
Recognizability Equals Definability for

k-Outerplanar Graphs
and a Myhill-Nerode Type Proof Technique for Courcelle’s

Conjecture

by

Lars Jaffke

A thesis submitted in partial fulfillment for the

degree of Master of Science

in the

Faculty of Science

Department of Information and Computing Sciences

Supervisor: Prof. dr. Hans L. Bodlaender

July 2015

lars.jaffke@outlook.com
http://www.uu.nl/en/organisation/faculty-of-science
http://www.cs.uu.nl/

“Hajo.”

Ein Badner

Abstract

One of the most famous algorithmic meta-theorems states that every graph property

that can be defined by a sentence in counting monadic second order logic (CMSOL) can

be checked in linear time for graphs of bounded treewidth, which is known as Courcelle’s

Theorem [9]. These algorithms are constructed as finite state tree automata, and hence

every CMSOL-definable graph property is recognizable. Courcelle also conjectured that

the converse holds, i.e. every recognizable graph property is definable in CMSOL for

graphs of bounded treewidth. We give two types of self-contained proofs of this conjec-

ture for a number of special cases. First, we show that it holds in a stronger form, that

is, we prove that recognizability implies MSOL-definability (the counting operation of

CMSOL is not needed) for Halin graphs, 3-connected or bounded degree k-outerplanar

graphs and some related graph classes. Second, we show that recognizability implies

CMSOL-definability for general k-outerplanar graphs.

Acknowledgements

I would like to thank the treewidth club for the interesting talks, the treewidth room

for the inspiring and ’gezellige’ working environment and toepen (especially the time I

beat Frank 0-15). Pizzeria Tricolore for the numerous lunch broodjes (a rough estimate

is about 100). Gustav Mahler for his second symphony. Bernhard Mundorf and Fokke

Dijkstra. I would like to thank sincerely my friends — for the good times, the distraction,

and for not being able to understand what I would have talked about if I had ever dared

to try discussing details of this thesis with them in my spare time. And the Unicorns.(i)

I would like to extend my heartfelt gratitude to my supervisor, Hans Bodlaender, for

the great support, the patience - especially while introducing me to this topic - and for

always having had time to answer my questions — whether short or long, whether good

or silly. (And also for not pointing out the latter ones.)

Most of all I would like to thank my family; my brother and my parents. For everything.

(i)A group of people, not the mythical creatures.

iii

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

2 Preliminaries 3

2.1 Graphs and Tree Decompositions . 3

2.2 Tree Automata for Graphs of Bounded Treewidth 6

2.3 Equivalence Relations . 7

2.4 Monadic Second Order Logic of Graphs 8

2.5 Courcelle’s Conjecture . 11

3 Deriving Equivalence Class Membership 12

4 Halin Graphs 17

4.1 Edge Orientation and Ordering . 17

4.2 MSOL-Definable Tree Decompositions . 19

4.3 Finite Index Implies MSOL-Definability 22

5 Extensions 24

5.1 MSOL-Definable Tree Decompositions . 24

5.2 Unordered Nodes of Unbounded Degree 27

5.3 k-Cycle Trees . 29

5.4 Feedback Edge and Vertex Sets . 32

6 k-Outerplanar Graphs 33

6.1 Bounded Degree k-Outerplanar Graphs 34

6.2 An Implicit Representation of the Vertex Expansion Step 36

6.3 3-Connected k-Outerplanar Graphs . 40

6.4 Implications of Hierarchical Graph Decompositions to Courcelle’s Con-
jecture . 44

iv

Contents v

7 Conclusion 59

Bibliography 61

A Monadic Second Order Predicates and Sentences 64

A.1 Edge Orientation of a Halin Graph . 65

A.2 Child Ordering of a Halin Graph . 66

A.3 Tree Decomposition of a Halin Graph . 67

A.3.1 Boundary vertices . 68

A.3.2 Bag Types . 68

A.3.3 The Parent Relation . 69

A.4 Equivalence Class Membership for Halin Graphs 69

A.5 Equivalence Class Membership - Generalized 71

A.5.1 Intermediate Nodes . 71

A.5.2 Branch Nodes . 72

A.5.3 Branch Nodes for Bounded Degree Tree Decompositions 73

A.5.4 Counting for Branch Nodes of Unbounded Degree 74

A.6 k-Cycle Trees . 75

A.7 Adding Feedback Edge/Vertex Sets . 77

A.8 Bounded Vertex and Edge Remember Number 78

A.9 k-Outerplanar Graphs . 79

A.9.1 3-Connected k-Outerplanar Graphs 79

A.9.2 Tree Decompositions for 3-Connected k-Outerplanar Graphs . . . 80

A.10 Hierarchical Graph Decompositions for k-Outerplanar Graphs 82

A.10.1 Defining a Cycle Block . 82

A.10.2 Defining the Parent-predicate for (T ,X) 83

A.10.3 Defining Tree Decompositions for 3-Connected 3-Blocks 84

1

Introduction

In a seminal paper from 1976, Rudolf Halin (1934-2014), lay the ground work for the

notion of tree decompositions of graphs [20], which later was studied deeply in the proof

of the famous Graph Minor Theorem by Robertson and Seymour [27] and ever since

became one of the most important tools for the design of FPT-algorithms for NP-hard

problems on graphs. He was also the first one to extensively study the class of planar

graphs constructed by a tree and adding a cycle through all its leaves, now known as

Halin graphs [19].

Another seminal result is Courcelle’s Theorem [9], which states that for every graph

property P that can be formulated in a language called counting monadic second order

logic (CMSOL), and each fixed k, there is a linear time algorithm that decides P for a

graph given a tree decomposition of width at most k (while similar results were discov-

ered by Arnborg et al. [2] and Borie et al. [7]). Counting monadic second order logic

generalizes monadic second order logic (MSOL) with a collection of predicates testing

the size of sets modulo constants. Courcelle showed that this makes the logic strictly

more powerful [9], which can be seen in the following example.

Example 1.1. Let P denote the property that a graph has an even number of vertices.

Then P is trivially definable in CMSOL, but it is not in MSOL.

The algorithms constructed in Courcelle’s proof have the shape of a finite state tree

automaton and hence we can say that CMSOL-definable graph properties are recog-

nizable (or, equivalently, regular or finite-state). Courcelle’s Theorem generalizes one

direction of a classic result in automata theory by Büchi, which states that a language

is recognizable, if and only if it is MSOL-definable [8]. Courcelle conjectured in 1990

that the other direction of Büchi’s result can also be generalized for graphs of bounded

treewidth in CMSOL, i.e. that each recognizable graph property is CMSOL-definable.

This conjecture is still regarded to be open. Its claimed resolution by Lapoire [24] is not

considered to be valid by several experts. In the course of time proofs were given for

1

Chapter 1 Introduction 2

the classes of trees and forests [9], partial 2-trees [10], partial 3-trees and k-connected

partial k-trees [22]. A sketch of a proof for graphs of pathwidth at most k appeared

at ICALP 1997 [21]. Very recently, Bodlaender, Heggernes and Telle gave a proof for

partial k-trees without chordless cycles of length at least ` [5].

In this thesis we give self-contained proofs of two types of Courcelle’s Conjecture. One,

where we do not need the counting predicate of CMSOL — among others we prove the

conjecture in this somewhat stronger form for Halin graphs and bounded degree or 3-

connected k-outerplanar graphs. We give a proof that recognizability implies definability

in counting monadic second order logic for all k-outerplanar graphs.

In our proofs, we use another classic result rooted in automata theory, the Myhill-Nerode

Theory [25][26]. It states that a language L is recognizable if and only if there exists

an equivalence relation ∼L, describing L, that has a finite number of equivalence classes

(i.e. ∼L has finite index). Abrahamson and Fellows [1] noted that the Myhill-Nerode

Theorem can also be generalized to graphs of bounded treewidth (see also [18, Theorem

12.7.2]): Each graph property P is recognizable if and only if there exists an equivalence

relation ∼P of finite index, describing P , defined over terminal graphs with a bounded

number of terminal vertices. This result was recently generalized to hypergraphs [32].

The general outline of our proofs can be described as follows. Given a graph property

P , we assume the existence of an equivalence relation ∼P of finite index. We then show

that, given a tree decomposition of bounded width, we can derive the equivalence classes

of terminal subgraphs w.r.t. its nodes from the equivalence classes of their children. Once

we reach the root of the tree decomposition we can decide whether a graph has property

P by the equivalence class its terminal subgraph is contained in. We then show that

this construction is MSOL-definable.

The rest of this thesis is organized as follows. In Chapter 2, we give the basic definitions

and explain all concepts that we use in more detail. In Chapter 3 we prove some

technical results regarding equivalence classes w.r.t. nodes in tree decompositions. The

main results are presented in Chapters 4, 5 and 6 which contain proofs of Courcelle’s

Conjecture for several graph classes (see above). We give some concluding remarks in

Chapter 7.

2

Preliminaries

In this chapter we define the basic concepts used in various chapters throughout this

thesis. We begin by giving some notational conventions.

Throughout this thesis, k ∈ N denotes a constant. Let a, b ∈ N with a < b. Then, N|a,b
denotes the set {a, a + 1, . . . , b} and for a single number a ∈ N, we let N|a = N|1,a. Let

X denote a set. Then P(X) denotes the powerset of X, Pc(X) the set of all subsets of

X up to size c and by PMc (X) we denote the set of all multisets over X up to size c.

2.1 Graphs and Tree Decompositions

The reader is assumed to be familiar with the basic notions of graph theory, and is

referred to [17, 1.0 - 1.7, 1.10, 3.0 - 3.2, (4.0 - 4.2), 5.0, (5.2), (12.4)] for a complete

overview of the necessary background.

A graph G = (V,E) with vertex set V and edge set E is always assumed to be undirected,

connected and simple (unless stated otherwise). Let H be a graph. We denote the

subgraph relation by G v H, and the proper subgraph relation by G @ H. For a set W ⊆
V , G[W] denotes the induced subgraph over W ⊆ V in G, so G[W] = (W,E∩ (W ×W)).

We call a set C ⊂ V a cut of G, if G[V \ C] is disconnected. An `-cut of G is a cut of

size `. A set S ⊆ V is said to be incident to an `-cut C, if C ⊂ S. We call a graph

`-connected, if it does not contain a cut of size at most `− 1.

Definition 2.1 ((Planar) Embedding). A drawing of a graph in the plane is called an

embedding. If no pair of edges in this drawing crosses, then it is called planar.

Definition 2.2 (Halin Graph). A graph G = (V,E) is called a Halin graph, if it can be

formed by a planar embedding of a tree T = (V, F), none of whose vertices has degree

two, and a cycle C = (W,E \ F) (where W ⊆ V) that connects all leaves of the tree

such that the embedding stays planar. We refer to T as the tree and to C as the cycle

of G.

3

Chapter 2 Preliminaries 4

Definition 2.3 (k-Outerplanar Graph). Let G = (V,E) be a graph. G is called a

planar graph, if there exists a planar embedding of G. An embedding of a graph G

is 1-outerplanar, if it is planar, and all vertices lie on the outer face. For k ≥ 2, an

embedding of a graph G is k-outerplanar, if it is planar, and when all vertices on the

outer face are deleted, then one obtains a (k−1)-outerplanar embedding of the resulting

graph. If G admits a k-outerplanar embedding, then it is called a k-outerplanar graph.

One can immediately establish a connection between the two graph classes.

Proposition 2.4. Halin graphs are 2-outerplanar graphs.

The following definition will play a central role in many proofs of Chapters 4 and 6.

Definition 2.5 (Fundamental Cycle). Let G = (V,E) be a graph with maximal span-

ning forest T = (V, F). Given an edge e = {v, w}, e ∈ E \ F , its fundamental cycle is a

cycle that is formed by the unique path from v to w in F together with the edge e.

We now turn to the notion of tree decompositions and some related concepts.

Definition 2.6 (Tree Decomposition, Treewidth, Partial k-Tree). A tree decomposition

of a graph G = (V,E) is a pair (T,X) of a tree T = (N,F) and an indexed family of

vertex sets (Xt)t∈N (called bags), such that the following properties hold.

(i) Each vertex v ∈ V is contained in at least one bag.

(ii) For each edge e ∈ E there exists a bag containing both endpoints.

(iii) For each vertex v ∈ V , the bags in the tree decomposition that contain v form a

subtree of T .

The width of a tree decomposition is the size of the largest bag minus 1 and the treewidth

of a graph is the minimum width of all its tree decompositions. We sometimes refer to

a graph of treewidth at most k as a partial k-tree.(i)

To avoid confusion, in the following we will refer to elements of N as nodes and elements

of V as vertices. Sometimes, to shorten the notation, we might not differ between the

terms node and bag in a tree decomposition.

Definition 2.7 (Node Types). We distinguish three types of nodes in a tree decompo-

sition (T,X), listed below.

(i) The nodes corresponding to leaves in T are called leaf nodes.

(i)For a discussion of different characterizations related to the treewidth of a graph, see [4, Section 2].

Chapter 2 Preliminaries 5

(ii) If a node has exactly one child it is called an intermediate node.

(iii) If a node has more than one child it is called a branch node.

As we will typically speak of some direction between nodes in tree decompositions, such

as a parent-child relation, we define the following.

Definition 2.8 (Rooted and Ordered Tree Decomposition). Let (T = (N,F), X) be a

tree decomposition. We call (T,X) rooted, if there is one distinguished node r ∈ N ,

called the root of T , inducing a parent-child relation on all edges in F . If there exists a

fixed ordering on all bags sharing the same parent node, then T is called ordered.

We now introduce terminal graphs, over which we will later define equivalence relations

for graph properties.

Definition 2.9 (Terminal Graph). A terminal graph G = (V,E,X) is a graph with

vertex set V , edge set E and an ordered terminal set X ⊆ V . If |X| = t, we call G a

t-terminal graph.

Terminal graphs of special interest in the rest of this thesis are terminal subgraphs w.r.t.

bags in a tree decomposition. We require the notion of partial terminal subgraphs in

the proofs of Chapter 3 and Section 5.1.

Definition 2.10 ((Partial) Terminal Subgraph). Let (T = (N,F), X) be a rooted (and

ordered) tree decomposition of a graph G = (V,E) with bags Xt and Xt′ , t, t
′ ∈ N , such

that t is the parent node of t′. The graphs defined below are induced subgraphs of G

given the respective vertex sets.

(i) A terminal subgraph of a bag Xt, denoted by [Xt]
+, is a terminal graph induced

by the vertices in Xt and all its descendants, with the set Xt as its terminals.

(ii) A partial terminal subgraph of Xt given a child Xt′ , denoted by [Xt]
+
Xt′

is the

terminal graph induced by Xt and the vertices and edges of all terminal subgraphs

of the children of Xt that are left siblings of Xt′ , with terminal set Xt.

The ordering in each terminal set of the above mentioned terminal graphs can be arbi-

trary, but fixed.(ii)

Note that in later chapters, one might need to fix an ordering on the terminals of a

(partial) terminal subgraph. If the ordering does not have to have any special properties,

one can use an ordering based on finding a (k + 1)-vertex coloring of the graph, which

we will define below.

(ii)For an illustration of Definition 2.10, see Figure 3.1a, where H = [XH]+ and G = [XG]+XH
.

Chapter 2 Preliminaries 6

Definition 2.11 (k-Coloring Order). Let G = (V,E) be a graph and (T,X) a tree

decomposition of G of width (k − 1). Suppose we have a k-coloring γ : V → {1, . . . , k}
of G such that in each bag Xt, t ∈ N , each vertex has a different color. Then, the order

of the vertices in Xt for each t ∈ N , induced by the coloring γ, is called the k-coloring

order of G for (T,X).

One can easily prove the following.

Proposition 2.12. Let G = (V,E) be a graph and (T,X) a width-k tree decomposition

of G. Then, there exists a (k + 1)-coloring order of G for (T,X).

We use the following notation. If P denotes a graph property (e.g. a graph contains a

Hamiltonian cycle), then by ’P (G)’ we express that a graph G has property P .

2.2 Tree Automata for Graphs of Bounded Treewidth

We briefly review the concept of tree automata and recognizability of graph properties

for graphs of bounded treewidth. For an introduction to the topic we refer to [18,

Chapter 12]. For the formal details of the following notions, the reader is referred to

[22].

A tree automaton A is a finite state machine accepting as an input a tree structure over

an alphabet Σ as opposed to words in classical word automata. Formally, A is a triple

(Q,QAcc, f) of a set of states Q, a set of accepting states QAcc ⊆ Q and a transition

function f , deriving the state of a node in the input tree T from the states of its children

and its own symbol s ∈ Σ. T is accepted by A, if the state of the root node of T is an

element of the accepting states QAcc (after a run of A with T as an input).

To recognize a graph property on graphs of treewidth at most k, one encodes a rooted

width-k tree decompositions as a labeled tree over a special type of alphabet, in the

following denoted by Σk (see Definition 3.5, Proposition 3.6 in [22]). We say that a tree

automaton over such an alphabet processes width-k tree decompositions.

Definition 2.13 (Recognizable Graph Properties). Let P denote a graph property. We

call P recognizable (for graphs of treewidth k), if there exists a tree automaton AP
processing width-k tree decompositions, such that following are equivalent.

(i) (T,X) is a width-k tree decomposition of a graph G with P (G).

(ii) AP accepts (the labeled tree over Σk corresponding to) (T,X).

Chapter 2 Preliminaries 7

Note that for an alternative proof of Courcelle’s Conjecture (i.e. opposed to our method,

see Sections 2.3, 2.4 and 2.5, Conjectures 2.24 and 2.25) using the notions of tree au-

tomata processing bounded width tree decompositions directly, one can use Proposition

5.4 in [9]. (See also Lemma 5.4 in [22].)

2.3 Equivalence Relations

In this section we define equivalence relations over terminal graphs (Definition 2.9) and

introduce a Myhill-Nerode analog for graphs of treewidth at most k. Intuitively speaking

it says that each state in a tree automaton (see the previous section) can be identified

with an equivalence class of an equivalence relation, which can be defined for graph

properties P .

Definition 2.14 (Gluing via ⊕). Let G = (VG, EG, XG) and H = (VH , EH , XH) be two

terminal graphs with |XG| = |XH |. The graph G⊕H is obtained by taking the disjoint

union of G and H and for each i, 1 ≤ i ≤ |XG|, identifying the i-th vertex in XG with

the i-th vertex in XH .

Note that if an edge is included both in G and in H, we drop one of the edges in G⊕H,

i.e. we do not have parallel edges in the graph.

We use the operator ⊕ to define equivalence relations over terminal graphs. Throughout

this thesis we will restrict ourselves to (at most) t-terminal graphs for some fixed t ∈ N,

since we focus on equivalence relations with a finite number of equivalence classes. These,

in general, do not exist for classes of terminal graphs with arbitrary boundary size (see

[1]). We furthermore only consider terminal graphs of treewidth (at most) k with at

most k + 1 terminals, as we can disregard all terminal graphs that do not uphold the

treewidth bound under consideration. For a discussion of these notions see e.g. [18,

Section 12.7].

Definition 2.15 (Equivalence Relation over Terminal Graphs). Let P denote a graph

property and let all (terminal) graphs below be of treewidth k. ∼Pt denotes the equiv-

alence relation over t-terminal graphs of treewidth k, where 1 ≤ t ≤ k + 1, defined as

follows. Let G, H and K be t-terminal graphs. Then we have:

G ∼Pt H ⇔ ∀K : P (G⊕K)⇔ P (H ⊕K)

For terminal graphs with at most k+ 1 terminals of treewidth k, we furthermore define

the equivalence relation ∼P≤k . Let 1 ≤ t ≤ k + 1.

G ∼P≤k H ⇔ |XG| = |XH | (= t) ∧G ∼Pt H

Chapter 2 Preliminaries 8

This yields notions of equivalence classes and finite index (for both ∼Pt and ∼P≤k) in

the ordinary way. We might drop the index of ∼P≤k and refer to it as ∼P or simply ∼,

if it is clear from the context.

We illustrate Definition 2.15 with an example.

Example 2.16. Let P denote the property that a graph has a Hamiltonian cycle. Let

G and H be two terminal graphs (of bounded treewidth) with terminal sets XG and

XH , respectively (where |XG| = |XH | = t). We say that G and H are equivalent w.r.t.

∼Pt , if for all terminal graphs K (with terminal set XK , |XK | = t), the graph G ⊕K
contains a Hamiltonian cycle if and only if H ⊕ K contains a Hamiltonian cycle. A

simple case when this hols is when both G and H contain a Hamiltonian path such that

their terminal sets consist of the two endpoints of the path.

Definition 2.17 (P -Equivalence Class). Let P denote a graph property and C an

equivalence class of ∼P≤k . We call C a P -equivalence class, if the following holds.

∀G ∈ C : P (G⊕ (XG, ∅, XG))

As mentioned earlier, our proof technique for Courcelle’s Conjecture is based on the

Myhill-Nerode Theory for graphs of treewidth at most k. The following theorem formally

states this result.

Theorem 2.18 (Myhill-Nerode Analog for Graphs of Treewidth at most k (cf. Theorem

12.7.2 in [18])). Let P denote a graph property. Then the following are equivalent for

any fixed k.

(i) P is recognizable for graphs of treewidth at most k.

(ii) ∼P≤k has finite index.

By the proof of this theorem (see [18, p. 254 ff.]) we know that we can identify the

P -equivalence classes of ∼P≤k with the accepting states in the corresponding automaton.

We will use this fact in the proofs of Sections 4.3 and 5.1.

2.4 Monadic Second Order Logic of Graphs

We now define counting monadic second order logic of graphs G = (V,E), using termi-

nology from [7] and [22]. Variables in this predicate logic are either single vertices/edges

or vertex/edge sets. We form predicates by joining atomic predicates (vertex equality

v = w, vertex membership v ∈ V , edge membership e ∈ E and vertex-edge incidence

Inc(v, e)) via negation ¬, conjunction ∧, disjunction ∨, implication→ and equivalence↔

Chapter 2 Preliminaries 9

together with existential quantification ∃ and universal quantification ∀ over variables

in our domain V ∪ E. To extend this monadic second order logic (MSOL) to count-

ing monadic second order logic (CMSOL), one additionally allows the use of predicates

modp,q(S) for sets S, which are true, if and only if |S| mod q = p, for constants p and q

(with p < q).

Let φ denote a predicate without unquantified (so-called free) variables constructed as

explained above and G be a graph. We call φ a sentence and denote by G |= φ that φ

yields a truth assignment when evaluated with the graph G.

Definition 2.19 (Definable Graph Properties). Let P denote a graph property. We say

that P is (C)MSOL-definable, if there exists a (C)MSOL-sentence φP such that P (G) if

and only if G |= φP .

A predicate φ can have two types of free variables. The first one is a number of arguments

x1, . . . , xa and we denote our predicate by φ(x1, . . . , xa). Predicates with arguments are

used to define relations in (C)MSOL and typically appear as sub-predicates in more

complex statements defining a graph property. Secondly, a predicate can have a number

of parameters, which can be seen as auxiliary variables to define a graph property in

(C)MSOL and do not appear in the notation of a predicate.

Example 2.20. Let P denote the property that a graph has a k-coloring and φcol(v, w) a

predicate, which is true, if and only if a vertex v has a lower numbered color than w in

a given coloring. Then φcol has two arguments, vertices v and w, and k parameters, the

k color classes. Clearly, the choice of the parameters influences the evaluation of φcol,

but in most applications of parameters for predicates, it is sufficient to show that one

can guess some variables of the evaluation graph to define a property (or a relation).

We introduce another term of definability based on predicates that have arguments

and/or parameters.

Definition 2.21 (Existential Definability). Let R(x1, . . . , xr) denote a relation with ar-

guments x1, . . . , xr. We say that R is (C)MSOL-definable, if there exists a parameter-free

predicate φR(x1, . . . , xr), encoding the relation R. Furthermore we call R existentially

(CMSOL)-definable, if there exists a predicate φR(x1, . . . , xr) with parameters x1, . . . , xp,

which, after substituting the parameters by fixed values of an evaluation graph, encodes

the relation R. For a graph property P and an argument-free predicate φP with param-

eters x1, . . . , xp, we define the term existential (C)MSOL-definability analogously.(iii)

A central concept used in this thesis is an implicit representation of a tree decomposition

in monadic second order logic, as we cannot refer to its bags and edges as variables in

MSOL directly. Hence, we require two types of predicates.

(iii)Note that in the more informal parts of this thesis, we might not always differ between the terms
’definability’ and ’existential definability’.

Chapter 2 Preliminaries 10

The first one will allow us to verify whether a vertex is contained in some bag and

whether any vertex set in the graph constitutes a bag in its tree decomposition. In our

definition, each bag will be associated with either a vertex or an edge in the underlying

graph together with a type. A type usually defines a set of vertices that have a certain

(typically structural) relation to the vertex or edge, to which the bag corresponds. In the

definition below we denote these types by τi (for vertex types) and σj (for edge types),

which up to now do not have any specific meaning. It is important to note, however,

that the number of these types has to be constant.

The second one allows for identifying edges in the tree decomposition, i.e. for any two

vertex sets X and Y , this predicate will be true if and only if both X and Y are bags

in the tree decomposition and X is the bag corresponding to the parent node of Y .

Definition 2.22 (MSOL-definable tree decomposition). A rooted (and ordered) tree

decomposition (T,X) of a graph G is called existentially MSOL-definable, if the following

are existentially MSOL-definable (with parameters x1, . . . , xp for some constant p).

(i) Each bag X in the tree decomposition can be identified by one of the following

predicates (where s and t are constants).

(a) BagVτ1(v,X), . . . ,BagVτt(v,X): The bag X is associated with type τi and the

vertex v ∈ V , where 1 ≤ i ≤ t.
(b) BagEσ1(e,X), . . . ,BagEσs(e,X): The bag X is associated with type σj and the

edge e ∈ E, where 1 ≤ j ≤ s.

(ii) There exists a predicate Parent(Xp, Xc) to identify edges in T , which is true, if

and only if Xp is the parent bag of Xc.

We call an existentially MSOL-definable tree decomposition ordered, if the following is

existentially MSOL-definable, using (some of) the p parameters.

(iii) There exists a predicate nb≺(Xl, Xr), which is true if and only if Xl and Xr are

siblings such that Xl is the direct left sibling of Xr.

We can now show that if we have an existentially MSOL-definable tree decomposition of

width k for a graph class C, one can write a parameter-free predicate in monadic second

order logic, which encodes a width-k tree decomposition of an evaluation graph G ∈ C,
after replacing the parameters with fixed values of G.

Lemma 2.23. Let (T,X) be an existentially MSOL-definable tree decomposition with

parameters x1, . . . , xp. There exists a predicate φ with zero parameters and p arguments,

which is true if and only if the predicates Bagτ1 , . . . ,Bagτt, Bagσ1 , . . . ,Bagσs and Parent

describe a width-k rooted tree decomposition of an evaluation graph G.

Proof. The proof can be done analogously to the proof of Lemma 4.7 in [22].

Chapter 2 Preliminaries 11

2.5 Courcelle’s Conjecture

To conclude this chapter, we will now state Courcelle’s Conjecture formally.

Conjecture 2.24 (Courcelle, 1990). Let P denote a graph property. For any fixed k ∈ N,

the following holds. If P is recognized by a finite state tree automaton A for graphs of

treewidth k, then there exists a (C)MSOL-sentence Φ, such that G |= Φ if and only if

A accepts (T,X), a width-k tree decomposition of G.

By Theorem 2.18, we can reformulate this conjecture.

Conjecture 2.25. Let P denote a graph property. For any fixed k ∈ N, the following

holds. If ∼P≤k has finite index, then there is a (C)MSOL-sentence Φ, such that G |= Φ,

if and only if the terminal subgraph of the root of a width-k tree decomposition (T,X)

of G is contained in a P -equivalence class of ∼P≤k .

Throughout this text we will abbreviate Conjecture 2.24 to

’recognizability implies (C)MSOL-definability for graphs of treewidth at most k’

and Conjecture 2.25 to

’finite index implies (C)MSOL-definability for graphs of treewidth at most k’.

3

Deriving Equivalence Class Membership

The current chapter contains a number of technical results related to equivalence classes

of (partial) terminal subgraphs of bags in a tree decomposition. In particular, we will

show how to derive the equivalence classes of (partial) terminal subgraphs of bags in

a tree decomposition from the equivalence classes of some (partial) terminal subgraphs

of child/sibling bags. Hence we prove that these equivalence classes are related to each

other in the same way as states in some finite automaton via its transition function,

which will be of vital importance in the proofs of Sections 4.3 and 5.1.

Note that in the proofs of this section, the terminal sets in all (partial) terminal sub-

graphs w.r.t. bags in a width-k tree decomposition have to have an ordering on its

terminal sets. Since we do not require this ordering to have any specific properties, we

will assume that they are ordered according to the (k+ 1)-coloring order (see Definition

2.11, Proposition 2.12).

In the following, unless stated otherwise, we assume that a width-k tree decomposition is

rooted and ordered. First, we consider branch nodes. We begin by defining an operator,

which can be seen as an extension of the ⊕-operator.

Definition 3.1 (Gluing via ⊕B). Let XG be a branch bag in a width-k tree decom-

position with child bag XH and let G = [XG]+XH = (VG, EG, XG) and H = [XH]+ =

(VH , EH , XH) denote the partial terminal subgraph of XG given XH and the terminal

subgraph of XH , respectively. The operation ⊕B is defined as:

G⊕B H = (VG ∪ VH , EG ∪ EH , XG)

Note that again, we drop parallel edges, if they occur.

Consider the situation depicted in Figure 3.1 and suppose that we know the equivalence

class for the graph G and the equivalence class for graph H. We want to derive the

12

Chapter 3 Deriving Equivalence Class Membership 13

XG

XH

G

H

G⊕B H

(a) The respective terminal graphs

XG

X ′G = XG

G

H

XH

(b) Splitting {XG, XH}

Figure 3.1: Branch node in a tree decomposition

equivalence class of the partial terminal subgraph of XG given the right sibling of XH

(which is the terminal graph G⊕B H).

We will prove that the equivalence class of G⊕BH only depends on the equivalence class

of G and H by explaining how we can create a terminal graph in this class from any pair

of graphs G′ ∼ G, H ′ ∼ H with XG′ = XG and XH′ = XH . Note that since we are only

interested in determining whether the underlying graph of the tree decomposition, say

G∗, has property P , it is sufficient to only consider terminal graphs in the equivalence

classes of G and H that have the same terminal sets as G and H. These classes contain

any number of (terminal) graphs, which are completely unrelated to G∗ and hence can

be disregarded. The following lemma formalizes the above discussion.

Lemma 3.2. Let XG be a branch bag in a width-k tree decomposition and XH one of

its child bags. Let G = [XG]+XH , H = [XH]+ and G′ and H ′ two terminal graphs. If

G′ ∼ G, H ′ ∼ H, XG = XG′ and XH = XH′, then (G⊕B H) ∼ (G′ ⊕B H ′).

Proof. We first define an operator that allows us to rewrite ⊕B.

Definition 3.3 (Gluing via ⊕T). Let G be a (terminal) graph and X an ordered set of

vertices. The operation ⊕T is defined as taking the (not necessarily disjoint) union of

X and the vertices in G and let X be the terminal set of the resulting terminal graph,

i.e.:

G⊕T X = (VG ∪X,EG, X)

Note that ⊕T can either be used to make a graph a terminal graph, or to equip a terminal

graph with a new terminal set. One easily observes the following.

Proposition 3.4. Let G and H be two terminal graphs as in Lemma 3.2. Then,

G⊕B H =

(a)︷ ︸︸ ︷
(G⊕ (H ⊕T XG)︸ ︷︷ ︸

(b)

)⊕T XG . (3.1)

Chapter 3 Deriving Equivalence Class Membership 14

G
H

K
XK

XG = XH

Figure 3.2: Terminal graphs G,H and K as in the proof of Proposition 3.5. The dashed
lines indicate, which vertices are being identified in the corresponding ⊕-operation.

This process of rewriting ⊕B can be illustrated as shown in Figure 3.1b. Instead of

computing G ⊕B H directly, we split the edge between the bags XG and XH , creating

a new bag X ′G in between the edge, where X ′G = XG. Then we extend H to a terminal

graph with terminal set X ′G by using the ⊕T -operator. Denote this graph by HX′G
. Since

HX′G
has terminal set X ′G = XG, we can apply ⊕ to G and H ′, such that all vertices

that are identified in the operation are equal. This results in the graph consisting of all

vertices and edges in both G and H. Eventually, we apply ⊕T to the resulting graph

again to make it a terminal graph with terminal set XG.

We will lead the proof of Lemma 3.2 in two steps: First we show that we can construct

graphs equivalent to (G⊕H)⊕T XG by members of the equivalence classes of G and H,

if G and H have the same terminal set (Part (a) of Equation 3.1, where H denotes the

terminal graph H ⊕T XG). In the second step, we show that we can construct graphs

equivalent to H ⊕T X from members of the equivalence class H for any terminal set X

(Part (b) of Equation 3.1).

Proposition 3.5. Let G = (VG, EG, XG) and H = (VH , EH , XH) be two terminal graphs

with XG = XH . Let G′ and H ′ be two terminal graphs with G′ ∼ G, H ′ ∼ H, XG = XG′

and XH = XH′. Then,

(G⊕H)⊕T XG ∼ (G′ ⊕H ′)⊕T XG′ .

Proof. By Figure 3.2 we can observe the following.

K ⊕ ((G⊕H)⊕T XG) = G⊕ ((K ⊕H)⊕T XG)

Regardless of the order in which we apply the operators, both graphs will have the same

vertex and edge sets. As for the identifying step (using the ⊕-operator), one can see

that for all i = 1, . . . , |XK | we have that the i-th vertex in XK is identified with the i-th

vertex in XG in the left-hand side of the equation and with the i-th vertex in XH in the

right-hand side. The equality still holds, since XG = XH . We use this argument (and

Chapter 3 Deriving Equivalence Class Membership 15

K
XK

H
X XH

Figure 3.3: Terminal graphs H and K, and a terminal set X. The dashed lines indicate,
which vertices are being identified in the corresponding ⊕-operation.

the fact that XG′ = XG = XH = XH′) to show the following.

∀K : P (K ⊕ ((G⊕H)⊕T XG))⇔ P (G⊕ ((K ⊕H)⊕T XG))

⇔P (G′ ⊕ ((K ⊕H)⊕T XG′))⇔ P (H ⊕ ((K ⊕G′)⊕T XH))

⇔P (H ′ ⊕ ((K ⊕G′)⊕T XH′))⇔ P (K ⊕ ((G′ ⊕H ′)⊕T XG′))

Hence, our claim follows.

Lemma 3.6. Let H,H ′ be terminal graphs with H ∼ H ′, XH = XH′ and X an ordered

vertex set. Then, H ⊕T X ∼ H ′ ⊕T X.

Proof. By Figure 3.3, one can derive a similar argument as in the proof of Proposition

3.5. Note that |XK | = |X| (otherwise, ⊕ is not defined) and let KX = K ⊕ (X, ∅, X),

i.e. the graph obtained by identifying each i-th vertex in XK with each i-th vertex in

X, where 1 ≤ i ≤ |XK |. Then,

K ⊕ (H ⊕T X) = H ⊕ (KX ⊕T XH).

In the left-hand side, we first extend the terminal graph H to have terminal set X and

then glue the resulting graph to K. Thus the i-th vertex in XK is identified with the

i-th vertex in X, i = 1, . . . , |XK |. The same vertices are being identified in the first step

in computing the right-hand side, which is constructing the graph KX . We then extend

this graph to have terminal set XH and glue it to the graph H. Since again, in both

of the computations the same vertices get identified and both graphs have equal vertex

and edge sets, we see that our claim holds. We use this argument (and the fact that

XH = XH′) to conclude our proof as follows.

∀K : P (K ⊕ (H ⊕T X))⇔ P (H ⊕ (KX ⊕T XH))

⇔P (H ′ ⊕ (KX ⊕T XH′))⇔ P (K ⊕ (H ′ ⊕T X))

This concludes the proof of Lemma 3.2.

Chapter 3 Deriving Equivalence Class Membership 16

XG

XH

H

G

(a) Intermed. node.
G = H ⊕T XG.

XG

XH1
XH2

XH3

G

H1 H2 H3

(b) Bounded degree branch node. Note that G =
(H1 ⊕T XG)⊕B (H2 ⊕T XG)⊕B (H3 ⊕T XG).

Figure 3.4: Intermediate and bounded degree branch node (both XG in the respective
figure) in a tree decomposition.

The methods used in this proof also allow us to handle intermediate nodes in a tree

decomposition. For an illustration see Figure 3.4a. Lemma 3.6 suffices as an argument

that we can derive the equivalence class of G from graphs equivalent to H.

Next, we generalize the situation of Lemma 3.2, where we were dealing with two child

nodes of a branch bag, to handle any constant number of children at a time (see Figure

3.4b). We will apply this result to tree decompositions that are not ordered but instead

have bounded degree.

Lemma 3.7. Let XG be a branch bag in a width-k tree decomposition with children

XH1 , . . . , XHc (for a fixed c). Let H1 = [XH1]+,. . . , Hc = [Xc]
+. If H ′1 ∼ H1, . . . ,H

′
c ∼

Hc and XH′1
= XH1 , . . . , XH′c = XHc, then

(H1 ⊕T XG)⊕B · · · ⊕B (Hc ⊕T XG) ∼ (H ′1 ⊕T XG)⊕B · · · ⊕B (H ′c ⊕T XG)

Proof. Let G and H be the two terminal graphs as indicated below.

(H1 ⊕T XG)︸ ︷︷ ︸
G

⊕B (H2 ⊕T XG)⊕B · · · ⊕B (Hc ⊕T XG)︸ ︷︷ ︸
H

Since H1 ∼ H ′1, we know by Lemma 3.6 that (H1 ⊕T XG) ∼ (H ′1 ⊕T XG). Let G′ =

(H ′1⊕T XG), then we have that G ∼ G′. Now, by Lemma 3.2, we know that (G⊕BH) ∼
(G′ ⊕B H) and hence:

G⊕B H ∼ (H ′1 ⊕T XG)⊕B H

We can apply this argument repeatedly and our claim follows. Note that the child bags

XH1 , . . . , XHc do not need a specific ordering, as in this context the operation ⊕B is

commutative (all graphs, which it is applied to, have terminal set XG).

4

Halin Graphs

This chapter is devoted to proving our first main result, which is that MSOL-definability

equals recognizability for the class of Halin graphs. As outlined before, we will prove

that finite index implies MSOL-definability. In a first step, we will show that we can

define a certain orientation on the edges of a Halin graph together with an ordering on

edges with the same head vertex in monadic second order logic (Section 4.1), which we

then will use to construct MSOL-definable tree decompositions of Halin graphs (Section

4.2). We conclude the proof in Section 4.3.

In many of the proofs of MSOL-definability of graph properties (or properties of tree

decomposition), we use other MSOL-predicates we defined at an earlier stage, and refer

for more precise expressions to the appendix.

4.1 Edge Orientation and Ordering

In the following we will develop an orientation on the edges of a Halin graph, together

with an ordering on edges with the same head vertex, which is MSOL-definable. Our

goal is that in this orientation, the edges that form the cycle connecting the leaves is a

directed cycle and the tree of the Halin graph forms a directed tree with some arbitrary

root on the outer cycle.

Lemma 4.1 (Cf. [12], Lemma 4.8 in [22]). Let G be a graph of treewidth k. Any

orientation on its edges using predicates head(e, v) and tail(e, v), which is existentially

encoded by a predicate φOri with p parameters, is existentially MSOL-definable with

p+ k + 2 parameters.

Proof. Since G has treewidth k, we know that it admits a k+ 1-coloring on its vertices.

We assume we are given such a coloring and denote the color set by {0, 1, . . . , k}. Now

let F be a set of edges of G and e = {v, w} an edge in the graph. We know that

17

Chapter 4 Halin Graphs 18

col(v) 6= col(w) and thus we either have col(v) < col(w) or col(v) > col(w). We let the

edge e be directed from v to w, if

(i) col(v) < col(w) and e ∈ F , or

(ii) col(v) > col(w) and e /∈ F

and otherwise from w to v. Thus we can choose any orientation of the edge set of G by

choosing the corresponding set F . Assuming that φOri uses predicates head(e, v) and

tail(e, v) as shown in Appendix A.1, we can define our predicate as

∃X1 · · · ∃Xk+1(∃F ⊆ E)(k + 1-col(V,X1, . . . , Xk+1) ∧ φOri).

The parameters are the color sets X1, . . . , Xk+1 and the edge set F .

Proposition 4.2. Let G = (V,E) be a Halin graph. The orientation on the edge set of

G such that its tree forms a rooted directed tree and the outer cycle is a directed cycle,

is existentially MSOL-definable with 7 parameters.

Proof. Since Halin graphs have treewidth 3, we can use Lemma 4.1. Let ET denote the

edges in the spanning tree and EC the edges on the outer cycle. The orientation stated

above can be defined in MSOL as

φOri = ∃ET∃EC(PartE(E,ET , EC) ∧ Tree→(V,ET) ∧ Cycle→(IncV(EC), EC)).

We have five parameters for the edge orientation plus the parameters for the edge set

of the tree and the cycle. The MSOL-predicates given in Appendix A.1 complete the

proof.

Next, we define an ordering on all edges with the same head vertex in a Halin graph,

which we can define in monadic second order logic using the orientation of the edges

given above and its fundamental cycles. This is a central step in our proof, as it allows

us to avoid using the counting predicate in the construction of our tree decomposition.

The main idea in the proof of Lemma 4.3 is that we can order the child edges of a vertex

in the order in which their leaf descendants appear on the outer cycle.

Lemma 4.3. For any vertex in a Halin graph there exists an ordering nb< on its child

edges that is existentially MSOL-definable with 7 parameters.

Proof. Let G = (V,E) be a Halin graph with an orientation on its edges as shown in

Proposition 4.2, ET its edges of the tree T = (V, F) of G, EC the edges of the outer

cycle and r the root of the tree ET . Now, consider an inner vertex v ∈ V (a non-leaf

vertex w.r.t. the tree) and two child edges e and f of v (with e 6= f). Every edge of

Chapter 4 Halin Graphs 19

r

e
f

el er = fl

frv

Figure 4.1: Example of a Halin graph with edge orientation.

a Halin graph is contained in exactly two fundamental cycles (w.r.t. T). Suppose we

have an ordering on the child edges of v and f is the right neighbor of e. We denote

the edges in EC , whose fundamental cycles contain e and f by e`, er, f` and fr, such

that e` and f` (er and fr) are contained in the left (right) fundamental cycles of e and

f , respectively. (See Figure 4.1 for an example.)

Now consider directed paths in EC from r to the tail vertices of the above mentioned

edges. If f is on the right-hand side of e, then the path from r to the tail of fr is always

the shortest of the four. The parameters are the same ones as in Proposition 4.2. The

MSOL-predicates given in Appendix A.2 define such an ordering nb<(e, f).

4.2 MSOL-Definable Tree Decompositions

In this section we will describe how to construct a width-3 tree decomposition of a Halin

graph, which is definable in monadic second order logic.

First we introduce the notion of left and right boundary vertices of a Halin graph with

an edge orientation and ordering as described in the previous section.

Definition 4.4 (Left and Right Boundary Vertex). Let G = (V,E) be a Halin graph and

v ∈ V . A vertex w ∈ V is called the left boundary vertex of v, denoted by w = bdl(v),

if it lies on the cycle of G and there exists a (possibly empty) path EP from v to bdl(v)

in ET , such that the tail vertex of each edge in EP is the leftmost child of its parent.

Similarly, we define a right boundary vertex bdr(v). The boundary of a vertex v is the

set containing both its left and right boundary vertex, denoted as bd(v).

Note that for all cycle vertices v ∈ VC , we have v = bdl(v) = bdr(v). We now state the

main result of this section.

Lemma 4.5. Halin graphs admit width-3 existentially MSOL-definable tree decomposi-

tions with 7 parameters.

Chapter 4 Halin Graphs 20

l(x) x

y

bdl(y)
bdr(x)

bdl(x)

bdr(l(x))

(a) Structural overview of a Halin graph.

R1

R2

R3

LR

L3

L2

L1 x, bd(x)

x, y, bd(x)

y, bd(x)

y, bdl(y)),
bdr(l(x))

bdl(x), L1

y, bdl(y),

y, bdl(y),

bdl(x)

bd(x)

(b) The component
created for each edge.

Figure 4.2: Constructing a component of a tree decomposition for an edge of a Halin
graph.

Proof. Let G = (V,E) be a Halin graph and suppose we have an orientation and ordering

on its edges as described in Section 4.1. That is, we have a partition (EC , ET) of E such

that EC forms the (directed) outer cycle and ET the (directed) tree of G and there is

an ordering on edges with the same head vertex in ET .

For each edge e ∈ ET we construct a component in the tree decomposition that covers

the edge itself and one edge on the outer cycle. A component for an edge e = {x, y},
where y is the parent of x in ET covers the edges {x, y} and the edge {bdr(l(x)), bdl(x)}
on EC , whose fundamental cycle both contains {x, y} and {l(x), y} (see Figure 4.2a for

an illustration). For the former we create a branch of bags of types R1, R2 and R3 and

for the latter bags of types L1, L2 and L3, joined by a bag of type LR, containing the

following vertices.

R1. This bag contains the vertex x and its boundary vertices bd(x).

R2. This bag contains the vertices x and y and the vertices bd(x).

R3. This bag forgets the vertex x and thus contains y and bd(x).

L1. This bag contains the vertices y, bdl(y) and bdr(l(x)).

L2. This bag introduces the vertex bdl(x) to all vertices in the bag L1.

L3. This bag forgets the vertex bdr(l(x)) and thus contains y, bdl(y) and bdl(x).

LR. This bag contains the union of L3 and R3, and hence contains the vertices y, bdl(y)

and bd(x).

Figure 4.2b illustrates the structure of the component described above.

To continue the construction, we note that removing bdr(x) from the bag of type LR

results in a bag of type L1 for the right neighbor edge, if such an edge exists. If x is

the rightmost child of y, then removing bdr(x) results in a bag of type R1 for the edge

between y and its parent in ET . This way we can glue together components of edges

using the orientation and ordering of the edge set of the graph. Note that if x is the

leftmost child of y, then it is sufficient to only create bags of types R1, R2 and R3, since

we do not have to cover an edge on the outer cycle.

Chapter 4 Halin Graphs 21

Once we reach the root (i.e. y is the root vertex of the graph), we only create the bags

of type R1 and R2 and our construction is complete.

One can verify that this construction yields a tree decomposition of G and since the

maximum number of vertices in one bag is four, its width is three.

To show that these tree decompositions are MSOL-definable, we note that we can de-

fine each bag type in MSOL in a straightforward way, once we defined a predicate for

boundary vertices. The predicate Parent(Xp, Xc) requires that there are no two bags

in the tree decomposition that contain the same vertex set and so we contract all edges

between bags with the same vertex set.

We observe that our predicates only use parameters introduced in the previous sec-

tion (and hence, their number is seven). The MSOL-predicates given in Appendix A.3

complete the proof.

From the construction given in this proof, we can immediately derive a consequence that

will be useful in the proof of Section 4.3.

Corollary 4.6. Halin graphs admit binary width-3 existentially MSOL-definable tree

decompositions with seven parameters such that all of their leaf bags have size one.

Proof. It is easy to see by the construction given in the proof of Lemma 4.5 that this

tree decomposition is binary. All leaf bags are of type R1 and are associated with edges

whose tail vertex x is a vertex on the outer cycle. Hence, x = bdl(x) = bdr(x) and our

claim follows.

We will illustrate the construction of a tree decomposition given in the proof of Lemma

4.5 with the following example.

Example 4.7. Consider the graph depicted in Figure 4.3a. We are going to show how to

create the component of its tree decomposition corresponding to the edges {a, b}, {a, c}
and {c, i}.

• {a, b}: Since the vertex b does not have a left sibling, we only create bags R1, R2

and R3. Note that LR = R3, since LR = L3 ∪ R3, and we do not have a bag of

type L3.

• {c, i}: Since i is a leaf vertex we have that bdl(i) = bdr(i) = i and so the right

path starts with a bag {i}. For the same reason we have that the bags R2 and R3

are equal and we contract the edge. For the left path this has the effect that L3

and LR are equal, so the edge between them gets contracted as well.

Chapter 4 Halin Graphs 22

r

a

b c
d

e f g h i

(a) An example
Halin graph.

a, e, f

a, b, e, f

b, e, f

{a, b}

i

c, i

c, g, i

c, g, h, i

c, g, h

{c, i}

{a, c}

a, c, g, i

a, g, i

a, e, f, g

a, e, g

a, e, g, i

a, e, i

(b) The component of the tree decomposition
corresponding to the denoted edges.

Figure 4.3: An example subtree of a tree decomposition of a Halin graph.

• {a, c}: This component can be constructed in a straightforward manner. The bag

L1 is the parent of the bag LR w.r.t. {a, b} and R1 is the parent of LR w.r.t.

{c, i}. Since in both cases the vertex sets are equal, we also contract these edges.

Figure 4.3b shows the resulting part of the tree decomposition.

4.3 Finite Index Implies MSOL-Definability

In this section we complete the proof of our first main result, stated below. We will

also use ideas that we give here first for extending our results to other graph classes, see

Section 5.

Lemma 4.8. Finite index implies MSOL-definability for Halin graphs.

Proof. By Lemma 4.5 we know that Halin graphs admit existentially MSOL-definable

width-3 tree decompositions. Hence, what is left to show is that we can define the

equivalence class membership of terminal subgraphs w.r.t. its bags in monadic second

order logic.

We know that the graph property P has finite index, so in the following we will denote

the equivalence classes of ∼P by C1, . . . , Cr. By Lemmas 3.2 and 3.7 we know that we

can derive the equivalence class of a terminal subgraph w.r.t. a node by the equivalence

class(es) of terminal subgraphs w.r.t. its descendant nodes in the tree decomposition.

Hence, we can conclude that the following two functions exist, also taking into account

that our tree decomposition is binary (Corollary 4.6).

Chapter 4 Halin Graphs 23

Proposition 4.9. There exist two functions fI : N|r×P4(V)→ N|r and fJ : PM2 (N|r)×
P4(V)→ N|r, such that:

(i) If X is an intermediate bag in a tree decomposition with child bag Xc and [Xc]
+ ∈

Ci, then [X]+ ∈ CfI(i,X).

(ii) If X is a branch bag with child bags X1 and X2, [X1]
+ ∈ Ci and [X2]

+ ∈ Cj, then

[X]+ ∈ Cf({i,j},X).

Roughly speaking, these functions can be seen as a representation of the transition

function of an automaton that we are given in the original formulation of the conjecture

(cf. Theorem 2.18).

Next, we mimic the proof of Büchi’s famous classic result for words over an alphabet [8],

as shown in [29, Theorem 3.1]. For each equivalence class i we define sets CEi,σ ⊆ E for

each type σ (see the proof of Lemma 4.5) and equivalence class i. An edge e is contained

in set CEi,σ, if and only if the terminal subgraph rooted at a bag of type σ w.r.t. the edge

e is in equivalence class i.

Our MSOL-predicate φ consists of three parts. First, we identify the equivalence classes

corresponding to leaf nodes of the tree decomposition, and we will denote this predicate

as φLeaf . This is rather trivial, since we know that all leaf bags contain exactly one vertex

(Corollary 4.6) and there is one unique equivalence class to which they all belong, in the

following denoted by CLeaf . Note that these bags are always of type R1.

Second, we derive the equivalence class membership for terminal subgraphs using Propo-

sition 4.9, assuming we already determined the equivalence class to which the terminal

subgraphs w.r.t. its descendants belong. We denote this predicate by φTSG.

Lastly, we check if the graph corresponding to the terminal subgraph of the root bag of

the tree decomposition is contained in a P -equivalence class, which we denote by φRoot.

We know that we can identify these equivalence classes by (the discussion given after)

Theorem 2.18 and will denote them by CA1 , . . . , CAp .

Our MSOL-predicate then combines to:

φ = φLeaf ∧ φTSG ∧ φRoot (4.1)

Note that φ as stated in Equation 4.1 is not parameter-free (as we use an existentially

defined tree decomposition). By Lemma 2.23 we know that we can turn φ into a sentence

Φ given an evaluation Halin graph. This observation together with the details given in

Appendix A.4 complete the proof.

Combining Lemma 4.8 with Theorem 2.18 and [9], we obtain the following.

Theorem 4.10. MSOL-definability equals recognizability for Halin graphs.

5

Extensions

The methods we used in the proofs of Chapter 4 can be generalized and applied to a

number of other graph classes, some of which we are going to discuss in this section. The

main results are presented in Sections 5.1 and 5.2. In the former we show that finite index

implies MSOL-definability for any graph class that admits either a bounded degree or an

ordered MSOL-definable tree decomposition and in the latter we generalize this result

to unordered tree decompositions of unbounded degree using the counting predicate of

CMSOL.(i) We demonstrate the use of the results of Section 5.1 in Sections 5.3 and 5.4,

where we construct ordered or bounded degree MSOL-definable tree decompositions for

a subclass of k-outerplanar graphs and for graphs constructed by some bounded size

feedback vertex or edge sets, respectively.

5.1 MSOL-Definable Tree Decompositions

We will now turn to generalizing the proof for Halin graphs to any graph class that admits

existentially MSOL-definable width-k tree decompositions that are either ordered or have

bounded degree. This result will serve as a useful tool to prove Courcelle’s Conjecture

for a number of graph classes, since it will follow immediately from the construction of

such MSOL-definable tree decompositions.

The proof works analogously to the proof of Lemma 4.8 so we will focus on pointing out

the differences. We use the same notation.

Lemma 5.1. Finite index implies MSOL-definability for each graph class that admits

existentially MSOL-definable ordered width-k tree decompositions with a constant number

of parameters.

(i)For similar findings from the perspective of tree automata see the discussion on page 575 in [16].

24

Chapter 5 Extensions 25

Proof. It is easy to see that the predicate φRoot can be defined in the same way as in

the proof of Lemma 4.8, only adding a short case analysis, since we do not necessarily

know of which type the root bag is. Since leaf bags might not always have size one, we

apply a small change to the tree decomposition. Assume that its width is k and that we

have a (k + 1)-coloring on the vertices of the graph, such that each vertex in a bag has

a different color. Then, for each leaf bag of size greater than one, we add one child bag

containing only the vertex with the lowest numbered color. This bag will be identified

by a newly introduced type and associated with the same vertex/edge as its parent. We

modify the Bag- and Parent-predicates accordingly and can define φLeaf in the same

way as in Lemma 4.8, again including a case analysis as for the φRoot-predicate.

Hence, in the following we only need to show how to define φTSG to prove the claim.

Again we denote the equivalence classes of ∼P by C1, . . . , Cr. We can use the function

fI defined in Proposition 4.9 (replacing P4(V) by Pk+1(V)) to describe the relations

between the equivalence classes for intermediate nodes. We need another function to

handle partial terminal subgraphs w.r.t. a branch node, whose existence is guaranteed

by Lemma 3.2.

Proposition 5.2. There exists a function fJ : N|r × N|r → N|r, such that the following

holds. If X is a branch bag with child bag Y , [X]+Y ∈ Ci and [Y]+ ∈ Cj, then:

(i) If Y is the rightmost child of X, then [X]+ ∈ CfJ (i,j).

(ii) Otherwise [X]+r(Y) ∈ CfJ (i,j), where nb≺(Y, r(Y)).

In the following, let τ ∈ {τ1, . . . , τt} and σ ∈ {σ1, . . . , σs}. We define a number of sets,

each one associated with an equivalence class i, containing either vertices or edges in

the graph (as indicated by their upper indices), CVi,τ and CEi,σ. If a vertex v is contained

in the set CVi,τ this means that the terminal subgraph rooted at the bag for vertex v

of type τ is in equivalence class i. CEi,σ is the edge set analogous to CVi,τ . These sets

can be used to define the equivalence class membership of terminal subgraphs rooted at

intermediate nodes.

Now let X be a bag in the tree decomposition with child Y , such that the node con-

taining X is an intermediate node. We have to distinguish four cases when deriving the

membership of a vertex/an edge in the respective sets, which are:

(I) Both X and Y correspond to a vertex.

(II) Both X and Y correspond to an edge.

(III) X corresponds to a vertex and Y to an edge.

(IV) X corresponds to an edge and Y to a vertex.

Chapter 5 Extensions 26

The predicates defining these cases for intermediate nodes are given in Appendix A.5.1.

When considering a branch node and the partial terminal subgraphs associated with

it, we have to analyze at most eight such cases. We first turn to the definition of sets

representing the equivalence class membership of a partial terminal subgraph rooted at

a branch bag w.r.t. one of its children. Suppose that a bag X is of type τ for a vertex

v and one of its child bags Y is of type τ ′ for the vertex v′. Let C
V |P
i,τ and C

V |C
i,τ ′ be

sets of vertices. We express that the partial terminal subgraph rooted at the bag of

type τ for vertex v w.r.t. the bag of type τ ′ for vertex v′ is in equivalence class i by

having v ∈ CV |Pi,τ and v′ ∈ CV |Ci,τ ′ . We define edge sets C
E|P
i,σ and C

E|C
i,σ with the same

interpretation. Also for branch nodes we do a case analysis as indicated above and the

predicates in Appendix A.5.2 complete the proof.

If we are given an MSOL-definable tree decomposition that does not have an ordering on

the children of branch nodes, but instead we know that each branch node has a constant

number of children, we can prove a similar result.

Lemma 5.3. Finite index implies MSOL-definability for each graph class that admits

existentially MSOL-definable bounded degree width-k tree decompositions with a constant

number of parameters.

Proof. Since this proof works almost exactly as the proof of Lemma 5.1, we only state

the differences. Let c + 1 denote the maximum degree of a (branch) node in the tree

decomposition and again we refer to the equivalence classes of ∼P as C1, . . . , Cr. Using

Lemma 3.7 we know that the following holds (generalizing Proposition 4.9(ii)).

Proposition 5.4. There exists a function fJ : PMc (N|r)× Pk+1(V)→ N|r, such that if

X is a branch bag in a tree decomposition with child bags X1, . . . , Xk (where 2 ≤ k ≤ c),

and each terminal subgraph [Xi]
+ is in equivalence class Cci, then the terminal subgraph

[X]+ is in equivalence class CfJ ({c1,...,ck},X).

Again, to define our predicate we use vertex sets CVi,τ to represent equivalence class

membership of a terminal subgraph rooted at a vertex bag of type τ and edge sets CEi,σ
for edge bags of type σ (and equivalence class i). We show how to define a predicate for

branch bags in such tree decompositions in Appendix A.5.3 and our claim follows.

Combining Lemmas 5.1 and 5.3 with Theorem 2.18 and [9], we obtain the following.

Theorem 5.5. MSOL-definability equals recognizability for graph classes that admit

existentially MSOL-definable ordered or bounded degree width-k tree decompositions with

a constant number of parameters.

Chapter 5 Extensions 27

5.2 Unordered Nodes of Unbounded Degree

In the previous section we have shown that for each graph class, whose members admit

MSOL-definable tree decompositions, which are either ordered or have bounded degree,

finite index implies MSOL-definability. We will now prove that using the counting pred-

icate of CMSOL, one can determine the equivalence class membership of an unordered

branch node of unbounded degree as well. Hence, the main result of this section is the

following.

Lemma 5.6. Finite index implies CMSOL-definability for each graph class that ad-

mits existentially MSOL-definable width-k tree decompositions with a constant number

of parameters.

Proof. By the proof of Lemma 5.1 we know that the only thing we need to show is how

to handle the case when a branch node in the tree decomposition has an unbounded

number of children. The outline of the proof is as follows. We group the children of a

branch node X of unbounded degree by the equivalence class, their terminal subgraphs

are contained in. Then, we show that we can derive the equivalence class membership

of the terminal graph consisting of the union of X and the graphs in a group, with

terminal set X, by a constant-length function. Using this result we can determine the

equivalence class of the terminal subgraph of X. We conclude the proof by showing that

this construction is CMSOL-definable.

Definition 5.7 (Group of an Equivalence Class, Partial Terminal Group Subgraph).

Let X be a branch bag with an unbounded number of children.

(i) A set of bags is called the group i w.r.t. an equivalence class Ci, denoted by GXi ,

if it contains all children of X, whose terminal subgraphs are in equivalence class

Ci.

(ii) The terminal graph consisting of X and the union of all terminal subgraphs of

a group i with terminal set X is called the partial terminal group subgraph of X

w.r.t. Ci, denoted by [X]+Gi .

Suppose XG is such a branch bag and XH1 , . . . are its children. Consider an equivalence

class Ci and all nodes XH1 , . . . , XH` with [XHi]
+ ∈ Ci (hence, they form the group

GXGi). By Proposition 4.9 we know that the following holds (i.e. we view each bag as

the only child of XG).

[XH1]+ ⊕T XG︸ ︷︷ ︸
H′1

∈ CfI(i,XG), . . . , [XH`]
+ ⊕T XG︸ ︷︷ ︸
H′`

∈ CfI(i,XG)

By the arguments given in Section 3, we know that the following function exists.

Chapter 5 Extensions 28

Proposition 5.8. Let X be a branch bag in a tree decomposition as described above.

Let G and H be two terminal graphs with terminal set X and their vertex and edge sets

being the union of some terminal subgraphs w.r.t. child bags of X. Then there exists a

function f
Pk+1(V)
J : N|r × N|r → N|r, such that if G is in equivalence class i and H is

in equivalence class j, then G⊕B H is in equivalence class fXJ (i, j). We might drop the

upper index X if it is clear from the context.

LetH ′1, H
′
2 andH ′3 be terminal graphs as shown above and j = fI(i,XG). By Proposition

5.8 we know that H ′1 ⊕B H ′2 is in equivalence class fXGJ (j, j) and subsequently, H ′1 ⊕B

H ′2 ⊕B H ′3 is in equivalence class fXGJ (fXGJ (j, j), j). We define a recursive function as

follows.

Definition 5.9. Let X be a branch bag in a tree decomposition and fXJ as above. Then,

for an equivalence class j, we let

f1J (j) = fXJ (j, j), and

fnJ (j) = fXJ (fn−1J (j), j), where n ∈ N, n > 1.

It is easy to see that for any fixed j the sequence f1J (j), . . . becomes periodic at some

point, since the number of values, which fJ(i, j) can have, is bounded by the constant

r and for any i, i′ with i = i′, fJ(i, j) = fJ(i′, j). However, the length of this period

depends on the property P and the equivalence class under consideration. We bound

the length of the period (somewhat pessimistically) by r!, since r! is the product of all

possible period lengths over r values.

Proposition 5.10. For any j = 1, . . . , r and n ∈ N we have

fnJ (j) = fn mod r!
J (j).

By Proposition 5.10, we can restrict ourselves in the following to constant values c,

where c = n mod r!, when evaluating fnJ . Hence, we know that for each group GXi , we

can determine the equivalence class of each partial terminal group subgraph [X]+Gi using

a function of constant length.

Proposition 5.11. Let X be a branch bag with an unbounded number of children. There

exists a function fG : (ε ∪ N|r)r → N|r, such that if [X]+G1 ∈ Ci1 , . . . , [X]+Gr ∈ Cir , then

[X]+ ∈ CfG(i1,...,ir), where the argument ε denotes that the corresponding group is empty.

Proof. We split the edges of the node containing X in the following way. For each

(nonempty) group i we create one new bag Xi with Xi = X and make it adjacent to X.

Then, we delete the edges between X and all bags in group i and instead make them

adjacent to Xi. Clearly, [X]+Gi = [Xi]
+. Since now, X has bounded degree of at most r

we can use Lemma 3.7 to conclude the proof.

Chapter 5 Extensions 29

We now turn to defining the equivalence class membership of partial terminal group

subgraphs in CMSOL. For each vertex bag type τ and pair of indices i = 1, . . . , r and

j = ε, 1, . . . , r (where ε represents the case then group i is empty), we define a set

C
Gi|V
j,τ , such that the partial terminal group subgraph of X w.r.t. the equivalence class

Ci is in equivalence class Cj , if and only if v ∈ C
Gi|V
j,τ . We define edge sets C

Gi|E
j,σ

with the analogous meaning. Note that we need the counting predicates of CMSOL for

determining the equivalence class membership of partial terminal group subgraphs, see

Proposition 5.10. The predicates defining these (and the equivalence class membership

of an unordered node of unbounded degree) are given in Appendix A.5.4 and complete

the proof of Lemma 5.6.

Combining Lemma 5.6 with Theorem 2.18 and [9] then yields the following.

Theorem 5.12. CMSOL-definability equals recognizability for all graph classes that

admit existentially MSOL-definable width-k tree decompositions with a constant number

of parameters.

5.3 k-Cycle Trees

In this section we consider graph class which can be seen as a slight generalization of

Halin graphs. Recall the results of Sections 4.1 and 4.2.

Definition 5.13 (k-Cycle Tree). A graph G is called cycle tree, if it can be obtained

by a planar embedding of a tree with one distinguished vertex c ∈ V , called the central

vertex, such that all vertices of distance d from c are connected by a cycle and the

embedding stays planar. If each vertex (except for c) is contained in one cycle, the

number of which is k, then G is called a k-cycle tree. We will refer to the cycle of

distance d from c as the cycle Cd.

Figure 5.1a shows an example of a 2-cycle tree. We easily observe the following.

Proposition 5.14. Each k-cycle tree is (k + 1)-outerplanar.

Since k-outerplanar graphs have treewidth at most 3k − 1 [4, Theorem 83], we know

by 5.14 that we can apply all results of treewidth k graphs to k-cycle trees as well. To

construct an MSOL-definable tree decomposition for a k-cycle tree, we need the notion

of the i-th left and right boundary of a vertex, referring to vertices on the i-th cycle of

the graph.

Definition 5.15 (i-th boundary vertex). Let G = (V,E) be a k-cycle tree and v ∈ V .

We say that w is the i-th left boundary vertex of v, denoted by w = bdli(v), if w lies on

Ci and there exists a path ElP from v to w, only using edges of the tree of the graph,

Chapter 5 Extensions 30

c

(a) G with-
out edge orien-

tation

r = r2

r1

c

(b) G with
edge orienta-

tion

Figure 5.1: An example 2-cycle tree G with central vertex c.

such that no other path from v to any vertex on Ci exists that uses an edge that lies

on the left of one of the edges in ElP . Similarly, we define the i-th right boundary vertex

bdri (v).

Now we are ready to prove the main result of this section.

Lemma 5.16. k-Cycle trees admit existentially MSOL-definable binary width-4k tree

decompositions with 4k + 3 parameters.

Proof. We can show this in almost exactly the same way as for Halin graphs (Lemma

4.5), so we will focus on pointing out the differences. Again, at first we define an edge

orientation on k-cycle trees. Instead of partitioning the edge set into one directed tree

and one directed cycle we now have one directed tree ET and k directed cycles, such

that ECi denotes the cycle of distance i from the central vertex c.

The root of the tree is a vertex incident to the outermost cycle and for each cycle Ci we

have one incident root vertex ri, which will be used to define the neighbor ordering of

edges with the same head vertex. For a cycle Ci this will be a vertex of distance k − i
from the root vertex of the tree. One can verify that turning the tree and cycles of G

into their directed equivalents is MSOL-definable by Lemma 4.1, Proposition 5.14, and

the predicates given in Appendix A.6. For an illustration of the edge orientation see

Figure 5.1b.

Using this orientation one can define a predicate nbi<(e, f) for ordering all edges with

the same parent, which then can be utilized to define i-th boundary vertices.

As in the proof of Lemma 4.5, we construct a component in the tree decomposition for

each edge e ∈ ET . The definition of the bag types is somewhat different, since now

we have to take into account at most k cycle edges per component instead of a single

one. Given an edge e = {x, y} ∈ ET such that y is the parent of x and y lies on cycle

Chapter 5 Extensions 31

L1

L2

L3

R1

R2

LR

Figure 5.2: Bag types and edges for a component in the tree decompositions of a k-cycle
tree.

Ci, we have the following types of bags, with edges between them as shown in Figure

5.2. (Note that if in the following we refer to boundary vertices, we always mean the

boundary vertices on higher numbered cycles.)

R1. This bag contains the vertex x and all its left and right boundaries.

R2. This bag contains all vertices in the bag R1 plus the vertex y.

L1. This bag contains the vertex y, all its left boundary vertices and the right boundary

vertices of y in the forest consisting of ET without the edge e and its right neighbors.

L2. This bag contains all vertices of the bag L1 plus the left boundary vertices of x

(including x itself, if x 6= c).

L3. This bag contains the vertices of the bag L2 minus the right boundary vertices z

of y without e and its right neighbors, such that z has a matching left boundary vertex.

That is, there is an edge between said boundary vertices and thus the vertex z can be

forgotten.

LR. This bag contains the union of the bags L3 and R2.

One can verify that this construction yields a tree decomposition for k-cycle trees. The

largest of its bags is of type LR, which might contain four boundary sets, each of which

has size at most k, plus the vertices x and y. Since we have only one vertex, which is

no boundary vertex (the central vertex c), we can conclude that the size of this bag is

at most 4k + 1 and hence this tree decomposition has width 4k.

We now count the number of parameters. For the edge orientation we need 3k + 1

parameters (by Lemma 4.1, Proposition 5.14 and [4, Theorem 83]), we have one edge

set for the spanning tree, k edge sets for the cycles, and we can use one vertex set for

the roots of the cycles. Hence, the total number of parameters is 4k+ 3. The predicates

in Appendix A.6 complete the proof.

Combining Lemma 5.16 with Theorem 5.5, we can derive the following.

Theorem 5.17. MSOL-definability equals recognizability for k-cycle trees.

Chapter 5 Extensions 32

5.4 Feedback Edge and Vertex Sets

In this section we consider graphs that can be obtained by the composition of a graph

that admits an existentially MSOL-definable (ordered) tree decomposition and some

feedback edge or vertex sets, defined below.

Definition 5.18. Let G = (V,E) be a graph. An edge set E′ ⊆ E is called feedback

edge set, if G′ = (V,E \ E′) is acyclic. Analogously, a vertex set V ′ is called feedback

vertex set, if the graph G′ = (V \ V ′, E \ E′) is acyclic, where E′ denotes the set of

incident edges of V ′ in E.

Theorem 5.19. Let G = (V,E) be a graph (and T = (V, F) a spanning tree of G),

which admits an existentially MSOL-definable (ordered or bounded degree) width-k tree

decomposition with p parameters, such that its vertex and edge bag predicates are asso-

ciated with either (a subset of the) vertices of the graph or (a subset of the) edges in the

spanning tree.

Let l be a constant. A graph G′ admits an existentially MSOL-definable (ordered or

bounded degree) tree decomposition of width k + l with at most p+ k + 1 parameters, if

one of the following holds.

(i) Let E′ denote a set of edges, such that each biconnected component of the graph

T ′ = (V, F ∪E′) has a feedback edge set of size at most l, where G′ = (V,E ∪E′).

(ii) Let V ′ denote a set of vertices and E′ ⊆ (V × V ′) ∪ (V ′ × V ′) a set of incident

edges, such that each biconnected component of the graph T ′ = (V ∪ V ′, F ∪ E′)
has a feedback vertex set of size at most l, where G′ = (V ∪ V ′, E ∪ E′).

Proof. (i). Let e = {v, w} be an edge in E′ and note that since G has bounded treewidth

k, there exists a (k + 1)-coloring on its vertices. Assume wlog. that the coloring set is

a set of natural numbers {1, . . . , k + 1} and col(v) < col(w). Then we add the vertex

v to each bag that is associated with either a vertex or an edge in T that lie on the

fundamental cycle of e. The width of the tree decomposition increased by at most l (by

Lemmas 6 and 73 in [4]).

(ii). Let v be a vertex in V ′. We add v to all bags that correspond to vertices/edges

contained in the same biconnected component as v (in T ′). The fact that the treewidth

increased by at most l follows from [4, Lemmas 6 and 72].

In Appendix A.7 we show how to extend all predicates to include the newly introduced

vertices in the bags for both cases. In (i), the number of parameters used might increase

by k + 1, since we don’t know whether we already know a coloring of the graph.

Note that by our construction, one can apply Theorem 5.19 to both Halin graphs and

k-cycle trees.

6

k-Outerplanar Graphs

In this chapter we investigate the class of k-outerplanar graphs (see Definition 2.3). As

a warm up, we will show that finite index implies MSOL-definability for bounded de-

gree k-outerplanar graphs (Section 6.1). We will prove the same result for 3-connected

k-outerplanar graphs (Sections 6.2 and 6.3). We resolve Courcelle’s Conjecture for the

general case of k-outerplanar graphs in Section 6.4, showing that finite index implies

CMSOL-definability. In our proof we use decompositions of graphs into 3-connected

components due to Tutte [30], which have been proven to be MSOL-definable by Cour-

celle [14].

Bodlaender has shown that every k-outerplanar graph has treewidth at most 3k − 1 [4,

Theorem 83], using the following properties of maximal spanning forests of a graph.

Definition 6.1 (Vertex and Edge Remember Number). Let G = (V,E) be a graph

with maximal spanning forest T = (V, F). The vertex remember number of G (with

respect to T), denoted by vr(G,T), is the maximum number over all vertices v ∈ V of

fundamental cycles (in G given T) that use v. Analogously, we define the edge remember

number, denoted by er(G,T).

In particular, Bodlaender gave a constructive proof that the treewidth of a graph is

bounded by at most max{vr(G,T), er(G,T) + 1} [4, Theorem 71] (see also the proof

of Theorem 6.2). The idea of the proof is to create a bag for each vertex and edge in

the spanning tree, containing the vertex itself (or the two endpoints of the edge, respec-

tively) and one endpoint of each edge, whose fundamental cycle uses the corresponding

vertex/edge. The tree structure of the decomposition is inherited by the structure of

the spanning tree. He then showed, that in a k-outerplanar graph G one can split the

vertices of degree d > 3 into a path of d−2 vertices of degree three without increasing the

outerplanarity index of G (the so-called vertex expansion step). In this expanded graph

G′ one can find a spanning tree of vertex remember number at most 3k − 1 and edge

remember number at most 2k [4, Lemmas 81 and 82]. Using [4, Theorem 71], this yields

33

Chapter 6 k-Outerplanar Graphs 34

a tree decomposition of width at most 3k − 1 for G′ and by simple replacements one

finds a tree decomposition for G of the same width. A constructive version of this proof

was given by Katsikarelis [23]. The expansion step is the major challenge in defining

a tree decomposition of a k-outerplanar graph in monadic second order logic, since we

cannot use these newly created vertices as variables. We find an implicit representation

of this step in Section 6.2.

However, if G has bounded degree, we do not need to define this step to find a bounded

width tree decomposition of G. We will start by investigating this case. In the following,

unless stated otherwise, we refer to G = (V,E) as a simple connected k-outerplanar

graph.

6.1 Bounded Degree k-Outerplanar Graphs

To prove Courcelle’s Conjecture for bounded degree k-outerplanar graphs, we show that

the tree decomposition constructed in the above mentioned proof by Bodlaender, whose

width is bounded by the vertex and edge remember number of a graph, is existentially

MSOL-definable.

Theorem 6.2. Let G = (V,E) be a graph with a spanning tree T = (V, F) and let

k = max{vr(G,T), er(G,T) + 1}. G admits

(i) an existentially MSOL-definable width-k tree decomposition of bounded degree with

k + 3 parameters, if G has bounded degree.

(ii) an existentially MSOL-definable ordered width-k tree decomposition with a con-

stant number of parameters, if there is an (existentially) MSOL-definable ordering

nb<(e, f) (with a constant number of parameters) over all edges e, f ∈ F with the

same head vertex.

(iii) an existentially MSOL-definable width-k tree decomposition with k+3 parameters.

Proof. For (i), (ii) and (iii) we can construct a tree decomposition (T ′, X) as shown

in the proof of Theorem 71 in [4]. That is, we create a tree T ′ = (V ∪ F, F ′), where

F ′ = {{v, e} | v ∈ V, e ∈ F,∃w ∈ V : e = {v, w}}, i.e. we add an extra node between

each two adjacent vertices in the spanning tree. The construction of the sets Xt, t ∈ V ∪F
works as follows. For a bag associated with a vertex v in the spanning tree we first add

v to Xv, and for a bag associated with an edge e, we add both its endpoints to Xe.

Then, for each edge e ∈ E \ F , we add one of its endpoints to each bag corresponding

to a vertex or edge on the fundamental cycle of e. To make sure that our method of

choosing one endpoint of an edge is MSOL-definable, we use the same argument as in

Chapter 6 k-Outerplanar Graphs 35

the proof of Theorem 5.19(i). That is, we assume the existence of a vertex coloring in

the graph and pick the vertex with the lower numbered color.

One can verify that (T ′, X) is a tree decomposition of G and we have for all vertex bags

Xv that |Xv| ≤ 1 + vr(G,T) and for all edge bags Xe that |Xe| ≤ 2 + er(G,T) and thus

the claimed width of (T ′, X) follows.

Now we show that finding a spanning tree such that its vertex and edge remember

number are bounded by a constant, say κ, is MSOL-definable, if it exists. We can

simply do this by guessing an edge set ET ⊆ E and checking whether ET is the edge

set of a spanning tree in G with the claimed bound on the resulting vertex and edge

remember numbers. Since κ is constant, this can be done in a straightforward way, see

Appendix A.8.

For defining the Bag- and Parent-predicates, we assume wlog. that we have a root and

an MSOL-definable orientation on the edges in the spanning tree,(i) so we can directly

define such predicates, see Appendix A.8.

For (i) one easily sees that (T ′, X) has bounded degree, since the degree of any node

corresponding to a vertex v ∈ V in the tree decomposition is equal to the degree of v in

G. Nodes containing edge bags are always intermediate nodes. As parameters we have

to guess the set of edges of the spanning tree, furthermore we need k + 1 color classes

(to choose one vertex per edge for a fundamental cycle) and one more edge set for the

edge orientation of the spanning tree.

We observe that (ii) holds, since we can define an orientation nb<(Xa, Xb) for the children

of each vertex bag by using the ordering of its corresponding edges. The number of

parameters is the same as in (i), plus the number of parameters used for the ordering

nb<, which is required to be constant.

(iii) follows from observations made in the proof of (i).

The predicates defined in Appendix A.8 complete the proof.

In his proof for the treewidth of k-outerplanar graphs being 3k−1, Bodlaender used the

following lemma.

Lemma 6.3 (Lemma 81 in [4]). Let G = (V,E) be a k-outerplanar graph with maximum

degree 3. Then there exists a maximal spanning forest T = (V, F) with er(G,T) ≤ 2k

and vr(G,T) ≤ 3k − 1.

By the ideas used in its proof, one immediately has the following consequence.

(i)This clearly holds by Lemma 4.1, since trees have treewidth 1.

Chapter 6 k-Outerplanar Graphs 36

Corollary 6.4. Let G = (V,E) be a k-outerplanar graph with maximum degree ∆. Then

there exists a maximal spanning forest T = (V, F) with er(G,T) ≤ 2k and vr(G,T) ≤
∆k − 1.

We can now prove the main result of this section.

Theorem 6.5. MSOL-definability equals recognizability for k-outerplanar graphs of

bounded degree.

Proof. Let G = (V,E) be a k-outerplanar graph with maximum degree ∆. By Corol-

lary 6.4, we know that there exists a maximal spanning forest T = (V, F) of G with

er(G,T) ≤ 2k and vr(G,T) ≤ ∆k − 1. By Theorem 6.2(i), we know that G admits an

MSOL-definable tree decomposition of bounded degree. If ∆ < 3, then the width of this

tree decomposition is at most 4k+ 1, and if ∆ ≥ 3, it is at most ∆k−1, so in both cases

the width is bounded by a constant. The rest now follows from Theorem 5.5.

6.2 An Implicit Representation of the Vertex Expansion

Step

As outlined before, the central step in constructing a width-(3k− 1) tree decomposition

of a k-outerplanar graph G is splitting the vertices of degree d > 3 into a path of d− 2

vertices of degree 3 without increasing the outerplanarity index of the graph G (see

the introduction of this chapter). Since we can’t mimic this expansion step in MSOL

directly, we have to find another characterization of this method, the first step of which

is to partition the vertices of a k-outerplanar graph into its stripping layers.

Definition 6.6 (Stripping Layer of a k-Outerplanar Graph). Let G be a k-outerplanar

graph. Removing the vertices on the outer face of an embedding of G is called the

stripping step. When applied repeatedly, the set of vertices being removed in the i-th

stripping step is called the i-th stripping layer of G, where 1 ≤ i ≤ k.

Lemma 6.7. Let G = (V,E) be a k-outerplanar graph. The partition of V into the

stripping layers of G is existentially MSOL-definable with k parameters.

Proof. We first introduce another characterization of stripping layers of k-outerplanar

graphs, which we can use later to define our predicates.

Proposition 6.8. Let G = (V,E) be a k-outerplanar graph. A partition V1, . . . , Vk of

V represents its stripping layers, if and only if:

(i) G[Vi] is an outerplanar graph for all i = 1, . . . , k.

Chapter 6 k-Outerplanar Graphs 37

(ii) For each vertex v ∈ Vi, all its adjacent vertices are contained in either Vi−1, Vi or

Vi+1.

Proof. (⇒) Since in each step we remove the vertices on the outer face of the graph,

it is easy to see that (i) holds. For (ii), suppose not. Wlog. assume that v ∈ Vi has a

neighbor w in Vi+2. Before stripping step i, v lies on the outer face. Now, for w to not

lie on the outer face after stripping step i, there needs to be a cycle crossing the edge

{v, w}, hence the embedding of G is not planar and we have a contradiction.

(⇐) We use induction on k. The case k = 1 is trivial. Now assume that G = (V,E) is an

`-outerplanar graph with a partition of V into V1, . . . , V` such that our claim holds. Let

V`+1 be a set of vertices with neighbors only in V`+1 and V`. We denote this edge set by

E`+1. Clearly, placing the vertices in V` on the outer face results in an (`+1)-outerplanar

embedding of the graph G′ = (V ∪ V`+1, E ∪E`+1). However, some vertices in V` might

still lie on the outer face. Denote this vertex set by V O
` . We let V ′`+1 = V`+1 ∪ V O

` and

V ′` = V`\V O
` . Then, the partition V1, . . . , V`−1, V ′` , V

′
`+1 satisfies our claim and the result

follows (reversing the indices of the sets in the partition).

It is well known that a graph is outerplanar if it does not contain K4, the clique of four

vertices, and K2,3, the complete bipartite graph on two and three vertices, as a minor (cf.

[17, p. 112], [28]). Borie et al. showed that the fixed minor relation is MSOL-definable

[7, Theorem 4], so in our definition we use the predicates MinorK4 and MinorK2,3 for

stating the respective minor containment. The rest can be done in a straightforward way

according to Proposition 6.8. The details of the predicates can be found in Appendix

A.9, which conclude the proof of Lemma 6.7.

Definition 6.9 (Layer Number). Let G = (V,E) be a planar graph. The layer number

of a face is defined in the following way. The outer face gets layer number 0. Then, for

each other face, we let the layer number be one higher than the minimum layer number

of all its adjacent faces.(ii)

Proposition 6.10. Let G = (V,E) be a k-outerplanar graph, V1, . . . , Vk its stripping

layers and v ∈ Vi. Each face f incident to v has either layer number i or i − 1.

Furthermore, f has layer number i − 1, if the boundary of f contains a vertex w with

w ∈ Vi−1.

Proof. We observe that removing all vertices on the outer face makes a face of layer

number i become a face of layer number i− 1 and our claim follows.

The expansion step does not preserve facial adjacency, so in order to not increase the

outerplanarity index of the graph, one makes sure that all faces are adjacent to a face with

(ii)Unless stated otherwise, we call to faces adjacent, if they share an incident vertex.

Chapter 6 k-Outerplanar Graphs 38

· · ·

v

w1

w2

w3

w4wd−2

wd−1

wd

f1
f2

f3fd−2

fd−1

fd

(a) before expansion

v1 v2 vd−2vd−1

f1

f2

f3
fd

fd−1fd−2

· · ·
vd−2

w1w2

w3 w4 wd−2 wd−1 wd

(b) after expansion

Figure 6.1: Expanding a vertex v, where f1 is a layer with lowest layer number.

lowest layer number. We illustrate the expansion step of a vertex in Figure 6.1. Following

the ideas of the proofs given in [4, Section 13], we define another type of remember

number to implicitly represent the expansion step for creating a tree decomposition of

a k-outerplanar graph.

Definition 6.11 (Face Remember Number). Let G = (V,E) be a planar graph with a

given embedding E and T = (V, F) a maximal spanning forest of G. The face remember

number of G w.r.t. T , denoted by fr(G,T) is the maximum number of fundamental

cycles C of G given T , such that bdE(f)∩E(C) 6= ∅, where bdE(f) denotes the boundary

edges of a face f , over all faces f in E , excluding the outer face.

For an illustration of face remember numbers, see Figure 6.2. Consider the vertex v1 in

Figure 6.1b and let e be an edge whose fundamental cycle Ce uses v1 in some spanning

tree of G′. We observe that Ce intersects with one of the face boundaries of f1, f2 or f3.

Since v1 is a vertex in the expanded graph, we know that in each tree decomposition

based on a spanning tree of G′ there will be a bag containing one endpoint of each edge,

whose fundamental cycle intersects with the face boundary of f1, f2 or f3. Using this

observation, we can also show that one can find a tree decomposition of a planar graph,

whose width is bounded by the face remember number of a maximal spanning forest,

without explicitly expanding vertices.

Lemma 6.12. Let G = (V,E) be a planar graph with maximal spanning forest T =

(V, F). The treewidth of G is at most max{er(G,T) + 1, 3 · fr(G,T)}.

v

f

e1

e2

e3
w

x

Figure 6.2: A spanning tree of a planar graph with some additional edges (dashed
lines). The remember number of the face f , bounded by bd(f) = {v, w, x}, is 3 in this
graph, since the fundamental cycles of the edges e1, e2 and e3 intersect with bdE(f).

Chapter 6 k-Outerplanar Graphs 39

· · ·{v} ∪ C(f1) ∪ C(f2) ∪ C(f3) {v} ∪ C(f1) ∪ C(f3) ∪ C(f4) {v} ∪ C(f1) ∪ C(fd−1) ∪ C(fd)

{v, w2} ∪ C(f1) ∪ C(f2)

{v, w2}

{v, w3} ∪ C(f2) ∪ C(f3)

{v, w3}

{v, wd} ∪ C(fd−1) ∪ C(fd)

{v, wd}

{v, w1} ∪ C(f1) ∪ C(fd)

{v, w1}

{v, w4} ∪ C(f3) ∪ C(f4)

{v, w4}

Figure 6.3: A component of a tree decomposition corresponding to a vertex, as used in
the proof of Lemma 6.12 (assuming, for explanatory purposes, that all incident edges

of v are contained in the maximal spanning forest of the graph).

Proof. Recall the vertex expansion step and see Figure 6.1 for an illustration. In the

following, we will construct a tree decomposition (T,X) of the unexpanded graph G,

imitating the ideas of the expansion step. That is, for each vertex v ∈ V we create a

path in (T,X) in the following way. First, we add v to each of these bags. Let f1 denote

a face with lowest layer number of all faces incident to v and let all face indices be as

depicted in Figure 6.1a.(iii) Let C(fi) denote the set, containing one endpoint of each

edge e ∈ E \F , whose fundamental cycle Ce intersects with the edge set of the boundary

of the face fi, i.e. bdE(fi) ∩ E(Ce) 6= ∅. Let deg(v) = d. We create bags containing the

vertices in C(f1) ∪ C(fi) ∪ C(fi+1), where i = 2, . . . , d − 1. (For an edge ei incident to

v, fi and fi+1 are its incident faces.) We make two bags adjacent, if they share two sets

C(fi) and C(fj) and belong to the same vertex. Note that this way we precisely imitate

the construction of bags for the artificially created vertices during the expansion step.

Furthermore, for each edge e ∈ F , we create a bag containing both its endpoints and

one endpoint of each edge efc, whose fundamental cycle uses e. We observe that the set

C(fi) ∪ C(fj) contains precisely one vertex for each such edge efc, where fi and fj are

the two faces incident to e. We then make this bag adjacent to each bag created in the

step before, which corresponds to both C(fi) and C(fj) and one more set C(f ′). For

each incident vertex there will always be precisely one such bag and hence, each edge

bag will have two neighbors in the tree decomposition (one for each endpoint). For an

overview of the constructed component, see Figure 6.3.

One can verify that this construction yields a tree decomposition of G, and since we

know that by definition |C(f)| ≤ fr(G,T) for all faces f (except the outer face) we

know that its width is bounded by max{er(G,T) + 1, 3 · fr(G,T)}.

To apply this result to a k-outerplanar graph G, we show that we can find a maximal

spanning forest of G of bounded edge and face remember number.

(iii)Note that by by Proposition 6.10, this number will be either i or i− 1, if v ∈ Vi.

Chapter 6 k-Outerplanar Graphs 40

Lemma 6.13. Let G = (V,E) be a k-outerplanar graph. There exists a maximal span-

ning forest T = (V, F) of G with er(G,T) ≤ 2k and fr(G,T) ≤ k.

Proof. The proof can be done analogously to the proof of Lemma 81 in [4].

6.3 3-Connected k-Outerplanar Graphs

We now show that the construction of the tree decomposition given in the previous sec-

tion is existentially MSOL-definable for 3-connected k-outerplanar graphs. Particularly

we will make use of the fact that the face boundaries of a 3-connected planar graph be

defined by a predicate in monadic second order logic. We will then define an ordering

of all incident edges of a vertex to create a path in the tree decomposition as described

in the proof of Lemma 6.12.

A classic result by Whitney states that every 3-connected planar graph has a unique

embedding [34] (up to the choice of the outer face). Reconstructing this proof, Diestel

has shown that the face boundaries of this embedding can be characterized in strictly

combinatorial terms.

Proposition 6.14 (P. 4.2.7 in [17]). The face boundaries in a 3-connected planar graph

are precisely its non-separating induced cycles.

We immediately have the following.

Proposition 6.15. The face boundaries of a 3-connected planar graph are MSOL-

definable.

Proof. We use Proposition 6.14 and define a predicate, which is true if and only if

a vertex set V ′ is the face boundary of a 3-connected planar graph in the following

straightforward way.

FaceBd3(V
′)⇔ Cycle(V ′, IncE(V ′)) ∧ Conn(V \ V ′, E \ IncE(V ′))

We can use this predicate to define this notion in terms of edge sets as well.

FaceBd3(E
′)⇔ FaceBd3(IncV(E′))

Using these observations, we can define predicates encoding the above mentioned order-

ing on the incident edges of each vertex. We first need another definition.

Chapter 6 k-Outerplanar Graphs 41

eAe′A

(a) A vertex
v with the an-
chor edge eA
and edge e′A.

eAe′A

ei

ej

(b) The path
from eA to ei,
according to
face adjacency.

eAe′A

ei

ej

(c) The path
from eA to ej ,
according to
face adjacency.

Figure 6.4: A vertex v with two edges ei and ej , such that nb<(ei, ej) as described in
the proof of Lemma 6.17, defining a clockwise ordering on the incident edges of v. Note
that paths in the other direction starting at eA don’t exists, since e′A can’t be included

in such a path.

Definition 6.16 (Face-Adjacency of Edges). Let G = (V,E) be a planar graph and

v ∈ V . We call two incident edges e, f ∈ E of v face-adjacent, if there is a face-boundary

containing both e and f .

Lemma 6.17. Let G = (V,E) be a 3-connected k-outerplanar graph, v ∈ V with

deg(v) > 3 and eA an incident edge of v, called its anchor. There exists an order-

ing nb<(e, f), which mimics a clockwise (or counter-clockwise) traversal (in the unique

embedding of G) on all incident edges of v, starting at eA, which is existentially MSOL-

definable with two parameters eA and e′A.

Proof. We first observe an important property of 2-connected planar graphs, which we

will use to define the ordering later in the proof.

Proposition 6.18. Let G = (V,E) be a 2-connected planar graph and v ∈ V . Then, all

faces incident to v are pairwise different.

Proof. Suppose not. Then {v} is a separator of G.

Let e′A be another incident edge of v, which bounds some face together with eA. (Note

that there are exactly two such edges in G, the choice of which decides whether the

ordering is clockwise or counter-clockwise.) For any pair of incident edges of v, ei and

ej , we let nb<(ei, ej), if and only if we can find sets of edges Ei and Ej with the following

properties. Let Inc(v) denote the set of incident edges of v.

(i) For ` = i, j, the set E` consists of the edge e`, eA and a subset of Inc(v)\{e′A} and

contains precisely all pairs of face-adjacent edges that, according to face-adjacency,

form a path from eA to e`.

Chapter 6 k-Outerplanar Graphs 42

(ii) Ei ⊂ Ej .

For an illustration of the meaning of these edge sets see Figure 6.4. We now turn to

defining this ordering in MSOL. By Proposition 6.18, we know that all faces adjacent to

v are pairwise different and hence, we can use Proposition 6.15 to define paths in terms

of face-adjacency in the unique embedding of G between two incident edges of v. The

predicates given in Appendix A.9.1 complete the proof.

Note that one can lead an alternative proof of Lemma 6.17, using the notion of rotation

systems, introduced in [15]. Furthermore one can see that the relation nb<(e, f) is

existentially MSOL-definable for an entire graph G by replacing the parameters in the

formulation of Lemma 6.17 with the corresponding edge set equivalents.

Defining the Tree Decomposition

Lemma 6.19. Let G = (V,E) be a 3-connected k-outerplanar graph. G admits an ex-

istentially MSOL-definable tree decomposition of width at most 3k and maximum degree

3 with 4k + 4 parameters.

Proof. We mimic the construction given in the proof of Lemma 6.12 and use the same no-

tation. We first prove the definability of the spanning tree, upon which the construction

of our tree decomposition is based.

Proposition 6.20. Let G = (V,E) be a 3-connected k-outerplanar graph. There exists

a spanning tree T = (V, F) of G with er ≤ 2k and fr(G,T) ≤ k, which is existentially

MSOL-definable with one parameter, the edge set F of T .

Proof. By Lemma 6.13 we know that such a spanning tree T exists. We can use Propo-

sition 6.15 to define T in MSOL, see Appendix A.9.2.

We direct the spanning tree T of Proposition 6.20 as shown in Lemma 4.1 to be a rooted

tree, using a 3k-coloring ΓG of G. Note that two colors would already suffice, but we

will later use these color sets to impose an (arbitrary) orientation on the edges in E \F
as well.

We now choose the set of anchor and co-anchor edges EA and E′A, respectively, to fix

an ordering on the incident edges of a vertex as shown in Lemma 6.17. For a vertex v,

let e`1 and e`2 denote the edges bounding a face f` with lowest layer number. We then

add e`1 to EA and e`2 to E′A. Hence, we have that nb<(e`1 , e), for all incident edges e

of v.

Chapter 6 k-Outerplanar Graphs 43

f`e`1
e`2

e1

e2

e3
e4

e5

nb<

(a) A vertex with inci-
dent (directed) edges. Fat
edges are in the spanning

tree.

σH(e1) σT (e2) σT (e3) σH(e4) σH(e5)

σ(e1) σ(e3) σ(e4)

σ(e`2)

(b) The component in the tree decomposition,
where the edge-orientation describes the Parent-

relation.

Figure 6.5: A component of a definable tree decomposition as described in the proof
of Lemma 6.19, corresponding to a vertex v with a clockwise ordering on its edges,
anchored at e`1 , where f` is a face with lowest layer number of all incident faces of v.

We define three types of bag predicates, all associated with edges. The first type, σ,

contains the endpoints of an edge e ∈ F in the spanning tree of G and one endpoint of

each edge, whose fundamental cycle uses e. Note for the following that we can identify

an incident face of lowest layer number of each vertex by using Proposition 6.10 (for

details see Appendix A.9.2). If there is more than one face with lowest layer number,

we choose the one which is closest to the unique incoming edge in v of T (according to

nb<).

We fix an arbitrary orientation on all edges in E \F using the coloring ΓG together with

the empty edge set (see Lemma 4.1). Then we define two more types of bags, σH and

σT for each edge ei ∈ Inc(v) \ {e`1 , e`2} for all v ∈ V . Let ei = {v, w} with orientation

from v to w. Then, we create a bag of type σH , containing v and one endpoint of each

edge in C(v, f`)∪C(v, fi−1)∪C(v, fi),
(iv) meaning that σH is a type associated with the

head vertex of an edge. We similarly define a type associated with the tail vertex of an

edge, σT , which is created in the same way as σH , except that it contains the tail vertex

instead of the head vertex of ei (in this case: w).

We now turn to defining the Parent-predicate. For an illustration of any of the be-

low mentioned cases, we refer the reader to Figure 6.5, which gives an example of a

component of a tree decomposition constructed for a vertex v.

First we consider bags of type σ. Let e = {v, w} ∈ F such that v is its tail vertex and

denote the corresponding σ-bag by X. Then, we make X the parent of the bag Y of

type σT for the edge e. If v is the head vertex of e, then we make the bag Y of type σH

for the edge e the parent of the bag X. As mentioned above, we do not create bags of

type σH and σT for the two edges bounding the face with lowest layer number f` (for

details see the proof of Lemma 6.12). Let e` ∈ {e`1 , e`2}. Then, we make the bag X of

type σ corresponding to e` the parent of a bag Y of type σT corresponding to an edge

e, if e and e` bound a face together, which is adjacent (in this case, sharing an edge) to

(iv)As opposed to the notation in the proof of Lemma 6.12, we use the vertex v as an argument for sets
C as well to clarify that the faces we are considering in this step are incident faces of v.

Chapter 6 k-Outerplanar Graphs 44

the face f`. Analogously, we make Y the parent of X, if X is of type σH for such an

edge e`.

Furthermore, we need to add edges between bags of types σT and σH as well. Note

that by now, the only bag, which already has a parent is the bag of type σT for the

unique incoming edge e∗ ∈ F in the spanning tree of G. We use the ordering nb<(e, f)

of the incident edges of a vertex v to make sure that the resulting tree decomposition is

rooted. Let nb≺(e, f) express that two incident edges e, f of v are direct neighbors in

the ordering nb<(e, f). Suppose that X∗ is the σT -bag for the edge e∗ and Y is either a

σH - or σT -bag for an edge f with either nb≺(e∗, f) or nb≺(f, e∗). In all of these cases,

we make X∗ the parent of Y , since X∗ already has a parent bag. We observe that we

have to direct the remaining edges in such a way that they point away from the bag

X∗. Let e, f ∈ Inc(v) \ {e∗, e`1 , e`2} with nb≺(e, f), X the σH/σT -bag of e and Y the

σH/σT -bag of f . We have to analyze two cases. Note that always precisely one of the

two holds.

(i) If nb<(e∗, e), then make X the parent of Y .

(ii) If nb<(f, e∗), then make Y the parent of X.

This completes existentially defining the tree decomposition as constructed in the proof

of Lemma 6.12 in monadic second order logic for a 3-connected k-outerplanar graph.

We now count the parameters used in this proof. To find a face with lowest layer number

for each vertex, we need the partition into its stripping layers as shown in Lemma 6.7.

For this step we need k parameters. As explained above, for directing the edges of G

we use 3k color sets (G has treewidth at most 3k − 1 [4]) and one edge set (see Lemma

4.1). We fix edge sets for the spanning tree and the anchors EA and co-anchors E′A of

the edge ordering nb<(e, f). Hence, total number of parameters is 4k + 4.

The predicates given in Appendix A.9.2 complete the proof.

6.4 Implications of Hierarchical Graph Decompositions to

Courcelle’s Conjecture

By a well-known result, a connected graph G can be decomposed into its cut vertices

and blocks, which then can be joined together in a tree structure (cf. Section 2.1 in [17]).

These blocks are either single edges or maximal 2-connected subgraphs of G.(v) Hence,

one can find a tree decomposition of a connected graph, such that each bag contains

either a cut vertex one of its blocks, by making a bag containing a cut vertex vc adjacent

(v)Let G = (V,E) be a graph and W ⊆ V . H = G[W] is called a maximal 2-connected subgraph of G,
if for all W ′ ⊃W , G[W ′] is not 2-connected.

Chapter 6 k-Outerplanar Graphs 45

to each bag X containing a block of G, if vc ∈ X. Clearly, in the general case, these tree

decompositions do not have bounded width.

Analogously, Tutte showed that given a 2-connected graph (or a block of a connected

graph) one can find a decomposition into its 2-cuts and 3-blocks, the latter of which

are either 3-connected graphs or cycles (but not necessarily subgraphs of G, see below),

which can be joined in a tree structure in the same way [30, Chapter 11] [31, Section IV.3].

Courcelle showed that both of these decompositions of a graph are MSOL-definable [14]

and also proved that one can find an MSOL-definable tree decomposition of width 2, if

all 3-blocks of a graph are cycles [14, Corollary 4.11]. In this section, we will use these

methods to prove Courcelle’s Conjecture for k-outerplanar graphs by showing that the

results of the previous section can be applied to define tree decompositions of 3-connected

3-blocks of a k-outerplanar graph as well.

As many of our proofs make explicit use of the structure of Tutte’s decomposition of

a 2-connected graph into its 3-connected components, we will now review this concept

more closely.

Definition 6.21 (3-Block). Let G = (V,E) be a 2-connected graph, S a set of 2-cuts of

G and W ⊆ V . A graph H = (W,F) is called a 3-block, if it can be obtained by taking

the induced subgraph of W in G and for each incident 2-cut S = {x, y} ∈ S, adding the

edge {x, y} to F (if not already present), plus one of the following holds.

(i) H is a cycle of at least three vertices (referred to as a cycle 3-block).

(ii) H is a 3-connected graph (referred to as a 3-connected 3-block).

Definition 6.22 (Tutte Decomposition). Let G = (V,E) be a 2-connected graph. A

tree decomposition (T = (N,F), X) is called a Tutte decomposition of G, if the following

hold. Let S denote a set of 2-cuts of G.

(i) For each t ∈ N , Xt is either a 2-cut S ∈ S (called the cut bags) or the vertex set

of a 3-block (called the block bags).

(ii) Each edge f ∈ F is incident to precisely one cut bag.

(iii) Each cut bag is adjacent to precisely two block bags.

(iv) Let t ∈ T denote a cut node with vertex set Xt. Then, t is adjacent to each block

node t′ with Xt ⊂ Xt′ .

Tutte has shown that additional restrictions can be formulated on the choice of the set of

2-cuts, such that the resulting decomposition is unique for each graph (for details see the

above mentioned literature). In the following, when we refer to the Tutte decomposition

of a graph, we always mean the one that is unique in this sense, which is also the one that

Chapter 6 k-Outerplanar Graphs 46

Courcelle defined in his work [14]. Similarly, by a 3-connected 3-block (cycle 3-block,

2-cut etc.) of a graph G we mean a 3-connected 3-block in the Tutte decomposition of

a block of G.

We will now state a property of Tutte decompositions, which will be useful in later

proofs.

Definition 6.23 (Adhesion). Let (T = (N,F), X) be a tree decomposition. The adhe-

sion of (T,X) is the maximum over all pairs of adjacent nodes t, t′ ∈ N of |Xt ∩Xt′ |.

Proposition 6.24. Each Tutte decomposition has adhesion 2.

Proof. The claim follows directly from Definition 6.22 (ii) and (iv).

For the proof of the next lemma, we need the notion of W -paths.

Definition 6.25. Let G = (V,E) be a graph, W ⊆ V and x, y ∈ V . Then, a path

Pxy = (VP , EP) between x and y is called a W -path, if x, y ∈ W and VP ∩W = {x, y},
i.e. Pxy avoids all vertices in W except its endpoints.

Lemma 6.26. Let G = (V,E) be a 2-connected graph with Tutte decomposition (T =

(N,F), X). If G is k-outerplanar, then all 3-connected 3-blocks C = (W,F) of (T,X)

are at most k-outerplanar.

Proof. We know that W = Xt for some t ∈ N . Let S = {x, y} denote a 2-cut of G,

which is incident to W . If {x, y} ∈ E, we do not have to consider S any further, so in

the following, if we refer to a 2-cut S, we always assume that {x, y} /∈ E. Since each

such pair {x, y} appears in precisely two 3-blocks (Definition 6.22 (iii)), we know that

there is always at least one W -path between x and y in G.

Proposition 6.27. Let (T = (N,F), X) be a tree decomposition of adhesion 2 and

t ∈ T . Let P1 and P2 denote two Xt-paths. If P1 and P2 share an internal vertex, then

P1 and P2 have the same endpoints.

Proof. Let t ∈ N . Then, all internal vertices of an Xt-path P are contained in a set of

bags of a unique component Tt of T [N \ {t}]. Let t′ ∈ Tt be a neighbor of t. Then, the

endpoints of P1 and P2 are contained in Xt ∩ Xt′ . Since (T,X) has adhesion 2, both

paths have to have the same endpoints.

Let G′ = G[W] denote the induced subgraph of G over the vertex set W . For each 2-cut

S incident to W we add one W -path from G to G’, connecting the two vertices in S.

Since G is planar and G′ is a subgraph of G, we know that G′ is planar. Since (T,X)

has adhesion 2 (Proposition 6.24), we know by Proposition 6.27 that there is no pair

of W -paths corresponding to two different incident 2-cuts, sharing an internal vertex.

Chapter 6 k-Outerplanar Graphs 47

G G[W]a

b

x
y

Figure 6.6: A 2-connected graph G with induced subgraph G[W] over the vertex set
of a 3-connected 3-block of G with incident 2-cuts {a, b} and {x, y}. The dashed lines
indicate that there might be several edges between a vertex and the depicted set and

dotted lines represent (W -)paths in G.

Hence, we can contract each of these paths to a single edge such that the embedding of

G′ stays planar. Clearly, G′ is isomorphic to C after contraction and the outerplanarity

index of G′ is less than or equal to k.

For an illustration of the proof of Lemma 6.26, see Figure 6.6. The ideas in this proof can

be applied to more general graph classes as well and we have the following consequence.

For the proof of statement (ii), we need the following definition.

Definition 6.28 (Safe Separator [6]). Let G = (V,E) be a connected graph with sepa-

rator S ⊂ V . S is called a safe separator, if the treewidth of G is at most the maximum

of the treewidth of all connected components W of G[V \ S], by making S a clique in

G[W].

Corollary 6.29. Let G be a 2-connected graph with Tutte decomposition (T,X).

(i) If G is planar, then the 3-connected 3-blocks of (T,X) are planar.

(ii) If G is a partial k-tree, then the 3-connected 3-blocks of (T,X) are partial k-trees

(for k ≥ 2).

(iii) If G is H-minor free, then the 3-connected 3-blocks of (T,X) are H-minor free,

where H is a set of fixed graphs.

Proof. (i) and (iii) follow from the same argumentation (and, clearly, (i) is a consequence

of (iii) by Wagner’s Theorem [33]). For (ii), we observe the following. By [14, Corollary

4.12] we know that each cut bag S = {x, y} is a safe separator of G and hence, there

is a width-k tree decomposition of G which has a bag Xxy containing both x and y.

Subsequently, adding the edge between x and y does not increase the treewidth of a

3-connected 3-block B3. (One simply performs a short case analysis of whether Xxy is

contained in the tree decomposition of B3 or not.)

Chapter 6 k-Outerplanar Graphs 48

Replacing Edge Quantification by Vertex Quantification

As discussed above, a 3-block is in general not a subgraph of our graph G, as we add

edges between the 2-cuts of the Tutte decomposition to turn the 3-blocks into cycles

or 3-connected graphs. Since these absent edges can’t be used as variables in MSOL-

predicates (which would make our logic non-monadic), we need to find another way to

quantify over them.

In [11], Courcelle discusses several structures over which one can define monadic second

order logic of graphs, which we will now review.

Definition 6.30 (cf. 1.7 in [11]). Let G = (V,E) be a graph. We associate with G two

relational structures, denoted by |G|1 = 〈V, edg〉 and |G|2 = 〈V ∪ E, edg′〉.

(i) All MSOL-sentences and -predicates over |G|1 only use vertices or vertex sets as

variables and we have that edg(x, y) is true for x, y ∈ V , if and only if there is some

edge {x, y} ∈ E. MSOL-sentences and -predicates over |G|2 use both vertices and

edges and vertex and edge sets as variables. Furthermore, edg′(e, x, y) is true if

and only if e = {x, y} and e ∈ E.

(ii) If we can express a graph property in the structure |G|1, we call it 1-definable and

if we can express a graph property in the structure |G|2, we call it 2-definable.

Clearly, the monadic second order logic we are using throughout this thesis is the one

represented by the structure |G|2. We use both vertex and edge quantification and one

simply rewrites Inc(v, e) to ∃w edg′(e, v, w). Since every 1-definable property is triv-

ially also 2-definable, we can conclude that both 1-definability and 2-definability imply

MSOL-definability in our sense. Some of the main results of [11] can be summarized as

follows.

Theorem 6.31 ([11]). 1-Definability equals 2-definability for

(i) planar graphs.

(ii) partial k-trees.

(iii) H-minor free graphs, where H is a set of fixed graphs.

Hence, by Theorem 6.31 we know that we can rewrite each formula using vertex and edge

quantification to one only using vertex quantification, if a graph is a member of one of

these classes. We will now show that this result can be used to implicitly quantify over

virtual edges of a graph, if these virtual edges can be expressed by an (existentially)

MSOL-definable relation. (For a similar application of this result, see [14, Problem

4.10].)

Chapter 6 k-Outerplanar Graphs 49

Lemma 6.32. Let G = (V,E) be a graph which is a member of a graph class C as

stated in Theorem 6.31 and let P denote a graph property, which is 2-definable by a

predicate φP . Let E′ ⊆ V ×V denote a set of virtual edges, such that there is a predicate

edgV irt(v, w), which is true if and only if {v, w} ∈ E′. Then, P is 1-definable for the

graph G′ = (V,E ∪ E′), if G′ is a member of C.

Proof. By Theorem 6.31, P is 1-definable for the graph G. Let φP |1 denote the predicate

expressing P in |G|1. We replace each occurrence of ’edg(x, y)’ in φP |1 by ’edg(x, y) ∨
edgV irt(x, y)’ and denote the resulting predicate by φ′P |1, which expresses the property

P for the graph G′ in |G′|1. Since G′ ∈ C, one can replace quantification over sets of

virtual edges (or mixed sets of edges and virtual edges) by vertex set quantification in

the same way as for G.

For the specific case of k-outerplanar graphs, we can now derive the following.

Corollary 6.33. Let G = (V,E) be a k-outerplanar graph and P a graph property,

which is (C)MSOL-definable for 3-connected k-outerplanar graphs. Let B3 denote a 3-

block of G, including the virtual edges between all incident 2-cuts of B3. Then, P is

(C)MSOL-definable for B3.

Proof. By [14, Section 3] we know that there is a predicate φC2(x, y), which is true, if

and only if {x, y} is a 2-cut in the Tutte decomposition of (a block of) G. We know

that B3 (including the virtual edges) is still k-outerplanar (Lemma 6.26). Hence let

edgV irt(x, y) = φC2(x, y) and apply Lemma 6.32.

Note that the statements of Lemma 6.32 and Corollary 6.33 also hold for existential

definability.

Defining the Tree Decomposition of a k-Outerplanar Graph

By Corollary 6.33 we now know that every graph property, which can be defined for a

3-connected k-outerplanar graph, can also be defined for a 3-block of any k-outerplanar

graph G (including its virtual edges).

To apply these results to any k-outerplanar graph G, we first show how to construct

an existentially definable tree decomposition of G, assuming that there exist predicates

existentially defining bounded width tree decompositions for the 3-connected 3-blocks

of (the Tutte decomposition of the 2-blocks of) G. For an illustration of the proof idea

of the following Lemma, see Figure 6.7, which shows that we can fix a parent-child

ordering of the hierarchical graph decomposition of G. After replacing the 3-blocks of

G by their corresponding tree decompositions (taking into account the direction of the

Chapter 6 k-Outerplanar Graphs 50

G

B2

C1

B3

C2

C2

C2

C2

B3

B3

B3

⇒
⇒

B2

B2 B3

Figure 6.7: An example hierarchical decomposition of a graph G. A bag labeled C1

contains a cut-vertex of G, C2 a 2-cut of G. Bags labeled B2 contain a 2-block (a
single edge or a maximal 2-connected component). If a 2-block contains a maximal
2-connected component of G, it is decomposed further into its 2-cuts and 3-blocks,

labeled by B3, which contain either a cycle or a 3-connected 3-block.

edges in the hierarchical decomposition), one can see that we have a bounded width tree

decomposition of the entire graph G.

Remark 6.34. Note that in the proofs of the following results, one guesses a rooted

spanning tree S = (V, FS) of a k-outerplanar graph G = (V,E), which will be used

to induce a parent-relation on the bags of the hierarchical decomposition of G (see

Figure 6.7). The edges of this spanning tree will also be used to induce a parent-

relation in the tree decompositions of the 3-connected 3-blocks of G (see Lemma 6.39)

and hence we know that we can replace each bag containing a 3-connected 3-block in

a Tutte decomposition by its tree decomposition without creating a conflicting parent-

child ordering in the thus resulting tree decomposition of G.

Lemma 6.35. Let G = (V,E) be a k-outerplanar graph with Tutte decompositions

(T,X) of its 2-connected blocks. Then, G admits an existentially MSOL-definable tree

decomposition of width at most 3(k + 1) with a constant number of parameters, if there

exist predicates existentially defining width-3k tree decompositions for the 3-connected

3-blocks of G with a constant number of parameters.

Proof. Recall the decomposition of a graph into its 3-connected components described

in the beginning of Section 6.4 and see Figure 6.7 for an illustration. We will first show

how to construct a rooted tree decomposition (T = (N ,F),X) of G width at most 3k+3

and then prove that (T ,X) is indeed MSOL-definable. Naturally, the description of the

tree decomposition is already aimed at providing straightforward methods to define its

predicates in MSOL.

I. Constructing the tree decomposition. We use the following notation. C1 denotes

the set of singletons containing a cut-vertex of G and C2 denotes the set of 2-cuts in

all Tutte decompositions of the 2-connected blocks of G. Furthermore, B2 denotes the

set of blocks of G, BE2 the set of blocks that are single edges and B3 denotes the set of

3-blocks of (T,X). Let ΘB3 = {Θ1, . . . ,Θr} denote the set of tree decompositions of all

Chapter 6 k-Outerplanar Graphs 51

elements in B3. Then, we create a bag in (T ,X) for all elements in C1, C2, BE2 and all

bags of each Θi in ΘB3 , where 1 ≤ i ≤ r. Note that if a 3-block B3 ∈ B3 is a cycle, one

can find a tree decomposition of B3 of width 2 directly. We will later study how to find

an MSOL-definable tree decomposition of such a cycle in a more detailed way.

(In the following, keep Remark 6.34 in mind.) We add an edge to F between all pairs of

adjacent bags originating from a tree decomposition Θi with the same orientation. To

make T a directed tree, we add edges to F between the above mentioned components

in the following way. First, we take a spanning tree S = (V, FS) of G with an arbitrary

root r ∈ V . For each vertex x ∈ V , let Px denote the path from r to x in S.

Let B2 ∈ B2 \ BE2 with Tutte decomposition (T = (N,F), X). We know that the bags

of (T,X) either contain a 2-cut C2 ∈ C2 or a 3-block B3 ∈ B3 with tree decomposition

Θi ∈ ΘB3 for some i with 1 ≤ i ≤ r. We now show which edges we need to add to F
and how to direct them to obtain a tree decomposition of B2 of width at most 3k + 2.

We know that each edge in F is incident to one cut bag and one block bag (Definition

6.22(ii), cf. Figure 6.7). Let C2, B3 and Θi be as above and additionally C2 ⊂ B3. By

Definition 6.22(iv) we know that there has to be an edge in F between C2 and one bag

in Θi, as there is an edge in F between C2 and B3. Since C2 is a separator of G we

know that for all v ∈ B3, v 6= x and v 6= y one of the following cases holds. (Either all

paths Pv go through x or y or none of them.)

(i) Px @ Pv or Py @ Pv.

(ii) Pv @ Px or Pv @ Py.

In case (i), we add the vertices x and y to all bags in Θi and add an edge between Xt
and the root of Θi. Hence, we introduce at most two vertices to each bag. Referring to

Figure 6.7, this is the case when the cut bag is the parent of a block bag. By Definition

6.22(iii) there is precisely one such bag.

However, a block bag can be the parent of an unbounded number of cut bags, which is

dealt with in case (ii). Since there is a (virtual or non-virtual) edge between the vertices

x and y in B3, we know that there exists at least one bag in Θi containing the two

vertices. We need to find one directly identifiable bag Xt′ in Θi, which we can make a

parent of Xt. If there is a bag X∗ in Θi containing x and y, whose parent bag does not

contain both vertices, then we let Xt′ = X∗. If no such X∗ exists, then we let Xt′ be the

root of Θi, which subsequently has to contain both x and y. One can verify that this

yields a rooted tree decomposition of width at most 3k + 2 for any B2 ∈ B2 \ BE2 .

To finish the construction of the rooted tree decomposition (T ,X), we need to show,

which edges to add to F between bags in C1 and (tree decompositions of elements in)

B2. We use the same idea as before, based on the spanning tree S of G. In the following

Chapter 6 k-Outerplanar Graphs 52

let C1 = {x} ∈ C1 and B2 ∈ B2 with C1 ⊂ B2. We have the same two cases as before.

Since C1 is a separator of G, one of the following holds for all v ∈ B2, v 6= x.

(i) Px @ Pv.

(ii) Pv @ Px.

Again, in case (i), there is a bag Xt with Xt = C1, which is the parent bag of some

bag associated with the component B2. We add x to all bags associated with B2 and

make Xt the parent of a bag Xt′ , where Xt′ is a bag with Xt′ = B2 in case B2 ∈ BE2
and if B2 ∈ B2 \ BE2 , Xt′ is the root bag of the tree decomposition of B2, constructed

as described above. In case (ii) when B2 ∈ BE2 , we simply let the bag Xt with Xt = B2

be the parent of the bag Xt′ with Xt′ = C1. If B2 ∈ B2 \ BE2 , we observe the following.

Since x is a cut vertex of G, no 2-cut of a block of G can contain x. Hence we know that

there exists one unique 3-block B∗3 ∈ B3 with x ∈ B∗3 . We denote its tree decomposition

by Θ∗i . Again, we find a bag Xt in Θ∗i , such that its parent does not contain x. If no

such bag exists, we let Xt be the root of Θ∗i . We again let Xt′ be the bag with Xt′ = C1

and make Xt the parent of Xt′ .

One can verify that now (T ,X) is a rooted tree decomposition and since in the last stage

we introduced at most one vertex to each bag of a tree decomposition of an element in

B2, its width is at most 3k + 3.

II. Definability. For defining all necessary predicates for the tree decomposition (T ,X),

we will refer to G as the graph after adding all virtual edges of its Tutte decomposition.

We might write down predicates quantifying over virtual edges or having virtual edges

as free variables, and by Corollary 6.33 we know that all these predicates can be defined

only using vertex quantification as well.

By some trivial definitions, the statement of the lemma, and the results of [14] we know

that the predicates listed below exist.

Proposition 6.36 (cf. [14]). Let G = (V,E) be a k-outerplanar graph, for whose 2-

blocks all Tutte decompositions are known. Let G′ = (V,E∪E′) denote the graph obtained

by adding all corresponding virtual edges E′ to G and γ : V → N|3k+1 a coloring of V in

G′. The following predicates are MSOL-definable.

(I) BagC1(v,X): X ∈ C1 and X = {v}.

(II) BagBE2 (e,X): X ∈ BE2 and X = {v, w}, where e = {v, w}.

(III) 2-ConnB2\BE2 (X): X is the vertex set of a 2-connected 2-block of G.

(IV) BagC2(v,X): X ∈ C2, v ∈ X and for w ∈ X, v 6= w, we have γ(v) < γ(w).

(V) 3-ConnB3(X): X is the vertex set of a 3-connected 3-block of G.

Chapter 6 k-Outerplanar Graphs 53

(VI) CycleB3(X): X is a set of vertices forming a cycle block in a 2-block of G.

(VII) BagB3τ1 (v,X), . . . ,BagB3τt (v,X),BagB3σ1 (e,X), . . . ,BagB3σs (e,X): The Bag-predicates of

the tree decompositions of the 3-connected 3-blocks of G.

(VIII) ParentB3(X,Y): The Parent-predicate of the tree decompositions of the 3-connected

3-blocks of G.

Proof. (I) and (II) follow from [14, Lemma 2.1], (III) from [14, Section 2] and (IV) from

[14, Section 3] and Corollary 6.33. (V) is shown in [14, Corollary 4.8] and a proof of (VI)

can done with the same argument. Finally, (VII) and (VIII) are part of the statement

of the lemma.

We now turn to defining tree decompositions for the cycle 3-blocks of a graph, after

which we only need to show that gluing together all components of our construction

explained above is MSOL-definable.

Proposition 6.37. Let G = (V,E) be a graph and C = (W,F) a cycle 3-block of G (in-

cluding virtual edges). There is an existentially definable predicate BagCyc(e,X), which

is true if and only if X is a bag of a tree decomposition of C associated with a (possi-

bly virtual) edge e and an existentially definable predicate ParentCyc(X,Y) encoding a

parent-relation of a tree decomposition of C.

Proof. Recall that for orienting the edges of our tree decomposition, we first find a

spanning tree S of the graph G with root r and note that by Proposition 6.36(V), W

is MSOL-definable. To create a definable tree decomposition of C, we now find a root

rC ∈ W of C. If r ∈ W , we let rC = r, otherwise we know that there is one parent

component CP ∈ C1 ∪ C2 of C in G. CP can be identified by checking for all 1- and

2-cuts CC , which are incident to W , if all paths in S from r to the vertices w ∈W pass

through (at least one of the vertices in) CC . This can be defined in a straightforward

way and one can see that there is always precisely one such cut. If CP = {x} ∈ C1, then

we let rC = x and if CP = {x, y} ∈ C2, then we let rC = x, if γ(x) < γ(y) in a fixed

coloring γ of C. We create a bag X for each edge f = {v, w} ∈ F , which is not incident

to rC and let X = {rC , v, w}. Hence, the predicate BagCyc(e,X) is also definable in a

straightforward way.

We then orient the edges in F in such a way that C is a directed cycle. Note that one

can find a conflict-free ordering for all cycle blocks in the graph G. (Otherwise, we might

violate the cardinality constraint of MSOL.) The predicate ParentCyc(X,Y) is true, if

and only if the following hold.

(i) There are two edges e, f ∈ F , such that BagCyc(e,X) and BagCyc(f, Y) (and e

and f are contained in the same cycle).

Chapter 6 k-Outerplanar Graphs 54

(ii) The directed path from rC to tail(e) in C is a strict subpath of the path from rC

to tail(f).

(iii) |X ∩ Y | = 2.

Note that we only need one additional parameter, the edge set defining the edge ori-

entation of F , since we already have a coloring for the entire graph G (see Proposition

6.36). The details of the predicates in Appendix A.10.1 complete the proof.

To unify the parent-relations for all tree decompositions of 3-blocks, we can write

Parent′B3(X,Y)⇔ ParentB3(X,Y) ∨ ParentCyc(X,Y).

As described above, to create the according parent-relation between blocks of the hier-

archical decomposition of G, we need to add a number of vertices to some of the bags of

the final tree decomposition (T ,X). The details for the changes in those definitions are

presented in Appendix A.10.2. We can define a Parent-predicate for (T ,X) by using the

ideas explained above to add edges between blocks and cut-bags. Let ParentBC(X,Y)

denote such a predicate. Then, we have that

Parent(X,Y)⇔ Parent′B3(X,Y) ∨ ParentBC(X,Y).

To show that the number of parameters that we need to define the above mentioned

predicates is constant, we note that we only use constructions of previous results with

constant numbers of parameters. (For the exact number see the corresponding result.)

Note that for the cycle components one additional parameter is as well enough (cf. the

proof of Proposition 6.37) to turn all cycles into directed cycles, since they are connected

in a tree structure in the Tutte decomposition of G. Hence, fixing the direction of one

cycle will always yield the possibility to direct adjacent (i.e. sharing a 2-cut) cycles in a

conflict-free manner.

The details for the predicate ParentBC(X,Y) are given in Appendix A.10.2 and complete

the proof of Lemma 6.35.

As mentioned in the previous proof, another obstacle in applying Lemma 6.19 to define

a tree decomposition for G using its (definable) hierarchical graph decomposition is the

cardinality constraint of MSOL. We illustrate this problem with an example.

Example 6.38. Let G = (V,E) be a k-outerplanar graph with O(n/ log n) 3-connected

3-blocks of size O(log n). Let P denote a graph property, which is definable for 3-

connected k-outerplanar graphs by a predicate φP . Suppose that φP uses a constant

number of parameters. When applying φP to all 3-connected 3-blocks of G, this might

result in a predicate using O(n/ log n) parameters and hence, P not definable in this

straightforward way for G.

Chapter 6 k-Outerplanar Graphs 55

v w

y

x

B3

(a) TB3 without edge direc-
tion.

v w

y

x

B3

(b) TB3 with edge direction.

Figure 6.8: A forest TB3 of a 3-connected 3-block of an example graph. The dashed
lines indicate the paths in T between two endpoints of a incident cut of B3. Here,
{v, w} is the root cut of B3 and {x, y} a child cut. Note that by Propositions 6.42 and

6.43, this small example is already somewhat general.

However, for the case of defining a tree decomposition of a k-outerplanar graph, we can

avoid this problem. When defining a tree decomposition for a 3-connected k-outerplanar

graph in MSOL, one first guesses a rooted spanning tree of G. To avoid guessing a non-

constant number of spanning trees, we will find a set of edges SE , which contains a

spanning tree with bounded edge and face remember number for each 3-connected 3-

block of G. Furthermore we guess one set RV , containing one unique vertex for each

3-connected 3-block of G, which we will use as the root of its spanning tree. We need

to make some observations about such candidate sets SE and RV . We first prove the

existence of these sets and then their MSOL-definability.

Lemma 6.39. Let G = (V,E) be a planar graph and G = (V,E∪E′) the graph obtained

by adding the virtual edges E′ of the Tutte decompositions of the 2-connected blocks of G

to G. Let T = (V, F) be a spanning tree of G with er(G,T) ≤ λ and fr(G,T) ≤ µ. Let

B3 = (VB3 , EB3) ∈ B3 be a 3-connected 3-block of G′ (including virtual edges) and TB3 =

T [VB3]. One can construct from TB3 a spanning tree T ∗B3
of B3 with er(B3, T

∗
B3

) ≤ λ

and fr(B3, T
∗
B3

) ≤ µ by adding edges from E ∪ E′ to TB3.

Proof. Clearly, TB3 = (VB3 , FB3) is a forest in B3 and in the following we denote its tree

components by F1 = (VF1 , EF1), . . . , Fc = (VFc , EFc). We will now show how to connect

these components to a tree. Let C′2 ⊆ C2 denote the set of incident 2-cuts of B3.

Proposition 6.40. Let T ′B3
denote the graph obtained by adding an edge between all

2-cuts {x, y} ∈ C′2 in TB3 (if not already present). Then, T ′B3
is connected.

Proof. Let (TT = (NT , FT), X) denote the Tutte decomposition containing B3 and let

B3 = Xt with t ∈ NT . Let v, w ∈ VB3 and consider the unique path Pvw between v and

Chapter 6 k-Outerplanar Graphs 56

w in T . There are two cases: (I) The path Pvw is completely contained in B3 and v and

w belong to the same connected component. (II) Suppose that they don’t and let Fi

denote the component with v ∈ VFi and Fj the component with w ∈ VFj . Let x and y

be the vertices on the path Pvw with x, y ∈ VB3 (and x 6= y), such that x has a neighbor

x′ /∈ VB3 and y has a neighbor y′ /∈ VB3 (both in Pvw). Denote this subpath by Pxy.

Then, Pxy is a VB3-path in G. Hence, there is a unique component in T ′T = TT [NT \ {t}]
containing all internal vertices of Pxy. Since the neighbor of t in T ′T is a cut-bag, we

know that it has to contain both x and y and hence {x, y} ∈ C′2.

By Proposition 6.40 we know that we can find a subset of incident 2-cuts of each 3-

connected 3-block to turn TB3 into a tree. We now prove that adding these edges does

not increase the edge and face remember number. Consider a 2-cut C2 = {x, y} ∈ C′2,
such that {x, y} /∈ F . Since T is a spanning tree of G, we know that there is one unique

path Pxy between x and y in T . Let T ′B3
= (V ′B3

, F ′B3
) denote the tree obtained by adding

the above described paths between the components of TB3 . Then, T ′B3
is a spanning tree

of the graph G′B3
= (V ′B3

, EB3 ∪ F ′B3
) with er(G′B3

, T ′B3
) ≤ λ and fr(G′B3

, T ′B3
) ≤ µ,

since G′B3
v G and no edges, which are not members of T ′B3

, are introduced in G′B3
.

Subsequently, replacing each path Pxy by a single edge in T ′B3
does not increase the edge

and face remember number as well and after these replacements, we have that T ′B3
= T ∗B3

and our claim follows. For an illustration of this proof see Figure 6.8a.

Lemma 6.41. The statement of Lemma 6.39 also holds, if one replaces the term span-

ning tree by rooted spanning tree. Furthermore there is a set RV ⊆ V , which contains

precisely one vertex acting as a root for a spanning tree for each 3-connected 3-block of

G.

Proof. We use the same notation as in the proof of Lemma 6.39. Since T = (V, F) is a

rooted spanning tree, we know that its components F1, . . . , Fc in B3 are rooted trees as

well, see Figure 6.8b for an illustration. Since the direction between block and cut bags of

a Tutte decomposition of a block of G are based on the spanning tree T (see Remark 6.34

and the proof of Lemma 6.35), we observe the following. Let C2 = {x, y} ∈ C2 denote an

incident 2-cut of B3 with {x, y} /∈ F . There are two cases we have to consider. Either,

C2 is the parent cut of B3 or it is a child cut.

Proposition 6.42. Let C2 be a child cut of B3. Wlog. x is a vertex in a tree Fi and y

is the root of a tree Fj.

Proof. Suppose not. We know that there is a path Pxy between x and y in T . If y is a

non-root vertex in Fj , then we can’t direct the edges of Pxy in T such that every vertex

has precisely one parent. Hence, T is not a directed tree and we have a contradiction.

Proposition 6.43. Let C2 be the parent cut of B3. Then, x and y are roots of two trees

Fi and Fj.

Chapter 6 k-Outerplanar Graphs 57

Proof. For any vertex v ∈ VB3 we know by definition (see the proof of Lemma 6.35) that

for every vertex v ∈ VB3 , the directed path from the root r of T to v in T is either a

subpath of the directed path from r to x or from r to y. Hence, neither x nor y can

have a parent in TB3 .

We can direct the additional edges by using Propositions 6.42 and 6.43. In the case that

C2 is a child cut, we can always direct the edge {x, y} from x to y (using the notation

of Proposition 6.42). If C2 is the parent cut, we know by Proposition 6.43 that we can

orient {x, y} arbitrarily. There are two cases we need to analyze to make sure we do not

create a conflicting orientation of SE . In the first case, the edge {x, y} has been added

to SE by the parent block of C2. We then use the same orientation. In the second case,

if {x, y} /∈ SE , we can choose the direction arbitrarily.

We now turn to finding the set of roots RV . If B3 is the root block according to the

spanning tree of G with root rG, then we add rG to RV as the root of B3. Otherwise,

we find its parent cut C2 = {x, y}. Assume wlog. that the edge {x, y} is directed from x

to y according to the construction explained above. Then we add x to RV . Since each

cut-bag has precisely one child block bag (Definition 6.22(ii)), we know that this vertex

is unique for each 3-block B3.

Lemma 6.44. The sets SE and RV of Lemmas 6.39 and 6.41 are existentially MSOL-

definable with 3k + 2 parameters.

Proof. Let G = (V,E) denote a k-outerplanar graph, such that the virtual edges intro-

duced by the Tutte decompositions of its 2-connected blocks are already included in E.

On a high level, for defining RV and SE , we need to encode is the following:

(i) There are sets RV ⊆ V , F ⊆ E and F ′ ⊆ E with SE = F ∪ F ′.

(ii) Guess a root rT ∈ V , such that F is the edge set of a rooted spanning tree in G.

(iii) An edge e = {x, y} is possibly (but not necessarily) a member of F ′, if {x, y} ∈ C2
and e /∈ F .

(iv) For all B3 ∈ B3, the graph T ∗B3
= (B3,SE ∩ (B3 × B3)) is a spanning tree of the

graph GB3 = G[B3] with er(GB3 , T
∗
B3

) ≤ 2k and fr(GB3 , T
∗
B3

) ≤ k.

(v) A vertex v ∈ V is possibly (but not necessarily) a member of RV , if it is a member

of a 2-cut {v, w} ∈ C2.

(vi) For each 3-connected 3-block B3 ∈ B3, there is a vertex rB3 ∈ RV , such that T ∗B3

can be rooted at rB3 (without altering the edge direction of any other edge in SE).

Chapter 6 k-Outerplanar Graphs 58

The existence of such sets RV and SE is shown in Lemmas 6.39 and 6.41, so we do not

need to encode all details mentioned in the corresponding proofs explicitly. Property

(iv) is MSOL-definable by Proposition 6.20, since GB3 is 3-connected. We have the

following parameters. First, the edge set of the spanning tree and again a 3k-coloring

and one edge set to fix the orientation of the edges in SE .

The details of the predicates encoding the rest of the properties are given in Appendix

A.10.3 and complete the proof.

We can now use the above results to conclude that we can find predicates defining tree

decompositions of 3-connected 3-blocks of k-outerplanar graphs.

Corollary 6.45. Let G = (V,E) be a k-outerplanar graph. Then, there exist predicates

existentially defining tree decompositions of width at most 3k for each 3-connected 3-block

of G with a constant number of parameters.

Proof. By Lemma 6.19 we know that a 3-connected k-outerplanar graph admits an

MSOL-definable tree decomposition of width 3k, based on a rooted spanning tree of the

graph. By Corollary 6.33 we can define such a tree decomposition in a structure, which

also includes the virtual edges of a 3-block in G (and by Lemma 6.26 we know that this

graph is still k-outerplanar). Finally, by Lemmas 6.39, 6.41 and 6.44 we know that we

can find definable edge and vertex sets which contain the edges of spanning trees for

each 3-connected 3-block with the required bound on their vertex and edge remember

numbers without violating the cardinality constraint of monadic second order logic.

Similarly, we can find sets containing anchor and co-anchor edges for all 3-connected

3-blocks in a straightforward way. Hence, also for defining the ordering of all incident

edges of all vertices in a 3-connected 3-block, two sets are sufficient. Subsequently, the

number of parameters involved is bounded by a constant. For the exact bounds see the

corresponding result.

Combining Lemma 6.35 and Corollary 6.45 with Theorem 5.12 yields the main result of

this chapter.

Theorem 6.46. CMSOL-definability equals recognizability for k-outerplanar graphs.

7

Conclusion

In this thesis, we investigated a conjecture by Courcelle from 1990, which states that

every recognizable graph property is also definable in counting monadic second order

logic [9]. We introduced a new proof technique, based on the Myhill-Nerode theory for

graphs of bounded treewidth [18, Section 12.7] (Theorem 2.18), to give self-contained

proofs of a number of special cases for this conjecture. Theorem 2.18 states that recog-

nizability equals finite index for graphs of bounded treewidth and we have shown that

for any graph class, which admits MSOL-definable tree decompositions, finite index im-

plies definability in (counting) monadic second order logic. We do not need the counting

operation of CMSOL, if the tree decomposition of a graph class is either ordered or

has bounded degree. We showed how to construct bounded degree MSOL-definable tree

decompositions for Halin graphs and some subclasses of k-outerplanar graphs (including

bounded degree and 3-connected k-outerplanar graphs). For all of these graph classes

(in particular for bounded degree graphs or 3-connected planar graphs), one can find

an MSOL-definable linear ordering and Courcelle showed that in this case, CMSOL-

definability equals MSOL-definability [13] (see also [3]). Halin graphs are known to have

treewidth 3 [35] and Kaller proved that recognizability implies CMSOL-definability for

graphs of treewidth at most 3 [22], so combining these results with the above mentioned

orderability of 3-connected planar graphs already yields our result that recognizability

implies MSOL-definability for the case of Halin graphs. These observations raise the

following interesting question.

Question 1. Is it possible to construct an ordered or bounded degree MSOL-definable

tree decomposition for a graph class that does not admit an MSOL-definable linear

ordering?

These two notions seem very closely intertwined. Bags in a tree decomposition are

associated with vertices or edges in the graph and one can use a linear ordering to either

order all children of a bag or create a tree decomposition, whose bags have bounded

59

Chapter 7 Conclusion 60

degree (cf. Lemma 6.19). Even though the other direction of this argument might not

hold in general,(i) such a graph class could still be hard to find.

The main result of this thesis is that recognizability implies CMSOL-definability for

the class of k-outerplanar graphs. We first showed how to construct a bounded degree

MSOL-definable tree decomposition for 3-connected k-outerplanar graphs and then used

results about hierarchical graph decompositions (decomposing a connected graph into its

2- and then 3-connected components) to define tree decompositions for all k-outerplanar

graphs. We gave some hints (see e.g. Corollary 6.29 and Lemma 6.32) that this technique

might be used in other proofs of (special cases of) Courcelle’s Conjecture as well. As

3-connected graphs have favorable properties when it comes to results about MSOL-

definability (see e.g. the above mentioned linear orderings for 3-connected planar graphs

or Proposition 6.14), we believe a proof that Courcelle’s Conjecture holds for graph

classes, whose 3-connected members admit MSOL-definable tree decompositions might

be an important step towards its full resolution. Naturally, we impose the following

question.

Question 2. Let C be a graph class and C|3C denote all its 3-connected members. Does

resolving Courcelle’s Conjecture for all members of C|3C imply its resolution for all

members in C?

As one can see in the proofs of Section 6.4, this question is not easy to answer, since we

can only apply results of 3-connected members of a graph class to 3-connected compo-

nents of a graph, if we can define predicates, which only require a constant amount of

parameters for an entire graph. Depending on how one constructs a tree decomposition

for a graph class, this might be a major obstacle in resolving Question 2 for a specific

graph class C∗.

(i)I.e., one can always derive a linear ordering of a graph G given a bounded degree or ordered MSOL-
definable tree decomposition of G.

Bibliography

[1] K. R. Abrahamson and M. R. Fellows. Finite automata, bounded treewidth, and

well-quasi-ordering for bounded treewidth. In Proceedings of the AMS Summer

Workshop on Graph Minors and Graph Structure Theory, volume 147 of Contem-

porary Mathematics, pages 539–564. AMS, 1993.

[2] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable

graphs. Journal of Algorithms, 12(2):308–340, 1991.

[3] A. Blumensath and B. Courcelle. Monadic second-order definable graph orderings.

Logical Methods in Computer Science, 10(2), 2014.

[4] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. The-

oretical Computer Science, 209(1-2):1–45, 1998.

[5] H. L. Bodlaender, P. Heggernes, and J. A. Telle. Recognizability equals definability

for graphs of bounded treewidth and bounded chordality. In Proceedings EURO-

COMB 2015, Electronic Notes in Discrete Mathematics. Elsevier, 2015.

[6] H. L. Bodlaender and A. M. Koster. Safe separators for treewidth. Discrete Math-

ematics, 306(3):337 – 350, 2006.

[7] R. B. Borie, R. G. Parker, and C. A. Tovey. Automatic generation of linear-time al-

gorithms from predicate calculus descriptions of problems on recursively constructed

graph families. Algorithmica, 7(1-6):555–581, 1992.

[8] J. R. Büchi. Weak second-order arithmetic and finite automata. Mathematical Logic

Quarterly, 6(1-6):66–92, 1960.

[9] B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of

finite graphs. Information and Computation, 85(1):12–75, 1990.

61

Bibliography 62

[10] B. Courcelle. The monadic second-order logic of graphs V: On closing the gap

between definability and recognizability. Theoretical Computer Science, 80(2):153–

202, 1991.

[11] B. Courcelle. The monadic second order logic of graphs VI: On several representa-

tions of graphs by relational structures. Discrete Applied Mathematics, 54(23):117

– 149, 1994.

[12] B. Courcelle. The monadic second-order logic of graphs VIII: Orientations. Annals

of Pure and Applied Logic, 72(2):103–143, 1995.

[13] B. Courcelle. The monadic second-order logic of graphs X: Linear orderings. The-

oretical Computer Science, 160(12):87 – 143, 1996.

[14] B. Courcelle. The monadic second-order logic of graphs XI: Hierarchical decompo-

sitions of connected graphs. Theoretical Computer Science, 224(12):35 – 58, 1999.

[15] B. Courcelle. The monadic second-order logic of graphs XII: Planar graphs and

planar maps. Theoretical Computer Science, 237(12):1 – 32, 2000.

[16] B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic

— A Language-Theoretic Approach, volume 138 of Encyclopedia of Mathematics

and its Applications. Cambridge University Press, 2012.

[17] R. Diestel. Graph Theory. Number 173 in Graduate Texts in Mathematics. Springer,

4 edition, 2012. Corrected reprint.

[18] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity.

Texts in Computer Science. Springer, 2013.

[19] R. Halin. Studies on minimally n-connected graphs. Combinatorial Mathematics

and its applications, pages 129–136, 1971.

[20] R. Halin. S-functions for graphs. Journal of Geometry, 8(1-2):171–186, 1976.

[21] V. Kabanets. Recognizability equals definability for partial k-paths. In Proceedings

ICALP 1997, volume 1256 of LNCS, pages 805–815. Springer, 1997.

[22] D. Kaller. Definability equals recognizability of partial 3-trees and k-connected

partial k-trees. Algorithmica, 27(3-4):348–381, 2000.

[23] I. Katsikarelis. Computing bounded-width tree and branch decompositions of k-

outerplanar graphs, 2013.

[24] D. Lapoire. Recognizability equals monadic second-order definability for sets of

graphs of bounded tree-width. In Proceedings STACS 1998, volume 1373 of LNCS,

pages 618–628. Springer, 1998.

Bibliography 63

[25] J. R. Myhill. Finite automata and the representation of events. Technical Report

WADC TR-57-624, Wright-Paterson Air Force Base, 1957.

[26] A. Nerode. Linear automaton transformations. Proceedings of the American Math-

ematical Society, 9(4):541–544, 1958.

[27] N. Robertson and P. Seymour. Graph minors. III. Planar tree-width. Journal of

Combinatorial Theory, Series B, 36(1):49–64, 1984.

[28] M. M. Sys lo. Characterizations of outerplanar graphs. Discrete Mathematics,

26(1):47 – 53, 1979.

[29] W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages.

Beyond Words, volume 3, pages 389–455. Springer, 1996.

[30] W. T. Tutte. Connectivity in Graphs. University of Toronto Press, 1966.

[31] W. T. Tutte. Graph Theory, volume 21 of Encyclopedia of Mathematics and its

Applications. Addison-Wesley, 1984.

[32] R. van Bevern, R. G. Downey, M. R. Fellows, S. Gaspers, and F. A. Rosamond.

Myhill–Nerode methods for hypergraphs. Algorithmica, pages 1–34, 2015. in press.

[33] K. Wagner. Über eine Eigenschaft der ebenen Komplexe. Mathematische Annalen,

114(1):570–590, 1937.

[34] H. Whitney. Congruent graphs and the connectivity of graphs. American Journal

of Mathematics, 54:150–168, 1932.

[35] T. V. Wimer. Linear Algorithms on K-terminal Graphs. PhD thesis, Clemson

University, Clemson, SC, USA, 1987.

A

Monadic Second Order Predicates and

Sentences

We build sentences in monadic second order logic from a collection of predicates. Once

we defined these predicates they will be the building blocks of more complex expressions,

joined by MSOL-connectives and/or quantification of its declared variables. Hence, we

follow the ideas of the work of Borie et al. [7], who also give a large list of predicates

and their definitions.

Note that the length of our sentences and formulas always has to be bounded by some

constant, independent of the size of the input graph.

We will denote single element variables by small letters, where v, w, v′, w′, . . . typically

represent vertices and e, f, e′, f ′, . . . edges. Set variables will be denoted by capital letters.

Unless stated otherwise explicitly, V always denotes the vertex set of some input graph

G and E its edge set. Since we always assume our predicates to appear in the context

of such a graph we might drop these two variables as an argument of a predicate.

By some trivial definition, the following predicates are MSOL-definable (see also Theo-

rem 1 in [7]). In our text we might refer to them as the atomic predicates of monadic

second order logic over graphs.

(I) v = w (Vertex equality)

(II) Inc(e, v) (Vertex-edge incidence)

(III) v ∈ V (Vertex membership)

(IV) e ∈ E (Edge membership)

Note that to shorten our notation we might omit statements such as v ∈ V or e ∈ E
when quantifying over a variable. In this case we are referring to some vertex/edge in

64

Appendix A Monadic Second Order Predicates and Sentences 65

the whole graph and the interpretation of the variables will always be obvious from the

context or the notational conventions explained above.

From the atomic predicates, one can directly derive the following:

• Adj(v, w,E) (Adjacency of v and w in E)

• Edge(e, v, w) (e = {v, w})

In a straightforward way (and by Theorem 4 in [7]), one can see that the following are

MSOL-definable:

• V = V ′ ∪ V ′′, V = V ′ \ V ′′, V = V ′ ∩ V ′′ (plus the edge set equivalents)

• V ′ = IncV(E′) [E′ = IncE(V ′)] (V ′ [E′] is the set of incident vertices [edges] of E′

[V ′])

• deg(v,E) = k (v has degree k in E, where k is a constant)

• Conn(V,E), Connk(V,E), Cycle(V,E), Tree(V,E), Path(V,E)

• MinorH (A graph contains a minor H of fixed size)

A.1 Edge Orientation of a Halin Graph

In the current section we show how to define an edge orientation on a Halin graph as

explained in the proof of Proposition 4.2. That is, we will define a partition of the edge

set of the graph into a directed tree ET and a directed cycle EC .

As outlined in the proof, we use a coloring on its vertex set to define the orientation of

edges. Since we will use this result in later sections as well, we define the general case

of a k-coloring on the vertices of a graph.

PartV (V,X1, . . . , Xk)⇔(∀v ∈ V)
(∨

1≤i≤k
v ∈ Xi ∧

∧
1≤i≤k
j 6=i

¬v ∈ Xj

)

k-col(X1, . . . , Xk)⇔PartV (V,X1, . . . , Xk)

∧∀e∀v∀w
(

Edge(e, v, w)→
∧

1≤i≤k
¬(v ∈ Xi ∧ w ∈ Xi)

)
Now we define a predicate head(e, v) that is true if and only if v is the head vertex of

the edge e in the given orientation by comparing the indices of the color classes that

Appendix A Monadic Second Order Predicates and Sentences 66

contain an endpoint of e. Note that the following predicates always appear in the scope

of an edge set F and a k-coloring X1, . . . , Xk.

col<(v, w)⇔
∨

1≤i<j≤k
(v ∈ Xi ∧ w ∈ Xj)

head(e, v)⇔∃w(Edge(e, v, w) ∧ e ∈ F ↔ col<(v, w))

tail(e, v)⇔∃w(Edge(e, v, w) ∧ ¬e ∈ F ↔ col<(v, w))

Arc(e, v, w)⇔Edge(e, v, w) ∧ head(e, v) [e = (v, w)]

Analogously to the definition of vertex degree predicates deg(v,E), as shown in [7,

Theorem 4], we can define predicates deg←(v,E) and deg→(v,E) for the in-degree and

out-degree of a vertex in a directed graph. We show how to define that the in-degree of

a vertex is equal to a certain constant k.

deg←(v,E) ≥ k ⇔∃w1 · · · ∃wk
((∧

1≤i≤k
(∃e ∈ E)Arc(e, wi, v)

)
∧

∧
1≤i<j≤k

¬wi = wj

)
deg←(v,E) ≤ k ⇔∀w1 · · · ∀wk+1

((∧
1≤i≤k+1

(∃e ∈ E)Arc(e, wi, v)
)

→
∨

1≤i<j≤k+1

wi = wj

)
deg←(v,E) = k ⇔deg←(v,E) ≤ k ∧ deg←(v,E) ≥ k

In a similar way we can define predicates for the out-degree and regularity of a vertex

for in- and out-degree and both (denoted by k-reg←, k-reg→ and k-reg↔, respectively).

This enables us to define predicates for directed trees and cycles.

Cycle→(V,E)⇔Conn(V,E) ∧ 1-reg↔(V,E)

Tree→(V,E)⇔Tree(V,E) ∧ (∃r ∈ V)(∀v ∈ V)
(

(r = v ∧ deg←(v,E) = 0)

∨ (¬v = r ∧ deg←(v,E) = 1)
)

A.2 Child Ordering of a Halin Graph

This section concludes the proof of Lemma 4.3, that is we define an ordering on edges in

a Halin graph that have the same parent in the tree ET . Therefor we define predicates

for directed paths and fundamental cycles. Note that Path→(s, t, E′) is true if and only

Appendix A Monadic Second Order Predicates and Sentences 67

if E′ is a directed s− t-path.

Path→(V,E)⇔Tree→(V,E) ∧ (∀v ∈ V) deg(v,E) ≤ 2

Path→(s, t, E′)⇔Path→(IncV(E′), E′) ∧ deg←(s) = 0 ∧ deg→(t) = 0

Now we turn to the notion of fundamental cycles. We assume that the following predi-

cates appear within the scope of an edge set ET , which is a spanning tree of the given

graph.

FundCyc(E′)⇔Cycle(IncV(E′), E′) ∧ (∃e ∈ E′)(∀e′ ∈ E′)(¬(e = e′)↔ e ∈ ET)

FundCyc(e, e′)⇔(∃E′ ⊆ E)(e ∈ E′ ∧ e′ ∈ E′ ∧ FundCyc(E′))

Note that FundCyc(e, e′) is true if and only if there exists a fundamental cycle in the

graph containing both e and e′. Now we can define an ordering nb<(e, f) on edges with

the same parent, as explained in the proof of Lemma 4.3.

nb<(e, f)⇔head(e) = head(f) ∧ (∃f ′ ∈ EC)(∀e′ ∈ EC)(∀F ′ ⊆ EC)(∀E′ ⊆ EC)((
FundCyc(e, e′) ∧ FundCyc(f, f ′) ∧ Path→(r, tail(e′), E′)

∧ Path→(r, tail(f ′), F ′)
)
→ F ′ ⊂ E′

)
Furthermore we define a predicate nb≺(e, f) that is true if and only if f is the leftmost

right neighbor of e and vice versa. We also apply this notion to vertex variables, which

allows us to refer to left and right siblings of a vertex. We denote these predicates by

sib<(x, y) and sib≺(x, y).

nb≺(e, f)⇔nb<(e, f) ∧ ∀f ′((¬f = f ′ ∧ nb<(e, f ′))→ nb<(f, f ′))

sib<(x, y)⇔∃e∃f(tail(e, x) ∧ tail(f, y) ∧ nb<(e, f))

sib≺(x, y)⇔∃e∃f(tail(e, x) ∧ tail(f, y) ∧ nb≺(e, f))

In the following we will use the rewrite of sib≺ to

y = l(x)⇔ sib≺(y, x).

This expresses that a vertex y is the direct left sibling of the vertex x in our ordering.

A.3 Tree Decomposition of a Halin Graph

In this section we define predicates Bagσ(e,X) for all bag types used in the proof of

Lemma 4.5, and Parent(Xp, Xc) according to the given construction. In the following

we assume that we are given an edge e ∈ ET , e = {x, y}, such that y is the parent of x

in ET .

Appendix A Monadic Second Order Predicates and Sentences 68

A.3.1 Boundary vertices

For defining predicates for bag types in our tree decomposition, we need to show how to

define boundary vertices in MSOL. First, we define predicates to check whether a vertex

is the right-(/left-)most child of its parent.

ChildR+(x)⇔∀y∀z∀e∀e′((Arc(e, y, x) ∧Arc(e′, y, z))→ nb<(e′, e))

Note that ChildL+(x) can be defined similarly, replacing nb<(e′, e) by nb<(e, e′). In the

following we let VC = IncV(EC).

y = bdr(x)⇔(x ∈ VC ∧ x = y) ∨
(
x ∈ V ∧ y ∈ VC

∧
(

(∃EP ⊆ ET)(Path→(x, y, EP) ∧ (∀e ∈ EP)

(∀z(tail(e, z)→ ChildR+(z))))
))

Replaying ChildR+ by ChildL+ in the above predicate we can also define y = bdl(x).

A.3.2 Bag Types

We define an MSOL-predicate for each bag type that we introduced in the proof of

Lemma 4.5. Using the definition of boundary vertices given above, we can define them

in a straightforward manner.

BagR1(e,X)⇔(x′ ∈ X)↔ (x′ = x ∨ x′ = bdr(x) ∨ x′ = bdl(x))

BagR2(e,X)⇔(x′ ∈ X)↔ (x′ = y ∨ x′ = x ∨ x′ = bdr(x) ∨ x′ = bdl(x))

BagR3(e,X)⇔(x′ ∈ X)↔ (x′ = y ∨ x′ = bdr(x) ∨ x′ = bdl(x))

BagL1(e,X)⇔(x′ ∈ X)↔ (x′ = y ∨ x′ = bdl(y) ∨ bdr(l(x)))

BagL2(e,X)⇔(x′ ∈ X)↔ (x′ = y ∨ x′ = bdl(y) ∨ x′ = bdr(l(x)) ∨ x′ = bdl(x))

BagL3(e,X)⇔(x′ ∈ X)↔ (x′ = y ∨ x′ = bdl(y) ∨ x′ = bdl(x))

BagLR(e,X)⇔(x′ ∈ X)↔ (x′ = y ∨ x′ = bdl(y) ∨ x′ = bdr(x) ∨ x′ = bdl(x))

As a next step we will unify the above predicates, to deal with the cases when certain

bags do not need to be created for an edge. This is the case when we reach the root

vertex of the graph or whenever an edge is the leftmost child edge of a vertex.

Bag(X)⇔∃e
(
y = r ∧ (BagR1(e,X) ∨ BagR2(e,X))

∨
(
¬y = r ∧

(
(ChildL+(x) ∧ (BagR1(e,X) ∨ BagR2(e,X)

∨ BagR3(e,X))) ∨ (¬ChildL+(x) ∧ (BagR1(e,X)

∨ · · · ∨ BagLR(e,X)))
)))

Appendix A Monadic Second Order Predicates and Sentences 69

A.3.3 The Parent Relation

We now turn to defining the predicate Parent(Xp, Xc), which is true if and only if the

bag Xp is the parent bag of Xc in the tree decomposition. Due to the contraction step

we can only have edges between bags if their vertex sets are not equal. Note that adding

the term ’¬Xp = Xc’ is sufficient to represent these contractions. The rest is a case

analysis as implied by Figure 4.2b and the respective parent/child relationships between

components.

Parent(Xp, Xc)⇔Bag(Xp) ∧ Bag(Xc) ∧ ¬Xp = Xc ∧ (ParentI(Xp, Xc)

∨ ParentNB(Xp, Xc) ∨ ParentP (Xp, Xc))

ParentI(Xp, Xc)⇔∃e
(

(BagR1(e,Xc) ∧ BagR2(e,Xp))

∨ (BagR2(e,Xc) ∧ BagR3(e,Xp))

∨ ((BagR3(e,Xc) ∨ BagL3(e,Xc)) ∧ BagLR(e,Xp))

∨ (BagL1(e,Xc) ∧ BagL2(e,Xp))

∨ (BagL2(e,Xc) ∧ BagL3(e,Xp))
)

ParentNB(Xp, Xc)⇔∃e∃e′(nb≺(e, e′) ∧ BagLR(e,Xc) ∧ BagL1(e
′, Xp))

ParentP (Xp, Xc)⇔∃e∃e′(ChildR+(x) ∧ tail(e′, y)

∧ BagLR(e,Xc) ∧ BagR1(e
′, Xp))

A.4 Equivalence Class Membership for Halin Graphs

In this section we complete the proof of Lemma 4.8, which states that finite index implies

MSOL-definability for Halin graphs. In particular we define the predicates φLeaf , φTSG

and φRoot, which represent the cases for leaf bags, inner bags (i.e., intermediate and

branch bags that are not the root) and the root bag, respectively.

The predicate φLeaf can be defined in a straightforward way, using the fact that we know

that all terminal subgraphs of leaf bags are in the equivalence class CLeaf and that leaf

bags are always of type R1.

φLeaf = ∀X∀e((BagR1(e,X) ∧ Leaf(X))→ e ∈ CLeaf,R1)

Next, we turn to defining φTSG, where we distinguish two cases. That is, either X

is an intermediate or a branch bag. We conduct the case analysis as implied by the

Appendix A Monadic Second Order Predicates and Sentences 70

construction of our tree decomposition as shown in Section 4.2.

φTSG =
(
∃Ci,L1∃Ci,L2∃Ci,L3∃Ci,R1∃Ci,R2∃Ci,R3∃Ci,LR

)
i=1,...,r

∀X∀Y
(

(Parent(X,Y) ∧ Int(X))→ φTSG,Int

∧ ∀Y ′(¬(Y = Y ′) ∧ Parent(X,Y) ∧ Parent(X,Y ′) ∧ Branch(X))

→ φTSG,Branch

)
The first case we are considering is when X is an intermediate node with child bag Y .

These edges either belong to the same component, which is handled in the first part of

the predicate, or they belong to components of different edges, such that the two are

either direct neighbor edges according to the nb≺-ordering or one of the edges is the

parent edge of the other one.

φTSG,Int =∀e
(

(BagL2(e,X) ∧ BagL1(e, Y))→
∧

i=1,...,r

(e ∈ Ci,L1 → e ∈ CfI(i,X),L2)

∨ (BagL3(e,X) ∧ BagL2(e, Y))→
∧

i=1,...,r

(e ∈ Ci,L2 → e ∈ CfI(i,X),L3)

∨ (BagR2(e,X) ∧ BagR1(e, Y))→
∧

i=1,...,r

(e ∈ Ci,R1 → e ∈ CfI(i,X),R2)

∨ (BagR3(e,X) ∧ BagR2(e, Y))→
∧

i=1,...,r

(e ∈ Ci,R2 → e ∈ CfI(i,X),R3)
)

∨ ∀e∀e′
(

(ParentNB(X,Y) ∧ BagL1(e
′, X) ∧ BagLR(e, Y))

→
∧

i=1,...,r

(e ∈ Ci,LR → e′ ∈ CfI(i,X),L1)
)

∨
(

(ParentP (X,Y) ∧ BagR1(e
′, X) ∧ BagLR(e, Y))

→
∧

i=1,...,r

(e ∈ Ci,LR → e′ ∈ CfI(i,X),R1)
)

Now we assume that X is a branch node with child bags Y and Y ′. We can’t identify

the types of the bags Y and Y ′ immediately, since some of the edges in the component

might have been contracted. So in the following, let L denote the type L1, L2 or L3,

and R, respectively, R1, R2 or R3. We can define each combination of the actual types

in exactly the same way.

φTSG,Branch =∀e
(

(BagLR(e,X) ∧ BagL(e, Y) ∧ BagR(e, Y ′))

→
∧

i=1,...,r
j=1,...,r

((e ∈ Ci,L ∧ e ∈ Cj,R)→ e ∈ CfJ ({i,j},X),LR)
)

Knowing that all graphs that have property P are contained in one of the equivalence

classes CA1 , . . . , CAp and that the root bag is always of type R2, we can define φRoot

Appendix A Monadic Second Order Predicates and Sentences 71

directly.

φRoot = ∀X∀e
(

(Root(X) ∧ BagR2(e,X))→
∨

i=A1,...,Ap

e ∈ Ci,R2

)

A.5 Equivalence Class Membership - Generalized

In the current section we describe how to define predicates for the equivalence class

membership of (partial) terminal subgraphs in any MSOL-definable ordered tree de-

composition, hence concluding the proof of Lemma 5.1. In this case we do not know

the specific shape of the tree decomposition, so our case analysis becomes somewhat

more lengthy. We give examples for each predicate involved from which it will become

apparent that one can define any such case in a similar way.

Once we defined all predicates for MSOL-definable ordered tree decompositions, we

additionally show how to define the case of branch nodes in an MSOL-definable tree

decomposition of bounded degree, hence concluding the proof of Lemma 5.3.

As before (Appendix A.4) we first define all sets that we need for the predicates and

then distinguish the cases that X is an intermediate node or a branch node. These

predicates will be defined in detail in the following sections.

φTSG =
(
∃CVi,τ∃CEi,σ∃CV |Pi,τ ∃C

E|P
i,σ ∃C

V |C
i,τ ∃C

E|C
i,σ

)
i=1,...,r

σ,∈{σ1,...,σs}
τ,∈{τ1,...,τt}(

φTSG,Int ∧ φTSG,Branch
)

A.5.1 Intermediate Nodes

First, we define the equivalence class membership for terminal subgraphs corresponding

to an intermediate node in the tree decomposition. We conduct a case analysis as

discussed in the proof of Lemma 5.1 w.r.t. the types of the bags X and Y .

φTSG,Int =∀X∀Y
(

(Int(X) ∧ Parent(X,Y))

→
∧

τ,τ ′∈{τ1,...,τt}
σ,σ′∈{σ1,...,σs}

(
φInt,τ,τ ′ ∧ φInt,σ,σ′ ∧ φInt,τ,σ ∧ φInt,σ,τ

))
(A.1)

Case (I) Both bags belong to a vertex. For each pair of types τ, τ ′ ∈ {τ1, . . . , τt} one can

define the following predicate.

φInt,τ,τ ′ =∀v∀v′
(

(BagVτ (v,X) ∧ BagVτ ′(v
′, Y))

→
∧

i=1,...,r

(v′ ∈ CVi,τ ′ → v ∈ CVfI(i,X),τ)
)

Appendix A Monadic Second Order Predicates and Sentences 72

Case (II) Both bags belong to an edge. For each pair of types σ, σ′ ∈ {σ1, . . . , σs} we

can write down a similar predicate.

φInt,σ,σ′ =∀e∀e′
(

(BagEσ (e,X) ∧ BagEσ′(e
′, Y))

→
∧

i=1,...,r

(e′ ∈ CEi,σ′ → e ∈ CEfI(i,X),σ)
)

Case (III) The bag X belongs to a vertex and Y belongs to an edge. For each pair of a

type τ ∈ {τ1, . . . , τt} and σ ∈ {σ1, . . . , σs} one can define:

φInt,τ,σ =∀v∀e
(

(BagVτ (v,X) ∧ BagEσ (e, Y))

→
∧

i=1,...,r

(e ∈ CEi,σ → v ∈ CVfI(i,X),τ)
)

Case (IV) The bag X belongs to an edge and Y belongs to a vertex. For σ, τ as above

we define:

φInt,σ,τ =∀e∀v
(

(BagEσ (e,X) ∧ BagVτ (v, Y))

→
∧

i=1,...,r

(v ∈ CVi,τ → e ∈ CEfI(i,X),σ)
)

A.5.2 Branch Nodes

In the following we will define predicates for branch nodes in an ordered MSOL-definable

tree decomposition, such that all bags considered always correspond to vertices in the

graph. Note that in the cases that some of them are edge bags, one can write down all

predicates in the same way (replacing some vertices/vertex sets with edges/edge sets in

the predicates).

First we define the general case, in which Y is neither the leftmost nor the rightmost

child of X and deal with the special cases later. Let Y ′ is the direct right sibling of Y .

φIBranch,τ,τ ′,τ ′′ =∀v∀v′∀v′′
(

(BagVτ (v,X) ∧ BagVτ ′(v
′, Y) ∧ BagVτ ′′(v

′′, Y ′))

→
∧

i=1,...,r

((
v ∈ CV |Pi,τ ∧ v′ ∈ C

V |C
i,τ ′ ∧ v′ ∈ CVj,τ ′

)
→
(
v ∈ CV |PfJ (i,j),τ

∧ v′′ ∈ CV |CfJ (i,j),τ ′′

)))
Now we consider the situation when Y is the leftmost child of X with right sibling Y ′.

In this case we derive the partial terminal subgraph [X]+Y ′ by pretending that Y is the

only child of X and using the method for intermediate nodes. It is easy to see that this

Appendix A Monadic Second Order Predicates and Sentences 73

way we indeed define the equivalence class membership for [X]+Y ′ .

φL+Branch,τ,τ ′,τ ′′ =∀v∀v′∀v′′
(

(BagVτ (v,X) ∧ BagVτ ′(v
′, Y) ∧ Bagτ ′′(v

′′, Y ′))

→
∧

i=1,...,r

(
v′ ∈ CVi,τ ′ →

(
v ∈ CV |PfI(i,X),τ ∧ v

′′ ∈ CV |CfI(i,X),τ ′′

)))
When reaching the rightmost child of a branch bag X, we derive the terminal subgraph

[X]+. Assume in the following that Y is the rightmost child of X.

φR+
Branch,τ,τ ′ =∀v∀v′

(
(BagVτ (v,X) ∧ BagVτ ′(v

′, Y))

→
∧

i=1,...,r

((
v ∈ CV |Pi,τ ∧ v′ ∈ C

V |C
i,τ ′ ∧ v′ ∈ CVj,τ ′

)
→ v ∈ CVfJ (i,j),τ

))
One can define a predicate φTSG,Branch in a similar way as φTSG,Int using the predicates

described above together with ChildL+(X), ChildR+(X) and nb≺(X,Y). Disregarding

the types of bags for now, one can define the predicate φ′TSG,Branch in the following way.

φ′TSG,Branch = ∀X∀Y
(

(Parent(X,Y) ∧ Branch(X))→
((

ChildR+(Y) ∧ φR+
JoinB

)
∨ ∀Y ′

(
nb≺(Y, Y ′)→

((
ChildL+ ∧ φL+Branch

)
∨
(
¬ChildL+(Y) ∧ φIBranch

)))))
Note that to include the case analysis, one can define a predicate φTSG,Branch as it is

done in the definition of φTSG,Int (Predicate A.1), for all combinations of vertex/edge

types.

A.5.3 Branch Nodes for Bounded Degree Tree Decompositions

To finish the proof of Lemma 5.3, we only have to show how to define a predicate for

branch nodes with a constant number of children as explained in the proof.

Again, we give an example predicate for the case that all bags involved are vertex bags

and note that all other cases can be defined similarly. Consider a branch bag X with

child bags X1, . . . , Xk, all corresponding to vertices in the graph and types τ1, . . . , τk.

Then we can define this predicate as follows.

φBranch,τ,τ1,...,τk =∀v∀v1 · · · ∀vk
(

(BagVτ (v,X) ∧ BagVτ1(v1, X1)

∧ · · · ∧ BagVτk(vk, Xk))→
∧

ik=1,...,r
···

i1=1,...,r

(
(v1 ∈ CVi1,τ1

∧ · · · ∧ vk ∈ CVik,τk)→ v ∈ CVfJ ({i1,...,ik},X),τ

))

Appendix A Monadic Second Order Predicates and Sentences 74

A.5.4 Counting for Branch Nodes of Unbounded Degree

In the following, assume that X is a branch bag with an unbounded number of children.

The first step in defining the equivalence class membership of the terminal subgraph

w.r.t. X in CMSOL is to define a predicate to check whether a group i w.r.t. an equiv-

alence class Ci has a certain size modulo r!. Since we do not know whether its children

are associated with vertices or edges in the graph, we have to define a number of sets

XV
i,τ and XE

i,σ, containing vertices (edges) such that XV
i,τ contains a vertex v (edge e) if

and only if X has a child of type τ (σ) whose terminal subgraph is in equivalence class

Ci.

V ′ = XV
i,τ ⇔v ∈ V ′ ↔ ∃Y (Parent(X,Y) ∧ BagVτ (v, Y) ∧ v ∈ CVi,τ)

E′ = XE
i,σ ⇔e ∈ E′ ↔ ∃Y (Parent(X,Y) ∧ BagEσ (e, Y) ∧ e ∈ CEi,σ)

Next, we conduct a case analysis to see whether the sizes of these sets added together

indeed have size c (modulo r!), which implies that the number of children modulo r! is

equal to c.

|GroupXi | mod r! = c⇔
(
∃XV

i,τ∃XE
i,σ

)
τ∈{τ1,...,τt}
σ∈{σ1,...,σs}∨

(
∑
τ cτ+

∑
σ cσ) mod r!=c∑

τ cτ+
∑
σ cσ≤r!·(s+t)

(
|XV

i,τ1 | mod r! = cτ1 ∧ · · · ∧ |XV
i,τt | mod r! = cτt

∧ |XE
i,σ1 | mod r! = cσ1 ∧ · · · ∧ |XE

i,σs | mod r! = cσs

)
To define the equivalence class membership of partial terminal group subgraphs, we

first define the corresponding sets (and assume that all sets for terminal subgraphs are

already defined as before). (
∃CGi|Vj,τ ∃C

Gi|E
j,σ

)
i=1,...,r
j=ε,1,...,r
τ∈{τ1,...,τt}
σ∈{σ1,...,σs}

In the following we assume that X is associated with vertex v and type τ and note that

we can define the edge cases analogously. We first consider the case, when the group i

w.r.t. an equivalence class Ci is empty.∧
i=1,...,r

((∧
τ ′

XV
i,τ ′ = ∅ ∧

∧
σ

XE
i,σ = ∅

)
→ v ∈ CGi|Vε,τ

)

For all i, such that v /∈ CGi|Vε,τ , we define the equivalence class membership of the partial

terminal group subgraph of X w.r.t. Ci using the arguments given in the proof of Lemma

Appendix A Monadic Second Order Predicates and Sentences 75

5.6. Let j = fI(i,X). ∧
c=1,...,r!

|GroupXi | mod r! = c→ v ∈ CGi|VfcJ (j),τ

Since now we are left with a bounded number of r cases, we can use the function fG to

determine the equivalence class membership of [X]+.∧
j1=ε,1,...,r···
jr=ε,1,...,r

((
v ∈ CG1|Vj1,τ

∧ · · · ∧ v ∈ CGr|Vjr,τ

)
→ v ∈ CVfG(j1,...,jr),τ

)

This completes our predicate.

A.6 k-Cycle Trees

In the current section we give all predicates to define a tree decomposition of a k-

cycle tree in MSOL, as explained in the proof of Lemma 5.16. We first define the

edge orientation φOri and then all predicates for the bag types. Note that since this

construction is very similar to the one for Halin graphs, we do not define the Parent-

predicate explicitly, as it works in almost the exact same way.

As a first step we define a predicate to check whether two vertices have a certain (con-

stant) distance in a given edge set.

dist(v, w,E′) = k ⇔ (∃EP ⊆ E′)(Path(v, w,EP) ∧ |EP | = k)

This allows us to define the the i-th cycle of the graph.

E′ = Cyclei ⇔Cycle→(IncV(E′), E′) ∧ ∀v(Inc(v,E′)→ dist(c, v, E) = i)

We can write down the orientation φOri described in the proof of Lemma 5.16 in the

following way.

φOri =∃ET∃EC1 · · · ∃ECk∃r1 · · · ∃rk−1
(

(PartE(E,ET , EC1 , . . . , ECk)

∧ Tree→(V,ET) ∧
∧

i=1,...,k

ECi = Cyclei

∧
∧

i=1,...,k−1

(
ri ∈ IncV(ECi) ∧ dist(r, ri, ET) = k − i

))

We can define a predicate nbi<(e, f) in complete analogy to nb<(e, f) as shown in Ap-

pendix A.2 by simply replacing EC by ECi and r by ri (for the case that i = k don’t

have to modify it). This predicate is true if and only if e is on the left of f , such that e

and f have the same head vertex, i.e. their tail vertices lie on the same cycle.

Appendix A Monadic Second Order Predicates and Sentences 76

Now we turn to defining the i-th boundary vertex (Definition 5.15).

w = bdri (v,E
′)⇔(w ∈ VCi ∧ v = w)

∨ (∃EP ⊆ E′)(Path→(v, w,EP) ∧ w ∈ IncV(ECi))

∧ (∀e ∈ EP)¬(∃E′P ⊆ E′)
(

Path→(v, w,E′P) ∧ (∃e′ ∈ E′P)∨
i=1,...,k

nbi<(e, e′)
)

(A.2)

To define bdli, we simply replace nbi<(e, e′) by nbi<(e′, e) in line A.2. In the following we

abbreviate w = bdi(v,ET) to w = bdi(v). We denote by NBR(e) the edge set containing

e and all its right neighbor edges.

We are now equipped with all tools to define the bag types for a tree decomposition of

a k-cycle tree. We use the same notation as in Appendix A.3, that is, we have an edge

e = {x, y}, such that y is the parent of x in ET and assume that the vertex y lies on

cycle Ci. The predicate CarryBDr defines the case that the vertex x does not have a

left boundary on a cycle Cj , so that we have to pass on the right boundary vertex of y

without the edge e and its right neighbors.

CarryBDr(e, z)j ⇔ (¬(∃z′(z′ = bdlj(x))) ∧ z = bdrj(y,ET \NBR(e))

We continue by defining the bag types R1, . . . , LR.

BagR1(e,X)⇔z ∈ X ↔
∨

i<j≤k

(
z = bdlj(x) ∨ z = bdrj(x)

)
BagR2(e,X)⇔z ∈ X ↔

(
z = y ∨

∨
i<j≤k

(
z = bdlj(x) ∨ z = bdrj(x)

))

BagL1(e,X)⇔z ∈ X ↔
(
z = y ∨

∨
i≤j≤k

(
z = bdlj(y)

∨ z = bdrj(y,ET \NBR(e))
))

BagL2(e,X)⇔z ∈ X ↔
(
z = y ∨

∨
i<j≤k

(
z = bdlj(y) ∨ z = bdlj(x)

∨ z = bdrj(y,ET \NBR(e))
))

Appendix A Monadic Second Order Predicates and Sentences 77

BagL3(e,X)⇔z ∈ X ↔
(
z = y ∨

∨
i<j≤k

(
z = bdlj(y) ∨ z = bdlj(x)

∨ CarryBDr(e, z)
))

BagLR(e,X)⇔z ∈ X ↔
(
z = y ∨

∨
i<j≤k

(
z = bdlj(x) ∨ z = bdrj(x)

∨ z = bdlj(y) ∨ CarryBDr(e, z)
))

Note that defining the Parent-predicate works in the same way as for Halin graphs,

taking into account the missing bag type R3.

A.7 Adding Feedback Edge/Vertex Sets

In this section we complete the proof of Theorem 5.19. In the following, let G′ = (V ′, E′)

and G = (V,E) be graphs as stated in Theorem 5.19. Assume that we are given

predicates BagVτ and BagEσ for vertex bag types τ and σ, defined for vertices and edges of

the spanning tree ET of a graph, defining a tree decomposition of G′. One can observe

that we can define the sets V ′ and (a set representing) E′ easily, using the following

facts.

• Each vertex v′ ∈ V ′ is contained in a bag of the tree decomposition, i.e. (at least)

one of the Bag-predicates evaluates to true for some set X ⊆ V .

• For each edge e′ ∈ E′ there is a bag containing both endpoints. Note that if there

is an edge in E \ E′, such that both its endpoints are contained in a bag, we do

not need to consider it any further.

In the following we assume that V ′ and E′ are defined and FundCyc uses the maximal

spanning tree ET , upon which the construction of the tree decomposition of G′ is based.

First, we consider the case of feedback edge sets. We use the notion of fundamental cycles

rather that directly referring to biconnected components, since it makes our predicate

shorter (while in this case they express the same thing).(i)

BagE,+σ (e,X)⇔v′ ∈ X ↔
(

(∃e′ ∈ E \ E′)
(

Inc(v′, e′) ∧ FundCyc(e, e′)

∧ ∀w((¬v′ = w ∧ Inc(w, e′))→ col(v′) < col(w))
))

BagV,+τ (v,X)⇔v′ ∈ X ↔
(

(∃e′ ∈ E \ E′)
(

Inc(v′, e′) ∧ FundCyc(v, e′)

∧ ∀w((¬v′ = w ∧ Inc(w, e′))→ col(v′) < col(w))
))

(i)Note that the predicate FundCyc can easily be defined for a combination of a vertex and an edge
as well.

Appendix A Monadic Second Order Predicates and Sentences 78

For feedback vertex sets we can define similar additions to the respective predicates,

directly using the biconnected components mentioned in the proof.

BagV,+τ (v,X)⇔v′ ∈ X ↔
(

(∃V2 ⊆ V)(v ∈ V2 ∧ v′ ∈ V2

∧ Conn2(V2, ET ∪ IncE(V2 \ V ′)))
)

BagE,+σ (e,X)⇔v′ ∈ X ↔
(

(∃V2 ⊆ V)
(
v′ ∈ V2 ∧ e′ ∈ IncE(V2 \ V ′)

∧ Conn2(V2, ET ∪ IncE(V2 \ V ′))
))

A.8 Bounded Vertex and Edge Remember Number

As the last of our extensions, we show how to define tree decompositions that have

a bounded vertex and edge remember number. Hence, we will conclude the proof of

Theorem 6.2, which we used to prove the case for bounded degree k-outerplanar graphs.

First, we are going to show how to identify an edge set as a spanning tree with vertex

remember number less than or equal to κ and edge remember number less than or equal

to λ, both constant.

∃ET (Tree(V,ET) ∧ vr(ET) ≤ κ ∧ er(ET) ≤ λ)

vr(ET) ≤ κ⇔(∀v ∈ V)(∀e1 ∈ E \ ET) · · · ∀(eκ+1 ∈ E \ ET)((∧
i=1,...,κ+1

FundCyc(v, ei)
)
→

∨
1≤i<j≤κ+1

ei = ej

)
er(ET) ≤ λ⇔(∀e ∈ E)(∀e1 ∈ E \ ET) · · · ∀(eλ+1 ∈ E \ ET)((∧

i=1,...,λ+1

FundCyc(e, ei)
)
→

∨
1≤i<j≤λ+1

ei = ej

)
In the following, assume that ET is the edge set of the spanning tree of G (as shown

above), which additionally has edge orientations, defined in MSOL by predicates head

and tail (cf. Appendix A.1). Note that the last predicate in the list, nb<(Xa, Xb)

requires an ordering on edges with the same head vertex.

BagV (v,X)⇔v′ ∈ X ↔ (v′ = v ∨ (∃e ∈ E \ ET)(Inc(v′, e)

∧ FundCyc(v, e)))

BagE(e,X)⇔v′ ∈ X ↔ (Inc(v′, e) ∨ (∃e′ ∈ E \ ET)(Inc(v′, e′)

∧ FundCyc(e, e′)))

Parent(Xp, Xc)⇔∃v(∃e ∈ ET)((BagV (v,Xp) ∧ BagE(e,Xc) ∧ head(v, e))

∨ (BagV (v,Xc) ∧ BagE(e,Xp) ∧ tail(v, e)))

nb<(Xa, Xb)⇔(∃ea ∈ ET)(∃eb ∈ ET)(head(ea) = head(eb) ∧ nb<(ea, eb))

Appendix A Monadic Second Order Predicates and Sentences 79

A.9 k-Outerplanar Graphs

Using the forbidden minors (K4 andK2,3), we can define a predicate for verifying whether

a graph is outerplanar in a straightforward way.

Outerpl(V ′, E′)⇔ ¬(MinorK4(V ′, E′) ∨MinorK2,3(V ′, E′))

Following the argumentation in the proof of Lemma 6.7, we can define our predicate as

follows.

∃V1 · · · ∃Vk
(

PartV (V, V1, . . . , Vk) ∧Outerpl(V1, IncE(V1))

∧ · · · ∧Outerpl(Vk, IncE(Vk))

∧ ∀v
(∧
i=1,...,k

v ∈ Vi → ∀w∀e(Edge(e, v, w)

→ (w ∈ Vi−1 ∨ w ∈ Vi ∨ w ∈ Vi+1)
))

A.9.1 3-Connected k-Outerplanar Graphs

We first give the necessary definition of defining the ordering nb< as described in Lemma

6.17. The first step is to define face-adjacency of two edges.

AdjF (e, f)⇔∃v(Inc(v, e) ∧ Inc(v, f))

∧ (∃E′ ⊆ E)(FaceBd3(E
′) ∧ e ∈ E′ ∧ f ∈ E′)

Next, we define a set to check whether a set of edges is a face-adjacency path from the

one to the other, if they both share a vertex v. Intuitively speaking, this predicate states

that each edge in the candidate set E′ has precisely one neighbor in it, if the edge is

either e or f and precisely two otherwise. Furthermore, E′ has to consist of a subset of

the incident edges of v, without e′A (see the proof of Lemma 6.17) and it has to contain

both e and f .

PathF (E′, e, f)⇔(∃E′′ ⊆ (IncE(v) \ e′A))(E′ = E′′ ∪ {e, f})

∧ e1 ∈ E′ ↔
((

(e1 = e ∨ e1 = f) ∧ (∃e2 ∈ E′)(AdjF (e1, e2)

∧ (∀e3 ∈ E′)((¬e2 = e3)→ ¬AdjF (e1, e3)))
)

∨
(
¬(e1 = e ∨ e1 = f) ∧ (∃e2 ∈ E′)(∃e3 ∈ E′)

(
AdjF (e1, e2)

∧AdjF (e1, e3) ∧ (∀e4 ∈ E′)((¬(e4 = e2 ∨ e4 = e3))

→ ¬AdjF (e1, e4))
)))

Appendix A Monadic Second Order Predicates and Sentences 80

We are now ready to define the predicate for the ordering nb<.

nb<(e, f)⇔ ∃Ee∃Ef (PathF (Ee, eA, e) ∧ PathF (Ef , eA, f) ∧ Ee ⊂ Ef)

A.9.2 Tree Decompositions for 3-Connected k-Outerplanar Graphs

We first show how to define that a spanning tree with edge set F has bounded face

remember number ν in a 3-connected planar graph G = (V,E), which completes the

proof of Proposition 6.20. Intuitively speaking, this predicate checks that for each com-

bination of a vertex and a face boundary FB, the number edges, whose fundamental

cycle uses both v and some edge in FB, is bounded by ν.

fr(V,E, F) ≤ ν ⇔ ∀v(∀EFB ⊆ E)
(

FaceBd3(EFB)→ (∀e1 ∈ E \ F) · · · (∀eν+1 ∈ E \ F)((∧
1≤i≤ν+1

(∃EC ⊆ E)(FundCyc(ei, Ce) ∧ ¬(CE ∩ EFB = ∅) ∧ Inc(v,EC))
)

→
∨

1≤i<j≤ν+1

ei = ej

))
Next, we will define the edge sets C(v, fi), as used in the proof of Lemma 6.19.

E′ = C(v,EFB, F)⇔ e ∈ E′ ↔ (∃EC ⊆ E)(FundCyc(e, EC)

∧ ¬(EC ∩ EFB = ∅) ∧ Inc(v,EC))

We furthermore denote by C(v, e, F) the union of the sets C(v, fi) and C(v, fj) of the

two faces fi and fj , whose face boundaries contain e (such that e is incident to v).

We now define a predicate identifying a unique face boundary with lowest layer number

for each vertex.

Layeri(EFB)⇔FaceBd3(EFB) ∧ ∃v(Inc(v,EFB) ∧ v ∈ Vi)

E′ = Ef`(v)⇔(∃e ∈ E′)
(

Inc(v, e) ∧
∧

i=1,...,k

(
v ∈ Vi →

((
Layeri−1(E

′)

∧ ¬((∃f∃Ef)(Layeri−1(Ef) ∧ f ∈ Ef ∧ Inc(v, f) ∧ nb<(f, e))))
)

∨
(

Layeri(E
′) ∧ ¬(∃Ef (Layeri−1(Ef) ∧ Inc(v,Ef)))

∧ ¬((∃f∃Ef)(Layeri(Ef) ∧ f ∈ Ef ∧ Inc(v, f) ∧ nb<(f, e)))
)))

We are now ready to define the Bag-predicates of our tree decomposition. Note that the

bag type σ can be defined in the same way as for bounded degree k-outerplanar graphs,

hence we refer to Appendix A.8 for the details. The types σH can be defined using the

predicates given above. We assume that we are given an arbitrary but fixed orientation

Appendix A Monadic Second Order Predicates and Sentences 81

on the edges as described in the proof of Lemma 6.19.

BagσH (e,X)⇔v ∈ X ↔ head(v, e) ∨ (∃e′ ∈ (C(v, e, F) ∪ C(v,Ef`(head(e)), F))

(Inc(v, e′) ∧ ∀w(¬(v = w) ∧ Inc(w, e′))→ col(v) < col(w))

We can define the bag type σT by replacing ’head’ by ’tail’ in the above predicate.

We now define the set of anchor edges EA and co-anchor edges E′A. For each vertex v

we need to find a face with lowest layer number f`. Let e`1 and e`2 denote the incident

edges of v bounding f`. Then, e`1 has to be contained in EA and e`2 in E′A. Note that

this choice is arbitrary and that we have to choose precisely one such face for each vertex

in the graph.

E′ = EA ⇔∀v∃e(e ∈ E′ ∧ Inc(v, e) ∧ e ∈ Ef`(v)

∧ ∀e′((Inc(v, e′) ∧ ¬e = e′)→ ¬(e′ ∈ E′)))
E′ = E′A ⇔(∀e ∈ EA)∀v∃e′(e′ ∈ E′ ∧ Inc(v, e) ∧ Inc(v, e′) ∧ e ∈ Ef`(v) ∧ e′ ∈ Ef`(v)

∧ ∀e′′((Inc(v, e′′) ∧ ¬e′′ = e′)→ ¬(e′′ ∈ E′)))

We now turn to defining the Parent-predicate and begin by defining the case when a

bag of type σ is a bag of type σT .

ParentσσT (X,Y)⇔(∃e ∈ F)(Bagσ(e,X) ∧ BagσT (e, Y))

∨(∃e ∈ F)(∃e` ∈ Ef`(tail(e)) ∩ Inc(tail(e)))(AdjF (e, e`)

∧ Bagσ(e`, X) ∧ BagσT (e, Y))

Similarly, we can define the case when a bag of type σH is the parent of a bag of type σ.

ParentσHσ(X,Y)⇔(∃e ∈ F)(BagσH (e,X) ∧ Bagσ(e, Y))

∨(∃e ∈ F)(∃e` ∈ Ef`(head(e)) ∩ Inc(head(e)))(AdjF (e, e`)

∧ BagσH (e,X) ∧ Bagσ(e`, Y))

We now consider edges between bags of type σH/σT . In the following, we define the case

when all bags involved are σT -bags and note that the other cases can be defined by the

obvious replacements. We first define the outgoing edges of the σT -bag corresponding

to the unique incoming edge in the directed spanning tree T = (V, F).

ParentIσT σT (X,Y)⇔(∃e∗ ∈ F)(∃e ∈ E)
(

BagσT (e∗, X) ∧ BagσT (e, Y)

∧ tail(e∗) = tail(e) ∧ (nb≺(e, e∗) ∨ nb≺(e∗, e))
)

Appendix A Monadic Second Order Predicates and Sentences 82

We now define the rest of the edges. We denote by e∗(v) the edge which satisfies

e∗ ∈ F ∧ tail(e∗) = v.

ParentRσT σT (X,Y)⇔ ∃e∃f
(

tail(e) = tail(f) ∧ nb≺(e, f)

∧
(

(BagσT (e,X) ∧ BagσT (f, Y) ∧ nb<(e∗(tail(e)), e))

∨(BagσT (f,X) ∧ BagσT (e, Y) ∧ nb<(f, e∗(tail(f))))
))

Unifying all above defined predicates (plus the omitted similar cases) yields the Parent(X,Y)-

predicate for our tree decomposition.

A.10 Hierarchical Graph Decompositions for k-Outerplanar

Graphs

In this section we provide details for the predicates used in proofs of Section 6.4. First we

show how to define the parent-relation between blocks in our hierarchical decomposition

as explained in the proof of Lemma 6.35. We assume that we are given a graph G =

(V,E) with a spanning tree S = (V, F), which i rooted at an (arbitrary) vertex r ∈ V .

Let Block(X) denote a predicate which is true if and only if a set X ⊆ V is a block in

the hierarchical decomposition of G. Block(X) is definable by [14] (cf. also Proposition

6.36). Note that this predicate handles both the case when the parent is a cut-bag and

the child is a block bag and vice versa (by the equivalence after the term ’(X ⊂ Y)’).

ParentBlock(X,Y)⇔(Block(X) ∧Block(Y) ∧ (X ∩ Y = X ∨X ∩ Y = Y))

∧(X ⊂ Y)↔
(

(∀y ∈ Y)(∃x ∈ X)(∀Px ⊆ F)(∀Py ⊆ F)(
(Path→(r, x, Px) ∧ Path→(r, y, Py))→ Px ⊂ Py

))

A.10.1 Defining a Cycle Block

We now show how to define the predicates for tree decompositions of a cycle block

C = (W,EC) as used in the proof of Proposition 6.37. First, we find the root rC ∈ W
of the cycle.

v = rC ⇔(r ∈W ∧ v = r) ∨
(

(∃CP ⊂ V)(ParentBlock(CP , C)

∧ ∃v((BagC1(v, CP) ∨ BagC2(v, CP)) ∧ v = rC))
)

Appendix A Monadic Second Order Predicates and Sentences 83

Now we can define the predicate BagCyc straightforwardly.

BagCyc(e,X)⇔¬Inc(e, rC) ∧ (v ∈ X ↔ (Inc(v, e) ∨ v = rC))

Furthermore we can define the predicate ParentCyc(X,Y) as described in the proof of

Proposition 6.37.

ParentCyc(X,Y)⇔∃e∃f
(

BagCyc(e,X) ∧ BagCyc(f, Y) ∧ |X ∩ Y | = 2

∧(∃Z ⊆ V)
(

CycleB3(Z) ∧ Inc(e, Z) ∧ Inc(f, Z)

∧(∃Pe ⊆ IncE(Z))(∃Pf ⊆ IncE(Z))

(Path→(rC , tail(e), Pe) ∧ Path→(rC , f, Pf) ∧ Pe ⊂ Pf)
))

A.10.2 Defining the Parent-predicate for (T ,X)

We now complete the proof of Lemma 6.35 by defining the parent-relation in all bags of

the resulting tree decomposition (T ,X) of the graph G. During this step we also modify

some of the Bag-predicates, since, as explained in the proof, a number of vertices might

be added to each bag in the tree decomposition. A vertex v is added to a bag X, when

it is a member of a tree decomposition of a 2-connected 2-block or a 3-block and v is

contained in the parent cut bag of X in the hierarchical decomposition of G. We show

how to define such a predicate for an arbitrary case.

Bag′∗(X)⇔(∃X ′ ⊆ X)
(

Bag∗(X
′) ∧ v ∈ X \X ′ ↔ ∃Y ∃Z

(
X ′ ⊆ Z

∧ (2-ConnB2(Z) ∨ 3-ConnB3(Z) ∨ CycleB3(Z))

∧ ParentBlock(Y,Z) ∧ v ∈ Y
))

In the following, we indicate that we refer to these modified bags by using the notation

’Bag′ . . .’ instead of ’Bag . . .’. We define two cases: One, in which a C1- or C2-block is a

parent of a B3-block and vice versa. The cases for C1- and B2-blocks can be defined by the

obvious replacements. Note that the predicate RootB3 can be defined straightforwardly

using the BagB3(X)- and ParentB3(X,Y)-predicates.

ParentCB3(X,Y)⇔(Bag′C1(X) ∨ Bag′C2(X)) ∧ Bag′B3(Y) ∧X ⊆ Y ∧ RootB3(Y)

∧∃Z(Y ⊆ Z ∧ ParentBlock(X,Z \X))

ParentB3C(X,Y)⇔Bag′B3(X) ∧ (Bag′C2(Y) ∨ Bag′C1(Y)) ∧X ⊆ Y
∧∃Z(X ⊆ Z ∧ ParentBlock(X \ Z,Z))

∧¬(∃X ′(ParentB3(X ′, X) ∧X ′ ⊆ Y))

The ParentBC(X,Y)-predicate can now be defined as a unification of all these cases.

Appendix A Monadic Second Order Predicates and Sentences 84

A.10.3 Defining Tree Decompositions for 3-Connected 3-Blocks

We now show how to define the predicates for defining the sets SE and RV as outlined

in the proof of Lemma 6.44. To shorten our notation, we will use the symbol E[B3,SE]

instead of the term ’IncE(B3) ∩ SE ’.

(i) (∃RV ⊆ V)(∃F ⊆ E)(∃F ′ ⊆ E)(∃SE ⊆ E)(SE = F ∪ F ′) . . .
(ii) (∃rT ∈ V)(Tree→(rT , F)) . . .

(iii) e ∈ F ′ → ∃x∃y(¬x = y ∧ Inc(x, e) ∧ Inc(y, e) ∧ ¬e ∈ F
∧ ∃X(BagC2(X) ∧ x ∈ X ∧ y ∈ X)) . . .

(iv) (∀B3 ⊆ V)
(

3-ConnB3(B3)→
(
er(B3, IncE(B3), E[B3,SE]) ≤ 2k

∧ fr(B3, IncE(B3), E[B3,SE]) ≤ k
))

(v) v ∈ RV → ∃X(BagC2(X) ∧ v ∈ X)

(vi) (∀B3 ⊆ V)
(

3-ConnB3(B3)→ (∃rB3 ∈ RV)
(

Tree→(rB3 , B3, E[B3,SE])
))

	Abstract
	Acknowledgements
	1 Introduction
	2 Preliminaries
	2.1 Graphs and Tree Decompositions
	2.2 Tree Automata for Graphs of Bounded Treewidth
	2.3 Equivalence Relations
	2.4 Monadic Second Order Logic of Graphs
	2.5 Courcelle's Conjecture

	3 Deriving Equivalence Class Membership
	4 Halin Graphs
	4.1 Edge Orientation and Ordering
	4.2 MSOL-Definable Tree Decompositions
	4.3 Finite Index Implies MSOL-Definability

	5 Extensions
	5.1 MSOL-Definable Tree Decompositions
	5.2 Unordered Nodes of Unbounded Degree
	5.3 k-Cycle Trees
	5.4 Feedback Edge and Vertex Sets

	6 k-Outerplanar Graphs
	6.1 Bounded Degree k-Outerplanar Graphs
	6.2 An Implicit Representation of the Vertex Expansion Step
	6.3 3-Connected k-Outerplanar Graphs
	6.4 Implications of Hierarchical Graph Decompositions to Courcelle's Conjecture

	7 Conclusion
	Bibliography
	A Monadic Second Order Predicates and Sentences
	A.1 Edge Orientation of a Halin Graph
	A.2 Child Ordering of a Halin Graph
	A.3 Tree Decomposition of a Halin Graph
	A.3.1 Boundary vertices
	A.3.2 Bag Types
	A.3.3 The Parent Relation

	A.4 Equivalence Class Membership for Halin Graphs
	A.5 Equivalence Class Membership - Generalized
	A.5.1 Intermediate Nodes
	A.5.2 Branch Nodes
	A.5.3 Branch Nodes for Bounded Degree Tree Decompositions
	A.5.4 Counting for Branch Nodes of Unbounded Degree

	A.6 k-Cycle Trees
	A.7 Adding Feedback Edge/Vertex Sets
	A.8 Bounded Vertex and Edge Remember Number
	A.9 k-Outerplanar Graphs
	A.9.1 3-Connected k-Outerplanar Graphs
	A.9.2 Tree Decompositions for 3-Connected k-Outerplanar Graphs

	A.10 Hierarchical Graph Decompositions for k-Outerplanar Graphs
	A.10.1 Defining a Cycle Block
	A.10.2 Defining the Parent-predicate for (T, X)
	A.10.3 Defining Tree Decompositions for 3-Connected 3-Blocks

