ [0, T ] , (3.9)

then determining the response of C = VTM̂ through equation (3.6) is equiv-
alent to determining the response of M̂ through the full-order system.

If V = W, the projection in equation (3.5) simplifies to VVT which is
an orthogonal projection called the Galerkin projection. If V 6= W, the
projection is oblique and called the Petrov-Galerkin projection.

3.1.1 Projection methods

Determining the relevant subspaces V and W for a given dynamical system
is not trivial. The model reduction method should fulfil a number of different
requirements:

• The ROM should approximate the FOM for a given error criterion.

• The ROM should preserve most system properties from the FOM, such
as stability.

• The ROM should be computationally affordable.

• The method should be applicable for a wide range of parameters of the
full order model.

In general, two types of methods are distinguished. The singular value de-
composition (SVD) methods are based on the observed data for some trial pa-
rameters. Best known is the proper orthogonal decomposition (POD) method,
explained in the following section. Krylov subspace methods attempt to find
a ROM which accurately describe the impulse response of the original system
by doing so-called moment-matching.
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POD method

Here the matrix V is constructed such that its columns approximate some
relevant data set, whose elements are called snapshots. In this case, the
snapshots are the magnetization response, M(t), at different time point and
for a test set of p different radiofrequency pulses

(
u(i)
)

1≤i≤p. It is assumed

that a matrix V constructed in this manner will also contain the magnetiza-
tion response of a much larger set of RF pulses. Defining the magnetization
response of an RF pulse u(i) as Mu(i)(t), and concatenating all time points:

Mu(i) :=
[
Mu(i)(t1),Mu(i)(t2), . . . ,Mu(i)(tNt)

]
∈ R3Ns×Nt , (3.10)

where the time points ti follow the discretization of the RF pulses given in
equation (1.37). The snapshot matrix M is created by adding the responses
of the different pulses:

M :=
[
Mu(1) ,Mu(2) , . . . ,Mu(p)

]
∈ R3Ns×pNt . (3.11)

The POD method attempts to find a basis V ∈ R3Ns×k, for preset k, which
minimizes the 2-norm error between the trajectories and their Galerkin pro-
jection Π = VTV:

V = arg min
X∈R3Ns×k

p∑
j=1

Nt∑
i=1

‖Mu(j)(ti)−
k∑
l=1

XlX
T
l M

u(j)(ti)‖2
2, (3.12)

with X = [X1, X2, . . . , Xk] ∈ R3Ns×k. The solution V is found using the SVD
of the matrix M:

M = UΣWT , (3.13)

where U ∈ R3Ns×3Ns is an orthogonal matrix, W ∈ RpNt×pNt is also or-
thogonal and Σ ∈ R3Ns×pNt is a diagonal matrix. The singular values
(σj)1≤j≤min(3Ns,pNt)

of M are sorted in descending order on the diagonal of Σ.

It is proven in [2] that the first k columns of U solve equation (3.12), and
furthermore, in this case:

p∑
j=1

Nt∑
i=1

‖Mu(j)(ti)−
k∑
l=1

VlV
T
l M

u(j)(ti)‖2
2 =

min(3Ns,pNt)∑
j=k+1

σ2
j . (3.14)

Equation (3.14) is important since for given k it directly quantifies the mini-
mal error in approximating the snapshot matrix M. Although this does not
necessarily indicates if the columns of V accurately approximate the response
of any RF pulse, it does give an indication when this is definitely not the
case.
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Krylov method

The following method attempts to accurately describe the impulse response
of the system by so-called moment-matching. It takes an intermediate step to
explain what the moments of the Bloch equation are. For this intermediate
step, it is supposed that there is a single real-valued radiofrequency pulse and
constant gradient, such that the shifted system from equation (2.7) becomes:

˙̂
M(t) = AM̂(t) + u(t)NM̂(t) +Bu(t), (3.15)

With u(t) ∈ R and B ∈ R3Ns . In this case the response of the magnetization
can be described using the Volterra series representation (see [5], [19]):

M̂(t) =
∞∑
k=1

∫ t

0

∫ t1

0

. . .

∫ tk−1

0

h(t1, . . . , tk)u(t− t1 − . . .− tk) . . .

u(t− tk)dtk . . . dt1, (3.16)

where h is the degree-k kernel that characterizes the response:

h(t1, . . . , tk) := eAtkN . . . eAt2NeAt1B ∈ R3Ns . (3.17)

Equation (3.16) generalizes the magnetization response given in equation
(1.45) for a time-varying RF pulse. The kernel can be represented by a
degree-k transfer function H by applying the multi-variable Laplace trans-
form:

H(s1, . . . , sk) := (skI−A)−1N . . . (s2I−A)−1N(s1I−A)−1B. (3.18)

Which can be written using expansion point ηi ∈ R:

H(s1, . . . , sk) =
∞∑
lk=1

. . .
∞∑
l1=1

m(l1, . . . , lk) ·(s1−η1)l1−1 . . . (sk−ηk)lk−1. (3.19)

with:

m(l1, . . . , lk) = (−1)k(A− ηkI)−lkN . . . (A− η2I)−l2N(A− η1I)−l1B. (3.20)

For the following, it is assumed that the kth expansion point ηk in (3.19) is
the same for all transfer functions H of degree k and higher.

The multimoment-matching method attempts to find a reduced system as
in equation (3.6), with moments m̂ that match the moments of the original
system:

m(l1, . . . , lk) = Vm̂(l1, . . . , lk). (3.21)
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The matrix V is designed such that for given values of r, q ∈ N, equation
(3.21) holds for 1 ≤ k ≤ r, and 1 ≤ li ≤ q.

For linear systems, the book of Antoulas [2] explains how to create the matrix
V using Krylov techniques such that equation (3.21) holds. For non-linear
systems, creating such a basis is more difficult but fortunately, in recent
years a number of different articles on Krylov methods for the bilinear case
have been published. For the single-input/single-output (SISO) case a good
explanation is found in [5]. An extension to multiple-input/multiple-output
(MIMO) is based on the same ideas but greatly increases bookkeeping and
notation [14]. Here, both methods are mixed and a single-input/multiple-
output (SIMO) system is discussed. Note that the multichannel RF case and
time dependent gradients belong to the MIMO type.

In [5] it is proven that equation (3.21) holds for 1 ≤ k ≤ r, and 1 ≤ li ≤ q,
if V equals:

span{V} = span

{
r⋃

k=1

span{V(k)}

}
, (3.22)

where the matrices V(k) are constructed such that:

span{V(1)} = Kq((A− η1I)−1, (A− η1I)−1B), (3.23)

and for k = 2, . . . , r :

span{V(k)} = Kq((A− ηkI)−1, (A− ηkI)−1NV(k−1)). (3.24)

Note that (A− ηkI)−1NV(k−1) is a matrix and thus equation (3.24) defines
a block Krylov subspace, for which a basis can be constructed using Arnoldi
iteration. The matrix V can have up to

∑r
k=1 q

k vectors if all vectors in the
Krylov spaces are linearly independent. Furthermore, in [5] different choices
are presented for the matrix W in (3.9) that either guarantee preservation
of stability or matching more modes.

To construct V in the multichannel case and with time-dependent gradi-
ents, the gradient waveforms in each direction are considered as an extra
control uk. Since in this case the magnetization is dependent on multiple
time-dependent control variables, the formula for the response in equation
(3.16) becomes more complicated. The matrix V is then calculated by re-
placing B in equation (3.23) by B ∈ R3Ns×2L defined in equation (2.7), and
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by replacing equation (3.24) with:

span{V(k)} =
2L+3⋃
i=1

Kq((A− ηkI)−1, (A− ηkI)−1NiV
(k−1)). (3.25)

The matrix V constructed in this manner has a maximum of
∑r

k=1 ((2L+ 3)q)k

columns.

3.1.2 Application to the Bloch equation

Both a numerical implementation of the POD as the moment-matching method
for spatial reduction of the Bloch equations were attempted, but the results
obtained were not encouraging in terms of computational efficiency. A work-
ing reduction technique might be possible, and in the following some remarks
are made on the difficulties and possible solution strategies.

Projection

The matrices of the original system as given in equation (2.1) are tridiagonal
and sparse. When projecting the matrices in equation (3.5), the sparsity and
structure is lost, and the response can no longer be determined by rotating
and decaying individual voxels. In order to make response calculation of
the reduced system efficient compared with the full-order system, the Bloch
equations dynamic should be contained in a very low-dimensional subspace.
It is not clear whether this is the case.
Using a Galerkin projection, the ROM still retains some structure since pro-
jecting a skew-symmetric matrix gives a matrix which is still skew-symmetric
and its exponential equals a high-dimensional rotation. However, the rota-
tion formulas used in Chapter 1 do not apply to high-dimensional rotations.
A possible strategy for this case can be found in [9].

Singular values of snapshot matrix

To apply the POD method to the Bloch equation, a snapshot matrix (3.11)
of the magnetization response has to be created. Since calculating the snap-
shots requires the response simulation of the Bloch equation for each position,
computational efficiency can only be gained if the Bloch equation has to be
solved repeatedly. Two cases for the snapshot matrix were compared: the
response of a two-state refocusing pulse as designed by the LCLTA method
and that of the optimal control solution. The same parameters as in the
Sections 2.3.4 are used (Nt = 603, Ns = 7120).
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Figure 3.1: Decay of the singular values for the magnetization response of
the LCLTA refocusing pulse.

The decay of the singular values for both cases are shown on a logarithmic
scale in Figure 3.1. The singular values decrease exponentially. Based on
equation (3.14) it is expected that the reduced bases will require in the order
of hundreds of vectors to accurate approximate the range of different mag-
netization responses. In practice it is possible that a smaller set leads to a
good result and additional research is suggested.

Eigenvalues

Constructing the matrix V requires knowledge of which magnetization states
can be considered to be “important” for the representation of all magneti-
zation states. The eigenvalues of the matrix Ω(t) for t ∈ [0, T ], as given in
equation (2.5), can give some insight. For instance, magnetization states are
damped over time if they are associated with eigenvalues having a relatively
small real part. These states are then less important to include in V.

The matrix Ω(t) is time-dependent, and the eigenvalues change over time.
Note that the matrix Ω(t) consists of blocks, Ω(rj, t) ∈ R3×3, of the Bloch
equation matrix for different voxels rj, as defined in (1.36). The spectrum of
Ω(t) thus equals the union of the spectra of Ω(rj, t) of all positions.

The eigenvalue distribution for different time points, and thus values of B1(t)
and G(t), look similar and an example is shown in Figure 3.2. Each matrix
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Figure 3.2: Example eigenvalues of the Bloch matrix Ω(t), for given t ∈
[0, T ].

Ω(rj, t) has one real eigenvalue and a pair of complex conjugate eigenvalues,
and this distribution is clearly shown in the figure. Note that there is a large
scale difference between the x- and y-axis, and all eigenvalues are close to
being purely imaginary. Pure imaginary eigenvalues are associated with ro-
tations, as shown in Section 1.1.1 Here it was also stated that the rotation
was the dominant effect in the magnetization response. From Figure 3.2, it
is not directly clear which eigenvalues and associated magnetization states
are essential for the matrix V. However, an important observation is that
there are no dominant eigenvalues that either have relatively large or small
real part. Thus selecting states on this criterion is not directly applicable.
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3.2 Temporal domain

In contrast to the spatial domain, using temporal domain reduction for MR
pulse design has been actively studied in recent years. In this section, two
recent methods from literature ([3], [10]) will be discussed that allow for fast
response calculation in different cases. Furthermore, a new idea for reducing
the dimension of the problem in the time domain will be illustrated and
tested.

3.2.1 Previous literature

Two existing methods are discussed in this section. In Section 3.2.1, the
method of Balac and Chupin [3] is shown, which allows for fast magnetization
response calculation when the RF field has a perturbation term. Section 3.2.1
discusses the method of Grissom et al [10], which extents the LCLTA method
from Section 1.3.3 and is applied to pulse design through optimal control.

Truncated series expansion

In Section 1.2.1, it was shown that the RF field, B1, rotates at the Larmor
frequency ω0 in the laboratory frame. In the following, the RF field in the
laboratory frame is described by the formula:(

Bx(r, t)
By(r, t)

)
= b1

(
cos(ω0t)
− sin(ω0t)

)
+

(
v1(r) w1(r)
v2(r) w2(r)

)(
cos(ω0t)
sin(ω0t)

)
. (3.26)

The first term on the right equals the RF field from Section 1.2.1 with con-
stant amplitude, b1, and aligned with the x-axis at t = 0. The second term
is the so-called perturbed RF field. The perturbed RF field has the same
frequency as the RF field since the latter typically induces the former by
so-called Eddy currents. All terms in equation (3.26) are real-valued.

In the following, the gradient and field inhomogeneity effects are ignored:
G(t) = ∆B0 = 0 for t ∈ [0, T ]. Furthermore, the response is calculated for
a single position and the spatial dependence is dropped from the equations.
The matrix of the Bloch equation in the rotating frame, defined in (1.35),
becomes:

Ω′(t) =

 −1/T2 0 −ωa(t)
0 −1/T2 ωb(t)

ωa(t) −ωb(t) −1/T1

 . (3.27)
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with:

ωa(t) := γBy(t) cos(ω0t) + γBx(t) sin(ω0t),

ωb(t) := γBx(t) cos(ω0t)− γBy(t) sin(ω0t).
(3.28)

Note that by definition in (3.26), the functions Bx(t) and By(t) a periodic
with frequency ω0. It follows that the matrix Ω′ has continuous and periodic
coefficients, and can be written as:

Ω′(t) = Ω−2e
−2iω0t + Ω0 + Ω2e

2iω0t. (3.29)

where:

Ω0 :=

 −1/T2 0 −ω(0)
a

0 −1/T2 ω
(0)
b

ω
(0)
a −ω(0)

b −1/T1

 , (3.30)

with ω
(0)
a := 1

2
γ(v2 + w1), ω

(0)
b := 1

2
γ(2b1 + v1 − w2), and:

Ω2 = Ω̄−2 :=

 0 0 −ω(2)
a

0 0 ω
(2)
b

ω
(2)
a −ω(2)

b 0

 , (3.31)

with ω
(2)
a := −1

4
γ(w1 − v2 + i(v1 + w2)), ω

(2)
b := 1

4
γ(v1 + w2 + i(v2 − w1)).

Decomposing the magnetization response as:

M(t) =
∑
k∈Z

mk(t)e
2ikω0t. (3.32)

and substituting the infinite sequence into the Bloch equation (1.36), taking
note of equation (3.29), the following infinite sequence of differential equa-
tions is obtained:

∀k ∈ Z
{

d
dt
mk(t) =

∑1
j=−1 Ω2jmk−j(t)− 2ikω0mk(t) + δkM0/T1,

mk(0) = δkM0,
(3.33)

with δk = 1 for k = 0, and zero elsewhere. The sequence of differential equa-
tions (3.33) has an unique solution and for each time point t the sequence
(mk(t))k∈Z converges quickly to zero if k goes to ±∞ (see [3]).

81



The algorithm is based on concatenating the coefficients in equation (3.32)
and (3.33) for the first N terms:

m[N ](t) :=


mN(t)
mN−1(t)
mN−2(t)

...
m−N(t)

 ∈ R3(2N+1), (3.34)

and:

Ω[N ] :=


Ω0(N) Ω−2

Ω2 Ω0(N − 1) Ω−2

. . . . . . . . .
. . . . . . Ω−2

Ω2 Ω0(−N)

 ∈ R3(2N+1)×3(2N+1),

(3.35)
with Ω0(k) = Ω0 + 2ikω0I. The coefficients of the solution at time t = T ,
are given by:

m[N ](T ) = eTΩ[N ]

m[N ](0) +

(∫ T

0

e(T−s)Ω[N ]

ds

)
M

[N ]
0 . (3.36)

Here M
[N ]
0 is defined using the sequence (3.34) with mk(t) = δkM0. The

algorithm calculates the solution by diagonalizing Ω[N ] = PDP−1, and mov-
ing the matrices P and P−1 out of the exponential such that the we get the
exponential of a diagonal matrix. The matrices P and D can be found by
calculating the eigenvalues and vectors of Ω[N ], since:

Ω[N ]P = PD. (3.37)

Hence the ith diagonal element of D is the eigenvalue of Ω[N ] with eigenvec-
tor equal to the ith column of P. By the block tridiagonal structure of Ω[N ],
there are fast algorithms for the computation of the eigenvalues and vectors,
allowing fast evaluation of (3.36).
The resulting algorithm to compute m[N ](T ) was compared in [3] with the
ODE45 solver from Matlab applied to equation (1.35). This was done in the
case without RF perturbation where the exact solution is known. Even for
N = 0, the method based on equation (3.36) is an order of magnitude faster
and slightly more accurate than the ODE45 solver.
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There are a number of advantages of this method. First, it allows for taking
arbitrary large time steps when determining the magnetization response. In
practice this means moving from the O(10−6s) on which de RF and gradient
waveforms are defined, such as in the Bloch simulator used in the previous
chapters, to O(10−3s) in which the RF pulse duration is contained. Second,
there is a lot of freedom in determining the field inhomogeneities in equation
(3.26). Third, the method includes relaxation rates. Finally the matrices P
and D have to be determined only once for each value of b1, supposing the
field inhomogeneities stay the same.
However, the restriction to constant RF and gradient waveforms makes the
method not directly applicable to a general setting. If the method can be
extended by including time-dependent RF and gradient waveforms, it might
be well suited for increasing the convergence speed of the optimal control
method.

Small-perturbation approximation

In the method by Grissom [10], the relaxation effects are ignored and the mag-
netization response is considered in the spin-domain using equation (1.52),
as in the LCLTA method. The small-perturbation method assumes the RF
pulses b

(l)
1 (t) are perturbed with small pulses b

′(l)
1 (t), leading to a perturba-

tion B′1(r, t) of the effective RF field. In consequence, it follows from equation
(1.52) that the parameters α and β, defining the magnetization response in
the spin-domain, are perturbed with α′, β′ ∈ C:

d

dt

(
β + β′

α + ᾱ′

)
=
iγ

2

(
G(t) · r B̄1(r, t) + B̄′1(r, t)

B1(r, t) +B′1(r, t) −G(t) · r

)(
β + β′

ᾱ + ᾱ′

)
.

(3.38)

Substituting equation (1.52) into the above equation gives:

d

dt

(
β′

ᾱ′

)
=
iγ

2

(
G(t) · r B̄1(r, t) + B̄′1(r, t)

B1(r, t) +B′1(r, t) −G(t) · r

)(
β + β′

ᾱ + ᾱ′

)
− iγ

2

(
G(t) · r B̄1(r, t)
B1(r, t) −G(t) · r

)(
β
ᾱ

)
.

(3.39)

This equals the following coupled differential equations:

d

dt
β′ =

iγ

2

(
(G(t) · r)β′ + B̄1(r, t)ᾱ′ + B̄′1(r, t)ᾱ + B̄′1(r, t)ᾱ′

)
(3.40)

d

dt
ᾱ′ =

iγ

2

(
−(G(t) · r)ᾱ′ + B̄′1(r, t)β + B̄1(r, t)β′ + B̄′1(r, t)β′

)
. (3.41)
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Equations (3.40) and (3.41) are decoupled by supposing that some of the
terms are relatively small (see [10]), such the equations are approximated by:

d

dt
β′ =

iγ

2

(
(G(t) · r)β′ + B̄′1(r, t)ᾱ

)
(3.42)

d

dt
ᾱ′ =

iγ

2

(
−(G(t) · r)ᾱ′ + B̄′1(r, t)β

)
. (3.43)

With solutions:

β′(r, T ) =
iγ

2

L∑
l=1

s̄l(r)

∫ T

0

b̄
′(l)
1 ᾱ(r, t)e−

i
2
r·k(t)dt, (3.44)

α′(r, T ) =
iγ

2

L∑
l=1

sl(r)

∫ T

0

b
′(l)
1 β(r, t)e−

i
2
r·k(t)dt. (3.45)

Similar as to the LCLTA method, discretizing the integral and solving for
different positions at the same time gives a linear system, ignoring the dis-
cretization error:

β′ =
L∑
l=1

diag(s̄l)Bū
′
l, with: Bij =

iγ

2
∆tᾱije

− i
2
ri·k(tj), (3.46)

α′ =
L∑
l=1

diag(sl)Aūl, with: Aij =
iγ

2
∆tβije

i
2
ri·k(tj). (3.47)

The matrices A and B describe the effect of perturbations in b1 on α and β.
The time domain reduction is found in the fast determination of the effect
of small changes in the RF pulse on the magnetization response.

In order to quickly calculate the perturbation effect, a domain reduction
is performed on the rows of the matrices A and B. As shown on the right of
equations (3.46) and (3.47) these equal the trajectory of α or β for a given
position weighted by the gradient effect.
If a low-rank basis can be found for the rows, the RF perturbation effect only
has to be calculated for this basis, reducing computation time. However the
singular values of the matrices rows of A and B decay slowly, which would
require a large number vectors to accurately describe all trajectories.

A solution is found by looking at the elements of the matrices in the so-
called gradient frame, which defines matrices Â and B̂ by:

Âij = e
iγ
2
ri·

∫ tj
0 G(τ)dτAij, B̂ij = e

iγ
2
ri·

∫ tj
0 G(τ)dτBij. (3.48)
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The singular values of Â and B̂ decay fast and we can use the SVD to create a
low rank approximation. Converting back to the rotating reference frame by
inverting equations (3.48). Note that in this case the reduced basis describes
the different temporal trajectories while in the spatial reduction section we
attempted to create a basis of the spatial domain.
The algorithm now alternates between simulating the response of the baseline
pulses b

(l)
1 , and minimizing the cost function over the perturbations, taking

the minimum as new baseline. The method showed that compared to the
conventional optimal control method as shown in the previous chapter, the
design time was reduced almost 30 fold.
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3.2.2 Piecewise constant representation of RF wave-
forms

The RF pulses used in the previous chapters were so-called fully-sampled,
with a time interval size in the order of microseconds. For a typical RF
pulse of a few milliseconds, this gives an order of 103 intervals. As shown
in Chapter 1, the simulation time of the response is linear in the number of
time intervals. To decrease the simulation time, the goal of this section is to
design RF pulses based on the fully-sampled pulse, such that:

1. The RF pulse is piecewise constant on much fewer intervals than the
fully sampled pulse,

2. The response of this RF pulse approximates that of the fully-sampled
pulse for a large number of parameters: T1, T2, B1 and ∆B0.

Such an RF pulse will be called a reduced pulse. Substituting fully sampled
pulses with reduced pulses greatly decreases simulation time, especially for
sequences of a repeated RF pulse. Examples of methods that can benefit
from the reduced pulses are for instance the so-called magnetic resonance
fingerprinting (MRF) [15], and the new MR-STAT method [20].

Method

In the following, the focus is for simplicity on the magnetization response
to a single real-valued RF pulse. The method can easily be extended to the
multichannel and complex RF pulses. Two types of RF pulse shapes are
compared: one defined by a Gaussian function and one by a sinc function:

gauss(x) := e−x
2

, sinc(x) :=
sin(πx)

πx
. (3.49)

The motivation for these pulse shapes is that for small flip angles the mag-
netization response of an object approximates the Fourier transform of the
RF pulse. Since the Fourier transform of a Gaussian is again Gaussian, and
that of sinc function is a rectangle, both are used for slice selective excita-
tion. These functions have unlimited support and need to be truncated. The
Gaussian function can be truncated once the amplitude is lower than a given
tolerance level. For the sinc function, two cases were tested: truncation after
three zero crossings, giving a total of four side lobes (sinc(4)), and after five
zero crossings, giving eight side lobes (sinc(8)). The three pulses were scaled
to have a length of 1 ms and a flip angle of π/2, and sampled in 2500 intervals
as shown in Figure 3.3.
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Figure 3.3: The fully-sampled, interpolated and optimized RF pulses for
three pulse shapes: Gaussian, sinc with four side lobes, and sinc with eight
side lobes.
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A test set of 2000 points is generated with random parameters taken from
uniform distributions with ranges shown in Table 3.1. For the test set, the
response of the fully sampled pulse is calculated and the magnetization pro-
file at the end of the pulse time T is chosen as the desired response D. The
designed reduced pulse should approximate D as measured by the relative
error of the magnetization at the end of the pulse:

ϕ(M(T )) =
‖M(T )−D‖2

2

‖D‖2
2

. (3.50)

Suppose the designed pulse is piecewise constant on nt = 15 time intervals.
If the pulse length T is distributed in nt intervals of equals length, the grid
points equal:

ti :=
T

nt
i = i∆t, for i ∈ {0, 1, . . . , nt}. (3.51)

A natural method to define a pulse on these intervals, approximating the
fully-sampled pulse in shape, is interpolation. The reduced pulse b̃1 is defined
on each interval [ti, ti+1), by setting the pulse equal to the value of the fully
sampled pulse in the midpoint:

b̃1(t) := b1(ti + ∆t/2), for i ∈ {0, 1, . . . , nt − 1} and t ∈ [ti, ti+1). (3.52)

For smooth pulse shapes, the interpolated pulse closely approximates the
shape of the fully sampled pulse and we expect that also the magnetization
response of both cases is similar.
A better method for creating a reduced pulse would be improving the inter-
polated pulse. Here the optimization toolbox of MATLAB was used which
varied the length of each interval and its amplitude to find the reduced pulse
that minimizes (3.50). The total pulse time was constrained to be equal to
T . Note that the optimized pulse has to be calculated only once for a given
fully-sampled pulse and can then be used for different applications requiring
simulations.

T1 600–1200 ms
T2 50–130 ms
∆B0 -500–500 Hz
B+

1 , ampl. 0.1–1
B+

1 , phase 0–2π rad

Table 3.1: Distribution of spatial parameters.
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The reduced pulses are validated by application in two pulse sequences: a
pseudorandom sequence and a spin-echo sequence. The pseudorandom se-
quence consists of 160 repetitions of a random flip angle in the range [0, π

2
]

rad followed by random waiting time in [5, 15] ms. Different flip angles are
achieved by scaling the RF amplitudes linearly with the flip angles. The
spin-echo sequence consists of 160 repetitions of first a π

2
pulse followed 14

ms later by a π pulse followed by 6 ms waiting time. For each reduced pulse,
at the end of each repetition the relative error of the response was compared
with the fully-sampled pulse case.

Numerical results

For each pulse shape, the fully-sampled, interpolated, and optimized ver-
sions are shown in Figure 3.3. The calculation of the optimized pulse never
took more than a few minutes. The difference between the interpolated and
optimized pulse seems to increase for more complex pulse shapes. For the
Gaussian case the difference between the interpolated and optimized pulse is
too small to be observed in the figure.

Figure 3.4 shows the approximation error in the pseudorandom sequence for
the different reduced pulse shapes. There is a large difference between the
approximation errors of the reduced pulses. However, a relative error value of
O(10−3) is expected to be below experimental noise level and thus sufficient
for most sequence simulations. Only the interpolated sinc(8) reduced pulse
has a higher error. As expected, the method gives the best results for simple
pulse shapes such as the Gaussian. The optimized pulse improved for all
pulse shapes the accuracy measured by the relative error by at least a factor
of 10 compared with the interpolated pulse.

In Figure 3.5, the approximation error for the spin-echo sequence is shown.
The results are similar to those of the pseudorandom sequence. The lines
of the graph are smoother compared with the previous sequence since each
excitation has the same flip angles. As with the pseudorandom sequence, the
optimized sinc pulses lead to a clear improvement compared to the interpo-
lated case.

The minimal timings for the simulation of both sequences using either a
fully-sampled or a reduced pulse are shown in Table 3.2. It shows that the
use of reduced pulses greatly decreases simulation time compared with the
fully-sampled case.
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Figure 3.4: Approximation error in the pseudorandom sequence for the re-
sponse of different reduced pulses compared with the fully-sampled case.

Figure 3.5: Approximation error in the spin-echo sequence for the response
of different reduced pulses compared with the fully-sampled case.
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fully-sampled reduced acceleration
pseudorandom 682 19 35.9
spin-echo 1352 23 58.8

Table 3.2: Minimal timings in seconds for whole sequence simulation for all
pulse shapes.
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3.3 Discussion

The goal of this chapter was reducing the simulation time of the Bloch equa-
tions by either spatial or temporal domain reduction techniques. The initial
focus laid on the spatial domain reduction, since a working projection method
would be straightforward to implement in the optimal control RF pulse de-
sign method. No previous work was found on such a method. The projection
framework is simple, but selecting the relevant subspaces for the projection
and keeping simulations efficient is challenging. The projected matrices of
the Bloch equations are no longer sparse and either a small basis or an ef-
ficient calculation strategy has to be found to reduce the simulation time
compared to the full order method. A possible solution is undersampling the
spatial domain. For such a method a subset of voxels has to be selected for
which the magnetization response is representative of all positions.

Two methods for creating a basis for the magnetization response were in-
vestigated. The POD method might be applicable, but difficulties lie in the
large number of significant singular values of the snapshot matrix, requiring a
large basis to represent all states. Furthermore, it takes time to compute the
snapshot matrix. However, methods such as the gradient reference frame by
Grissom might be able to reduce the number of significant singular values.
The Krylov method is promising since it is based on the Bloch equations
themselves instead of the snapshot based POD method. Here the challenges
are which expansion points should be chosen and how to keep the Krylov
basis small.
Overall, there are both still a number of ideas and challenges for application
of spatial reduction to the Bloch equations, and further research is recom-
mended.

Two previous methods for time domain reduction of the Bloch equations
were found in literature. The method of Balac and Chupin gives a framework
for quickly calculating the magnetization response in the case of perturba-
tions in the RF field. However, the assumption is that both RF and gradient
waveforms are constant and it is not clear if this method is also applicable if
these assumptions are not met, such as in the optimal control method.
The article by Grissom has two interesting ideas: the small-perturbation
method and the gradient frame that allows for SVD calculation. Combining
these two techniques leads to a fast RF pulse design method using optimal
control.

Finally, our own method for time domain reduction showed that it was pos-
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sible to greatly reduce the simulation time of pulse sequences while still
accurately describing the response of the fully-sampled pulses. The effect of
a fully sampled pulse on the magnetization can be seen as a long sequence
of rotations and decay. The reduced pulses show that approximately the
same response can be found using only 15 rotations and decay operations.
An interesting idea is if for a given fully sampled RF pulse, a single rotation
and decay operator can be found which maps the initial magnetization to
the desired state.
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Conclusion and outlook

The main subject of this thesis was the optimal control method for RF pulse
design as discussed in Chapter 2. The method was shown to greatly improve
the magnetization response of inversion and refocusing pulses compared with
the LCLTA method presented in Chapter 1.

In order to apply the optimal control pulses in an experimental setting, some
additional research is required. First, the RF pulses should be validated in
the MR scanner to confirm that the desired magnetization response is indeed
obtained. This requires the RF coils to accurately produce the densely sam-
pled and non-smooth RF pulses. Furthermore, effects not modelled by the
Bloch equation might influence the magnetization.
Second, the RF pulse power (l2-norm) should be limited to prevent heating
of the scanned object. Section 2.3.5 discussed the regularization parameter α
for balancing the RF amplitude with the magnetization error. Determining
the value of α that leads to acceptable RF pulse power and thus prevents
heating is required.
Third, the spatial domain has to be examined. In Section 2.3, the magnetiza-
tion was controlled on a square with edges of 12 cm discretized into 128 steps
in each direction. For clinical use, the domain has to be extended to a three-
dimensional volume. Determining a good resolution for the optimal control
method is also useful. A higher resolution gives a smaller discretization error
at the cost of more voxels and thus more calculation time for solving the
Bloch equation.

The optimal control method can also be extended from a mathematical point
of view. First, the inclusion of the gradient waveforms as control variables
might further improve the magnetization response. Note that the gradient
waveforms require additional constraints on the amplitude and slew rate.
Second, different numerical methods were applied for finding the optimal
search direction in each iterations. A comparison showed that there is no
clear superior method, but the steepest descend method converged much
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slower than the other methods. This means the choice of numerical method
can have a large effect on the performance of the optimal control method.
Additional research is required to determine if there is a method which is
best suited for RF pulse design through optimal control. The line search
algorithm might also be improved with more advanced algorithms.
Finally, the required calculation time of the optimal control method can be
decreased if the magnetization response can be determined more quickly.
This leads us to the subject of model order reduction.

In Chapter 3, the initial focus was on applying spatial domain reduction to
the Bloch equation. Although no efficient working method has been found,
some remarks on solution strategies are made. First, an efficient method for
determining the magnetization response in the projected system should be
found. In the projected system, the magnetization response can no longer
be determined on a voxel level and the strategies of Chapter 1 no longer ap-
ply. Second, a basis should be found that accurately represents the different
magnetization responses. Both POD as Krylov methods were described in
Section 3.1, but are not simple to implement due to the respectively slow
decay of singular values of the snapshot matrix and the almost purely imag-
inary eigenvalues.
For domain reduction of the temporal domain, two existing methods were
discussed. Especially the method by Grissom et al. [10] seems well suited
for RF pulse design through optimal control.

In Section 3.2.2, an original method was introduced for doing fast magne-
tization response simulations by applying piecewise constant pulses. These
pulses were defined on much fewer time intervals than fully sampled pulses,
but were still able to accurately approximate the magnetization response
for a large number of test cases. Suggested is some research into finding
substitute pulses for additional pulse shapes and small pulse sequences.
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