

Name : Eline de Haan
Student number : 4183134
Date : July 13th, 2015
1st Supervisor : Marco Spruit
2nd Supervisor : Floris Bex
Daily Supervisor : Martijn Zoet
Company Supervisor : Peter Straatsma

Patterns for Derivation Business Rules
Master Thesis
 E. Y. de Haan

Thesis: Patterns for Derivation Business Rules

2

General Information

INSTITUTION : UTRECHT UNIVERSITY
NAME : Eline Yvette de Haan
STUDENT NUMBER : 4183134
CONTACT : eline_de_haan@hotmail.com
TITLE THESIS : Patterns for Derivation Business Rules
RESEARCH PERIOD : November 10, 2014 – July 13, 2015
DATE OF DEFENSE : July 13, 2015

INSTITUTION : UTRECHT UNIVERSITY
DEPARTMENT : Information and Computing Sciences
MASTER : Business Informatics
SUPERVISORS : Dr. M.R. Spruit
 Dr. F. J. Bex

INSTITUTION : ZUYD UNIVERSITY OF APPLIED SCIENCES
 UNIVERSITY OF APPLIED SCIENCES UTRECHT

DEPARTMENT : Commercial and Financial Management
SUPERVISOR : Dr. M. Zoet

HOST INSTITUTION : DUTCH TAX AND CUSTOMS ADMINISTRATION
DEPARTMENT : B/CAO Service Control
SUPERVISOR : P. Straatsma

Thesis: Patterns for Derivation Business Rules

3

Preface & Acknowledgements
Presented here is the thesis resulting from my graduation project for my master’s degree in Business
Informatics at Utrecht University. The research project has been performed at the Dutch Tax and
Customs Administration in cooperation with Utrecht University and the University of Applied Sciences
Utrecht. During the last eight months, this challenging research assignment allowed me to expand my
knowledge in the domains of Business Rules Management (BRM) and Controlled Natural Languages
(CNLs). Hopefully, this document could be of value for people interested in exploring these research
domains.

At first, I would like to thank everyone who participated in this research project and had a share in its
successful completion. In particular, I would like to thank my first supervisor Marco Spruit for his
guidance during the entire project and providing me with his insights and feedback. Thanks to my
second supervisor, Floris Bex, for reviewing and providing valuable comments in order to enhance the
quality of my work.

Furthermore, my appreciation goes out to my daily supervisor Martijn Zoet for the time and effort he
put into the guidance of this project. His guidance and expertise had a significant contribution to the
success of this research. Moreover, I am grateful to my company supervisor Peter Straatsma for
providing the opportunity, feedback and support during this project.

Besides my supervisors, I also consulted three specialists of the Dutch Tax and Customs Administration
throughout this research. Therefore, I wish to express my gratitude to Diederik Dulfer, Gertrude
Sangers–van Cappellen, and Frans Fokkenrood for reviewing and taking their time to share their
knowledge with me.

Finally, I would like to thank my family and friends for their enthusiastic encouragement, support and
understanding throughout this process.

Thesis: Patterns for Derivation Business Rules

4

Abstract
In the last decade, derivation business rules have become an increasingly valuable asset for
organizations. Derivation business rules are “expressions that evaluate facts, by means of a calculation
or classification, leading to a new fact”. To specify and manage these business rules, a multitude of
business rule languages and systems is available. The abundance of available systems and languages,
and the fact that they differ to a large extent regarding their expressive power, causes two problems.
The first problem organizations may encounter are difficulties in selecting an appropriate business
rules management system or business rule language, since no set of criteria exists which could be used
as reference point for comparison. This may for instance lead to the selection of a language with a too
extensive or too low level of expressive power. A second problem can occur when a language, tailored
to a particular business rules management system, is selected. In case an organization transfers to a
new or additional system, the business rules have to be re-specified which is highly inefficient,
expensive and error prone. The two identified problems resulted in the formulation of the following
problem statements:

 “How can the problem be addressed that no tailored set of formal requirements exist, which
can be used to verify if a business rule language is able to formulate derivation rules?”

 “How can the problem be addressed that business rules need to be re-modeled to comply with
a new implementation dependent language?”

In order to tackle the outlined problems above, research was conducted based on the following
research question: “How can derivation business rules be specified precisely and implementation
independent?”

The answer to the main research question is: by using a controlled natural language (CNL). A CNL is a
specific notation form that can comply with a high level of precision, without being restricted to be
applied by solely one automated information system. An additional benefit is that a CNL can resemble
a natural language to a certain extent which enables humans to specify and verify the business rules.
During this research, a CNL is created especially focused on specifying derivation business rules.

The CNL incorporates 15 fundamental constructs (i.e. building blocks of the language), which are
required to compose a precise derivation business rule: 1) Conclusion part, 2) Condition part, 3) Modal
Claim Type, 4) Construct, 5) Connective, 6) Expression, 7) Subject, 8) Quantifier, 9) Relation, 10)
Ground, 11) Classification, 12) Propositional Operator, 13) Value, 14) Mathematical Operator, and 15)
Mathematical Function. To enforce the syntax of the fundamental constructs, an underlying formal
grammar is created. This formal grammar includes 40 grammar rules. In addition, a set of 19 different
patterns is devised to restrict the CNL even more. The created artifacts have been validated in four
rounds. During the first three rounds, the fundamental constructs and grammar rules have been
validated by means of: 37 business rule patterns, 150 business rules, and the implemented business
rules and components of six business rules management systems. The validation revealed that no
fundamental constructs lacked or were superfluous. In the fourth validation round, a data set derived
from the Dutch Tax and Customs Administration is specified by means of the patterns to validate the
completeness of the pattern catalogue. The validation revealed that each of the 45 business rules in
the data set could be specified with patterns from the pattern catalogue.

The resulting artifacts are seen as foundation for prolongation of this research. Possible future
research could include the refinement of the developed CNL and pattern catalogue. Moreover, the
applicability of the artifacts for other types of business rules besides derivation business rules could be
investigated.

Thesis: Patterns for Derivation Business Rules

5

Table of Contents
General Information .. 2

Preface & Acknowledgements .. 3

Abstract ... 4

1 Introduction ... 7

 Research triggers and problem definition ... 8

1.1.1 Scientific Triggers ... 8

1.1.2 Practical Triggers ... 11

1.1.3 Business Triggers ... 11

1.1.4 Conclusion ... 12

 Research Question .. 12

 Research Method .. 13

 Research Model ... 15

2 Literature Review .. 19

 Business Rules Management and Business Rules ... 19

 Derivation Business Rules .. 22

 Controlled Natural Language (CNL) ... 26

 Formal Grammar ... 33

 Patterns and pattern catalogues ... 35

 Summary literature review .. 39

3 CNL Creation .. 41

 Equivalent Underlying Fundamental Constructs ... 43

 Unique Fundamental Constructs Conclusion Part .. 53

 Unique Fundamental Constructs Condition Part .. 54

 Summary.. 56

4 Preliminary Validation ... 58

 Data Collection .. 58

4.1.1 Validation Round 1 – Pattern Level View .. 58

4.1.2 Validation Round 2 – Instance Level View... 59

4.1.3 Validation Round 3 – Implementation Dependent Level View 60

 Data Analysis ... 61

4.2.1 Overall Data Analysis Process and Method ... 61

4.2.2 Results Validation Round 1 – Pattern Level View .. 62

4.2.3 Results Validation round 2 – Instance Level View ... 70

4.2.4 Results Validation round 3 – Implementation Dependent Level View 77

Thesis: Patterns for Derivation Business Rules

6

5 Pattern Catalogue Creation ... 83

 Subdivision Patterns .. 83

 Modeling Choices .. 85

6 Pattern Validation ... 90

 Data Collection .. 90

6.1.1 Validation Round – Instance Level View ... 90

 Data Analysis ... 91

6.2.1 Results Validation Round – Instance Level View ... 91

7 Discussion .. 94

8 Conclusion ... 96

References ... 98

Appendix 1: Business Rule Classification Schemes ... 103

Appendix 2: Detailed Explanation Pens ... 109

Appendix 3: Formal Grammar ... 112

Appendix 4: Pattern Catalogue ... 115

Appendix 5: Validation Round 1 – Pattern Level View .. 122

Appendix 6: Validation Round 2 – Instance Level View .. 123

Appendix 7: Validation Round 3 – Implementation Dependent View .. 124

Appendix 8: Decomposed Case Study Business Rule Set .. 125

Appendix 9: Validation Patterns – Instance Level View .. 136

Thesis: Patterns for Derivation Business Rules

7

1 Introduction
In the 1960s, software was only composed of source code (Van der Aalst, 1996). However, it turned
out that in this way the software was not agile enough to comply with the rapidly changing business
environment (Pesic & van der Aalst, 2006). To address this issue, a shift in the information technology
domain came up which is called the separation of concerns (Dijkstra, 1982). The term separation of
concerns, within the information technology discipline, can be seen as a best practice or design
principle to design information technology architectures (Van der Aalst, 1996; Versendaal, 1991). This
principle implies that systems are divided into distinct sections which can be adjusted separately. By
applying this principle, the complexity can be reduced and the comprehensibility can be enhanced
(Dijkstra, 1982).

During the 1970s, the first layer was separated by means of introducing databases to segregate the
data from the business logic. Ten years later, in the 80s, the user interface became an individual
concern. This made it possible to adjust the interface without affecting the business logic or changing
the data. During the 90s, also the process-layer followed and was put down as separate concern.
Currently, in the last ten to fifteen years, more and more organizations regard their business logic as a
separate concern. Business logic is nowadays captured in the form of business rules and decision
models. A business rule is defined as: “a statement that defines or constrains some aspect of the
business, intending to assert business structure or to control the behavior of the business” (Hay & Healy,
2000). Therefore, business rules play a crucial role in an organization’s daily operations. For example,
business rules are used to: diagnose illness of patients, determine the amount of tax a citizen has to
pay, determine eligibility, and restrict the order in which activities can execute (Hay & Healy, 2000;
Liao, 2004; Von Halle, 2001).

When business rules were hard-coded, the ability to change their implementation in systems was
mainly an IT department concern. To realize the actual change, developers and programmers were
required. By separating business rules from the source code, they become more tangible and can be
considered as individual objects which can be managed separately (e.g. by business people). This shift
resulted into the development of a variety of languages to express business rules. For instance:
RuleSpeak, The Decision Model (TDM), the Simple Rule Markup Language (SRML), the Semantic Web
Rules Language (SWRL), the Production Rule Representation (PRR), the Semantics of Business
Vocabulary and Business Rules (SBVR), SRL, N3, and IRL (Zur Muehlen & Indulska, 2010). The
proliferation of business rule languages can be explained by the fact that these languages differ with
regard to their philosophy, semantics and maturity (Zur Muehlen & Indulska, 2010).

Since various differences between these languages exist, research has been initiated to compare the
business rule languages. Examples of such studies are Zoet, Ravesteyn, and Versendaal (2011) and Zur
Muehlen and Indulska (2010). Zur Muehlen and Indulska compared the representational capabilities
of four different business rule languages, by mapping the fundamental elements of these languages
onto the constructs of the Bunge-Wand-Weber (BWW) representation theory. The BWW
representation model allows to analyze the degree to which a modeling language is capable of
representing elements of the real world (Wand & Weber, 1993).

However, previous studies focused on high-level elements (e.g. thing, property) of business rule
languages. This view is applicable to analyze business rule languages at a global level, but not to
evaluate the details of the syntax and semantics of the languages. During this research, the aim is to
evaluate business rule languages from a more detailed and practical view.

Thesis: Patterns for Derivation Business Rules

8

 Research triggers and problem definition

This section gives a description of the scientific, practical and business triggers of this research. The
triggers are summarized into a conclusion at the end of this section.

1.1.1 Scientific Triggers

To get grip on the business rules, organizations can apply Business Rules Management (BRM) which is
considered as the discipline comprising the representation, organizational structure, techniques,
methods and tools to manage business rules (Von Halle, 2001; Zoet, 2014; Zur Muehlen & Indulska,
2010). Closely related to the BRM domain is Business Process Management (BPM), which provides the
tools, methods, and languages to support organizations for managing and modeling their business
processes (Van der Aalst, Ter Hofstede, & Weske, 2003; Weske, 2007). With regard to business process
modeling, an abundance of languages is developed and available across the domain such as: Workflow
Nets, Business Process Modeling Notation (BPMN), Business Process Execution Language (BPEL),
Event-driven Process Chains (EPC), Petri Nets, and Graph based Workflow Language (Recker, Indulska,
Rosemann, & Green, 2005; Weske, 2007; Wohed, Van der Aalst, Dumas, Ter Hofstede, & Russell, 2006).
It even reached the point where a process modeling language was created entitled ‘Yet Another
Workflow Language’ abbreviated as YAWL (Van der Aalst & Ter Hofstede, 2005). This underpins the
problem of the proliferation of modeling languages as identified by Van der Aalst, Ter Hofstede,
Kiepuszewski, and Barros (2003). Van der Aalst et al. (2003) stated that the creation of new languages
and dialects is caused by different philosophies of such languages and applying different semantics.
For example, some languages are able to model and execute multiple instances of the same activity
while others can only loop once. Moreover, some languages are able to directly execute while others
need to be transformed first. To shed some light on this problem and to be able to compare the
different business process modeling languages, Van der Aalst et al. (2003) devised a set of design
patterns. This pattern catalogue is now applied to model business processes and to make in-depth
comparisons between languages and business process management systems. Furthermore, these
design patterns are formulated with an implementation independent language which ensures that the
applicability is not influenced by choice of technology or modeling language. An implementation
independent language is considered as: a language that complies with a certain level of naturalness
but has a delimited predefined expressiveness and is not tailored to be applicable for a specific
automated information system (Zoet & Versendaal, 2013). In contrast, an implementation dependent
language is a language that complies to a specific software formalism, has a delimited predefined
expressiveness, and is tailored to be interpreted by a particular information system (Zoet &
Versendaal, 2013).

In recent years, some attempts have already been made in the BRM field to establish pattern
catalogues as well (Caron, Vanthienen, & Baesens, 2013; do Prado Leite & Leonardi, 1998;
Hoppenbrouwers, 2011; Morgan, 2002; Von Halle, 2001; Wan-Kadir & Loucopoulos, 2004). All these
pattern catalogues are written in an implementation independent language. However, only the one of
Caron et al. (2013) adheres to a formalism with a high precision level since it is specified with first order
logic (Kuhn, 2013). When a business rule set is specified with this precise implementation independent
pattern catalogue, it is possible to automatically transform it into several different implementation
dependent business rule sets. This transformation can be performed by means of a parser, a software
component, which is able to analyze constructs of a business rule and transform those with a set of
transformation rules into a specific grammar that complies with the execution language (see Figure
1.1). Due to the fact that the other catalogues are less precise, this automatic transformation is not
possible. So, a major advantage of using a precise implementation independent language to specify
(the patterns for) business rules is that the business rule set only has to be specified once instead of
specifying it for each specific system and thereby reducing deployment time (see Figure 1.1).

Thesis: Patterns for Derivation Business Rules

9

Figure 1.1: Implementation Dependent vs. Implementation Independent Business Rule Language

Another aspect that distinguishes the pattern catalogue of Caron et al. (2013) from the others is the
purpose for which it is established. The patterns from Caron et al. (2013) are especially focused on the
specification of one type of business rule, namely business rules that guide or constrain business
processes (i.e. process rules). An example of a business rule pattern of Caron et al. (2013) is: “If an
activity of type a1 is performed then an activity of type activity a2 must be performed”. In contrast, the
other business rule catalogues focus on a variety of business rules types like: computation rules,
guidelines, mandatory constraint rules, process rules, inference rules etc.

Thesis: Patterns for Derivation Business Rules

10

In summary, from literature solely one business rule pattern catalogue, the of Caron et al. (2013),
emerges which complies with the following characteristics 1) it is specified in an implementation
independent language that is precise enough to enable automatic transformation, and 2) it is focused
on one specific type of business rules. With these premises, the goal of this research is to create a
pattern catalogue specified in a precise implementation independent language that is focused on a
different type of business rule namely: derivation business rules. In short, derivation business rules
correspond to calculation and classification business rules. More formally, derivation business rules
can be defined as: “expressions that evaluate facts, by means of a calculation or classification, leading
to a new fact (i.e. conclusion)” (Hay & Healy, 2000; Von Halle & Goldberg, 2009). To make the definition
more clear, two examples of a derivation business rule are provided within the dashed border below:

Caron et al. (2013) focus on patterns that constrain the order in which activities in a business process
should be executed, see the arrow with ‘process business rules’ in Figure 1.2. In addition, the execution
of individual activities should be constrained. In some activities, decisions are being made based on
derivation business rules (see the rectangle with ‘derivation business rules’ in Figure 1.2). This
research focusses on creating patterns for derivation business rules. So, the pattern catalogue resulting
from this research can be considered as a complement to the pattern catalogue of Caron et al. (2013).

Figure 1.2: Intersection Patterns for Process Business Rules and Derivation Business Rules (adapted from (Zoet et al., 2011)

To achieve the overall goal, research has to be conducted to identify the fundamental constructs that
are necessary to specify a derivation business rule in a precise implementation independent way. For
this research, fundamental constructs are considered as: “the building blocks, i.e. sentence parts, i.e.
rule clauses, of which a business rule is constructed” (Hay & Healy, 2000; Von Halle, 2001).
Furthermore, the relations between these fundamental constructs (i.e. meta-model) and the occurring
patterns for derivation business rules should be determined. By creating a pattern catalogue written
in a precise implementation independent language specifically applicable for derivation business rules,
this research has a scientific contribution by adding a new type of pattern catalogue to the scientific
knowledge base. Furthermore, this research provides further insight into the fundamental constructs
of derivation business rules.

1) Total order amount is calculated as the amount of sold units multiplied by the unit price, if
the customer has no outstanding invoices.

2) The customer status must be set to preferred, if the price of the product is more than 50.

Thesis: Patterns for Derivation Business Rules

11

1.1.2 Practical Triggers

Business rules are applied for many different applications and software systems, such as: case-based
reasoning systems, knowledge management systems, expert systems, business rule engines, and
neural network systems (Liao, 2004). In previous years, many systems that apply business rules have
been implemented (Nelson, Peterson, Rariden, & Sen, 2010). A few examples of specific business rule
engine implementations are: 1) the “Immigratie- en Naturalisatiedienst” (IND) implemented the
business rule engine Aquima, 2) “Dienst Regelingen” implemented the business rule engine Be
Informed, and 3) the “Dutch Tax and Customs Administration” transferred multiple times to different
business rule engines.

Above described examples of implementations show that organizations choose to switch occasionally
to a new or additional software system to incorporate their business rules. Reasons to change can be
explained by different external factors like the dynamic environment and increased legislation (Boyer
& Mili, 2011; Graham, 2006). This transition or addition of a new business rule engine forces
organizations to modify their business rules when an implementation dependent business rule
language is applied to specify the business rules. Given the fact that the business rule set cannot be
reused, it has to be specified again to comply with the language of the new business rule engine. As a
result, the specification of business rules directly from a source into a specific implementation
dependent language can in some cases be very inefficient, expensive and error prone. So, it is desirable
for organizations to have an additional layer, in the form of an implementation independent business
rule language, from which the business rules can be directly transformed to an implementation
dependent language (see Figure 1.1). In addition, it is beneficial to facilitate the people that are
responsible for specifying the business rules with guidelines to make the writing process less error
prone, more consistent, and less time consuming. A commonly used mechanism for this purpose is a
pattern catalogue (Kuhn, 2013).

As can be concluded from the previous paragraphs, implementation dependent business rule
languages have a major drawback from a practical point of view. To avoid this drawback of repeatedly
re-designing current business rule sets, which would obliterate current investments, a pattern
catalogue specified in a precise implementation independent language seems crucial. However, the
authors are not aware of the existence of such a pattern catalogue tailored to specify derivation
business rules. This research aims at providing a practical solution for this obstacle.

1.1.3 Business Triggers

The Dutch Tax and Customs Administration is currently developing an implementation independent
language to specify the products and services they offer. The triggers for the Dutch Tax and Customs
Administration to develop such a language are: 1) only having to specify the business rules once which
can be deployed to multiple environments, 2) reducing the risk of errors, 3) decreasing the amount of
time spent on transforming implementation independent business rules to implementation dependent
business rules, and 4) decreasing the costs of transformation.

With regard to the further specification of the products and services, the Dutch Tax and Customs
Administration distinguishes the following six different areas: 1) Interaction rules, 2) Classification
structure and classification rules, 3) Calculation structure and calculation rules, 4) Data exchange rules,
5) Data business rules, and 6) Process business rules. Each of the areas needs to be further researched
and specified. Due to time and resource constraints, it is impossible to focus on all these areas during
this research. Therefore, this research will focus on two of the six domains namely ‘classification
structure and classification rules’ and ‘calculation structure and calculation rules’. These two domains
are chosen since the majority of the business rules of the Dutch Tax and Customs Administration
comprises calculation and classification business rules. Both domains, calculation and classification
rules, can be considered as: derivation business rules (Ghose & Koliadist, 2007; Park & Choi, 2004).

Thesis: Patterns for Derivation Business Rules

12

1.1.4 Conclusion

The triggers described above provide substantiation for the demand of creating a pattern catalogue
specified in a precise implementation independent language. In addition, a practical and business need
for adopting such a pattern catalogue can be identified as described in section 1.1.2 and 1.1.3.
However, to the knowledge of the authors there currently does not exist an implementation
independent business rule pattern catalogue that is tailored to derivation business rules. This poses a
problem that this research will attempt to address. Taking the previous statements into account, the
following two problem statements can be formulated:

 How can the problem be addressed that no tailored set of formal requirements exist, which can
be used to verify if a business rule language is able to formulate derivation rules?”

 “How can the problem be addressed that business rules need to be re-modeled to comply with
a new implementation dependent language?”

In the next section, a formal research question is formulated along with the related sub-questions.

 Research Question

Based on the research triggers and problem definition as described in previous sections, the demand
for a pattern catalogue specified in a precise implementation independent language to specify
derivation business rules can be identified. Based on this demand, the following formal research
question is established:

“How can derivation business rules be specified precisely and implementation
independent?”

According to Kuhn (2013), the term ‘precise’ in the main research question equals to the fact that “the
language, in which the business rules will be specified, should be fully formal on a syntactic level; that
is, they are (or can be) defined by a formal grammar. Business rules in such a language can be
deterministically parsed to a formal logic representation.” In section 2.3, the term precise will be
explained more extensively.

In order to answer the above provided research question, several sub-questions need be answered
first. These sub-questions are used to structure the research and serve in this way as guidelines to
address the main research question.

The following sub-questions are defined:

1. “Which notation forms can be used to specify derivation business rules?”
2. “Which fundamental constructs are necessary to construct a precise derivation business rule?”
3. “Which grammar rules should be enforced on the fundamental constructs to specify precise

derivation business rules?”
4. “Which patterns can be identified for specifying derivation business rules?”

Thesis: Patterns for Derivation Business Rules

13

 Research Method

This section describes the research method that will be applied to achieve the main goal of this
research, namely the construction of a pattern catalogue specified in a precise implementation
independent language. Given the fact that an artifact is created to address the outlined problem in
section 1.1.4, it is appropriate and justified to define this research as a design-science research (March
& Smith, 1995). The foundation of design-science research implies that an identified problem will be
solved through research and the development of a new artifact, for example in the form of a model,
construct, instantiation or method (March & Smith, 1995).

Hevner, March, Park, and Ram (2004) provide a method including a conceptual framework and
guidelines in order to support the establishment and execution of a design-science research project.
The framework is divided into three aspects (see Figure 1.3) and traverses an iterative cycle in order
to solve a problem (Hevner et al., 2004):

1. The Environment:
This research was triggered by the environment, in response to the demand of the Dutch Tax
and Customs Administration for a solution to their business need (problem). The relevance of
performing this research can be assured when the issues, expectations, and requirements of
the Dutch Tax and Customs Administration are identified and in this way the business need is
substantiated;

2. IS Research:
The research design consists of two phases, the Develop/Build phase and the Justify/Evaluate
phase, which will be traversed four times. During the Develop/Build phase, theory on Business
Rules Management (BRM) will be established and as main artifact a pattern catalogue specified
in an implementation independent language will be created. This main artifact will be assessed
during the Justify/Evaluate phase by means of conducting experiments in four different
rounds. After each validation round, the artifact will be refined in the Develop/Build phase
again. The assessment and refinement process will be an iterative process. After completing
this process, the developed artifact will be applied by the Dutch Tax and Customs
Administration to measure the contribution of the research and it will be added to the
Knowledge Base;

3. The Knowledge Base:
The Knowledge Base provides the required scientific literature and appropriate methods to
perform this research. First of all, theory on the following aspects will be retrieved by means
of performing a literature review: Business Rules Management (BRM), Controlled Natural
Language (CNL), formal grammars, and design patterns. Furthermore, the validation criteria
will be retrieved for conducting the experiments during the Justify/Evaluate phase. Research
rigor can be obtained when these existing methods from the Knowledge Base are applied
appropriately.

The specific research design framework, tailored to this research, as described above is depicted in
Figure 1.3.

Thesis: Patterns for Derivation Business Rules

14

Figure 1.3: Research design framework tailored to this research (adapted from Hevner et al., 2004)

As mentioned previously, Hevner et al. (2004) also provide guidelines along with the framework. The
seven guidelines for design research are as follows:

1. Design as an artifact
A design-science research project should produce an artifact.

2. Problem Relevance
Design-science research aims at solving business problems to be relevant for the environment.

3. Design Evaluation
The utility, quality and efficacy of the artifacts resulting from a design-science research project
should be demonstrated by applying well-executed evaluation methods.

4. Research Contributions
A design-science research should contribute clear and verifiable knowledge to the knowledge
base of the related scientific field.

5. Research Rigor
A design-science research project should be conducted by using rigorous methods for both the
construction as the evaluation of the created artifact.

6. Design as a Search Process
Design-science research is a problem solving process which should enable iterative cycles to
reach desired ends.

7. Communication of Research
The results of a design-science research project should be communicated to researchers and
practitioners.

The next section describes how these above listed guidelines are integrated for this research.

Thesis: Patterns for Derivation Business Rules

15

 Research Model

The previous section presented the research method, this section describes the more detailed
approach of the research by means of providing a research model. This research model is devised by
incorporating research methods from Wieringa (2013) for scaling up to practice and by taking the
seven guidelines of Hevner et al. (2004) into account. The establishment, compliance to the guidelines,
and the explanation of the research model are described below.

The Dutch Tax and Customs Administration faces the problem of repeatedly re-designing current
business rule sets when making a transition to or implementing a new business rule engine. This
research aims at delivering a solution for this problem which would allow them to specify their business
rules once and deploy them to multiple environments. By realizing this solution and solving a business
problem, this research satisfies guideline 2 Problem Relevance of Hevner et al. (2004).

To comply with guideline 4 Research Contribution, Hevner et al. (2004) state that the contributions of
the research should be clear and verifiable. Besides the positive effect of only having to specify the
business rules once, three other positive effects (i.e. contributions) of the solution are anticipated:
reducing risk of making errors, decreasing the amount of time spent on transforming implementation
independent business rules to implementation dependent business rules, and decreasing the costs of
transformation. However, these last three cannot be verified during this research due to time
constraints. In order to verify these three contributions, an experiment has to be conducted during
which 1) a set of business rules is specified manually in multiple implementation dependent languages
after which the business rules are executed and 2) a set of business rules is specified once with the
created pattern catalogue in the precise implementation independent language after which it is
transformed into multiple implementation dependent languages and then are executed.
Subsequently, both traversed scenarios have to be compared with respect to the amount of errors,
the time spent and the corresponding amount of money. Such a time-consuming experiment is not
feasible during this research. However, the first contribution will be used for verification. By means of
this research, it will be demonstrated that it is possible to specify a business rule set once which then
can transformed into various implementation dependent languages. To be able to demonstrate this,
the business rules specified with the devised patterns will be mapped onto different implementation
dependent business rule languages (of business rules management systems). In this way, this research
also meets guideline 4.

Each of the aforementioned positive effects or contributions are referred to as “effects by
mechanisms” by Wieringa (2013); they are the effects that an artifact produces in terms of underlying
mechanisms. So, to produce the effects by mechanisms and at the same time address the outlined
problem, an artifact is needed (Wieringa, 2013). This artifact corresponds to the pattern catalogue
specified in a precise implementation independent language which will be created during this research.
By creating an artifact, this research also adheres to guideline 1 Design an artifact of Hevner et al.
(2004).

According to Wieringa (2013), an artifact is related to its context thus if the context changes also the
effects may change. He summarizes and expresses this in the following way: [Artifact x Context] will
produce Effects by Mechanisms. Therefore, Wieringa (2013) emphasizes the importance of validating
an artifact in different contexts to investigate in what kind of contexts what kind of effects are
produced. The main goal of this validation is to see if an artifact will produce the desired effects when
it will be transferred to the market and is applied in practice.

Thesis: Patterns for Derivation Business Rules

16

Wieringa (2013) describes how this validation can be performed by scaling up the context of an artifact
to the conditions of practice until ‘street credibility’ is reached (see Figure 1.4). The validation process
is divided into the following three phases: 1) conceptual validation, 2) modeling, and 3) field testing.
The conceptual validation phase implies that the artifact is tested in a small artificial context. This
phase is mainly performed on paper. During the modeling phase, the artifact is tested out in a more
realistic context. In the last phase, field testing, the artifact is validated by actually applying it into
practice on a large scale. By performing these three phases, the credibility of the artifact can be
enhanced from lab credibility to street credibility. This validation and scaling up process is visualized
in Figure 1.4, in which the axis represent the two ways of generalizing from lab credibility to street
credibility. The horizontal-axis corresponds to inductive generalization which is “the inference from a
sample of test subjects to the population of subjects”. The vertical-axis, on the other hand, corresponds
to analogical generalization which entails “the inference from models to real-life subjects” (Wieringa,
2013).

Figure 1.4: Scaling up to practice (adapted from Wieringa, 2013)

Performing the validation in phases provides compliance to guideline 6 of Hevner et al. (2004).
Guideline 6, Design as a Search Process, entails that an iterative cycle is traversed until the end goal
(effect by mechanism) with the artifact (a pattern catalogue specified in a precise implementation
independent language) is achieved. An important aspect with regard to this validation is that it is
performed to test the utility, quality and efficacy of the artifact (guideline 3 Design evaluation). A
second important aspect regarding the validation that needs to be considered according to Hevner et
al. (2004), is that the design and validation should be performed in a rigorous way (guideline 5 Research
rigor). Validation is the so-called ‘triangle of evil’ (McGrath, 1981) see Figure 1.5: maximal
measurement precision (Max B), maximal focus on realism of research context (Max C), and maximal
focus on generalizability (Max A).

Thesis: Patterns for Derivation Business Rules

17

For this research, the focus lies on the first two
aspects by conducting (lab) experiments on
case study data. The main reason to conduct
experiments in this research is because they
provide the possibility to discover causal
findings. As a result, experiments are often
very strong in terms of internal validity which
can lead to theoretical well substantiated
results (Bryman & Bell, 2003). The case study
data is used as input since it provides the
possibility to investigate the problem within its
real-life context, thus the problem can be
viewed from several perspectives defined by
its context. The advantage of this broad view is
that new insights could be discovered, such as
patterns, which initially would not be expected
or sought for. Experiments, on the other hand,
often isolate the problem from the natural

context and place it in a laboratory setting. This disadvantage of experiments can be eliminated by the
use of the case study data (Blumberg, Cooper, & Schindler, 2011).

To ensure the relevance, rigorousness, and validity of the research and artifact, the above described
guidelines and the insights of Wieringa (2013) are taken into account to create the research model.
The research model is shown in Figure 1.6 on the next page, which is based on the theory on developing
a research model by Verschuren and Doorewaard (2007). The research model contains the overall
research process, depicted in different phases, and the deliverables of the research. In addition, the
research model indicates the sections of the thesis in which the deliverables are presented. The first
phase in the research model is the ‘Literature Gathering’ during which theory on the following five
areas is obtained: Business Rules Management, Derivation Business Rules, Controlled Natural
Languages, Formal grammars, and Patterns. During the second phase ‘Literature Analysis’, the
obtained literature is analyzed to identify the fundamental constructs and grammar rules of the precise
implementation independent language (i.e. controlled natural language). These artifacts are validated
during the ‘Preliminary Validation’ phase by traversing three rounds, all from a different point of view.
This third phase corresponds to the ‘Conceptual Validation phase’ of the research of Wieringa (2013).
In the fourth phase ‘(Re)-design and development’, the precise implementation independent language
(i.e. controlled natural language) including fundamental constructs and grammar rules are revised by
means of the validation results. Furthermore, the pattern catalogue specified in the precise
implementation independent language (i.e. controlled natural language) is developed during this
phase based on the revised artifacts. After that, the ‘Validation’ phase is performed which corresponds
to the ‘Modeling phase’ of Wieringa (2013). In this fifth phase, the devised pattern catalogue is
validated by means of real-life case study data from the Dutch Tax and Customs Administration. Only
the last phase of Wieringa (2013) is not incorporated, since field testing requires that the artifact will
be tested by applying it in practice. This phase is not included in this research due to time constraints.
Subsequently, the ‘Refinement’ phase is initiated which entails the revision of the pattern catalogue
based on the outcome of the validation in the preceding phase. The last phase of the research model
‘Communication’ addresses guideline 7, Communication of research, of Hevner et al. (2004). This
guideline indicates that it is important to distribute the research findings, which is achieved by writing
and presenting the artifacts, a thesis and research paper.

Figure 1.5: Triangle of evil (adapted from McGrath, 1981)

Thesis: Patterns for Derivation Business Rules

Figure 1.6: Research model

Thesis: Patterns for Derivation Business Rules

2 Literature Review
Previous sections presented the triggers and problems to perform this research. Furthermore, the
research questions were listed and the research approach is discussed. In the next five sections, the
individual concepts related to the research problem are elaborated on. To ground the literature
review, the full conceptual overview of the concepts and their relationships is already presented in
Figure 2.1. Each rectangle contains a number that represents the section of this thesis in which the
mentioned concept will be discussed.

Figure 2.1: Full Conceptual Overview

 Business Rules Management and Business Rules

In this section the concepts Business Rules Management (BRM) and business rules will be explained
(see blue colored rectangles in Figure 2.2). With regard to these two concepts, their position within
literature is shown and also their definitions are provided.

Figure 2.2: Conceptual Overview - BRM and Business rules

Organizations have to deal with a lot of rules that can be either established by the organization itself
or imposed by the external environment (e.g. by legislation). These rules exist to guide or constrain
organizations’ information system including their business operations, human actors (employees) and
information technology (Boyer & Mili, 2011). Rules can be viewed from different perspectives, on a
high abstraction level two main perspectives can be distinguished: the business perspective and the
information system perspective (Hay & Healy, 2000). From a business perspective, a rule provides
guidance regarding human actors for instance in the form of conduct or procedures (Hay & Healy,
2000). With regard to the information system perspective, rules are focused on the behavior and the
structure of the business and the data that is captured by information systems during the performance
of business processes (Boyer & Mili, 2011). Rules that provide guidance for either of the above
mentioned perspectives can be considered as ‘business rules’ (Boyer & Mili, 2011; Herbst, 1996). This
view is also supported by the Object Management Group (OMG) which defines a rule as “a proposition

Thesis: Patterns for Derivation Business Rules

20

that is a claim of obligation or of necessity” and a business rule as “a rule that is under business
jurisdiction” (Object Management Group, 2013).

In literature, a “business rule” is defined in a variety of ways which is emphasized by a statement of
Von Halle (1994) ‘‘depending on whom you ask, business rules may encompass some or all relationship
verbs, mathematical calculations, inference rules, step-by-step instructions, database constraints,
business goals and policies, and business definitions’’. To illustrate these different perspectives, several
definitions will be discussed below.

From the perspective of Von Halle (2001), business rules are “the set of conditions that govern a
business event so that it occurs in a way that is acceptable to the business”. In contrast, Kramer (1997)
proposed the following definition to describe business rules: ‘‘programmatic implementations of the
policies and practices of a business organization’’. According to Ceri and Fraternal (1997): “business
rules respond to application needs; they model the reaction to events which occur in the real world,
with tangible side effects on the database content, so as to encapsulate the application’s reactive
behavior to such events”. Selfridge, Waters, and Chikofsky (1993) describe a business rule as: "a
requirement on the conditions or manipulation of data expressed in terms of the business enterprise or
application domain”. A more general definition is found in Ross (1987), defining a business rule as “a
rule or policy that governs the behavior of the enterprise and distinguishes it from others”. Moreover,
Herbst (1997) defines business rules as follows: ‘‘statements about how the business is done, i.e. about
guidelines and restrictions with respect to states and processes in an organization’’. The definition of
Rosca, Greenspan, Feblowitz, and Wild (1997) resembles the previous one: “business rules are
statements about the enterprise’s way of doing business. They reflect policies, procedures or other
constraints on ways to satisfy customers, make good use of resources”.

A more detailed definition of a business rule is the one of Morgan (2002), who defines a business rule
as “a compact statement about an aspect of a business [that] can be expressed in terms that can be
directly related to the business, using simple, unambiguous language that’s accessible to all interested
parties: business owner, business analyst, technical architect, and so on. It’s a constraint, in the sense
that a business rule lays down what must or must not be the case”. A definition which is frequently
cited is the one originated from the GUIDE project: “A statement that defines or constrains some aspect
of the business, intending to assert business structure or to control the behavior of the business” (Hay
& Healy, 2000). This latter definition will be adopted for this research given the fact that it is used very
often in literature (Morgan, 2002).

All above provided definitions are listed in Table 2.1 below to give an overall overview.

Source Definition Business Rule

OMG (2013)

 “a rule that is under business jurisdiction”

Von Halle
(2002)

“the set of conditions that govern a business event so that it occurs in a way that is
acceptable to the business”

Krammer
(1997)

‘‘programmatic implementations of the policies and practices of a business
organization’’

Ceri and
Fraternal
(1997)

“business rules respond to application needs; they model the reaction to events
which occur in the real world, with tangible side effects on the database content, so
as to encapsulate the application’s reactive behavior to such events”

Thesis: Patterns for Derivation Business Rules

21

Selfridge,
Waters and
Chikofsski
(1993)

"a requirement on the conditions or manipulation of data expressed in terms of the
business enterprise or application domain”

R. G. Ross
(1987)

“a rule or policy that governs the behavior of the enterprise and distinguishes it from
others”

Herbst
(1997)

‘‘statements about how the business is done, i.e. about guidelines and restrictions
with respect to states and processes in an organization”

Rosca et al.
(1997)

“business rules are statements about the enterprise’s way of doing business. They
reflect policies, procedures or other constraints on ways to satisfy customers, make
good use of resources”

Morgan
(2002)

“a compact statement about an aspect of a business [that] can be expressed in terms
that can be directly related to the business, using simple, unambiguous language
that’s accessible to all interested parties: business owner, business analyst, technical
architect, and so on. It’s a constraint, in the sense that a business rule lays down
what must or must not be the case”

Hay & Healy
(1997)

“A statement that defines or constrains some aspect of the business, intending to
assert business structure or to control the behavior of the business”

Table 2.1: Definitions of a business rule

From literature it emerges that organizations have different issues with managing their business rules.
These issues are mostly caused by the way in which the business rules are implemented, namely
decentralized and embedded in the information systems (Boyer & Mili, 2011):

1. A first issue regards consistency; many organizations do not have insight into which business
rules are deployed for which business service. As a result, organizations often deploy different
business rule sets with the possibility of operating under conflicting business rules.

2. A second issue concerns traceability; organizations should be able to show which business
rules have been applied at which moment in time. This traceability, or in other words
transparency, is important to provide justification of the followed procedures and taken
decisions towards the stakeholders.

3. A third issue is related to agility; organizations should be able to quickly respond to the
changing business environment. These changes also influence the business rules and their
current implementation, it is mostly hard to find and change the implemented business rules.
An organization has to cope with this impact in an agile way.

The three above described issues can be addressed by Business Rules Management (BRM), which can
be seen as the discipline comprising the representation, organizational structure, techniques, methods
and tools to manage business rules (Von Halle, 2001; Zoet, 2014; Zur Muehlen & Indulska, 2010). The
application of BRM can provide several benefits: 1) improving the alignment between information
systems and the business, 2) enhancing the transparency of the business operations, and 3) increasing
the business agility (Boyer & Mili, 2011).

Thesis: Patterns for Derivation Business Rules

22

 Derivation Business Rules

In previous section, the concepts BRM and business rules are explained. This section deals with the
different types of business rules that exist. Firstly, a general view about the various business rule types
will be discussed. Subsequently, the specific business rule type at which this research is targeted will
be described namely derivation business rules (see Figure 2.3).

Figure 2.3: Conceptual Overview - Derivation Business Rules

Currently, not one commonly accepted way to classify business rules exists. A frequently used
distinction in literature is the separation of business rules into two main types: structural (definitional)
and behavioral (operational) business rules. Where structural business rules define some aspect of the
structure of the organization, in other words they define the relationships between entities (objects)
in a business information model (Boyer & Mili, 2011). An example of a structural business rule is (Object
Management Group, 2008): “Each rental always has exactly one requested car group” which refers to
the Rental entity. In contrast, behavioral business rules are evaluated (for example by a rule engine)
to determine a decision result; they implement business decision logic (Boyer & Mili, 2011). An
example of a behavioral business rule is (Object Management Group, 2008): “The rental duration of a
rental must be considered as expired, if the rental duration is more than 90 rental days”.

To delimit this research, the focus will lie on one specific type of behavioral (operational) business rules
namely derivation business rules. A derivation business rule can be defined as: “an expression that
evaluates facts, by means of a calculation or classification, leading to a new fact (i.e. conclusion)” (Hay
& Healy, 2000; Von Halle & Goldberg, 2009). Looking at this definition into more detail, facts can be
divided into two types: base facts and derived facts. A base fact is defined as “a fact given in the world
that is stored in an information system” (Hay & Healy, 2000). A derived fact is specified as “a fact that
is created by a mathematical calculation or an inference from other facts” (Hay & Healy, 2000). In this
case, an inference corresponds to a classification, as included in the definition, which produces a
derived fact by means of reasoning about premises (i.e. arguments) to reach a conclusion.

From literature, ten different classification schemes to classify business rules emerged which each
cover several business rule categories (types) (Boyer & Mili, 2011; Caron et al., 2013; do Prado Leite &
Leonardi, 1998; Hay & Healy, 2000; Object Management Group, 2008, 2013; Sangers-van Cappellen,
2014; Von Halle, 2001; Wan-Kadir & Loucopoulos, 2004; Zoet, 2014). In Appendix 1, the found
classification schemes are listed along with an explanation of each category and source to provide
more insight. Among the ten classification schemes, different names are used to refer to either similar
or dissimilar business rule categories. To position the type of business rule on which this research
focuses, derivation business rules, this type is compared to the categories included in the ten found
classification schemes.

Thesis: Patterns for Derivation Business Rules

23

This comparison showed that derivation business rules correspond to the following twelve categories
of the found classification schemes:

1. Inference rules
2. Computation rules
3. Computation rules
4. Inference rules
5. Derivation rules
6. Computation rules
7. Inference rules
8. Classification rules
9. Computation rules
10. Decision rules
11. Calculation rules
12. Rounding rules

- from the classification scheme of Boyer and Mili (2011)
- from the classification scheme of Boyer and Mili (2011)
- from the classification scheme of Von Halle (2001)
- from the classification scheme of Von Halle (2001)
- from the classification scheme of Hay and Healy (2000)
- from the classification scheme of Wan-Kadir and Loucopoulos (2004)
- from the classification scheme of Wan-Kadir and Loucopoulos (2004)
- from the classification scheme of Morgan (2002)
- from the classification scheme of Morgan (2002)
- from the classification scheme of Sangers-van Cappellen (2014)
- from the classification scheme of Sangers-van Cappellen (2014)
- from the classification scheme of Sangers-van Cappellen (2014)

To demonstrate the similarity between the twelve categories and a derivation business rule, Table
2.2 lists seven example business rules from the above mentioned sources. The left column shows the
name of the business rule category along with the authors from which the category originates. In the
right column, an example of each category adapted from the authors is provided. The similarity
between these examples and a derivation business rule is indicated by denoting the following aspects
from the adopted definition of a derivation business rule as follows:

1. a calculation or classification;
2. the new fact.

Business Rule Category (source) Example Business rule

1 Inference
(Boyer & Mili, 2011)

If the age of the driving license is below 3, then add a
risk factor of 50 to the total risk score.

2 Computation
(Boyer & Mili, 2011)

A risk factor variable can be computed as the
possession time of driving license minus the number of
years without claims.

3 Computation
(Von Halle, 2001)

The total-amount-due for an order is computed as the
sum of the line-item amount(s) for the order plus tax.

4 Inference
(Von Halle, 2001)

If a customer has no outstanding invoices, then the
customer is of preferred status.

5 Derivation
(Hay & Healy, 2000)

The insurance amount in Rental is calculated from the
rental insurance rate multiplied by its number of days.

6 Computation
(Wan-Kadir & Loucopoulos, 2004)

The amount of bill item is computed as the unit amount
multiplied by the quantity.

7 Inference
(Wan-Kadir & Loucopoulos, 2004)

If a patient’s condition is critical then the patient is an
emergency patient.

 Table 2.2: Example business rules per category

Thesis: Patterns for Derivation Business Rules

24

The overall aim of executing the example business rules in Table 2.2 is the creation of new information
(i.e. new facts). In case of the example business rules provided above, the first business rule creates
new information by calculating the value of subject “total risk score” when the condition is met. The
second, third, fifth, and sixth example also create new information by means of a calculation but
without evaluating a condition. Examples four and seven fill in a specific value for the subjects
“customer” and “patient”.

The aforementioned aim is also reflected in the classification scheme of Von Halle (2001), which
classifies business rules by means of their intention (see Figure 2.4). This classification scheme is very
applicable to show what derivation business rules comprise and which business rules can be classified
as such and which not. Therefore, this classification scheme is adopted for this research. In Figure 2.4,
the grey colored ellipses are the types that correspond to derivation business rules on which the focus
lies. According to Von Halle (2001), “the conclusion for an inference is a new piece of information and
the conclusion for a computation is a computed value”.

Both the ‘Mandatory Constraint’ and ‘Guideline’ category of Von Halle (2001) do not correspond to
derivation business rules. Although both categories also evaluate facts like derivation business rules,
the aim of the evaluation is different. Mandatory Constraints and guidelines evaluate these facts to
constrain subjects by including a condition that must be true or not. Derivation business rules, on the
other hand, evaluate facts to create new information (a new fact) as denoted with light blue in the
examples in Table 2.2.

Figure 2.4: Rule Classification (adapted from Von Halle, 2001)

Mandatory Constrains differ from Guidelines in the way a business rule is imposed. A Mandatory
Constraint prescribes that a condition must or must not be met, and a Guideline only suggests the
compliance to a condition. An example of a Mandatory Constraint is: “The total dollar amount of a
customer order must not be greater than the customer’s single order credit limit amount” (Von Halle,
2001). This example shows that the business rule only checks if a subject (total dollar amount) is not
greater than another subject (customer’s single order credit limit amount). However, no new
information or fact is calculated or derived. The following rule categories, found in literature, are
similar to the Mandatory Constraint category and are therefore also not applicable for this research:

 Non-functional rules (do Prado Leite & Leonardi, 1998);

 Mandatory constraint (Wan-Kadir & Loucopoulos, 2004);

 Basic Constraint (Morgan, 2002);

 List Constraint (Morgan, 2002);

 Enumeration (Morgan, 2002);

 Constraint (Boyer & Mili, 2011).

Thesis: Patterns for Derivation Business Rules

25

An example of a Guideline is: “A customer should not have more than 10 open orders at one time” (Von
Halle, 2011). The following rule categories, found in literature, are similar to the Guideline category
and are therefore also not applicable for this research:

 Functional rules (do Prado Leite & Leonardi, 1998);

 Guideline (Wan-Kadir & Loucopoulos, 2004);

 Guidelines (Boyer & Mili, 2011).

In addition, the ‘Action Enabler category’ of Von Halle (2001) does not correspond to derivation
business rules. Although this rule category also evaluates facts just like derivation business rules, action
enabler rules have a very different purpose of doing this. An Action Enabler business rule evaluates
these facts in order to initiate some kind of action (e.g. triggering a business event, an activity or a
message). In contrast to a derivation business rule which creates new information, action enabler
business rules check conditions and based on the outcome of the evaluation it determines an
appropriate action. An example of an Action Enabler rule is: “If a customer is high risk, then notify the
customer services manager” (Von Halle, 2001). The following rule categories, found in literature, are
similar to the Action Enabler category and are therefore also not applicable for this research:

 Action-enablers (Boyer & Mili, 2011);

 Event Condition Action (Boyer & Mili, 2011);

 Action assertion (Wan-Kadir & Loucopoulos, 2004);

 Action assertion (Hay & Healy, 2000).

Thesis: Patterns for Derivation Business Rules

26

 Controlled Natural Language (CNL)

Previous two sections explained what BRM and business rules are, which types of business rules exist
and on which type of business rules this research is focusing. This section will cover how business rules
can be captured or in other words be specified in a precise implementation independent way by means
of a Controlled Natural Language (see Figure 2.5).

Figure 2.5: Conceptual Overview - Controlled Natural Language

As can be concluded from section 2.2, a lot of different business rule types exist. All of these business
rules have to be captured by specifying them using a business rule language. Multiple different
business rule languages are devised as mentioned in the Introduction chapter. These languages have
different forms of expression. Von Halle (2001) distinguishes four forms of expressing business rules:
1) as a business conversation piece, 2) with a natural language version, 3) with a rule specification
language version, and 4) with a rule implementation language version. The latter two are already
mentioned earlier in this thesis, only referred to with a different name, namely: implementation
independent and implementation dependent languages.

The first form, business conversation piece, specifies a business rule in a very informal way. It can be
considered as a note of an employee which makes a first attempt to capture the business rule. The
second form, a natural language, is especially used in order to specify business rules that are readable
for a business audience. The usage of these first two forms can have different disadvantages, namely:
the business rules may become imprecise, incomplete, redundant and inconsistent (Von Halle, 2001).
The third form, a rule specification language or implementation independent language, is already
slightly more restricted and precise compared to the first two forms. Such a language is created to
express a business rule in a declarative way, which means that it specifies what the business rule should
do but not how (Von Halle, 2001). Some examples of implementation independent languages are: TDM
(Von Halle & Goldberg, 2009), RuleSpeak (Object Management Group, 2008), and SBVR (Object
Management Group, 2013). These languages are implementation independent, since they comply with
a certain level of naturalness but have a delimited predefined expressiveness, and are not tailored to
be applicable for a specific information system (Zoet & Versendaal, 2013). The fourth form, rule
implementation languages or implementation dependent languages, are languages that are directly
executable for example in a rule engine (Von Halle, 2001). The majority of the Business Rule engine
vendors has devised its own language, some examples of these languages are: Corticon, Be Informed,
Pega, Berkeley Bridge, Drools and Visual Rules. These languages are implementation dependent as
they have a specific grammar which can only be interpreted by a particular information system (Zoet
& Versendaal, 2013).

Considering the four forms of expressing business rules, only the third form is applicable for this
research. To recall the research goal: creating a pattern catalogue written in a precise implementation
independent language which ensures that a business rule set only has to be specified once and can

Thesis: Patterns for Derivation Business Rules

27

automatically be deployed to multiple environments. This goal cannot be achieved by creating a
pattern catalogue in a language which complies with the first or second expression form, due to the
fact that both are not precise enough to be transformed automatically into different executable forms
(Von Halle, 2001). Furthermore, the fourth expression form is not applicable since business rules
specified in an implementation dependent language can only be deployed in one environment. The
third form, implementation independent, could realize transformation to multiple environments and
is therefore an applicable expression form for the pattern catalogue. Although various implementation
independent business rules languages exist, those current languages are not precise enough to ensure
automatic transformation as will be explained later on in this section (Kuhn, 2013).

A promising solution to bridge this gap is the creation of a controlled natural language (CNL). On the
one hand, a CNL can adhere to a level of precision which is necessary for a system to interpret the
business rule, but in such a way that the language is not restricted to be readable by one specific system
(Kuhn, 2010, 2013). On the other hand, a CNL can resemble a natural language making it
understandable for humans (Kuhn, 2010, 2013). So, the use of a CNL can positively affect the
specification and verification of business rules by humans who mostly lack knowledge about formal
notations. A lot of research has been done in the field of CNLs which supports that a CNL can provide
the following advantages: 1) improve communication among humans, 2) improve machine-assisted
translation and reduce overall translation costs, and 3) provide an intuitive representation for formal
notations which makes it easier for humans to use and understand (Aikawa, Schwartz, King, Corston-
Oliver, & Lozano, 2007; Chervak, Drury, & Ouellette, 1996; Hallett, Scott, & Power, 2007; O’Brien &
Roturier, 2007; Ruffino, 1982; Shubert, Spyridakis, Holmback, & Coney, 1995; Temnikova, 2010).

Kuhn (2010, 2013) studied many different languages which appeared during the last four decades, and
concluded that a lot of these languages could be considered as CNL practices. Although a lot of
different names are used in literature and practice to describe these CNLs, Kuhn (2013) discovered that
these languages share important properties and therefore categorizes them all the same namely as
CNL. Kuhn (2013) states that several other terms should not be confused with a CNL even though they
are related to CNLs like: sublanguages, fragments of languages, style guides, phraseologies, and
controlled vocabularies. These terms are different for instance because: some emerge naturally (e.g.
sublanguage) in contrast to a CNL, or some give advice on how to use an existing language (e.g. style
guide) instead of describing a new language. On the other hand, CNLs can be considered as a sort of
sub-class of three other well-known terms namely Constructed Languages, Artificial Languages or
Planned Languages (Kuhn, 2013).

To establish a common understanding and terminology, Kuhn (2013) provides the following elaborate
definition: “A language is called a controlled natural language if and only if it has all of the following
four properties:

1. It is based on exactly one natural language (its ‘base language’);
2. The most important difference between it and its base language (but not necessarily the only

one) is that it is more restrictive concerning lexicon, syntax, and/or semantics;
3. It preserves most of the natural properties of its base language, so that speakers of the base

language can intuitively and correctly understand texts in the controlled natural language, at
least to a substantial degree;

4. It is a constructed language, which means that it is explicitly and consciously defined, and is
not the product of an implicit and natural process (even though it is based on a natural
language that is the product of an implicit and natural process).”

To summarize, Kuhn (2013) also gives a more shorter definition: “A controlled natural language (CNL)
is a constructed language that is based on a certain natural language, being more restrictive concerning
lexicon, syntax and/or semantics while preserving most of its natural properties”.

Thesis: Patterns for Derivation Business Rules

28

Due to the diversity of languages that can be seen as CNL, it is hard to get a clear view of the
fundamental properties of a CNL. Therefore, Kuhn (2013) identified two main categories of properties
to classify and characterize CNLs: environmental properties and language properties. Below, both
categories are explained in detail.

ENVIRONMENTAL PROPERTIES
Nine different environmental properties of CNLs are identified, which tell something about the goal
and the form of the CNL. The environmental properties are explained and denoted with a specific letter
code in Table 2.3.

Code Property

c
The goal of the CNL is to improve comprehensibility / communication among humans (e.g.
speakers of different native languages).

t The goal of the CNL is to improve translation and reduce overall translation costs.

f
The goal of the CNL is to provide an intuitive representation for formal notations which
makes it easier for humans to use and understand formal formalisms.

w The CNL is intended to be written.

s The CNL is intended to be spoken.

d The CNL is designed for a specific narrow domain.

a The CNL is originated from academia.

i The CNL is originated from industry.

g The CNL is originated from government.
Table 2.3: Environmental properties of CNLs

CNLs which comply with property ‘c’ are commonly called human-oriented CNLs. These CNLs are
especially designed to enhance the communication among humans, and can also enhance the
comprehensibility of technical documentation. Human-oriented CNLs are devised for sufficient
understandability by humans, not towards processability by a system (Kuhn, 2013). Examples of
human-oriented CNLs are: Caterpillar Fundamental English (CFE), FAA Air Traffic Control Phraseology
(FAA), and Basic English (Kuhn, 2013).

CNLs which comply with property ‘t’ and/ or ‘f’ are commonly referred to as machine-oriented CNLs.
These CNLs are particularly designed to enhance the communication between humans and
information systems. Machine-oriented CNLs have two prominent characteristics: 1) complete
unambiguousness and 2) the possibility to be defined by formal grammars with a direct mapping to
formal logic. Examples of machine-oriented CNLs are: Attempto Controlled English (ACE), Processable
English (PENG), KANT Controlled English (KCE), and Controlled Language Optimized for Uniform
Translation (CLOUT) (Kuhn, 2013).

Thesis: Patterns for Derivation Business Rules

29

LANGUAGE PROPERTIES
Based on many language properties found in existing literature, Kuhn (2013) derived the following four
fundamental language properties, abbreviated as PENS. A detailed description of each property can be
found in (Kuhn, 2013).

 Precision:
This property indicates the degree to which the meaning of a text, defined with a CNL, is
directly clear from its textual form. This implies that the CNL has to be unambiguous.

 Expressiveness:
This property indicates the range of statements that a certain CNL is able to express. In other
words, the degree to which communication can be captured.

 Naturalness:
This property indicates the degree to which a text, defined with a CNL, resembles a natural
language. In other words, the statements of a CNL should be understandable and readable for
speakers of the concerned natural language.

 Simplicity:
This property refers to the degree of simplicity to define the language (CNL) in terms of syntax
and semantics. Furthermore, this property covers the effort needed to implement the
language in a computer program. The indicator which is used for simplicity is: the number of
pages needed to the describe the language in an exact and comprehensive way.

The four properties are also called dimensions, since there is a large variety in the degree to which a
CNL adheres to one of the four properties. CNLs can be positioned somewhere between a natural
language (high expressiveness and naturalness, but low precision and simplicity) and a formal language
(high precision and simplicity, but low expressiveness and naturalness). To be more accurate in the
classification and identification of the nature of a CNL, Kuhn (2013) constructed PENS as a classification
scheme including a five-tier ranking (1 - 5) for each of the four dimensions where:

1. P1 = an imprecise language and P5 = a language with fixed syntactic and semantics;
2. E1 = an inexpressive language and E5 = a language with maximal expressiveness;
3. N1 = an unnatural language and N5 = a language with natural texts;
4. S1 = a very complex language and S5 = a language with very short descriptions.

An extensive explanation of each rank per dimension is provided in Appendix 2. It should be noted that
this ranking does not indicate the quality or usefulness of a CNL. The PENS classification scheme is
useful to identify the nature of a language in order to select a CNL which is applicable for a specific
application domain and purpose. In addition, the classification scheme is useful when devising a new
CNL because some tradeoffs have to be made between the properties. According to Kuhn (2010, 2013),
a language cannot entirely comply with all four properties since they are frequently in conflict. Most
of these conflicts are very obvious but also supported by statistical proof. Kuhn (2013) found different
correlations, both positively and negatively, between some of the properties. A negative correlation
corresponds to a pair that is in conflict, which are the following: 1) precision and expressiveness
(Spearman’s rank correlation coefficient p= - 0.66), 2) precision and naturalness (p= - 0.67), 3)
expressiveness and simplicity (p= - 0.82), and 4) naturalness and simplicity (p= - 0.76). For the first pair
it means that how higher the precision level of a language, the lower the expressiveness of the
language. This is also how the correlations between the remaining three pairs can be interpreted.

Thesis: Patterns for Derivation Business Rules

30

CNL APPLICATION DOMAINS
Many different CNLs are created for several domains, examples of these domains are: computer
science, philosophy, and linguistics (Kuhn, 2010, 2013; Pool, 2006). Pool (2006) investigated 41 CNLs
and found that the majority of these CNLs were designed to be applicable for a single domain. Only
four CNLs were created to be applied in multiple domains. Taking this finding into account, CNLs can
be related to the concept: ‘Domain Specific Languages’ (Pool, 2006; Ranta, 2014; Sun, Demirezen,
Mernik, Gray, & Bryant, 2008). A domain-specific language (DSL) is defined as: “a programming
language or executable specification language that offers, through appropriate notations and
abstractions, expressive power focused on, and usually restricted to, a particular problem domain”
(Pool, 2006; Ranta, 2014; Sun et al., 2008; Van Deursen & Klint, 2002; Van Deursen, Klint, & Visser,
2000).

In some cases, a language can be considered both a CNL and a DSL at the same time. This is for example
true for the Structured Query Language (SQL), which is a language specifically applicable for the
relational database domain and complies with the four requirements of a CNL (Kuhn, 2013; Van
Deursen & Klint, 2002; Van Deursen et al., 2000):

1. It is based on exactly one natural language (its base language “English”);
2. It is more restrictive concerning lexicon, syntax, and/or semantics than its base language (i.e.

based on relational theory);
3. It can intuitively be understand, at least to a substantial degree;
4. It is a constructed language.

These above four language requirements distinguish a CNL from a regular DSL.

In addition, Pool (2006) found that CNLs are created based on different natural languages (e.g. German,
Chinese, French). Kuhn (2013) identified hundred CNLs with as natural language English and also
provides a list of specific application areas of CNLs along with some examples (see Table 2.4):

Application Area Examples of CNLs per Area
Semantic Web OWL Simplified English (Power, 2012)

Technical Documentation KANT Controlled English (Mitamura & Nyberg, 1995)

General-Purpose
Knowledge
Representation

 Computer Processable Language (CPL) (Clark, Harrison, Jenkins,
Thompson, & Wojcik, 2005)

 Controlled English to Logic Translation (CELT) (Pease & Li, 2010)

Personal Rules and Scripts Voice Actions (Google, 2015)

Emergency Instructions Controlled Language for Crisis Management (CLCM) (Temnikova, 2010)

Query Interfaces Structured Query Language (SQL) (Chamberlin & Boyce, 1974)

International
Communication

 FAA Air Traffic Control Phraseology (FAA, 2014)
 PoliceSpeak (Johnson, 2000)

Mathematical Texts Controlled Language of Mathematics (CLM) (Humayoun & Raffalli, 2010)

Software Specifications Gherkin (Necas, 2011)

Legislation/Government
Documents

 Massachusetts Legislative Drafting Language (Massachusetts Senate,
2003)

Policies / Business Rules

 PERMIS Controlled Natural Language (Inglesant, Sasse, Chadwick, & Shi,
2008)

 SBVR Structured English (Object Management Group, 2013)
 RuleSpeak (Object Management Group, 2008)

Table 2.4: CNL Application Areas along with Examples of CNLs

From the hundred English-based CNLs Kuhn (2013) identified, only three were tailored to the ‘Policies
/ Business rules’ application area. One of the three CNLs is established to define policies, namely the
CNL called “PERMIS Controlled Natural Language”. The PERMIS Controlled Natural Language is
especially used for access control policies of which examples are shown in Figure 2.6. A business policy
in general is defined by Object Management Group (2008) as: “A non-actionable directive whose

Thesis: Patterns for Derivation Business Rules

31

purpose is to govern or guide the enterprise.” Furthermore, Object Management Group (2008) states
that a business rule is derived from business policy. Taking these statements into account, PERMIS is
not applicable as CNL for this research as it focuses on specifying policies instead of behavioral
(operational) business rules like derivation business rules.

Figure 2.6: Examples access control policies adapted from Kuhn (2013)

The remaining two CNLs that Kuhn identified in the ‘Policies/ Business rules’ application area are
focused on defining business rules, namely: RuleSpeak and SBVR Structured English. For the purpose
of this research, solely these two CNLs are interesting to consider in more detail. RuleSpeak is
introduced in 1994 and developed by Ronald G. Ross (Kuhn, 2013). In 2005, SBVR Structured English is
introduced which is very similar to RuleSpeak (Kuhn, 2013). The similarity can be explained by the fact
that both CNLs are compliant with the formal semantics defined in the SBVR standard (Object
Management Group, 2008). The vocabulary of both languages consists of fixed sentence constituents
(i.e. ‘building blocks’) which are divided into four types and denoted in a specific format:

 terms (i.e. concepts)

 names (i.e. individuals)

 verbs (i.e. relations)

 keywords (i.e. fixed phrases, quantifiers and determiners)

Although the permitted sentence constituents are provided, the order in which they can be placed is
not enforced. So, both SBVR as RuleSpeak do not include a formal grammar and syntax which allows
the specification of ambiguous business rules (Kuhn, 2013). This is illustrated in Table 2.5, where the
same business rule is specified in two different ways by applying SBVR Structured English:

SBVR
1

SBVR
2

Table 2.5: Example of an SBVR business rule with different syntax

Another example business rule is provided Table 2.6, which shows how the same business rule is
specified with SBVR and subsequently with RuleSpeak. Considering this example, the possibility exists
that two people will interpret this same business rule in a different way. For example, does this
business rule imply “each in-country rental AND each international inward rental” or “an in-country
rental OR international inward rental”. So, both specifications are not precise and leave room for
interpretation.

Thesis: Patterns for Derivation Business Rules

32

SBVR

RuleSpeak

Table 2.6: Example of a business rule specified in an ambiguous way

Taking all previous statements and examples into account, both CNLs are classified in the exact same
way by means of the PENS classification scheme and by the environmental properties: P3E4N4S2, c f w
i (Kuhn, 2013). For an explanation of the letter codes, see Table 2.3 and Appendix 2.

As described in Chapter 1, the pattern catalogue that will be created during this research should allow
automatic transformation by means of a parser. To realize this, the language in which the pattern
catalogue is specified (i.e. CNL) should minimally comply with a precision level of P4 (see Appendix 2)
which is not the case for SBVR and RuleSpeak. To reach this level, one of the requirements is a formal
grammar underlying the CNL. The approach that will be pursued within this research is to create a
formal grammar, which will be explained in the next sub-section.

Thesis: Patterns for Derivation Business Rules

33

 Formal Grammar

In the preceding three sections, information is provided about BRM and business rules in general.
Furthermore, insight into derivation business rules and CNLs is provided. Current section examines
what formal grammars are (see Figure 2.7).

Figure 2.7: Conceptual Overview – Formal grammar

A language, whether it is a natural or formal one, is mostly defined by a grammar (Kuhn, 2010).
According to Kuhn, CNLs have specific requirements with regard to their grammars that differ from
those of natural or other formal languages. The grammar of a CNL has to comply with the following
three requirements in order to be able to define, implement, use, and reuse the CNL efficiently (Kuhn,
2010): 1) Concreteness, 2) Declarativeness, and 3) Implementability. Concreteness implies that the
grammar of the CNL is fully formalized and can be interpreted by automated information systems. This
first requirement corresponds to precision, one of the language properties of a CNL, as explained
earlier. The second requirement, declarativeness, is essential in order for a CNL to be used by different
tools. A grammar can be called declarative if it is independent from a concrete implementation. In
other words, the grammar is separated from the parser that will process it. This ensures reusability of
the grammar and makes it possible to change or replace the parser without the need of changing the
grammar. From a more practical point of view, implementability is important indicating that the
grammar is easy to implement. Implementability is closely related to the usability of the CNL,
appropriate implementation of the grammar can ensure sufficient usage of the CNL.

A grammar that fulfills the three described requirements can be called a formal grammar (Kuhn, 2010).
A formal grammar in the context of this research is defined as a set of rules for specifying the syntax
of strings (i.e. sequence of characters or words) (Gallier, 2011). Rules that define the syntax of strings
are called grammar rules (Gallier, 2011). To rewrite (transform) these strings, there also exist rules that
are considered as production rules in the information science domain (Gallier, 2011). Each production
rule has at the left-hand side an input (i.e. source) which is the string that can be replaced, and at the
right-hand side an output (i.e. target) which is a string that should replace it. A production rule is mostly
expressed in the form: input → output. The input and output part of a production rule are composed
of non-terminal and terminal symbols. Where terminals are defined as “the symbols which cannot be
changed using the rules of the grammar”, and non-terminals as “the symbols which act like variables”
(Gallier, 2011). With regard to the grammar rules of a formal grammar, those restrict the language in
the set of fundamental constructs it can use and also to some extent the order in which they can be
placed. In terms of the CNL, the grammar rules specify the syntax for specifying the source business
rules.

Thesis: Patterns for Derivation Business Rules

34

A formal grammar can be used for parsing (Earley, 1970; Gallier, 2011), which is the intention of
devising a formal grammar for the envisioned CNL of this research. What is meant by the word parsing
can differ per discipline. In the context of this research, parsing is the automated process that consists
of two main streams:

1) Firstly, decomposing a string (i.e. business rule specified in the controlled natural language)
into its constituents (i.e. fundamental constructs) by analyzing it with the grammar rules of the
formal grammar of the source language (i.e. CNL). This first step results in a parse tree that
depicts the syntactic relations among the fundamental constructs;

2) Secondly, transforming this parse tree to a string (i.e. business rule specified in target
language) that complies with the syntactic rules of the target language by means of the
production rules of the formal grammar.

Formal grammars are often applied when a precise description of a language is required, such as for:
manuals, communication protocols, and programming languages (Earley, 1970; Kuhn, 2010). Given the
precision requirement of the envisioned CNL, the choice is made to create a formal grammar
underlying the CNL. This formal grammar will impose the syntax of the fundamental constructs of the
CNL by means of the grammar rules. The production rules, which specify how business rules specified
with the CNL can be transformed into business rules in a target language, will not be devised during
this research. Due to the fact that this research focuses on the fundamental constructs and patterns
as a result of time constraints. The grammar rules and the fundamental constructs will be described in
Chapter 3.

Thesis: Patterns for Derivation Business Rules

35

 Patterns and pattern catalogues

The former four sections covered the concepts BRM, business rules, derivation business rules, CNLs,
and formal grammars. Besides the envisioned CNL and grammar rules, the aim is to provide the
business rule authors with a mechanism to consistently specify business rules in a proper way. Patterns
are considered as such a mechanism, since they can be used as enforcements for business rule authors
when specifying the business rules. In the context of this research, patterns will be fixed combinations
of fundamental constructs adhering to the grammar rules of the formal grammar. In this way, patterns
can make a language (i.e. the CNL) even more restrictive and precise. The advantage of applying
patterns for the business rule authors is that they can decrease the duration of the design process and
enhance the consistency (i.e. standardization). This section will define what (design) patterns and
pattern catalogues are (see Figure 2.8). Moreover, current existing pattern catalogues will be reviewed
and compared.

Figure 2.8: Conceptual Overview - Patterns

Design patterns, or patterns in general, were first brought to the attention by the work of Alexander,
Ishikiwa, and Silverstein (1977) in the architecture domain for constructing buildings (Graham, 2006;
Iacob, Lankhorst, & Schrier, 2012). Alexander et al. (1977) stated the following: “A pattern describes a
problem which occurs over and over again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this solution a million times over, without ever
doing it the same way twice.”

Later on, patterns were established for many other disciplines (Graham, 2006; Iacob et al., 2012).
Gamma, Helm, Johnson, and Vlissides (1994), also known as the Gang of Four (GoF), made patterns
familiar in the software development domain. From a software development view, they defined a
design pattern as “a generally applicable solution to a common design problem, codified in a
standardized form providing a configuration of elements that together solve the problem”.

Morgan (2002) views patterns from an information system perspective and defines a pattern as “a
collection of model elements relating to a particular situation. It is a fragment of a model that's already
available, ready for you to incorporate - either as it stands or with modifications - into your own
complete model.” Another definition is found in Zoet (2014): “A pattern is a structured way of
presenting key elements which can be used to create or identify statements”. Von Halle (2004) uses the
word rule template to refer to a pattern, and defines rule templates as “disciplined patterns by which
a business rule is expressed as a combination of rule clauses”. This latter definition is already more in
line with this research since it is specifically tailored to the business rule domain. Regarding this
research, key elements (Zoet, 2014) and rule clauses (Von Halle, 2001) are considered as the
fundamental constructs (i.e. building blocks or business rule sentence parts) for specifying business
rules. Previous definitions are combined to arrive at the following definition of a pattern, which will be
applied for this research: “a structured combination of fundamental constructs to specify business
rules” (Ghose & Koliadist, 2007; Morgan, 2002; Von Halle, 2001; Zoet, 2014).

Thesis: Patterns for Derivation Business Rules

36

Although each above provided definition originates from a different domain, in the core they all state
the same namely that patterns are standard solutions (templates) to a recurring problem in a context.
Due to this generic nature of patterns, they can be applied in all practices to reuse knowledge. Iacob
et al. (2012) identified the following pattern types, each for a specific application domain: object-
oriented design patterns, enterprise software application design patterns, enterprise integration
patterns, organizational patterns, enterprise architecture management (EAM) patterns, workflow
patterns, e-business patterns, software oriented architecture (SOA) patterns, ontology design
patterns, user interface design patterns, rule patterns and multichannel management patterns. An
explanation of these types of patterns can be found in (Iacob et al., 2012).

The application of patterns can have several advantages (Graham, 2006; Iacob et al., 2012): 1) simplify
the communication about design, 2) educate new employees (designers) how to properly design, 3)
enhance standardization of design which can prevent re-design, and 4) reuse of (design) knowledge in
different contexts which can decrease the design time.

CURRENT RULE PATTERN CATALOGUES
As described above, various pattern catalogues exist for different domains and/or focus on different
granularity levels. Merely the pattern catalogues established for the BRM domain and which are
focused on the level of specifying business rules will be considered into more detail. So even though
the pattern catalogue of Graham (2006) is created for the BRM domain (i.e. rule catalogue), these
patterns are very high-level and comprise advices for all kind of activities in a BRM project. However,
from literature also a number of rule pattern catalogues emerged which are relevant. These catalogues
are described below.

do Prado Leite and Leonardi (1998) proposed a taxonomy to categorize business rules into functional
and non-functional business rules. Non-functional business rules are further subdivided into
macrosystem and quality rules. A description of these categories can be found in Appendix 1. For every
category in the taxonomy, a rule pattern is created which contains a combination of the following
fundamental constructs: property, non-verb phrase, relation, verb phrase, should, should not, must,
must not, because and cause. For an explanation of these pattern elements and patterns see Leite &
Leonardi (1998).

The pattern catalogue of Von Halle (2001) is established with a higher granularity level. She
distinguishes business rules based on their intention which lead to the following five rule categories
and equal pattern types: 1) mandatory constraints, 2) guidelines, 3) action enabler rules, 4)
computations and 5) inferences. For an explanation of these categories, see Appendix 1. The five
patterns differ to a great extent with regard to their fundamental constructs, therefore only the most
frequently applied and basic ones are provided here: <term>, <formula>, <value list>, <at least, at
most, exactly n of>, <comparison>, <value>, <operator>, <rule phrase(s)>, IS COMPUTED AS, MUST
HAVE, MUST BE, IF, THEN, MUST NOT and BE IN LIST. To view the patterns including fundamental
constructs, see Von Halle (2011).

Morgan (2002) established a pattern catalogue also including five different patterns: 1) basic
constraint, 2) list constraint, 3) classification, 4) computation, 5) enumeration. These patterns are an
elaborated version of the basic form defined by Morgan: <subject> must <constraint>. The remaining
elements that a pattern can contain are: <det>, <characteristic>, <fact>, <fact-list>, <m>, <n>, <result>,
<algorithm>, <classification>, and <enum-list>. For an explanation of these fundamental constructs
and patterns, see Morgan (2002).

In 2003, Wan-Kadir and Loucopoulos published a pattern catalogue based on the following typology
to categorize business rules and their corresponding patterns: 1) constraint, 2) guideline, 3) action
assertion, 4) computation, and 5) inference. For each category an associated pattern is provided. One

Thesis: Patterns for Derivation Business Rules

37

year later, they published a new version of this pattern catalogue along with their Business Rule Model
to capture and specify business rules (Wan-Kadir & Loucopoulos, 2004). Although pattern four (i.e.
computation) and five (i.e. inference) have remained exactly the same, several differences can be
appointed between the two catalogue versions. As first, the elements of the first three patterns are
substantively changed. Furthermore, the first and third pattern provide multiple options for the same
pattern instead of only one. Moreover, the first pattern is renamed from constraint to mandatory
constraint. In addition, the new pattern catalogue has an additional layer on top of the five patterns
which clusters them into three main categories: 1) Constraint which includes mandatory constraint
and guideline, 2) Action assertion which includes action assertion along with three options (enabler,
copier and trigger), and 3) Derivation which includes computation and inference. A description of each
business rule category from the latest version can be found in Appendix 1. Only this version is
considered since it is more extensive and up to date. Since the five patterns differ to a great extent
with regard to their fundamental constructs, not all the fundamental constructs will be listed here but
only the most common used ones: <subject>, <value>, <condition>, <algorithm>, <fact>, <event>,
<condition>, <action>, IS COMPUTED AS, MUST [NOT], MAY, IF, and THEN. For an explanation of the
fundamental constructs and patterns, see Wan-Kadir and Loucopoulos (2004).

RuleSpeak is a business rule language for which Hoppenbrouwers (2011) devised a pattern catalogue
including eighteen different rule patterns. Using this pattern catalogue to specify business rules
ensures that the business rules comply with the RuleSpeak requirements. Each pattern in the catalogue
is composed of the following fixed sequential parts: First part, Keyword(s), Second part, Keyword(s),
and Third part. The first part always includes a subject and the third part always includes a condition.
Especially the keyword(s) and second part cause the differences between the patterns, as they state if
something ‘must’, ‘need not’ or ‘may’ be done and what ‘should’ be done (e.g. computation). For an
explanation of these fundamental constructs (i.e. pattern parts) and patterns see (Hoppenbrouwers,
2011). Although RuleSpeak makes a distinction between structural and operational business rules, the
created rule patterns are not specifically applicable for a certain business rule type. For a definition of
the two rule types, see Appendix 1.

In contrast to the previous five catalogues, Caron et al. (2013) devised a very extensive rule taxonomy
which is entirely centered around business rules with the aim to constrain or guide business processes.
The taxonomy has two dimensions: a process mining perspective dimension and a rule restriction focus
dimension. The first dimension provides four main groups (perspectives) to cluster the patterns:

1. The functional process perspective;
2. The control-flow process perspective;
3. The organizational process perspective;
4. The data process perspective.

All four perspectives deal with one of the following aspects, all related to business processes: the
process elements (e.g. activities) that are being performed, the process behavior (i.e. when process
elements can be performed), the performers of the business process (e.g. the actors), or the
information elements (e.g. data) that are used, produced or changed.

For each of the four perspectives, the second dimension provides a subdivision for the patterns into
the following five sub-groups:

1. Cardinality-based rules;
2. Coexistence rules;
3. Dynamic data-driven rules;
4. Relative time rules;
5. Static property rules.

Thesis: Patterns for Derivation Business Rules

38

Appendix 1 provides a definition of the five business rule types. All these business rule types are aimed
at restricting or specifying the dynamic or static properties of process elements of a specific process
instance. For example, the first type restricts the number of allowed instances of a specific process
element (e.g. an activity of type a1 must be performed at least once).

In total, the rule catalogue of Caron et al. (2013) consists of twenty categories (4 main groups x 5 sub-
groups). For every category, several patterns are created. Given the large amount of patterns and
variation of fundamental constructs, these patterns including pattern elements can be viewed in Caron
et al. (2013).

Besides the above six business rule pattern catalogues that were found in literature, also a pattern
catalogue devised and provided by the case company is taken into account for this research. This
pattern catalogue is called “RegelSpraak” (Sangers-van Cappellen, 2014) and is established in Dutch,
since the business rules of the Dutch Tax and Customs Administration are specified in this language.
RegelSpraak deviates from the other pattern catalogues with regard to the clustering of patterns. The
catalogue includes individual patterns for specifying the conclusion part (THEN part) of a business rule,
and individual patterns for specifying the condition part (IF-part) of a business rule. In contrast, all of
the other six pattern catalogues created patterns including both parts. In total, the RegelSpraak pattern
catalogue includes 31 patterns. For the condition part, seven different patterns are created. For the
conclusion part, 24 patterns are established which are clustered into several subcategories of three
main categories as follows:

1. Derivation rules:
- Decision rule patterns;
- Calculation rule patterns.

2. Constraint rules:
- Value Range rule patterns;
- Consistency Control rule patterns;
- Rounding rule patterns.

3. Process rule patterns.

As explained in section 2.2, this research focuses on derivation business rules. Taking all the previous
described business rule pattern catalogues into account, none of these catalogues is completely
focused on derivation business rules. Therefore, during this research a pattern catalogue solely
focused on the specification of derivation business rules will be created.

Thesis: Patterns for Derivation Business Rules

39

 Summary literature review

In the previous sections the following concepts were described: BRM, business rules, derivation
business rules, CNL, formal grammar, and patterns (see Figure 2.9). This section will relate all previous
sections to the primary research goal: Creating a pattern catalogue specified in a precise
implementation independent language, which can be used to specify a set of derivation business rules
once, and which allows automatic transformation of the business rule set to be applicable for multiple
business rule engines.

Figure 2.9: Summary Literature Review

Given the above stated research goal, the implementation independent language in which the pattern
catalogue will be specified should be:

1. Precise (P) in order for an automated information system to parse the business rules specified
with the language;

2. Expressive (E) enough to be able to capture derivation business rules;
3. Natural (N) to some extent to be understandable for a human which will specify and verify the

business rules;
4. Simple (S) to be defined with a formal grammar in terms of syntax (Kuhn, 2013).

A machine-oriented CNL complies with the four language requirements listed above as it is designed
to improve the communication between humans and information systems (satisfying 2 & 3).
Furthermore, these CNLs can be created along with a formal grammar with a direct mapping to formal
logic (satisfying 1 & 4). Furthermore, the formal grammar can be used as an interlingua which enables
transformation by parsing the source language into different target languages (Ranta, 2014). In this
way, a CNL can also implicitly comply with an implementation independent language.

In summary, a CNL is highly applicable to achieve the research goal. At this moment, merely two CNLs
for business rules specification are found by Kuhn (i.e. RuleSpeak and SBVR Structured English). Since
those two CNLs are not strictly defined by means of a formal grammar as explained in section 2.3 and
have a higher expressiveness than necessary by providing the possibility to express multiple different
types of rules, they are not suitable to address the research goal. In addition, the pattern catalogue of
Caron et al. (2013) can also be considered as CNL by taking the language properties of Kuhn (2013) into
account. Although this CNL is precise enough, the expressive power of Kuhn’s CNL is only applicable
for specifying process rules instead of derivation business rules.

To bridge this gap, a machine-oriented CNL targeted at specifying derivation business rules will be
created during this research. The underlying natural language of the CNL will be English given the fact
that English is widely spoken and is the common language in the academic world (Kuhn, 2010). As
mentioned in section 2.3, it is important to assess the tradeoffs between the four language properties
(PENS) when creating a new CNL. Given the fact that this positioning will provide a clear view for the
creation process (Kuhn, 2013). For that reason, the initial idea of the CNL that will be created during
this research is mapped onto the PENS classification scheme of Kuhn (2013). Moreover, the

Thesis: Patterns for Derivation Business Rules

40

environmental properties are taken into account. These will be explained first. In terms of
environmental properties, the envisioned CNL will have the following properties: it will be a language
with as goal to improve translation (t) and to provide a representation of the formal notation which
remains understandable for humans (f), it will be a written (w) language, originating from government
(g) and be used in a specific domain (d) namely for business rules.

The four language properties of the envisioned CNL have already been briefly discussed above. Now,
each property will be considered into more detail by describing the specific required level for the CNL
by means of the five-tier ranking and related criteria of Kuhn (2013). The precision (P) level of the CNL
should at least be equal to 4 in order to be able to parse the language with an automated information
system. Level 4 requires that a language is fully formal on a syntactic level, which can be reached by
formulating a formal grammar. The highest precision level, level 5, is not desired for the envisioned
CNL since it requires that the language is also fully specified on a semantic level. A specification of the
semantics can only be achieved when every subject of the business rule set is defined prior to the
business rules specification. The high level of precision will restrict both the level of expressiveness (E)
and naturalness (N) of the CNL to a certain extent, since only specific language structures can be used.
However, the aim is to have a minimal level of 3 for expressiveness to be able to capture general rule
structures (if / then) which is otherwise not possible. In addition, also a minimal level of 3 for
naturalness is required to ensure that the language is understandable for a human to write and verify
the business rules. When a language corresponds to a lower level (1 or 2), the language looks very
unnatural mostly due to the heavy use of symbols and is therefore not considered as a CNL according
to Kuhn’s definition. For the last property of the CNL, simplicity (S), it is desired to comply with level 4
which means that the CNL can be defined in an exact and comprehensible way requiring between one
and ten pages. This exact level of simplicity is chosen since a simplicity level of 3 implies more than ten
pages, and a simplicity level of 5 implies that the descriptions fits on a single page. Altogether, the aim
is to devise a CNL with the following PENS levels: P= 4, E= 3, N =3, S=4. For a broader explanation of
these levels, see Appendix 2. The levels of this new CNL are graphically compared to these of SBVR and
RuleSpeak, see Figure 2.10.

Figure 2.10: PENS classification scheme for several CNLs

As mentioned above, a formal grammar needs to be formulated underlying the CNL to reach a high
precision level. The grammar rules will restrict the syntax of the fundamental constructs of the CNL.
When the fundamental constructs and grammar rules are devised, the patterns will be created and
specified by means of the CNL. These patterns will make the CNL even more restrictive by providing a
set of fixed combinations of fundamental constructs that comply with the grammar rules.

Thesis: Patterns for Derivation Business Rules

41

3 CNL Creation
The previous chapter identified all the components that are necessary to create or to support a CNL
that complies with the purpose of this research. These components are: fundamental constructs, a
formal grammar (i.e. the grammar rules), and patterns. In this chapter, the fundamental constructs
will be identified for specifying derivation business rules along with the grammar rules that restrict
and/or impose the application of these fundamental constructs. Together, the fundamental constructs
and grammar rules constitute the meta-model to which the CNL has to conform. This meta-model is
included at the end of this chapter.

BUSINESS RULE
From the literature study, information with regard to specifying business rules emerged. In general, it
became clear that on the highest level a business rule is composed of two parts: the conclusion part
and condition part (Von Halle & Goldberg, 2009; Zoet et al., 2011). In the following example business
rule, the conclusion part is denoted by an orange border and the condition part by a green border:

The tax amount of a taxpayer must be calculated as the sum of the salary of each

current employment minus the tax rebate if the nationality of the taxpayer is Dutch and the age of

the taxpayer is higher than 18.

Although for this research these two fundamental constructs are designated as ‘conclusion part’ and
‘condition part’, different alternatives can be found in literature. For instance, the conclusion part is
also referred to as ‘conclusion assertion’, ‘consequent’ or ‘then-part’, and the condition part as ‘if-part’
‘antecedent’ or ‘when-part’ (Von Halle & Goldberg, 2009; Wong, Whitney, & Thomas, 1999; Zoet et
al., 2011). The relationship between both fundamental constructs and the number of times they occur
in one business rule can also differ per source, for example due to personal choice of the business rule
modeler or the business rule language that is used (Zoet et al., 2011). Most languages allow the
exclusion of a condition or the inclusion of one or multiple condition parts (conditions) and allow only
one conclusion part (conclusion). Meeting these requirements ensures the creation of atomic or
normalized business rules (Boyer & Mili, 2011; Von Halle & Goldberg, 2009; Zoet et al., 2011). Atomic
business rules are “business rules that cannot be further decomposed without losing meaning” (Boyer
& Mili, 2011). In contrast, other languages allow multiple conclusion parts (conclusions).

Enforcing only one conclusion part is desirable since it can provide several advantages: 1) it eliminates
ambiguity of meaning, 2) enhances understandability, maintainability, execution efficiency and
manageability, 3) increases ease of validation and implementation, and 4) can eventually prevent
redundant or overlapping business rules (Boyer & Mili, 2011; Von Halle & Goldberg, 2009; Zoet et al.,
2011). Given these advantages, the creation of atomic business rules will be enforced by the envisioned
CNL which corresponds to the following grammar rules:

 A Derivation business rule consists of exactly one Conclusion Part;
 A Derivation business rule consists of zero or more Condition part(s);
 A Conclusion part belongs to exactly one Derivation business rule;
 A Condition Part belongs to exactly one Derivation business rule.

Thesis: Patterns for Derivation Business Rules

42

The relationships and cardinalities of the two fundamental constructs of a derivation business rule are
shown in Figure 3.1.

Figure 3.1: Relationships and cardinalities

Thesis: Patterns for Derivation Business Rules

43

 Equivalent Underlying Fundamental Constructs

The conclusion part and condition part have many similar underlying fundamental constructs, which
were determined by examining literature and business rule catalogues (Caron et al., 2013; do Prado
Leite & Leonardi, 1998; Hay & Healy, 2000; Hoppenbrouwers, 2011; Morgan, 2002; Object
Management Group, 2013; Sangers-van Cappellen, 2014; Von Halle, 2001; Von Halle & Goldberg, 2009;
Wan-Kadir & Loucopoulos, 2004). Only a few differences with regard to the underlying fundamental
constructs and grammar rules are found between both parts. These differences will be explained later
on in section 3.2 and 3.3. First, the discovered equivalent underlying fundamental constructs will be
described in succession. This will be done by taking the definition of a derivation business rule into
account again:

“an expression that evaluates facts, by means of a calculation or classification,
leading to a new fact (i.e. conclusion)”

FUNDAMENTAL CONSTRUCT: SUBJECT
Looking at the definition above, for this research facts are seen as values, pieces of information or
data, that can be filled in for a specific business concept incorporated in a business rule (Von Halle &
Goldberg, 2009). In general, a business concept is considered as “a noun, a thing with an agreed-upon
definition, a recognizable business entity” (Morgan, 2002; Von Halle, 2001; Von Halle & Goldberg,
2009). With regard to business rule specification, a business concept is seen as one of the fundamental
constructs only many different names are used to refer to a business concept. In the rule pattern
catalogues, the following expressions of a business concept were found: Von Halle (2001) uses <term>,
Morgan (2002) uses <subject> and <result>, Wan-Kadir and Loucopoulos (2004) use <subject> and
<value>, and Hoppenbrouwers (2011) uses SUBJ.

Above mentioned expressions and some additional synonyms to refer to a business concept were also
found in literature:

 Term, which can either be an object or a role to define a person or a thing (Hay & Healy, 2000;
Object Management Group, 2013);

 Concept (Boyer & Mili, 2011; Object Management Group, 2013; Von Halle, 2001);

 Property of a concept (Von Halle, 2001);

 Subject (Von Halle, 2001);

 Entity (Von Halle, 2001);

 Attribute (Von Halle, 2001).

For this research, all previous listed alternatives found in the pattern catalogues and literature are
referred to with the word subject as fundamental construct. The word subject is chosen since the
majority of the other options, except term, are derived from specific fields like for example the
database field. The choice to only include one fundamental construct to refer to these different levels
of concepts is made in order to keep the amount of fundamental constructs of the CNL limited. In this
way, the CNL will adhere to simplicity. To clarify the meaning of a subject further, the example business
rule from above will be considered again. In this example, each subject in the conclusion and condition
part is denoted by a blue border:

The tax amount of a taxpayer must be calculated as the sum of the salary of each

current employment minus the tax rebate if the nationality of the taxpayer is Dutch and the age of

the taxpayer is higher than 18.

Thesis: Patterns for Derivation Business Rules

44

As can be concluded from this example, both the conclusion part as condition part can consist of
multiple subjects. To make the business rule meaningful, it has to include at least one subject to reason
about. This leads to the following grammar rules for the CNL:

 A Conclusion Part consists of one or more Subject(s);
 A Subject belongs to exactly one Conclusion Part;
 A Condition Part consists of one or more Subject(s);
 A Subject belongs to exactly one Condition Part.

The relationships and cardinalities between these fundamental constructs are shown in Figure 3.2.

Figure 3.2: Relationships and cardinalities

Thesis: Patterns for Derivation Business Rules

45

FUNDAMENTAL CONSTRUCT: QUANTIFIER
In two cases, a fundamental construct is found which denotes if a business rule involves: a specific
subject (e.g. the subject), one subject (e.g. a/an subject) or more subjects (e.g. each/every subject). In
the rule pattern catalogue of Morgan (2002), this fundamental construct is called a determiner and is
expressed by <det>. Furthermore, in the business rule language SBVR this is called a keyword. For the
CNL, this fundamental construct is also included but with another name namely quantifier. The reason
to use a different name is because the term keyword is a bit vague. Furthermore, the word determiner
is used in the English linguistics domain comprising many more instantiations (e.g. which, another,
what) than the fundamental construct for this research can comprise (British Council, 2015). In
linguistics, quantifiers are seen as a specific sub-group of determiners (British Council, 2015). The
difference between the application of quantifiers in linguistics and this research is that for this research
quantifiers also comprise articles (i.e. the, an, a). Another reason to choose the name ‘quantifier’ is
because this concept is applied across the linguistics and logic domain bringing both domains together
(Peters & Westerståhl, 2006).

To be more specific about the meaning of a quantifier, the example business rule from above will be
considered again. In this example, each quantifier in the conclusion and condition part is denoted by a
red border:

The tax amount of a taxpayer must be calculated as the sum of the salary of each

current employment minus the tax rebate if the nationality of the taxpayer is Dutch and the age of

the taxpayer is higher than 18.

As can be concluded from this example, each quantifier has a direct association with one subject (see
blue borders) and vice versa. The quantifier makes a business rule more precise and unambiguous
(Object Management Group, 2013). In practice, not many business rule languages or rule pattern
catalogues obligate this relation. However since precision is important for the CNL, this association will
be included by the following grammar rules:

 A Subject is associated with exactly one Quantifier;
 A Quantifier is associated with exactly one Subject.

The relationships and cardinalities between these fundamental constructs are shown in Figure 3.3.

Figure 3.3: Relationships and cardinalities

Thesis: Patterns for Derivation Business Rules

46

FUNDAMENTAL CONSTRUCT: RELATION
The choice to include subject as single fundamental construct in the CNL to refer to both “concepts
(i.e. entities)” and “properties of concepts (i.e. attributes)”, can have a disadvantage. Although it keeps
the CNL simple with regard to the amount of fundamental constructs, it can also make the business
rule ambiguous. Therefore, some practitioners choose to use the common names and others use a
kind of fundamental construct which addresses this disadvantage. This fundamental construct
specifies the relation/association between subjects. By means of this relation, the different granularity
levels between subjects can be made clear again. This relation is shown by means of a black border in
the example below:

The tax amount of a taxpayer must be calculated as the sum of the salary of each

current employment minus the tax rebate if the nationality of the taxpayer is Dutch and the age of

the taxpayer is higher than 18.

Below, the found examples in literature of a fundamental construct that specifies the
relation/association between subjects will be discussed.

Hay and Healy (2000) call the fundamental construct a ‘fact’ and distinguish three types of facts: 1) a
fact that associates a subject (i.e. business concept) with its ‘attribute’, 2) a fact that associates a
subject as a generalization (i.e. supertype) of another subject, and 3) a fact that associates several
subjects. Hay and Healy (2000) allow a lot of freedom in the usage of a fact since it can comprise a
whole sentence and can cover multiple subjects instead of only a binary relation. For instance, the
sentence "a customer may request a model of car from a rental branch on a date" is one fact according
to the BRG that comprises four subjects: customer, car model, rental branch and date (Hay & Healy,
2000).

In addition, Von Halle (2001) defines a fact as “a statement that connects terms, through prepositions
and verb phrases, into sensible, business-relevant observations“. She also provides a definition from a
database point of view “a fact is a relationship among entities or the association of an attribute to an
entity”.

Moreover, Von Halle and Goldberg (2009) propose the fundamental construct “fact type” which
specifies the relation among a business concept and a property of this concept. An example of a fact
type that Von Halle and Goldberg (2009) provide is “Employment history of Person”. So, it should be
noted that this fundamental construct includes two subjects (i.e. Employment history and Person) and
the relation.

Furthermore, Wan-Kadir and Loucopoulos (2004) describe a fact as “a statement that asserts a
relationship (attribute/ preposition / verb / generalization /aggregation) between two subjects”. They
state that this is often expressed in the form <subject> <relationship> [of] <subject>.

In contrast to previous examples, Object Management Group (2013) does not provide a fundamental
construct to refer to a whole sentence part including the subjects and relationships. Object
Management Group (2013) proposes “(is) of” as specific fundamental construct to specify the
relationship between exactly two subjects (e.g. Engine size of car model).

For this research, a fundamental construct as explained above will be included for the CNL. The reason
to include this fundamental construct is to be able to precisely specify the relation between subjects
in a business rule, ensuring an unambiguous business rule set. In the context of this research, this
fundamental construct will be called relation since it only specifies the relationship and will not refer
to a whole sentence. With regard to the CNL, this fundamental construct may only be applied to show

Thesis: Patterns for Derivation Business Rules

47

that exactly two subjects are related (i.e. binary relationship). This corresponds to the following
grammar rules:

 A Subject is associated with zero or one Relation;
 A Relation is associated with exactly two Subjects.

The relationships and cardinalities between these fundamental constructs are shown in Figure 3.4.

Figure 3.4: Relationships and cardinalities

Thesis: Patterns for Derivation Business Rules

48

FUNDAMENTAL CONSTRUCT: EXPRESSION
Looking once again at the definition of a derivation business rule: “an expression that evaluates facts,
by means of a calculation or classification, leading to a new fact (i.e. conclusion)”(Hay & Healy, 2000;
Von Halle & Goldberg, 2009). Considering this definition, two statements can be made: 1) facts in a
derivation business rule are evaluated by means of a calculation or classification, and 2) a new fact (i.e.
conclusion) of a derivation business rule is either determined by a calculation or a classification. Both
the calculation and the classification are seen as a separate fundamental construct of a derivation
business rule, where the calculation is called a ground with regard to the CNL. The fundamental
construct is called a ground since it has several underlying fundamental constructs, therefore the
names computation or calculation are considered as too narrow. The substantiation for this view about
both the fundamental construct ground and classification will be explained by means of an example.
The example business rule from above is considered again, in which each occurring classification is
depicted with a pink border and each occurring ground is depicted with a light blue border:

The tax amount of a taxpayer must be calculated as the sum of the salary of each

current employment minus the tax rebate if the nationality of the taxpayer is Dutch and the age of

the taxpayer is higher than 18.

As can be seen in the example, the conclusion part (orange border) consists of one ground and the
condition part (green border) consists of both a classification and a ground. By means of this example
the following properties of the conclusion and condition part can be demonstrated:

 A conclusion part should include exactly one classification or ground:
a. without any of these two fundamental constructs (zero), no conclusion can be drawn

about ‘the tax amount of a taxpayer’ and the business rule becomes meaningless;
b. it cannot include both fundamental constructs since it is logically not possible to say

that ‘the tax amount of a taxpayer’ must be calculated and classified at the same time.

 A condition part should include one or more classifications or grounds:
a. without any of these two fundamental constructs (zero), a condition becomes

meaningless. In this case, it must be checked if ‘the nationality of the taxpayer’ is equal
to the classification Dutch. Besides this classification, it must be calculated if ‘the age
of the taxpayer’ is higher than 18 (i.e. the ground).

b. it can include both fundamental constructs since a condition part can cover more than
one condition and each condition should include one classification or ground. The
inclusion of more conditions will be explained in more detail later.

This distinction between a ground and classification is supported by different sources. First of all, Hay
and Healy (2000) consider two kinds of derivations: by a mathematical calculation (i.e. ground) or by
an inference (i.e. classification). Secondly, Morgan (2002) also identifies these two fundamental
constructs in his pattern catalogue only designates a ground by <algorithm>. Thirdly, in the patterns
of Wan-Kadir and Loucopoulos (2004) also both fundamental constructs emerge. They include ground
as <algorithm> and classification is covered by the more extensive fundamental construct <fact>.
Lastly, the RuleSpeak pattern catalogue of Hoppenbrouwers (2011) uses both STATE and TYPE as
fundamental construct for a classification and COMP as fundamental construct for a ground.

Thesis: Patterns for Derivation Business Rules

49

Taking the definition of a derivation business rule into account , “an expression that evaluates facts,
by means of a calculation or classification, leading to a new fact (i.e. conclusion)” (Hay & Healy, 2000;
Von Halle & Goldberg, 2009), both the ground and classification fundamental construct are seen as a
specific type of expression. To clarify if a derivation business rule comprises a calculation expression or
a classification expression, ‘expression’ is also included as a fundamental construct of the CNL. These
premises correspond to the following grammar rules:

 A Conclusion Part consists of exactly one Expression;
 An Expression belongs to exactly one Conclusion Part;
 A Condition Part consists of one or more Expression(s);
 An Expression belongs to exactly one Condition Part;
 An Expression is either a Ground or a Classification.

The relationships and cardinalities between these fundamental constructs are shown in Figure 3.5.

Figure 3.5: Relationships and cardinalities

FUNDAMENTAL CONSTRUCT: CLASSIFICATION
Now, the fundamental construct classification will be considered into more detail by examining the
following example business rules below:

1) The tax period must be equated to Dutch tax period….if (classification in a conclusion part);
2) The customer must be equated to gold-member…if (classification in a conclusion part);
3) The debt must be equated to 0 ….if (classification in a conclusion part).
4) If the tax period is equal to Dutch tax period (classification in a condition part);
5) If the customer is equal to gold-member (classification in a condition part);
6) If the debt is equal to 0 (classification in a condition part);
7) If the membership is equal to one of the following values: silver, gold, platinum (classification

in a condition part).

The first three examples show that a classification, in the conclusion part of a derivation business rule,
can equate a subject with:

a. another subject (i.e. Dutch tax period);
b. a value which can be for example a String, Date, Boolean, Number (i.e. gold-member, 0).

Thesis: Patterns for Derivation Business Rules

50

Examples four to seven show that a classification, in the condition part of a derivation business rule,
can check the consistency between a subject and:

a. another subject (i.e. Dutch tax period);
b. a value which can be for example a String, Date, Boolean, Number (i.e. gold-member, 0).

Example seven shows that a business rule can also specify more than one option to choose from.

In short, a classification in a derivation business rule can:

1) equate a subject with another subject or a value – in the conclusion part;
2) or check the consistency between a subject and another subject or a value – in the condition

part.

To be able to make the difference between the two classification options (i.e. equate with or check the
consistency) clear, a fundamental construct will be included and made obligatory for the CNL. This
fundamental construct will be called a propositional operator, which is underlined in the example
business rules above. In the business rule language SBVR (Object Management Group, 2013), this is
called an instantiation formulation which classifies things. From reviewing multiple different business
rules from different sources, it became clear that instantiations of this propositional operator occur
repeatedly. However, no overall name or individual fundamental construct could be found in the rule
pattern catalogues.

A fundamental construct that did emerge from literature is value. Von Halle and Goldberg (2009) refer
to a value by the word ‘fact’ or ‘fact value’. In the rule pattern catalogue of Von Halle (2001), <value>
is included as fundamental construct to define some kind of value. Due to these sources, value is also
seen as a separate fundamental construct. Altogether, this corresponds to the following grammar
rules:

 A Classification consists of exactly one Propositional Operator;
 A Propositional Operator belongs to exactly one Classification;
 A Classification consists of zero or more Value(s);
 A Value belongs to exactly one Classification;
 A Classification consists of zero or more Subject(s);
 A Subject belongs to exactly one Classification;
 A Classification consists of at least one Value or of at least one Subject;

The relationships and cardinalities between these fundamental constructs are shown in Figure 3.6.

Figure 3.6: Relationships and cardinalities

Thesis: Patterns for Derivation Business Rules

51

FUNDAMENTAL CONSTRUCT: GROUND
Now, the fundamental construct ground will be considered into more detail by examining the following
example business rules below:

1) The tax amount must be calculated as the basic tax amount minus the tax rebate plus 5 percent
….if (basic ground in a conclusion part);

2) The tax amount must be calculated as the sum of the salary of each current employment …if
(mathematical function in a conclusion part);

3) If the tax amount is more than /less than/ more than or equal to/ less than or equal to the
basic tax amount (ground in a condition part);

4) If the tax amount is more than /less than/ more than or equal to/ less than or equal to 0
(ground in a condition part);

5) If the tax amount is more than /less than/ more than or equal to/ less than or equal to the
basic tax amount minus tax rebate (ground in a condition part);

6) If the tax amount is more than /less than/ more than or equal to/ less than or equal to the sum
of the salary of each current employment (ground in a condition part).

The first two examples show that a ground, in the conclusion part of a derivation business rule, can
equate a subject with:

a. a basic ground (i.e. minus, plus, the sum of);

Examples three to six show that a ground, in the condition part of a derivation business rule, can
compare a subject with:

a. another subject (i.e. basic tax amount);
b. a value (i.e. 0);
c. a basic ground (i.e. minus, the sum of);

In short, a ground in a derivation business rule can either:

1) equate a subject with a basic ground – in the conclusion part;
2) or compare a subject with another subject, a value, or a basic ground – in the condition part.

To be able to make the difference between the two ground options (i.e. equate with and compare
with) clear, a fundamental construct will be included and made obligatory for the CNL. This
fundamental construct will be called a mathematical operator, which is underlined in the example
business rules above. From reviewing multiple different business rules of different sources, it became
clear that instantiations of this mathematical operator occur repeatedly. However, no overall name or
individual fundamental construct could be found in the rule pattern catalogues or literature.

The mathematical operator, as fundamental construct in the CNL, also covers the following
instantiations: +, -, /, *. So, in case a derivation business rule equates or compares a subject with a
basic ground, multiple mathematical operators have to be included (one to capture the equation or
comparison and one or more to capture the other operators). To include a mathematical function in a
business rule, an additional fundamental construct is incorporated in the CNL called mathematical
function. In the examples above, only simple calculations are included. When more sophisticated
calculation have to be made, the derivation business rule can include more than one mathematical
function. Altogether, this corresponds to the following grammar rules:

 A Ground consists of one or more Mathematical Operator(s);
 A Mathematical Operator belongs to exactly one Ground;
 A Ground consists of zero or more Mathematical Function(s);
 A Mathematical Function belongs to exactly one Ground;
 A Ground consists of zero or more Value(s);
 A Value belongs to exactly one Ground;

Thesis: Patterns for Derivation Business Rules

52

 A Ground consists of zero or more Subject(s);
 A Subject belongs to exactly one Ground;
 A Ground consists of at least one Subject or of at least one Value.

The relationships and cardinalities between these fundamental constructs are shown in Figure 3.7.

Figure 3.7: Relationships and cardinalities

Thesis: Patterns for Derivation Business Rules

53

 Unique Fundamental Constructs Conclusion Part

After discussing the equivalent fundamental constructs for the conclusion and condition part, now the
deviating fundamental constructs of both parts will be considered.

One fundamental construct is found that is only applicable for the conclusion part and not for the
condition part. This fundamental construct determines how the derivation business rule is imposed. In
other words, this fundamental construct defines the modality of the business rule. A modality can be
considered as a type of proposition that asserts or denies the permissibility or obligation of some
content (The Free Dictionary, 2015).

In all the seven business rule pattern catalogues, that are discussed in section 2.5, modality is included
(Caron et al., 2013; do Prado Leite & Leonardi, 1998; Hoppenbrouwers, 2011; Morgan, 2002; Sangers-
van Cappellen, 2014; Von Halle, 2001; Wan-Kadir & Loucopoulos, 2004). In most of the patterns,
modality is included by means of providing one or more specific options that can be chosen. Examples
of these modality options are: “must” to formulate an obligation or “may” to formulate permission.
So, these pattern catalogues did not choose a common name to refer to the fundamental construct.
In contrast, the business rule language SBVR uses the word Keyword or modal operator as umbrella to
define the modality options (Object Management Group, 2013). Below, the example business rule is
stated again to show the modality in a specific context. The modality is denoted by a purple border:

The tax amount of a taxpayer must be calculated as the sum of the salary of each

current employment minus the tax rebate if the nationality of the taxpayer is Dutch and the age of

the taxpayer is higher than 18.

By explicitly specifying the modality of a business rule, the intention of the business rule becomes
clearer for humans. For instance, does the business rule impose a requirement (i.e. must) or does the
business rule impose an advice (i.e. may). However, excluding the modality will not change the logic of
the business rule. When ‘must’ is excluded from the example business rule above, only the
representation will change to: “The tax amount of a taxpayer is calculated as the sum of the salary of
each current employment minus the tax rebate, if the nationality of the taxpayer is Dutch and the age
of the taxpayer is higher than 18.”

The choice has been made to include the modality as fundamental construct for the CNL, so that
business rule authors have the choice to include it for enhancing the readability of the business rules
for humans. To refer to this fundamental construct, the name Modal Claim Type is chosen. Taking
previous premises into account, the following grammar rules can be established for the CNL:

 A Conclusion part consists of zero or one Modal Claim Type;
 A Modal Claim Type belongs to exactly one Conclusion Part.

The relationship and cardinalities between these fundamental constructs are shown in Figure 3.8.

Figure 3.8: Relationships and cardinalities

Thesis: Patterns for Derivation Business Rules

54

 Unique Fundamental Constructs Condition Part

Besides the Modal Claim Type that is included in the conclusion part, also two specific fundamental
constructs are found for the condition part.

One of these fundamental constructs is used to indicate a condition part of the business rule which is
repeatedly found in business rule catalogues or languages. Same as for the Modal Claim Type, most
pattern catalogues only include specific instantiations for this fundamental construct and no overall
name. For instance, Morgan (2002) includes the instantiations ‘if or unless’ to indicate the condition
part. In his pattern catalogue, this is included with the following fundamental construct: (if | unless).
Where the parentheses are used to show that it is one coherent pattern part (i.e. fundamental
construct), and the vertical bar separates the two alternatives. Furthermore, in the catalogue of Wan-
Kadir and Loucopoulos (2004) two alternatives for the fundamental construct are included in capitals
as follows: IF and ONLY IF. Von Halle (2001) and Caron et al. (2013) have a very similar approach as the
latter catalogue, they only include one option for the fundamental construct: if. Solely the RuleSpeak
pattern catalogue of Hoppenbrouwers (2011) provides an overall name for such instantiations namely
keywords, which covers the following three: if, when and only if. In computer science, or more
specifically with regard to programming languages, the above provided instantiations are commonly
referred to as constructs (2015). Therefore, the word ‘construct’ is adopted as name for the
fundamental construct of the CNL.

The example business rule is used again to show the construct in a specific business rule, see the yellow
border:

The tax amount of a taxpayer must be calculated as the sum of the salary of each

current employment minus the tax rebate if the nationality of the taxpayer is Dutch

and the age of the taxpayer is higher than 18.

This example includes only one condition part, which results in one construct. However, considering
the relationship and cardinalities between a derivation business rule and the condition part again (see
Figure 3.1), a derivation business rule can include several condition parts. The choice has been made
to make the construct obligatory in relation to a condition part. In this way, a clear separation between
condition parts can be ensured by using the CNL. This corresponds to the following grammar rules:

 A Condition Part consists of one or more Construct(s);
 A Construct belongs to exactly one Condition Part.

The relationship and cardinalities between these fundamental constructs are shown in Figure 3.9.

Figure 3.9: Relationships and cardinalities

Thesis: Patterns for Derivation Business Rules

55

The above provided example shows that a business rule can include one condition part covering
multiple conditions, namely: 1) the nationality of the taxpayer is Dutch, and 2) the age of the taxpayer
is higher than 18. In this case, both conditions have to be met (i.e. be true) in order for the ‘tax amount
of a taxpayer’ to be calculated in that particular way. This becomes clear by means of the word ‘and’
between both conditions (see grey border). However, sometimes multiple conditions are formulated
in a business rule of which only one has to be met, or a few of them, or maximal one.

So in case a derivation business rule includes more than one condition, the connection between these
conditions has to be made clear. From the example above, but also from the reviewed business rules
catalogues, it emerged that this can be done by using an additional fundament construct. Similar to
the example above, Von Halle (2001) specifies the fundamental construct AND in her patterns to
connect conditions in a binary way. By using the patterns of Von Halle, the fundamental construct will
be included multiple times when specifying more than two conditions. This last observation is not the
case when using the patterns of Morgan (2002). He applies the fundamental construct as follows: at
least <m> [and not more than <n>] of the following is true. Thus, when more than two conditions are
included it is not necessary to include the fundamental construct two times.

Besides mentioned pattern catalogues, SBVR also specifies the connection between conditions and
calls this fundamental part a logical operation (Object Management Group, 2013). The SBVR language
provides more options than the rule catalogues to choose from, it includes the following logical
operations: Conjunction (p and q), Disjunction (p or q), Exclusive disjunction (p or q but not both), Nand
formulation (not both p and q), Nor formulation (neither p nor q), and the Whether-or-not formulation
(p whether or not q). The p and q correspond to conditions (Object Management Group, 2013).

Since the fundamental construct connects two or more conditions, the choice has been made to call it
a connective with regard to the CNL. This fundamental construct is only necessary when more than
one condition is included in the condition part. Furthermore, the way in which the connective is used
will not be imposed by the grammar rules of the CNL. Both ways as described above are allowed. So,
either the fundamental construct can be used once in a business rule which specifies the relation
between several conditions. Or using the fundamental construct multiple times, between each
condition which corresponds to a binary relation. This results in the following grammar rules:

 A Condition Part consists of zero or more Connective(s);
 A Connective belongs to exactly one Condition Part;
 A Connective must be included to connect two or more Conditions.

In the example business rule on the previous page, the connective is denoted by a grey border. The
relationship and cardinalities between the connective and condition part are shown in Figure 3.10.

Figure 3.10: Relationships and cardinalities

Thesis: Patterns for Derivation Business Rules

56

 Summary

In previous sections, all fundamental constructs of the CNL to specify a derivation business rule are
indicated and described along with the corresponding grammar rules. Here, these fifteen fundamental
constructs will be listed again for clarity reasons: Conclusion part, Condition part, Modal Claim Type,
Construct, Connective, Expression, Subject, Quantifier, Relation, Ground, Classification, Propositional
Operator, Value, Mathematical Operator, and Mathematical Function. In Appendix 3, all grammar rules
of the formal grammar underlying the CNL are listed.

By aggregating the fundamental constructs and their interrelationships, the whole meta-model of the
CNL is created. This meta-model is shown in Figure 3.11 on the next page.

Thesis: Patterns for Derivation Business Rules

Figure 3.11: Meta-model

Thesis: Patterns for Derivation Business Rules

58

4 Preliminary Validation
In previous chapter, the fundamental constructs to specify derivation business rules were identified.
This chapter describes the validation process of the fundamental constructs, which is done prior to the
pattern set creation, in order to ensure that the patterns will be composed of necessary building
blocks. In this way, the fundamental constructs are the unit of analysis of the validation and serve as
dependent variable in the experiments. Three validation rounds are performed, each from a different
point of view and using a different independent variable to analyze the fundamental constructs (see
Figure 4.1):

1. from a pattern level view using existing pattern catalogues as independent variable;
2. from an instance level view using specified business rule sets as independent variable;
3. from an implementation dependent level view using business rules management systems as

independent variable.

Figure 4.1: Validation Point of Views

For all three of these validation rounds, the data collection and data analysis process are explained
below in two separate sub-sections: data collection and data analysis.

 Data Collection

Below, the data collection process per validation round is described including the applied sampling
strategy and selection criteria.

4.1.1 Validation Round 1 – Pattern Level View

For the first validation round, the pattern level view, current existing business rule pattern catalogues
were collected by means of a broad literature search (see section 2.5). These pattern catalogues were
collected to map the existing patterns onto the identified fundamental constructs of this research. This
mapping was performed in order to investigate if all the existing patterns could be captured with the
identified fundamental constructs of the envisioned CNL. In this way, this first validation round could
already indicate on a high level if essential fundamental constructs were absent. When this validation
round would demonstrate that all the patterns of the existing business rule pattern catalogues could
be mapped, it would also mean that business rules specified with these patterns could be captured
with the fundamental constructs of the CNL.

The first practical selection criterion to collect the pattern catalogues corresponds to access. Access to
the pattern catalogues was required to use them for this research. Besides this practical selection
criterion, also two theoretical selection criteria are applied. The first theoretical criterion corresponds
to relevance. As described in section 2.5, seven business rule pattern catalogues were found which are

Thesis: Patterns for Derivation Business Rules

59

relevant for this research. These catalogues are relevant for two reasons: they are established for the
BRM domain and they are focused on specifying business rules. Based on this second criterion, the
following seven business rule pattern catalogues were selected: 1) do Prado Leite and Leonardi (1998),
2) Morgan (2002), 3) RuleSpeak of Hoppenbrouwers (2011), 4) Wan-Kadir and Loucopoulos (2004), 5)
Von Halle (2001), 6) Caron et al. (2013), and 7) RegelSpraak of Sangers-van Cappellen (2014). Due to
the last applied theoretical selection criterion representativeness, two pattern catalogues (number one
and six) were excluded from the validation since they did not include any pattern to specify derivation
business rules.

As a result, five pattern catalogues were used for the first validation round. In total, these five
remaining catalogues comprised 66 patterns of which 29 patterns were discarded. Similar to the
exclusion reason of the pattern catalogues, these 29 patterns were not targeted at capturing the
correct type of business rules (i.e. derivation business rules). Eventually, this resulted in the use of 37
patterns for the validation.

4.1.2 Validation Round 2 – Instance Level View

For the second validation round, the instance level view, a set of business rules was collected. This
business rule set has been composed of business rules which were randomly selected from different
business rule cases originated from both literature and practice. This sampling strategy was followed
in order to cover a wide range of domains where business rules are applied. During this second
validation round, these collected business rules were mapped onto the identified fundamental
constructs of the CNL to investigate if specific instantiations could be captured by the fundamental
constructs.

The business rule set for the validation has been composed of business rules that derive from eleven
different cases. To select these business rules, the theoretical criteria relevancy and representativeness
were applied. In order to comply with these two criteria, only derivation business rules were included
in the set. Besides these two theoretical criteria, also a practical selection criterion was applied namely
access. Access to the business rule cases was required.

Five of the cases correspond to a pattern catalogue from the first validation round, namely: Morgan
(2002), Wan-Kadir and Loucopoulos (2004), Von Halle (2001), RegelSpraak of Sangers-van Cappellen
(2014), and RuleSpeak of Hoppenbrouwers (2011). However, in this second validation round not the
patterns were used for the mapping but the business rules they provided. The choice has been made
to include the sources again as an additional validation to increase the reliability of the validation (Lee
& Baskerville, 2003). One remark has to be made, RuleSpeak of Hoppenbrouwers (2011) did not
provide business rules along with the patterns. Therefore, a business rule set defined with RuleSpeak
from an anonymous Dutch government organization was utilized.

In contrast to the business rules from the pattern catalogues, also six additional business rule cases
were gathered to be able to further generalize the outcome of the validation. One of these cases
correspond to a business rule case study which was published online by the Decision Management
Community (DM Community, 2015) for public use, namely a business rule set to determine the risk of
meeting a werewolf. Moreover, one business rule set to assess the risk for diabetic patients is derived
from (Parish, 2014) and one business rule set that deals with vehicle insurances called “UServ Product
Derby” is derived from Building Business Capability (BBC, 2015). Two other cases are derived from
(Feldman, 2011, 2014): 1) a business rule set to determine the required therapy for a patient, and 2) a
business rule set to calculate tax returns. Lastly, a case from an anonymous Dutch government
organization was utilized which is a business rule set to determine the eligibility to be au pair.

Thesis: Patterns for Derivation Business Rules

60

In total, the eleven cases contained 313 business rules which differed from each other in terms of their
type (e.g. process rules, calculation rules, structural rules). Therefore, the business rules were first
evaluated and sorted by type. Only the derivation business rules were eligible. From the remaining set
of derivation business rules, a random selection of 150 business rules is made due to time constraints.

4.1.3 Validation Round 3 – Implementation Dependent Level View

For the third validation round, the implementation dependent level view is taken into account by
means of analyzing business rules in an implementation dependent environment. This directly results
in the first theoretical criterion to select these business rules, namely that they were implemented in
a specific Business Rules Management System (BRMS). The second theoretical selection criterion
corresponded to the fact that the business rule set was representative, and the third that it was a
relevant business rule set. Besides these three theoretical criteria, also two practical selection criteria
are applied. Firstly, access to the BRM systems or documentation about these business rule set
implementations was needed. Secondly, it was required that the business rule set (i.e. use case) was
identical for each implementation in a different BRMS.

Based on these theoretical and practical criteria, the use case called “UServ Product Derby” derived
from the Building Business Capability (BBC, 2015) was selected. This use case was published online on
the Decision Management Community website (DM Community, 2015). Every month, the Decision
Management Community posts a decision modelling challenge on their website and they invite
practitioners from all enterprise levels (e.g. business analysts, developers, technology vendors,
consultants) to share their solutions. In other words, these practitioners show how the business rules
from the use case can be implemented by using their BRMS. The online availability aspect triggers the
practitioners to deliver high quality documentation in order to preserve their reputation. This ensured
that the documentation about the use case implementations complied to the representativeness
criterion. Furthermore, the use case was relevant as it dealt with insurance issues and the insurance
industry is an industry which process a high volume of business rules. Moreover, the use case was
representative for this research as it comprised 69 derivation business rules from the total amount of
business rules.

With regard to the “UServ” use case, six solutions were submitted on the Decision Management
Community website by the following BRMS vendors: 1) Blueriq (Schadd, 2015), 2) Corticon (Parish,
2015), 3) IBM ODM (Ortiguela, 2015), 4) Sapiens (Segal, 2015), 5) OpenRules (Feldman, 2015), and 6)
OpenL Tablets (Bastun, 2015). The documentation of the UServ business rule set implementations into
the six BRM systems is used as input for validation round three. If this documentation was not sufficient
enough to perform the mapping of the implementation components onto the fundamental constructs,
manuals or the actual BRMSs were analyzed.

Thesis: Patterns for Derivation Business Rules

61

 Data Analysis

Section 4.1 stated which input data was collected for each validation round, from where this data was
collected, how this data was selected, and for which reasons. This section will explain how this data is
analyzed by describing the ‘overall data analysis process’ and applied method for the entire preliminary
validation. Subsequently, the specific process of conducting each validation round and the results
thereof are described.

4.2.1 Overall Data Analysis Process and Method

During this research, the collected data is analyzed by means of nominal comparisons across cases.
Mahoney (1999) states that “nominal comparison involves the use of categories that are mutually
exclusive to locate the causes of an outcome”. Methods that are based on nominal comparison are
Mill’s methods (Mahoney, 1999; Mill, 1906). One of the five Mill’s methods (Mill, 1906), “The Joint
Method of Agreement and Difference”, is applied as the overall data analysis method for the
preliminary validation of this research. The intention of this method is to identify similarities and
differences between cases (Mahoney, 1999). These observations can then be analyzed and interpreted
to draw conclusions (Mahoney, 1999). In general, Mill’s methods are used to draw conclusions about
causal relationships by analyzing the data (i.e. effects) and find a common denominator (i.e. cause)
(Mill, 1906). However, for this research the method is applied in a kind of reversed way. It is not applied
to find causal relationships but to validate the already drawn conclusion of which fundamental
constructs are the common denominators required to specify derivation business rules. This
conclusion was drawn by means of analyzing literature as described in Chapter 3.

More specifically, Mill’s method is used during the validation to conduct the mappings of the data onto
the identified fundamental constructs as mentioned in section 4.1. Mapping means that each data
item in a data set (e.g. a single business rule, pattern or implementation component) was disassembled
in smaller parts (if necessary) and these parts were tried to match onto a fundamental construct. A
match was indicated by a cell filled with a corresponding data item part, and when a fundamental
construct was not found the cell remained empty. In this way, the number of similarities and
differences could be identified efficiently. Table 4.1 shows an excerpt of how this mapping was done,
where the grey cells correspond to fundamental constructs and the blue cells to data item parts (i.e.
business rule parts).

The mapping showed which fundamental constructs occurred in each data set. As a result, an
indication about the minimal set of fundamental constructs required to specify derivation business
rules emerged. In addition, the mapping could indicate that a specific fundamental construct may be
superfluous to include (i.e. empty cells). From this validation, it became clear which fundamental
constructs are important and which are not necessary to include in the CNL. In this way, the application
of the Mill’s method could provide a further substantiation of including the identified fundamental
constructs in the CNL besides the already found support from literature.

 Quantifier Subject Relation Modal Claim Type

A customer must… A customer must

The member’s volume discount
amount…

The member ‘s

 volume
discount
amount

Table 4.1: Example Mapping with Mill's Method

The next three result sub-sections are organized as follows. First, the eligible check of the selected data
is described into more detail compared to the data collection section. Then, the results of the mapping
by means of the selected Mill’s method are provided.

Thesis: Patterns for Derivation Business Rules

62

4.2.2 Results Validation Round 1 – Pattern Level View

To recall, five pattern catalogues were selected for the first validation round by means of the data
collection process. These five pattern catalogues were: Morgan (2002), RuleSpeak of Hoppenbrouwers
(2011), Wan-Kadir and Loucopoulos (2004), Von Halle (2001), and RegelSpraak of Sangers-van
Cappellen (2014). Altogether, these catalogues provided 66 patterns of which 29 patterns were out of
scope due to the fact that they were not devised for derivation business rules. As a result, 37 patterns
were used for the validation round (See Table 4.2).

Case
Total Amount of

Patterns Available
Amount

Out of scope
Amount
In scope

Morgan 5 3 2

RuleSpeak 18 6 12

Wan Kadir & Loucopoulos 5 3 2

Von Halle 5 3 2

RegelSpraak 33 14 19

TOTAL 66 29 37
Table 4.2: Figures Data Collection Process for Validation Round 1

To decide which patterns were eligible to use for the validation, the patterns were analyzed to
investigate if they were established to capture derivation business rules. As explained in section 2.2,
the aim of derivation business rules is to create new information (i.e. new fact) by means of a
classification or calculation. In the rest of this subsection, the stated figures in Table 4.2 will be
considered into more detail per catalogue.

PATTERN CATALOGUE: MORGAN
Morgan (2002) provides five patterns in his catalogue: 1) Basic Constraint, 2) List Constraint, 3)
Classification, 4) Computation, and 5) Enumeration. These patterns were checked for eligibility to be
used for the validation. This resulted in omitting three patterns since they were established to define
business rules that constrain a subject on behalf of a business event. With regard to the Basic
Constraint and the List Constraint, this aim is reflected in the pattern by the inclusion of the
fundamental construct <characteristic>. This fundamental construct implies “the business behavior
that must take place or a relationship that must be enforced” (Morgan, 2002). With regard to the
Enumeration pattern, the constraining part is indicated by the following fundamental parts: ‘must be
chosen from the following [open | closed] enumeration’ and <enum-list>. These parts prescribe the
range of values that a subject can adopt. In this way, these three patterns capture business rules that
constrain information and correspond to the excluded Mandatory Constraint category of Von Halle
(2001). Therefore, these three patterns were out of scope for this research (see Table 4.3). In contrast,
the Classification and Computation pattern lie within the scope of this research, since they are
applicable for specifying derivation business rules. As a result, these two pattern were eligible for the
validation (see Table 4.3).

Case
Total Amount of

Patterns Available
Amount

Out of scope
Amount
In scope

Morgan 5 3 2
Table 4.3: Figures of Eligibility Check - Pattern Catalogue Morgan

Thesis: Patterns for Derivation Business Rules

63

PATTERN CATALOGUE: RULESPEAK
The RuleSpeak pattern catalogue of Hoppenbrouwers (2011) comprised 18 patterns. In contrast to
Morgan (2002), these patterns were not classified or given a specific name. Before the 18 patterns
were used for the validation, they were also analyzed for eligibility which resulted in the exclusion of
six patterns. Two of these six patterns included the fundamental constructs ‘must’, ‘be performed’,
‘when’, indicating that both patterns are used to specify business rules that enable other action on
behalf of the business event. Such business rules can be classified as Action Enablers according to the
classification scheme of Von Halle (2001), which are out of scope for this research. The other four out
of six discarded patterns included the fundamental construct ‘May/Need not’ meaning that business
rules specified with these patterns are not compulsory. These business rules are covered by the
Guideline business rule category of Von Halle (2001), that is also out of scope. In summary, the other
twelve patterns were eligible for the validation (See Table 4.4).

Case
Total Amount of

Patterns Available
Amount

Out of scope
Amount
In scope

RuleSpeak 18 6 12
Table 4.4: Figures of Eligibility Check - Pattern Catalogue RuleSpeak

PATTERN CATALOGUE: WAN-KADIR & LOUCOPOULOS
Wan-Kadir and Loucopoulos (2004) created a catalogue with the following five patterns: 1) Mandatory
Constraint, 2) Guideline, 3) Action Assertion, 4) Computation, and 5) Inference. The first two patterns
are focused on specifying business rules that constrain information, and the third pattern aims at
capturing business rules that enable action. So, the first three patterns are similar to the three excluded
categories of Von Halle’s classification (2001) (i.e. Mandatory Constraint, Guideline, and Action
Enabler). Therefore, these three patterns were not eligible to use for the validation. On the other hand,
the latter two patterns are established to capture business rules that create new information by means
of a calculation or classification (i.e. derivation business rules). So, these two patterns were
incorporated in the validation (See Table 4.5).

Case
Total Amount of

Patterns Available
Amount

Out of scope
Amount
In scope

Wan-Kadir &
Loucopoulos

5 3 2

Table 4.5: Figures of Eligibility Check - Pattern Catalogue Wan-Kadir & Loucopoulos

PATTERN CATALOGUE: VON HALLE
Von Halle (2001) established five patterns, one for each of the business rule categories she defines in
her classification scheme: 1) Mandatory Constraint, 2) Guideline, 3) Action Enabler, 4) Computation,
and 5) Inference. As described in section 2.2, the first three patterns are established for specifying a
different type of business rule than derivation business rules and are therefore out of scope for this
research. So, only the latter two patterns are considered as eligible for the validation (See Table 4.6).

Case
Total Amount of

Patterns Available
Amount

Out of scope
Amount
In scope

Von Halle 5 3 2
Table 4.6: Figures of Eligibility Check - Pattern Catalogue Von Halle

Thesis: Patterns for Derivation Business Rules

64

PATTERN CATALOGUE: REGELSPRAAK
RegelSpraak of Sangers-van Cappellen (2014) has 31 patterns in total which are divided into patterns
for each of the following rule categories: 1) Decision Rules, 2) Calculation Rules, 3) Value Range Rules,
4) Consistency Control Rules, 5) Rounding Rules, 6) Process Rules, and 7) the If-part of Rules. Each
category consists of a different amount of patterns.

Three of the seven categories were considered as out of scope. As first, the Value Range Rules category
including one pattern was not eligible. Given the fact that the aim of this pattern is to capture business
rules that constrain the range of values that an attribute can have. Secondly, the eleven patterns for
specifying Consistency Control Rules were discarded. These business rules also constrain the value of
an attribute, but this time by means of verifying if the value of this attribute is consistent with a
predetermined value. Taking these statements into account, both categories are similar to the
excluded Mandatory Constrain category of Von Halle (2001). The third omitted category, Process
Rules, included two patterns which are used to define business rules that prescribe the order in which
other rules should be executed. These patterns are also out of scope as they resemble the Action
Enabler Rules of Von Halle (2001). So, 14 patterns were excluded in total.

The other four categories were considered as in scope. Firstly, two Decision Rule patterns were
provided to specify business rules aimed at determining the value of an attribute (result) by equating
it with another value. So, no calculation is made and the result is not numerical but categorical.
Secondly, eight Calculation Rule patterns were included that are also applicable for business rules that
determine the value of an attribute but in this case by means of a calculation. So, both Decision and
Calculation patterns capture business rules that create new information on behalf of the business
event. Thirdly, two Rounding Rule patterns are included which are associated with the Calculation Rule
patterns since they round the calculated value of an attribute. Lastly, seven patterns were available
that are used to define the IF-part of a business rule. These patterns were not established for one
specific type of business rule and were formulated on a very high-level, making them eligible to specify
the condition part of derivation business rules. Eventually, 19 patterns were eligible and used for the
validation (See Table 4.7).

Case
Total Amount of

Patterns Available
Amount

Out of scope
Amount
In scope

RegelSpraak 33 14 19
Table 4.7: Figures of Eligibility Check - Pattern Catalogue RegelSpraak

Thesis: Patterns for Derivation Business Rules

65

RESULTS
After the eligible check of all the collected data was performed, the 37 patters in scope were mapped
by means of the Mill’s method. This entire mapping can be found in Appendix 5. On page 67, two
examples of this mapping are provided to give an impression. The examples are divided over two
different tables for readability reasons. Table 4.9 shows the mapping of the patterns onto the
Conclusion part, and Table 4.10 shows the mapping onto the Condition part.

The mapping showed that the overall granularity level of the building blocks of the existing patterns
was lower than the fundamental constructs of the CNL. In other words, the level of detail of the
patterns was a lot lower; a building block of an existing pattern represented a much larger part of a
business rule than a fundamental construct. As a result, the building blocks (i.e. pattern parts) of the
existing patterns did not always corresponded directly to a fundamental construct. Therefore,
sometimes the same building block was repeatedly mapped onto different fundamental constructs.

To make this finding more clear, consider the example in Table 4.8 below. The left column shows the
computation pattern of Morgan (2002) and the right column shows a business rule, provided by
Morgan (2002), defined with this pattern. From this example, it became clear that Morgan (2002) uses
the building block <algorithm> to capture the entire calculation sentence part “total item value plus
sales tax”. In contrast, when using the CNL to define a calculation part, six different fundamental
constructs are established namely: Mathematical Operator, Mathematical Function, Value, Quantifier,
Subject, and Relation. Altogether, these six fundamental constructs represent the higher level ground
fundamental construct. Therefore, when mapping this pattern of Morgan, the <algorithm> building
block was mapped onto all different fundamental constructs in the ground part. This is denoted in a
cell by “falls under <algorithm>” (see row nr. 1 in Table 4.9 on page 67), to indicate that these
fundamental constructs were found but are represented by Morgan in a different way.

Computation pattern Morgan (2002) Instantiation of pattern

<det> <result> is defined as < algorithm>

The total sale value is defined as total item value plus
sales tax.

Table 4.8: Example Granularity Level Building Blocks of Existing Pattern

Considering the mapping of the remaining pattern parts of Morgan’s computation pattern (2002),
<det> corresponds directly to the fundamental construct Quantifier (i.e. the). Furthermore, <result>
corresponds directly to the fundamental construct Subject (i.e. total sale value). Moreover, Morgan
states that he uses is defined as instead of the imperative “must be computed as” to avoid a very
procedural style. As a result, this pattern part corresponds to two separate fundamental constructs. In
terms of the CNL, is corresponds to the fundamental construct Modal Claim Type (i.e. must), and
defined as to the fundamental construct Mathematical Operator (i.e. be computed as). The cells of
the other fundamental constructs in the conclusion part remained empty, indicated in the example by
a dash (i.e. -). Since this pattern is solely targeted at specifying the conclusion part of a derivation
business rule, nothing could be mapped onto the fundamental constructs of the condition part. To
view how this pattern of Morgan was mapped, see row 1 of Table 4.9 on page 67.

Thesis: Patterns for Derivation Business Rules

66

The second example (see row nr. 2 in Table 4.9) corresponds to the mapping of the following derivation
pattern from RegelSpraak:

De/het …attribuut… van een (voorkomen van een …object… van een) …object/rol… moet gesteld
worden op ja/nee.

In this pattern, the fundamental construct Quantifier is included by different instantiations instead of
a placeholder: De/het (i.e. the) and een (i.e. a/an). For the fundamental construct Subject, multiple
placeholders are incorporated: …attribuut… (i.e. attribute), …object… (i.e. object), and …object/rol…
(i.e. object/role). The pattern parts van (i.e. of) and voorkomen van (i.e. occurrence of) are equal to
the fundamental construct Relation. Furthermore, the pattern part moet (i.e. must) corresponds to
the fundamental construct Modal Claim Type and gesteld worden op (i.e. be equated to) corresponds
to the Propositional Operator. Lastly, the pattern part ja/nee indicates two different options to choose
from as instantiation of the fundamental construct Value. To view how this pattern of RegelSpraak was
mapped, see row 2 of Table 4.9 on the next page.

As already described earlier, the RegelSpraak pattern catalogue includes individual patterns solely
targeted at specifying the condition part. The following condition pattern is mapped in Table 4.10 to
provide an example:

Indien hij / een/ het/ elk voorkomen van zijn …object… aan alle volgende voorwaarden voldoet: …

In this pattern, the pattern part Indien (i.e. If) is equal to the fundamental construct Construct. Same
as for the conclusion part: the orange pattern parts correspond to the fundamental construct
Quantifier, the green pattern parts to Subject, and pink pattern parts to Relation. Moreover, the
pattern part aan alle volgende voorwaarden voldoet: corresponds to the fundamental construct
Connective. As became clear from the provided example of RegelSpraak along with this pattern, the
pattern part “…” is used as placeholder to specify the entire Expression part of the conditions.
Therefore, the cells of all the fundamental constructs related to the Expression part were filled with
Falls under “…”.The forward slash (i.e. /) in this pattern separates the pattern parts which are mutually
exclusive. To view how this pattern of RegelSpraak was mapped, see row 2 of Table 4.10 on the next
page.

Thesis: Patterns for Derivation Business Rules

67

 Derivation Business Rule

 Conclusion Part

 Quantifier Subject Relation Modal Claim
Type

 Expression

 Classification Ground

 Propositional
Operator

Value Quantifier Subject Relation Mathematical
Operator

Mathematical
Function

Value Quantifier Subject Relation

1 <det>

<subject>

-

is

-

-

-

-

-

defined as Falls under
<algorithm>

Falls under
<algorithm>

Falls under
<algorithm>

Falls under
<algorithm>

Falls under
<algorithm>

Falls under
<algorithm>

2 De / het attribuut van moet gesteld
worden op

ja/nee.. - - - - - - - - -

een object/ rol (voorko
men van)

(een) (object) (van)

 (een)

Table 4.9: Example Mapping of Patterns on Conclusion Part

 Condition Part

 Construct Quantifier Subject Relation Connective Expression

 Classification Ground

 Propositional
Operator

Value Quantifier Subject Relation Mathematical
Operator

Mathematical
Function

Value Quantifier Subject Relation

1 - - - - - - - - - - - - - - - -

2 Indien hij / aan alle
volgende

voorwaard
en voldoet:

Falls under
“…”

Falls under
“…”

Falls under
“…”

Falls under
“…”

Falls under
“…”

Falls under
“…”

Falls under
“…”

Falls
under

“…”

Falls under
“…”

Falls
under
“…”

Falls
under
“…”

 een/het/
elk

 voorkom
en van

 zijn object

Table 4.10: Example Mapping of Patterns on Condition Part

Thesis: Patterns for Derivation Business Rules

68

The complete mapping showed that it was possible to map all 37 patterns, but some cells remained
empty as can be seen in the previous examples. These empty cells were further investigated, because
they could indicate that the establishment of the fundamental constructs for the CNL was not correct.
For instance, that a fundamental construct is superfluous.

To figure out why these cells remained empty, the mapping was analyzed from which two overall
reasons emerged. Firstly, some entire high level fundamental constructs with their underlying
fundamental constructs remained empty. In case a pattern intended for a ground business rule was
mapped all cells of the fundamental constructs related to a classification remained empty. This is
shown by a thick border in example pattern 1, mapped in Table 4.9. The other way around, mapping a
classification business rule pattern resulted in empty cells for the fundamental constructs related to a
ground business rule. This is shown in example pattern 2, mapped in Table 4.9. In addition, some
patterns were solely established for the conclusion part omitting the condition part and vice versa. As
a result, all fundamental constructs associated with one of these main parts remained empty (see row
nr 1 of pattern 1 in Table 4.10). This first finding shows high cohesiveness between specific
fundamental constructs, which provides substantiation for the established meta-model in which the
fundamental constructs are subdivided and connected. Furthermore, this finding provides a logical
explanation for the fact that many cells remained empty and contradicts the assumption that these
fundamental constructs could be superfluous.

The second overall finding was that for some patterns, individual fundamental constructs remained
empty. For these empty cells, no direct explanation could be found in contrast to the ones as described
above. To obtain insight into these individual empty cells, the amount of empty cells per fundamental
construct was calculated. Table 4.11 shows the result of this calculation, where the figures should be
placed in context by considering the total amount of filled cells which is 37.

Fundamental Constructs Amount of empty cells

Quantifier (Conclusion Part) 0 / 37

Subject (Conclusion Part) 0 / 37

Relation (Conclusion Part) 2 / 37

Modal Claim Type (Conclusion Part) 3 / 37

Propositional Operator (Conclusion Part - Classification) 0 / 37

Value (Conclusion Part - Classification) 4 / 37

Quantifier (Conclusion Part - Classification) 3 / 37

Subject (Conclusion Part - Classification) 2 / 37

Relation (Conclusion Part - Classification) 7 / 37

Mathematical Operator (Conclusion Part - Ground) 0 / 37

Mathematical Function (Conclusion Part - Ground) 1 / 37

Value (Conclusion Part - Ground) 4 / 37

Quantifier (Conclusion Part - Ground) 2 / 37

Subject (Conclusion Part - Ground) 2 / 37

Relation (Conclusion Part - Ground) 5 / 37

Construct (Condition Part) 0 / 37

Quantifier (Condition Part) 0 / 37

Subject (Condition Part) 0 / 37

Relation (Condition Part) 0 / 37

Connective (Condition Part) 1 / 37

Propositional Operator (Condition Part - Classification) 0 / 37

Value (Condition Part - Classification) 0 / 37

Quantifier (Condition Part - Classification) 0 / 37

Subject (Condition Part - Classification) 0 / 37

Thesis: Patterns for Derivation Business Rules

69

Relation (Condition Part - Classification) 0 / 37

Mathematical Operator (Condition Part - Ground) 0 / 37

Mathematical Function (Condition Part - Ground) 0 / 37

Value (Condition Part - Ground) 0 / 37

Quantifier (Condition Part - Ground) 0 / 37

Subject (Condition Part - Ground) 0 / 37

Relation (Condition Part - Ground) 0 / 37
Table 4.11: Amount of Empty Cells per Fundamental Construct

Considering Table 4.11 above, the fundamental construct Relation remained 2 out of 37 times empty
in the conclusion part and the Modal Claim Type 3 out of 37 times. These numbers are based on the
given patterns, in these cases no pattern part could be indicated as Relation or Modal Claim Type. An
explanation for the finding with regard to the fundamental construct Relation is that this fundamental
construct is only necessary to indicate the relation between two subjects. However, the two patterns
for which the cells remained empty, were targeted at specifying only one subject. With regard to the
fundamental construct Modal Claim Type, this fundamental construct is not important for the logic of
a business rule but it can be included for readability and understandability as explained in section 3.2.
However, both fundamental constructs appear in practice as can be concluded from the other patterns
for which the cells did not remain empty. Furthermore, the fundamental construct Relation is
significant to be able to precisely specify the relation between subjects in a business rule with the CNL
as explained in section 3.1. In addition, the Modal Claim Type can be included to enhance the
readability and understandability of the intention of the business rules as described in section 3.2.
Therefore, these fundamental constructs are considered as necessary and will stay included in the CNL.

In the conclusion part, the following fundamental constructs related to a classification remained empty
more often: Value, Quantifier, Subject and Relation. This can be explained by the fact that two types
of classifications exist, which are mutually exclusive, since it is impossible to classify ‘something’ as a
Value and a Subject at the same time. When a pattern was targeted at classifying ‘something’ as a
Value, the cells of the Quantifier, Subject and Relation stayed empty. It should be noted that when a
classification did not include a Subject, also the Quantifier and Relation remained simultaneously
empty, see for an explanation section 3.1. In addition, the fundamental constructs Value, Quantifier,
Subject, Relation and Mathematical Function remained also empty a few times with regard to a
ground. This can be explained by the fact that these patterns only specified a very simple or specific
calculation.

Lastly, the Connective remained empty one time which can be explained by the fact that this pattern
only allowed the specification of one condition.

In summary, validation round one revealed that all the 37 patterns could be mapped, which ensured
that no fundamental constructs were lacking. Furthermore, a logical explanation could be found when
a cell of a fundamental construct remained empty. In addition, no fundamental construct remained
empty for all 37 patterns. Therefore, it can be concluded that all the selected fundamental constructs
are significant to include in the CNL.

Thesis: Patterns for Derivation Business Rules

70

4.2.3 Results Validation round 2 – Instance Level View

To recall, a set of 150 business rules is randomly selected from eleven different business rule cases by
means of the data collection process. The following cases were used: 1) Morgan (2002), 2) RuleSpeak
patterns of Hoppenbrouwers (2011), 3) Wan-Kadir and Loucopoulos (2004), 4) Von Halle (2001), 5)
RegelSpraak of Sangers-van Cappellen (2014), 6) WereWolf (DM Community, 2015), 7) Diabetic Patient
Monitoring (Parish, 2014), 8) Patient Therapy (Feldman, 2014), 9) Tax Return (Feldman, 2011), 10) Au
Pair (Anonymous Dutch government organization), and 11) UServ Product Derby (BBC, 2015).

Altogether, these eleven business rule cases provided 313 business rules which differed from each
other with regard to their type. Since only derivation business rules were eligible for the validation,
the business rules from each case were first evaluated. After that, 150 derivation business rules were
randomly selected for the validation. Table 4.12 shows the amount of selected business rules per case
that were in scope and the total amount of business rules that a case contained. By following this
approach, a mixed set of 150 business rules extracted from all eleven cases was gained.

Case Total Amount of
Business Rules Available

Amount of Selected
Business Rules In Scope

Morgan 9 4

RuleSpeak 125 11

Wan Kadir & Loucopoulos 13 4

Von Halle 21 9

RegelSpraak 33 19

WereWolf 8 8

Diabetic Patient Monitoring 3 3

Patient Therapy 6 6

Tax Return 16 16

Au pair 1 1

UServ Product Derby 71 69

TOTAL 313 150
Table 4.12: Figures Data Collection Process for Validation Round 2

Thesis: Patterns for Derivation Business Rules

71

RESULTS
After the eligibility check of the collected data was performed, the 150 business rules in scope were
mapped by means of the Mill’s method to validate the fundamental constructs from an instantiation
point of view. The majority of the used business rules (i.e. 119 of the 150) was formulated in English.
To investigate if the language aspect could have an effect on the logic of the specified business rules,
and in this way on the outcome of the mapping, all the business rules from five of the eleven cases are
translated into Dutch prior to the mapping. These cases comprised 102 business rules in total, which
are mapped in English and in Dutch. This choice has been made since the case company, the Dutch Tax
and Customs Organization, formulates their business rules in Dutch.

The entire mapping, including both Dutch and English business rules, was also performed by a second
researcher, which acted as reliability coder. The validation is performed two times because the
possibility exists that the results of the validation are influenced by the mindset and convention of the
researcher. Involving a reliability coder could reduce this effect and could enhance the reliability of the
validation (Mays & Pope, 1995). To ensure that the mapping was performed in exactly the same way
by the reliability coder as the researcher, a mapping procedure was documented in detail.
Furthermore, the researcher mapped and explained a few example business rules to the reliability
coder in advance. After both mappings were conducted, the results were compared to investigate the
agreement between the two researchers. The comparison showed that the two mappings
corresponded exactly in terms of logic, only some deviations occurred in terms of representation. This
can be explained by the fact that some business rules could not be mapped directly, due to the fact
that these business rules resembled the human language to a large extent. In other words, these
business rules included a lot of context (i.e. words) for readability and human understandability. These
business rules had to be rewritten into a more atomic form to be able to map them. As stated in
Chapter 3, atomic business rules are “business rules that cannot be further decomposed without losing
meaning” (Boyer & Mili, 2011). When rewriting these business rules to atomic ones, the logic remained
the same only the representation was altered.

To make this rewriting process more clear, consider the examples in Table 4.13 below. The left column
shows the original business rule derived from a case, and the right column the rewritten version. To
provide an example of a deviation between both researchers due to this rewriting process, consider
the first rewritten business rule below again. This business rule is the rewritten version of the
researcher. In contrast, the reliability coder rewrote this business rule as follows: “If allergy of patient
is penicillin, then the therapy choice is levofloxacin”. The only difference between the two mappings is
the instantiation for the fundamental construct Relation that was used (i.e. “.” or “of”). So, both
researchers mapped the logic of the business rule the same (i.e. filled the Relation cell), only the
representation differed.

 Original Business Rules Rewritten Business Rules

1 If Patient is allergic to Penicillin,
then the therapy choice is Levofloxacin.

If patient.allergy is penicillin,
then the therapy choice is Levofloxacin.

2 If a customer has no outstanding invoices,
then the customer is of preferred status.

If a customer.outstandinginvoices = FALSE
Then the customer.status = preferred.

3

The member’s volume discount amount is
computed as the product of standard volume
discount rate times the number of hours the
member spent in a park over the volume
discount threshold for that park.

The member’s volume discount amount is
computed as (standard volume discount
rate) * (the volume discount threshold for
that park – the number of hours the
member spent in a park).

Table 4.13: Examples of Rewriting Process

Thesis: Patterns for Derivation Business Rules

72

Besides comparing the mapping of the researcher and the reliability coder, also the mapping of the
original English business rules and the mapping of the translated version of these business rules are
compared. This comparison is performed to investigate if the language aspect had an effect on the
logic of the specified business rules and indirect on the mapping of the business rules. From the
comparison emerged that although the representation changed (from English to Dutch), no difference
occurred in the mapping of these business rules in terms of logic.

All business rules that are used for the validation are documented along with the rewritten version of
the researcher. Appendix 6 includes the entire mapping of all these business rules. To provide more
insight in how these business rules were mapped, two examples are provided on the next page. The
example business rules are split up again for readability reasons into two different tables. Table 4.14
shows the mapping of the two business rules onto the Conclusion part, and Table 4.15 shows the
mapping of these same business rules onto the Condition part.

The first example (see row nr. 1 of Table 4.14 and Table 4.15) corresponds to the following business
rule from the use case “UServ Product Derby”:

“If the car is convertible, then the car’s potential theft rating is high.”

The second example (see row nr. 2 of Table 4.14 and Table 4.15), corresponds to the following business
rule from Wan-Kadir and Loucopoulos (2004):

“The total amount of a bill is computed as the sum of the bill item amount.”

From the mapping of the entire business rule set, a specific finding occurred which could indicate that
fundamental constructs were lacking. First of all, some business rules were specified as IF-THEN
constructions. The word ‘then’ could not be mapped since it does not correspond to one of the
fundamental constructs. This is shown in the mapping of example business rule one, see row nr 1 of
Table 4.14 again. However, ‘then’ is only used for readability and when it would be omitted, the logic
of the business rule will not change: “If the car is a convertible, the car’s potential theft rating is high.”
Therefore, no additional fundamental construct will be included for the CNL. The mapping also
revealed that some business rules explicitly specify the unit of measurement, for instance: “If HbA1C-
level is less than 7% then diabetes risk is Low”. This example indicates that the HbA1C-level (i.e. subject)
should be specified in percentages (i.e. unit of measurement). By mapping this business rule, it became
clear that there is no fundamental construct to capture the unit of measurement (i.e. %). However,
this issue will not be addressed by including an additional fundamental construct but it is
recommended to establish a fact model. By means of this fact model, the subjects and the properties
of these subjects will be recorded separately from the business logic. In this way, the system is aware
of the fact that the value of the HbA1C-level subject represents percentages and the business rule
author should not specify this in the business rule. In section 4.2.4, the concept fact model will be
addressed in more detail when the technical implementation (i.e. implementation dependent view) is
taken into account.

Thesis: Patterns for Derivation Business Rules

73

 Derivation Business Rule

 Conclusion Part

 Quantifier Subject Relation Modal Claim
Type

 Expression

 Classification Ground

 Propositional
Operator

Value Quantifier Subject Relation Mathematical Operator Mathematical
Function

Value Quantifier Subject Relation

1 (then) the car ‘s - is high - - - - - - - - -

 potential
theft rating

2 The total
amount

of - - - - - - is computed as the sum of - the bill item
amount

-

a bill

Table 4.14: Example Mapping of Business Rules on Conclusion Part

 Derivation Business Rule

 Condition Part

 Construct Quantifier Subject Relation Connective Expression

 Classification Ground

 Propositional
Operator

Value Quantifier Subject Relation Mathematical
Operator

Mathematical
Function

Value Quantifier Subject Relation

1 If the car - - is convertible - - - - - - - - -

2 - - - - - - - - - - - - - - - -

Table 4.15: Example Mapping of Business Rules on Condition Part

Thesis: Patterns for Derivation Business Rules

74

The complete mapping, from both the researcher as the reliability coder, showed that it was possible
to map all 150 business rules. However, also this validation resulted in cells that remained empty.
These empty cells were investigated further because they could indicate that the selection of the
fundamental constructs for the CNL was not correct. As mentioned previously, a part of the business
rule set was translated into Dutch only to investigate if the language aspect could have an effect on
the logic and mapping of the business rules. Since the comparison between the mapping of the original
English business rules and the translated version showed no differences in terms of logic, the
translated business rules were omitted from the mapping prior to the analysis of the empty cells.

To identify the possible causes for the empty cells, the mapping of the 150 original business rules was
analyzed. From the analysis emerged the same two overall causes as came forward during validation
round one. Firstly, in case a business rule comprised a ground all the fundamental constructs related
to a classification remained empty. The other way around, mapping a classification business rule
resulted in empty cells for the fundamental constructs related to a ground business rule. Moreover,
some business rules merely included a conclusion part and did not specify conditions. As a result, all
fundamental constructs of the condition part remained empty. On the other hand, RegelSpraak
provided example business rules that only specified the condition part resulting in empty cells for the
fundamental constructs of the conclusion part. Since a logical reason is found for these empty cells,
they were not analyzed further.

The second overall finding was that for some business rules, individual fundamental constructs
remained empty. For these empty cells, no direct explanation could be found in contrast to the ones
as described above. To obtain insight into these individual empty cells, the amount of empty cells per
fundamental construct was calculated. Table 4.16 shows the result of this calculation.

Fundamental Constructs Amount of empty cells

Quantifier (Conclusion Part) 67

Subject (Conclusion Part) 0

Relation (Conclusion Part) 101

Modal Claim Type (Conclusion Part) 119

Propositional Operator (Conclusion Part - Classification) 0

Value (Conclusion Part - Classification) 8

Quantifier (Conclusion Part - Classification) 72

Subject (Conclusion Part - Classification) 70

Relation (Conclusion Part - Classification) 77

Mathematical Operator (Conclusion Part - Ground) 0

Mathematical Function (Conclusion Part - Ground) 47

Value (Conclusion Part - Ground) 23

Quantifier (Conclusion Part - Ground) 52

Subject (Conclusion Part - Ground) 6

Relation (Conclusion Part - Ground) 68

Construct (Condition Part) 0

Quantifier (Condition Part) 109

Subject (Condition Part) 0

Relation (Condition Part) 124

Connective (Condition Part) 93

Propositional Operator (Condition Part - Classification) 0

Value (Condition Part - Classification) 11

Quantifier (Condition Part - Classification) 152

Subject (Condition Part - Classification) 149

Relation (Condition Part - Classification) 160

Thesis: Patterns for Derivation Business Rules

75

Mathematical Operator (Condition Part - Ground) 0

Mathematical Function (Condition Part - Ground) 48

Value (Condition Part - Ground) 4

Quantifier (Condition Part - Ground) 47

Subject (Condition Part - Ground) 43

Relation (Condition Part - Ground) 47
Table 4.16: Amount of Empty Cells per Fundamental Construct

By analyzing the figures of the second validation round (see Table 4.16) and comparing it to the figures
of the first validation round (see Table 4.11), it emerged that the reasons why the cells remained empty
for an individual fundamental construct appeared to be similar for both validation rounds. These
reasons are already extensively described in section 4.2.2. and therefore not explained in this section
again. Only two overall deviations emerged by comparing the figures from the first and second
validation, which are explained below.

DEVIATIONS BETWEEN VALIDATION ROUND 1 AND VALIDATION ROUND 2
The first deviation that can be appointed between both validation rounds is that the amount of empty
cells per fundamental construct is considerably higher for validation round 2. The second deviation
between both validation rounds is that the following fundamental constructs remained empty several
times (see Table 4.16) for validation round 2, which did not remain empty once for the first validation
round:

 In the Conclusion part:
o Quantifier

 In the Condition part:
o Quantifier
o Relation
o Value (classification)
o Quantifier (classification)
o Subject (classification)
o Relation (classification)
o Mathematical Function (ground)
o Value (ground)
o Quantifier (ground)
o Subject (ground)
o Relation (ground)

The occurrence of the two deviations can be explained by the fact that during validation round 2
specific instantiations (i.e. business rules) are mapped, in contrast to the first validation round during
which the patterns (i.e. templates to specify business rules) were mapped. Although a part of the
mapped business rules was established by adhering to the specific patterns, still a lot of freedom in
specifying the business rules retained for a business rule author. This freedom can be explained by the
low granularity level of the building blocks of existing patterns. For instance, various patterns included
one building block (e.g. “COND”) to cover the entire condition part. So, during the first validation round
the building block COND was mapped onto all fundamental constructs of the condition part and these
fundamental constructs did not remain empty (see section 4.2.2). However, when the business rule
author applied such a pattern to specify a specific instantiation he or she could choose every possible
way to specify the conditions of the business rule. For example, the business rule author could write
the following condition part: “if driver is young driver AND driver is married AND
driver.locatedInCA_NY_VA is TRUE”. When this business rule was mapped during validation round 2, it
resulted in a lot of empty cells for the fundamental constructs in the condition part. Table 4.17 shows

the mapping of this example in which the empty cells are indicated by a dash (-). The example business
rule covers three individual conditions that all check the consistency between a subject and a value.

Thesis: Patterns for Derivation Business Rules

76

In this example, for none of the three subjects (i.e. driver, driver, driver.locatedInCa_NY_VA) a
quantifier is specified resulting in already three empty cells for the quantifier in the second column.
Furthermore, two of the subjects do not have a relation resulting in two empty cells. Since none of the
conditions check the consistency between a subject and another subject, also the fundamental
constructs quantifier, subject and relation below the expression remained three times empty. These
figures (amount of empty cells) result from the mapping of solely one derivation business rule. This
can also explain why the amount of empty cells for a single fundamental construct could even exceed
the total amount of 150 business rules that were mapped (see Table 4.16).

Condition Part

C
o

n
stru

ct

Q
u

an
tifie

r

Subject

R
e

latio
n

C
o

n
n

e
ctive

Expression

Classification

Propositional
Operator

Value Quantifier Subject Relation

if - driver - AND is young driver - - -
 - driver - AND is married - - -
 - driver . is TRUE - - -
 locatedInCA_NY_VA

Table 4.17: Example Mapping Specific Instantiation of Condition Part

In conclusion, validation round two showed that all the 150 business rules could be mapped. This
ensured that no fundamental constructs were lacking. Furthermore, a logical explanation could be
found when a cell of a fundamental construct remained empty. Therefore, it can be concluded that all
the selected fundamental constructs are significant to retain included in the CNL. In addition, the seven
fundamental constructs that appeared to be zero times empty (see Table 4.16) correspond to the
fundamental constructs that are made obligatory for the CNL. This finding provides substantiation for
the establishment of the grammar rules of these fundamental constructs.

Thesis: Patterns for Derivation Business Rules

77

4.2.4 Results Validation round 3 – Implementation Dependent Level View

In previous two validation rounds, especially the implementation independent side is taken into
account. In contrast, this third validation round focused on the implementation dependent level view.
Recall that the documentation of the implementation of the “UServ Product Derby” business rule set
into six different BRM systems is used as input for validation round three. When this documentation
was not sufficient enough to perform the mapping of the implementation components onto the
fundamental constructs, manuals or the actual BRMSs were analyzed. The implementation
documentation was supplied by the following six different BRMS vendors: 1) Blueriq (Schadd, 2015),
2) Corticon (Parish, 2015), 3) IBM ODM (Ortiguela, 2015), 4) Sapiens (Segal, 2015), 5) OpenRules
(Feldman, 2015), and 6) OpenL Tablets (Bastun, 2015).

RESULTS
The implemented version of the business rules from the implementation documentation were mapped
by means of Mill’s method. This mapping can be found in Appendix 7. To provide more insight in how
the mapping was done, two examples derived from the implementation documentation are provided
on the next page. The example business rules are split up again for readability reasons into two
different tables. Table 4.18 shows the mapping onto the Conclusion part, and Table 4.19 shows the
mapping onto the Condition part.

The first example (see row nr. 1 of Table 4.18 and Table 4.19) corresponds to the following business
rule from the use case “UServ Product Derby” implemented into the BRMS Blueriq:

 If all of the following are true, then the car’s potential theft rating is moderate:
- car’s price is between $20,000 and $45,000
- car model is not on the list of “High Theft Probability Auto”

How this business rule is implemented into the BRMS Blueriq is shown in Figure 4.2.

Figure 4.2: Example of Implemented Business Rule in Blueriq (adapted from Schadd, 2015)

The second example (see row nr. 2 of Table 4.18 and Table 4.19) corresponds to the following business
rule from the use case “UServ Product Derby” implemented into the BRMS OpenRules:

 If a preferred client, lower the premium by $250.

How this business rule is implemented into the BRMS OpenRules is shown in Figure 4.3.

Figure 4.3: Example of Implemented Business Rule in OpenRules (adapted from Feldman, 2015)

https://openrules.files.wordpress.com/2015/01/adjustusingclientsegment.jpg

Thesis: Patterns for Derivation Business Rules

78

 Derivation Business Rule

 Conclusion Part

 Q
u

an
tifie

r

Subject R
e

latio
n

Modal
Claim
Type

 Expression

 Classification Ground

 Propositional
Operator

Value Quantifier Subject Relation Mathematical
Operator

Mathematical
Function

Value Quantifier Subject Relation

1 -
THEN

. - IS
“moderate” - - - - - - - - -

2 - - - - - - - -

- - - -

Table 4.18: Example Mapping of Business Rules on Conclusion Part

 Derivation Business Rule

 Condition Part

 C
o

n
stru

ct

Q
u

an
tifie

r

Subject R
e

latio
n

Connective Expression

 Classification Ground

 Propositional
Operator

Value Q
u

an
tifier

Su
b

ject

R
elatio

n

Mathematical
Operator

Mathematical
Function

Value Quantifier Subject Relation

1 IF -
Car . AND - - - - - > = -

20000 - - -

 Price

 -
Car . AND NOT - - - - - <= -

45000 - - -

 Price

 -
Car . - - - - - - - - - - -

 OnHighTheftProbability

2
 - - - - - - - - - - - -

Table 4.19: Example Mapping of Business Rules on Condition Part

Thesis: Patterns for Derivation Business Rules

79

The complete mapping showed that it was possible to map all the implemented business rules.
However, two aspects emerged from the implementation documentation that could not be addressed
which could indicate that fundamental constructs were lacking namely: 1) Context-structures and 2)
Technical Implementation Information. These two aspects will be described below.

CONTEXT-STRUCTURES
First of all, the implementation documentation included context-structures. In the documentation
different ways to visualize and to refer to these context-structures are found (e.g. according to Sapiens
it is a decision model, according to Corticon it is a Rule Flow Diagram, according to Blueriq it is a
Decision Requirement Diagram). An explicit example of a context-structure is depicted in Figure 4.4
which is adapted from the implementation documentation of Blueriq. This context-structure shows
how the contexts, with regard to determining the premium of a driver, are connected.

Figure 4.4: Explicit Example of Context-Structure in Blueriq (adapted from Schadd, 2015)

The orange colored context in Figure 4.4 called “Driver.PremiumDeltaVarious” includes the following
six business rules which originate from the use case “UServ Product Derby”:

 If young driver and married and located in CA, NY or VA, then increase premium by $700.

 If young driver and single and located in CA, NY or VA, then increase premium by $720.

 If young driver and married and not located in CA, NY or VA, then increase premium by $300.

 If young driver and single and not located in CA, NY or VA, then increase premium by $300.

 If senior driver and located in CA, NY or VA, then increase premium by $500.

 If senior driver and not located in CA, NY or VA, then increase premium by $200.

The business rules from the context “Driver.PremiumDeltaVarious” are implemented in Blueriq with
the decision table as shown in Figure 4.5. This decision table determines the change in the amount of
premium a driver has to pay. Each of the six business rules determine the value of the decision
“Driver.PremiumDeltaVarious” (i.e. conclusion). The table includes one conclusion (see orange border
in Figure 4.5), and four conditions which are listed in the left-most column of Figure 4.5 (see green
border). The table should be read from top to bottom like: if Driver.YoungDriver is TRUE and
Driver.LocatedInCa_NY_VA is TRUE and Driver.Married is FALSE, then Driver.PremiumDeltaVarious is
720. In this example, the subject Driver.SeniorDriver is ignored due to the included asterisk (*) which
indicates that a subject in the most-left column is not included in that business rule. Furthermore, the
two brackets ([]) indicate that any non-mentioned option matches. In this case, when
Driver.YoungDriver would be FALSE the pathway of the right-most column would be followed.

Thesis: Patterns for Derivation Business Rules

80

Figure 4.5: Example Implementation of the Business Rules from One Context in Blueriq (adapted from Schadd, 2015)

In summary, a context-structure connects multiple contexts and/or sub-contexts, where a context
represents one decision. A context needs to be specified by means of a set of business rules. In other
words, a context includes multiple individual business rules to determine one and the same decision.
How these concepts are related is conceptually shown in Figure 4.6.

Figure 4.6: Relation between context structure, context (decision), and business rules in a context

Business rule engines use these context-structures to establish the connections between different

decisions and business rules, or in other words they use them to understand how a value of a specific

subject in a business rule can be derived from another business rule. For example, the conclusion of

Decision/Context C can be incorporated as a condition in Decision/Context B. Moreover, these

context-structures can ensure that the organization keeps an overview of the implemented business

rules and their connections. However considering the CNL of this research, the language and patterns

will be devised to specify individual business rules in a context. Therefore, contexts and context-

structures lie on a higher level than the level for which the CNL will be devised. In conclusion, the

context-structures are not taken into account for the CNL.

Thesis: Patterns for Derivation Business Rules

81

TECHNICAL IMPLEMENTATION INFORMATION
The analysis of the implementation documentation also revealed that a business rule engine requires
detailed information about where it can retrieve the values of subjects (either variable or constant
values) when executing a business rule. This information needs to be specified with enough detail for
the business rule engine to fetch the data out of the correct database fields. Furthermore, it needs to
be specified how the business rule engine should retrieve this information from the database. These
two aspects imply precision on a technical implementation level. In case the where and how aspects
would be taken into account for the patterns, the implementation in a specific database would already
be specified within the business rules during specification time. Therefore, both aspects will not be
included within (the patterns of) the CNL, otherwise the language will not be implementation
independent. How and from where the business rule engine should retrieve the values of subjects
(either variable or constant values) can be addressed by using an Application Programming Interface
(API) for example JavaScript Object Notation (JSON) or Representational State Transfer (REST).

In addition, from the analysis emerged that the subjects, the relations between subjects and the
properties of the subjects need to be precisely specified for a business rule engine (i.e. What it should
retrieve). These properties comprise a specification of the subject itself and the data type (e.g.
INTEGER, BOOLEAN) including the unit of measurement (e.g. PERCENTAGE). Consider for example the
BRMS Blueriq, these properties are specified for every occurring subject in the business domain. In
Figure 4.7, an interface of Blueriq is shown for specifying the data type of a subject. In this case, the
data type Currency is selected for the subject Client.Premium.

Figure 4.7: Example Specification of Subject in Blueriq (adapted from Schadd, 2015)

Another example is found in the BRMS Sapiens which uses a glossary to record all of the approved Fact
Type names (i.e. subjects) and data types. Figure 4.8 shows a snapshot of the glossary of Sapiens.

Figure 4.8: Example Specification of Subjects in a glossary of Sapiens (adapted from Segal, 2015)

Thesis: Patterns for Derivation Business Rules

82

Similar is the approach of Corticon, this business rules management system includes a vocabulary (see
Figure 4.9) which contains the business objects (i.e. subjects) and their relationships, their attributes
(i.e. subjects), data types and possible values. This vocabulary can also comprise the mapping of
business objects to tables and attributes to columns in a database.

Figure 4.9: Example Specification of Subjects in a vocabulary (adapted from Corticon (Parish, 2015))

In summary, the analyzed BRM systems manage the subjects, associated properties and related
subjects separately from the business rules. At specification time, the subjects can be repeatedly
retrieved from the glossary of the system to be incorporated in the business rules which ensures
reusability. So, these systems consider both aspects as an individual separation of concern. Above
provided examples show three specific implementation dependent ways to capture these two
separation of concerns. To address this separation in an implementation independent way, the use of
a fact model is proposed in literature. A Fact model is considered as a diagram that structures the
business knowledge by means of specifying logical connections (called facts) between core concepts
of the business (i.e. subjects) with the aim to standardize the business terminology in an
implementation independent fashion (R. G. Ross, 2000; R. G. Ross, 2000).

The advantage of adhering to this separation of concerns is that when for example the properties of a
subject change, only the fact model has to be altered and not the business rule set itself. Therefore,
when devising the pattern set, it will be taken into account that the business rule engine has to know
what it should retrieve by specifying the subjects and relations. However, not the properties of these
subjects and relations between the subjects will be incorporated into the patterns. It is recommended
to create a separate fact model from which this information can be retrieved.

Thesis: Patterns for Derivation Business Rules

83

5 Pattern Catalogue Creation
This chapter describes the process of creating the pattern set. Furthermore, the choices that have been
made during the creation process are explained. The aim of this chapter is to make clear how and why
these patterns are established.

 Subdivision Patterns

As reminder, a pattern is defined as: “a structured combination of fundamental constructs to specify
business rules” (Ghose & Koliadist, 2007; Morgan, 2002; Von Halle, 2001; Zoet, 2014). In other words,
each pattern is composed of a set of fundamental constructs. In Chapter 3, an extensive explanation
is provided for all identified fundamental constructs of a derivation business rule. Furthermore, their
interrelations are described and visualized by means of a meta-model. This meta-model laid the
foundation for the creation of the patterns, tailored to the specification of derivation business rules.
To recall, in general a business rule can be composed of a conclusion and a condition part at the highest
level. Regarding the CNL, it has been decided that a derivation business rule should always include
exactly one conclusion part comprising either a classification or a ground. Additionally, a derivation
business rule may contain one or more condition parts. A condition part can cover multiple conditions
where each individual condition can also include either a classification or a ground.

These observations and requirements of a derivation business rule provided the basis for establishing
the set of patterns. The justification of using this basis can be ensured by the outcome of the validation
of the fundamental constructs as described in Chapter 4. The pattern set is established by traversing
different phases of the research. From the literature study, in which current pattern catalogues
including example business rules were investigated, recurring elements and their relations emerged.
Moreover, during the first two validation rounds of the preliminary validation, 37 patterns and 150
business rules have been evaluated (see Chapter 4), from which similar and additional repeating
elements and their connections became apparent. For the actual establishment of the patterns, it has
been decided to create specific individual patterns for specifying specific parts of a derivation business
rule. The rationale for this subdivision is twofold. Firstly, the patterns had to comply with the
observations and requirements of a derivation business rule. Secondly, this subdivision can guide and
support a business rule author by selecting the applicable pattern during the specification process.
Two criteria for the subdivision were ‘completeness’ and ‘mutual exclusiveness’. This latter criterion
implies that for the specification of a particular derivation business rule only one pattern should be
applicable to choose. By adhering to this criterion, the required time for the specification process can
be reduced and also the consistency between business rule authors can be enhanced. Eventually, this
creation process led to 19 patterns in total.

The subdivision of patterns is depicted in Figure 5.1 as a ‘decision tree’. First of all, patterns are divided
into patterns for the conclusion part and patterns for the condition part (see branch 1 & 2 in Figure
5.1). Unique patterns are devised for both parts, since the two parts comprise:

1. distinctive associated fundamental constructs. For example, the Modal Claim Type is only
included in the conclusion part and the Connective only in the condition part;

2. different interrelations (i.e. cardinalities) between identical fundamental constructs which
depend on the part they are included.

This separation is directly the first aspect to consider by a business rule author to shorten the pattern
selection process: Does the business rule only include a conclusion part or also conditions? In this way,
he or she can choose to follow the left branch (number 1) and/or the right branch (number 2) of the
decision tree in Figure 5.1.

Thesis: Patterns for Derivation Business Rules

84

With regard to the conclusion part (branch 1), the business rule author has to determine if it is a
classification (1.1) or a ground (1.2) business rule (See Figure 5.1). Both the classification patterns as
ground patterns have the aim to equate the value of a subject with ‘something’. This ‘something’
makes the difference between the patterns and results in a further subdivision. A classification can
equate a subject with: (A) a value or (B) a subject. So, two different patterns (1.1 A – B) are available
for specifying a classification in a conclusion part. A ground can equate a subject with: (A) a basic
ground. Thus a business rule author has one pattern (1.2 A) to specify the conclusion part comprising
a ground.

Figure 5.1: Subdivision of Patterns depicted as Decision Tree

With regard to the condition part (branch 2), these patterns are subdivided into three types (see Figure
5.1): patterns to specify individual classification conditions (2.1), patterns to specify individual ground
conditions (2.2), or patterns to merge multiple individual conditions (2.3). This subdivision emerged
due to the fact that the condition part can include more than one individual condition. The first choice
that a business rule author has to make for each individual occurring condition is whether the condition
includes a classification (2.1) or a ground (2.2). A classification in a condition part can check the
consistency between a subject and: (A) one value, (B) a value out of a list of multiple values, (C) one
subject, or (D) a subject out of a list of multiple subjects. In this way, for the classification in the
condition part four different patterns (2.1 A – D) are established. The consistency check in this part of
the business rule means that the value of a subject should be exactly equal to another value in order
for the condition to be true. A ground on the other hand, can compare a subject with: (A) another
subject, (B) a value, or (C) a basic ground. For all these three options, a pattern is created (2.2 A – C).

Thesis: Patterns for Derivation Business Rules

85

As mentioned previously, the business rule author has to select a pattern for each occurring individual
condition. In case multiple conditions are included in the business rule, the business rule author should
also determine what the relation between these conditions is. For instance, should all the conditions
be met (i.e. conjunction) or at least one/two/three etcetera conditions (i.e. disjunction). Nine different
relations emerged from literature and the preliminary validation, which resulted into the creation of
an equivalent number of patterns (see 2.3 A – I in Figure 5.1). These nine patterns also include the
placeholder <Individual pattern> multiple times, which can be replaced by the already selected
individual patterns (see Table 5.1). All the other elements and symbols incorporated in the pattern will
be explained in the remainder of this section. After the business rule author has determined all the
patterns, the parts can be merged together to specify the entire business rule. An example of an entire
merged business rule is shown in Table 5.1, where the Disjunction pattern is used along with two
individual patterns.

NR Patternname Pattern

12. Disjunction (If) <Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]
(meets at least < .. > of the following conditions) :

 < Individual pattern >

 < Individual pattern >

 [< Individual pattern >]

Example:
If the person (meets at least one of the following conditions) :

 If the driving license of the person (is equal to) TRUE

 If the ID number of the person (is equal to) filled

Table 5.1: Pattern example from Condition part – merge condition rule patterns

 Modeling Choices

Besides the observations and requirements of a derivation business rule as described above, also some
additional modeling choices are made during the pattern set creation. Most of these choices are made
to adhere to the cardinalities of the fundamental constructs as incorporated in the meta-model shown
in Chapter 3. Below, the modeling choices are categorized into choices with regard to: 1) the conclusion
and condition part together, 2) the conclusion part, and 3) the condition part.

CHOICES – CONCLUSION AND CONDITION PART
Firstly, it has been decided that the fundamental construct ‘Subject’ should be included at least once
in both the conclusion and condition part. As a result, ‘Subject’ became a fixed pattern part. This
pattern part is incorporated as placeholder, since it can contain an infinite number of different
instantiations. A placeholder is indicated in the patterns by angle brackets (i.e. < >), see Table 5.2.

In addition, it is decided that in front of every occurring ‘Subject’ the fundamental construct
‘Quantifier’ is positioned (see Table 5.2). This choice has been made because the ‘Quantifier’ indicates
about how many ‘Subjects’ a system should reason; it makes the business rule more precise and
unambiguous as explained in Chapter 3. So, it is important for the automated processing of the
patterns. Therefore, the ‘Quantifier’ is also included as fixed pattern part. Furthermore, the ‘Quantifier’
is incorporated as placeholder as it can differ per business rule what the instantiation is. However, for
the ‘Quantifier’ a list of optional instantiations is provided in Appendix 4 since there only exist a limited
number of quantifiers.

A fundamental construct that is included as optional pattern part is ‘Relation’, which indicates that
two ‘Subjects’ are related. Since a ‘Relation’ connects two ‘Subjects’, it is always placed directly after

Thesis: Patterns for Derivation Business Rules

86

a ‘Subject’ and is succeeded by a ‘Quantifier’ and the other ‘Subject’. To show that these three
fundamental constructs together comprise one optional pattern part, they are enclosed by square
brackets and made italic as follows: [<Relation> <Quantifier> <Subject>]. In the patterns, the
possibility is included to repeat this entire pattern part when specifying a derivation business rule
which is denoted by n* (see Table 5.2). ‘Relation’ is also included as placeholder in the patterns, but a
list of optional instantiations is provided in Appendix 4.

For the fundamental construct ‘Value’ it is decided to include this as placeholder in every pattern it
occurs (see Table 5.2). As it can contain an infinite number of different instantiations, these will not be
defined.

NR Patternname Pattern

1. Equate with
VALUE

<Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]

[< Modal Claim Type >] (is equated to | be equated to) < Value >

Example:

The status of the client must (be equated to) gold member

Example 2:

The maximum amount of leave days must (be equated to) 26

Table 5.2: Pattern example from Conclusion Part – Classification Rule patterns

With regard to the fundamental construct ‘Mathematical Function’, the choice is made to only include
it as a placeholder in the patterns (see Table 5.3). Given the fact that there exist many different
instantiations (e.g. SUM(), MAX(), MIN(), AVERAGE ()).

NR Patternname Pattern

3. Equate with
Basic Ground

<Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]

[< Modal Claim Type >] (is computed as | be computed as)

<Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>] |

<Value> |

<Mathematical Function> n* <Quantifier> <Subject> [n* <Relation>

<Quantifier> <Subject>]

[n* <Mathematical Operator>

<Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]|

<Value> |

<Mathematical Function> n* <Quantifier> <Subject> [n*

<Relation> <Quantifier> <Subject>]]

Example:

The total amount of profit of a declarant must (be computed as)

 the total amount of income of the declarant minus

 the total amount of costs of the declarant

Example 2:

The amount of income (is computer as)

the SUM of the total amount of sold units of each order multiplied by the unit price

Table 5.3: Pattern example from Conclusion Part – Ground Rule patterns

In some cases, it has been decided to include an additional pattern part which is not a fundamental
construct namely < .. > (see the Disjunction pattern in Table 5.1). This pattern part is included as
placeholder to make a pattern more flexible. A business rule author can replace this placeholder at its
discretion (e.g. one, four, the last, the first).

Thesis: Patterns for Derivation Business Rules

87

CHOICES – CONCLUSION PART
As explained in section 3.2, the fundamental construct ‘Modal Claim Type’ is not compulsory for the
conclusion part but it can be included to enhance the readability. Therefore, the ‘Modal Claim Type’ is
incorporated as optional pattern part which a business rule author can use (see Table 5.2). In addition,
the instantiations of this fundamental construct can differ (e.g. must, may, could, it is permitted that,
must not). As a result, the ‘Modal Claim Type’ is included as placeholder in the conclusion part of the
patterns.

When the conclusion part comprises a classification, the pattern should always encompass a
‘Propositional Operator’. This fixed part is not included as a placeholder, but a specific instantiation is
provided in the patterns directly. This choice is made to make the aim of the patterns more clear and
to contribute to the establishment of a consistent business rule set. A fixed instantiation of a
fundamental construct can be recognized in the patterns by parentheses (i.e. ()). For classifications
that equate a value with another value, this fixed instantiation corresponds to: (is equated to| be
equated to). This fixed instantiation comprises two options for the verb (i.e. is or be), which is indicated
by a vertical bar in the patterns (see Table 5.2). From the separated alternative pattern parts, the
business rule author can select one option. Which one the business rule author should select depends
on the fact whether or not a ‘Modal Claim Type’ is included (e.g. must be equated to).

On the other hand, when the conclusion part comprises a ground, the fundamental construct
‘Mathematical Operator’ should always be in place according to the meta-model. Therefore, this is a
fixed pattern part. For the ground rule pattern of the conclusion part applies that the ‘Mathematical
Operator’ is set to the following substantiation (is computed as | be computed as), see Table 5.3. This
is done to show that the value of a Subject should be equated to a computed value. Also this fixed
instantiation includes two options for the verb, which option the business rule author should select
depends on the inclusion of the ‘Modal Claim Type’. Besides this instantiation, the ‘Mathematical
Operator’ is also enclosed as placeholder in the patterns to be able to specify a mathematical operation
(e.g. add, multiply, subtract). The specific instantiations of this placeholder are listed in Appendix 4. In
the patterns, the placeholder for the ‘Mathematical Operator’ can be repeated, which is designated
with n* see Table 5.3. This is done since a calculation can comprise many forms, from very simple to
very complex ones.

CHOICES – CONDITION PART
To indicate the beginning of the condition part, each condition part pattern starts with the fixed
fundamental construct named ‘Construct’. From literature and practice, different instantiations
emerged like: If, When, Only if. For consistency reasons, the choice has been made to choose (If) as
fixed part to include in the patterns because this is widely applied (see Table 5.1, Table 5.4, Table 5.5).

The same as mentioned for the conclusion part, when the condition part comprises a classification, the
pattern should always include a ‘Propositional Operator’. A fixed instantiation is included in the
patterns instead of a placeholder to make the purpose of the patterns more apparent and to contribute
to the establishment of a consistent business rule set. For classifications that check the consistency of
a value with one other value, this fixed instantiation corresponds to: (is [not] equal to). When the
consistency of one value is checked with another value selected from multiple values, the fixed part
corresponds to (is [not] equal to <….> of the following values) see Table 5.4.

Thesis: Patterns for Derivation Business Rules

88

5. Consistency
check - multiple
VALUES

(If) <Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]

(is [not] equal to <….> of the following values) :

- < Value >

- < Value >

- [n * < Value >]

Example:

If the nationality of the applicant (is equal to one of the following values) :

- 'CK'

- 'GT'

- 'ID'

- 'MM'

- 'NR'

- 'NG'

- 'PH'

Example 2:

If the amount of ordered items (is equal to one of the following values) :

- 10

- 50

Table 5.4: Pattern example from Condition part – classification rule patterns

On the other hand, when the condition part comprises a ground, the pattern should always include a
‘Mathematical Operator’. In the condition part, the ‘Mathematical Operator’ is only included as a
placeholder since many different instantiations can be chosen to indicate the comparison with a value,
subject, or basic ground. For example: less than, more than, more than or equal to etc. (see Table 5.5).
These instantiations are listed along with the particular patterns in Appendix 4.

9. Comparison
with SUBJECT

(If) <Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]

 <Mathematical Operator> <Quantifier> <Subject> [n* <Relation>

<Quantifier> <Subject>]

Example:
If the amount of rental days is more than the maximum amount of rental days

Table 5.5: Pattern example from Condition part – ground rule patterns

As explained in section 5.1, besides the patterns to specify an individual condition of a condition part
also a set of patterns is devised to specify the relation between multiple individual conditions in a
condition part. The relation between these conditions is denoted by the fundamental construct
‘Connective’. Chapter 3 indicated two ways to apply the ‘Connective’:

1. Using it once in a business rule which specifies the relation between several condition (e.g.
meets one of the following conditions), or

2. Using the fundamental construct multiple times between each condition (e.g. AND).

As stated in Chapter 3, the way in which the connective is used will not be imposed by the grammar
rules of the CNL. However, with regard to the patterns the first way will be imposed to contribute to
the mutual exclusiveness criterion. To achieve this, it is decided to provide a fixed substantiation for
each of the nine different ‘Connectives’ (see Table 5.1). For example, taking the Conjunction pattern
into account, the ‘Connective’ is equal to (meets all of the following conditions). As described

Thesis: Patterns for Derivation Business Rules

89

previously, the nine patterns include the placeholder < individual pattern > (see Table 5.1). This
placeholder can be replaced by one of the seven individuals classification or ground rule patterns (see
2.1 A - D and 2.2 A – C in Figure 5.1) . The reason to include this placeholder is because the different
embodiments of an individual condition are already provided by means of the seven individual
patterns. Otherwise, an abundance of patterns would emerge.

In this chapter, five patterns of the pattern set are provided. The entire pattern set is included in
Appendix 4, where the pattern set is subdivided into five main categories as shown in Figure 5.1:

1. Conclusion part – classification rule patterns;
2. Conclusion part – ground rule patterns;
3. Condition part – classification rule patterns;
4. Condition part – ground rule patterns;
5. Condition part – merge condition rule patterns.

Each category contains a few patterns, for each pattern an associated example is provided.
Furthermore, specific instantiations for several placeholders are provided in this appendix.

Thesis: Patterns for Derivation Business Rules

90

6 Pattern Validation
In previous chapter, the patterns to specify derivation business rules were identified. This chapter

describes the validation process of these patterns. A validation round is performed from an instance

level view during which a business rule set is specified by means of the patterns.

For this validation round, the data collection and data analysis process are explained below in two

separate sub-sections: data collection and data analysis.

 Data Collection

Below, the data collection process is described including the applied sampling strategy and selection

criteria.

6.1.1 Validation Round – Instance Level View

For the validation of the patterns, from the instance level view, a new business rule set is obtained.
This business rule set was used during this validation round to specify the business rules by means of
the established patterns of the CNL to investigate if specific instantiations could be captured by the
patterns.

The business rule set was selected and provided by the case study company. Since the Dutch Tax and
Customs Administration selected it, the business rule set directly complied to two theoretical selection
criteria namely relevancy and representativeness. The set comprised business rules from the act called
the “Zorgverzekeringswet” abbreviated as (ZVW). This act included 16 business rules that are
established to determine and calculate the amount of days a taxpayer is income tax (IB) and ZVW-
accountable within a tax year in order to determine the ZVW amount a taxpayer is due.

Thesis: Patterns for Derivation Business Rules

91

 Data Analysis

In this section, a description of how the patterns are validated and the emerging results are provided.

6.2.1 Results Validation Round – Instance Level View

During this validation round, the business rule set that was obtained during the data collection process
is specified by means of the patterns from the pattern catalogue. The aim of this specification was to
validate if it was possible to specify each business rule from the set by applying the patterns from the
pattern catalogue. Since the business rule set was written in Dutch and the patterns of the CNL were
established in English, the patterns were translated to Dutch prior to the specification. This choice has
been made to comply with the Dutch case company and for readability reasons. For example, when
the pattern parts were not translated the following vague specification could occur:

< The> <begindatum premieplicht Zvw (H1) > [is equated to] < leeg > [If] < the > < indicatie
geheel jaar geen Zvw plicht (a) > [is equal to] < Ja >

The translated version of this pattern looks like follows:
< De > < begindatum premieplicht Zvw (H1) > [wordt gelijk gesteld aan] < leeg > [indien] < de >

< indicatie geheel jaar geen Zvw plicht (a) > [gelijk is aan] < Ja >

This translation step did not have an effect on the logic of the specification, only on the representation
as already emerged during the preliminary validation of the fundamental constructs (see section 4.2.3).
By means of this validation round, it is also demonstrated that the language aspect has no influence
on the logic and applicability of the patterns since they can also specify Dutch business rules.

Besides the deviant language of the business rule set from the case company, the set also included
“nested business rules”. Nested business rules are complex business rules that include at least more
than one conclusion part (see example business rule 9 in the blue rectangle below) (Ligêza, 2006).
Given the fact that the patterns are established to specify atomic business rules to comply with the
single responsibility principle, the nested business rules also had to be decomposed in several atomic
business rules that included exactly one conclusion part prior to the specification.

Example business rule 9. Vaststellen bedrag aanslag (U1):
ALS [toepassing artikel 9.4] (U2) = 35
DAN [bedrag aanslag] (U1) := 0 (NIHIL-aanslag)

 [indicatie-nihil-aanslag] (U3) := ‘ja’
Anders: [bedrag aanslag] (U1) :=

[bijdrage ZVW aanslag] (a) (toepassing artikel 9.4 = 0 of 21: aanslag wordt in principe opgelegd)
Einde-Als

The example business rule above is decomposed into three atomic business rules, see 9a, 9b, and 9c
in the blue rectangle below:

Business Rule Transformed to Atomic Business Rule for Specification
9a

ALS [toepassing artikel 9.4] (U2) = 35
DAN [bedrag aanslag] (U1) := 0

9b

ALS [toepassing artikel 9.4] (U2) = 35
DAN [indicatie-nihil-aanslag] (U3) := ‘ja’

9c:

ALS [toepassing artikel 9.4] (U2) ≠ 35
DAN [bedrag aanslag] (U1) := [bijdrage ZVW aanslag] (a)

Thesis: Patterns for Derivation Business Rules

92

The entire business rule set comprised 11 out of 16 business rules which were nested. The
decomposition process resulted into the establishment of 45 atomic business rules in total. Above
provided example was the ninth decomposed business rule, the entire set of used and/or decomposed
business rules is listed in Appendix 8.

RESULTS
After the translation of the patterns and transformation of the business rule set into 45 atomic
business rules, the 45 business rules are specified with the patterns. This entire specification can be
found in Appendix 9. Two examples of this specification are provided in Table 6.1 and Table 6.2 below,
where the left column of these tables provides the atomic business rule originated from the case and
the right column shows the business rule specified by means of the applicable patterns. The patterns
that are used to specify each business rule and the made additional choices are listed in the bottom
row of the tables (see “choices”).

Original business rule NR Business rule in pattern

1b
Als [indicatie geheel jaar geen Zvw plicht] (a)
 = Ja

Dan [einddatum premieplicht Zvw] (H2) =
 [leeg]

< De > < einddatum premieplicht Zvw (H2) >
(wordt gelijk gesteld aan) < leeg >

[indien] < de > < indicatie geheel jaar geen Zvw
plicht (a) > (gelijk is aan) < Ja >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an
appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 1 (equate with value)
and pattern 4 (consistency check one value)

 “Dan” is omitted, only for readability.

Table 6.1: Business Rule 1 Specified with Patterns

Original business rule NR Business rule in pattern

5b
ALS [vorig jaar alimentatie overgangstarief] (f) =
 ‘nee’

DAN [bijdrage-inkomen ZVW aanslag] (U1) :=
 [bijdrage-inkomen ZVW zonder alimentatie]
 (H1) plus [saldo alimentatie na aftrekbare
 kosten] (e)

< De > < bijdrage-inkomen ZVW aanslag (U1) >
(wordt berekend als)

< de > < bijdrage-inkomen ZVW zonder
alimentatie (H1)>
<plus>
< het > <saldo alimentatie na aftrekbare
kosten (e)>

[indien] < de > < vorig jaar alimentatie
overgangstarief (f) > (gelijk is aan) < nee >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an
appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 3 (equate with basic
ground) and pattern 4 (consistency check one value)

 “Dan” is omitted, only for readability.
Table 6.2: Business Rule 5 Specified with Patterns

Thesis: Patterns for Derivation Business Rules

93

From the validation, a specific finding occurred with regard to the “condition part - classification rule
patterns”. These patterns check the consistency of a subject with something, which was originally
indicated in the patterns by means of the following fixed pattern part for the Propositional Operator (
is equal to). However, in the business rule set that was used for the specification some business rules
were incorporated that specified that the subject should not be equal to something. Consider the
example business rule 9c described above, this business rule checks if the subject “toepassing artikel
9.4 (U2)” is unequal to 35. When devising the pattern set, it was assumed that each business rule could
be rewritten from a negative formulation to a positive formulation without affecting the business rule’s
logic. Rewriting business rule 9c from negative to positive is possible by including two individual
conditions in the business rule: if “toepassing artikel 9.4 (U2)” is less than 35 and “toepassing artikel
9.4 (U2)” is more than 35. However, in some cases this rewriting process is even not possible. For
instance, if a business rule will specify that a subject should be checked to be equal to “all other
options” where the amount of other options for the subject is infinite. In case the business rule would
be formulated in a positive way, the business rule should list all these options to check the consistency
with. Therefore, it has been decided to alter the “condition part – classification rule patterns” by
including the optional pattern part [not] within the fixed pattern part for the Propositional Operator
as follows: (is [not] equal to].

The specification of the entire business rule set showed that all the business rules could be specified
with the established patterns. However, not every pattern from the 19 established patterns was
required to specify the obtained business rule set. Table 6.3 below shows which patterns are validated
with the obtained business rule set (see left column), and which patterns are not validated (see right
column).

Validated patterns (9 patterns in total) Not validated (10 patterns in total)
pattern 1 (equate with value)
pattern 2 (equate with subject)
pattern 3 (equate with basic ground)
pattern 4 (consistency check one value)
pattern 8 (comparison with value)
pattern 9 (comparison with subject)
pattern 11 (conjunction)
pattern 12 (disjunction)
pattern 13 (disjunction within conjunction)

pattern 5 (consistency check - multiple values)
pattern 6 (consistency check - one subject)
pattern 7 (consistency check - multiple subjects)
pattern 10 (comparison with basic ground)
pattern 14 (conjunction within disjunction)
pattern 15 (exact amount)
pattern 16 (exact amount within conjunction)
pattern 17 (exact amount within disjunction)
pattern 18 (conjunction within exact amount)
pattern 19 (disjunction within exact amount)

Table 6.3: Overview of Validated and Not Validated Patterns

In conclusion, validation round one showed that all the 45 business rules of the case company business
rule set could be specified by means of the pattern catalogue. From the in total 19 patterns, 9 patterns
could be validated and 10 patterns could not be validated during this validation round. However, for
each of the 10 not validated patterns an example business rule is found during the establishment
process of the patterns, which could be specified by means of these patterns.

Thesis: Patterns for Derivation Business Rules

94

7 Discussion
This chapter provides a critical perspective on the performance of this thesis project. First, the
contributions of the research will be discussed. Subsequently, the limitations of the research and
recommendations for further research are provided.

Considering the social contributions, this research provides further insight into the fundamental
constructs of derivation business rules. With regard to these fundamental constructs, a lot of different
terms to refer to similar concepts are found during this research. This finding is addressed in this thesis
by listing and analyzing the available terminology options of each concept to provide insight for other
researchers and practitioners. The preference for the application of a particular term will differ per
author. Although a fixed name is chosen for each fundamental construct for this research, changing
the terminology in the future will have no effect on the syntax and semantics of the deliverables. In
the BRM domain, researchers already conducted studies to compare various business rule languages
from a high abstraction level. The knowledge from this research can support the comparison and
evaluation of business rule languages and systems from a more detailed view, since fundamental
constructs and patterns as such provide independence from the implementation technology (Van der
Aalst et al., 2003). Especially the similarities and differences with respect to their expressive power can
be discovered. By taking the CNL as reference point and investigating if a certain language or system is
able to express all the included fundamental constructs, an indication of the degree of expressiveness
can be obtained. The comparison of the different levels of expressive power provides valuable
information for an organization, as it gives in-depth insight into the suitability of a certain language or
system for their organizational context. As a result, this can create awareness in the organization about
the implementation consequences before a language or system is selected. So, this research can
support organizations in the decision making process for selecting a business rule language and/ or
system which can be a difficult task due to the multitude of commercially available options.

With regard to the scientific contribution, a few attempts have already been made to create CNLs and
pattern catalogues for the specification of business rules (see section 1.1 and 2.3). These existing
approaches are either not precise enough to be interpreted by an information system or they are
especially intended for the type of business rules that guide business processes. Therefore, a CNL is
created during this research which had to comply with specific language properties (i.e. PENS levels).
These PENS levels were predefined as follows: Precision= 4, Expressiveness= 3, Naturalness= 3, and
Simplicity = 4. To check if the created CNL complies with these predefined levels, the set of criteria
defined by Kuhn is taken into account (see Appendix 2). Firstly, to reach a precision-level of 4, the
language should be fully formal on the syntactic level and it should be possible to parse each text
specified with the language to a formal logic representation. Both criteria are met by means of
formulating a formal underlying grammar for the CNL. Secondly, an expressiveness-level of 3 is reached
since the CNL conforms to the following criteria: the language is able to specify general rule structures
(i.e. if/then), negation, and relations of arity greater than 1 (e.g. binary relations). Thirdly, the CNL
meets a naturalness-level of 3 by adhering to the following criteria: natural elements predominate over
unnatural ones, general structure equals to natural language grammar, and untrained readers are able
to intuitively understand statements specified with the language. Lastly, the CNL complies with a
simplicity-level of 4 because more than one page but not more than ten pages are required to provide
an exact and comprehensive description of the language. By creating this CNL and a pattern catalogue
specifically applicable for derivation business rules, this research has a scientific contribution by adding
a new type of CNL and pattern catalogue to the scientific knowledge base.

Besides the contributions of this research, also a number of limitations can be appointed concerning
the validation of the research. In terms of external validity, concerning the generalizability of the
results, some remarks can be made. Firstly, the data set that is used for the validation of the pattern
catalogue is derived from the Dutch Tax and Customs Administration. Given the fact that only one

Thesis: Patterns for Derivation Business Rules

95

company is taken into account, the pattern catalogue cannot be generalized for other organizations
which limits the external validity. Secondly, not all the devised patterns of the pattern catalogue could
be validated with this real life case study data which could also limit generalizability. However, it should
be noted that the patterns that were not validated, have been found in other cases substantiating their
inclusion in the catalogue. Another point of discussion attached to the validation of the results is that
it is not certain whether the co-founding variables are eliminated. Since the majority of the data
analysis process of each validation round was conducted by solely one researcher, there is a possibility
that the internal validity is threatened by the so called ‘instrumentation threat’. In this case, the
researcher is considered as the measurement device which could gain experience gradually traversing
the four validation rounds. To address this possible threat, a reliability coder was involved for one of
the data analysis processes with respect to the validation of the fundamental constructs.

Considering the limitations of the research, it is recommended to extend the research in the future
since it will provide a broader supported and improved CNL and pattern catalogue. The first limitation
with regard to the external validity could be addressed by altering the sampling strategy and selection
criteria for further research. For instance, additional data (e.g. business rules) could be gathered
originating from different industries for new validation rounds. Furthermore, additional business rules
management systems could be included for further validation. In this way, insight into the applicability
of the artifacts in other industries and for other systems could be obtained thereby increasing
generalizability. The limited generalizability could also be enhanced by increasing the sample sizes. As
described above, a part of the patterns of the pattern catalogue could not be validated with the case
study company data. It is recommended to expand the learning data to validate the entire set of
patterns for purpose of generalization. Although the four performed validation rounds and the amount
of used input data for each round are considered as sufficient (i.e. 37 patterns, 150 business rules, 6
systems, 45 business rules from the case company), the size of each data set could be increased for
further research to enhance the generalization of the results even further.

Another recommendation that can be given for further research is to perform the third validation
phase from Wieringa (2013) called “field testing”. This last validation phase is left out during this
research due to time constraints (see section 1.4), since it would require that the artifacts had actually
been applied in practice on a large scale. During this research the focus lied on demonstrating that it
was possible to specify a business rule set once which could then be transformed into various
implementation dependent languages. This is one of the four positive effects of the research for the
Dutch Tax and Customs Administration. As already described in section 1.4, the three other positive
effects could not be verified during this research due to time constraints. Future research could
investigate the effect of the usage of the CNL and pattern catalogue with respect to the amount of
errors, the time spent and the corresponding amount of money. Moreover, it would be very valuable
to investigate the automatic transformation by means of a parser, which is now demonstrated on
paper. Since the overall aim of the field testing phase is to see if an artifact would produce the desired
effects when it will be transferred to the market, it is advisable to perform this phase during further
research to be able to verify the other three positive effects. In addition, when this field testing phase
would be performed, also some relevant quality attributes could be verified. According to Hevner et
al. (2004), different quality attributes can be appointed to evaluate the devised artifacts of a design-
science research like: consistency, reliability, usability, etc. Considering the pattern catalogue as one
of the artifacts of this design-science research, especially the mutual exclusiveness and completeness
criteria are taken into account. Further research could for example reveal if the pattern catalogue is
usable for business rule authors.

The gained knowledge and resulting artifacts of this research can serve as basis for future research to
further improve or extend the created CNL and pattern catalogue. However, this knowledge could also
be used and expanded by investigating if these artifacts are applicable for other types of business rules
besides derivation business rules.

Thesis: Patterns for Derivation Business Rules

96

8 Conclusion
In the last ten to fifteen years, an abundance of different business rules management systems and
related business rule languages are created to capture and manage derivation business rules.
Derivation business rules are “expressions that evaluate facts, by means of a calculation or
classification, leading to a new fact”. The abundance of available systems and languages, and the fact
that they differ to a large extent regarding their expressive power, causes two problems. The first
problem organizations may encounter are difficulties in selecting an appropriate business rules
management system or business rule language, since no set of criteria exists which could be used as
reference point for comparison. This can for instance lead to the selection of a language with a too
extensive or too low level of expressive power. A second problem can arise when organizations have
selected a language tailored to a particular system and then add or transfer to a new business rules
management system. In this case, the entire business rule set has to be re-specified to be readable for
this new system. This process can be very inefficient, expensive and error prone. These problems are
formulated by means of the following problem statements:

 “How can the problem be addressed that no tailored set of formal requirements exist, which
can be used to verify if a business rule language is able to formulate derivation rules?”

 “How can the problem be addressed that business rules need to be re-modeled to comply with
a new implementation dependent language?”

To address the above mentioned problems, this research has been conducted for which the following
main research question was formulated: “How can derivation business rules be specified precisely and
implementation independent?” In order to answer this question, four sub-questions need to be
answered first. The first sub-question is:

SQ1: “Which notation forms can be used to specify derivation business rules?”

Various business rule notation forms to specify derivation business rules are available. Two main
formalism types exist: implementation dependent and implementation independent languages. The
first type complies with a specific grammar which can only be processed by a particular system,
resulting in the occurrence of the second problem statement. In contrast, an implementation
independent language could by applied in multiple environments but is generally not precise enough
to be directly executable. To address this gap, a controlled natural language (CNL) emerged from
literature as applicable notation form. A CNL can comply with a high precision level and remain
implementation independent at the same time. On the other hand, a CNL can resemble a natural
language. In order to create a CNL for specifying derivation business rules, the fundamental constructs
(i.e. building blocks of the language) and an underlying formal grammar needed to be established
which is done by answering the next two sub-questions:

SQ2: “Which fundamental constructs are necessary to construct a precise derivation business rule?”

In literature, the following 15 fundamental constructs were identified which are necessary to be able
to construct a precise derivation business rule: 1) Conclusion part, 2) Condition part, 3) Modal Claim
Type, 4) Construct, 5) Connective, 6) Expression, 7) Subject, 8) Quantifier, 9) Relation, 10) Ground, 11)
Classification, 12) Propositional Operator, 13) Value, 14) Mathematical Operator, and 15)
Mathematical Function. This set of fundamental constructs responds to the first deliverable of the
research. This deliverable could be used as reference point to assess and compare the precision level
of business rules languages, addressing the first mentioned research problem.

Subsequently, it was significant to understand how these fundamental constructs were related by
answering the third sub-question:

Thesis: Patterns for Derivation Business Rules

97

SQ3: “Which grammar rules should be enforced on the fundamental constructs to specify precise
derivation business rules?”

Answering sub-question three, resulted in the establishment of a set of 40 grammar rules, which
corresponds to the second deliverable. Given the precision requirement of the specification language,
the grammar rules comply with a specific type of grammar namely a formal grammar. The aim of the
grammar rules is to impose the syntax of the fundamental constructs for precision reasons. The
fundamental constructs together with the grammar rules were incorporated in a meta-model.

To validate the fundamental constructs and grammar rules (i.e. meta-model), three validation rounds
have been performed. During the first validation round, 37 business rule patterns from five different
existing pattern catalogues were mapped onto the fundamental constructs. During the second
validation round, 150 business rules from 11 different cases were mapped onto the fundamental
constructs. In the third validation round, implemented business rules and components of six business
rules management systems were mapped. The three validation rounds revealed that: 1) no
fundamental constructs lacked, and 2) no fundamental construct was superfluous. In conclusion, this
showed that all the selected fundamental constructs were significant to retain.

By answering the first three sub-questions, the necessary notation form, fundamental constructs and
grammar rules were identified to specify precise derivation business rules. To make the envisioned
CNL even more restrictive and precise, sub-question four was answered:

SQ4: “Which patterns can be identified for specifying derivation business rules?”

From the literature study and validation rounds, repeating elements and their relations came
apparent. This knowledge together with the meta-model was used to devise the third deliverable: a
set of 19 different patterns. One requirement to create these patterns was mutual exclusiveness,
which implies that a business rule author can only select one pattern for each specific business rule.

To check the completeness of the created pattern catalogue, it was validated if all the business rules
from the case study company data set could be re-specified by means of the patterns. The validation
showed that each of the 45 business rules from the Dutch Tax and Customs Administration could be
specified with the pattern catalogue.

Previously mentioned sub-questions were specified according to the following main research question:

RQ: “How can derivation business rules be specified precisely and implementation independent?”

The answer to the main research question is by using a CNL which consists of: 1) a set of fundamental
constructs, 2) an underlying formal grammar, 3) a meta-model, and 4) a set of patterns.

In conclusion, the intended purpose of this research has been achieved through the creation of a CNL
and pattern catalogue which can be used to specify a set of derivation business rules once, and which
allows automatic transformation of the business rule set to be applicable for different business rule
engines. The created artifacts are considered as the basis for further research.

Thesis: Patterns for Derivation Business Rules

98

References

Aikawa, T., Schwartz, L., King, R., Corston-Oliver, M., & Lozano, C. (2007). Impact of Controlled

Language on Translation Quality and Post-editing in a Statistical Machine Translation
Environment. Proceedings of the MT Summit XI, Copenhagen, 1-7.

Alexander, C., Ishikiwa, S., & Silverstein, M. (1977). A Pattern Language: Towns, Buildings,
Construction. Oxford: Oxford University Press.

Bastun, Y. (2015). Decision Model: “Vehicle Insurance – UServ Auto Insurance Product Derby” using
OpenL Tablets (v1.0). https://dmcommunity.wordpress.com/challenge/: EIS Group.

BBC. (2015). Vehicle Insurance – UServ Product Derby. from http://www.businessrulesforum.com/
Blumberg, B., Cooper, D. R., & Schindler, P. S. (2011). Business Research Methods. London: McGraw-

Hill Education.
Boyer, J., & Mili, H. (2011). Agile Business Rules Development: Process, Architecture and JRules

Examples. Heidelberg: Springer.
British Council. (2015). English Grammar. from https://learnenglish.britishcouncil.org/en/english-

grammar/
Bryman, A., & Bell, E. (2003). Business Research Methods. Oxford: Oxford University Press.
Caron, F., Vanthienen, J., & Baesens, B. (2013). Comprehensive Rule-Based Compliance Checking and

Risk Management with Process Mining. Decision Support Systems, 54(3), 1357-1369.
Ceri, S., & Fraternal, P. (1997). Designing Database Applications with Objects and Rules: the IDEA

Methodology. New York: Addison-Wesley.
Chamberlin, D. D., & Boyce, R. F. (1974). SEQUEL: A Structured English Query Language. Proceedings

of the 1974' ACM SIGFIDET Workshop on Data Description, Access and Control, Ann Arbor,
Michigan, 249-264.

Chervak, S., Drury, C. G., & Ouellette, J. P. (1996). Field Evaluation of Simplified English for Aircraft
Workcards. Proceedings of the Tenth FAA/AAM Meeting on Human Factors in Aviation
Maintenance and Inspection, Alexandria, Virginia, 1-16.

Clark, P., Harrison, P., Jenkins, T., Thompson, J. A., & Wojcik, R. H. (2005). Acquiring and Using World
Knowledge Using a Restricted Subset of English. Proceedings of the Eighteenth International
FLAIR Conference, Florida, 506-511.

Dijkstra, E. W. (1982). On the role of scientific thought. In E. W. Dijkstra (Ed.), Selected Writings on
Computing: A Personal Perspective (pp. 60-66). New York: Springer.

DM Community. (2015). Challenges. from https://dmcommunity.wordpress.com/
do Prado Leite, J. C. S., & Leonardi, M. C. (1998). Business Rules as Organizational Policies.

Proceedings of the Ninth International Workshop on Software Specification and Design, Ise-
Shima, 68-76.

Earley, J. (1970). An Efficient Context-Free Parsing Algorithm. Communications of the ACM, 13(2), 94-
102.

FAA. (2014). Air Traffic Control (Order JO 7110.65T).
https://www.faa.gov/documentLibrary/media/Order/ATC.pdf: Federal Aviation
Administration (FAA).

Feldman, J. (2011). Preparing a Tax Return (Release 6.1).
http://openrules.com/pdf/Tutorial.Dialog1040EZ.pdf: OpenRules.

Feldman, J. (2014). Determine Patient Therapy. (Release 6.3.0).
http://openrules.com/pdf/Tutorial.DecisionPatientTherapy.pdf: OpenRules.

Feldman, J. (2015). Decision Model “Vehicle Insurance – UServ Product Derby” (v1.0).
https://dmcommunity.wordpress.com/challenge/: OpenRules.

Gallier, J. (2011). The Theory of Languages and Computation. Pennsylvania: University of
Pennsylvania.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements of Reusable
Object-oriented Software. Boston: Addison-Wesley.

http://www.businessrulesforum.com/
http://www.faa.gov/documentLibrary/media/Order/ATC.pdf:
http://openrules.com/pdf/Tutorial.Dialog1040EZ.pdf:
http://openrules.com/pdf/Tutorial.DecisionPatientTherapy.pdf:

Thesis: Patterns for Derivation Business Rules

99

Ghose, A., & Koliadist, G. (2007). Auditing Business Process Compliance. Proceedings of the Fifth
International Conference on Service Oriented Computing, Vienna, 169-180.

Google. (2015). Voice Actions. from https://developers.google.com/voice-actions/
Graham, I. (2006). Business Rules Management and Service Oriented Architecture. New York: Wiley.
Hallett, C., Scott, D., & Power, R. (2007). Composing Questions through Conceptual Authoring.

Computational Linguistics, 33(1), 105-133.
Hay, D., & Healy, K. (2000). Defining Business Rules: What are they really? (Revision 1.3).

http://www.businessrulesgroup.org/first_paper/BRG-whatisBR_3ed.pdf: the Business Rules
Group.

Herbst, H. (1996). Business Rules in Systems Analysis: A Meta-model and Repository System.
Information Systems, 21(2), 147-166.

Herbst, H. (1997). Business Rule-Oriented Conceptual Modeling. Heidelberg: Physica-Verlag.
Hevner, A., March, S., Park, J., & Ram, S. (2004). Design Science in Information Systems Research. MIS

Quarterly, 28(1), 75-105.
Hoppenbrouwers, S. (2011). RuleSpeak grammar. Radboud University Nijmegen.
HP. (2015). IF Construct. from

h21007.www2.hp.com/portal/download/files/unprot/fortran/docs/lrm/lrm0143.htm
Humayoun, M., & Raffalli, C. (2010). Mathnat -Mathematical Text in a Controlled Natural Language.

Research in Computing Science — Special issue: Natural Language Processing and its
Applications, 46, 293-307.

Iacob, M. E., Lankhorst, M. M., & Schrier, A. (2012). Patterns for Agility. In M. M. Lankhorst (Ed.),
Agile Service Development (pp. 95-110). Heidelberg: Springer.

Inglesant, P., Sasse, M. A., Chadwick, D., & Shi, L. L. (2008). Expressions of Expertness: the Virtuous
Circle of Natural Language for Access Control Policy Specification. Proceedings of the Fourth
Symposium on Usable Privacy and Security, Pittsburgh, 77-88.

Johnson, E. (2000). Talking across Frontiers. Proceedings of the International Conference on European
Cross Border Cooperation: Lessons for and from Ireland, Belfast, 1-23.

Kramer, M. I. (1997). Business Rules: Automating Business Policies and Practices. Distributed
Computing Monitor.

Kuhn, T. (2010). Controlled English for Knowledge Representation. Doctoral Thesis. Zurich: University
of Zurich.

Kuhn, T. (2013). A Survey and Classification of Controlled Natural Languages. Computational
Linguistics, 40(1), 1-50.

Lee, A. S., & Baskerville, R. L. (2003). Generalizing Generalizability in Information Systems Research.
Information Systems Research, 14(3), 221-243.

Liao, S.-H. (2004). Expert System Methodologies and Applications - A Decade Review from 1995 to
2004. Expert Systems with Applications, 28(1), 93-103.

Ligêza, A. (2006). Logical Foundations for Rule-Based Systems. Heidelberg: Springer.
Mahoney, J. (1999). Nominal, Ordinal, and Narrative Appraisal in Macrocausal Analysis. American

Journal of Sociology, 104(4), 1154-1196.
March, S. T., & Smith, G. F. (1995). Design and Natural Science Research on Information Technology.

Decision Support Systems, 15(4), 251-266.
Massachusetts Senate. (2003). Massachusetts Legislative Drafting Language (Legislative Drafting and

Legal Manual 3rd edition). www.legislationline.org/documents/id/3642: Massachusetts
Senate.

Mays, N., & Pope, C. (1995). Qualitative Research: Rigour and Qualitative Research. BMJ, 311(6997),
109-112.

McGrath, J. E. (1981). Dilemmatics: The Study of Research Choices and Dilemmas. American
Behavioral Scientist, 25(2), 179-210.

Mill, J. (1906). A system of Logic. London: Longmans Green.

http://www.businessrulesgroup.org/first_paper/BRG-whatisBR_3ed.pdf:
http://www.legislationline.org/documents/id/3642:

Thesis: Patterns for Derivation Business Rules

100

Mitamura, T., & Nyberg, E. (1995). Controlled English for knowledge-based MT: Experience with the
KANT system. Proceedings of the Sixth International Conference on Theoretical and
Methodological Issues in Machine Translation, Leuven, 146-147.

Morgan, T. (2002). Business Rules and Information Systems: Aligning IT with Business Goals. London:
Addision-Wesley.

Necas, I. (2011). BDD as a Specification and QA Instrument. Master Thesis, Masaryk University, Brno.
Nelson, M. L., Peterson, J., Rariden, R. L., & Sen, R. (2010). Transitioning to a business rule

management service model: Case studies from the property and casualty insurance industry.
Information & Management, 47(1), 30-41.

O’Brien, S., & Roturier, J. (2007). How Portable are Controlled Language Rules? A Comparison of Two
Empirical MT Studies. Proceedings of the MT Summit XI, Copenhagen, 345-352.

Object Management Group. (2008). Semantics of Business Vocabulary and Business Rules (SBVR)
(v1.0). http://www.omg.org/spec/SBVR/1.0/PDF: Object Management Group.

Object Management Group. (2013). Semantics of Business Vocabulary and Business Rules (SBVR)
(v1.2). http://www.omg.org/spec/SBVR/1.2/: Object Management Group.

Ortiguela, R. (2015). Challenge: Vehicle Insurance – UServ Product Derby (v1.0). Decide.
Parish, M. (2014). Rule Modeling Case Study Generic Diabetic Monitoring (v1.0).

https://dmcommunity.wordpress.com/case-studies/#DiabeticPatientMonitoring: Progress
Software.

Parish, M. (2015). USERV Auto Insurance Rule Model in Corticon (v1.0).
https://dmcommunity.wordpress.com/challenge: Progress Software.

Park, C., & Choi, I. (2004). Management of business process constraints using BPTrigger. Computers in
Industry, 55(1), 29-51.

Pease, A., & Li, J. (2010). Controlled English to Logic Translation. In R. Poli, M. Healy & A. Kameas
(Eds.), Theory and Applications of Ontology: Computer Applications (pp. 245-258).
Netherlands: Springer.

Pesic, M., & van der Aalst, W. M. (2006). A Declarative Approach for Flexible Business Processes
Management. Proceedings of the Fourth International Business Process Management
Conference, Vienna, Austria, 169-180.

Peters, S., & Westerståhl, D. (2006). Quantifiers in Language and Logic. Oxford: Oxford University
Press.

Pool, J. (2006). Can Controlled Languages Scale to the Web? Proceedings of the Fifth International
Workshop on Controlled Language Applications, Cambridge, 1-12.

Power, R. (2012). OWL Simplified English: a finite-state language for ontology editing. In T. Kuhn & N.
E. Fuchs (Eds.), Controlled Natural Language (pp. 44-60). Zurich: Springer.

Ranta, A. (2014). Embedded Controlled Languages. In B. Davis, K. Kaljurand & T. Kuhn (Eds.),
Controlled Natural Language (pp. 1-7). Switzerland: Springer.

Recker, J. C., Indulska, M., Rosemann, M., & Green, P. (2005). Do Process Modelling Techniques Get
Better? A Comparative Ontological Analysis of BPMN. Proceedings of the Sixteenth
Australasian Conference on Information Systems, Sydney, 1-10.

Rosca, D., Greenspan, S., Feblowitz, M., & Wild, C. (1997). A Decision Making Methodology in
Support of the Business Rules Lifecycle. Proceedings of the Third IEEE International
Symposium on Requirements Engineering, 236-246.

Ross, R. G. (1987). Entity Modeling: Techniques and Application. Boston: Database Research Group.
Ross, R. G. (2000). What Are Fact Models and Why Do You Need Them (Part 1). Business Rules

Journal, 1(5).
Ross, R. G. (2000). What Are Fact Models and Why Do You Need Them (Part 2). Business Rules

Journal, 1(7).
Ruffino, J. R. (1982). Coping with Machine Translation. In V. Lawson (Ed.), Practical Experience of

Machine Translation (pp. 57-60). Amsterdam: North-Holland Publishing Company.
Sangers-van Cappellen, G. (2014). RegelSpraak (v3.2). Belastingdienst.

http://www.omg.org/spec/SBVR/1.0/PDF:
http://www.omg.org/spec/SBVR/1.2/:

Thesis: Patterns for Derivation Business Rules

101

Schadd, M. (2015). Case Study: Vehicle Insurance UServ Product Derby (v1.0).
https://dmcommunity.wordpress.com/challenge: Blueriq.

Segal, G. (2015). UServ Product Derby Case Study (v1.0).
https://dmcommunity.wordpress.com/challenge: Sapiens Decision.

Selfridge, P. G., Waters, R. C., & Chikofsky, E. J. (1993). Challenges to the field of reverse engineering.
Proceedings of the Working Conference on Reverse Engineering, Baltimore, 144-150.

Shubert, S., Spyridakis, J. H., Holmback, H. K., & Coney, M. B. (1995). The Comprehensibility of
Simplified English in Procedures. Journal of Technical Writing and Communication, 25(4),
347-369.

Sun, Y., Demirezen, Z., Mernik, M., Gray, J., & Bryant, B. (2008). Is My DSL a Modeling or
Programming Language? Proceedings of the Second International Workshop on Domain-
Specific Program Development, Nashville, 1-5.

Temnikova, I. (2010). Cognitive Evaluation Approach for a Controlled Language Post--Editing
Experiment. Proceedings of the Seventh International Conference on Language Resources and
Evaluation, Malta, 3485-3490.

The Free Dictionary. (2015). definition modality. from http://www.thefreedictionary.com/modality
Van der Aalst, W. (1996). Three Good Reasons for Using a Petri-net-based Workflow Management

System. Proceedings of the International Working Conference on Information and Process
Integration in Enterprises, Cambridge, 179-201.

Van der Aalst, W., Ter Hofstede, A., & Weske, M. (2003). Business Process Management: A Survey.
Proceedings of the First International Conference on Business Process Management,
Eindhoven, Nederland, 1-12.

Van der Aalst, W., & Ter Hofstede, A. H. (2005). YAWL: yet another workflow language. Information
Systems, 30(4), 245-275.

Van der Aalst, W., Ter Hofstede, A. H., Kiepuszewski, B., & Barros, A. P. (2003). Workflow Patterns.
Distributed and parallel databases, 14(1), 5-51.

Van Deursen, A., & Klint, P. (2002). Domain-Specific Language Design Requires Feature Descriptions.
Journal of Computing and Information Technology, 10(1), 1-17.

Van Deursen, A., Klint, P., & Visser, J. (2000). Domain-Specific Languages: An Annotated Bibliography.
Sigplan Notices, 35(6), 26-36.

Verschuren, P., & Doorewaard, H. (2007). Het ontwerpen van een onderzoek. Amsterdam: Lemma.
Versendaal, J. (1991). Separation of the User Interface and Application. Doctoral Thesis. Rotterdam:

Technische Universiteit Delft.
Von Halle, B. (1994). Back to Business Rule Basics. Database Programming & Design, 15-18.
Von Halle, B. (2001). Business Rules Applied: Building Better Systems Using the Business Rules

Approach. New York: Wiley.
Von Halle, B., & Goldberg, L. (2009). The Decision Model: A Business Logic Framework Linking

Business and Technology. London: CRC Press.
Wan-Kadir, W., & Loucopoulos, P. (2003). Relating Evolving Business Rules to Software Design.

Proceedings of the International Conference on Software Engineering Research and Practice,
Las Vegas, USA, 1-5.

Wan-Kadir, W., & Loucopoulos, P. (2004). Relating Evolving Business Rules to Software Design.
Journal of Systems Architecture, 50(7), 367-382.

Wand, Y., & Weber, R. (1993). On the ontological expressiveness of information systems analysis and
design grammars. Information Systems Journal, 3(4), 217-237.

Weske, M. (2007). Business Process Management - Concepts, Languages, Architectures. New York:
Springer.

Wieringa, R. (2013). Empirical research methods for technology validation: Scaling up to practice.
Journal of Systems and Software, 95, 19-31.

Wohed, P., Van der Aalst, W. M., Dumas, M., Ter Hofstede, A. H., & Russell, N. (2006). On the
Suitability of BPMN for Business Process Modelling. Proceedings of the Fourth International
Conference on Business Process Management, Vienna, 161-176.

http://www.thefreedictionary.com/modality

Thesis: Patterns for Derivation Business Rules

102

Wong, P. C., Whitney, P., & Thomas, J. (1999). Visualizing Association Rules for Text Mining.
Proceedings of the IEEE Symposium on Information Visualization, San Francisco, 1-5.

Zoet, M. (2014). Methods and Concepts for Business Rules Management. Doctoral Thesis. Utrecht:
Universiteit Utrecht.

Zoet, M., Ravesteyn, P., & Versendaal, J. (2011). A Structured Analysis of Business Rules
Representation Languages: Defining a Normalization Form. Proceedings of the Twentieth
Australasian Conference on Information Systems, Sydney, 1-10.

Zoet, M., & Versendaal, J. (2013). Business Rules Management Solutions Problem Space: Situational
Factors. Proceedings of the Seventeenth Pacific Asia Conference on Information Systems, Jeju,
1-13.

Zur Muehlen, M., & Indulska, M. (2010). Modeling languages for business processes and business
rules: A representational analysis. Information Systems, 35(4), 379-390.

Thesis: Patterns for Derivation Business Rules

103

Appendix 1: Business Rule Classification Schemes
The business rule classification schemes that are found in literature are listed in the table below.

Source Business rule
class / type

Description Sub-class /
type

Description

Boyer &
Mili
(2011)

Structural rules

“Structural rules define the
terms used by the business
in expressing their business
rules and the relationships
(facts) among those terms.
These include the vocabulary
used in rule authoring.”

Operational rules “Operational rules are the
rules that implement
business decision logic. They
are the individual statements
of business logic that are
evaluated by the rule engine
to determine the decision
result.”

ProcessFlow “Process flow
routing rules direct
the movement
through a process
flow or workflow.”

Inference “Inference rules
create new
objects or facts
which may bring the
engine to re-
evaluate some other
rule’s eligibility.”

Guideline “Rules that does not
reject the
transaction; they
merely warn about
an undesirable
circumstance.”

Mandatory
constraints

“Rules that reject
the attempted
business
transaction.”

Computation “Computation rules
implement
mathematical
equations and assign
values to variables
according to a set of
given criteria.”

ActionEnabler “Action enabler
rules modify, create,
or delete terms or
association between
terms, or execute
methods. These
rules test conditions
and upon finding

Thesis: Patterns for Derivation Business Rules

104

Source Business rule
class / type

Description Sub-class /
type

Description

them true, initiate
another business
event, message,
business process or
other activity.”

ECA “Rules where the
condition is
evaluated once the
occurrence of an
event is found.”

SBVR
(OMG,
2013)

Structural
(definitional) rule

“Rule that is a claim of
necessity.”

Operative
(behavioral)
business rule

“Business rule that is a claim
of obligation.”

RuleSpe
ak
(OMG,
2008)

Structural rules “prescribe criteria for how
the business chooses to
organize (“structure”) its
business semantics.

Operative
business rules

“focus directly on the
propriety of conduct in
circumstances (business
activity) where willful or
uninformed actions can fall
outside the boundaries of
behavior deemed
acceptable. Unlike structural
rules, operative rules can be
violated directly.“

Von
Halle
(2001)

Mandatory
constraints

“ a complete statement that
expresses an unconditional
circumstance that must be
true or not true for the
business event to
complete with integrity.”

Guidelines “A complete statement that
expresses a warning about a
circumstance that should be
true or not true. A guideline
does not force the
circumstance to be true or
not true, but merely warns
about it, allowing the human
to make the decision.”

Action-enablers “a complete statement that
tests conditions and upon
finding them true, initiates

Thesis: Patterns for Derivation Business Rules

105

Source Business rule
class / type

Description Sub-class /
type

Description

another business event,
message, or other activity.
That is, an action enabler
initiates a new action
external to the scope of the
system or increment under
study.”

Computations “a complete statement that
provides an algorithm for
arriving at the value of a
term where such algorithms
may include sum, difference,
product, quotient, count,
maximum, minimum,
average.”

Inferences “a complete statement that
tests conditions and upon
finding them true,
establishes the truth of a
new fact.”

Hay &
Healy
(2000)

Structural
assertion

“a defined concept or a
statement of a fact that
expresses some aspect of
the structure of an
enterprise. This
encompasses both terms
and the facts assembled
from these terms.”

Action assertion

“A statement of a constraint
or condition that limits or
controls the actions of the
enterprise.”

Derivation

“A statement of knowledge
that is derived from other
knowledge in the business.”

Zoet
(2014)

Structural
Sequencing

“A Structural Sequencing
Rule (SSR) is defined as a rule
that influences the structural
execution position of process
elements. Each business
process has an underlying
blueprint indicating the
sequence by which activities,
events and decision
elements (process elements)
are executed.”

Actor Inclusion

“An Actor Inclusion Rule
(AIR) defines a rule that

Thesis: Patterns for Derivation Business Rules

106

Source Business rule
class / type

Description Sub-class /
type

Description

stating which process
element an actor can or
cannot execute.”

Transactional
Sequencing

“A Transactional Sequence
Rule (TSR) defines a rule that
influences the decision of an
individual process instance
based on the case at hand.”

Data Condition

“Data Condition Rule (DCR)
defines: 1) what data
needs to be stored, 2) how
the data is stored, 3) how
long the data is stored, 4)
and which authorizations are
required concerning the
access and modification of
the data.”

Outcome Control “An Outcome Control Rule
(OCR) is a rule that
defines how results from
process elements
(undesirable or desirable)
occurring in business
processes are identified.”

Wan-
Kadir &
Loucop
oulos
(2004)

Constraint “A Constraint rule is used to
check for the result
of the execution of business
event on a Subject.”

Mandatory
Constraint

“A statement that
specifies a
mandatory feature
(business behaviour
or characteristics)
that must be
satisfied by a
business entity.”

Guideline “A statement that
specifies an optional
feature that should
be satisfied by a
business entity
Upon the violation
of this rule, system
only raises a warning
instead of rejecting
the transaction.”

Action Assertion “An action assertion rule is a
statement that concerns a
dynamic aspect of the
business. It specifies the
action that should be
activated on the occurrence

Enabler “Enabler rule
enables or disables a
rule, operation,
process, or
procedure according
to certain
conditions. It also

Thesis: Patterns for Derivation Business Rules

107

Source Business rule
class / type

Description Sub-class /
type

Description

of a certain event or on
satisfaction of a certain
condition.”

creates and deletes
data under specified
conditions.”

Copier “Copier is concerned
with the use of
existing data or
value, for example,
using a certain value
to set the initial
value of an object’s
attributes or to
determine the way
on how to present
existing data.”

Trigger “Trigger is a rule
that causes
operation, process,
procedure, or rule to
be executed when
the given condition
is true or on the
occurrence of a
certain event.”

Derivation “Derivation is a rule that
derives a new fact based
on the existing terms and
facts.”

Computation

“A statement that
derives a value using
an algorithm.”

Inference

“A statement that
derives a fact using
logical deduction or
induction.”

Leite &
Leonard
i (1998)

Functional rules “Functional rules are general
policies regarding
organization functionality.”

Non-functional
business rules

“Non-functional business
rules describe policies
regarding constraints that
the organization must
follow.”

Macrosystem
rules

“This type of rule
describes policies
that are related to
the specific
characteristics of a
Universe of
Discourse. It relates
Universe of
Discourse concepts
in order to impose a
constraint on the
organization.”

Thesis: Patterns for Derivation Business Rules

108

Source Business rule
class / type

Description Sub-class /
type

Description

Quality rules

“Quality rules are
demands of an
organization on the
characteristics of its
processes or
products. They
usually reflect
general policies
related to quality
standard or quality
expectations of an
organization.”

Caron
et al.
(2013)

Cardinality-based
rules

“Business rules that restrict
the number of allowed
instances of a specific
process element type in a
specific process instance.”

Coexistence rules

“Business rules that restrict
the coexistence of process
elements of different types
over the execution of a
specific process instance.”

Dynamic data-
driven rules

“Business rules that specify
the influence of specific data
elements and their value on
the occurrence of process
elements in a specific
process instance.”

Relative time
rules

“Business rules that focus on
specifying a time restriction
on process elements relative
to certain points in a process
execution, for example the
start of a process or the
completion of a specific
activity.”

Static property
rules

“Business rules that deal
with specifying a specific
property for a particular type
of process element at a
predefined process state.”

Thesis: Patterns for Derivation Business Rules

109

Appendix 2: Detailed Explanation Pens
The table below includes a description of each of the five ranks per PENS dimension. This ranking is
adapted from Kuhn (2013).

Dimension Rank / Degree Explanation / criteria

Precision Imprecise
languages (P1)

 “Virtually every sentence of these languages is vague to
a certain degree.

 Without taking context into account, most sentences of
a certain complexity are ambiguous.

 The automatic interpretation of such languages is ‘AI-
complete’.

 Require a human reader to check syntax and meaning
of Statements.“

Less imprecise
languages (P2)

 “Less ambiguity and vagueness than in natural
languages.

 Interpretation depends much less on context.

 Restrict the use and/or the meaning of a wide range of
the ambiguous, vague, or context-dependent
constructs.

 Restrictions are not sufficient to make automatic
interpretation reliable.

 No formal (i.e., mathematically precise) underpinning.”

Reliably
interpretable
languages (P3)

 “Heavily restricted syntax (not necessarily formally
defined).

 Reliable automatic interpretation.

 Logical underpinning or formal conceptual scheme to
represent semantics.

 No fully formalized mapping of sentences to their
semantic representations.

 External background knowledge, heuristics, or user
feedback are required.”

Deterministically
interpretable
languages (P4)

 “Fully formal on the syntactic level (can be defined by a
formal grammar).

 Parse deterministically to a formal logic representation
(or a small closed set of all possible representations).

 Representations may be underspecified: they may
require certain parameters, background axioms,
external resources, or heuristics to enable sensible
deductions.”

Languages with
fixed semantics
(P5)

 “Fully formal and fully specified on syntactic and
semantic levels.

 Each text has exactly one meaning, which can be
automatically derived.

 The circumstances in which inferences hold or do not
hold are fully defined.

 No heuristics or external resources are necessary.”

Expressiveness

Inexpressive
languages (E1)

 “No universal quantification, or

Thesis: Patterns for Derivation Business Rules

110

 No relations of arity greater than 1 (e.g., binary
relations).”

Languages with
low
expressiveness
(E2)

 “Universal quantification over individuals (possibly
limited).

 Relations of arity greater than 1 (e.g., binary relations).

 Are not E3-languages.”

Languages with
medium
expressiveness
(E3)

 “General rule structures: if{then statements with
multiple universal quantification that can target all
argument positions of relations.

 Negation (strong negation or negation as failure).

 Have all features of E2.

 Are not E4-languages.”

Languages with
high
expressiveness
(E4)

 “General second-order universal quantification over
concepts and relations.

 Have all features of E3.

 Are not E5-languages.”

Languages with
maximal
expressiveness
(E5)

 “Can express anything that can be communicated
between two human beings.

 Cover any statement in any type of logic”

Naturalness

Unnatural
languages (N1)

 “Languages that do not look natural.

 Heavy use of symbol characters, brackets, or unnatural
keywords.

 Use of natural words or phrases as names for certain
entities might be possible, but is neither required nor
further defined.

NOTE: These are not CNLs according to Kuhn’s definition.”

Languages with
dominant
unnatural
elements (N2)

 “Natural language words or phrases are an integral part.

 Dominated by unnatural elements or unnatural.
statement structure.

 Natural elements do not connect in a natural way to
each other.

 Untrained readers fail to intuitively understand the
statements.

NOTE: These are not CNLs according to Kuhn’s definition.”

Languages with
dominant natural
elements (N3)

 “Natural elements are dominant over unnatural ones.

 General structure corresponds to natural language
grammar.

 Sentences cannot be considered valid natural
sentences.

 Untrained readers do not recognize the statements as
well-formed sentences of their language, but are
nevertheless able to intuitively understand them to a
substantial degree.”

Thesis: Patterns for Derivation Business Rules

111

Languages with
natural sentences
(N4)

 “Valid natural sentences.

 If natural flow is maintained, minor deviations are
permitted, including text color, indentation,
hyphenation, and capitalization.

 Untrained readers recognize the statements as
sentences of their language and are able to correctly
understand their essence.

 Single sentences have a natural flow, but not complete
texts.”

Languages with
natural texts (N5)

 “Complete texts and documents can be written in a
natural style and with a natural text flow.

 For spoken languages, complete dialogs can be
produced with a natural flow and a natural combination
of speech acts.”

Simplicity

Very complex
languages (S1)

 “Have the complexity of natural languages.

 Cannot be described in an exact and comprehensive
manner.”

Languages
without
exhaustive
descriptions (S2)

 “Considerably simpler than natural languages.

 A significant part of the complex structures are
eliminated or heavily restricted.

 Too complex to be described in an exact and
comprehensive manner.

 Usually described by restrictions on a given natural
language.”

Languages with
lengthy
descriptions (S3)

 “Can be defined in an exact and comprehensive
manner.

 Requires more than ten pages.”

Languages with
short descriptions
(S4)

 “Exact and comprehensive description requires more
than one page but not more than ten pages.”

Languages with
very short
descriptions (S5)

 “Can be described in an exact and comprehensive
manner on a single page.”

Thesis: Patterns for Derivation Business Rules

112

Appendix 3: Formal Grammar
In the table below, all grammar rules of the underlying formal grammar of the CNL are listed.

Derivation business rule

Derivation business rule – 1..1 –
Conclusion Part

A Derivation business rule consists of exactly one
Conclusion Part

Derivation business rule – 0..* – Condition
Part

A Derivation business rule consists of zero or more
Condition Part(s)

Conclusion Part

Conclusion Part – 1..1 – Derivation
business rule

A Conclusion Part belongs to exactly one Derivation
business rule

Conclusion Part – 0..1 – Modal Claim
Type

A Conclusion Part consists of zero or one Modal
Claim Type

Conclusion Part – 1..1 – Expression

A Conclusion Part consists of exactly one Expression

Conclusion Part – 1..* – Subject

A Conclusion Part consists of one or more Subject(s)

Condition Part

Condition Part – 1..1 – Derivation
business rule

A Condition Part belongs to exactly one Derivation
business rule

Condition Part – 1..* – Construct

A Condition Part consists of one or more Construct(s)

Condition Part – 0..* – Connective

A Condition Part consists of zero or more
Connective(s)

Condition Part – 1..* – Expression

A Condition Part consists of one or more
Expression(s)

Condition Part – 1..* – Subject

A Condition Part consists of one or more Subject(s)

Subject

Subject – 1..1 – Conclusion Part

A Subject belongs to exactly one Conclusion Part

Subject – 1..1 – Condition Part

A Subject belongs to exactly one Condition Part

Subject – 1..1 – Quantifier

A Subject is associated with exactly one Quantifier

Subject – 0..1 – Relation

A Subject is associated with zero or one Relation

Subject – 1..1 – Classification

A Subject belongs to exactly one Classification

Subject – 1..1 – Ground

A Subject belongs to exactly one Ground

Thesis: Patterns for Derivation Business Rules

113

Quantifier

Quantifier – 1..1 – Subject A Quantifier is associated with exactly one Subject

Relation

Relation – 2..2 – Subject A Relation is associated with exactly two Subjects

Expression

Expression – 1..1 – Conclusion Part

A Expression belongs to exactly one Conclusion Part

Expression – 1..1 – Condition Part A Expression belongs to exactly one Condition Part

An Expression is either a Ground or a Classification

Classification

Classification – 1..1 – Propositional
Operator

A Classification consists of exactly one Propositional
Operator

Classification – 0..* – Value

A Classification consists of zero or more Value(s)

Classification – 0..* – Subject

A Classification consists of zero or more Subject(s)

A Classification consists of at least one Value or of at least one Subject

Ground

Ground – 1..* – Mathematical Operator

A Ground consists of one or more Mathematical
Operator(s)

Ground – 0..* – Mathematical Function

A Ground consists of zero or more Mathematical
Function(s)

Ground – 0..* – Value

A Ground consists of zero or more Value(s)

Ground – 0..* – Subject

A Ground consists of zero or more Subject(s)

A Ground consists of at least one Subject or of at least one Value

Value

Value – 1..1 – Classification

A Value belongs to exactly one Classification

Value – 1..1 – Ground

A Value belongs to exactly one Ground

Propositional Operator

Propositional Operator – 1..1 –
Classification

A Propositional Operator belongs to exactly one
Classification

Mathematical Operator

Mathematical Operator – 1..1 – Ground A Mathematical Operator belongs to exactly one
Ground

Thesis: Patterns for Derivation Business Rules

114

Mathematical Function

Mathematical Function – 1..1 – Ground A Mathematical Function belongs to exactly one
Ground

Modal Claim Type

Modal Claim Type – 1..1 – Conclusion
Part

A Modal Claim Type belongs to exactly one
Conclusion Part

Construct

Construct – 1..1 – Condition Part

A Construct belongs to exactly one Condition Part

Connective

Connective – 1..1 – Condition Part

A Connective belongs to exactly one Condition Part

A Connective must be included to connect two or more Conditions

Thesis: Patterns for Derivation Business Rules

115

Appendix 4: Pattern Catalogue
In this appendix, first an explanation is provided in Table 1 for each of the used symbols and format of
the patterns. Subsequently, Table 2 lists instantiations for three place holders which are applicable for
every pattern. One of these place holders, the mathematical operator, has additional instantiations
that are only applicable for specific ground rule patterns. These instantiations are listed in a separate
table above the ground rule patterns which indicates for which of the patterns it can be used.

On the next page, all 19 patterns of the pattern catalogue are defined and for each pattern an example
is given. The patterns are divided in five main categories based on the subdivision as shown in Figure
5.1: 1) Conclusion part – classification rule patterns, 2) Conclusion part – ground rule patterns, 3)
Condition part – classification rule patterns, 4) Condition part – ground rule patterns, and 5) Condition
part – merge condition rule patterns.

Symbol / Format Explanation

< >

Angle brackets enclose placeholders. Most of these placeholders are
fundamental constructs, which are defined in Chapter 3. The angle
brackets refer to components that are fixed when defining a specific type
and part of a business rule. They correspond to placeholders since the
instantiation can vary. Sometimes, only a fixed set of instantiations is
possible. In that case, the list of options is provided along with the pattern
set. Otherwise, the business rule author is free to choose its own
instantiation.

< .. >
Angle brackets including two dots indicate a placeholder that the business
rule author can replace at its discretion.

< individual pattern >
Angle brackets including ‘individual pattern’ indicate where in the
condition part a business rule author can incorporate one of the ten
individual rule patterns.

[]
Square brackets enclose optional pattern parts. Besides the brackets, the
optional pattern parts are made italic.

()
Parentheses enclose an instantiation of a fundamental construct. In other
words, an instantiation for a < placeholder >.

n *
n* indicates that the adjacent pattern part can repeatedly be included in
the business rule.

|
Vertical bars separate alternative pattern parts from which the business
rule author can select one option.

Table 1: Explanation used symbols/format

Instantiations for place holders

<Quantifier> <Relation> <Mathematical Operator>

A /an of plus + (addition)

The minus - (substraction)

Each divide / (division)

 times * (multiplication)

Table 2: instantiations for three place holders

Thesis: Patterns for Derivation Business Rules

116

1.1 CONCLUSION PART – classification rule patterns

NR Patternname Pattern

1. Equate with
VALUE

<Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]

[< Modal Claim Type >] (is equated to | be equated to) < Value >

Example:

The status of the client must (be equated to) gold member

Example 2:

The maximum amount of leave days must (be equated to) 26

2. Equate with

SUBJECT

<Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]

[< Modal Claim Type >] (is equated to | be equated to) <Quantifier> <Subject>

[n* <Relation> <Quantifier> <Subject>]

Example:

The VAT rate must (be equated to) the VAT rate of the current year

1.2 CONCLUSION PART – ground rule patterns

NR Patternname Pattern

3. Equate with
Basic Ground

<Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]

[< Modal Claim Type >] (is computed as | be computed as)

<Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>] |

<Value> | <Mathematical Function> n* <Quantifier> <Subject> [n* <Relation>

<Quantifier> <Subject>]

 [n* <Mathematical Operator>

<Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]

| <Value> | <Mathematical Function> n* <Quantifier> <Subject>

[n* <Relation> <Quantifier> <Subject>]]

Example:

The total amount of profit of a declarant must (be computed as)

 the total amount of income of the declarant minus

 the total amount of costs of the declarant

Example 2:

The amount of income (is computer as)

the SUM of the total amount of sold units of each order multiplied by the unit price

Thesis: Patterns for Derivation Business Rules

117

2.1 CONDITION PART – classification rule patterns

NR Patternname Pattern

4. Consistency
check - one
VALUE

(If) <Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]

(is [not] equal to) < Value>

Example:

If the country of the applicant (is equal to) NL

Example 2:

If the risk factor (is not equal to) 10

5. Consistency
check - multiple
VALUES

(If) <Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]

(is [not] equal to <….> of the following values) :

- < Value >

- < Value >

- [n * < Value >]

Example:

If the nationality of the applicant (is equal to one of the following values) :

- 'CK'

- 'GT'

- 'ID'

- 'MM'

- 'NR'

- 'NG'

- 'PH'

Example 2:

If the amount of ordered items (is equal to one of the following values) :

- 10

- 50

6. Consistency
check - one
SUBJECT

(If) <Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]

(is [not] equal to) <Quantifier> <Subject> [n* <Relation> <Quantifier>

<Subject>]

Example:

If the age of the applicant (is equal to) the minimum age of application

7. Consistency
check - multiple
SUBJECTs

(If) <Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]

(is [not] equal to <….> of the following values) :

- < Quantifier> < Subject> [n* <Relation> <Quantifier> <Subject>]

- < Quantifier> < Subject> [n* <Relation> <Quantifier> <Subject>]

- [n * < Quantifier> < Subject> [[n* <Relation> <Quantifier> <Subject>]]

Example:

If the date (is not equal to one of the following values):

- The end date of the registration

- The current date

Thesis: Patterns for Derivation Business Rules

118

2.2 CONDITION PART – ground rule patterns

Instantiations for place holder <Mathematical Operator>

is more than (applicable for all ground rule patterns 8 till 10)

is less than (applicable for all ground rule patterns 8 till 10)

is more than or equal to (applicable for all ground rule patterns 8 till 10)

Is less than or equal to (applicable for all ground rule patterns 8 till 10)

is earlier than (only applicable for pattern 9)

is earlier than or equal to (only applicable for pattern 9)

is later than or equal to (only applicable for pattern 9)

is later than (only applicable for pattern 9)

is [not] (only applicable for pattern 10)

is [not] equal to (only applicable for pattern 10)

NR Patternname Pattern

8. Comparison
with VALUE

(If) <Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]

 <Mathematical Operator> < Value >

Example:

If the annually income of an applicant is less than 34500

9. Comparison
with SUBJECT

(If) <Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]

 <Mathematical Operator> <Quantifier> <Subject> [n* <Relation>

<Quantifier> <Subject>]

Example:

If the amount of rental days is more than the maximum amount of rental days

10. Comparison
with Basic
Ground

(If) <Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]

<Mathematical Operator>

<Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>] |

<Value> | <Mathematical Function> n* <Quantifier> <Subject> [n* <Relation>

<Quantifier> <Subject>]

[n* <Mathematical Operator>

<Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>] | <Value> |

<Mathematical Function> n* <Quantifier> <Subject> [n* <Relation>

<Quantifier> <Subject>]]

Example:

If the registration year of a customer is more than the current year minus 5

Example 2:

If the total amount of subscriptions is less than or equal to the SUM of each subscription plus 1

Thesis: Patterns for Derivation Business Rules

119

2.3 CONDITION PART – merge condition rule patterns

NR Patternname Pattern

11. Conjunction (If) <Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]
(meets all of the following conditions) :

 < Individual pattern >

 < Individual pattern >

 [< Individual pattern >]

Example:
If the applicant (meets all of the following conditions) :

 If the nationality of the applicant (is equal to) Dutch

 If the employment_history_in_the_Netherlands of the applicant is less than 3

 If the residence_in_the_Netherlands of the applicant is less than 3

12. Disjunction (If) <Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]
(meets at least < .. > of the following conditions) :

 < Individual pattern >

 < Individual pattern >

 [< Individual pattern >]

Example:
If the person (meets at least one of the following conditions) :

 If the driving license of the person (is equal to) TRUE

 If the ID number of the person (is equal to) filled

13. Disjunction
within
Conjunction

(If) <Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]
(meets all of the following conditions):

 (If) <Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]

(meets at least < .. > of the following conditions):
1. < Individual pattern >

2. < Individual pattern >

3. [< Individual pattern >]

 < Individual pattern >

 [< Individual pattern >]

Example:
If the person (meets all of the following conditions) :

 If the person (meets at least one of the following conditions) :

1. If the age at 31-01-fiscalyear of the person is more than the AOW age

2. If the age at 31-12-fiscalyear of the person (is equal to) the AOW age

 If the marital status of the person (is equal to) married

14. Conjunction
within
Disjunction

(If) <Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]
(meets at least < .. > of the following conditions):

 (If) <Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]

(meets all of the following conditions):
1. < Individual pattern >

2. < Individual pattern >

Thesis: Patterns for Derivation Business Rules

120

3. [< Individual pattern >]

 < Individual pattern >

 [< Individual pattern >]

Example:
If the prospect (meets at least one of the following conditions):

 If the prospect (meets all of the following conditions):

1. If the age of the prospect is more than 11

2. If the age of the prospect is less than 26

3. If the area code of the residence of the prospect (is equal to) 020

 If the profession of the prospect is equal to business analyst

15. Exact Amount (If) <Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]
(meets exactly < .. > of the following conditions):

 < Individual pattern >

 < Individual pattern >

 [< Individual pattern >]

Example:
If the job applicant (meets exactly three of the following conditions):

 If the work experience of the job applicant is more than 5

 If the driving license of the job applicant (is equal to) TRUE

 If the field of expertise of the job applicant (is equal to) ICT

 If the field of expertise of the job applicant (is equal to) CRM

 If the field of expertise of the job applicant (is equal to) BRM

16. Exact amount
within
Conjunction

(If) <Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]
(meets all of the following conditions):

 (If) <Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]

(meets exactly < .. > of the following conditions):
1. < Individual pattern >

2. < Individual pattern >

3. [< Individual pattern >]

 < Individual pattern >

 [< Individual pattern >]

Example:
If the product (meets all of the following conditions) :

 If the product (meets exactly one of the following conditions) :

1. If the price of the product is more than 50

2. If the category of the product (is equal to) hardware

 If the return date of the product is earlier than the expiration date of the warranty period

Thesis: Patterns for Derivation Business Rules

121

17. Exact amount
within
Disjunction

(If) <Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]
(meets at least < .. > of the following conditions) :

 (If) <Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]

(meets exactly < .. > of the following conditions):
1. < Individual pattern >

2. < Individual pattern >

3. [< Individual pattern >]

 < Individual pattern >

 [< Individual pattern >]

Example:
If the client (meets at least one of the following conditions) :

 If the client (meets exactly one of the following conditions):

1. If the latest invoice date of the client is later than or equal to 2014

2. If the membership type of the client (is equal to) private

 If the solvency of the client (is equal to) high

18. Conjunction
within Exact
amount

(If) <Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]
(meets exactly < .. > of the following conditions):

 (If) <Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]

(meets all of the following conditions):
1. < Individual pattern >

2. < Individual pattern >

3. [< Individual pattern >]

 < Individual pattern >

 [< Individual pattern >]

Example:
If the policyholder (meets exactly one of the following conditions) :

 If the policyholder (meets all of the following condition):

1. If the amount of due invoices of the policyholder (is equal to) 0

2. If the duration of the insurance of the policyholder is more than or equal to 15

 If the insurance type of the policyholder (is equal to) platinum

19. Disjunction
within exact
amount

(If) <Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]
(meets exactly < .. > of the following conditions)

 (If) <Quantifier> <Subject> [n* <Relation> <Quantifier> <Subject>]

(meets at least < .. > of the following conditions):
1. < Individual pattern >

2. < Individual pattern >

3. [< Individual pattern >]

 < Individual pattern >

 [< Individual pattern >]

Example:
If the customer (meets exactly one of the following conditions) :

 If the customer (meets at least one of the following conditions):

1. If the marital status of the customer (is equal to) single

2. If the gender of the customer (is equal to) female

 If the amount of children of the customer is more than 0

Thesis: Patterns for Derivation Business Rules

122

Appendix 5: Validation Round 1 – Pattern Level View
Due to the large size of the validation file, only a snapshot is included in this appendix. The entire

appendix can be found on the enclosed USB-stick.

Thesis: Patterns for Derivation Business Rules

123

Appendix 6: Validation Round 2 – Instance Level View
Due to the large size of the validation file, only a snapshot is included in this appendix. The entire

appendix can be found on the enclosed USB-stick.

Thesis: Patterns for Derivation Business Rules

124

Appendix 7: Validation Round 3 – Implementation Dependent View
Due to the large size of the validation file, only a snapshot is included in this appendix. The entire

appendix can be found on the enclosed USB-stick.

Thesis: Patterns for Derivation Business Rules

125

Appendix 8: Decomposed Case Study Business Rule Set
This appendix includes the entire set of decomposed business rules used for the validation of the
pattern catalogue. These business rules are provided by the case study company and originate from
the act called the “Zorgverzekeringswet” abbreviated as (ZVW). The tables below provide the original
business rules of the case study business rule set, and the decomposed version of the nested business
rules. The decomposition resulted into 45 atomic business rules.

6008 Bepalen ZVW-plicht en IB dagen 2013

1. Bepalen hulpdatums begin- en einddatum premieplicht (H1 en H2):

Als [indicatie geheel jaar geen Zvw plicht] (a) = Ja (Geen AWBZ)
Dan [begindatum premieplicht Zvw] (H1) = [leeg]

en
[einddatum premieplicht Zvw] (H2) = [leeg]

Anders (wel Zvw-plicht)
Als [begindatum afwijkende periodeplicht Zvw] (c) is niet gelijk aan [leeg]

(bepalen begindatums)
Dan [begindatum premieplicht Zvw] (H1) =

[begindatum afwijkende periodeplicht Zvw] (c)
 Anders [begindatum premieplicht Zvw] (H1) = 1-1-belastingjaar (b)
Einde als
Als [einddatum afwijkende periodeplicht Zvw] (d) is niet gelijk aan [leeg]

(bepalen einddatums)
Dan [einddatum premieplicht Zvw] (H2) =

[einddatum afwijkende periodeplicht Zvw] (d)
Anders [einddatum premieplicht Zvw] (H2) =

31-12-belastingjaar (b)
Einde Als

Einde Als

1. Transformed for specification

1a

Als [indicatie geheel jaar geen Zvw plicht] (a) = Ja
Dan [begindatum premieplicht Zvw] (H1) = [leeg]

1b
Als [indicatie geheel jaar geen Zvw plicht] (a) = Ja
Dan [einddatum premieplicht Zvw] (H2) = [leeg]

1c

Als [begindatum afwijkende periodeplicht Zvw] (c) is niet gelijk aan [leeg]
Dan [begindatum premieplicht Zvw] (H1) = [begindatum afwijkende periodeplicht Zvw] (c)

1d

Als [begindatum afwijkende periodeplicht Zvw] (c) is gelijk aan [leeg]
Dan [begindatum premieplicht Zvw] (H1) = 1-1-belastingjaar (b)

1e

Als [einddatum afwijkende periodeplicht Zvw] (d) is niet gelijk aan [leeg]
Dan [einddatum premieplicht Zvw] (H2) = [einddatum afwijkende periodeplicht Zvw] (d)

1f

Als [einddatum afwijkende periodeplicht Zvw] (d) is gelijk aan [leeg]
Dan [einddatum premieplicht Zvw] (H2) = 31-12-belastingjaar (b)

Thesis: Patterns for Derivation Business Rules

126

2. Aantal premiedagen ZVW (U1):

Als [begindatum premieplicht Zvw] (H1) = [leeg]
Dan [aantal dagen ZVW-plicht] (U1) = 0

Anders
Als [datum ingang actief militair] (e)

en
[datum beëindiging actief-militair] (f) aanwezig (gevuld)

Dan [aantal dagen ZVW-plicht] (U1) =
(maand uit [einddatum premieplicht Zvw] (H2) min
 maand uit [begindatum premieplicht Zvw] (H1)) maal
30 plus
(dag uit [einddatum premieplicht Zvw] (H2) min
 dag uit [begindatum premieplicht Zvw] (H1)) min
(maand uit [datum beëindiging actief-militair] (f) min
 maand uit [datum ingang actief militair] (e)) maal
30 min
(dag uit [datum beëindiging actief-militair] (f) min
dag uit [datum ingang actief militair] (e))

Anders [aantal dagen ZVW-plicht] (U1) =
(maand uit [einddatum premieplicht Zvw] (H2) min
 maand uit [begindatum premieplicht Zvw] (H1)) maal
30 plus
(dag uit [einddatum premieplicht Zvw] (H2) min
 dag uit [begindatum premieplicht Zvw] (H1))

Einde als
Als [aantal dagen ZVW-plicht] (U1) is kleiner dan 0
Dan [aantal dagen ZVW-plicht] (U1) = 0
Einde als

Einde als

2. Transformed for specification

2a

Als [begindatum premieplicht Zvw] (H1) = [leeg]
Dan [aantal dagen ZVW-plicht] (U1) = 0

2b

Als datum ingang actief militair] (e) is aanwezig (gevuld)
 en

[datum beëindiging actief-militair] (f) is aanwezig (gevuld)

Dan [aantal dagen ZVW-plicht] (U1) =

(maand uit [einddatum premieplicht Zvw] (H2) min
 maand uit [begindatum premieplicht Zvw] (H1)) maal
30 plus
(dag uit [einddatum premieplicht Zvw] (H2) min
 dag uit [begindatum premieplicht Zvw] (H1)) min
(maand uit [datum beëindiging actief-militair] (f) min
 maand uit [datum ingang actief militair] (e)) maal
30 min
(dag uit [datum beëindiging actief-militair] (f) min
dag uit [datum ingang actief militair] (e))

Thesis: Patterns for Derivation Business Rules

127

2c

Als [datum ingang niet actief militair] (e) is afwezig (leeg)
en
[datum beëindiging actief-militair] (f) is afwezig (leeg)

Dan [aantal dagen ZVW-plicht] (U1) =
(maand uit [einddatum premieplicht Zvw] (H2) min
 maand uit [begindatum premieplicht Zvw] (H1)) maal
30 plus
(dag uit [einddatum premieplicht Zvw] (H2) min
 dag uit [begindatum premieplicht Zvw] (H1))

2d

Als [aantal dagen ZVW-plicht] (U1) is kleiner dan 0
 Dan [aantal dagen ZVW-plicht] (U1) = 0

3. Aantal IB-dagen (U2):

[aantal IB-dagen] (U2) =

(maand uit [datum beëindigen (soort) belastingplicht] (h) min
 maand uit [datum ingang (soort) belastingplicht] (g)) maal 30 plus
(dag uit [datum beëindigen (soort) belastingplicht] (h) min
 dag uit [datum ingang (soort) belastingplicht] (g))

3. Not transformed

7500 Bepalen bijdrage-inkomen ZVW aanslag 2013

4. Bijdrage-inkomen ZVW zonder alimentatie (H1):

[bijdrage-inkomen ZVW zonder alimentatie] (H1) :=
[belastbare winst uit onderneming] (a) min
[in winst begrepen loon] (g) min
[winst deelvisser] (j) plus
[totaal buitenlandse inkomsten uit dienstbetrekking] (b) plus
[netto resultaat uit overige werkzaamheden] (c) plus
[saldo periodieke uitkeringen na aftrekbare kosten] (d)

4. Not transformed for specification

Thesis: Patterns for Derivation Business Rules

128

5. Bijdrage-inkomen ZVW aanslag (U1):

ALS [vorig jaar alimentatie overgangstarief] (f) = ‘ja’
DAN [bijdrage-inkomen ZVW aanslag] (U1) :=

[bijdrage-inkomen ZVW zonder alimentatie] (H1)
ANDERS

[bijdrage-inkomen ZVW aanslag] (U1) :=
[bijdrage-inkomen ZVW zonder alimentatie] (H1) plus

 [saldo alimentatie na aftrekbare kosten] (e)
EINDE-ALS

ALS [bijdrage-inkomen ZVW aanslag] (U1) is kleiner dan 0
DAN [bijdrage-inkomen ZVW aanslag] (U1) := 0
EINDE-ALS

5. Transformed for specification

5a
ALS [vorig jaar alimentatie overgangstarief] (f) = ‘ja’
DAN [bijdrage-inkomen ZVW aanslag] (U1) := [bijdrage-inkomen ZVW zonder alimentatie] (H1)

5b
ALS [vorig jaar alimentatie overgangstarief] (f) = ‘nee’
DAN [bijdrage-inkomen ZVW aanslag] (U1) := [bijdrage-inkomen ZVW zonder alimentatie] (H1) plus

[saldo alimentatie na aftrekbare kosten] (e)

5c
ALS [bijdrage-inkomen ZVW aanslag] (U1) is kleiner dan 0
DAN [bijdrage-inkomen ZVW aanslag] (U1) := 0

6. Niet relevante VA ZVW

ALS indicatie ZVW aanslag verwijderen is gevuld
ALS indicatie ZVW aanslag verwijderen = ‘J’

 DAN bijdrage-inkomen ZVW aanslag (U1) := 0
EINDE-ALS

EINDE-ALS

6. Transformed for specification

ALS indicatie ZVW aanslag verwijderen is gevuld
en

ALS indicatie ZVW aanslag verwijderen = ‘J’
DAN bijdrage-inkomen ZVW aanslag (U1) := 0

Thesis: Patterns for Derivation Business Rules

129

7520 Bepalen bijdrage ZVW aanslag 2013

7. Bijdrage ZVW aanslag (U1):

[bijdrage ZVW aanslag] (U1) :=

[toegepast bijdrage-inkomen ZVW] (a) maal
[percentage verlaagd tarief] (b)

7. Not transformed for specification

7565 Toetsing art. 9.4 ZVW 2013

8. Bepalen toepassen artikel 9.4 (U2):

ALS [artikel 9.4] (b) = [leeg]: (aanslag vaststellen)
ALS [bijdrage ZVW aanslag] (a) is groter dan (berekende ZVW boven aanslaggrens)

[aanslag-grens artikel 9.4] (d)
DAN [toepassing artikel 9.4] (U2) := 21 (aanslag opleggen)
Anders: [toepassing artikel 9.4] (U2) := 35 (NIHIL-aanslag)
Einde-als

Anders:
ALS [artikel 9.4] (b) = “0” (handmatig toegekend, alleen voor

uitzonderingen)
dan: [toepassing artikel 9.4] (U2) := 35 (NIHIL-aanslag)

Anders:
ALS [artikel 9.4] (b) = “3” (termijn van 3 jaar is overschreden)
dan: [toepassing artikel 9.4] (U2) := 0 (te betalen bedrag: resulteert in

signaalpost)
Einde-Als

8. Transformed for specification

8a:

 ALS [artikel 9.4] (b) = [leeg]:
 en

ALS [bijdrage ZVW aanslag] (a) is groter dan [aanslag-grens artikel 9.4] (d)
DAN [toepassing artikel 9.4] (U2) := 21

8b:
 ALS [artikel 9.4] (b) = [leeg]:
 en
 ALS [bijdrage ZVW aanslag] (a) is kleiner of gelijk aan [aanslag-grens artikel 9.4] (d)

DAN: [toepassing artikel 9.4] (U2) := 35

8c:
ALS [artikel 9.4] (b) = “0”
DAN [toepassing artikel 9.4] (U2) := 35

8d:

ALS [artikel 9.4] (b) = “3”
DAN [toepassing artikel 9.4] (U2) := 0

Thesis: Patterns for Derivation Business Rules

130

9. Vaststellen bedrag aanslag (U1):

ALS [toepassing artikel 9.4] (U2) = 35
DAN [bedrag aanslag] (U1) := 0 (NIHIL-aanslag)
 [indicatie-nihil-aanslag] (U3) := ‘ja’
Anders: [bedrag aanslag] (U1) :=

[bijdrage ZVW aanslag] (a)
(toepassing artikel 9.4 = 0 of 21: aanslag wordt in principe opgelegd)

Einde-Als

9. Transformed for specification

9a
ALS [toepassing artikel 9.4] (U2) = 35
DAN [bedrag aanslag] (U1) := 0

9b
ALS [toepassing artikel 9.4] (U2) = 35
DAN [indicatie-nihil-aanslag] (U3) := ‘ja’

9c:
ALS [toepassing artikel 9.4] (U2) ≠ 35
DAN [bedrag aanslag] (U1) := [bijdrage ZVW aanslag] (a)

10. Saldo aanslag voor heffingsrente en boete (U4):

[saldo aanslag voor heffingsrente en boete] (U4) := [bedrag aanslag] (U1) min [eerdere aanslag(en)] (f)

10. Not transformed for specification

Thesis: Patterns for Derivation Business Rules

131

Bepalen toegepast bijdrage-inkomen ZVW aanslag 2013b

11. Gecorrigeerd bijdrage-inkomen ZVW (U1):

ALS [correctie-inkomen ZVW aanslag] (e) is gevuld
DAN

[gecorrigeerd bijdrage-inkomen aanwezig] (H1) := ‘J’
[gecorrigeerd bijdrage-inkomen ZVW] (U1) := [bijdrage-inkomen ZVW aanslag] (a) min

ABS [correctie-inkomen ZVW aanslag] (e)
ANDERS

[gecorrigeerd bijdrage-inkomen aanwezig] (H1) := ‘N’

EIND-ALS

ALS [gecorrigeerd bijdrage-inkomen ZVW] (U1) is kleiner dan 0
DAN [gecorrigeerd bijdrage-inkomen ZVW] (U1) is gelijk aan 0

11. Transformed for specification

11a.
ALS [correctie-inkomen ZVW aanslag] (e) is gevuld
DAN [gecorrigeerd bijdrage-inkomen aanwezig] (H1) := ‘J’

11b.
ALS [correctie-inkomen ZVW aanslag] (e) is gevuld
DAN [gecorrigeerd bijdrage-inkomen ZVW] (U1) := [bijdrage-inkomen ZVW aanslag] (a) min

ABS [correctie-inkomen ZVW aanslag] (e)

11c.
ALS [correctie-inkomen ZVW aanslag] (e) is leeg
DAN [gecorrigeerd bijdrage-inkomen aanwezig] (H1) := ‘N’

11d.
ALS [gecorrigeerd bijdrage-inkomen ZVW] (U1) is kleiner dan 0
DAN [gecorrigeerd bijdrage-inkomen ZVW] (U1) is gelijk aan 0

Thesis: Patterns for Derivation Business Rules

132

12. Herleid bijdrage-inkomen ZVW aftrekmethode (U3):

[Herleid bijdrage-inkomen aftrek aanwezig] (H3) := ‘N’

ALS [bijdrage-inkomen ZVW aanslag buitenland] (d) is gevuld
DAN [herleid bijdrage-inkomen aftrek aanwezig] (H3) := ‘J’

ALS [gecorrigeerd bijdrage-inkomen aanwezig] (H1) := ‘J’
DAN [herleid bijdrage-inkomen ZVW aftrekmethode] (U3) :=

[gecorrigeerd bijdrage-inkomen ZVW] (U1) min
[bijdrage-inkomen ZVW aanslag buitenland] (d)

ANDERS
[herleid bijdrage-inkomen ZVW aftrekmethode] (U3) :=

[bijdrage-inkomen ZVW aanslag] (a) min
[bijdrage-inkomen ZVW aanslagbuitenland](d)

EINDE-ALS
EINDE-ALS

12. Transformed for specification

12a.
[Herleid bijdrage-inkomen aftrek aanwezig] (H3) := ‘N’

12b.

ALS [bijdrage-inkomen ZVW aanslag buitenland] (d) is gevuld
DAN [herleid bijdrage-inkomen aftrek aanwezig] (H3) := ‘J’

12c.

ALS [gecorrigeerd bijdrage-inkomen aanwezig] (H1) := ‘J’
DAN [herleid bijdrage-inkomen ZVW aftrekmethode] (U3) :=

[gecorrigeerd bijdrage-inkomen ZVW] (U1) min
[bijdrage-inkomen ZVW aanslag buitenland] (d)

12d.

ALS [gecorrigeerd bijdrage-inkomen aanwezig] (H1) := ‘N’
DAN [herleid bijdrage-inkomen ZVW aftrekmethode] (U3) :=

[bijdrage-inkomen ZVW aanslag] (a) min
[bijdrage-inkomen ZVW aanslagbuitenland](d)

Thesis: Patterns for Derivation Business Rules

133

13. Toegepast maximum bijdrage-inkomen ZVW (U4):

[toegepast maximum bijdrage-inkomen ZVW] (U4) :=

[maximum bijdrage-inkomen ZVW] (g)

ALS [aantal dagen ZVW-plicht] (c) is kleiner dan

[aantal dagen in belastingjaar]
EN
([einde ZVW door overlijden] (f) = ‘N’
OF
 [einde ZVW door overlijden] (f) = <Leeg>)

DAN [toegepast maximum bijdrage-inkomen ZVW] (U4) :=
([aantal dagen ZVW-plicht] (c) delen door

 [aantal dagen in belastingjaar]) maal
 [maximum bijdrage-inkomen ZVW] (g)

EINDE-ALS

13. Transformed for specification

13a.
[toegepast maximum bijdrage-inkomen ZVW] (U4) := [maximum bijdrage-inkomen ZVW] (g)

13b.
ALS [aantal dagen ZVW-plicht] (c) is kleiner dan

[aantal dagen in belastingjaar]
EN
([einde ZVW door overlijden] (f) = ‘N’
OF
 [einde ZVW door overlijden] (f) = <Leeg>)

DAN [toegepast maximum bijdrage-inkomen ZVW] (U4) :=
([aantal dagen ZVW-plicht] (c) delen door

 [aantal dagen in belastingjaar]) maal
 [maximum bijdrage-inkomen ZVW] (g)

14. Heffingsruimte bijdrage-inkomen ZVW (U5):

[heffingsruimte bijdrage-inkomen ZVW] (U5) :=

[toegepast maximum bijdrage-inkomen ZVW] (U4) min
[bijdrage-inkomen ZVW inhouding] (h)

ALS [heffingsruimte bijdrage-inkomen ZVW] (U5) is kleiner dan 0
DAN [heffingsruimte bijdrage-inkomen ZVW] (U5) := 0
EINDE-ALS

14. Transformed for specification

14 a:
[heffingsruimte bijdrage-inkomen ZVW] (U5) :=

[toegepast maximum bijdrage-inkomen ZVW] (U4) min
[bijdrage-inkomen ZVW inhouding] (h)

14b:
ALS [heffingsruimte bijdrage-inkomen ZVW] (U5) is kleiner dan 0
DAN [heffingsruimte bijdrage-inkomen ZVW] (U5) := 0

Thesis: Patterns for Derivation Business Rules

134

15. Toegepast bijdrage-inkomen ZVW (U6):

[toegepast bijdrage-inkomen ZVW] (U6) :=

[heffingsruimte bijdrage-inkomen ZVW] (U5)

ALS [gecorrigeerd bijdrage-inkomen aanwezig] (H1) := ‘J’
ALS [gecorrigeerd bijdrage-inkomen ZVW] (U1) is kleiner dan

[toegepast bijdrage-inkomen ZVW] (U6)
DAN [toegepast bijdrage-inkomen ZVW] (U6) :=

[gecorrigeerd bijdrage-inkomen ZVW] (U1)
EINDE-ALS

EINDE-ALS

ALS [herleid bijdrage-inkomen aftrek aanwezig] (H3) := ‘J’

ALS [herleid bijdrage-inkomen ZVW aftrekmethode] (U3) is kleiner dan
[toegepast bijdrage-inkomen ZVW] (U6)

DAN [toegepast bijdrage-inkomen ZVW] (U6) :=
[herleid bijdrage-inkomen ZVW aftrekmethode] (U3)

EINDE-ALS
EINDE-ALS

ALS [gecorrigeerd bijdrage-inkomen aanwezig] (H1) = ‘N’ en
 [herleid bijdrage-inkomen aftrek aanwezig] (H3) = ‘N’

ALS [bijdrage-inkomen ZVW aanslag] (a) is kleiner dan
[heffingsruimte bijdrage-inkomen ZVW] (U5)

DAN [toegepast bijdrage-inkomen ZVW] (U6) :=
[bijdrage-inkomen ZVW aanslag] (a)

 EINDE-ALS
EINDE-ALS

ALS [toegepast bijdrage-inkomen ZVW] (U6) is groter dan
[maximum bijdrage-inkomen ZVW] (g)

DAN [toegepast bijdrage-inkomen ZVW] (U6) := [maximum bijdrage-inkomen ZVW] (g)
EINDE-ALS

15. Transformed for specification

15a.
[toegepast bijdrage-inkomen ZVW] (U6) := [heffingsruimte bijdrage-inkomen ZVW] (U5)

15b.
ALS [gecorrigeerd bijdrage-inkomen aanwezig] (H1) := ‘J’
 en
ALS [gecorrigeerd bijdrage-inkomen ZVW] (U1) is kleiner dan

[toegepast bijdrage-inkomen ZVW] (U6)
DAN [toegepast bijdrage-inkomen ZVW] (U6) := [gecorrigeerd bijdrage-inkomen ZVW] (U1)

15c.
ALS [herleid bijdrage-inkomen aftrek aanwezig] (H3) := ‘J’
 en
ALS [herleid bijdrage-inkomen ZVW aftrekmethode] (U3) is kleiner dan

[toegepast bijdrage-inkomen ZVW] (U6)
DAN [toegepast bijdrage-inkomen ZVW] (U6) := [herleid bijdrage-inkomen ZVW aftrekmethode] (U3)

15d.
ALS [gecorrigeerd bijdrage-inkomen aanwezig] (H1) = ‘N’
 en
 [herleid bijdrage-inkomen aftrek aanwezig] (H3) = ‘N’

Thesis: Patterns for Derivation Business Rules

135

 en
ALS [bijdrage-inkomen ZVW aanslag] (a) is kleiner dan [heffingsruimte bijdrage-inkomen ZVW] (U5)
DAN [toegepast bijdrage-inkomen ZVW] (U6) := [bijdrage-inkomen ZVW aanslag] (a)

15e.
ALS [toegepast bijdrage-inkomen ZVW] (U6) is groter dan [maximum bijdrage-inkomen ZVW] (g)
DAN [toegepast bijdrage-inkomen ZVW] (U6) := [maximum bijdrage-inkomen ZVW] (g)

16. Niet relevante VA ZVW

ALS indicatie ZVW aanslag verwijderen is gevuld

ALS indicatie ZVW aanslag verwijderen = J
 DAN gecorrigeerd bijdrage-inkomen ZVW (U1) = 0
 herleid bijdrage-inkomen ZVW aftrekmethode (U3) = 0
 heffingsruimte bijdrage-inkomen ZVW (U4) = 0
EINDE-ALS
EINDE-ALS

16. Transformed for specification

16a.

ALS indicatie ZVW aanslag verwijderen is gevuld
 en
ALS indicatie ZVW aanslag verwijderen = J

DAN gecorrigeerd bijdrage-inkomen ZVW (U1) = 0

16b.
ALS indicatie ZVW aanslag verwijderen is gevuld
 en
ALS indicatie ZVW aanslag verwijderen = J

DAN herleid bijdrage-inkomen ZVW aftrekmethode (U3) = 0

16c.
ALS indicatie ZVW aanslag verwijderen is gevuld
 en
ALS indicatie ZVW aanslag verwijderen = J

DAN heffingsruimte bijdrage-inkomen ZVW (U4) = 0

Thesis: Patterns for Derivation Business Rules

136

Appendix 9: Validation Patterns – Instance Level View
This appendix includes the validation of the patterns by means of specifying the 45 atomic business
rules of the case study data set with the pattern catalogue.

BR 1: Bepalen hulpdatums begin- en einddatum premieplicht (H1 en H2)

Original business rule NR Business rule in pattern

1a
Als [indicatie geheel jaar geen Zvw plicht] (a)
 = Ja

Dan [begindatum premieplicht Zvw] (H1) =
 [leeg]

< De > < begindatum premieplicht Zvw (H1) >

(wordt gelijk gesteld aan) < leeg >

(indien) < de > < indicatie geheel jaar geen Zvw

plicht (a) > (gelijk is aan) < Ja >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 1 (equate with value)

and pattern 4 (consistency check one value)

 “Dan” is omitted, only for readability.

Original business rule NR Business rule in pattern

1b
Als [indicatie geheel jaar geen Zvw plicht] (a)
 = Ja

Dan [einddatum premieplicht Zvw] (H2) =
 [leeg]

< De > < einddatum premieplicht Zvw (H2) >

(wordt gelijk gesteld aan) < leeg >

(indien) < de > < indicatie geheel jaar geen Zvw

plicht (a) > (gelijk is aan) < Ja >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 1 (equate with value)

and pattern 4 (consistency check one value)

 “Dan” is omitted, only for readability.

Thesis: Patterns for Derivation Business Rules

137

Original business rule NR Business rule in pattern

1c
Als [begindatum afwijkende periodeplicht
 Zvw] (c) is niet gelijk aan [leeg]

Dan [begindatum premieplicht Zvw] (H1) =
 [begindatum afwijkende periodeplicht
 Zvw] (c)

< De > < begindatum premieplicht Zvw (H1) >

(wordt gelijk gesteld aan) < de > < begindatum

afwijkende periodeplicht Zvw (c) >

(indien) < de > < begindatum afwijkende

periodeplicht Zvw (c) > (niet gelijk is aan) < leeg >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 2 (equate with subject)

and pattern 4 (consistency check one value)

 “Dan” is omitted, only for readability.

Original business rule NR Business rule in pattern

1d
Als [begindatum afwijkende periodeplicht
 Zvw] (c) is gelijk aan [leeg]

Dan [begindatum premieplicht Zvw] (H1) =
 1-1-belastingjaar (b)

< De > < begindatum premieplicht Zvw (H1) >

(wordt gelijk gesteld aan)

 <1 - 1 - belastingjaar (b) >

(indien) < de > < begindatum afwijkende

periodeplicht Zvw (c) > (gelijk is aan) < leeg >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 1 (equate with value)

and pattern 4 (consistency check one value)

 “Dan” is omitted, only for readability.

Original business rule NR Business rule in pattern

1e

Als [einddatum afwijkende periodeplicht
 Zvw] (d) is niet gelijk aan [leeg]

Dan [einddatum premieplicht Zvw] (H2) =
 [einddatum afwijkende periodeplicht
 Zvw] (d)

< De > < einddatum premieplicht Zvw (H2) >

(wordt gelijk gesteld aan) < de > < einddatum

afwijkende periodeplicht Zvw (d) >

(indien) < de > < einddatum afwijkende

periodeplicht Zvw (d) > (niet gelijk is aan) < leeg >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 2 (equate with subject)

and pattern 4 (consistency check one value)

 “Dan” is omitted, only for readability.

Thesis: Patterns for Derivation Business Rules

138

Original business rule NR Business rule in pattern

1f
Als [einddatum afwijkende periodeplicht
 Zvw] (d) is gelijk aan [leeg]

Dan [einddatum premieplicht Zvw] (H2) =
 31-12-belastingjaar (b)

< De > < einddatum premieplicht Zvw (H2) >

(wordt gelijk gesteld aan)

< 31 - 12 - belastingjaar (b) >

(indien) < de > < einddatum afwijkende

periodeplicht Zvw (d) > (gelijk is aan) < leeg >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 1 (equate with value)

and pattern 4 (consistency check one value)

 “Dan” is omitted, only for readability.

BR2: Aantal premiedagen ZVW (U1):

Original business rule NR Business rule in pattern

2a
Als [begindatum premieplicht Zvw] (H1) =
 [leeg]

Dan [aantal dagen ZVW-plicht] (U1) = 0

< Het > < aantal dagen ZVW-plicht (U1) >

(wordt gelijk gesteld aan) < 0 >

(indien) < de > < begindatum premieplicht Zvw

(H1) > (gelijk is aan) < leeg >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 1 (equate with value)

and pattern 4 (consistency check one value)

 “Dan” is omitted, only for readability.

Thesis: Patterns for Derivation Business Rules

139

Original business rule NR Business rule in pattern

2b
Als [datum ingang actief militair] (e) is

aanwezig (gevuld)
 en

 [datum beëindiging actief-militair] (f) is
aanwezig (gevuld)

Dan [aantal dagen ZVW-plicht] (U1) =
(maand uit [einddatum premieplicht Zvw]
(H2) min
maand uit [begindatum premieplicht
Zvw] (H1)) maal 30 plus
(dag uit [einddatum premieplicht Zvw]
(H2) min
dag uit [begindatum premieplicht Zvw]
(H1)) min
(maand uit [datum beëindiging actief-
militair] (f) min
maand uit [datum ingang actief militair]
(e)) maal 30 min
(dag uit [datum beëindiging actief-
militair] (f) min
dag uit [datum ingang actief militair] (e))

< Het > < aantal dagen ZVW-plicht (U1) >

(wordt berekend als)

< maand uit > < de > <einddatum
premieplicht Zvw (H2)> <min>
< maand uit > < de > < begindatum
premieplicht Zvw (H1) > < maal> <30>
<plus >
< dag uit > < de > < einddatum
premieplicht Zvw (H2) > < min >
< dag uit > < de > < begindatum
premieplicht Zvw (H1) > < min >
< maand uit > < de > < datum beëindiging
actief-militair (f) > <min>
< maand uit > < de > <datum ingang
actief militair (e) > <maal> <30> <min>
< dag uit > < de > <datum beëindiging
actief-militair (f) > < min >
< dag uit > < de > <datum ingang actief

militair (e) >

(indien) < het > < aantal dagen ZVW-plicht (U1)>

(aan alle volgende voorwaarden voldoet) :

 (indien) < de > < datum ingang actief

militair (e) > (gelijk is aan) < aanwezig

(gevuld) >

 (indien) < de > < datum beëindiging actief-

militair (f) > (gelijk is aan) < aanwezig

(gevuld) >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following three separate patterns are used and combined: pattern 3 (equate with basic

ground), pattern 11 (conjunction) and pattern 4 (consistency check one value).

 “Dan” is omitted, only for readability.

Thesis: Patterns for Derivation Business Rules

140

Original business rule NR Business rule in pattern

2c
Als [datum ingang actief militair] (e) is
 afwezig (leeg)

 en
[datum beëindiging actief-militair] (f) is
afwezig (leeg)

Dan [aantal dagen ZVW-plicht] (U1) =
(maand uit [einddatum
premieplicht Zvw] (H2) min
 maand uit [begindatum
premieplicht Zvw] (H1)) maal 30
plus (dag uit [einddatum
premieplicht Zvw] (H2) min
dag uit [begindatum premieplicht
Zvw] (H1))

< De > < aantal dagen ZVW-plicht (U1) >

(wordt berekend als)

< maand uit > < de > <einddatum
premieplicht Zvw (H2)> <min>
maand uit < de > < begindatum
premieplicht Zvw (H1) > < maal> <30>
<plus >
< dag uit > < de > < einddatum
premieplicht Zvw (H2) > < min >
< dag uit > < de > < begindatum
premieplicht Zvw (H1) >

(indien) < de > < aantal dagen ZVW-plicht (U1)>

(aan alle volgende voorwaarden voldoet) :

 (indien) < de > < datum ingang actief

militair (e) > (gelijk is aan) < afwezig

(leeg) >

 (indien) < de > < datum beëindiging

actief-militair (f) > (gelijk is aan) < afwezig

(leeg) >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following three separate patterns are used and combined: pattern 3 (equate with basic

ground), pattern 11 (conjunction), pattern 4 (consistency check one value)

 “Dan” is omitted, only for readability.

Original business rule NR Business rule in pattern

2d
Als [aantal dagen ZVW-plicht] (U1) is kleiner
 dan 0

 Dan [aantal dagen ZVW-plicht] (U1) = 0

< Het > < aantal dagen ZVW-plicht (U1) >

(wordt gelijk gesteld aan) < 0 >

(indien) < het > < aantal dagen ZVW-plicht (U1) >

< is kleiner dan > < 0 >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 1 (equate with value)

and pattern 8 (comparison with value)

 “Dan” is omitted, only for readability.

Thesis: Patterns for Derivation Business Rules

141

BR 3: Aantal IB-dagen (U2)

Original business rule NR Business rule in pattern

3

[aantal IB-dagen] (U2) =

(maand uit [datum beëindigen (soort)
belastingplicht] (h) min
maand uit [datum ingang (soort)
belastingplicht] (g)) maal 30 plus
(dag uit [datum beëindigen (soort)
belastingplicht] (h) min
dag uit [datum ingang (soort) belastingplicht]
(g))

< Het > < aantal IB-dagen (U2) >

(wordt berekend als)

< maand uit > < de > < datum beëindigen
(soort) belastingplicht (h) > <min>
< maand uit > < de > < datum ingang
(soort) belastingplicht (g) >
< maal> <30> <plus >
< dag uit > < de > < datum beëindigen
(soort) belastingplicht (h) > < min >
< dag uit > < de > < datum ingang (soort)
belastingplicht (g) >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Th erefore, an

appropriate article (i.e. de / het) is chosen.

 The following pattern is used: pattern 3 (equate with basic ground)

o No condition included in the business rule, so only one pattern was required.

BR 4: Bijdrage-inkomen ZVW zonder alimentatie (H1)

Original business rule NR Business rule in pattern

4

[bijdrage-inkomen ZVW zonder alimentatie]
(H1) :=

[belastbare winst uit onderneming] (a)
min
[in winst begrepen loon] (g) min
[winst deelvisser] (j) plus
[totaal buitenlandse inkomsten uit
dienstbetrekking] (b) plus
[netto resultaat uit overige
werkzaamheden] (c) plus
[saldo periodieke uitkeringen na
aftrekbare kosten] (d)

< De > < bijdrage-inkomen ZVW zonder alimentatie

(H1) > (wordt berekend als)

< de > <belastbare winst uit onderneming
(a)>
<min>
< de > <in winst begrepen loon (g)>
<min>
< de > <winst deelvisser (j)>
<plus>
< de > <totaal buitenlandse inkomsten
uit dienstbetrekking (b)>
<plus>
< de > <netto resultaat uit overige
werkzaamheden (c)>
< plus >
< de > <saldo periodieke uitkeringen na
aftrekbare kosten (d)>

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following pattern is used: pattern 3 (equate with basic ground)

o No condition included in the business rule, so only one pattern was required.

Thesis: Patterns for Derivation Business Rules

142

BR 5 Bijdrage-inkomen ZVW aanslag (U1):

Original business rule NR Business rule in pattern

5a
ALS [vorig jaar alimentatie overgangstarief] (f)
 = ‘ja’

DAN [bijdrage-inkomen ZVW aanslag] (U1) :=
 [bijdrage-inkomen ZVW zonder
 alimentatie] (H1)

< De > < bijdrage-inkomen ZVW aanslag (U1) >

(wordt gelijk gesteld aan) < de > < bijdrage-

inkomen ZVW zonder alimentatie (H1)>

(indien) < de > < vorig jaar alimentatie

overgangstarief (f) > (gelijk is aan) < ja >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 2 (equate with subject)

and pattern 4 (consistency check one value)

 “Dan” is omitted, only for readability.

Original business rule NR Business rule in pattern

5b

ALS [vorig jaar alimentatie overgangstarief] (f) =
 ‘nee’

DAN [bijdrage-inkomen ZVW aanslag] (U1) :=
 [bijdrage-inkomen ZVW zonder alimentatie]
 (H1) plus [saldo alimentatie na aftrekbare
 kosten] (e)

< De > < bijdrage-inkomen ZVW aanslag (U1) >

(wordt berekend als)

< de > < bijdrage-inkomen ZVW zonder
alimentatie (H1)>
<plus>
< het > <saldo alimentatie na aftrekbare
kosten (e)>

(indien) < de > < vorig jaar alimentatie

overgangstarief (f) > (gelijk is aan) < nee >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 3 (equate with basic

ground) and pattern 4 (consistency check one value)

 “Dan” is omitted, only for readability.

Original business rule NR Business rule in pattern

5c
ALS [bijdrage-inkomen ZVW aanslag] (U1) is
 kleiner dan 0

DAN [bijdrage-inkomen ZVW aanslag] (U1) := 0

< De > < bijdrage-inkomen ZVW aanslag (U1) >

(wordt gelijk gesteld aan) < 0 >

(indien) < de > < bijdrage-inkomen ZVW aanslag

(U1) > < is kleiner dan > < 0 >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 1 (equate with value)

and pattern 8 (comparison with value)

 “Dan” is omitted, only for readability.

Thesis: Patterns for Derivation Business Rules

143

BR 6. Niet relevante VA ZVW

Original business rule NR Business rule in pattern

6

ALS indicatie ZVW aanslag verwijderen is

 gevuld

en

ALS indicatie ZVW aanslag verwijderen =

 ‘J’

DAN bijdrage-inkomen ZVW aanslag (U1) := 0

< De > < bijdrage-inkomen ZVW aanslag (U1) >

(wordt gelijk gesteld aan) < 0 >

(indien) < de > < bijdrage-inkomen ZVW aanslag

(U1) >

(aan alle volgende voorwaarden voldoet) :

 (indien) < de > < indicatie ZVW aanslag

verwijderen> (gelijk is aan) < gevuld) >

 (indien) < de > < indicatie ZVW aanslag

verwijderen> (gelijk is aan) < J >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following three separate patterns are used and combined: pattern 1 (equate with value),

pattern 11 (conjunction), and pattern 4 (consistency check one value)

 “Dan” is omitted, only for readability.

BR 7 Bijdrage ZVW aanslag (U1):

Original business rule NR Business rule in pattern

7
[bijdrage ZVW aanslag] (U1) :=

[toegepast bijdrage-inkomen ZVW] (a)
 maal

[percentage verlaagd tarief] (b)

< De > < bijdrage ZVW aanslag (U1) >

(wordt berekend als)

< de > <toegepast bijdrage-inkomen ZVW
(a)>
<maal>
< het > <percentage verlaagd tarief (b)>

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following pattern is used: pattern 3 (equate with basic ground)

o No condition included in the business rule, so only one pattern was required.

Thesis: Patterns for Derivation Business Rules

144

BR8 Bepalen toepassen artikel 9.4 (U2):

Original business rule NR Business rule in pattern

8a:
ALS [artikel 9.4] (b) = [leeg]:

 en

ALS [bijdrage ZVW aanslag] (a) is groter dan

 [aanslag-grens artikel 9.4] (d)

DAN [toepassing artikel 9.4] (U2) := 21

< De > < toepassing artikel 9.4 (U2) >

(wordt gelijk gesteld aan) < 21 >

(indien) < de > < toepassing artikel 9.4 (U2) >

(aan alle volgende voorwaarden voldoet) :

 (indien) < het > < artikel 9.4 (b) > (gelijk is

aan) < leeg >

 (indien) < de > <bijdrage ZVW aanslag (a)>

< is groter dan > < aanslag-grens artikel 9.4

(d)>

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following four separate patterns are used and combined: pattern 1 (equate with value),

pattern 11 (conjunction), pattern 4 (consistency check one value), and pattern 9 (comparison

with subject).

 “Dan” is omitted, only for readability.

Original business rule NR Business rule in pattern

8b:

ALS [artikel 9.4] (b) = gevuld

 en

ALS [bijdrage ZVW aanslag] (a) is kleiner of gelijk

aan [aanslag-grens artikel 9.4] (d)

DAN: [toepassing artikel 9.4] (U2) := 35

< De > < toepassing artikel 9.4 (U2) >

(wordt gelijk gesteld aan) < 35 >

(indien) < de > < toepassing artikel 9.4 (U2) >

(aan alle volgende voorwaarden voldoet) :

 (indien) < het > < artikel 9.4 (b) > (gelijk is

aan) < gevuld >

 (indien) < de > <bijdrage ZVW aanslag (a)>

< is kleiner of gelijk aan > < aanslag-grens

artikel 9.4 (d)>

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following four separate patterns are used and combined: pattern 1 (equate with value),

pattern 11 (conjunction), pattern 4 (consistency check one value), and pattern 9 (comparison

with subject).

 “Dan” is omitted, only for readability.

Thesis: Patterns for Derivation Business Rules

145

Original business rule NR Business rule in pattern

8c:

ALS [artikel 9.4] (b) = “0”

DAN [toepassing artikel 9.4] (U2) := 35

< De > < toepassing artikel 9.4 (U2) >

(wordt gelijk gesteld aan) < 35 >

(indien) < het > < artikel 9.4 (b) > (gelijk is aan)

< 0 >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 1 (equate with value)

and pattern 4 (consistency check one value).

 “Dan” is omitted, only for readability.

Original business rule NR Business rule in pattern

8d:

ALS [artikel 9.4] (b) = “3”

DAN [toepassing artikel 9.4] (U2) := 0

< De > < toepassing artikel 9.4 (U2) >

(wordt gelijk gesteld aan) < 0 >

(indien) < het > < artikel 9.4 (b) > (gelijk is aan)

< 3 >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 1 (equate with value)

and pattern 4 (consistency check one value).

 “Dan” is omitted, only for readability.

BR 9 Vaststellen bedrag aanslag (U1):

Original business rule NR Business rule in pattern

9a
ALS [toepassing artikel 9.4] (U2) = 35

DAN [bedrag aanslag] (U1) := 0

< Het > < bedrag aanslag (U1) >

(wordt gelijk gesteld aan) < 0 >

(indien) < de > < toepassing artikel 9.4 (U2) >

(gelijk is aan) < 35 >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 1 (equate with value)

and pattern 4 (consistency check one value).

 “Dan” is omitted, only for readability.

Thesis: Patterns for Derivation Business Rules

146

Original business rule NR Business rule in pattern

9b
ALS [toepassing artikel 9.4] (U2) = 35

DAN [indicatie-nihil-aanslag] (U3) := ‘ja’

< De > < indicatie-nihil-aanslag (U3) >

(wordt gelijk gesteld aan) < ja >

(indien) < de > < toepassing artikel 9.4 (U2) >

(gelijk is aan) < 35 >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 1 (equate with value)

and pattern 4 (consistency check one value).

 “Dan” is omitted, only for readability.

Original business rule NR Business rule in pattern

9c:
ALS [toepassing artikel 9.4] (U2) ≠ 35

DAN [bedrag aanslag] (U1) := [bijdrage ZVW
 aanslag] (a)

< Het > < bedrag aanslag (U1) >

(wordt gelijk gesteld aan) < de > <bijdrage ZVW

 aanslag (a) >

(indien) < de > < toepassing artikel 9.4 (U2) >

(niet gelijk is aan) < 35 >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 2 (equate with subject)

and pattern 4 (consistency check one value).

 “Dan” is omitted, only for readability.

BR 10 Saldo aanslag voor heffingsrente en boete (U4):

Original business rule NR Business rule in pattern

[saldo aanslag voor heffingsrente en boete] (U4) :=
[bedrag aanslag] (U1) min [eerdere aanslag(en)] (f)

< Het > < saldo aanslag voor heffingsrente en boete

(U4) > (wordt berekend als)

< het > < bedrag aanslag (U1)>
<min>
< elke > < eerdere aanslag (f) >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following pattern is used: pattern 3 (equate with basic ground)

o No condition included in the business rule, so only one pattern was required.

Thesis: Patterns for Derivation Business Rules

147

BR11 Gecorrigeerd bijdrage-inkomen ZVW (U1):

Original business rule NR Business rule in pattern

11a.
ALS [correctie-inkomen ZVW aanslag] (e) is
 gevuld

DAN [gecorrigeerd bijdrage-inkomen aanwezig]
 (H1) := ‘J’

< De > <gecorrigeerd bijdrage-inkomen aanwezig

(H1)> (wordt gelijk gesteld aan) < J >

(indien) < de > < correctie-inkomen ZVW aanslag

(e) > (gelijk is aan) < gevuld >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 1 (equate with value)

and pattern 4 (consistency check one value)

 “Dan” is omitted, only for readability.

Original business rule NR Business rule in pattern

11b.
ALS [correctie-inkomen ZVW aanslag] (e) is
 gevuld

DAN [gecorrigeerd bijdrage-inkomen ZVW] (U1) :=
 [bijdrage-inkomen ZVW aanslag] (a) min
 ABS [correctie-inkomen ZVW aanslag] (e)

< De > <gecorrigeerd bijdrage-inkomen ZVW (U1)>

(wordt berekend als)

< de > < bijdrage-inkomen ZVW aanslag
(a)>
<min>
< de > < ABS > < correctie-inkomen ZVW
aanslag (e) >

(indien) < de > < correctie-inkomen ZVW aanslag

(e) > (gelijk is aan) < gevuld >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 3 (equate with basic

ground) and pattern 4 (consistency check one value)

 “Dan” is omitted, only for readability.

Original business rule NR Business rule in pattern

11c.
ALS [correctie-inkomen ZVW aanslag] (e) is
 leeg

DAN [gecorrigeerd bijdrage-inkomen aanwezig]
 (H1) := ‘N’

< De > <gecorrigeerd bijdrage-inkomen aanwezig

(H1)> (wordt gelijk gesteld aan) < N >

(indien) < de > < correctie-inkomen ZVW aanslag

(e) > (gelijk is aan) < leeg >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 1 (equate with value)

and pattern 4 (consistency check one value)

 “Dan” is omitted, only for readability.

Thesis: Patterns for Derivation Business Rules

148

Original business rule NR Business rule in pattern

11d.
ALS [gecorrigeerd bijdrage-inkomen ZVW] (U1)
 is kleiner dan 0

DAN [gecorrigeerd bijdrage-inkomen ZVW] (U1)
 is gelijk aan 0

< De > <gecorrigeerd bijdrage-inkomen ZVW (U1) >

(wordt gelijk gesteld aan) < 0 >

(indien) < de > <gecorrigeerd bijdrage-inkomen

ZVW (U1)> < is kleiner dan > < 0 >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 1 (equate with value)

and pattern 8 (comparison with value)

 “Dan” is omitted, only for readability.

BR12 Herleid bijdrage-inkomen ZVW aftrekmethode (U3):

Original business rule NR Business rule in pattern

12a.
[Herleid bijdrage-inkomen aftrek aanwezig] (H3) :=
‘N’

< De > <Herleid bijdrage-inkomen aftrek

aanwezig(H3)> (wordt gelijk gesteld aan) < N >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following pattern is used: pattern 1 (equate with value)

o No condition included in the business rule, so only one pattern was required.

Original business rule NR Business rule in pattern

12b.
ALS [bijdrage-inkomen ZVW aanslag
 buitenland] (d) is gevuld

DAN [herleid bijdrage-inkomen aftrek
 aanwezig] (H3) := ‘J’

< De > < Herleid bijdrage-inkomen aftrek

aanwezig(H3)> (wordt gelijk gesteld aan) < J >

(indien) < de > < bijdrage-inkomen ZVW aanslag

buitenland (d) > (gelijk is aan) < gevuld >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 1 (equate with value)

and pattern 4 (consistency check one value)

 “Dan” is omitted, only for readability.

Thesis: Patterns for Derivation Business Rules

149

Original business rule NR Business rule in pattern

12c.
ALS [gecorrigeerd bijdrage-inkomen
 aanwezig] (H1) := ‘J’

DAN [herleid bijdrage-inkomen ZVW
 aftrekmethode] (U3) :=
 [gecorrigeerd bijdrage-inkomen ZVW]
 (U1) min [bijdrage-inkomen ZVW aanslag
 buitenland] (d)

< De > <Herleid bijdrage-inkomen ZVW

aftrekmethode (U3)>

(wordt berekend als)

< de > < gecorigeerde bjjdrage-inkomen
ZVW (U1)>
<min>
< de > < bijdrage-inkomen ZVW aanslag
buitenland (d) >

(indien) < de > <gecorrigeerd bijdrage-inkomen

aanwezig (H1) > (gelijk is aan) < J >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 3 (equate with basic

ground) and pattern 4 (consistency check one value)

 “Dan” is omitted, only for readability.

Original business rule NR Business rule in pattern

12d.
ALS [gecorrigeerd bijdrage-inkomen
 aanwezig] (H1) := ‘N’

DAN [herleid bijdrage-inkomen ZVW
 aftrekmethode] (U3) :=

[bijdrage-inkomen ZVW aanslag] (a) min
[bijdrage-inkomen ZVW
aanslagbuitenland](d)

< De > <Herleid bijdrage-inkomen ZVW

aftrekmethode (U3)> (wordt berekend als)

< de > < bjjdrage-inkomen ZVW aanslag
(a)>
<min>
< de > < bijdrage-inkomen ZVW aanslag
buitenland (d) >

(indien) < de > <gecorrigeerd bijdrage-inkomen

aanwezig (H1) > (gelijk is aan) < N >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 3 (equate with basic

ground) and pattern 4 (consistency check one value)

 “Dan” is omitted, only for readability.

Thesis: Patterns for Derivation Business Rules

150

BR13 Toegepast maximum bijdrage-inkomen ZVW (U4):

Original business rule NR Business rule in pattern

13a.
[toegepast maximum bijdrage-inkomen ZVW]
(U4) := [maximum bijdrage-inkomen ZVW] (g)

< De > < toegepast maximum bijdrage-inkomen

ZVW (U4) > (wordt gelijk gesteld aan)

< de > < maximum bijdrage-inkomen ZVW (g) >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following pattern is used: pattern 2 (equate with subject)

o No condition included in the business rule, so only one pattern was required.

Original business rule NR Business rule in pattern

13b.
ALS [aantal dagen ZVW-plicht] (c) is kleiner dan

[aantal dagen in belastingjaar]

EN
([einde ZVW door overlijden] (f) = ‘N’
OF
 [einde ZVW door overlijden] (f) = <Leeg>)

DAN [toegepast maximum bijdrage-inkomen
 ZVW] (U4) :=

([aantal dagen ZVW-plicht] (c) delen door
[aantal dagen in belastingjaar]) maal
 [maximum bijdrage-inkomen ZVW] (g)

< De > <toegepast maximum bijdrage-inkomen

ZVW (U4)> (wordt berekend als)

< het > < aantal dagen ZVW-plicht (c) >
<delen door>
< het > < aantal dagen in belastingjaar >
<maal>
< het > < maximum bijdrage-inkomen
ZVW (g)>

(indien) < de > < toegepast maximum bijdrage-

inkomen ZVW (U4) > (aan alle volgende

voorwaarden voldoet):

 (indien) < het > < einde ZVW door

overlijden (f) > (aan tenminste één van de

volgende voorwaarden voldoet):

1. (indien) < het > <einde ZVW door

overlijden (f) > (gelijk is aan) < N>

2. (indien) < het> <einde ZVW door

overlijden (f) > (gelijk is aan)

< Leeg >

 (indien) < het > <aantal dagen ZVW- plicht

(c) > < is kleiner dan > < het > <aantal dagen

in belastingjaar>

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following four separate patterns are used and combined: pattern 3 (equate with basic

ground), pattern 13 (Disjunction within conjunction), pattern 4 (consistency check one value),

and pattern 9 (comparison with subject).

 “Dan” is omitted, only for readability.

Thesis: Patterns for Derivation Business Rules

151

BR 14 Heffingsruimte bijdrage-inkomen ZVW (U5):

Original business rule NR Business rule in pattern

14 a:
[heffingsruimte bijdrage-inkomen ZVW] (U5) :=

[toegepast maximum bijdrage-inkomen
 ZVW] (U4) min

[bijdrage-inkomen ZVW inhouding] (h)

< De > <heffingsruimte bijdrage-inkomen ZVW (U5)>

(wordt berekend als)

< de > <toegepast maximum bijdrage-
inkomen ZVW (U4)>
<min>
< de > <bijdrage-inkomen ZVW
inhouding (h)>

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following pattern is used: pattern 3 (equate with basic ground)

o No condition included in the business rule, so only one pattern was required.

Original business rule NR Business rule in pattern

14b:
ALS [heffingsruimte bijdrage-inkomen ZVW]
 (U5) is kleiner dan 0

DAN [heffingsruimte bijdrage-inkomen ZVW]
 (U5) := 0

< De > <heffingsruimte bijdrage-inkomen ZVW (U5)>

(wordt gelijk gesteld aan) < 0 >

(indien) < de > < heffingsruimte bijdrage-inkomen

ZVW (U5) > < is kleiner dan > < 0 >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 1 (equate with value)

and pattern 8 (comparison with value)

 “Dan” is omitted, only for readability.

BR 15 Toegepast bijdrage-inkomen ZVW (U6):

Original business rule NR Business rule in pattern

15a.
[toegepast bijdrage-inkomen ZVW] (U6) :=
[heffingsruimte bijdrage-inkomen ZVW] (U5)

< De > < toegepast bijdrage-inkomen ZVW (U6) >

(wordt gelijk gesteld aan) < de > < heffingsruimte

bijdrage-inkomen ZVW (U5) >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following pattern is used: pattern 2 (equate with subject)

o No condition included in the business rule, so only one pattern was required.

Thesis: Patterns for Derivation Business Rules

152

Original business rule NR Business rule in pattern

15b.
ALS [gecorrigeerd bijdrage-inkomen aanwezig]
 (H1) := ‘J’
 en
ALS [gecorrigeerd bijdrage-inkomen ZVW] (U1)
 is kleiner dan [toegepast bijdrage-inkomen
 ZVW] (U6)

DAN [toegepast bijdrage-inkomen ZVW] (U6) :=
 [gecorrigeerd bijdrage-inkomen ZVW] (U1)

< De> < toegepast bijdrage-inkomen ZVW (U6) >

(wordt gelijk gesteld aan) < de > < gecorrigeerd

bijdrage-inkomen ZVW (U1) >

(indien) < de > < toegepast bijdrage-inkomen

ZVW (U6) > (aan alle volgende voorwaarden

voldoet) :

 (indien) < de > < gecorrigeerde bijdrage-

inkomen aanwezig (H1) > (gelijk is aan) <J>

 (indien) < de > < gecorrigeerde bijdrage-

inkomen ZVW (U1) > < is kleiner dan >

< de > < toegepast bijdrage-inkomen ZVW

(U6) >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following four separate patterns are used and combined: pattern 2 (equate with subject),

pattern 11 (conjunction), pattern 4 (consistency check one value), and pattern 9 (comparison

with subject).

 “Dan” is omitted, only for readability.

Original business rule NR Business rule in pattern

15c.
ALS [herleid bijdrage-inkomen aftrek aanwezig]
 (H3) := ‘J’
 en
ALS [herleid bijdrage-inkomen ZVW
 aftrekmethode] (U3) is kleiner dan

[toegepast bijdrage-inkomen ZVW] (U6)

DAN [toegepast bijdrage-inkomen ZVW] (U6) :=
 [herleid bijdrage-inkomen ZVW
 aftrekmethode] (U3)

< De > < toegepast bijdrage-inkomen ZVW (U6) >

(wordt gelijk gesteld aan) < de > < herleid bijdrage-

inkomen ZVW aftrekmethode (U3) >

(indien) < de > < toegepast bijdrage-inkomen ZVW

(U6) > (aan alle volgende voorwaarden voldoet) :

 (indien) < de > < herleid bijdrage-inkomen

aftrek aanwezig (H3) > (gelijk is aan) < J >

 (indien) < de > < herleid bijdrage-inkomen

ZVW aftrekmethode (U3) > < is kleiner

dan> < de > < toegepast bijdrage-inkomen

ZVW (U6) >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following four separate patterns are used and combined: pattern 2 (equate with subject),

pattern 11 (conjunction), pattern 4 (consistency check one value), and pattern 9 (comparison

with subject).

 “Dan” is omitted, only for readability.

Thesis: Patterns for Derivation Business Rules

153

Original business rule NR Business rule in pattern

15d.
ALS [gecorrigeerd bijdrage-inkomen aanwezig]
 (H1) = ‘N’
 en
 [herleid bijdrage-inkomen aftrek aanwezig]
 (H3) = ‘N’
 en
ALS [bijdrage-inkomen ZVW aanslag] (a) is
 kleiner dan [heffingsruimte bijdrage-
 inkomen ZVW] (U5)

DAN [toegepast bijdrage-inkomen ZVW] (U6) :=
 [bijdrage-inkomen ZVW aanslag] (a)

< De > < toegepast bijdrage-inkomen ZVW (U6) >

(wordt gelijk gesteld aan) < de > < bijdrage-

inkomen ZVW aanslag (a) >

(indien) < de > < toegepast bijdrage-inkomen

ZVW (U6) > (aan alle volgende voorwaarden

voldoet) :

 (indien) < de > < gecorrigeerd bijdrage-

inkomen aanwezig (H1) > (gelijk is aan)

<N>

 (indien) < de > < herleid bijdrage-inkomen

aftrek aanwezig (H3) > (gelijk is aan) < N >

 (indien) < de > < bijdrage-inkomen ZVW

aanslag (a) > < is kleiner dan > < de >

< heffingsruimte bijdrage-inkomen ZVW

(U5) >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following four separate patterns are used and combined: pattern 2 (equate with subject),

pattern 11 (conjunction), pattern 4 (consistency check one value), and pattern 9 (comparison

with subject).

 “Dan” is omitted, only for readability.

Original business rule NR Business rule in pattern

15e.
ALS [toegepast bijdrage-inkomen ZVW] (U6) is
 groter dan [maximum bijdrage-inkomen
 ZVW] (g)

DAN [toegepast bijdrage-inkomen ZVW] (U6) :=
 [maximum bijdrage-inkomen ZVW] (g)

< De > < toegepast bijdrage-inkomen ZVW (U6) >

(wordt gelijk gesteld aan) < de > < maximum

bijdrage-inkomen ZVW (g) >

(indien) < de > < toegepast bijdrage-inkomen ZVW

(U6) > < is groter dan > < maximum bijdrage-

inkomen ZVW (g)>

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following two separate patterns are used and combined: pattern 2 (equate with subject)

and pattern 9 (comparison with subject)

 “Dan” is omitted, only for readability.

Thesis: Patterns for Derivation Business Rules

154

BR 16 Niet relevante VA ZVW:

Original business rule NR Business rule in pattern

16a.
ALS indicatie ZVW aanslag verwijderen is gevuld
 en
ALS indicatie ZVW aanslag verwijderen = J

DAN gecorrigeerd bijdrage-inkomen ZVW (U1)
 = 0

< De > < gecorrigeerd bijdrage-inkomen ZVW (U1) >

(wordt gelijk gesteld aan) < 0 >

(indien) < de > < gecorrigeerd bijdrage-inkomen

ZVW (U1) > (aan alle volgende voorwaarden

voldoet) :

 (indien) < de > < indicatie ZVW aanslag

verwijderen > (gelijk is aan) < gevuld >

 (indien) < de > < indicatie ZVW aanslag

verwijderen > (gelijk is aan) < J >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following three separate patterns are used and combined: pattern 1 (equate with value),

pattern 11 (conjunction), and pattern 4 (consistency check one value).

 “Dan” is omitted, only for readability.

Original business rule NR Business rule in pattern

16b.
ALS indicatie ZVW aanslag verwijderen is
 gevuld
 en
ALS indicatie ZVW aanslag verwijderen = J

DAN herleid bijdrage-inkomen ZVW
 aftrekmethode (U3) = 0

< De > < herleid bijdrage-inkomen ZVW

aftrekmethode (U3) >

(wordt gelijk gesteld aan) < 0 >

(indien) < de > < herleid bijdrage-inkomen ZVW

aftrekmethode (U3) > (aan alle volgende

voorwaarden voldoet) :

 (indien) < de > < indicatie ZVW aanslag

verwijderen > (gelijk is aan) < gevuld >

 (indien) < de > < indicatie ZVW aanslag

verwijderen > (gelijk is aan) < J >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following three separate patterns are used and combined: pattern 1 (equate with value),

pattern 11 (conjunction), and pattern 4 (consistency check one value).

 “Dan” is omitted, only for readability.

Thesis: Patterns for Derivation Business Rules

155

Original business rule NR Business rule in pattern

16c.
ALS indicatie ZVW aanslag verwijderen is gevuld
 en
ALS indicatie ZVW aanslag verwijderen = J

DAN heffingsruimte bijdrage-inkomen ZVW (U4)
 = 0

< De > <heffingsruimte bijdrage-inkomen ZVW (U4)>

(wordt gelijk gesteld aan) < 0 >

(indien) < de > < heffingsruimte bijdrage-

inkomen ZVW (U4) > (aan alle volgende

voorwaarden voldoet) :

 (indien) < de > < indicatie ZVW aanslag

verwijderen > (gelijk is aan) < gevuld >

 (indien) < de > < indicatie ZVW aanslag

verwijderen > (gelijk is aan) < J >

Choices:

 <Quantifier> not included in original business rule, but is a fixed pattern part. Therefore, an

appropriate article (i.e. de / het) is chosen.

 The following three separate patterns are used and combined pattern 1 (equate with value),

pattern 11 (conjunction), and pattern 4 (consistency check one value).

 “Dan” is omitted, only for readability.

