
Utrecht University

Master Thesis

An application of LLL in geodesic

continued fractions

Author:

Rianne Maes

3061787

Supervisor:

Prof. dr. Frits Beukers

Second Examiner:

Dr. Karma Dajani

June, 2015

Contents

1 Multidimensional continued fractions and small linear forms 5

1.1 One dimensional continued fractions 5

1.2 Multidimensional continued fractions 6

2 A theorem by Cusick and Krass 12

2.1 The value c(α) . 12

2.2 The unit conjecture . 18

3 Reduction of quadratic forms 21

3.1 Quadratic forms . 21

3.2 Minkowski reduction . 21

3.3 LLL-reduction . 22

4 Geodesic continued fraction 25

4.1 Geodesic algorithm with LLL-reduction 26

5 Implementation and results 32

5.1 Short description of the code . 32

5.2 Tests with random α and varying dimension 33

5.3 Tests with number �elds . 40

References 45

A The mathematica notebook 47

2

Introduction and notation

Introduction

Given an irrational α ∈ R, we can use the continued fraction algorithm to approxi-
mate α by rationals. By Dirichlets theorem we know that there are in�nitely many
(p, q) ∈ Z such that |α− p

q | < 1/q2. When we extend this idea to higher dimensions,
there are two dual cases to consider. Given (α1, . . . , αn) ∈ Rn we can look for good
simultaneous approximations of the αi by fractions with the same denominator. So
look for (q,p) ∈ Zn+1 such that

max
i=1,...,n

|αi −
pi
q
| is small.

In this thesis we will focus on the dual case, which is the problem of �nding small
values of linear forms in the αi at integers points. So we will look for integers
(q,p) ∈ Zn+1 such that

|q + p1α1 + . . .+ pnαn| is small.

In Section 1 we describe the duality between these problems and we prove that there
are in�nitely many (q,p) ∈ Zn+1 such that |q + p1α1 + . . .+ pnαn| ·maxi |pi|n < 1.
Most of the theory in this section comes from [1].

Suppose that (1, α1, . . . , αn) is an integral basis for a real number �eld F . Cusick
and Krass [2] describe a lower bound for the smallest value c such that

|q + p1α1 + . . .+ pnαn| ·max
i
|pi|n < c

has in�nitely many solutions. We will prove the theorem of Cusick and Krass in
Section 2. For this we need the Unit Conjecture, which we also discuss in Section
2.

Next, we want an algorithm to actually compute these (q,p) ∈ Zn+1. Brentjes
[3] describes several algorithms for this purpose, for example the Jacobi-Perron
algorithm and Brun's algorithm, but none of them are powerful in high dimensions.
In 1850, Hermite proposed to use the quadratic form

Qt = (x1 − α1y)2 + . . . , (xn − αny)2 + ty2

to �nd good simultaneous approximation with fractions. When the integers (q,p)
minimize Qt this gives an approximation for which maxi=1,...,n |qαi−pi| < γnq

−1/n

for a constant γn depending only on n. This idea was picked up by J.C. Lagarias [4]
and in 1994 he proposed to use a geodesic algorithm which is based on Minkowski
reduction of quadratic forms. He proposed to start with the quadratic form Qt
and let t decrease to 0. In the process he performed a change of variables so that
the form remains Minkowski reduced. This will lead to a sequence of integers
(q,p) for which Qt is minimal, and hence leads to approximations of the αi. The
advantage of Minkowski reduction is that the constrains that have to be met are
linear in the parameter t and the number of constrains is �nite. The disadvantage
is that the number of constrains grows exponentially with the dimension. The
LLL-reduction algorithm, named after its inventors Lenstra, Lenstra en Lovasz [5],
is known to be powerful in high dimensions. Suggestions to use LLL-reduction
instead of Minkowski reduction for this geodesic algorithm are made for example
in [6]. The disadvantage of LLL-reduction is that the constrains are not linear
in the parameter t. Now Beukers [7] observed that the LLL-conditions can be

3

reformulated so that they are still linear in t, so this gives reason to implement
and test this geodesic algorithm based on LLL-reduction. In Section 3 we describe
Minkowski and LLL-reduction. The geodesic algorithm is described in Section 4.

For this thesis we implemented the geodesic algorithm based on LLL-reduction
in Mathematica and performed tests to see how well the algorithm works. We
performed tests with random α ∈ Rn to see how many changes of variables are
needed to reach an approximation of certain quality. We did this up to dimension
25. We also run the algorithm with an integral bases of a real number �elds of
degree ≤ 6 with small discriminant. We compared the output of the algorithm
with the lower bound given by Cusick and Krass and we used the algorithm to �nd
integer elements of small norm in these number �elds. The implementation and the
results are described in Section 5.

Notation Let (α1, . . . , αn) ∈ Rn and (p1, . . . , pn) ∈ Zn. By ||p1α1 + . . .+ pnαn||
we denote the distance of p1α1 + . . . + pnαn to the nearest integer. Sometimes
we write q + p1α1 + . . . + pnαn, then q ∈ Z is always chosen in such a way that
|q + p1α1 + . . . + pnαn| = ||p1α1 + . . . + pnαn||. We write ||p||∞ = maxi=1,...,n |pi|
for the supremum norm and ||p||2 =

√
p2

1 + . . .+ p2
n for the Euclidean norm of

(p1, . . . , pn).

Let F = Q(α) be a real number �eld of degree n + 1 where α is a root of an
irreducible polynomial. Suppose Q(α) has r + 1 real and 2s complex embeddings,
then we denote by α(j) for j = 0, 1, . . . , r the real conjugates of α and by α(j)

for j = r + 1, . . . , n the complex embeddings of α. Note that α(j) = α(s+j) for
j = r + 1, . . . , r + s. Most of the time we just write α for α(0). For each element
β ∈ F we de�ne N(β) =

∏n
j=0 β

(j) to be the norm of β. By OF we denote the ring
of integers of F and O∗F is the unit group of F . Recall that N(β) = ±1 if and only
if β ∈ O∗F .

Acknowledgment I would like to thank Frits Beukers for the idea of this thesis,
for his suggestions along the way and for taking the time to help me with all my
questions.

4

1 Multidimensional continued fractions and small

linear forms

1.1 One dimensional continued fractions

As an introduction to the theory of multidimensional continued fractions we will
shortly describe the one dimensional case. The proofs of the statements made in
this subsection can be found in Cassels [1]. Suppose α ∈ R, then we are interested
in �nding integers p, q such that p

q lies close to α. The following theorem gives an
idea of how well a real number can be approximated.

Theorem 1.1 (Dirichlet). Let α ∈ R and Q > 1. Then there exist integers q and
p such that

|qα− p| ≤ Q−1 and 0 < q ≤ Q.

Proof. This can be proven with the pigeon-hole principle. Look at all values {qα}
for q = 0, . . . , Q, where {·} denotes the fractional part of qα. All these Q+ 1 values
lie in the interval [0, 1]. There are Q intervals of the form [n−1

Q , nQ) for n = 1, . . . , Q

(where the interval is closed for n = Q), hence one of these intervals contains two of
the values {qα}. So there are integers q1, q2, r1, r2 such that q1θ−r1 and q2θ−r2 lie
in the same interval of length Q−1. Without loss of generality we can assume that
q1 > q2. Now |(q1 − q2)α− (r1 − r2)| ≤ Q−1 and 0 < q1 − q2 ≤ Q as desired.

Since this theorem holds for any Q > 1 it follows that there are in�nitely many
integers (p, q) such that |qα − p| < q−1. The continued fraction algorithm gives us
a method to calculate these integers p and q. The algorithm runs as follows, where
we write [x] for the �oor of x.

x0 = α

a0 = [x0] and x1 =
1

x0 − [x0]

a1 = [x1] and x2 =
1

x1 − [x1]

...

an = [xn] and xn+1 =
1

xn − [xn]

...

Now

α = a0 +
1

a1 +
1

a2 + · · ·

.

This algorithm terminates if and only if α ∈ Q. Suppose we cut of the algorithm at
ai, then we can write the right hand side as pi

qi
and we have

|α− pi
qi
| ≤ 1

q2
i

,

hence we �nd in�nitely many integers which �t the bound given by Dirichlet.

Example 1. Suppose α = π, then we �nd a0 = 3, a1 = 7, a2 = 15, a3 = 1 which
leads to the approximations 3, 22

7 ,
333
106 and 335

113 .

5

Now it seems natural to ask if this bound can be improved. So, given any α ∈ R,
does there exist a constant c > 0 such that

|qα− p| < cq−1

has in�nitely many solutions in integers p and q? It turns out that for almost all
α ∈ R and all c > 0 this equation has in�nitely many solutions. Stated di�erently,
the α ∈ R for which a constant c > 0 exists such that the inequality |qα−p| < cq−1

does not have in�nitely many solutions, have Lebesque measure zero. This is a
special case of Theorem 1.8 which we will state later.

1.2 Multidimensional continued fractions

If we want to extend the theory above to higher dimensions, there are two dual cases
to consider. The �rst one is the simultaneous approximation of a set of numbers
(α1, . . . , αn) ∈ Rn by fractions with the same denominator. Stated di�erently, we
want to �nd q ∈ Z such that

max
1≤i≤n

||qαi|| is small.

The dual case is where we want to �nd small values of linear forms in (α1, . . . , αn) ∈
Rn with integer coe�cients. That is, we want to �nd integers p ∈ Zn such that

||p1α1 + . . .+ pnαn|| is small.

In this thesis we will focus on the latter case, but �rst we will prove the duality
of these problems. For this, we need Minkowski's linear form theorem which is a
direct consequence of Minkowski's convex body theorem.

Theorem 1.2 (Minkowski's Convex Body Theorem). Let V be a symmetrical
and convex subspace of Rn. If

vol(V) > 2n,

then there exists a non-zero vector λ ∈ V ∩ Zn.

Proof. Look at the subspace 1
2V = {x ∈ Rn : 2x ∈ V }. Then vol(1

2V) =
2−nvol(V) > 1. For all integers u ∈ Zn we de�ne the region ωu to be the in-
tersection of 1

2V and the hypercube {x ∈ Rn : ui ≤ xi < ui + 1} (note that these
hypercubes cover the whole of the Rn). Now vol(

⋃
u∈Zn ωu) = vol(1

2V). Next,
look at the regions ω′u = {x − u : x ∈ ωu}. All these regions lie in the hypercube
{x ∈ Rn : 0 ≤ xi < 1}. Since vol(ωu) = vol(ω′u) we have that vol(

⋃
u∈Zn ω′u) > 1

hence two of the ω′u must overlap. Suppose that this happens for ω′u′ and ω′u′′ .
Then there are points x′ ∈ ωu′ and x′′ ∈ ωu′′ such that x′ − u′ = x′′ − u′′. Now
x′,x′′ ∈ 1

2V and λ = x′ − x′′ ∈ Zn. Since 1
2V is convex and symmetrical, also

1
2λ = 1

2x
′ − 1

2x
′′ ∈ 1

2V , hence λ ∈ V .

Theorem 1.3 (Minkowski's linear form theorem). The system of inequalities

|
n∑
j=1

a1jxj | ≤ c1, |
n∑
j=1

aijxj | < ci (i = 2, . . . , n)

where aij , ci ∈ R for 1 ≤ j ≤ i ≤ n, has a non-trivial integer solution x ∈ Zn
provided that c1 . . . cn ≥ |det(aij)|.

6

Proof. De�ne

V = {x ∈ Rn : |
∑

a1jxj | ≤ c1 and |
∑

aijxj | < ci for i = 2, . . . , n}.

Then V is bounded and vol(V) = 2nc1···cn
| det(aij)| . Suppose c1 . . . cn > |det(aij)|, then the

theorem follows immediately from Theorem 1.2. Now suppose c1 . . . cn = |det(aij)|.
Then for each ε > 0 there exist an x(ε) ∈ Zn such that |

∑
a1jx

(ε)
j | < c1 + ε and

|
∑
aijx

(ε)
j | < ci. Since V is bounded, there are for each ε > 0 only �nitely many

choices for x(ε). Let x(0) = x(ε), then x(0) is the desired solution when ε→ 0.

Now we can prove the duality of the simultaneous approximation by fractions and
the search for small values of linear forms in the (α1, . . . , αn).

Theorem 1.4. Let (α1, . . . , αn) ∈ Rn such that 1, α1, . . . , αn are linearly indepen-
dent over Q.

(i) Suppose that there exist integers q0, q1, . . . , qn (with q0 6= 0) such that

max
i=1,...,n

|αiq0 − qi| ≤ C and |q0| ≤ Q

for some constants C and Q with 0 < C < 1 ≤ Q. Then there are integers
p0, p1, . . . , pn (not all zero) such that

|p0 + p1α1 + . . .+ pnαn| ≤ D and max
i=1,...,n

|pi| ≤ P,

where D = nCQ1/n−1 and P = nQ1/n.

(ii) Suppose that there exist integers p0, p1, . . . , pn (not all zero) such that

|p0 + p1α1 + . . .+ pnαn| ≤ D and max
i=1,...,n

|pi| ≤ P

for some constants D and P with 0 < D < 1 ≤ P . Then there are integers
q0, q1, . . . , qn (with q0 6= 0) such that

max
i=1,...,n

|αiq0 − qi| ≤ C and |q0| ≤ Q,

where C = nD1/n and Q = nPD1/n−1.

Proof. First we prove (i). We de�ne two sets of n+ 1 forms in n+ 1 variables.

fi(q0, q1, . . . , qn) =

{
C−1(αiq0 − qi) for i = 1, . . . , n.
Q−1q for i = n+ 1.

gi(p0, p1, . . . , pn) =

{
Cpi for i = 1, . . . , n.
−Q(p0 + p1α1 + . . .+ pnαn) for i = n+ 1.

By assumption we know that there exist integers q ∈ Zn+1 such that |fi(q)| ≤ 1 for
i = 1, . . . , n+ 1. We �x this value for q and de�ne λ = maxi |fi(q)| = |fl(q)|. Since
1, α1, . . . , αn are linearly independent over Q we know that 0 < λ ≤ 1. Next note
that
n+1∑
i=1

fi(q)gi(p) = p1(α1q − q1) + . . .+ pn(αnq − qn)− q0(p0 + p1α1 + . . .+ pnαn)

= −(p0q0 + p1q1 + . . .+ pnqn),

(1)

7

hence
∑n+1
i=1 fi(q)gi(p) ∈ Z.

Now we look at the n+ 1 inequalities in the variables (p0, p1, . . . , pn)

|
n+1∑
i=1

fi(q)gi(p)| < 1

|gi(p)| ≤ Q1/nC (1 ≤ i ≤ n+ 1, i 6= l).

The determinant of the forms on the left hand side is λQCn and the product of
the values on the right hand side is QCn. Since λ ≤ 1 we know by Minkowski's
linear form theorem that this system of inequalities has a non-trivial solution.
Let p ∈ Zn+1 be a solution, then for all i 6= l we have |gi(p)| ≤ Q1/nC. Also∑n+1
i=1 fi(q)gi(p) = 0 and thus λgl = flgl = −

∑
i 6=l figi. Hence |gl| ≤ nλCQ1/n.

Thus for i = 1, . . . , n+ 1 we have

|Cpi|
|Q(p0 + p1α1 + . . .+ pnαn)|

}
≤ n · C ·Q1/n.

Thus maxi |pi| < nQ1/n and |p0 + p1α1 + . . . + pnαn| < nCQ1/n−1, which proves
part (i).

For (ii) almost the same arguments hold. We de�ne

fi(p0, p1, . . . , pn) =

{
P−1pi for i = 1, . . . , n.
D−1(p0 + p1α1 + . . .+ pnαn) for i = n+ 1.

gi(q0, q1, . . . , qn) =

{
P (αiq0 − qi) for i = 1, . . . , n.
Dq0 for i = n+ 1.

Now we know by assumption that there is a non-trivial p ∈ Zn+1 such that |fi(p)| ≤
1. We �x this value for p and de�ne µ = maxi |fi(p)| = |fl(p)|. Since 1, α1, . . . , αn
are linearly independent over Q we know that 0 < µ ≤ 1. Again

n∑
i=1

fi(q)gi(p) = −(p0q + p1q1 + . . .+ pnqn) ∈ Z

and we look at the system of inequalities in the variables (q0, q1, . . . , qn)

|
n∑
i=1

fi(q)gi(p)| < 1

|gi(q)| ≤ D1/nP (1 ≤ i ≤ n+ 1, i 6= l).

One can easily check that the determinant of the equations on the left hand side
equals µDPn and the product of the values on the right hand side equals DPn.
Hence we can apply Minkowski's linear form theorem again and by the same argu-
ments as above we �nd

|P (αiq0 − qi)|
|Dq0|

}
≤ n · P ·D1/n

from which part (ii) follows.

We state a corollary of this theorem for later purposes.

8

Corollary 1.5. Let (α1, . . . , αn) ∈ Rn such that 1, α1, . . . , αn are linearly indepen-
dent over Q. There exists a constant γ > 0 such that

max
i=1,...,n

||αiq||q
1
n ≥ γ

for all non-zero q ∈ Z if and only if there exist a δ > 0 such that

||p1α1 + . . .+ pnαn|| · ||p||n∞ ≥ δ

for all non-zero p ∈ Zn.

Proof. First we prove the necessary condition. Suppose

||p1α1 + . . .+ pnαn|| · ||p||n∞ > δ

for all non-zero p ∈ Zn. Let D,P,C and Q be as in theorem 1.4 (i). Then

D · Pn ≥ δ ⇒

n · C ·Q 1
n−1 ·Q ≥ δ ⇒

C ·Q 1
n ≥ δ · n−1.

This still holds when we pick C = maxi ||qαi|| and Q = |q| hence

max
i=1,...,n

||qαi|| · q
1
n ≥ γ where γ = δ · n−1.

For the su�cient condition we assume that maxi=1,...,n ||qαi|| · q
1
n ≥ γ and let

C,Q, P and D be as in Theorem 1.4 (ii). Then

C ·Q 1
n ≥ γ ⇒

Cn ·Q ≥ γn ⇒

n ·D · P ·D(1−n)/n ≥ γn ⇒ D · Pn ≥ n−nγn
2

.

Since Theorem 1.4 also holds when D = ||p1α1 + . . . + pnαn|| and P = ||p||∞ we
have that

||p1α1 + . . .+ pnαn|| · ||p||n∞ ≥ δ with δ = n−nγn
2

.

To extend Theorem 1.1 to higher dimensions we use the following theorem.

Theorem 1.6. Let

Li =
∑
j

αijxj (1 ≤ i ≤ m, 1 ≤ j ≤ n)

be m linear forms in n variables. For every real X > 1 there exists an x ∈ Zn and
a y ∈ Zm such that

|Li(x)− yi| < X−n/m for (1 ≤ i ≤ m)

|xj | ≤ X for (1 ≤ j ≤ n).

Proof. The determinant of the inequalities on the left hand side is equal to 1 and
the product of the elements on the right hand side is 1. Hence the result follows
from Minkowski's linear form theorem.

9

Corollary 1.7. For any (α1, . . . , αn) ∈ Rn, there are in�nitely many integer solu-
tions to

||p1α1 + . . .+ pnαn|| · ||p||n∞ < 1.

Proof. Suppose that 1, α1, . . . , αn are linearly dependent over Q, then this is trivial.
Now we suppose that 1, α1, . . . , αn are linearly independent over Q. Take m = 1
and apply Theorem 1.6 to see that for any P > 1 there exist (p0, p1, . . . , pn) ∈ Zn+1

such that
|p1α1 + . . .+ pnαn − p0| < P−n where ||p||∞ ≤ P.

Then ||p1α1 + . . .+ pnαn|| · Pn < 1 and also ||p1α1 + . . .+ pnαn|| · ||p||n∞ < 1. Now
pick P̃ > P such that ||p1α1 + . . .+pnαn|| ·P̃n > 1, then again by Theorem 1.6 there
exists (p̃0, p̃1, . . . , p̃n) ∈ Zn+1 with ||p̃||∞ < P̃ such that ||p̃1α1+. . .+p̃nαn||·P̃n < 1
hence ||p̃1α1+. . .+p̃nαn||·||p̃||n∞ < 1. We can repeat this argument to �nd in�nitely
many p ∈ Zn such that ||p1α1 + . . .+ pnαn|| · ||p||n∞ < 1.

Remark. By taking n = 1 we �nd that there are in�nitely many solutions to
maxi=1,...,n ||qαi|| < q−

1
n .

As in the one-dimensional case we can ask whether there exist a constant c > 0
such that

||p1α1 + . . .+ pnαn|| · ||p||n∞ < c

has in�nitely many integer solutions for a given α ∈ Rn. In particular we are
interested in �nding the in�mum of those c for which this inequality has in�nitely
many solutions. We call this value c(α). Thus

c(α) = lim inf
||p||∞→∞

||p1α1 + . . .+ pnαn|| · ||p||n∞.

The α ∈ Rn for which c(α) > 0 have Lebesgue measure zero, which follows from a
theorem of Cassels [1], which we state without proof. Here we follow the notation
of Cassels and we say that almost no elements α ∈ Rn have a certain property
when the elements with that property have Lebesgue measure zero, and almost all
α ∈ Rn have a certain property when almost no elements lack it.

Theorem 1.8. Let ψ(q) be a monotonely decreasing function of the integer values
q > 0 with 0 ≤ ψ(q) ≤ 1

2 . Then the set of inequalities

||qαj || ≤ ψ(q) (1 ≤ j ≤ n)

has in�nitely many integer solutions q > 0 for almost no or for almost all sets of n
numbers (α1, . . . , αn) according as ∑

(ψ(q))n

converges or diverges.

Corollary 1.9. For almost all n-tuples (α1, . . . , αn) ∈ Rn, the set of inequalities

max
i=1,...,n

||qαi|| ≤ cq−1/n

has in�nitely many solutions for any c > 0.

Proof. The function cq−1/n is monotonely decreasing in integers q and is ≤ 1
2 for

small enough c. The sum
∑

(cq−1/n)n = cn
∑
q−1 diverges, hence the corollary

follows directly from Theorem 1.8.

10

The previous theorem and corollary is stated for the simultaneous approximation
of α ∈ Rn with fractions. We will study the dual case, hence we want the following.

Proposition 1.10. Let c(α) be as above. For almost all (α1, . . . , αn) ∈ Rn we have

c(α) = lim inf
||p||∞→∞

||p1α1 + . . .+ pnαn|| · ||p||n∞ = 0.

Proof. This is immediate from the necessary condition of Corollary 1.5 in combina-
tion with Corollary 1.9

In the special case where 1, α1, . . . , αn are linearly independent elements of an al-
gebraic number �eld, we have that c(α) > 0, as the following theorem will show.

Theorem 1.11. Let α1, . . . , αn be any n numbers in a real algebraic number �eld
of degree n+ 1 such that 1, α1, . . . , αn are linearly independent over Q. Then there
is a constant γ > 0 (depending only on α1, . . . , αn) such that

||p1α1 + . . .+ pnαn|| · ||p||n∞ ≥ γ

for all p ∈ Zn.

Proof. First observe that there exists a q ∈ Z such that |q+p1α1 + . . .+pnαn| ≤ 1
2 .

Since the αi are algebraic numbers, there exists an integer u such that uαi are
algebraic integers for all i = 1, . . . , n. Now de�ne η = u(q+ p1α1 + . . .+ pnαn). For
all conjugates η(j) of η we have

|η(j)| ≤ |η|+ |η(j) − η|

≤ 1

2
|u|+ |up1(α1 − α(j)) + . . .+ upn(αn − α(j)

n)|

≤ 1

2
|u|+ ||p||∞ · |u

p1

||p||∞
(α1 − α(j)) + . . .+ u

pn
||p||∞

(αn − α(j)
n)|

≤ 1

2
|u|+ ||p||∞ ·max{|uξ1(α1 − α(j)) + . . .+ uξn(αn − α(j)

n)| : ||ξ||∞ = 1}

≤ C||p||∞ for a constant C which depends only on α.

Now we combine this with the fact that |N(η)| ≥ 1 to �nd

1 ≤ |η|
n∏
j=1

|η(j)| ≤ |η| · Cn · ||p||n∞

hence
|q + p1α1 + . . .+ pnαn| · ||p||n∞ ≥ u−1C−n

which proves the theorem with γ = u−1C−n.

Remark. For a given (α1, . . . , αn) ∈ Rn we de�ne the dual constant c′(α) to be
the minimum value of those c′ such that

max
i
||qαi|| · q

1
n < c′

has in�nitely many solutions, hence c′(α) = lim inf
q→∞

maxi ||qαi|| · q
1
n . Now let C =

sup c(α) and C ′ = sup c′(α) where the suprema are taken over all α ∈ Rn, then by
a theorem of Davenport [8] we have that C = C ′. In particular, we do not have
that c(α) = c′(α). For a formula for c′(α) see [2].

In the next chapter we will state a theorem of Cusick and Krass [2] which gives a
lower bound for the constant c(α).

11

2 A theorem by Cusick and Krass

2.1 The value c(α)

In the previous section we have seen that when 1, α1, . . . , αn are linearly independent
elements of a real number �eld, then c(α) > 0. A theorem by Cusick and Krass gives
us a lower bound for this constant and under assumption of the Unit Conjecture
this theorem gives us the value of c(α). Before we state this theorem we need some
conventions on notation. Let F be a real number �eld of degree n+1 with r+1 real
and 2s complex embeddings and suppose that (1, α1, . . . , αn) is an integral basis for
OF . We de�ne the n× n matrix

A =


α

(1)
1 − α1 · · · α

(1)
n − αn

...
. . .

...

α
(n)
1 − α1 · · · α

(n)
n − αn

 .

For all p ∈ Zn for which (α
(j)
1 − α1)p1 + . . . + (α

(j)
n − αn)pn 6= 0 for all 1 ≤ j ≤ n

we de�ne the signature function

σ(Ap) =

(sgn((α
(1)
1 −α1)p1+. . .+(α(1)

n −αn)pn), . . . , sgn((α
(r)
1 −α1)p1+. . .+(α(r)

n −αn)pn)),

where the sign is taken over all real conjugates of (α
(j)
1 −α1)p1 + . . .+(α

(j)
n −αn)pn.

This σ(Ap) is of the form (u1, . . . , ur), where ui = ±1 for all i = 1, . . . , r. We write
Σ the for set of all possible signatures. De�ne

Nσ = min{|N(q + p1α1 + . . .+ pnαn)| : σ(Ap) = σ},

thus Nσ is the minimum norm of all elements with signature Nσ. For a vector
(ν1, . . . , νn) ∈ Rn we de�ne

Π(Aν) =

n∏
j=1

(α
(j)
1 − α1)ν1 + . . .+ (α(j)

n − αn)νn.

At last, we write

Cr,s+ =

{(x1, . . . , xn) ∈ Rr×C2s : xj ∈ R>0 for 1 ≤ j ≤ r, xj = xs+j for r+1 ≤ j ≤ r+s}.

Conjecture 1 (Unit Conjecture). Let F be any real number �eld of degree n+1.
For each x ∈ Cr,s+ and for any ε > 0 there exists a unit η ∈ OF with η(j) > 0 for all
1 ≤ j ≤ r, such that

η(j)

η(1)
=
xj
x1

+ εj , with |εj | < ε, for j = 2, . . . , n.

Theorem 2.1. Let (1, α1, . . . , αn) be a basis for a real number �eld of degree n+ 1
and let

c(α) = lim inf
||p||∞→∞

||p1α1 + . . .+ pnαn|| · ||p||n∞.

Then

c(α) ≥ min
σ∈Σ

Nσ
max{Π(Aν) : ||ν||∞ = 1, σ(Aν) = σ}

.

Under the assumption of the Unit Conjecture we have equality.

12

Proof. For each P > 1 and σ ∈ Σ′ we de�ne the set

ΩP,σ′ := {(p1, . . . , pn) ∈ Zn : ||p1α1+. . .+pnαn|| < P−n, ||p||∞ ≤ P and σ(Ap) = σ′}.

Note that all of these sets are �nite. By Theorem 1.6 we know that for each P > 1
we have that ΩP,σ′ is non-empty for at least one σ′ ∈ Σ. Now for any ε > 0 there
exists a Q > 1 such that for all P > Q we have that ||p1α1 + . . . + pnαn|| < ε
for all p ∈ ΩP,σ′ , for any σ′ ∈ Σ. We write p · α = p1α1 + . . . + pnαn and

p · α(j) = p1α
(j)
1 + . . .+ pnα

(j)
n . Now for all p ∈ ΩP,σ′ with P > Q we have

|q + p · α(j)| − ε ≤ |p · α(j) − p · α| ≤ |q + p · α(j)|+ ε for j = 1, . . . , n.

Then

|N(q + p · α)| =
n∏
j=0

|q + p · α(j)|

≤ ||p · α||
n∏
j=1

(|p · α(j) − p · α|+ ε)

= ||p · α||
n∏
j=1

(|(α(j)
1 − α1)p1 + . . .+ (α(j)

n − αn)pn|+ ε)

= ||p · α|| · ||p||n∞
n∏
j=1

(|(α(j)
1 − α1)

p1

||p||∞
+ . . .+ (α(j)

n − αn)
pn
||p||∞

|+ ε

||p||∞
)

≤ ||p · α|| · ||p||n∞max{
n∏
j=1

|(α(j)
1 − α1)ν1 + . . .+ (α(j)

n − αn)νn + ε′| : ||ν||∞ = 1, σ(Aν) = σ′}

where ε′ = ε
||p||∞ . Then

||p · α||·||p||n∞ ≥
|N(q + p · α)|

max{
∏n
j=1 |(α

(j)
1 − α1)ν1 + . . .+ (α

(j)
n − αn)νn + ε′| : ||ν||∞ = 1, σ(Aν) = σ′}

thus

lim inf
||p||∞→∞

||p · α|| · ||p||n∞ ≥ min
σ∈Σ
{ Nσ

max{Π(Aν) : ||ν||∞ = 1, σ(Aν) = σ}
}.

This proves the �rst part of the theorem.

To prove the second part, we need to show that for each σ ∈ Σ there are in�nitely
many elements in the optimal direction, which is stated in the following proposition.

Proposition 2.2. Suppose that the maximum of

n∏
j=1

|(α(j)
1 − α1)ν1 + . . .+ (α(j)

n − αn)νn|

is reached for ξ = (ξ1, . . . , ξn) with σ(Aξ) = σ. Then for each ε > 0 there exists an
element η = q + p1α1 + . . .+ pnαn ∈ OF such that

1.
∣∣∣ pjp1 − ξj

ξ1

∣∣∣ < ε for j = 2, . . . , n.

2. |N(η)| = Nσ.

13

Before we prove this, we look at the speci�c case where σ = (1, . . . , 1) and we prove
that there is a unit η ∈ O∗F with these properties. This is done under the assumption
of the unit conjecture.

Lemma 2.3. Suppose (ξ1, . . . , ξn) ∈ Rn and σ(Aξ) = (1, . . . , 1). Then for any
ε > 0 there exists a unit η = q + p1α1 + . . .+ pnαn such that∣∣∣∣pjp1

− ξj
ξ1

∣∣∣∣ < ε for j = 2, . . . , n.

Proof. De�ne

aj =
(α

(j)
1 − α1)ξ1 + . . .+ (α

(j)
n − αn)ξn

(α
(1)
1 − α1)ξ1 + . . .+ (α

(1)
n − αn)ξn

for j = 2, . . . , n. (2)

Since σ(Aξ) = (1, . . . , 1) by assumption we have aj > 0 for j = 2, . . . , r and by the
de�nition of aj we have aj = aj+s for j = r+1, . . . , r+s. Now the conditions of the
Unit Conjecture are met, hence for any ε > 0 there exists an η such that η(j) > 0
for j = 1, . . . , r and

∣∣∣∣η(j)

η(1)
− aj

∣∣∣∣ < ε for j = 2, . . . , n. (3)

We need the following claim, which we prove later.

Claim 2.4. For each ε > 0 and R > 1 there exists an η ∈ O∗F such that |η(1)| > R

and
∣∣∣ η(j)η(1)

− aj
∣∣∣ < ε for j = 2, . . . , n, where aj is as de�ned above.

From this claim it follows that for each R > 1 there exists an η ∈ O∗F such that

|η(1)| > R

|η(j)| > R(|aj | − ε) for j = 2, . . . , n.

Since

1 = |N(η)| = |η|
n∏
j=1

|η(j)|

we have

|η| = 1∏n
j=1 |η(j)|

<
1

Rn
∏n
j=2(|aj | − ε)

< ε′,

where the right hand side can get less than any ε′ > 0 by taking R large and ε small
enough. Next, note that we can write,

(α
(j)
1 − α1)p1 + . . .+ (α(j)

n − αn)pn = η(j) − η for j = 1, . . . , n.

We combine the above to �nd∣∣∣∣η(j) − η
η(1) − η

− η(j)

η(1)

∣∣∣∣ =

∣∣∣∣η · η(j) − η(1)

η(1)(η(1) − η)

∣∣∣∣ =

|η| ·

∣∣∣∣∣∣
η(j)

η(1)
− aj + aj − 1

η(1) − η

∣∣∣∣∣∣ ≤ ε′ · ε+ |aj − 1|
R− ε′

< ε′′.

(4)

14

Again, ε′′ can get arbitrarily small by taking R large and ε small enough. Combining
(3) and (4) gives ∣∣∣∣η(j) − η

η(1) − η
− aj

∣∣∣∣ < ε′′′ for j = 2, . . . , n

where ε′′′ = ε+ ε′′. Hence for j = 2, . . . , n we have∣∣∣∣∣ (α(j)
1 − α1)p1 + . . .+ (α

(j)
n − αn)pn

(α
(1)
1 − α1)p1 + . . .+ (α

(1)
n − αn)pn

− aj

∣∣∣∣∣ < ε′′′. (5)

Now let G : Rn−1 → Rn−1 be the function

x1, . . . , xn−1 7→ (G2, . . . , Gn) where

Gj =
(α

(j)
1 − α1) + (α

(j)
2 − α2)x1 + . . .+ (α

(j)
n − αn)xn−1

(α
(1)
1 − α1) + (α

(1)
2 − α2)x1 + . . .+ (α

(1)
n − αn)xn−1

.

Then (5) implies that

|Gj(
p2

p1
, . . . ,

pn
p1

)−Gj(
ξ2
ξ1
, . . . ,

ξn
ξ1

)| < ε′′′ for j = 2, . . . , n. (6)

To �nish the proof we need the following claim, which we prove later.

Claim 2.5. Let the function G : Rn−1 → Rn−1 be as above. Than G is invertible
around (ξ2ξ1 , . . . ,

ξn
ξ1

).

This claim, in combination with (6), gives that there exists a δ > 0 such that∣∣∣∣ ξjξ1 − pj
p1

∣∣∣∣ < δ. for j = 2, . . . , n.

This proves the lemma.

Now we are ready to prove Proposition 2.2.

Proof of proposition 2.2. Suppose that the minimum of

min
σ∈Σ
{ Nσ

max{Π(Aν) : ||ν||∞ = 1 and σ(Aν) = σ}
}

is taken by (ξ1, . . . , ξn) ∈ Rn with σ(Aξ) = σ. Now let θ ∈ OF be such an element
that |N(θ)| = Nσ. Now we only need to multiply this θ with a unit in the right
direction. That is, take a unit η = q + p1α1 + . . .+ pnαn such that

θη = q̃ + p̃1α1 + . . .+ p̃nαn with∣∣∣∣ ξjξ1 − p̃j
p̃1

∣∣∣∣ < ε.

This is possible since pj/p1 can have any ratio by the previous lemma. Now
|N(θη)| = |N(θ)| · |N(η)| = |N(θ)| and since σ(Aη) = (1, . . . , 1), we have σ(Aθη) =
σ(Aθ).

To �nish the proof of Theorem 2.1 we need to prove the Claim 2.4 and 2.5. For
Claim 2.4 we need the following lemma.

15

Lemma 2.6. For �xed 0 < ε < 1 and R > 1, there are only �nitely many units
ψ ∈ O∗F such that

1− ε <
∣∣∣∣ψ(j)

ψ(1)

∣∣∣∣ < 1 + ε and
1

R
< |ψ(1)| < R.

Proof. Suppose ψ ∈ O∗F is such that

1− ε <
∣∣∣∣ψ(j)

ψ(1)

∣∣∣∣ < 1 + ε and
1

R
< |ψ(1)| < R.

Then
1

R
(1− ε) < |ψ(j)| < (1 + ε)R for j = 1, . . . , n.

Since ψ is a unit, we have |ψ| = 1∏n
j=1 |ψ(j)| and the above gives

1

Rn
1

(1 + ε)n−1
< |ψ| < Rn

1

(1− ε)n−1
.

Since the image of the map

Φ : O∗F → Rr+s+1

ψ 7→ (log |ψ|, log |ψ(1)|, . . . , log |ψ(r)|, log |ψ(r+1)| . . . , log |ψ(r+s)|)

is a lattice in the hyperplane of Rr+s+1 where
∑
xi = 0, we can conclude that

there are only �nitely many elements ψ ∈ O∗F for which |ψ(j)| is bounded for all
j = 0, . . . , n.

Proof of Claim 2.4. By combining the previous lemma with the Unit Conjecture,
we know that given any R > 1 and small enough ε > 0 there exists a unit ψ ∈ O∗F
such that

1− ε <
∣∣∣∣ψ(j)

ψ(1)

∣∣∣∣ < 1 + ε and |ψ(1)| < 1

R
or |ψ(1)| > R.

Without loss of generality we can assume that |ψ(1)| > R, otherwise simply replace
ψ for 1

ψ . Now let aj be as in (2), then the unit conjecture gives us that for any

ε̃ > 0 there exists a ψ̃ ∈ F ∗ such that

aj − ε̃ <

∣∣∣∣∣ ψ̃(j)

ψ̃(1)

∣∣∣∣∣ < aj + ε̃ for j = 2, . . . , n.

Now let η = ψ · ψ̃. Then for j = 2, . . . , n we have

(1− ε)(aj − ε̃) <
∣∣∣∣η(j)

η(1)

∣∣∣∣ < (1 + ε)(aj + ε̃)

hence | η
(j)

η(1)
− aj | can get arbitrarily small by taking ε and ε̃ small enough. Also

|η(1)| > |ψ̃(1)|R and since this holds for any R > 1 this proves the claim.

Proof of Claim 2.5. From the inverse function theorem it follows that G is invertible
around (ξ2ξ1 , . . . ,

ξn
ξ1

) if det(JG(
ξj
ξ1

)) 6= 0, where JG is the Jacobian matrix of G. For

abbreviation we write aij = α
(j)
i − αi and Gj = Γj/Γ1 where

Γi = (α
(i)
1 − α1) + (α

(i)
2 − α2)x1 + . . .+ (α(i)

n − αn)xn−1.

16

Then

JG =

(
Γ1 · aij − Γjai1

Γ2
1

)
1≤i,j≤n

.

By applying the Guassian row elimination Ri → Ri − ΓiR1 for i = 2, . . . n we can
show that the determinant of the matrix

M =


1 a11 · Γ−2

1 . . . an1Γ−2
1

Γ2 a12 · Γ−1
1 . . . an2 · Γ−1

1
...

...
. . .

...
Γn a1n · Γ−1

1 · · · ann · Γ−1
1

 .

is equal to det(JG) (here Ri denotes the i-th row of matrix M). Then

det(JG) =
1

Γn+1
1


Γ1 a11 · Γ−1

1 . . . an1Γ−1
1

Γ2 · Γ1 a12 . . . an2

...
...

. . .
...

Γn · Γ1 a1n · · · ann

 .

By using Laplace expansion along the �rst column, one can show that

Γn+1
1 · det(JG) =


a11 a21 . . . an1

a12 a22 . . . an2

...
...

. . .
...

a1n a2n · · · ann

+


Γ1 − a11 a21 . . . an1

Γ2 − a12 a22 . . . an2

...
...

. . .
...

Γn − a1n a2n · · · ann

 .

For the second matrix, we have that the �rst column is a linear combination of
the other columns, hence its determinant is zero. By applying the Guassian row
elimination Ri → Ri −R1 for i = 2, . . . n we can show that the determinant of �rst
matrix equals ∣∣∣∣∣∣∣∣∣

1 α1 · · · αn

1 α
(1)
1 · · · α

(1)
n

...
...

. . .
...

1 α
(n)
1 · · · α

(n)
n

∣∣∣∣∣∣∣∣∣ =
√

∆(F),

where ∆(F) denotes the discriminant of F . Thus

det(JG) =
1

Γn+1
1

·
√

∆(F).

By the choice of (ξ1, . . . , ξn) we know that Γn+1
1 6= 0 hence det(JG(ξ1, . . . , ξn)) is

well-de�ned and unequal to zero, which proves the claim.

Example 2. Let F = Q(α) where α is a real root of f(x) = x3 + x2 − 1. Then
(1, α, α2) is a basis for F . This �eld has 1 real and 2 complex embeddings, so r = 0
and s = 1. Then Σ = ∅ and Nσ = 1. Thus

c(α) =
1

max{
∏2
j=1 |(α

(j)
1 − α1)ν1 + . . .+ (α

(j)
2 − α2)ν2| : ||ν||∞ = 1}

,

where α1 = α and α2 = α2. In Figure 1 we see a contour plot of

2∏
j=1

|(α(j)
1 − α1)ν1 + . . .+ (α

(j)
2 − α2)ν2|

17

Figure 1: Contour plot for Q(α) Figure 2: Contour plot for Q(β)

where νi ∈ [−1, 1] for i = 1, 2. We see that the maximum occurs in one of the
corners where (ν1, ν2) = ±(1,−1) and this maximum takes the value 5.84287. So
c(α) ≈ 1

5.84287 ≈ 0.17115.

Example 3. The function f(x) = x3 + x2 − 2x − 1 has three real roots, namely
2 cos 2π

7 , 2 cos 4π
7 , 2 cos 6π

7 . De�ne F = Q(β), where β = 2 cos 2π
7 . Then (1, β, β2) is

a basis for the number �eld F of degree 3 with r = 2 and s = 0. Then Σ = {±1,±1}.
De�ne (β1, β2) = (β, β2), β(1) = 2 cos 4π

7 and β(2) = 2 cos 6π
7 . In �gure 2 we see the

contour plot of
2∏
j=1

|(β(j)
1 − β1)ν1 + . . .+ (β

(j)
2 − β2)ν2|

where ν1, ν2 ∈ [−1, 1]. We see that there are indeed four di�erent segments for each
σ ∈ Σ. Again we calculate the maximum and �nd c(α) ≈ 1

5.335605 = 0.18742.

2.2 The unit conjecture

We shall prove the unit conjecture for real number �elds of degree 3. We also tried
to prove it for number �elds of higher degree, but we did not manage to do this.
We will describe the problem we encountered and formulate a new conjecture.

Proof of the unit conjecture for a totally real number �eld of degree 3. Suppose F is
a totally real number �eld of degree 3, that is r = 2 and s = 0. By Dirichlets unit
theorem, each unit η ∈ F can be written as η = ±ψk11 ·ψ

k2
2 where ψ1 and ψ2 are fun-

damental units. Now we want to prove that for each (a1, a2) ∈ R2 with a1, a2 > 0
and any ε > 0 there exists a unit η such that

η(2)

η(1)
=

(ψk11 · ψ
k2
2)(2)

(ψk11 · ψ
k2
2)(1)

=
a2

a1
+ ε.

Taking logarithms gives us the equation

k1 log
ψ

(2)
1

ψ
(1)
1

+ k2 log
ψ

(2)
2

ψ
(1)
2

≈ log
a2

a1
.

18

Since the set {mα+nβ : m,n ∈ Z} is dense in R if and only if α and β are Z-linearly
independent, we are left to prove that for m1,m2 ∈ Z we have

m1 log
ψ

(2)
1

ψ
(1)
1

+m2 log
ψ

(2)
2

ψ
(1)
2

= 0 if and only if m1 = m2 = 0.

Suppose m1 log
ψ

(2)
1

ψ
(1)
1

+m2 log
ψ

(2)
2

ψ
(1)
2

= 0 for some m1,m2 ∈ Z, then(
ψ

(2)
1

ψ
(1)
1

)m1
(
ψ

(2)
2

ψ
(1)
2

)m2

= 1.

This means that η = ψm1
1 ψm2

2 is a unit for which η(2) = η(1). Now let fη(x) be
the minimal polynomial of η, then fη has a double root, hence the roots of fη are
integers. This is only possible when η = ±1.

Proof of the unit conjecture for a real number �eld with r = 0 and s = 1. Let F be
a real number �eld of degree 3 with one real and two complex embeddings. By
Dirichlets unit theorem, there exists a fundamental unit ψ such that each unit
η ∈ F is of the form ±ψk with k ∈ Z. Now we want to prove that for all complex
numbers a1, a2 with a1 = a2 and any ε > 0 there exists a unit η = ±ψk ∈ F such
that (

ψ(2)
)k(

ψ(1)
)k =

a2

a1
+ ε′ with |ε′| < ε.

Since ψ(1) and ψ(2) are complex conjugates, we have that
∣∣∣ψ(2)

ψ(1)

∣∣∣ = 1 hence θ = ψ(2)

ψ(1)

lies on the unit circle. Now θk lies on the unit circle for all k ∈ Z and since F allows
a real embedding there are no roots of unity. That means that θk1 6= θk2 when
k1 6= k2 thus {θk : k ∈ Z} lies dense on the unit circle. So there is exists a k ∈ Z

such that
(ψ(2))

k

(ψ(1))
k lies arbitrarily close to a2

a1
.

The unit conjecture for real number �elds of higher degree. Suppose F
is a real number �eld of degree n + 1, with r + 1 real and 2s complex embed-
dings. By Dirichlets unit theorem we know that there exist r+ s fundamental units
ψ1, . . . , ψr+s such that each unit η ∈ O∗F is of the form η = ψk11 · · ·ψ

kr+s

r+s . We
want to prove that for each (a1, . . . , an) ∈ Cr,s+ and any ε > 0 there exists a unit

η = ψk11 · · ·ψ
kr+s

r+s such that

(ψk11 · · ·ψ
kr+s

r+s)(j)

(ψk11 · · ·ψ
kr+s

r+s)(1)
=
aj
a1

+ εj with |εj | < ε for j = 2, . . . , n+ 1.

When we take logarithms this translates to

k1 log
ψ

(j)
1

ψ
(1)
1

+ . . .+ kr+s log
ψ

(j)
r+s

ψ
(1)
r+s

≈ log
aj
a1

for j = 2, . . . , n.

These sums are real for j = 2, . . . , r and complex for j = r+ 1, . . . , s. Now this can
be written as

k1 log

∣∣∣∣∣ψ(j)
1

ψ
(1)
1

∣∣∣∣∣+ . . .+ kr+s log

∣∣∣∣∣ψ
(j)
r+s

ψ
(1)
r+s

∣∣∣∣∣ ≈ log

∣∣∣∣aja1

∣∣∣∣ for j = r + 1, . . . , r + s.

k1 log arg(
ψ

(j)
1

ψ
(1)
1

)+. . .+kr+s log arg(
ψ

(j)
r+s

ψ
(1)
r+s

)+ks+j2π ≈ log arg(
aj
a1

) for j = r+1, . . . , r+s.

19

Note that

∣∣∣∣ψ(r+j)
1

ψ
(1)
1

∣∣∣∣ =

∣∣∣∣ψ(j)
1

ψ
(1)
1

∣∣∣∣ and arg(
ψ

(r+j)
1

ψ
(1)
1

) = −arg(
ψ

(j)
1

ψ
(1)
1

) for j = r + s+ 1, . . . n+ 1

hence we can omit these embeddings in this system of equations. Now we have
r+ 2s− 1 equations in r+ 2s integer unknowns. The (r+ 2s− 1)× (r+ 2s)-matrix
corresponding to the left hand sides of this equation is

M =



log
ψ

(2)
1

ψ
(1)
1

. . . log
ψ

(2)
r+s

ψ
(1)
r+s

0 0 . . . 0

...
...

...

log
ψ

(r)
1

ψ
(1)
1

. . . log
ψ

(r)
r+s

ψ
(1)
r+s

0 0 . . . 0

log

∣∣∣∣ψ(r+1)
1

ψ
(1)
1

∣∣∣∣ . . . log

∣∣∣∣ψ(r+1)
r+s

ψ
(1)
r+s

∣∣∣∣ 0 . . . 0

...
...

...

log

∣∣∣∣ψ(r+s)
1

ψ
(1)
1

∣∣∣∣ . . . log

∣∣∣∣ψ(r+s)
r+s

ψ
(1)
r+s

∣∣∣∣ 0 . . . 0

log arg(
ψ

(r+1)
1

ψ
(1)
1

) . . . log arg(
ψ

(r+1)
r+s

ψ
(1)
r+s

) 2π 0 . . . 0

...
...

...

log arg(
ψ

(r+s)
1

ψ
(1)
1

) . . . log arg(
ψ

(r+s)
r+s

ψ
(1)
r+s

) 0 0 . . . 2π



.

Now we are left to prove that the Z-span of the columns ofM lies dense in Rr+2s−1.
We did not manage to this and we conjecture that this is the case. In Proposition 2.8
we formulate the conditions that have to be met. For the proof of this proposition
we need Theorem 2.7.

Theorem 2.7 (Kronecker's approximation theorem). Let θ1, . . . , θn ∈ Rn
be arbitrary real numbers. Suppose that the real numbers 1, α1, . . . , αn are linearly
independent over Q and that ε > 0 is given. Then there exists an integer k ∈ Z
such that

||kαi − θi|| < ε for i = 1, . . . , n.

Proof. This is Theorem 7.10 of [9].

Proposition 2.8. Let P be a n × (n + 1) matrix with columns bi ∈ Rn for i =
1, . . . , n+ 1. Suppose that all n× n sub-determinants are non-zero and are linearly
independent over Q, then the Z-span of the columns of P lies dense in Rn.

Proof. By the assumptions, it is possible to perform a coordinate transformation
on the bi to write bi = ei for i = 1, . . . , n (where {ei, 1 ≤ i ≤ n} is the standard
basis) and bn+1 = (v1, . . . , vn) where 1, v1, . . . , vn are linearly independent over Q.
Then the propositions follows directly from Theorem 2.7.

20

3 Reduction of quadratic forms

In the next section we will describe an algorithm to �nd integers (p1, . . . , pn) such
that

||p1α1 + . . .+ pnαn|| · ||p||n2 (7)

is small for a given α ∈ Rn. This algorithm is based on the reduction of quadratic
forms, hence in this section we shall introduce the notion of a quadratic form and
we will describe two reduction processes, namely Minkowski reduction and LLL-
reduction.

3.1 Quadratic forms

A quadratic form in n variables is de�ned as

Q(x) =
∑

i,j=1,...,n

qijxixj ,

where qij = qji for 1 ≤ i < j ≤ n. Such a form is called positive de�nite if Q(x) ≥ 0
for all x ∈ Rn and Q(x) = 0 if and only if x = 0. With each quadratic form
we associate a matrix Q = (qij)1≤i,j≤n. The absolute value of the determinant of
this matrix is called the determinant of the form, denoted by D(Q). We say that
two forms Q and Q̃ are equivalent if there exists a matrix g ∈ GL(n,Z) such that
Q(gx) = Q̃(x). Further, we de�ne µ(Q) to be the minimum value of Q(x), taken
over all non-zero x ∈ Zn and µi(Q) to be the smallest value ρ such that there are
exactly i independent x ∈ Zn such that Q(x) ≤ ρ. A theorem of Hermite gives us
an upperbound for µ(Q) in terms of the determinant D(Q). A proof can be found
in Cassels [10].

Theorem 3.1. Suppose Q(x) is a positive de�nite form in n variables and let µ(Q)
be the minimum non-zero value of the set {Q(x)|x ∈ Zn}, there exists a γn such
that

µ(Q) ≤ γnD(Q)1/n where γn ≤ 2n/3.

This minimal value of a quadratic form is of importance since this will help us to
�nd small values for (7). To �nd the minimal value of a form we need a reduction
procedure for quadratic forms.

3.2 Minkowski reduction

De�nition 3.2. A quadratic form Q(x) =
∑
i,j=1,...,n qijxixj is called Minkowski

reduced if for 1 ≤ i ≤ n we have

Q(ei) ≤ Q(m) for all m ∈ Zn with gcd(mi, . . . ,mn) = 1.

Another way to describe these inequalities is the following.

0 < q11 ≤ q22 ≤ . . . ≤ qnn and Q(y) ≥ qmm for 1 ≤ m ≤ n,

where y ∈ Zn is such that yi ∈ {−1, 0, 1} for i < m, ym = 1 and yi = 0 for i > m.
Hence a form is Minkowski reduced when its coe�cients satisfy a �nite number of
linear inequalities.

21

Example 4. When n = 2 these inequalities are

0 ≤ q11 ≤ q22

|2q12| ≤ q11.

For n = 3 the inequalities are

0 ≤ q11 ≤ q22 ≤ q33

|2q12| ≤ q11

|2q13 ≤ q11

|2q23| ≤ q22

q11 + q22 + 2q12 + 2q13 + 2q23 ≥ 0

q11 + q22 − 2q12 − 2q13 + 2q23 ≥ 0

q11 + q22 − 2q12 + 2q13 − 2q23 ≥ 0

q11 + q22 + 2q12 − 2q13 − 2q23 ≥ 0.

When a form Q is Minkowski reduced, we have that µ(Q) = Q(e1) = q11. The
advantage of Minkowski reduction is that there are only �nitely many linear in-
equalities that have to be met, the disadvantage is that the number of inequalities
grows exponentially with the dimension, so for higher dimensions this becomes very
unpractical.

3.3 LLL-reduction

Another way to reduce a quadratic form is by use of the LLL-algorithm, which
is named after its inventors Lenstra, Lenstra and Lovasz [5]. To de�ne this LLL-
reduction we �rst write Q(x) in recursive form, that is

Q(x) =b1(x1 + µ12x2 + . . .+ µ1nxn)2

+ b2(x2 + µ23x3 + . . .+ µ2nxn)2

...

+ bn−1(xn−1 + µn−1nxn)2 + bnx
2
n.

(8)

De�nition 3.3. Fix an ω ∈ [3/4, 1]. A positive de�nite quadratic form Q(x) is
called LLL-reduced if

1. |µij | ≤ 1/2 for all i < j.

2. ωbi ≤ bi+1 + µ2
i,i+1bi for all i < n. (Lovasz condition)

(9)

Hermite formulated a notion of reduction for a quadratic form as follows. A
quadratic form Q, written in recursive form is reduced if

• n = 1.

• When n > 1 we have b1 = µ(Q), |µ1j | ≤ 1/2 for j = 2, . . . , n and the form
Q− b1(x1 + µ12x2 + · · ·+ µ1nxn)2 in x2, . . . , xn is reduced.

From this notion of reducedness it follows that bi ≤ bi+1+µ2
i,i+1bi for i = 1, . . . , n−1,

thus, when ω < 1, Lovasz condition is a relaxed version of this condition.

The advantage of LLL-reduction in comparison to Minkowski reduction is that the
number of conditions that have to be met is relatively small, even in large dimension.
The disadvantage is that we do not �nd optimal results, as the following theorem
shows.

22

Theorem 3.4. Let Q by an LLL-reduced positive de�nite form in n variables, with
ω = 3/4. Then

1. D(Q) ≤
∏n
i=1Q(ei) ≤ 2n(n−1)D(Q).

2. Q(e1) ≤ 2(n−1)/2D(Q)1/n.

3. Q(e1) ≤ 2n−1µ(Q).

4. For k = 1, . . . , n and all j ≤ k we have

Q(ej) ≤ 2n−1µk(Q).

Proof. First we prove 1. Note that Q(ei) = bi + bi−1µ
2
i−1,i + . . . + b1µ

2
1i, that

D(Q) =
∏n
i bi and we can rewrite Lovasz condition as bi ≥ (ω − µ2

i,i+1)bi−1. Since
ω = 3/4 and |µi,i+1| ≤ 1/2, this gives bi ≥ 1

2bi−1, so bj ≥ 2i−jbi for j ≥ i, hence
bi ≤ 2j−ibj . Since Q(ei) = bi + bi−1µ

2
i−1,i + . . .+ b1µ

2
1i we have

Q(ei) ≤ b1 +
1

4
(bi−1 + . . .+ b1)

≤ b1 +
1

4
(2 + . . .+ 2i−1)bi ≤ 2i−1bi.

Since D(Q) =
∏n
i bi this gives

D(Q) ≤
n∏
i

Q(ei) ≤
n∏
i

2i−1bi ≤ 2n(n−1)/2
n∏
i

bi = 2n(n−1)/2D(Q).

Next we proof 2. Since Q(e1) = b1 we have by the arguments above that Q(ei) ≤
2i−1bi for i = 1, . . . , n, hence

Q(e1)n ≤
n∏
i=1

2i−1bi = 2n(n−1)/2D(Q) so

Q(e1) ≤ 2(n−1)/2D(Q)1/n.

Since 3 is a special case of 4 (with k = 1), we are left to prove 4. Let x1, . . . ,xk be
independent non-zero vectors in Zn such that maxi=1,...,kQ(xi) = µk(Q). Choose l
minimal such that x1, . . . ,xk lie in the span of e1, . . . , el. Since the xi are indepen-
dent, we have l ≥ k. Then for at least one of the xi, the l-th coordinate is non-zero.
Suppose this is for xi and suppose this l-th coordinate is ξ. Then Q(xi) ≥ blξ2 ≥ bl.
Then for all j ≤ l we have

Q(ej) ≤ 2l−1bl ≤ 2l−1Q(xi) ≤ 2l−1µk(Q).

Since this holds for all j ≤ l, it certainly holds for all j ≤ q, which proves the
theorem.

In the LLL-reduction process we need two operations, namely a shift and a swap.
A shift is of the form xr → xr + axs where s > r and a ∈ Z and is chosen such that
after a shift |µrs| ≤ 1

2 . A swap is of the form xr ↔ xr+1. Beukers [7] described the
following possible implementation of the LLL-algorithm.

1. Perform all necessary shifts to have |µi,i+1| ≤ 1/2. So, for i = 1 to n − 1,
perform a shift xi → xi + axi+1, for the logical choice of a.

23

2. Now �nd i such that bi+1 +µ2
i,i+1bi < ωbi and swap xi and xi+1. Perform the

necessary shifts of the form xj → xj + ajxj+1, for j = i − 1, i, i + 1. Repeat
this untill no such i exists.

3. Perform a sequence of shifts xi → xi + axj to make sure that |µij | ≤ 1/2 for
all 1 ≤ i < j ≤ n.

After step 2, the form is partially LLL-reduced. Suppose we start with the form
Q(x) in recursive form as described in (8). After a shift or a swap we have a new
form Q̃, equivalent to Q, with parameters b̃i and µ̃ij . To implement the algorithm
we need to know how these new parameters can be calculated. After performing
the shift xr → xr + axs with s > r, we can compute the new parameters with

1. b̃i = bi for all i.

2. µ̃is = µis + aµir for i = 1, . . . , r − 1.

3. µ̃rs = µrs + a.

4. µ̃ij = µij for all other i, j.

After the swap xr ↔ xr+1, the new parameters are

1. b̃r = br+1 + µ2
r,r+1br.

2. b̃r+1 = brbr+1/b̃r.

3. b̃i = bi for all i 6= r, r + 1.

4. µ̃ir = µi,r+1 for i < r.

5. µ̃i,r+1 = µir for i < r.

6. µ̃r,r+1 = brµr,r+1/b̃r.

7. µ̃rj = (brµr,r+1µrj + br+1µr+1,j)/b̃r for j > r + 1.

8. µ̃r+1,j = µrj − µr,r+1µr+1,j for j > r + 1.

9. µ̃ij = µij for all other i, j.

These updates can be veri�ed by simple calculations.

24

4 Geodesic continued fraction

In this section we will describe an algorithm to �nd integer p1, . . . , pn such that

||p1α1 + . . .+ pnαn|| · ||p||n2 (10)

becomes small. Note that we used the Euclidean norm here instead of the supremum
norm which we used in the previous sections. Since ||p||∞ ≤

√
n · ||p||2 we have

that

||p1α1 + . . .+ pnαn| · ||p||n2 ≤
√
n
n · ||p1α1 + . . .+ pnαn| · ||p||n∞.

In 1850 Hermite proposed to use quadratic forms to �nd simultaneous approxima-
tions to rational (α1, . . . , αn). His idea was to use the quadratic form

Qt(x, y) = (x1 − α1y)2 + · · ·+ (xd − αny)2 + ty2 (11)

for any t > 0 and �nd the set of integers (p1, . . . , pn, q) that minimize Qt. By letting
t decrease to zero, this will give several (p1, . . . , pn, q) for which maxi=1,...,n |qαi−pi|
is small. Since we are interested in the dual case we will use the form

Qt(x) = t(x0 + x1α1 + . . .+ xnαn)2 + x2
1 + . . .+ x2

n (12)

where we let t increase to in�nity.

Proposition 4.1. Let x ∈ Rn+1 and suppose that (q,p) ∈ Zn+1 minimizes the
form

Qt(x) = t(x0 + x1α1 + . . .+ xnαn)2 + x2
1 + . . .+ x2

n.

Then

|q + p1α1 + . . . pnαn| · ||p||n2 < (n+ 1)n/2.

Proof. The form Qt = t(x0 + α1x1 + . . .+ αnxn)2 + x2
1 + . . .+ x2

n has determinant
t. So by Theorem 3.1 there exists a q ∈ Z and p ∈ Zn such that

Qt(q,p) = t(q + p1α1 + . . .+ pnαn)2 + ||p||22 ≤ γn+1t
1/(n+1).

Hence ||p||22 ≤ γn+1t
1/(n+1) and t(q + p1α1 + . . .+ pnαn)2 ≤ γn+1t

1/(n+1). Thus

(q + p1α1 + . . .+ pnαn)2/n ≤ γ1/n
n+1t

−1/(n+1).

Their product gives

(q + p1α1 + . . .+ pnαn)2/n||p||22 ≤ γ
1+1/n
n+1 ≤

(
2(n+ 1)

3

)1+1/n

< n+ 1.

From this we conclude

|q + p1α1 + . . .+ pnαn| · ||p||n2 < (n+ 1)n/2.

This is a factor (n+1)n/2 away from Dirichlets bound, but again, since we used the
Euclidean norm we would expect a factor nn/2 hence this comes very close.

25

4.1 Geodesic algorithm with LLL-reduction

All that we need now is an algorithm that �nds integers that minimize the quadratic
form Qt for varying t. In 1994 Lagarias describes a geodesic algorithm for this.
In [4] he describes an algorithm based on Minkowski reduction to �nd simultaneous
approximations with fractions. We slightly modify what he described so that we
can use it to �nd small values of linear forms. Also, as mentioned before, since
Minkowski reduction becomes unpractical in higher dimensions, we will use LLL-
reduction instead. Let α ∈ Rn and without loss of generality we can assume that
|αi| ≤ 1/2 for all i = 1, . . . , n. Otherwise, just take αi = [αi] − αi, where [αi]
denotes the nearest integer to αi. Now the idea is the following. We start with the
quadratic form

Q
(0)
t (x, y) = t(x0 + α1x1 + . . .+ αnxn)2 + x2

1 + . . .+ x2
n.

For t = 1, this form is LLL-reduced for any ω ≤ 1. De�ne P (0) as the (n+1)×(n+1)
identity matrix. Now enter the following loop:

1. Determine the maximum of the set {t|Q(k)
t is LLL-reduced } and call this

maximum tk.

2. Perform an LLL-reduction on Q
(k)
tk+ε for in�nitesimal ε > 0 and let Ak ∈

GL(Z, n) be such that x→ Akx is the corresponding change of variables.

3. De�ne Q(k+1)
t (x) = Q

(k)
t (Akx) and P (k+1) = P (k)Ak.

Now set (q,p) = P (k)e1, i.e. (q,p) corresponds to the �rst column of P (k), then this
will give a small value for |q + α1p1 + . . . αnpn| · ||p||n2 as the following proposition
shows.

Proposition 4.2. Let Q
(k)
t (x) and P (k) be de�ned as above, and let

(q,p) = (q, p1, . . . , pn) be the �rst column of P (k), then

|q + α1p1 + . . . αnpn| · ||p||n2 ≤ 2n(n+1)/4.

Proof. By Theorem 3.4 (2) and the fact that det(Q
(k)
t) = t we have

t(q + α1p1 + . . . αnpn)2 + ||p||22 ≤ 2n/2t1/(n+1)

This implies

||p||22 ≤ 2n/2t1/(n+1) and t(q + α1p1 + . . . αnpn)2 ≤ 2n/2t1/(n+1).

Now rewrite the second part as

(q + α1p1 + . . . αnpn)2/n ≤ 21/2t−1/(n+1)

And their product gives

(q + α1p1 + . . .+ αnpn)2/n||p||22 ≤ 2(n+1)/2.

Hence
|q + α1p1 + . . . αnpn| · ||p||n2 ≤ 2n(n+1)/4.

26

Remark. As we shall see in the next chapter, the actual values this algorithm
�nds are much smaller than this 2n(n+1)/4. Also the other columns of P (k) will give
good approximations, sometimes these are even better than the approximation of
the �rst column.

Now we have an algorithm to �nd integers p ∈ Zn such that

||p1α1 + . . .+ pnαn|| · ||p||n2

is small. The only problem that arises is that the LLL-conditions of De�nition 3.3
are quadratic in µij and hence polynomial in t. Beukers [7] observed that we can
describe these conditions in terms of the determinants of the sub matrices of the
matrix Qt = (qij) corresponding to the quadratic form Qt(x). By doing this, the
LLL-conditions become linear in t.

Theorem 4.3. Let Q(x) be a form in n variables and (qij) the corresponding
matrix. De�ne

Bij =

∣∣∣∣∣∣∣∣∣
q11 . . . q1,i−1 q1j

q21 . . . q2,i−1 q2j

...
. . .

...
...

qi1 . . . qi,i−1 qij

∣∣∣∣∣∣∣∣∣ .
Then bi = Bi,i/Bi−1,i−1 for i = 1, . . . , n (where B00 = 1) and µij = Bij/Bii for all
i, j, with 1 ≤ i < j ≤ n.

Proof. We prove this by induction on i. Suppose Q(x) =
∑
ij qijxixj where qij =

qji, then the �rst part of the recursive form of Q(x) looks like

q11(x1 +
q12

q11
x2 + . . .+

q1n

q11
xn)2 +

Now for i = 1 we have by de�nition B1j = q1j for all j = 1, . . . , n. Then b1 = q11 =
B11

B00
and µ1j =

B1j

B11
=

q1j
q11

. Now suppose that it holds for bi−1 and µi−1,j . We write

Q(x) = b1(x1 + µ12x2 + . . .+ µ1nxn)2 + Q̃(x)

where we denote the coe�cients of Q̃ by q̃ij for 2 ≤ i ≤ j ≤ n. Now qij =
b1µ1iµ1j + q̃ij where µ1j = q1j/q11 for j = 2, . . . , n as we have seen above. So

q̃ij = qij − q1jq1i/q11.

We de�ne

B̃ij =

∣∣∣∣∣∣∣∣∣
q̃22 . . . q̃2,i−1 q̃12

q̃22 . . . q̃2,i−1 q̃2j

...
. . .

...
...

q̃i2 . . . q̃i,i−1 q̃ij

∣∣∣∣∣∣∣∣∣ .
Since these are (i− 1)× (i− 1) matrices we know by the induction hypothesis that
bi = B̃ii/B̃i−1,i−1 and µij = B̃ij/B̃ii. Denote by Rk the k-th row of Bij , then we
perform the Gaussian row elimination Rk → Rk − q1k

q11
R1 for k = 2, . . . , i. Then Bij

reads

Bij ≡

∣∣∣∣∣∣∣∣∣
q11 q12 . . . q1,i−1 q1j

0 q̃22 . . . q̃2,i−1 q̃2j

...
...

. . .
...

...
0 q̃i2 . . . q̃i,i−1 q̃ij

∣∣∣∣∣∣∣∣∣ .
Hence Bij = q11B̃ij , which proves the desired formulas for bi and µij .

27

Next de�ne Ci to be the sub determinant of Bi+1,i+1 obtained by deleting the i-th
row and i-th column. Then we can reformulate the LLL-conditions of De�nition
3.3 as follows.

Proposition 4.4. Let Bij and Ci be the determinants as de�ned above. Then the
LLL-conditions can be written as

1. 2|Bij | ≤ Bii for all 1 ≤ i < j ≤ n.

2. ωBi,i ≤ Ci for i = 1, . . . , n− 1.

Proof. That the condition |µij | ≤ 1
2 can be written as 2|Bij | ≤ Bii immediately

follows form the fact that µij = Bij/Bii. To prove that the Lovasz-condition can be
written as ωBi,i ≤ Ci, we need the the Desnanot-Jacobi identity, which is formulated
in the following lemma.

Lemma 4.5 (Desnanot-Jacobi). Suppose M is an n × n matrix and M̃ is the
(n− 2)× (n− 2) matrix obtained from M by deletion of the i-th and j-th row and
column. By Mkl we denote the (n−1)× (n−1) matrix obtained from M by deletion
of the k-th row and l-th column. Then

det(M̃) det(M) = det(Mii) det(Mjj)− det(Mij) det(Mji).

Now observe that Bii is the sub determinant of Bi+1,i+1 obtained by deletion of the
i+ 1-th row and i-th column. Bi−1,i−1 is the sub determinant of Bi+1,i+1 obtained
by deletion of the i-th and i+1-th row and column and Bi,i+1 is the sub determinant
of Bi+1,i+1 by deletion of the i+ 1-th row and i-th column. Also observe that when
we transpose the matrix belonging to Bi,i+1 and delete the i-th row and i + 1-th
column, the determinant is equal to Bi,i+1 again. Now the Desnanot-Jacobi identity
gives us

Bi−1,i−1Bii = CiBii −B2
i,i+1.

We can rewrite this to

Ci
Bi−1,i−1

=
Bi+1,i+1

Bi,i
+

(
Bi,i+1

Bi,i

)2

· Bi,i
Bi−1,i−1

= bi+1 + µ2
i,i+1bi.

Also ωbi = ω Bii

Bi−1,i−1
hence

ωbi ≤ bi+1 + µ2
i,i+1bi is equal to ωBii ≤ Ci.

Now we can rewrite the update rules in terms of the determinants. Let notation
be as above and we write B̃ij and C̃i for the sub determinants of Q̃. Suppose we
perform the shift x→ xr + axs with s > r, then

1. B̃is = Bis + aBir for i ≤ r.

2. B̃ij = Bij for all other i, j.

3. C̃r = Cr + 2aBrs + a2Brr if r = s− 1.

4. C̃i = Ci whenever r 6= s− 1 or r = s− 1 and i 6= r.

If we perform the swap xr ↔ xr+1, then

28

1. B̃rr = Cr.

2. B̃ir = Bi,i+1 for all i < r.

3. B̃i,r+1 = Bir for all i < r.

4. B̃r,j = (Br,r+1Br,j +Br−1,r−1Br+1,j)/Brr for all j > r + 1.

5. B̃r+1,j = (Br+1,r+1Br,j −Br,r+1Br+1,j)/Brr for all j > r + 1.

6. B̃ij = Bij for all other i, j.

7. C̃r = Brr

8. C̃r−1 = (Br−2,r−2Cr +B2
r−1,r+1)/Br−1,r−1 if r > 1.

9. C̃r+1 = (Br+2,r+2Cr + B̃2
r+1,r+2)/Br+1,r+1 if r < n− 1.

10. C̃i = Ci for all i 6= r − 1, r, r + 1

Proposition 4.6. Let α ∈ Rn and let

Qt(x) = t(x0 + α1x1 + . . .+ αnxn)2 + x2
1 + . . .+ x2

n.

Each of the determinants Bij and Ci as de�ned above are of the form ut+ v where
v ∈ Z, and where u is quadratic in αi.

Proof. The matrix corresponding to Qt reads

Q =


t α1t . . . αn−1t αnt
α1t 1 + α2

1t . . . α1αn−1t α1αnt
...

...
. . .

...
...

αn−1t α1αn−1t . . . 1 + α2
n−1t αn−1αnt

αnt α1αnt . . . αn−1αnt 1 + α2
nt

 .

All 1×1 sub matrices are of the desired form. Write Rj for the j-th row of this matrix
and we perform the Gaussian row elimination Rj → Rj − αjR1 for j = 2, . . . , n.
Then we are left with an upper triangle matrix where t only occurs at position 1,1
and all other elements on the diagonal are 1. Hence this determinant, and all sub
determinants are either 1, t, or 0. After a change of variables, for each Bij and Ci
we have still have that the k-th row is equal to αk times the �rst row, except for
the integer part of each entry. By row addition we can manage to write the matrix
in such a way that only the �rst row contains entries with a t (which is a linear
combination of the other entries of Q, hence at most quadratic in αi) and all other
rows have only integer entries. Thus these determinants are of the desired form.

As a consequence of this in combination with the LLL-conditions in Proposition 4.4
we can conclude that the values of t ≥ 1 for which Qt(x) is LLL-reduced are closed
intervals [tk, tk+1] ∈ R≥1.

Next we look at the update rules, even though the rules for updating the determi-
nants are non-linear, the only non-linear part consists of division by an integer. For
example, from update rule 4 after a swap, we deduce

B̃rjBrr = Br,r+1Brj +Br−1,r−1Br+1,j .

29

Now write Brr = u0t+ v0, Br,r+1 = u1t+ v1, Brj = u2t+ v2, Br−1,r−1 = u3t+ v3,
Br+1,j = u4t + v4 and B̃rj = u5t + v5 and expand the left and right hand side to
get

u5u0t
2+(u5v0+v5u0)t+v5v0 = (u1u2+u3u4)t2+(v1u2+u1v2+u3v4+v3u4)t+v1v2+v3v4.

By comparing the coe�cient of t we �nd

u5 =
v1u2 + u1v2 + u3v4 + v3u4 − v5u0

v0

and comparing the constant part gives us

v5 =
v1v2 + v3v4

v0
.

Since vi ∈ Z by Proposition 4.6, this is indeed only a division by an integer. In a
similar way we can show that the only non-linear part of the update rules 5, 8 and
9 consist of division by an integer.

The following theorem shows that the algorithm can detect in�nitely many (p1, . . . , pn)
for which

||p1α1 + . . .+ pnαn|| · ||p||n2
is small if and only if {1, α1, . . . , αn} is linearly independent over Z.

Theorem 4.7. If {1, α1, . . . , αn} is linearly independent over Z, then the sequence
of critical points t0 < t1 < t2, . . . is an in�nite sequence increasing to ∞. If
{1, α1, . . . , αn} is linearly dependent over Z, then the sequence terminates.

For the proof we need the following lemma.

Lemma 4.8. Let t0 > 1, then the number of M ∈ GL(n+ 1,Z) such that Qt(Mx)
is LLL-reduced for some 1 ≤ t < t0 is �nite.

Proof. First note that µi(Qt2) ≤ µi(Qt1) if t2 ≥ t1 ≥ 1. Now let t ∈ [1, t0), then we
have by Theorem 3.4 that for each i = 1, . . . , n+ 1,

Qt0(Mei) ≤ Qt(Mei) ≤ 2nµi(Qt) ≤ 2nµi(Q1)

and there are only �nitely many x ∈ Zn+1 with Qt(x) ≤ 2nµi(Q1), hence for each
column of M there are only �nitely many possibilities.

Proof of theorem 4.7. Suppose there is a point of accumulation, so there is a t∞
such that tk < t∞ for all k. Then there are in�nitely many matrices P (k) such that
Qtk(P (k)x) is LLL-reduced. Since the P (k) are distinct for each k, this contradicts
Lemma 4.8. Hence either the sequence terminates for some tk, or it increases
to in�nity. Suppose it terminates at tk, then Qt(P

(k)e1) is LLL-reduced for all
t > tk. This is only possible if the coe�cient of t is either negative of zero. This
coe�cient is of the form (x0 + x1α1 + . . .+ xnαn)2 hence must be zero. Now de�ne
(q, p1, . . . , pn) = P (k)e1, then q + p1α1 + . . . + pnαn = 0, thus {1, α1, . . . , αn} is
linearly dependent over the integers.

Suppose there exists a really good approximation, i.e. for a given α ∈ Rn, there
exists an n+ 1-tuple (y,x) ∈ Zn+1 such that

|y + x1α1 + . . .+ xnαn| · ||x||n2 < ε

30

for a very small ε > 0. Now let

t =
||x||22

n(y + x1α1 + . . .+ xnαn)2

and let P be the matrix that corresponds to this value of t. Then by theorem 3.4
we know that

Qt(Pe1) ≤ 2n(t(y + xα1 + . . .+ xnαn)2 + ||x||22).

Now let (q, p1, . . . , pn) = Pe1, then

|q + p1α1 + . . .+ pnαn| ≤ t−
1
2 2

n
2 (t(y + x1α1 + . . .+ xnαn)2 + ||x||2)

1
2 and

||p||n2 ≤ 2
n2

2 (t(y + x1α1 + . . .+ xnαn)2 + ||x||22)
n
2 .

Hence

|q+ p1α1 + . . .+ pnαn| · ||p||n2 ≤ 2
n(n+1)

2 t−
1
2 (t(y+ x1α1 + . . .+ xnαn)2 + ||x||22)

n+1
2 .

For our choice of t this gives,

|q + p1α1 + . . .+ pnαn| · ||p||n2 ≤

2
n(n+1)

2
n

1
2 |y + x1α1 + . . .+ xnαn|

||x||2
· (||x||

2
2

n
+ ||x||22)

n+1
2 =

2
n(n+1)

2 n
1
2 (

1

n
+ 1)

n+1
2 · |y + x1α1 + . . .+ xnαn| · ||x||n2 ≤ γnε

where γn = 2
n(n+1)

2 n
1
2 (1
n + 1)

n+1
2 , hence this di�ers from ε by a factor depending

only on n.

Remark. Note that the LLL-algorithm on itself is able to detect small values for
linear forms. We can start with the quadratic form

Q(x) = N(x0 + α1x1 + . . .+ αnxn)2 + x2
0 + . . .+ x2

n

for a large integer N and perform an LLL-reduction on this form. Now suppose
that Q(Px) is reduced for a given P ∈ GL(Z, n + 1) and let (q, p1, . . . , pn) be a
column of P . Then |q + p1α1 + . . . + pnαn| is small. We can do this for varying
N , for example for N = 10k where k = 1, . . . , 100. This is much faster than the
geodesic algorithm described above, but we might miss the best approximations.
With the geodesic algorithm we can divide the whole of R+ in intervals where each
interval corresponds to one reduced form, hence to one transformation matrix P (k)

which gives n+ 1 potentially small linear forms. By trying several values for N we
only �nd a subset of these.

31

5 Implementation and results

I implemented the algorithm in Mathematica 9.0. For this, I used the java code
that Harry Smit wrote for the simultaneous approximation of a given (α1, . . . , αn) ∈
Rn with fractions. I chose for Mathematica because the numerical precision of
the calculations is much higher in Mathematica than it is in Java. I will give a
rough description of how the algorithm is implemented. The code is enclosed as an
appendix. All experiments are done on an ASUS laptop with an INTEL CORE i5
processor with 1.80GHz.

5.1 Short description of the code

The module Start[v] receives the vector α = (α1, . . . , αn) ∈ Rn and calls for
Initialize[v], in which the initial values of the determinants Bij an Ci are cal-
culated for 1 ≤ i ≤ j ≤ n + 1. Then InitialReduction[] performs the necessary
shifts such that the |αi| ≤ 1/2 which implies that all inequalities 2|B1i| ≤ B11 are
met and thus that the form

Qt(x) = t(x0 + α1x1 + . . .+ αnxn)2 + x2
1 + . . .+ x2

n

with t = 1 is LLL-reduced for ω = 3
4 . Now the approximation process can start. We

repeatedly call for the module ApproximationStep[], which performs the following
steps.

1. ComputeInterval[] computes for each inequality 2|Bij | ≤ Bii for 1 ≤ i <
j ≤ n and for each ωBii ≤ Ci for i = 1, . . . , n− 1 the corresponding intervals
for t for which the inequality is met.

2. MakePlan[] determines the least upper bound of these intervals. In the k-th
approximation step, this value corresponds to tk, which is the maximum of
the set {t|Q(k)

t is LLL-reduced}.

3. If tk is the upper bound of the interval corresponding to the inequality 2|Bij | ≤
Bii, we call for Shift[i,j,a], which performs the shift xi → xi + axj for
a = ±1. If tk is the upper bound of the interval corresponding to the inequality
ωBii ≤ Ci, we call for Swap[i], which performs the swap xi ↔ xi+1. This
value of tk might not be unique, for a note on that see the remark below.

4. At last we call for ReductionStep2[] and ReductionStep3[] which perform
the necessary shifts and swaps to make the form Qt reduced for t = tk. These
steps correspond to step 2 and 3 of the loop described in Section 4.1.

The combination of those four steps we de�ne to be one approximation step. The
value tk we �nd in step 2 is called a critical value for t and the corresponding shift
or swap we perform in step 3 we call a critical shift or a critical swap. We de�ne the
shifts and swaps that are performed in step 4 to be shifts and swaps for reduction.
During the process we keep track of all the changes of variables in the matrix
transform. This matrix corresponds to P (k) as de�ned in Section 4.1. Now denote
the j-th column of this matrix by (qj , p1j , . . . , pnj). After each approximation step,
the module ComputeQualityL2[] computes for j = 1, . . . , n+ 1 the value

|qj + p1jα1 + . . .+ pnjαn| · ||pij ||n2 .

32

We call this value the L2-quality of the approximation. The smaller this value is,
the better is the approximation. The module ComputeQualitySup[] computes for
j = 1, . . . , n+ 1 the value

|qj + p1jα1 + . . .+ pnjαn| · ||pij ||n∞

which we call the Sup-quality of the approximation. The module ComputePrecision[]
computes for j = 1, . . . , n+ 1 the value

|qj + p1jα1 + . . .+ pnjαn|

which we call the precision of the approximation. When (1, α1, . . . , αn) is an integral
basis of a number �eld, the module ComputeNorm[] computes the norm of each
element qj + p1jα1 + . . .+ pnjαn. After each approximation step we store all these
values in table, together with some counters that keep track of the number of shifts
and swaps we have performed up to the given approximation step. We can repeat
ApproximationStep[] as many times we want, but when the accuracy of t drops
below zero the process stops. If we continued the process with a negative accuracy
of t, rounding errors take over and the results would no longer be reliable. By
increasing the numerical precision (stored in the variable np) we can increase the
possible number of approximation step.

Remark. Note that it is possible that in step 2 of an approximation step more
than one inequality is violated for the same critical value of tk. If this happens, it is
not clear which critical shift or critical swap has to be performed. We did not take
in account the possible problems this can cause. The algorithm is programmed in
such a way that it automatically chooses the change of variables that corresponds
to the �rst violated inequality it encounters.

5.2 Tests with random α and varying dimension

We tested the algorithm for random vectors (α1, . . . , αn) ∈ Rn where we varied n
from 2 to 25. For this we made a list with elements of the form

√
pi and log pi

where pi runs over all primes from 2 to 541. Then we ran the following.

For[dim = 2, dim <= 25, dim++,

v = RandomSample[list, dim];

Print[Timing[Start[v]]];

name = StringJoin["VarDim", StringJoin[ToString[dim], ".xlsx"]]

Export[name, table]]

For each vector, we let the approximation process stop after 1000 approximation
steps. Then we exported table to excel, hence one run of the previous code produces
24 excel sheets each consisting of 1000 rows with data. We repeated this 5 times, so
for each dimension we run the approximation process for 5 di�erent random vectors.
With this data we made graphs to get some insight in how well the algorithm
performs.

The quality and the precision of the approximation At the end of each
approximation step, each of the n + 1 columns of the transformation matrix P (k)

correspond to one linear form in (α1, . . . , αn). Hence in 1000 approximation steps
we calculate the quality of (n + 1) × 1000 linear forms. Figure 1 shows for each
input vector the minimum of all these L2-qualities. Figure 2 shows after how many

33

approximation steps this minimal quality was encountered. Figure 3 and 4 show
these results for the sup-quality. Note that we used a logarithmic scale for displaying
the qualities. For each n we see �ve dots, where each dot corresponds to one input
vector. We see that when the dimension grows, the L2-quality of the approximation
increases and the Sup-quality decreases. Also when n > 20 the minimal L2-quality
occurs in the beginning of the approximation process, while the minimal Sup-quality
occurs in general later in the process.

Fig. 1: Minimal L2-quality

Fig. 2: Number of steps

Fig. 3: Minimal Sup-quality

34

Fig. 4: Number of steps

Example 5. For n = 3, one of the input vectors is of the form (α1, α2, α3) =
(
√

257, log 89, log 509). After 934 approximation steps the last column of the trans-
formation matrix P (934) looks like

(q, p1, p2, p3) =

(−36615935339345431003460342221,−7055301299494663524068579801,

8421508244374822197470202290, 17957619688885910793558027647).

Now |q+ p1α1 + p2α2 + p3α3| ·
√
p2

1 + p2
2 + p2

3

3
= 0.000034038 which is the smallest

L2-quality we encounter in a 1000 approximation steps. This example corresponds
to the dark gray dots in Figure 1 and 2.

Example 6. For n = 20, one of the input vectors is of the form

(α1, . . . , α20) =

(log 277,
√

271,
√

373,
√

487, log 503, log 491,
√

449, log 97,
√

233,
√

523,

log 131, log 29, log 41,
√

239, log 107, log 307, log 139,
√

433, log 461,
√

179)

The smallest L2-quality we encounter is given by the 18th column of the transfor-
mation matrix P (1). This column looks like

(−5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)

and the corresponding L2-quality is | − 5 + log(139)| = 0.0655. Hence this ap-
proximation is not of any interest. We do �nd interesting linear combinations of
(α1, . . . , α20), even though their L2-quality is higher than 0.0655. For example, the
�rst column of P (1000) is

(q, p1, . . . , p20) = (−5661, 75, 7, 7, 34,−181, 0, 238,

51,−19,−110,−78,−11,−57, 29, 100,−19,−53, 88,−16, 93).

Then the L2-quality of this approximation is |q + p1α1 + . . . + p20α20| · ||p||20
2 =

0.27822. The smallest L2-quality of all columns of P (1000) was given by the �rst
column, but we �nd the smallest precision in the 18-th column. This column reads

(q, p1, . . . , p20) = (−14085, 86, 96, 108,−24,−32, 147,−57,

− 171,−8,−29, 21, 127,−103, 322,−78, 120,−216, 413, 132,−94).

Then |q + p1α1 + . . .+ p20α20| = 1.24 · 10−54.

35

In the previous example we have seen that the quality of the approximations does
not always decrease with the number of approximation steps, but the precision
of the approximation does decrease exponentially in the number of approximation
steps. We calculated after each approximation step the precision of the n+ 1 linear
forms and determined the minimum of these n+ 1 values. For each approximation
step, the base 10 logarithm of the minimum of these precisions is displayed in Figure
5. Here we have taken 6 random vectors, namely one for each n where n = 2, n =
5, n = 10, n = 15, n = 20 and n = 25. All other vectors show similar results. Figure
6 shows the number of digits of the largest element in the transformation matrix
P (1000). Again we see see 5 dots for each dimension, each corresponding to one
random vector. We see that this number of digits decreases exponentially with the
dimension.

Fig. 5: log(precision)

Fig. 6: Number of digits of pi

Example 7. For n = 5 one of the input vectors reads

(α1, . . . , α5) = (
√

37, log 31,
√

19, log 61,
√

127).

Figure 5 shows that after 1000 approximation steps the precision of the approxima-
tion is approximately 10−82 and the largest element of P (1000) has approximately

36

16 digits. For this speci�c vector, the 4-th column of P (1000) corresponds to the
linear form with the smallest precision. This column reads

(q, p1, . . . , p5) = (−54958916574554533, 14913244085348451,

4168419492155768, 2195766269208450,−4798314965938595,−3541880014481820)

and the corresponding precision is 7.25 · 10−83.

The number of shifts and swaps Apart from the quality and the precision of
the approximations, we are also interested in how fast the algorithm �nds the ap-
proximations. For this we look at the number of shifts and swaps that are performed
after each approximation step. To see how these numbers grow with the number
of approximation steps, we calculated for n = 2, n = 5, n = 15, and n = 25 the
average number of shifts and swaps taken over all 5 random vectors. Figure 3, 4,
5 and 6 show how the average number of critical shifts, critical swaps, shifts for
reduction and swap for reduction grows with the number of approximation steps.

Figure 3: n=2

Figure 4: n=5

37

Figure 5: n=15

Figure 6: n=25

38

We see that when n = 2 most of the transformations are critical shifts. For n = 5
the number of critical shifts is equal to the number of critical swaps, but for n = 15
the number of critical shifts drops below the number of critical swaps. Also we see
that the number of shifts for reduction grows fast when the dimension grows. To
get some more insight in how these values behave for varying n, we looked at the
number of shifts and swaps at the end of 1000 approximation steps and displayed
these in Figure 7 and 8. Again each dot corresponds to one random input vector.

Fig. 7: Critical shifts and swaps

Fig. 8: Shifts and swaps for reduction

We see that for n ≤ 4 there are more critical shifts than critical swaps. Then,
from n = 6 to n = 21 there are more critical swaps than critical shifts and those
numbers stabilize at 500 when n becomes larger. This is unexpected, since there
are n inequalities that lead to a critical swap, and 1

2n(n− 1) inequalities that lead
to a critical shift, so we would expect that the number of critical shifts grows with
the dimension. In contrary to the number of critical shifts and critical swaps, the
number of shifts and swaps for reduction behave as we would expect, namely the
number of shifts for reduction grows quadratic in the dimension and the number of
swaps for reduction seems to grow linear in the dimension. To decrease the number
of shifts for reduction it is possible to work with partial reduction, as de�ned in
Section 3.3. Then only the �rst column of P (k) will give a good approximation.

39

Above we have seen that the smallest quality or the smallest precision does not
always belong to the �rst column of the transformation matrix, hence we do not
know whether this partial reduction would lead to good results.

Timing For each random input vector we timed the approximation process. Fig-
ure 7 shows for how many seconds the algorithm ran for n = 2 up to n = 25. Again
each dot corresponds to one input vector.

Figure 7: Timing of the approximation process

Here we worked with a numerical precision of 700 and we calculated the qualities
and the precisions of the approximations after each approximation step (when we
do this at each 10-th step, or only after the last step, the algorithm terminates much
faster). Note that for small dimensions, the algorithm terminates faster when the
input vector consists of an odd number of elements then when this vector consists
of an even number of elements. We do not know why this happens. One can speed
up the process by decreasing the numerical precision (but then it might be possible
that the algorithm terminates before 1000 steps because the accuracy of t drops
below zero).

5.3 Tests with number �elds

Let F be a real number �eld of degree n+ 1 with integral basis (1, α1, . . . , αn). We
de�ne

c∞(α) = lim inf
||p||∞→∞

||p1α1 + . . .+ pnαn|| · ||p||n∞ and

c2(α) = lim inf
||p||∞→∞

||p1α1 + . . .+ pnαn|| · ||p||n2

Now we can use Theorem 2.1 to calculate the lower bound for these values. Since all
the arguments in the proof of Theorem 2.1 also hold when we replace the supremum
norm with the Euclidean norm we can use this theorem to compare the results of

40

our algorithm with the values

min
σ∈Σ

1

max{Π(Aν) : ||ν||2 = 1 and σ(Aν) = σ}
and

min
σ∈Σ

1

max{Π(Aν) : ||ν||∞ = 1 and σ(Aν) = σ}
.

A theorem of Fürtwangler states the following.

Theorem 5.1. Let D be the smallest discriminant of a real number �eld of degree
n+ 1 and let c be a constant smaller than

1

|D| 1
2n

.

Then there exist (α1, . . . , αn) such that there are only �nitely many integer solutions
to

max
i=1,...,n

|qαi − pi| < c · q−1/n.

The proof of this theorem can be found in [11]. Because of this theorem we got
the idea that an integral basis of a real number �eld with small discriminant is a
logical choice to perform the experiments with. Table 1 shows for number �elds
of degree 3, 4, 5 and 6 the smallest discriminant and the corresponding minimal
polynomial. For each degree we chose the real number �eld with smallest dis-
criminant and the totally real number �eld with smallest discriminant. From now
on we will refer to these number �elds by stating their discriminant. The number
�elds with small discriminant and the corresponding minimal polynomials are found
in [12], [13], [14], [15] and are listed in Table 1.

n+ 1 f(α) D (r + 1, s)
3 α3 + α2 − 1 −23 (1, 1)
3 α3 + α2 − 2α− 1 49 (3, 0)
4 α4 + α2 − 11 −275 (2, 1)
4 α4 − 14α2 + 29 725 (4, 0)
5 α5 − α3 + α2 + α− 1 1609 (1, 2)
5 α5 + α4 − 4α3 − 3α2 + 3α+ 1 14641 (5, 0)
6 α6 + 2α5 − 3α3 + 2α− 1 28037 (2, 2)
6 α6 + α5 − 7α4 − 2α3 + 7α2 + 2α− 1 300125 (6, 0)

Table 1: Number �elds of small discriminant

For each number �eld we calculated an integral basis in Mathematica with the
following command.

f = #^3 + #^2 - 1;

v = NumberFieldIntegralBasis[AlgebraicNumber[Root[f, j], {0, 1}]].

We did this for each f as denoted in Table 1 and for j = 1, . . . , r + 1, hence for
each possible real embedding. Suppose (1, α1, . . . , αn) is a basis for the number �eld
Q(α), then we let the algorithm run for 1000 approximation steps for each input
vector (α

(j)
1 , . . . , α

(j)
n) for j = 0, 1, . . . , r, hence for each real embedding. Again we

calculated the minimum of all L2-qualities and the minimum of all Sup-qualities that
we encountered in these 1000 steps. These are listed in the fourth and sixth column

41

of Table 2. We used Mathematica to calculate the values max{Π(Aν) : ||ν||2 = 1}
and max{Π(Aν) : ||ν||∞ = 1}. We de�ne

1

max{Π(Aν) : ||ν||2 = 1}

to be the L2CK-constant and

1

max{Π(Aν) : ||ν||∞ = 1}

to be the SupCK-constant. These values are listed in the �fth and seventh column
of Table 2. The third column of this table shows the value of α for the several real
embeddings.
n+ 1 D root Sup-quality SupCK L2-quality L2CK

3 23 0.754878 0.171214 0.171149 0.245122 0.30086
3 49 −1.80194 0.048711 0.047875 0.095571 0.095545
3 49 −0.44504 0.187420 0.187420 0.198062 0.220282
3 49 1.24698 0.187420 0.187420 0.191833 0.191832
4 −275 1.68941 0.006368 0.004181 0.021071 0.019774
4 −275 −1.68941 0.013067 0.009702 0.033157 0.032230
4 725 3.38705 0.000936 0.000527 0.001383 0.001376
4 725 −3.38705 0.001851 0.000838 0.002699 0.002646
4 725 1.58993 0.004464 0.004317 0.009992 0.009540
4 725 −1.58993 0.005552 0.004360 0.011694 0.010905
5 1609 −1.68941 0.012214 0.009644 0.087622 0.085547
5 14641 −1.91899 0.000271 3.7 · 10−6 0.000434 3.0 · 10−5

5 14641 −1.30972 0.000714 0.000220 0.004243 0.001572
5 14641 −0.28463 0.001379 0.000574 0.004431 0.003162
5 14641 0.83083 0.001783 0.001129 0.006939 0.005203
5 14641 1.68251 0.000171 0.000026 0.001081 0.000208
6 28037 −1.23795 0.000195 0.000042 0.001999 1.2 · 10−6

6 28037 0.807788 0.002654 0.000181 0.010987 0.00442
6 300125 −2.9156 5.1 · 10−5 2.8 · 10−13 0.000306 1.6 · 10−12

6 300125 −0.770676 0.000048 0.000029 0.000958 0.000480
6 300125 −0.720093 0.000128 0.000035 0.001553 0.000586
6 300125 0.275051 0.000229 6.8 · 10−6 0.001574 0.000110
6 300125 1.11366 0.000158 2.8 · 10−7 0.000697 6.1 · 10−6

6 300125 2.01766 4.8 · 10−5 2.9 · 10−10 0.000435 2.3 · 10−9

Table 2: The minimum of the qualities and c(α)

Remark. Note that in the de�nition of the L2CK-constant and the SupCK-constant
we omit the constant Nσ as stated in Theorem 2.1, so it might be possible that these
constants lie a factor away from the actual value of c(α).

In Figure 8 we displayed for each number �eld the values L2−quality
L2CK−constant . The closer

this values lies to 1 the better the approximation is. We see that up to the number
�eld with discriminant 1609 these values lie close to 1. For the number �elds with
larger discriminant the approximation becomes worse. We only displayed the ratios
up to 3, but for the number �eld with discriminant 300125 this ratio becomes even
larger than 1.8 · 105.

42

Figure 8: Quality-L2 / L2CK-constant

Elements with small norm Let F be a number �eld with integral basis (1, α1, . . . , αn),
then we can run the algorithm with input vector (α1, . . . , αn) to detect elements
with small norm in the number �eld F . At the end of each approximation step,
each column of the transformation matrix P (k) corresponds to an element of the
number �eld F . We de�ne the set

ΩF = {q + p1α1 + . . .+ pnαn : (q, . . . , pn) is a column of P (k) for k = 1, . . . , 1000}.

Thus ΩF contains all elements of F that are detected by the algorithm. Next we
de�ne for a ∈ N

ΩF,a = {η : η ∈ ΩF and |N(η)| = a}.

Then, for example, ΩF,1 is the set of all units the algorithm �nds. By |ΩF | and
|ΩF,a|we denote the cardinality of these sets. Note that |ΩF | is at most 1000×(n+1)
since at the end of each approximation step each column of the (n + 1) × (n + 1)
matrix P (k) corresponds to one element of F . We calculated for each number �eld
listed in Table 1 how many distinct elements it detects in 1000 approximation steps
and how many of them are units. The results are listed in Table 3. The third
column gives the value of α in the chosen real embedding. The last column of this
table shows the maximum absolute value of all norms of elements of ΩF .

43

n+ 1 D root |ΩF | |ΩF,1| Maximum norm
3 −23 0.75488 979 979 1
3 49 −1.80194 728 604 13
3 49 −0.44504 778 778 1
3 49 1.24698 807 807 1
4 −275 −1.68941 851 574 29
4 −275 1.68941 841 494 71
4 725 −3.38705 893 326 1331
4 725 −1.58993 859 543 149
4 725 1.58993 860 515 251
4 725 3.38705 866 256 3319
5 1609 −1.68941 853 837 17
5 14641 −1.91899 955 152 167683
5 14641 −1.30972 908 360 989
5 14641 −0.28463 932 498 473
5 14641 0.83083 928 517 571
5 14641 1.68251 932 207 19801
6 28037 −1.23795 999 291 79699
6 28037 0.80779 983 662 211
6 300125 −2.91560 1021 8 7.98 · 1013

6 300125 −0.77068 1076 654 6581
6 300125 −0.72009 1045 655 3079
6 300125 0.27505 1067 289 87641
6 300125 1.11366 1046 177 5630339
6 300125 2.01766 1062 69 26795416871

Table 3: Number of units detected by the algorithm

We see that almost all elements of ΩF are units when F is of degree 3 and the
number �elds of smaller discriminant lead to more elements with small norm than
the number �elds of higher discriminants, which was to be expected. A remarkable
result is that the choice of embedding is of great in�uence on the performance
of the algorithm. For example, look at F = Q(α) where α is a root of f(x) =
x6 + 2x5 − 3x3 + 2x − 1. When we take α(0) ≈ 0.81, the algorithm �nds 983
distinct elements of which 662 are units. The highest norm we encounter is 211.
As we can see in Figure 8, the value L2−quality

L2CK−constant is approximately 2.5, hence
the minimum of the L2-qualities we �nd lies close to c(α). When we start with the
other real embedding, namely the one where α(0) ≈ −1.23, this ratio L2−quality

L2CK−constant
is approximately 1619 and we see that the algorithm only detects 291 units out of
the 999 distinct elements. Also the highest norm the algorithm �nds is 79699.

To get some more insight how many elements of small norm the algorithm �nds,
we listed for each number �eld the value of |ΩF,a|, where we let a run over the 5
smallest integers for which ΩF,a 6= ∅. The results are listed in Table 4.

n=3, D=49:

root |ΩF,1| |ΩF,7| |ΩF,13|
−1.80194 604 105 19
−0.44504 778 0 0
1.24698 807 0 0

n=4, D=275:
root |ΩF,1| |ΩF,9| |ΩF,11| |ΩF,19| |ΩF,25|

1.68941 494 0 86 55 25
−1.68941 574 179 50 23 6

44

n=4, D=725:

root |ΩF,1| |ΩF,11| |ΩF,19| |ΩF,25| |ΩF,29|
3.38705 256 63 40 16 18
−3.38705 326 86 55 25 20
1.58993 515 106 69 37 13
−1.58993 543 110 66 34 8

For n=5, D=1609:
root |ΩF,1| |ΩF,11| |ΩF,13| |ΩF,17|

−1.68941 837 10 5 1

For n=5, D=14641:

root |ΩF,1| |ΩF,11| |ΩF,23| |ΩF,43| |ΩF,67|
−1.91899 152 25 74 50 34
−1.30972 360 58 153 81 47
−0.28463 498 70 193 69 35
0.83083 517 72 159 84 34
1.68251 207 35 99 74 52

For n=6, D=28037:
root |ΩF,1| |ΩF,17| |ΩF,19| |ΩF,23| |ΩF,25|

−1.23795 291 46 39 40 52
0.80779 662 82 65 52 70

For n=6, D=300125:

root |ΩF,1| |ΩF,29| |ΩF,41| |ΩF,49| |ΩF,71|
−2.91560 8 3 2 1 4
−0.77068 654 145 98 8 36
−0.72009 655 142 87 10 32
0.27505 289 173 106 17 86
1.11366 177 102 65 13 42
2.01766 69 7 8 2 2

Table 4: Number of elements of small norm.

We see that the value of a for which ΩF,a is non-empty is independent of the choice
of embedding, at least for small values of a (with the exception for the number �eld
with D = 275, there we �nd that ΩF,9 is non-empty for the �rst, but empty for the
second embedding). The cardinality of these sets does depend on the embedding.
Also we see that when an embedding leads to a lot of units, also the other small
norms occur more often. A remarkable fact is that we only encounter elements of
which the norm is odd and this also holds for the elements with norms higher than
displayed in these tables.

We have seen that the algorithm is capable of detecting small values of linear forms
in integer points, even in high dimensions. When we pick (α1, . . . , αn) such that
(1, α1, . . . , αn) is an integral basis of a number �eld of degree < 6 with small dis-
criminant, the quality of the approximations lies close to the theoretical value c(α)
given by Cusick and Krass, even though the LLL-algorithm is known to give sub-
optimal results. We also have seen that when we start the algorithm with the right
choice for a real embedding, we can use it to detect elements of small norm.

References

[1] John WS Cassels. An introduction to Diophantine approximation, volume 1957.
University Press Cambridge, 1957.

[2] TW Cusick and S Krass. Formulas for some diophantine approximation con-
stants. Journal of the Australian Mathematical Society (Series A), 44(03):311�
323, 1988.

45

[3] AJ Brentjes and Multi-dimensional Continued Fraction Algorithms. Mathe-
matical centre tracts. Multi-dimensional continued fraction algorithms, 145,
1981.

[4] JC Lagarias. Geodesic multidimensional continued fractions. Proceedings of
the London Mathematical Society, 3(3):464�488, 1994.

[5] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring
polynomials with rational coe�cients. Mathematische Annalen, 261(4):515�
534, 1982.

[6] Wieb Bosma and Ionica Smeets. Finding simultaneous diophantine approxi-
mations with prescribed quality. The Open Book Series, 1(1):167�185, 2013.

[7] Frits Beukers. Geodesic continued fractions and LLL. Indagationes Mathemat-
icae, 25(4):632�645, 2014.

[8] H Davenport. On a theorem of furtwängler. Journal of the London Mathemat-
ical Society, 1(2):186�195, 1955.

[9] Tom M Apostol. Modular functions and Dirichlet series in number theory,
volume 41. Springer Science & Business Media, 2012.

[10] JWS Cassels. Rational quadratic forms, volume 13 of London Mathematical
Society Monographs. London Academic Press, 1978.

[11] Ph Furtwängler. Über die simultane approximation von irrationalzahlen. Math-
ematische Annalen, 96(1):169�175, 1927.

[12] HJ Godwin. Real quartic �elds with small discriminant. Journal of the London
Mathematical Society, 1(4):478�485, 1956.

[13] HJ Godwin. On quartic �elds of signature one with small discriminant. ii.
Mathematics of Computation, pages 707�711, 1984.

[14] A Schwarz, M Pohst, and F Diaz y Diaz. A table of quintic number �elds.
mathematics of computation, 63(207):361�376, 1994.

[15] Michael Pohst. On the computation of number �elds of small discriminants
including the minimum discriminants of sixth degree �elds. Journal of Number
Theory, 14(1):99�117, 1982.

46

A The mathematica notebook

The module Start[v] receives the vector of irrationals v = {α1, . . . , αn}.

Start[vv_] :=

Module[{qmaxSup, qualitiesSup, v, qminSup, qminL2, qmaxL2,

qualitiesL2, stepcounter, norm, L2, Sup, np, nv, norms, precision,

precisionValues, precisionBest},

v = vv;

PrependTo[v, 1];

np = 700;

nv = N[v, np];

stepcounter = 0;

(*The following booleans define which values we

calculate at the end of each approximation step*)

norm = False; (*Calculate the norm of the elements*)

L2 = True; (*Calculate L2-quality*)

Sup = True; (*Calculate sup-quality*)

precision = True; (*Calculate precision*)

A = Initialize[N[v, np]];

InitialReduction[];

While[! Complete,

stepcounter++;

ApproximationStep[];

If[Accuracy[t] <= 0 || Accuracy[A] <= 0 || stepcounter > 999,

Complete = True];

If[L2,

qualitiesL2 = ComputeQualityL2[nv];

qminL2 = Min[Abs[qualitiesL2]];

qmaxL2 = Max[Abs[qualitiesL2]],

qualitiesL2 = {};

qminL2 = {};

qmaxL2 = {}];

If[Sup,

qualitiesSup = ComputeQualitySup[nv];

qminSup = Min[Abs[qualitiesSup]];

qmaxSup = Max[Abs[qualitiesSup]],

qualitiesSup = {};

qminSup = {};

qmaxSup = {}];

If[precision,

precisionValues = ComputePrecision[nv];

precisionBest = Min[Abs[precisionValues]],

precisionBest = {}];

47

If[norm,

norms = ComputeNorm[v], norms = {}];

AppendTo[

table, {v, transform, stepcounter, shiftcounter, swapcounter,

shiftAppStep, swapAppStep, Accuracy[t],

Max[IntegerLength[Delete[transform, 1]]],

Min[IntegerLength[Delete[transform, 1]]], qminL2, qmaxL2,

qualitiesL2, qminSup, qmaxSup, qualitiesSup, norms,

precisionBest}];

]]

In Initialize[v] we compute the initial values of Bij and Ci. We can recall the
value ofBij with B[[i,j,1]*t+B[[i,j,2]] and the value of Ci with C[[i,1]]*t+C[[i,2]].
This module returns the list {B,C}. Also we de�ne some global variables which
are used in several modules.

Initialize[vv_] := Module[{B, C, v},

v = vv;

n = Length[v];

t = 1;

w = 3/4;

table = {{"v", "transform", "stepcounter", "shiftcounter",

"swapcounter", "shiftAppStep", "swapAppStep", "Accuracy[t]",

"Max[IntegerLength[transform]]", "Min[IntegerLength[transform]]",

"qminL2", "qmaxL2", "qualitiesL2", "qminSup", "qmaxSup",

"qualitiesSup", "norms", "precision"}};

(*after each approximation step we store the information we in this

table and we can transport this to Excel*)

transform = IdentityMatrix[n];

(*this matrix keeps hold of the transformations and the

columns of this matrix will give the approximations*)

shiftcounter = 0; (*counts the total number of shifts*)

swapcounter = 0; (*counts the total number of swaps*)

swapAppStep = 0; (*counts the number of critical swaps*)

shiftAppStep = 0;(*counts the number of critcal shifts*)

stepcounter = 0; (*counts the number of approximation steps*)

Complete = False; (*This boolean becomes true when the approximation process has to stop.*)

B = ConstantArray[0, {n, n, 2}];

C = ConstantArray[0, {n - 1, 2}];

For[i = 1, i <= n, i++,

B[[i, i]] = {1, 0}];

For[i = 2, i <= n, i++,

B[[1, i]] = {v[[i]], 0}];

For[i = 1, i <= n - 1, i++,

C[[i]] = {1, 0}];

48

C[[1]] = {v[[2]]^2, 1};

Return[{B, C}]]

In InitialReduction[] we perform the �rst shifts to make sure that all muij lie
in the interval [−0.5; 0.5], thus we check all the inequalties 2|B1j | ≤ B11 for t = 1.

InitialReduction[] := Module[{B11, B1j, mid, a},

B11 = A[[1, 1, 1]][[1]]*t + A[[1, 1, 1]][[2]]; (*Computes value of B_11*)

For[j = 2, j <= n, j++,

B1j = A[[1, 1, j]][[1]]*t + A[[1, 1, j]][[2]];

If[2*Abs[B1j] > B11, (*If the inequality is not met, we need to perform a shift*)

mid = B1j/B11;(*We use mid to calculate with which value we have to shift*)

a = Floor[0.5 - mid];

Shift[1, j, a] (*We perform the shift x_1->x_1+a x_j*)

]

]

]

The module ApproximationStep[] performs one approximation step and calls
for the corresponding critical shift or swap. It calls for Reductionstep2[] and
Reductionstep3[] to make the new form LLL-reduced.

ApproximationStep[] := Module[{plan, a, i, j, mij},

plan = MakePlan[];

If[! Complete, (*While making the plan,

Complete can become True in the ComputeInt module,

then we skip the next part and the process stops*)

If[plan[[1]], (*This means we have to shift*)

shiftAppStep++;

a = -1; (*a decides whether we shift with -1 of 1*)

i = plan[[2]];

j = plan[[3]];

mij = (A[[1, i, j, 1]]*t + A[[1, i, j, 2]])/(A[[1, i, i, 1]]*t +

A[[1, i, i, 2]]);

If[mij < 0, a = 1];

Shift[i, j, a];

If[j == i + 1, ReductionStep2[]];

ReductionStep3[];(*For partial reduction we can skip this step*)

, (*else we have to swap*)

swapAppStep++;

Swap[plan[[2]]];

ReductionStep2[];

ReductionStep3[] (*For partial reduction we can skip this step*)

]

49

]]

The module MakePlan[] uses the list of intervals which is the output of ComputeInterval[].
We calculate the next value of t and return a plan. A plan is a list of the form
shift, i, j, where shift is a boolean. If shift is true we need to perform a shift,
otherwise a swap. The i and j tell us which shift or swap we have to perform.

MakePlan[] := Module[{int, shift, i, j, upperbound},

int = ComputeInterval[];

shift = True;

upperbound = Max[int[[1, 3]]];

i = int[[1, 1]];

j = int[[1, 2]];

For[k = 1, k <= Length[int], k++,

If[Max[int[[k, 3]]] < upperbound,

upperbound = Max[int[[k, 3]]];

i = int[[k, 1]];

j = int[[k, 2]]]];

If[j == -1, shift = False];

t = upperbound; (*assigns the new value for t*)

Return[{shift, i, j}]]

The module ComputeInterval[] computes for each inequality the intervals for t for
which the inequality is met. It returns an array with elements of the form {int, i, j}
where int is the interval and i and j denote the corresponding inequality. If j = −1
the interval belongs to the inequality ωBii ≤ Ci is violated (so we have to swap),
otherwise the interval belongs to the inequality 2|Bij | < Bii (so we have to shift).

ComputeInterval[] := Module[{Int, Bij, Bii, int1, int2, int, Ci},

Int = {};

(*In the following For-loop we check the inequalities 2|Bij|<Bii*)

For[i = 1, i <= n, i++,

For[j = i + 1, j <= n, j++,

Bij = 2 A[[1, i, j]];

Bii = A[[1, i, i]];

If[Bij[[1]] - Bii[[1]] == 0 || -Bii[[1]] - Bij[[1]] == 0,

Complete = True]; (*If one of these is zero,

we can not make a new plan and we stop the approximation.

This can happen when two elements of the input vector are

dependent over the integers*)

If[! Complete, (*We have to check both 2Bij<Bii and -Bii<2Bij.

Then we compute the intersection of these.*)

If[Bij[[1]] - Bii[[1]] > 0,

int1 =

Interval[{0, (Bii[[2]] - Bij[[2]])/(Bij[[1]] - Bii[[1]])}],

int1 =

50

Interval[{(Bii[[2]] - Bij[[2]])/(Bij[[1]] - Bii[[1]]),

Infinity}]];

If[-Bii[[1]] - Bij[[1]] > 0,

int2 =

Interval[{0, (Bij[[2]] + Bii[[2]])/(-Bii[[1]] - Bij[[1]])}],

int2 =

Interval[{(Bij[[2]] + Bii[[2]])/(-Bii[[1]] - Bij[[1]]),

Infinity}]];

int = IntervalIntersection[int1, int2];

AppendTo[Int, {i, j, int}]

]];

(*In the following For-

loop we check the inqualities wBii <= Ci*)

For[i = 1, i <= n - 1, i++,

Bii = w*A[[1, i, i]];

Ci = A[[2, i]];

If[Bii[[1]] - Ci[[1]] > 0,

int = Interval[{0, (Ci[[2]] - Bii[[2]])/(Bii[[1]] - Ci[[1]])}],

int =

Interval[{(Ci[[2]] - Bii[[2]])/(Bii[[1]] - Ci[[1]]), Infinity}]];

AppendTo[

Int, {i, -1, int}]]]; (*The -1 indicates that we have to perform a swap*)

Return[Int]]

The module Shift[] performs a shift, hence it updates the transformation matrix
and the determinants.

Shift[rr_, ss_, aa_] := Module[{r, s, a, B, C},

(*This performs the shift x_r\[Rule]x_r+ax_s *)

r = rr;

s = ss;

a = aa;

shiftcounter++;

(*Update transformmatrix*)

For[i = 1, i <= n, i++,

transform[[i, s]] += a transform[[i, r]]];

(*Update determinants*)

If[r == s - 1,

A[[2, r]] += 2 a A[[1, r, s]] + a^2 A[[1, r, r]]];

For[i = 1, i <= r, i++,

A[[1, i, s]] += a*A[[1, i, r]]]

]

The module Swap[] performs a swap, hence it updates the transformation matrix
and the determinants.

51

Swap[rr_] :=

Module[{r, old, Br1r1, Br2r2, Brijb, Bjj1, Bjj, mjj1, shift,

oldtrans},

r = rr;

swapcounter++;

(*Update the transformmatrix*)

For[i = 1, i <= n, i++,

oldtrans = transform[[i, r]];

transform[[i, r]] = transform[[i, r + 1]];

transform[[i, r + 1]] = oldtrans;

];

(*Update determinants*)

(*update rule 4 and 5*)

For[j = r + 2, j <= n, j++,

old = A[[1, r, j]];

If[r == 1, Br1r1 = {0, 1}, Br1r1 = A[[1, r - 1, r - 1]]];

If[A[[1, r, r, 2]] == 0,

A[[1, r, j, 2]] =

Round[(A[[1, r, r + 1, 2]]*A[[1, r, j, 1]] +

A[[1, r, r + 1, 1]]*A[[1, r, j, 2]] +

Br1r1[[2]]*A[[1, r + 1, j, 1]] +

Br1r1[[1]]*A[[1, r + 1, j, 2]])/A[[1, r, r, 1]]];

A[[1, r, j,

1]] = (A[[1, r, r + 1, 1]]*A[[1, r, j, 1]] +

Br1r1[[1]]*A[[1, r + 1, j, 1]])/(A[[1, r, r, 1]]);

A[[1, r + 1, j, 2]] =

Round[(A[[1, r + 1, r + 1, 2]]*old[[1]] +

A[[1, r + 1, r + 1, 1]]*old[[2]] -

A[[1, r, r + 1, 2]]*A[[1, r + 1, j, 1]] -

A[[1, r, r + 1, 1]]*A[[1, r + 1, j, 2]])/(A[[1, r, r, 1]])];

A[[1, r + 1, j,

1]] = (A[[1, r + 1, r + 1, 1]]*old[[1]] -

A[[1, r, r + 1, 1]]*A[[1, r + 1, j, 1]])/(A[[1, r, r, 1]]);,

(*else*)

A[[1, r, j, 2]] =

Round[(A[[1, r, r + 1, 2]]*A[[1, r, j, 2]] +

Br1r1[[2]]*A[[1, r + 1, j, 2]])/A[[1, r, r, 2]]];

A[[1, r, j,

1]] = (A[[1, r, r + 1, 2]]*A[[1, r, j, 1]] +

A[[1, r, r + 1, 1]]*old[[2]] +

Br1r1[[2]]*A[[1, r + 1, j, 1]] +

Br1r1[[1]]*A[[1, r + 1, j, 2]] -

A[[1, r, j, 2]]*A[[1, r, r, 1]])/A[[1, r, r, 2]];

Brijb = A[[1, r + 1, j, 2]];

A[[1, r + 1, j, 2]] =

Round[(A[[1, r + 1, r + 1, 2]]*old[[2]] -

A[[1, r, r + 1, 2]]*A[[1, r + 1, j, 2]])/A[[1, r, r, 2]]];

A[[1, r + 1, j,

1]] = (A[[1, r + 1, r + 1, 2]]*old[[1]] +

52

A[[1, r + 1, r + 1, 1]]*old[[2]] -

A[[1, r, r + 1, 2]]*A[[1, r + 1, j, 1]] -

A[[1, r, r + 1, 1]]*Brijb -

A[[1, r + 1, j, 2]]*A[[1, r, r, 1]])/A[[1, r, r, 2]];]];

(*update rule 8*)

If[r > 1,

If[r == 2, Br2r2 = {0, 1}, Br2r2 = A[[1, r - 2, r - 2]]];

If[A[[1, r - 1, r - 1, 2]] == 0,

A[[2, r - 1, 2]] =

Round[(Br2r2[[2]]*A[[2, r, 1]] + Br2r2[[1]]*A[[2, r, 2]] +

2*A[[1, r - 1, r + 1, 2]]*A[[1, r - 1, r + 1, 1]])/

A[[1, r - 1, r - 1, 1]]];

A[[2, r - 1,

1]] = (Br2r2[[1]]*A[[2, r, 1]] +

A[[1, r - 1, r + 1, 1]]*A[[1, r - 1, r + 1, 1]])/

A[[1, r - 1, r - 1, 1]];,(*else*)

A[[2, r - 1, 2]] =

Round[(Br2r2[[2]]*A[[2, r, 2]] +

A[[1, r - 1, r + 1, 2]]*A[[1, r - 1, r + 1, 2]])/

A[[1, r - 1, r - 1, 2]]];

A[[2, r - 1,

1]] = (Br2r2[[2]]*A[[2, r, 1]] + Br2r2[[1]]*A[[2, r, 2]] +

2*A[[1, r - 1, r + 1, 2]]*A[[1, r - 1, r + 1, 1]] -

A[[2, r - 1, 2]]*A[[1, r - 1, r - 1, 1]])/

A[[1, r - 1, r - 1, 2]];

]];

(*update rule 2 en 3*)

For[i = 1, i < r, i++,

old = A[[1, i, r]];

A[[1, i, r]] = A[[1, i, r + 1]];

A[[1, i, r + 1]] = old];

(*update rule 9*)

If[r < n - 1,

If[A[[1, r + 1, r + 1, 2]] == 0,

A[[2, r + 1, 2]] =

Round[(A[[1, r + 2, r + 2, 2]]*A[[2, r, 1]] +

A[[1, r + 2, r + 2, 1]]*A[[2, r, 2]] +

2*A[[1, r + 1, r + 2, 2]]*A[[1, r + 1, r + 2, 1]])/

A[[1, r + 1, r + 1, 1]]];

A[[2, r + 1,

1]] = (A[[1, r + 2, r + 2, 1]]*A[[2, r, 1]] +

A[[1, r + 1, r + 2, 1]]*A[[1, r + 1, r + 2, 1]])/(A[[1,

r + 1, r + 1, 1]]);

,(*else*)

A[[2, r + 1, 2]] =

Round[(A[[1, r + 2, r + 2, 2]]*A[[2, r, 2]] +

53

A[[1, r + 1, r + 2, 2]]*A[[1, r + 1, r + 2, 2]])/

A[[1, r + 1, r + 1, 2]]];

A[[2, r + 1,

1]] = (A[[1, r + 2, r + 2, 2]]*A[[2, r, 1]] +

A[[1, r + 2, r + 2, 1]]*A[[2, r, 2]] +

2*A[[1, r + 1, r + 2, 2]]*A[[1, r + 1, r + 2, 1]] -

A[[2, r + 1, 2]]*A[[1, r + 1, r + 1, 1]])/

A[[1, r + 1, r + 1, 2]]];

];

(*update rule 1 en 7*)

old = A[[1, r, r]];

A[[1, r, r]] = A[[2, r]];

A[[2, r]] = old;

(*After a swap, we always need to check for possible shifts,

hence it is included in the Swap method.*)

For[j = (r - 1), j <= (r + 1), j++,

If[(j < 1 || j > n - 1), Continue[]];

Bjj1 = A[[1, j, j + 1, 1]]*t + A[[1, j, j + 1, 2]];

Bjj = A[[1, j, j, 1]]*t + A[[1, j, j, 2]];

If[2*Abs[Bjj1] > Bjj,

mjj1 = Bjj1/Bjj;

shift = Floor[0.5 - mjj1];

Shift[j, j + 1, shift];

]]

]

After computing the new t and performing the corresponding critical shift or swap,
we sometimes have to perform more shifts and swaps to make the new form LLL-
reduced. Reductionstep2[] executes the required swaps and Reductionstep3[]

executes the required shifts.

ReductionStep2[] := Module[{Bii, Ci},

For[i = 1, i < n, i++,

Bii = A[[1, i, i, 1]]*t + A[[1, i, i, 2]];

Ci = A[[2, i, 1]]*t + A[[2, i, 2]];

If[w *Bii > Ci,

Swap[i];

i = 0;]]]

ReductionStep3[] := Module[{Bij, Bii, mij, shift},

For[j = n, j > 1, j--,

For[i = j - 1, i > 0, i--,

Bij = A[[1, i, j, 1]]*t + A[[1, i, j, 2]];

Bii = A[[1, i, i, 1]]*t + A[[1, i, i, 2]];

If[2*Abs[Bij] > Bii,

mij = Bij/Bii;

54

shift = Floor[0.5 - mij];

Shift[i, j, shift]

]]]

]

The module ComputeQualityL2[v] computes for each column of the transformation
matrix the value

|q + p1α1 + . . .+ pnαn| · ||p||n2 .

It returns a list with all these values.

ComputeQualityL2[v_] :=

Module[{vv, testvalue, value, values, list, combi, L2, norm},

list = {};

vv = v;

For[i = 1, i <= n, i++,

combi = transform[[All,i]];

L2 = 0;

For[k = 2, k <= n, k++,

L2 += combi[[k]]^2];

testvalue = L2^((n - 1)/2);

value = vv.combi;

quality = N[value*testvalue, 20];

AppendTo[list, quality]

];

Return[list]

]

The module ComputeQualitySup[v] computes for each column of the transforma-
tion matrix the value

|q + p1α1 + . . .+ pnαn| · ||p||n∞.

It returns a list with all these values.

ComputeQualitySup[v_] :=

Module[{vv, testvalue, value, values, list, combi, max, n, norm},

list = {};

vv = v;

For[i = 1, i <= Length[transform], i++,

combi =

transform[[All,

i]];

max = Max[Abs[Delete[combi, {1}]]];

testvalue = max^(Length[vv] - 1);

value = vv.combi;

quality = N[value*testvalue, 40];

AppendTo[list, quality];

55

];

Return[list]

]

The module ComputePrecision[v] computes for each column of the transformation
matrix the value

|q + p1α1 + . . .+ pnαn|.

It returns a list with all these values.

ComputePrecision[v_] :=

Module[{vv, testvalue, value, values, list, combi, L2, norm,

precision},

list = {};

vv = v;

For[i = 1, i <= n, i++,

combi =

transform[[All, i]];

value = vv.combi;

precision = N[value, 200];

AppendTo[list, precision]

];

Return[list]

]

When the elements of the input vector are algebraic integers, ComputeNorm[v] com-
putes for each column of the transformation matrix the norm of the corresponding
element. It returns a list with all these values.

ComputeNorm[v_] := Module[{combi, list, vv},

list = {};

For[i = 1, i <= Length[transform], i++,

combi = transform[[All, i]];

vv = v;

AppendTo[list, AlgebraicNumberNorm[combi.vv]]];

Return[list]]

56

