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Abstract

We discuss the numerical solution of the Vlasov-Poisson-Fokker-Planck (VPFP) equation in the context
of accelerator physics. Our experiments focus on the single particle type case, which is useful in study-
ing intrabeam scattering. The theory and algorithms, however, are derived for the more general case
with multiple species of particles, so that applications in the simulation of electron cooling, for example,
are also possible.
We first review the derivation of the VPFP equation and the associated stochastic differential equations,
after which we formulate a particle-in-cell algorithm to solve them. Our experiments are carried out
with a one-dimensional restriction of the model, and their results are promissing enough to warrant
implementation and investigation of a three dimensional version. We show that the choice of boundary
conditions is of particular interest.
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Introduction

In this thesis we will discuss the numerical solution of the Vlasov-Poisson-Fokker-Planck (VPFP) equa-
tion in the context of accelerator physics, using stochastic differential equations.

There are approximately 30000 particle accelerators in use around the world today. Most of these
accelerators are used for medical and industrial purposes, for example as radiotherapy accelerators or
as ion implanters, which are used for semiconductor device fabrication. The most famous accelera-
tors however are the high energy accelerators used for high energy physics research, such as the Large
Hadron Collider (LHC) at CERN and the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Na-
tional Laboratory. These high energy accelerators are built to discover more about particle physics, but
in doing so they push back the frontiers of science and technology, leading to advances in various areas.

One of the effects present in accelerators is the so-called intrabeam scattering (IBS), which is the
name for the effects of Coulomb scattering within the beam. Since the beam in an accelerator typically
consists of many charged particles with the same charge there will be a Coulomb repulsion between the
particles. This interaction can be modelled as collisions between the particles, which mostly happen at
large impact parameters1, causing only a small deflection per collision. These collisions will however
add up and cause the beam to widen over time, which decreases the intensity of the beam, which is
disadvantageous for the experiments that typically occur at large accelerators.

However, we need not only consider the collisions, but also the mean force field caused by all the
other particles. An equation that describes both of these will be derived in the first chapter, which we
will use to simulate IBS. Coulomb collisions are also important in various other areas of physics, most
notably plasma physics. In this paper we will look at the presented equations relating to accelerator
physics, but it may be interesting to bear in mind that it may be relevant in other fields as well.

We will mostly consider IBS in our simulation, but we will also briefly discuss the application of
the presented work to electron cooling. Electron cooling is a method to decrease velocity deviations in
an ion beam, by sending an electron beam though it. Since it is quite easy to make an electron beam
with low velocity deviations, one can send such a beam though a section of the ion ring, keeping new
electrons coming in and continually extracting the old ones out. The electrons and the ions will then
interact through the Coulomb interaction, and tend towards a near-thermal equilibrium state, in which
the velocity deviations of the ions are lowered. So even though electron cooling and IBS have opposite
effects on the ion beam, the underlying physics is similar, and both can be described by the equations
used in this thesis.

Calculating the behaviour of a charged particle beam is essentially a many-body problem with
Coulomb forces between the particles. This problem is hard to solve exactly, because the number of
forces grows as the square of the number of particles. Hence an approximation or computational ap-
proach is in order for the high particle numbers associated with beam physics.

Some exact approximations for the growth rate of the beam size due to IBS have been developed,
however most of these assume that it is independent of position and that the beam has a certain dis-
tribution. These conditions are often not fulfilled in the actual situation, so that these exact methods
can only provide estimates. To gain a better understanding of IBS, and in the future possibly electron
cooling, it is therefore useful to examine the general case. Due to the computational intensity of this
problem one needs to use a computer to do so.

For a charged particle beam we do not have the full conditions (the exact location and velocity of
each particle) available, but rather an initial distribution for the positions and velocities of the particles.

1The impact parameter in scattering theory signifies the distance from the scattering target to the line through the incoming
particle spanned by its initial velocity.
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Moreover, one is also typically interested in the final distribution of the particles, and not in the exact
position or velocity of any particular particle. Therefore it is natural to make a continuum approxima-
tion of the beam and look at the evolution of this distribution.

In Chapter 1 we will introduce such a description of the beam and show the derivation of the VPFP
equation which describes the evolution of the beam. Since this equation is hard to solve in its original
form we will formulate a system of stochastic differential equations (SDEs) whose solution will lead to
the solution of the original equation. These SDEs describe the evolution of the position and velocity
of a test particle in our beam. By tracking the evolution of many test particles and looking at their
distribution, we will find the distribution we were looking for. The advantage of the SDE description
compared to the original many-body problem is that the number of test particles need not be as big as
the physical number of particles, and that it can be implemented such that the calculation time is linear
in the number of test particles, instead of quadratic in the number of particles.

In Chapter 2 we describe an algorithm, which is a so-called particle-in-cell method, that solves the
system of SDEs. This algorithm keeps track of the positions and velocities of the particles, but also uses a
grid to represent continuous quantities such as the density. Forces at particle positions are extrapolated
from the continuous force fields and using these forces we change the particle coordinates and thus the
particle distribution, after which the continuous quantities are re-calculated.

In Chapter 3 we test a one-dimensional version of the algorithm we described. We notice that the
algorithm converges to a steady state, given the right boundary conditions, and we investigate the
influence of several parameters on the precise final state. These experiments show good convergence
upon increasing the numerical resolution. Finally we suggest a few adaptations to this algorithm for
further research into the numerical simulation of ion beams.
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Chapter 1

Theory

When we look at an ion beam, we will make the approximation that all particles (of the same type) are
equivalent and independent. Since particles in an ion beam typically undergo a lot of small angle de-
flections the correlations between particles is small and this approximation is indeed valid. This allows
us to describe the (perceived continuous) density of the ion beam in terms of the single particle proba-
bility density function, and hence to describe the evolution of the beam by calculating the evolution of
the single particle distributions.

In order to describe the evolution of the single particle distribution, we need not only take the ex-
ternal forces into account, but also the forces of the other particles on the particle of interest. This can
be achieved by using the Vlasov-Poisson-Fokker-Planck (VPFP) equation derived in [2]. We will review
the derivation of this equation below, in a slightly more general form than we will use, allowing for
multiple species of particles. Even though we will only describe an algorithm for a single particle type,
the existence of the equations for multiple particle types gives us the option of expanding the algorithm
in the future. Such an extended algorithm would then not only be able to describe an ion beam, but also
electron cooling, for example.

From the single particle type Fokker-Planck equation we proceed to a system of stochastic differen-
tial equations (SDE’s) as in [3]. It is this system of SDE’s upon which we will base the algorithm that we
develop in the next chapter.

1.1 Basic equations

Following [2], we define a phase-space domain D in which particles of several species move and we
assume their motions to be uncorrelated. The particles of species a have massma and charge qa. Further
we introduce a probability density function fa, normalized such that

Na =

∫
D
fa(r,v) d3r d3v,

where Na is the number of particles of species a in the domain, r is the spatial vector and v is the
velocity vector, so that fa represents the number of particles of type a per unit phase-space volume.

The Boltzmann equation, which describes the statistical behaviour of a thermodynamic system not
in thermodynamic equilibrium, states that the change of the particle distribution functions is given by

∂fa
∂t

+ v · ∂fa
∂r

+
F

ma
· ∂fa
∂v

=

(
∂fa
∂t

)
coll

, (1.1)

where the force F = Fext + Fmf includes both the external force Fext and the self generated mean field
space charge force Fmf = −∇φ which can be obtained from the Poisson equation

∇2φ(r) = −ρ(r)

ε0
, ρ(r) =

∑
a

qa

∫
fa(r,v) d3v.
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The quantity (∂fa/∂t)coll represents the change in the distribution function due to collisions and needs
to be specified further.

The appropriate Fokker-Planck equation for the rate of change of fa due to collisions (in Cartesian
coordinates) is [4](

∂fa
∂t

)
coll

= − ∂

∂v
· (fa〈∆v〉a) +

1

2

∂2

∂v∂v
: (fa〈∆v∆vT 〉a), (1.2)

where 〈∆v〉a is the average increment per unit time of the velocity of a particle of type a. This equation
is actually an approximation in which terms of higher order in ∆v are neglected, but we will justify this
approximation in Section 1.3.

1.2 Collision kinematics

We will now take a look at the kinematics of an elastic collision between a particle of type a with
velocity va before the collision and ṽa after the collision and a particle of type b with velocity vb before
the collision and ṽb after the collision. Due to conservation of momentum we can express the velocity
V of the center of mass in two ways

V =
mava +mbvb

ma +mb
=
maṽa +mbṽb

ma +mb
.

We now introduce the relative velocities u = va − vb and ũ = ṽa − ṽb and notice that we may write

va = V +
mb

ma +mb
u and ṽa = V +

mb

ma +mb
ũ,

which means that the change in particle a’s velocity ∆v = ṽa − va is related to the change in relative
velocity ∆u = ũ− u by

∆v =
mb

ma +mb
∆u. (1.3)

We will make use of this fact in order to calculate 〈∆v〉a and 〈∆v∆vT 〉a.
If we now look at energy conservation in the frame moving with velocity V we see that

ma‖va − V ‖2 +mb‖vb − V ‖2 = ma‖ṽa − V ‖2 +mb‖ṽb − V ‖2

ma

∥∥∥∥ mb

ma +mb
u

∥∥∥∥2

+mb

∥∥∥∥ ma

ma +mb
u

∥∥∥∥2

= ma

∥∥∥∥ mb

ma +mb
ũ

∥∥∥∥2

+mb

∥∥∥∥ ma

ma +mb
ũ

∥∥∥∥2

‖u‖2 = ‖ũ‖2,

Which means that the relative velocity may only be rotated, not rescaled. In order to simplify the
upcomming equations we will now introduce a local Cartesian coordinate system with basis vectors
e′1, e′2, e′3 which is related to the fixed system e1, e2, e3 by

e′1 =
u

u
, e′2 =

e3 × u

‖e3 × u‖
=

e3 × u

(u2
1 + u2

2)1/2
, e′3 = e′1 × e′2. (1.4)

In the local system we see that there must exist angles θ ∈ [0, 2π) and φ ∈ [0, π) such that

∆u = ũ− u =

 u cos(θ)
u sin(θ) cos(φ)
u sin(θ) sin(φ)


L

−

 u
0
0


L

=

 −2u sin2(θ/2)
u sin(θ) cos(φ)
u sin(θ) sin(φ)


L

.
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This expression can be used to calculate 〈∆v〉a and 〈∆v∆v〉a, since they are by definition1 equal to

〈∆v〉a =
∑
b

∫
fb(r,vb)

∫
u∆v σab(u,Ω) dΩ dvb

〈∆v∆vT 〉a =
∑
b

∫
fb(r,vb)

∫
u∆v∆vT σab(u,Ω) dΩ dvb,

where σ denotes the differential scattering cross section for the Coulomb force

σab(u,Ω) =

(
qaqb

8πε0mabu2

)2
1

sin4(θ/2)
,

in which mab = mamb/(ma +mb) is the reduced mass of the particles. We will perform the calculation
by first calculating

{∆u}ab =

∫
u∆uσab(u,Ω) dΩ

{∆u∆uT }ab =

∫
u∆u∆uT σab(u,Ω) dΩ,

in the local coordinate system. We can then perform the coordinate change and use Equation (1.3), after
which only the velocity integral remains.

1.3 Calculation of the Fokker-Planck coefficients

We now see that in the local system

{∆u}ab =

(
qaqb

8πε0mabu

)2 ∫ π

0

∫ 2π

0

1

sin4(θ/2)

 −2 sin2(θ/2)
sin(θ) cos(φ)
sin(θ) sin(φ)


L

sin(θ) dφdθ,

so {∆u2L}ab = {∆u3L}ab = 0 and

{∆u1L}ab = −π
(

qaqb
4πε0mabu

)2 ∫ π

0

sin2(θ/2)

sin4(θ/2)
sin(θ) dθ. (1.5)

The integral in (1.5) diverges logarithmically at small angles. This divergence is caused by the long-
range nature of the Coulomb force, since small angles correspond to large impact parameters, but it can
be eliminated when we take shielding2 into account. Once we introduce a minimal angle θmin we get

{∆u1L}ab = 4π

(
qaqb

4πε0mabu

)2

log(sin(θmin/2)) ≈ −4π

(
qaqb

4πε0mabu

)2

ln(2/θmin).

The natural cutoff on the maximal impact parameter provided by shielding is of the order of a Debye
length

λD =

(
ε0kB∑

a q
2
ana/Ta

)1/2

,

where kB is Boltzmann’s constant and Ta is the temperature of species a. This impact parameter corre-
sponds to an angle such that ln(2/θmin) = ln(Λ). The quantity ln Λ is called the Coulomb logarithm and

1We will not go into the details of this definition, but some intuition for what it means can be gained from the following. For
any scattering process

∫
σdΩ is an area, that corresponds to the area of a disk centered at the target particle such that if a particle

with relative velocity u enters this disk it will be scattered. The differential scattering cross section itself also contains information
about which part of the disk will cause which scattering angle. The quantity fbu determines how many particles of type b the
particle of type a will encounter, so that

∫
fb uσab dΩ will give the scattering rate.

2The long-range effects of the Coulomb force are suppressed by the flow of the other particles in response to the electric field
of the particle of interest. This reduces the effective interaction at long distances to the mean field interaction, which we had
already taken into account. Hence we get a maximal impact parameter, and thus a minimal scattering angle, for the collisions.
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its insensitivity to the precise value of u (it scales as ln(u)) allows us to use the common approximation
ln(Λ) ≈ 10. Note that since ln(Λ) � 1 and since any term higher than second order in ∆v will not
contain ln(Λ), the neglect of those terms in the Fokker-Planck Equation (1.2) was indeed justified.

Now for the second order terms we find that

{∆uiL∆ujL}ab = 0 for i 6= j,

{(∆u1L)2}ab = 4u3

(
qaqb

8πε0mabu2

)2 ∫ π

0

∫ 2π

0

sin4(θ/2)

sin4(θ/2)
sin(θ) dφdθ = 4πu

(
qaqb

4πε0mabu

)2

,

{(∆u2L)2}ab = u3

(
qaqb

8πε0mabu2

)2 ∫ π

0

∫ 2π

0

sin2(θ) cos2(φ)

sin4(θ/2)
sin(θ) dφdθ

= 8πu

(
qaqb

8πε0mabu

)2 ∫ π

0

sin3(θ/2) cos3(θ/2))

sin4(θ/2)
dθ

= πu

(
qaqb

4πε0mabu

)2

[cos(θ) + 4 log(sin(θ/2))]
π
0 .

We make use of the minimal scattering angle once more to find

{(∆u2L)2}ab = −4πu

(
qaqb

4πε0mabu

)2

log(sin(θmin/2)) ≈ 4πu

(
qaqb

4πε0mabu

)2

ln(Λ).

And similarly we find

{(∆u3L)2}ab ≈ 4πu

(
qaqb

4πε0mabu

)2

ln(Λ).

Since these last two contain a factor ln(Λ), the size of {(∆u1L)2}ab is an order of magnitude smaller,
motivating the approximation of Rosenbluth et al.

{(∆u1L)2}ab = 0.

If we now combine these with equations (1.3) and (1.4) we find that

{∆vi}ab =
mb

ma +mb

∑
j

ei · e′j{∆ujL}ab

= −mab

ma
ei ·

u

u
4π

(
qaqb

4πε0mabu

)2

ln(Λ)

= − (qaqb)
2

4πε20mamabu3
ln(Λ)ui,

and that

{∆vi∆vj}ab =
q2
aq

2
b

4πε20m
2

ln(Λ)
1

u

(
δij −

uiuj
u2

)
.

Obtaining the latter expression requires a long calculation, which can be found in Appendix B.1.
If we now introduce the shorthand

Γa ≡
q4
a

4πε20m
2

ln(Λ),

and we recall that u = (
∑
i(vai − vbi)2)1/2, we see that we may write

{∆v}ab = Γa
ma

mab

(
qb
qa

)2
∂

∂va

1

u
, {∆v∆vT } = Γa

(
qb
qa

)2
∂2

∂va∂va
u.
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1.4 Resulting equations

Now it is clear that

〈∆v〉a =
∑
b

∫
fb(r,vb){∆v}ab d3vb = Γa

∂ha
∂va

, (1.6)

and

〈∆v∆vT 〉a = Γa
∂2ga

∂va∂va
, (1.7)

where

ha(r,v) =
∑
b

ma +mb

mb

(
qb
qa

)2 ∫
fb(r, ṽ)

‖v − ṽ‖
d3ṽ,

ga(r,v) =
∑
b

(
qb
qa

)2 ∫
fb(r, ṽ) ‖v − ṽ‖ d3ṽ.

Lastly we define

Fda ≡ Γa
∂ha
∂v

,

Da ≡ Γa
∂2ga
∂v∂v

,

which are known as the dynamic friction coefficient and the diffusion coefficient respectively. Now we
can combine equations (1.1) and (1.2) with equations (1.6) and (1.7) to get the complete Fokker-Planck
equation for the evolution of our system

∂fa
∂t

+ v · ∂fa
∂r

+
F

ma
· ∂fa
∂v

= − ∂

∂v
· (faFda) +

1

2

∂2

∂v∂v
: (faDa).

In this thesis we will only treat the case where there is a single species of particles, with distribution
f , mass m and charge q. In this case the equations simplify to the VPFP equation we will use,

∂f

∂t
+ v · ∂f

∂r
+

F

m
· ∂f
∂v

= − ∂

∂v
· (fFd) +

1

2

∂2

∂v∂v
: (fD), (1.8)

where

F (r,v) = Fext + Fmf = Fext − q∇φ, (1.9)

Fd(r,v) = Γ
∂h

∂v
, (1.10)

D(r,v) = Γ
∂2g

∂v∂v
, (1.11)

in which

Γ =
q4

4πε20m
2

ln(Λ), ln(Λ) ≈ 10, (1.12)

h(r,v) = 2

∫
f(r, ṽ)

‖v − ṽ‖
d3ṽ, (1.13)

g(r,v) =

∫
f(r, ṽ)‖v − ṽ‖d3ṽ, (1.14)

∇2φ(r) = −ρ(r)

ε0
, (1.15)

ρ(r) = q

∫
f(r,v)d3v. (1.16)
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Lastly we note that the integrals h and g do in fact converge, even though that may not seem obvious
at first glance. The convergence of g becomes clear if we keep in mind that in any situation of physical
relevance f is a bounded function which will either have a bounded support in ṽ or it will decay
exponentially at large values of ṽ. The convergence of h (it looks like there might be a problem around
v = ṽ) becomes more clear if we first perform a change of variables to w = v − ṽ and then change to
polar coordinates:

h(r,v) = 2

∫
f(r, ṽ)

‖v − ṽ‖
d3ṽ

= 2

∫
f(r,v −w)

‖w‖
d3w

= 2

∫ ∞
0

∫ π

0

∫ 2π

0

f(r,v −w)

w
w2 sin(φ) dθ dφdw

If we take into account the properties for physically relevant functions f , as we did for g, we do
indeed see that h will converge as well.

1.5 Elliptic description

It is interesting to note that h and g can also be described by elliptic equations. Calculating the deriva-
tives of equations (1.13) and (1.14) will show that

∇2
vha = −4π

∑
b

ma +mb

mb

(
qb
qa

)2

fb(r,v),

∇2
v∇2

vga = −8π
∑
b

(
qb
qa

)2

fb(r,v).

These equations give us an alternative way to calculate h and g, namely through a Poisson equation.
These equations are also the reason that h and g are often referred to as the Rosenbluth potentials.

In the next chapter we shall formulate two versions of our algorithm, one using this elliptic descrip-
tion and the other using the integro-differential description of the previous section. Note that in the
special case where there is only one type of charged particle the equations simplify somewhat, and the
expressions are related by

∇2
vh = ∇2

v∇2
vg,

so that, with the right boundary conditions, g satisfies the Poisson equation

∇2
vg = h,

which reduces the computational cost of this approach.

1.6 Recasting the problem

Using Itô’s Lemma it can be shown that the VPFP equation (1.8) describes the evolution of the proba-
bility density function of the following system of stochastic (multiplicative noise) differential equations
(SDEs) dr = v dt ,

dv =

(
F

m
+ Fd

)
dt+ Q · dWt ,

(1.17)

where dW (t) are Gaussian random variables with

〈dWi(t)〉 = 0 ,
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〈dWi(t) dWj(t
′)〉 = δij δ(t− t′) ,

and the matrix Q is such that QQT = D. The system (1.17) will often be a family of systems, indexed
by a set of matrices Q with the desired property. Theorem 1.6.2 proves that such a matrix Q always
exists and that it does not matter which one we choose if we look at weak convergence only. For more
information about SDEs we refer the reader to Appendix A.

By equivalence we mean here that when we would take an infinite collection of particles with po-
sitions and velocities initialized according to the distribution 1

N f0(r,v) and let those particles evolve
according to (1.17) then the distribution will evolve according to (1.8). It is important to note that, even
though the statistical properties of the particle ensemble would correspond to the statistical properties
of the physical system, the particles themselves are not guaranteed to behave in the same way as the
physical particles.

The fact that we are only interested in the statistical behaviour, and not in the paths themselves,
implies for our numerical experiments that we are only interested in weak convergence, and not strong
convergence. This in turn means that we are indeed free to choose any matrix Q such that QQT = D.

Lemma 1.6.1 The matrix D defined in Equation (1.11) is positive semi-definite.

Proof First note that ne4

4πε20m
2λ is a non-negative scalar, that f is a non-negative scalar function and that

∂2

∂v∂v
‖v − ṽ‖ =

1

‖v − ṽ‖

(
I − vvT

vTv

)
,

where I denotes the 3 × 3 identity matrix. Being a positive scalar multiple of a projection matrix, this
matrix is positive semi-definite. Now we see that

min
{x∈R3 | ‖x‖=1}

xTDx = 2
ne4

4πε20m
2
λ min
{x∈R3 | ‖x‖=1}

xT
∫
f(r, ṽ)

∂2

∂v∂v
‖v − ṽ‖d3ṽ x

= 2
ne4

4πε20m
2
λ min
{x∈R3 | ‖x‖=1}

∫
f(r, ṽ) xT

∂2

∂v∂v
‖v − ṽ‖ xd3ṽ

≥ 2
ne4

4πε20m
2
λ

∫
f(r, ṽ) min

{x∈R3 | ‖x‖=1}
xT

∂2

∂v∂v
‖v − ṽ‖ xd3ṽ

≥ 0.

So we see that D is indeed positive semi-definite.

�

Theorem 1.6.2 There always exists a matrix Q such that QQT = D and if there exists more than one such ma-
trix, any choice will yield the same solution of (1.17), where ‘same’ should be interpreted in the weak convergence
sense.

Proof Since D is a real symmetric matrix and thus there exists a decomposition D = UTΣU with U
unitary and Σ diagonal. The matrix Σ will contain the eigenvalues of D, which are non-negative by
Lemma 1.6.1, so we can define Σ

1
2 by taking the square root of the entries. It is easy to see that the

matrix A = UTΣ
1
2U does indeed satisfy AAT = D, proving the existence of such a matrix.

Now assume that there are Q1, Q2 such that Q1Q
T
1 = Q2Q

T
2 = D. Then there must exist a unitary

matrix U such that Q1U = Q2. So we see that Q2 · dW (t) = Q1U · dW (t) and since the coordinates
of dW (t) are independent and identically distributed (iid) Gaussian random variables with mean zero,
U · dW (t) has the same probability density function as dW (t) (as proven in Lemma B.2.1), which
implies that Q2 · dW (t) has the same probability density function as Q1 · dW (t). So both Q1 and Q2

yield the same solution of (1.17) with regard to weak convergence, proving the theorem.

�
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1.7 Nondimensionalization

We will use a technique called nondimensionalization in order to get a better idea of the scales involved
in this problem. More about this technique can be found in [5]. We will introduce dimensional constants
that represent the characteristic scales of the problem, denoted with a subscript c, and nondimensional
dynamical quantities which are denoted with a subscript asterisk. We introduce the following quantities

f = fcf∗

t = tct∗

v = vcv∗

r = rcr∗

Wt = t1/2c Wt∗

Eext = EcEext∗

Bext = BcBext∗

Which allows us to write the system (1.17) as



dr∗ =
vctc
rc

v∗ dt∗

dv∗ =

(
qEctc
mvc

Eext∗ +
qBctc
m

v∗ ×Bext∗ +
q2rcv

2
cfctc

ε0m
Fmf∗ +

ln(Λ)

2π

q4fctc
ε20m

2
Fd∗

)
dt∗

+

√
ln(Λ)

4π

q2f
1/2
c t

1/2
c

ε0m
Q∗dWt∗

(1.18)

where

Fmf∗ = ∇∗φ∗

∇2
∗φ∗ = ρ∗ =

∫
f∗ d3v∗

Fd∗ =
∂h∗
∂v∗

h∗ =

∫
f∗

‖v∗ − ṽ∗‖
d3ṽ∗

Q∗Q
T
∗ = D∗ =

∂2g

∂v∗

g∗ =

∫
f∗ ‖v∗ − ṽ∗‖dv∗.

These equations allow us to make calculations using quantities that are scaled such that their rep-
resentation in a computer will be more accurate. In the numerical experiments reported in Chapter 3,
we make no use of this, but we can still use the nondimensionalized equations to our advantage. By
choosing the characteristic values, except for the characteristic timescale, to match the test case for our
numerical experiments we will see that the natural timescales for the different processes in our equation
vary a lot. We will take a closer look at this in Section 3.1.
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Chapter 2

The algorithm

In order to solve the system of SDEs (1.17) we use a so-called particle-in-cell (PIC) method, in which
we simulate a collection of particles that indirectly represent the phase-space distribution, but we solve
the equations for the coefficients we need on a grid (the particles are not confined to gridpoints). More
about PIC methods can be found in [6, 7] and its application in plasma physics is treated in [8, 9, 10, 11,
12, 13], while some alternative methods are discussed in [14, 15, 16, 17]. An outline of this procedure is
given in Algorithm 1.

Initialize: Set the positions and velocities of the particles according to an appropriate initial
distribution.

for t = 1 : T do
Calculate f(r,v) on the grid, using the coordinates of the particles
Calculate F , Fd and D on the grid
Calculate F , Fd and Q at particle positions, using the values on the grid
Update the positions and velocities of the particles

Algorithm 1: A brief outline of the main program

So to summarize our approach of solving the original problem: We have gone from a particle de-
scription to a continuous one by assuming the particles are independent and identical and then con-
sidering probabilities, resulting in Equation (1.8). We then went back to a single particle equation,
with a Wiener process defined to approximate the collision statistics (Equation (1.17)). This allows us
to now go back to a particle description through discretization by particle-in-cell method, combined
with employing Monte-Carlo sampling of the diffusion process. This chapter will give a more detailed
description of that final step.

Even though nature is three dimensional, and the derivation of the equations in the previous chapter
has made explicit use of this, we will formulate our algorithm in d dimensions. We should note that
this means that the d-dimensional model is not a model of a d-dimensional physical world, but rather
a d-dimensional mathematical extension of a physical 3-dimensional model. We do this so that we can
run our initial experiments in only one dimension, in order to have low computation times.

2.1 Nomenclature

In order to give a clear description of the algorithm we will first introduce some of the notation used in
this thesis.

We take our 2d-dimensional phase-space domain to be

D = [0, Lr1 ]× · · · × [0, Lrd ]× [−Lv1 , Lv1 ]× · · · × [−Lvd , Lvd ],

12



with periodic boundary conditions, for ease of computation. Periodicity in the velocity directions would
lead to nonphysical behaviour if a change between −Lvi and Lvi occurs. If we however take care that
the particle density tends to zero at the edges of the domain, then the particles will not experience such
transitions. In our simulations we will take care that this condition is indeed fulfilled, and since it is a
reasonable condition for physical problems it will not limit the generality of the algorithm by much.

On the domain we use a Cartesian phase-space grid, on which there are
∏d
i=1Nri · Nvi gridpoints.

The grid spacing is

∆ri =
Lri
Nri

, ∆vi =
Lvi
Nvi

, for i ∈ {1, . . . , d},

and the gridpoints are at coordinates

(n1∆r1, . . . , n3∆r3,m1∆v1 − Lv1 , . . . ,m3∆v3 − Lv3),

for ni ∈ {0, 1, . . . , Nri − 1} and mi ∈ {0, 1, . . . , Nvi − 1} for each i ∈ {1, . . . , d}. In cases where all
of the gridpoint-indices appear together we will use vector notation to avoid highly space-consuming
notation, so

ζn,m ≡ ζn1,...,n3,m1,...,m3
.

We will use a similar notation in sums, so for example

∑
n,m

≡
Nr1
−1∑

n1=0

· · ·
Nrd
−1∑

nd=0

Nv1
−1∑

m1=0

· · ·
Nvd
−1∑

md=0

.

In cases where we only need a spatial grid we use the natural choice of gridpoints

(n1∆r1, n2∆r2, n3∆r3) for ni ∈ {0, 1, . . . , Nri − 1},

and we make a similar choice in the case where only a velocity grid is needed.
Lastly, we denote the phase-space coordinates of our Nsim simulated particles by(

r
(k)
1 , r

(k)
2 , r

(k)
3 , v

(k)
1 , v

(k)
2 , v

(k)
3

)
∈ D for all k ∈ {1, 2, . . . , Nsim}.

2.2 Translating between quantities on the grid and at particle posi-
tions

As can be seen in Algorithm 1 we need to convert information about the particles to the grid and back
again several times. We will do so using linear splines which, given the grid-spacing ∆x are defined as

B(x) =

{
1−

∣∣ x
∆x

∣∣ if |x| ≤ ∆x
0 otherwise

in one dimension and as a product of these in multiple dimensions.
This function has the convenient property that it can be used to form a partition of unity of our

(periodic) domain, namely the set{
d∏
i=1

B(ri − ni∆ri)B(vi −mi∆vi)

∣∣∣∣∣ni ∈ {0, . . . , Nri − 1}, mi ∈ {0, . . . , Nvi − 1}

}
.

This allows us to approximate any function ζ(r,v) as

ζ(r,v) =
∑
n,m

(
ζn,m

d∏
i=1

B(ri − ni∆ri)B(vi −mi∆vi)

)
,
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with {ζn,m} some appropriate set of coefficients. Note that in this case, with linear splines, this is
equivalent to linear interpolation between the values {ζn,m}.

If we have such a function defined on our grid we can evaluate it at the particle positions by sum-
ming the spline values at the particle positions with the right coefficients from the grid. Note that due
to the fact that B(x) has a small support we only need to sum over the 22d gridpoints surrounding
our particle, instead of all

∏d
i=1NriNvi . This results in Algorithm 2 for the evaluation of functions on

the grid at particle positions. The algorithm is given for 2d-dimensional phase-space functions, but it
extends naturally to one on a d-dimensional (spatial or velocity) grid. In both cases the execution time
of this algorithm is O(4ddNsim).

Function: GridToPart_2dD
Input: The particle positions {(r(k),v(k))} and grid coefficients {ζn,m}.
Initialize: Set the function values at particle positions {ζ(r(k),v(k))} to zero.

for k = 0 : Nsim − 1 do
Find the set G of 22d gridpoints surrounding (r(k),v(k)).
for (m,n) ∈ G do

ζ(r(k),v(k))+ = ζn,m
∏d
i=1B(r

(k)
i − ni∆ri)B(v

(k)
i −mi∆vi)

Algorithm 2: Algorithm for evaluating a function defined by coefficients of linear splines on the 2d-
dimensional grid at particle positions.

Going the other way around we can use the splines as well, provided there is some quantity ζ(i)
part

(i ∈ 0, . . . , Nsim − 1) that we know each of the particles to contribute to ζ(r,v). Examples for which such
a quantity can be found are the number density (for which we can use the number of physical particles
represented, divided by the volume of a grid cell) and the charge density (for which we can use the
amount of charge represented, divided by the volume of a grid cell). The calculation of the coefficients
on the grid is then as follows

ζn,m =

Nsim−1∑
k=0

ζ
(k)
part

d∏
i=1

B(r
(k)
i − ni∆ri)B(v

(k)
i −mi∆vi).

We have one function, ρ(r), which is defined on a d-dimensional grid instead of the 2d-dimensional
one. However, an exact integration of the splines will yield the same coefficients as a direct calculation
of the coefficients on the d dimensional grid, at a lower computational cost. The verification of this
equivalence can be found in Appendix B.3.

We can once again make use of the fact that the splines have a small support to construct an efficient
algorithm, like Algorithm 3, which again extends naturally to the d-dimensional case. The reason that
we still look at the surrounding gridpoints per particle, just as in Algorithm 2, instead of finding the
surrounding particles for each gridpoint, is that the former can be implemented much more efficiently.
The execution time is again O(4ddNsim).

This way of translating between grid and particles is similar to the method used in [18] to solve
the rotating shallow water equations, which was proven lead to a convergent PIC algorithm (under
appropriate assumptions, which are slightly more strict than the conditions we are using in this thesis)
in [19].

2.3 Calculations on the grid

The quantities Fd, D and Fmf, which are defined by equations (1.9) through (1.16), will be calculated
directly on the grid before evaluating them at the particle positions. We will describe two different
methods for these calculations.
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Function: PartToGrid_2dD
Input: The particle positions {(r(k),v(k))} and particle contributions {ζ(k)

part}.
Initialize: Set the grid coefficients {ζn,m} to zero.

for k = 0 : Nsim − 1 do
Find the set G of 22d gridpoints surrounding (r(k),v(k)).
for (m,n) ∈ G do

ζn,m+ = ζ
(k)
part
∏d
i=1B(r

(k)
i − ni∆ri)B(v

(k)
i −mi∆vi)

Algorithm 3: Algorithm for calculating the coefficients of linear splines on the 2d-dimensional grid from
the particle positions.

2.3.1 Using Fourier transformations

The first method relies on the definition of Fd and D as a derivative of a convolution integral, which
can be written as a convolution integral itself

Fd(r,v) = 2Γ

∫
f(r,v)

∂‖v − ṽ‖−1

∂v
d3ṽ,

D(r,v) = Γ

∫
f(r,v)

∂‖v − ṽ‖
∂v

d3ṽ.

This formulation shows that we can use FFT1-based convolution in velocity-space to compute them,
which means we will compute them as

{(Fd i)n,m} = 2ΓF−1

(
F({fn,m}) · F

({(
∂

∂vi

1

‖v‖

)
m

}))
i ∈ {1, 2, 3} ∀n

{(Dij)n,m} = ΓF−1

(
F({fn,m}) · F

({(
∂2

∂vi∂vj
‖v‖

)
m

}))
i, j ∈ {1, 2, 3} ∀n

(Note that Dij needs only be calculated for i ≥ j, because of symmetry.) However, the functions
∂/∂vi(1/‖v‖) and ∂2/∂vi∂vj(‖v‖) are ill-behaved around v = 0. Therefore they may not be well repre-
sented by the splines, which is important for accuracy.

We will take a closer look at these functions. For any open neighborhood around v = 0 the function

∂

∂vi

1

‖v‖
= − vi
‖v‖3.

takes all values between positive and negative infinity, and the function

∂2

∂vi∂vj
‖v‖ = δij −

vivj
‖v‖2

takes values in [− 1
2 ,

1
2 ] for i 6= j and values in [0, 1] for i = j. Therefore both functions cannot be

assigned a value at v = 0 such that they are continuous, and especially the former function will be hard
to describe using our splines. In the code we will define the function values at v = 0 to be equal to their
average over a sphere centered at that point, which is zero for the former functions and 0 or 2

3 for the
latter, for i 6= j and i = j respectively.

For the calculation of the (inverse) Fourier transforms, we suggest using the FFTW library. We will
not elaborate on the theory behind those calculations here, but more information can be found in [20]
and via the FFTW homepage. Using this library we can carry out a Fourier transform on a grid with N
points in O(N log(N)) flops, regardless of the number of dimensions.

1Fast Fourier Transform.
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The calculation of Fmf = −q∇φ is somewhat simpler. As can be seen from the definitions, we need to
solve a Poisson equation for φ. This can efficiently be done using a Fourier transform in position-space

{φn} = − 1

ε0
F−1

({
1

n2
1 + n2

2 + n2
3

}
· F({ρn})

)
.

After that Fmf can be calculated using central finite differences on the grid.

2.3.2 Using the numerical elliptic description

The second method relies on the elliptic description of h and g given in Section 1.5. This description
uses Poisson equations instead of elliptic integrals. Hence we can calculate discretized versions of h
and g by solving the discretized Poisson equations. This amounts to constructing a discrete Laplace
operator, e.g. using finite differences, (using appropriate boundary conditions) and then solving the re-
sulting matrix-vector equations for h and g. After that Fd and D can simply be calculated by numerical
differentiation. Using this formalism it would be more consistent to also calculate Fmf using a discrete
Laplacian, instead of the Fourier method used in the previous subsection.

The boundary conditions for the spatial calculations are obvious: since we have a periodic domain,
the boundary conditions should be periodic. Finding good boundary conditions for the Laplacian in
velocity space is however much more complicated. In our numerical experiment we shall test two
different boundary conditions, and, as we shall see, the choice of a boundary condition has a significant
impact on the results. We will leave the question of what the ideal boundary conditions for this problem
would be unanswered, with the remark that it may be an interesting topic for further research.

The discretized Laplace operator in velocity space is a sparse
∏d
i=1Nvi by

∏d
i=1Nvi matrix with

2d+ 1 nonzero entries in each row/column, so solving a discretized Poisson equation in velocity space
will takeO(d

∏d
i=1Nvi) flops. Similarly solving a spatial Poisson equation will takeO(d

∏d
i=1Nri) flops.

2.4 The Cholesky decomposition

Once we know the diffusion coefficient D at the particle positions we still need to find a matrix Q such
that QQT = D. As we have seen in Section 1.6 we can make any choice for such a matrix. Here we
will choose Q such that it is lower triangular. This is called the Cholesky decomposition of D and it
can be calculated efficiently. There are several algorithms available, which can be found in [21] amongst
others. We have chosen a version that exploits the positive semi-definiteness of D, which will takeO(d)
flops per matrix.

2.5 SPDE solution scheme

The simplest approach to solving (1.17) would be to use the Euler-Maruyama method. However, we
will use a slightly more sophisticated method. We use a splitting method similar to those in [22], which
consists of three types of steps, of which two are repeated to form the following ABCBA structure

A) Update r ← r + v∆t
2 .

B) Calculate F (r), then update v ← v + F
m

∆t
2 .

C) Calculate Fd(r,v) and Q(r,v), then update v ← v + Fd ∆t+ Q ·∆Wt.

B) Calculate F (r), then update v ← v + F
m

∆t
2 .

A) Update r ← r + v∆t
2 .

Where ∆Wt is a vector of iid Gaussians with mean zero and variance ∆t.
Apart from the fact that it will allow us to adapt to the varying timescales later on, this scheme has

the advantage that without the C step it would be a symmetric and symplectic scheme. This means that
without the C step the scheme would be guaranteed to preserve the Hamiltonian of the system and that
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it would be time-reversible, which makes it more true to nature and guarantees that the accuracy is at
least O(∆t2). The C step itself is a Euler-Maruyama type step and makes the resulting scheme O(∆t)
nevertheless. Substituting step C for a symmetric variant would increase the order of accuracy of the
scheme, but it would require a step that is implicit. This would require more computation time and is
not feasible with the computing power available for this thesis.

As mentioned in Section 1.7 the time scales for the different parts will differ a lot in our test case,
we will see in Section 3.1 that steps A and B involve a much quicker timescale than step C. We could
decrease the numerical time step such that it is small enough to accurately simulate the processes in
steps A and B. However, since step C is quite expensive, this would not be very efficient. Instead we
choose to resolve the C steps with a bigger time step than the A and B steps, by increasing the number
of A and B steps per C step. Since the update in step A concerns an update of positions based only on
velocity, and vice versa for stepB, it would not help to make multiple steps of typeA orB consecutively.
Thus we come to a scheme of the form (AB)NrepC(BA)Nrep , where Nrep is an integer greater than one,
which determines how much smaller the A and B time steps are compared to the C time step. More
information on such multiple time-stepping methods can be found in [23].

2.6 The complete algorithm

This chapter has shown us the details to be implemented in each of the steps of Algorithm 1, so that
we can now extend it to a full pseudocode, which can be found as Algorithm 4. In this algorithm we
incorporate both options for the calculations on the grid, with the Fourier formalism displayed in cyan
and the discrete elliptic formalism in green.

We see that the type A steps take O(Nsim) flops. Type B steps take O(4ddNsim + d
∏d
i=1Nri) us-

ing the elliptical description or O(4ddNsim + (d + log(
∏d
i=1Nri))

∏d
i=1Nri) flops using Fourier trans-

forms. The type C steps takeO(4dd3Nsim +d2
∏d
i=1Nvi) using the elliptical description orO(4dd3Nsim +

d2 log(
∏d
i=1Nvi)

∏d
i=1Nvi) flops using Fourier transforms. Overall that means that the algorithm takes

O(4ddTNrepNsim + 4dd3TNsim + dTNrep
∏d
i=1Nri + d2T

∏d
i=1Nvi) flops using the elliptical description

or O(4ddTNrepNsim + 4dd3TNsim + (d + log(
∏d
i=1Nri))TNrep

∏d
i=1Nri + d2 log(

∏d
i=1Nvi)T

∏d
i=1Nvi)

using Fourier transforms.
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Initialize: Set the positions and velocities of the particles according to some initial distribution
and calculate F

({(
∂
∂vi

1
‖v‖

)
m

})
for i ∈ {1, 2, 3} and F

({(
∂

∂vi∂vj
1
‖v‖

)
m

})
for

i, j ∈ {1, 2, 3} or initialize the discretized Laplacians ∇2
r and ∇2

v .

for t = 1 : T do
for r = 1 : Nrep do
{r(k)} ← {r(k) + v(k) ∆t

2 }

PartToGrid_dD(ρ)
Calculate φ on the grid as:
{φn} = − 1

ε0
F−1

({
1

n2
1+n2

2+n2
3

}
· F({ρn})

)
or

solve ∇2
rφ(r) = −ρ(r)

ε0
Calculate {Fn} using central finite differences on {φn}
for i = 1 : 3 do

GridToPart_dD(Fi)

{v(k)} ← {v(k) + F (k)

m
∆t
2 }

PartToGrid_2dD(f)
Solve ∇2

vh = −8π f(r,v) for h
Solve ∇2

vg = h for g

for i = 1 : d do
Calculate Fd i on the grid as:
{(Fd i)n,m} = ΓF−1

(
F({fn,m}) · F

({(
∂
∂vi

1
‖v‖

)
m

}))
or

Fd i(r,v) = Γ ∂h
∂vi

(use finite differences)
GridToPart_2dD(Fd i)
for j = 1 : d do

Calculate Dij as:
{(Dij)n,m} = ΓF−1

(
F({fn,m}) · F

({(
∂2

∂vi∂vj
‖v‖

)
m

}))
Fd i(r,v) = Γ ∂g

∂vi∂vj
(use finite differences)

GridToPart_2dD(Dij)
{Qij(r(k),v(k))}=Cholesky({Dij(r

(k),v(k))})

{v(k) ← v(k) + F
(k)
d ∆t+ Q(k) ·∆Wt}

for r = 1 : Nrep do
PartToGrid_dD(ρ)
Calculate φ on the grid as:
{φn} = − 1

ε0
F−1

({
1

n2
1+n2

2+n2
3

}
· F({ρn})

)
or

solve ∇2
rφ(r) = −ρ(r)

ε0
Calculate {Fn} using central finite differences on {φn}
for i = 1 : 3 do

GridToPart_dD(Fi)

{v(k)} ← {v(k) + F (k)

m
∆t
2 }

{r(k)} ← {r(k) + v(k) ∆t
2 }

Algorithm 4: A more detailed pseudocode for solving our system of SDEs.
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Chapter 3

Results

In this chapter we will examine the performance of our algorithm for a simple test case. Since the
hardware1 for this project is quite limited compared to the supercomputers that are usually employed
for these kinds of simulations we will simplify the problem and the algorithm slightly, and examine
whether the performance of the simple algorithm is good enough to warrant investigation of the full
algorithm with more powerful hardware.

In these experiments we will use a restriction of the equations to one dimension, without external
force, so the equation we will solve is

{
dr = v dt
dv =

(
F
m + Fd

)
dt+QdWt

where dWt are Gaussian random variables with 〈dWt〉 = 0 and 〈dWt dWt′〉 = δ(t− t′) and

F (r, v) = Fmf = −q ∂
∂r
φ,

Fd(r, v) = Γ
∂h

∂v
,

Q(r, v) =

√
Γ
∂2g

∂v2
,

in which

Γ =
q4

4πε20m
2

ln(Λ), ln(Λ) ≈ 10,

∂2

∂v2
h(r, v) = −8πf(r, v),

∂4

∂v4
g(r, v) = −8πf(r, v),

∂2

∂r2
φ(r) = −ρ(r)

ε0
,

ρ(r) = q

∫
f(r, v) dv.

Note that we are using the elliptic description of h and g, since a one dimensional restriction of
Equation (1.13) does not converge.

We use a Matlab script to perform the calculations for this test, in which we solve the Poisson equa-
tions by solving a sparse matrix vector equation using a discretized Laplacian. This allows for a very
efficient algorithm whose cost, as we saw in the previous section, is linear in all parameters (except for
the dimension d, which we have fixed to 1 in this chapter).

1An ASUS X7BS series laptop, with an Core i7-2630QM at 2.0 GHz and 6 GB RAM, using the Ubuntu operating system.
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(a) Fmf (b) Fd (c) Q

Figure 3.1: The forces working on the particles, at the particle positions, in the initial time step of the
experiment of Section 3.2, using Neumann boundary conditions.

3.1 Experimental setup

We will test the algorithm using realistic parameters, based on those of LEIR2. However since we are
only using a one-dimensional reduction of the equations we do not expect the results to be precisely
as in the physically relevant case. As it turns out, the dynamic friction and the diffusion coefficient are
larger than in the three dimensional case, removing the need for our parameter Nrep.

The spatial domain will be one meter long and we choose a velocity domain withLv = 2.5·105 meter
per second. The initial conditions are random, with a uniform distribution along the spatial direction
and a Gaussian distribution of the velocity, with mean 0 and standard deviation 5·104 meter per second.
The mass and charge of the particles are set to correspond to Pb54+ ions and we set the physical particle
number to 1 · 107.

In the experiments below we expect the velocity distribution to remain Gaussian, since the solution
of the VPFP equation is proven to converge to a Gaussian velocity distribution in [24].

3.2 Influence of the numerical boundary condition

In this first experiment we use 10 gridpoints in both position and velocity space, and thus 100 points in
phase space. We use 104 numerical particles and simulate for a time of 10−5 seconds using 1000 time
steps. This simulation takes approximately 1.2 minute on our test system.

The only freedom left for our algorithm now is the choice of boundary conditions in solving the
Laplace equations and carrying out finite difference differentiation. In the spatial direction we will
choose periodic boundary condition, since this is the logical choice for a (circular) one-dimensional
accelerator or storage ring. But the choice for the boundary conditions in the velocity direction is not as
straightforward. We will test two different boundary conditions, the first being a Neumann boundary
condition, which assumes the velocity derivative of functions to be zero on the edges of the velocity
domain and the second is a Dirichlet boundary condition, which assumes the function value itself to be
zero on the edges of the velocity domain.

Figures 3.1 and 3.2 show the forces that act on the particles in the initial time step for Neumann and
Dirichlet conditions respectively, these are similar to those at later time steps and thus give a good idea
of the forces throughout the simulation. The magnitudes of these forces tell us that the velocity updates
due to the mean field are approximately 106 · 10−8

2 = 5·10−3 meter per second for both cases, while those
due to dynamic friction and diffusion are approximately 2·1010 ·10−8 = 2·102 and 5·107 ·

√
10−8 = 5·103

meter per second in the Neumann case and 5 · 1010 · 10−8 = 5 · 102 and 1.25 · 108 ·
√

10−8 = 1.24 · 104

meter per second in the Dirichlet case. If we compare these to each other and to the standard deviation
of the velocity distribution (5 · 105 meter per second), we notice that the effects of the mean field force
are negligible, and that at this time step size the other two velocity updates are large enough to perform
accurately and probably small enough to capture the dynamics of the system. Recall that the fact that
the mean field force is negligible is by design, since we initialize with a uniform spatial density.

The results of these simulations are shown in figures 3.3 and 3.4, by means of plots of the phase-
space locations of all particles and histograms of position and velocity separately, for the initial and
final configurations. The final phase-space distribution in figure 3.3e seems to be a stationary state,

2The Low Energy Ion Ring (LEIR) is currently in use at CERN, as part of the Large Hadron Collider (LHC) acceleration chain.
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Figure 3.2: The forces working on the particles, at the particle positions, in the initial time step of the
experiment of Section 3.2, using Dirichlet boundary conditions.

(a) Initial phase-space lo-
cation

(b) Histogram of initial
position

(c) Histogram of initial
velocity

(d) Histogram of initial
velocity (narrower bins)

(e) Final phase-space lo-
cation

(f) Histogram of final po-
sition

(g) Histogram of final ve-
locity

(h) Histogram of final ve-
locity (narrower bins)

Figure 3.3: Comparision of initial (top row) and final (bottom row) phase space locations for the exper-
iment of Section 3.2 with Neumann boundary conditions, using (from left to right) a plot of the phase
space coordinates of all particles, a histogram of the spatial positions with bin width equal to the grid
resolution, a similar histogram for velocity and a histogram of the velocities with bin with equal to a
tenth of a grid cell.

for the algorithm with Neumann boundary conditions, whereas the algorithm with Dirichlet boundary
conditions seems to have no stable state, and the velocity distribution continually widens.

Both algorithms seem to maintain the uniform spatial distribution, but the velocity distribution is
not as expected in both cases. The reason we do not obtain a stable Gaussian velocity profile lies mainly
with the diffusion coefficients, which are shown in figure 3.5. We see that for the case with Neumann
boundary conditions, the diffusion coefficient is negative for large velocities. Since the dynamic friction
is a mean-reverting force which increases with increasing deviation from the mean velocity, the absence
of diffusion means that particles will not stay in the large speed areas of our phase-space domain. In the
case of Dirichlet boundary conditions though, the diffusion coefficient does not go to zero fast enough,
and the diffusion coefficient is quite large on the entire domain, which leads to too much diffusion of
the velocities.

We have seen that the problem in these algorithms is too little diffusion in one case and too much
diffusion in the other case. So even though neither choice of boundary conditoins gives the desired
result, we believe that a correct boundary condition will lead to a version of this algorithm that does
correctly maintain a Gaussian velocity profile.

In the rest of this chapter we will look at one experiment examining the distribution widening for
the Dirichlet boundary conditions and then examine the convergence behaviour of the algorithm with
Neumann boundary conditions in more detail. As we have seen, the choice of Neumann boundary
conditions for the Rosenbluth potentials leads to an evolution with steady state. We use this test case to
examine the convergence of our algorithm as a function of numerical discretization parameters.
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Figure 3.4: Comparision of initial (top row) and final (bottom row) phase space locations for the exper-
iment of Section 3.2 with Dirichlet boundary conditions, using (from left to right) a plot of the phase
space coordinates of all particles, a histogram of the spatial positions with bin width equal to the grid
resolution, a similar histogram for velocity and a histogram of the velocities with bin with equal to a
tenth of a grid cell.

Figure 3.5: Diffusion coefficient on the grid for the experiment of Section 3.2, with Neumann boundary
conditions (left) and Dirichlet boundary conditions (right). (Note the different scales.)
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Figure 3.6: The velocity distributions at various times (left) for the experiment of Section 3.3 and nor-
malized versions of those same distributions (right). The distributions are given at t = 2n · 10−8 for
n = 1, 2, . . . , 13 and their colors ordered from low times to high times are black, grey, pink, red, orange,
yellow, green, blue, cyan, magenta, purple, brown and light grey.

3.3 Distribution widening for Dirichlet boundary conditions

We will now investigate the widening of the distribution for the case of Dirichlet boundary conditions.
For this experiment we use a domain that is larger in the spatial and temporal directions, while keeping
the resolution the same. We choose a velocity domain with Lv = 3 · 108 meters per second, still using
gridcells of 5 ·104 meters per second wide and the temporal domain runs until T = 213 ·10−8 ≈ 8.2 ·10−5

seconds, still using steps of 10−8 seconds. In order to make sure we can accurately draw the velocity
distributions we use Nsim = 105. The results of this experiment can be seen in figure 3.6.

We see that the distribution expands very rapidly at first (note that the initial distribution with a
standard deviation of 5 · 104 meters per second would hardly be noticeable in this figure), but but the
spreading rate decreases continually as time progresses. It is also interesting to note that even though
the distribution widens, it is self-similar. This implies that the Maxwellian distribution is structurally
stable but does not appear to be attracting for any finite variance under this boundary condition.

3.4 Convergence with respect to numerical particles for fixed grid

One of the parameters that most significantly influences convergence is the number of numerical par-
ticles. In the following experiment we will use the same settings as in the previous experiment, except
for the varying number of numerical particles. We then calculate the average and standard deviation of
the position and velocity distributions for ten runs of the algorithm for each of the numerical particle
numbers. The results of this experiment can be seen in figure 3.7.

First of all we see that, next to the accuracy in the calculation, the particle number also influences
the accuracy of the initial condition. This is a concept one usually does not encounter, since initial
conditions are fixed. In our case however we have a fixed initial distribution, but the initial particle
coordinates are drawn randomly from this distribution, which means that the initial distribution of
the particles may not represent the initial distribution well. It is clear that increasing the number of
numerical particles greatly improves this.

We see that for small particle numbers we have large errors, especially the standard deviation of the
velocity grows too large. For somewhat larger particle numbers the errors in the standard deviation
are less pronounced and we mostly see a shift of the mean velocity. This second type of error is to be
expected, since there is no mechanism to bring back the average velocity once an error has occurred3.
However this effect also decreases with increased particle number.

Overall we conclude that with increasing the numerical particle number we see a clear convergence
of the mean and average of the phase-space distribution.

3To be more precise, the equation we are solving is invariant under a shift of the mean, hence when a numerical error induces
a shifted mean it will not be brought back to the original mean.
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Figure 3.7: Initial (left) and final (right) values for the mean and standard deviation of the position (top)
and velocity (bottom) for the experiment of Section 3.4, showing ten instances of the algorithm for each
of the choices of numerical particle number: 80 (red), 400 (orange), 2000 (yellow), 10000 (green), 50000
(blue), 250000 (purple).

3.5 Convergence with respect to grid resolution for fixed number of
particles

Next we will be looking at the influence of the velocity grid size on convergence. In this experiment we
once again use the same settings as in the first experiment, but now with a varying number of gridpoints
along the velocity direction. The results can be seen in figure 3.8.

As expected this setting does not influence the initial distributions and does not have a significant
influence on the final spatial distribution. The impact on the final velocity distribution however is clear.
Even though the drift of the mean does not seem to be influenced, there is a clear convergence of the
standard deviation.

The reason the convergence effect is not as strong as one may hope is that while this parameter does
decrease one type of error, it increases another. The increase of the number of velocity grid points allows
for a more accurate representation of all velocity dependent quantities. However by increasing the
number of gridpoints while keeping the number of numerical particles stable we decrease the number
of particles per gridpoint, which will increase the errors due to sampling. Therefore it is important to
pay attention to the combination of velocity gridpoints and numerical particle number, if one desires to
produce a very accurate result.

We have run a similar experiment varying the number of spatial gridpoints. Results of that sim-
ulation are not displayed, since no significant difference between the different numbers of gridpoints
were observed. This is likely due to the fact that, for the scenario we are looking at, the most significant
influence on the error of the final spatial distribution is the error of the initial condition, which does not
change with the number of gridpoints.

3.6 Convergence with respect to time step size

We will now examine the the influence of the number of time steps on convergence. The results of an
experiment using the same settings as before, but with varying numbers of time steps, can be found in
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Figure 3.8: Initial (left) and final (right) values for the mean and standard deviation of the position (top)
and velocity (bottom) for the experiment of Section 3.5, showing ten instances of the algorithm for each
of the choices of the number of velocity gridpoints: 5 (red), 10 (orange), 20 (yellow), 40 (green), 80 (blue),
160 (purple).

figure 3.9. It seems as though the number of time steps does not make a difference, however that just
means that the errors from different sources are more significant than those due to the number of time
steps. We have therefore repeated the experiment using Nv = 160 and Npart = 320000, the results of
which can be found in figure 3.10.

We see that in the latter experiment there is a clear convergence of the velocity deviations. In compar-
ing the scales between figures 3.9 and 3.10 we see that the changes in the number of velocity gridpoints
and the number of simulated particles have indeed reduced the differences between runs, as we would
expect from the results of previous experiments.

3.7 Discussion

In the previous paragraphs we have seen that the algorithm does indeed converge to a final state. The
results of the experiments were encouraging and warrant a more detailed analysis of the boundary
conditions on the elliptic equations for the Rosenbluth potentials. It is quite likely that this would allow
us to produce a more realistic final state, at which point a full three dimensional version of the algorithm
would be very interesting to look at.

There are also a few other adaptations that are interesting to investigate, most notably different ini-
tializations and nonuniform grids. We have seen that, depending on the number of numerical particles,
the initial distribution of the numerical particles may differ from the initial distribution we want to
use. This particular effect could be almost entirely eliminated by a non-random initialization that is
constructed to represent the distribution as well as possible. However, the resulting higher accuracy of
such a highly structured initial condition would be misleading, and may be lost over time. Furthermore
the induced symmetries of such an initial condition can lead to nongeneric behaviour. So it would be
interesting use a compromise between representing the initial distribution well and making sure the nu-
merical particles are not too correlated. Generating an initial condition using pseudorandom sampling
would lead to more efficient sampling and a more uniform temporal error growth. A brief discussion
of this topic can be found in [25].
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Figure 3.9: Initial (left) and final (right) values for the mean and standard deviation of the position (top)
and velocity (bottom) for the experiment of Section 3.6, showing ten instances of the algorithm for each
of the choices of the number of time steps: 125 (red), 250 (orange), 500 (yellow), 1000 (green), 2000
(blue), 4000 (purple).

Figure 3.10: Initial (left) and final (right) values for the mean and standard deviation of the position
(top) and velocity (bottom) for the modified experiment of Section 3.6, showing ten instances of the
algorithm for each of the choices of the number of time steps: 125 (red), 250 (orange), 500 (yellow), 1000
(green), 2000 (blue), 4000 (purple).
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Using nonuniform grids may help with better accuracy in representing nonuniform distributions,
effectively allowing for the use of fewer gridpoints for the same accuracy. This may be very beneficial
for the running time required, especially in a three dimensional version. Hence further research into
both of these adaptations could prove most useful.

A final adaptation that will prove to be important for a three-dimensional version of the algorithm
is parallelization. It will be of importance in keeping the computation time low enough while using
parameters that grant high enough precision. The method of parallelizing described in [3] will work
for the algorithm described in this paper and it has been shown to work well.

In summary we have seen that the PIC algorithm we have designed using the SDE description of
a plasma works well, and with some adaptation may provide useful results for the simulation of ion
beams.
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Appendix A

Stochastic differential equations

In order to rigorously define stochastic differential equations (SDEs) and their accompanying theory,
one needs concepts from advanced probability that go beyond the scope of this thesis. However one
can get a basic understanding of SDEs using little more than the basic concepts of probability and
deterministic differential equations. Simply put an SDE is a differential equation in which at least one
of the terms is a stochastic process, making the solution a stochastic process as well. We will give a short
introduction below, but for readers who want to know more a good introduction to the numerical side
of SDEs is given by Higham in [26] and an extensive treatment of the theory can be found in [27].

A.1 The standard Wiener process

Most SDEs (including the one used in this thesis) make use of what is often called the ‘derivative’ of
the standard Wiener process (also known as Brownian motion). The standard Wiener process itself is
defined as a stochastic process {Wt | 0 ≤ t ≤ T} such that

i) W0 = 0,

ii) for any 0 ≤ s ≤ t ≤ T the increment Wt −Ws is a Gaussian random variable with mean 0 and
variance t− s,

iii) for any 0 ≤ s < t ≤ u < v ≤ T the increments Wt −Ws and Wu −Wv are independent,

iv) Wt is continuous with respect to t, with probability one.

It can be shown that Wt is non-differentiable almost everywhere, but (somewhat informally) one does
often denote the quantity dWt in differential equations, since integration with respect to Wt is in fact
well defined. For all practical purposes we can regard dWt as

dWt ≡Wt+dt −Wt = ξt dt, where 〈ξt〉 = 0 and 〈ξtξt′〉 = δ(t− t′).

A.2 Stochastic integration

Just as with regular integration, a stochastic integral can be seen as the limit of Riemann sums. However,
in the stochastic case one needs to be a bit more careful. The Itō integral (which we will use) defines the
stochastic integral

∫ T
0
f(t) dWt as the limit as ∆t→ 0 of

N−1∑
j=0

h(tj)(Wtj+1
−Wtj ), where tj = j∆t.

The different choice of Riemann sum
N−1∑
j=0

h

(
tj + tj+1

2

)
(Wtj+1 −Wtj ), where tj = j∆t,
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which for deterministic integrals would yield the same result, gives us the Stratonovich integral, which
is generally different from the Itō integral.

Note however that the freedom to ‘choose’ a specific Riemann sum does not mean that stochastic
integrals cannot give meaningful, well defined results. The different choices lead to different versions
of stochastic calculus, and given an application these will lead to different differential equations, which
are solved using different definitions of integration, but they will ultimately give the same result.

A.3 Numerical solution

Suppose we would like to numerically solve the SDE

dX(t) = f(X(t)) dt+ g(X(t)) dWt, X(0) = X0, 0 ≤ t ≤ T. (A.1)

If we look at its integral form

X(t) = X0 +

∫ t

0

f(X(s)) ds+

∫ t

0

g(X(s)) dWs, 0 ≤ t ≤ T,

then the definition of the integrals as the limiting case of Riemann integrals suggest the following nu-
merical approximation

Xj = Xj−1 + f(Xj−1)∆t+ g(Xj−1)(Wtj −Wtj−1
), j = 1, 2, . . . , N

where ∆t = T/N for some positive integer N , tj = j∆t and Xj is our numerical approximation to
X(tj). This method is called the Euler-Maruyama (EM) method, and is similar to the Euler forward
method for deterministic differential equations.

A.3.1 Convergence

In order to tell at which rate the EM method converges we must be precise about what we mean by
convergence. A method is said to have strong order of convergence γ if there exists a constant C such
that

E‖Xn −X(τ)‖ ≤ C∆tγ for any fixed τ = n∆t ∈ [0, T ) and ∆t small enough.

And the method is said to have a weak order of convergence γ if there exists a constant C such that for
all polynomials p(x)

‖Ep(Xn)− Ep(X(τ))‖ ≤ C∆tγ for any fixed τ = n∆t ∈ [0, T ) and ∆t small enough.

The difference between these two is that for strong convergence we require convergence for all paths
(different realizations of the Brownian motion), while for weak convergence we only require the mo-
ments of the probability distribution to converge.

It can be shown that the EM method for Equation (A.1), for appropriate f and g, has weak order of
convergence 1 and strong order of convergence 1

2 . Note that that differs from what we would see in the
deterministic case. If we were to make the equation deterministic by setting g = 0 we would have both
weak and strong order of convergence 1.
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Appendix B

Various techniques

B.1 u-v-transformation

Obtaining the final expression for {∆vi∆vj}ab in Section 1.3 using the previous results of that section
requires a long calculation, which we show here.

{∆vai∆vaj}ab =

(
mb

ma +mb

)2∑
k

∑
l

(ei · e′k)(ej · e′l){∆ukL∆ulL}ab

=

(
mab

ma

)2

((ei · e′2)(ej · e′2) + (ei · e′3)(ej · e′3)) 4πu

(
qaqb

4πε0mabu

)2

ln(Λ)

= Γa

(
qb
qa

)2
1

u

(
u · (ei × e3)u · (ej × e3)

u2
1 + u2

2

+ ei ·
(u · u)e3 − (u · e3)u)

u(u2
1 + u2

2)1/2
ej ·

(u · u)e3 − (u · e3)u)

u(u2
1 + u2

2)1/2

)

= Γa

(
qb
qa

)2
1

u

1

u2
1 + u2

2

(∑
k

∑
l

εki3ukεlj3ul +
δi3δj3u

4 − δi3u2u3uj − δj3u2u3ui + u2
3uiuj

u2

)

= Γa

(
qb
qa

)2
1

u

1

u2
1 + u2

2

(
δi2δj2u

2
1 − δi2δj1u1u2 − δi1δj2u1u2 + δi1δj1u

2
2

+δi3δj3(u2
1 + u2

2 + u2
3)− δi3u3uj − δj3u3ui +

(
1− u2

1 + u2
2

u2

)
uiuj

)

= Γa

(
qb
qa

)2
1

u

1

u2
1 + u2

2

(
δi1δj1u

2
2 + δi2δj2u

2
1 + δi3δj3(u2

1 + u2
2 − u2

3)− u2
1 + u2

2

u2
uiuj

+uiuj(1− δi1δj2 − δi2δj1 − δi3 − δj3 + 2δi3δj3)

)

= Γa

(
qb
qa

)2
1

u

1

u2
1 + u2

2

(
δi1δj1u

2
2 + δi2δj2u

2
1 + δi3δj3(u2

1 + u2
2 − u2

3) + δijuiuj −
u2

1 + u2
2

u2
uiuj

)

= Γa

(
qb
qa

)2
1

u

(
δij −

uiuj
u2

)
Where

Γa =
q4
a

4πε20m
2
a

ln(Λ)

and εijk is the Levi-Civita symbol.
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B.2 Lemma about unitary transformations

The lemma used in Theorem 1.6.2 can be found below.

Lemma B.2.1 Unitary transformations do not change the probability density function of a vector of independent
and identically distributed (iid) Gaussian random variables with mean zero.

Proof A vector of iid Gaussian random variables with mean zero and standard deviation σ has pdf

f(x) = (2πσ)−
k
2 exp(− 1

2σ2
xTx),

so we see that for any unitary matrix U we have

f(Ux) = (2πσ)−
k
2 exp

(
− 1

2σ2
(Ux)T (Ux)

)
= (2πσ)−

k
2 exp

(
− 1

2σ2
xTUTUx

)
= (2πσ)−

k
2 exp

(
− 1

2σ2
xTx

)
= f(x)

which concludes this proof.

�

B.3 Spatial density

Below we show the equivalence of calculating the d-dimensional spatial density ρ by integration of the
phase-space density f on the 2d-dimensional grid to direct calculation on a d-dimensional grid.

ρ(r) = q

∫
f(r,v) ddv

= q

∫ ∑
n,m

(
fn,m

d∏
i=1

B(ri − ni∆ri)B(vi −mi∆vi)

)
ddv

= q
∑
n,m

(
fn,m

d∏
i=1

B(ri − ni∆ri)
∫
B(vi −mi∆vi)dvi

)

= q
∑
n,m

(
fn,m

d∏
i=1

B(ri − ni∆ri)∆vi

)

= q
∑
n,m

((
Nsim−1∑
k=0

f
(k)
part

d∏
i=1

B(r
(k)
i − ni∆ri)B(v

(k)
i −mi∆vi)

)
d∏
i=1

B(ri − ni∆ri)∆vi

)

= q
∑
n

((
Nsim−1∑
k=0

f
(k)
part

d∏
i=1

B(r
(k)
i − ni∆ri)1(v

(k)
i )

)
d∏
i=1

B(ri − ni∆ri)∆vi

)

=
∑
n

((
Nsim−1∑
k=0

qf
(k)
part∆v1 . . .∆vd

d∏
i=1

B(r
(k)
i − ni∆ri)

)
d∏
i=1

B(ri − ni∆ri)

)

=
∑
n

((
Nsim−1∑
k=0

ρ
(k)
part

d∏
i=1

B(r
(k)
i − ni∆ri)

)
d∏
i=1

B(ri − ni∆ri)

)

=
∑
n

(
ρn,m

d∏
i=1

B(ri − ni∆ri)

)
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