

i

Universiteit Utrecht

A Thesis submitted in partial satisfaction of the requirements for the degree

Master of Natural Sciences

in

GAME AND MEDIA TECHNOLOGY

Design and Development of a

Game Production Control Center

Author:

 Stavros Tsikinas

ICA-3938131

Committee in charge:

Dr. Fabiano Dalpiaz

Dr. ir. Frank van der Stappen

July 2015

ii

iii

Table of Contents

Acknowledgements ... v

Abstract .. vi

1. Introduction ... 1

1.1 Motivation ... 1

1.2 Research Questions ... 2

1.3 Scope of the Thesis .. 3

1.4 Contributions ... 4

1.5 Grendel Games .. 4

1.6 Thesis Overview .. 4

2. Literature Study ... 5

2.1 Video Game Development .. 5

2.2 Software Project Manager and Game Producer .. 8

2.3 Game Testing and QA ... 11

2.4 Game Production Tools ... 14

2.5 Business and Game Analytics ... 15

2.6 Conclusions ... 15

3 Design of the Solution ... 17

3.1 The Conceptual Model .. 17

3.2 Metrics of the Conceptual Model .. 19

3.3 Conclusions ... 28

4 Prototype ... 29

4.1 PivotalTracker ... 29

4.2 Technology .. 31

4.3 Dashboard .. 33

5 Case Study ... 36

5.1 Preparation ... 36

5.2 Data Sets .. 38

5.3 Results ... 40

5.4 Enhancements .. 43

6 Discussion ... 47

6.1 Conclusions ... 47

6.2 Limitations ... 47

iv

6.3 Future Work .. 48

7 References ... 49

8 Appendix ... 51

The Microsoft Access Diagram ... 51

v

Acknowledgements

I would like to thank Dr. Fabiano Dalpiaz and Dr. Frank van der Stappen for their support

throughout this thesis as the chair of my committee. They have dedicated many hours to guide me

conduct the thesis and their guidance has proven to be more than valuable.

Furthermore, I would like to thank Grendel Games for accepting me as an intern in a very

demanding position. Their assistance and guidance was invaluable as field experts. Also, they

provided me with some very valuable information that are presented in the thesis.

Also, I would like to thank the people that assisted in the completion of this thesis. Derk de Geus,

Remmelt Blessinga and Jan Jaap Severs, who participated in the creation of the game producer’s

mind-map. In addition, I would like to thank Tristan Lambert, Anne Draaisma, Guido Soetens,

Maarten Stevens and Paul Brinkkemper for participating in the case study and helped me evaluate

the prototype console.

Also, I would like I would also like to thank my life partner Eva, for being next to me during these

stressful months and mentally supporting me in the process of editing the thesis.

Finally, I would like to thank my family, for all the support they have provided me with, during

these years that I live in the Netherlands.

vi

Abstract
Game producers face many obstacles, in order to perform effectively their tasks within a game

studio. In this project, we present a prototype console that aims to assist game producers in

managing the agile game development process. The console is based on a number of game process

metrics that make the game development management more effective by providing the game

producer with objective, up-to-date information. We evaluate the effectiveness of the prototype

console and the metrics through qualitative interviews with experts from the game industry.

vii

1

1. Introduction

Video games have been introduced in society over 50 years ago [1, 2, 3]. Many games with different

genres (adventure, RPG, strategy, sports, etc.) and purposes (entertainment games, educational

games, health games, etc.) have been developed by many game studios. Video game development

is described as the process of software development, from which a video game is produced [4].

Currently, with the expansion of gaming platforms (PC’s, consoles, mobile devices), video game

development has become one of the most trending and successful industries [5, 6, 7].

The development team of every game, or game studio, consists of multiple skillful members. Those

members belong to many different disciplines, such as programmers, designers, artists, testers and

audio engineers. In order those teams to have good understanding and communication, and the

development process to be balanced between creativity and productivity, another team member is

important; the game producer.

A game producer is the person responsible of scheduling, budgeting, overseeing and managing the

development process of a game [8]. Due to all these responsibilities, the role of a game producer is

very demanding. That is the reason why big game studios have hierarchies of game producers,

namely Executive Producer, Producer and Associate Producer or Junior Producer.

Our ambition on this thesis is that – through the use of dashboards on the most important metrics

of game design and development – game producer will be able to accomplish their work more

efficiently and effectively.

1.1 Motivation
As mentioned previously, there are many games developed and published daily. On the other hand,

there are many games that failed to be developed or shipped and, therefore, were cancelled. The

reasons that development of games is cancelled can vary; financial issues [9] or loss of target group

interest [10] or low quality [11]. Other titles get cancelled because employees are transferred to

other game titles [9, 12] or there planning is too optimistic (poor scheduling) [13]. Many examples

exist of game projects that failed due to poor management, including:

 NBA Live 2013. Electronic Arts was very optimistic about the specific game title, by

adding ‘some of the best new technology”, according to EA Sports executive vice president

[14]. However, due to poor scheduling, he stated that “We knew it was going to be a long

journey and we’re just not there yet” and the game had to be cancelled. Eventually, the

game was cancelled 6 days before its initial release date [15].

 Ashes Cricket 2013. It was stated as “one of the worst games of 2013 [16, 17]. The game

studio, Trickstar Games was developing the game title, but the process was rather slow and

the quality was low. The game managed to be published, only for PC version, while it was

initially targeted for Xbox 360 and PlayStation 3 [16].

 Prey 2. Yet another game title that started with high potential, but was unable to be shipped

on time and with the appropriate quality. So, after years of postponing the release and

updates regarding the progress of the game, the publisher stated that “It was a game we

believed in, but we never felt that it got to where it needed to be – we never saw a path to

success if we finished it. It wasn’t up to our quality standard, and we decided to cancel it.

It’s no longer in development” [18].

 Lord of the Rings: The White Council. A role playing video game, aimed for PlayStation

3, Xbox360 and PC. A game destined to depict the trilogy written by J.R.R. Tolkien.

2

Electronic Arts was the publisher and the game started development in June 2006.

Although it was described as “the innovation and quality of the next-generation RPG” [19],

in 2007 the game was put on hold and eventually cancelled, due to management and

scheduling problems [20, 21].

These examples present problems that exist in game studios regarding the game production and the

results that a poor game production can have. Therefore, the motivation of this thesis is important

in helping the game producers handle the game development process in a more effective way. This

thesis is aimed to propose a software solution that would assist game producers from the beginning

of the development until the end of the project.

The terms game development and game production are closely related, however there is an

important difference between these two terms. Game production corresponds to the activities that

are performed from defining the concept of a game until its release [22], whereas game

development focuses solely on the activities made by the development team to complete the art,

design and programming tasks of the game [4].

1.2 Research Questions
In order to investigate and explore the field, there are certain questions that need to be addressed.

These questions are aimed to evaluate the research that this thesis is dealing with. The research

question consist of a main question and four sub-questions:

How to facilitate, with a software solution, a Game Producer in managing the game development

process?

The scope of the thesis focuses on exploring how the game development process can be managed

with a software solution and, therefore, the options that do not involve the use of software were not

considered.

Sub-Question 1: What are the key responsibilities of a Game Producer?

Game producers have multiple responsibilities, during the game development. On this question we

try to investigate, from the literature study, the responsibilities that are the most important for a

game producer.

Sub-Question 2: What are the problems that come from a non-coordinated game development?

Many aspects of game production need to be handled by the game producer, otherwise the games

may fail or even cancelled. This question identifies, through literature study, the problems that can

occur if the game production is not managed properly, or even at all.

Sub-Question 3: What are the metrics to assess the effectiveness of coordinating the game

development?

Game development teams need to be effective, in order to produce the best possible outcome, with

respect to the schedule made and the milestone that have been set from the management team. This

question aims to determine the factors that a game producer needs to take into account, when

monitoring the process of game development.

Sub-Question 4: What is an effective software solution to support the game producer’s

coordination?

This question is aimed to identify what effective game production is and how a software solution

can help game producers evaluate the effectiveness of game development.

3

1.3 Scope of the Thesis
Game production, depending on the size of the game studio, covers a broad range of activities.

Figure 1 presents a visualization of the game production activities. The arrows represent the

activities that are directly related.

The most common activities consist of [8, 22, 23]:

 Game development management. This is an activity performed by the game producer that

deals with tracking the progress of a game development and overseeing the development

team on daily basis.

 Creation of budget and schedules. This activity is performed by the game producer and the

development team, aiming to develop the schedules in which the team will follow for the

completion of the game project.

 Scheduling of Testing. This activity is performed by the game producers, in collaboration

with the testing leads, and concerns the testing phases and the testing schedules for a game

development.

 Liaison between development team and stakeholders. This is an activity performed by the

game producer, in order to assist the development team and the stakeholders walk on the

same path for success.

 Recruiting personnel. This activity is performed, in order to hire staff that fit with the

company needs.

 Negotiating contracts. This activity covers all the negotiations held during the production

of a game. The negotiations can be about licensing, outsourcing and localization.

 Cope with personnel issues. This is an activity that the game producer performs, in order

to keep the development team positive and productive. It aims to enforce discussion

between the team members to solve impediments.

Figure 1: The game production tasks.

4

 Define deadlines. This activity is performed by the game producer and all the stakeholders,

in collaboration with the development team. In association with the budget and the

schedule activity, deadlines on phases and milestones are created.

For this reason, this thesis will focus on a specific part of game production, namely tracking the

game development process. The rest of the activities of game producers will be excluded from the

scope of the thesis.

1.4 Contributions
There are certain contributions that this thesis is trying to achieve in the game production field.

First of all, a main contribution on this thesis is to propose a solution to game producers through a

console, which will assist them in managing the process of game development and evaluating the

progress that the development is making.

Another significant contribution of this thesis is the creation of an amount of metrics, by which the

game producer can obtain important information regarding the progress of the game production.

These metrics are proposed, by exploring the field of game production, from the scope of game

development, and then evaluated by game producers together with the console, in order to assess

the contributions of the thesis.

1.5 Grendel Games
During the completion of the thesis, I was occupied by Grendel Games as an intern for 8 month.

During the internship, I was performing the tasks of a game producer and I was able to have an

insight on what is actually happening in the industry. The company’s role was to provide us with

data that we could obtain to determine the metrics and the console that we developed. That is the

reason that Grendel Games for the rest of the thesis will be mentioned as case company.

1.6 Thesis Overview
Chapter 2 consists of the literature study, where the theoretical approach of the research, made for

the thesis, is being presented. On that chapter, all the fields that have been explored on the literature

study are reviewed, such as the game development, game testing and quality assurance (QA), the

role of the project manager and the game producer and business/game analytics.

In Chapter 3 the way that the findings of the literature study are converted into a model is presented.

Also, new metrics are being introduced, regarding the game production process from the game

development scope.

Chapter 4 presents the prototype of a console that aims to assist game producers in managing game

development, by using the metrics described on the previous chapter. In this chapter the technical

elements of the console are introduced.

Chapter 5 consists of the case study, where scenarios of the console execution are described,

executed and evaluated by field experts. This evaluation is closely related to the effectiveness of

game production.

The last chapter, Chapter 6, is the discussion, in which the results of the solution are being

discussed. Also, the limitations of the research are being presented and the possible future work on

the field is mentioned.

5

2. Literature Study

This chapter of the thesis aims to present the fields that have been explored, related to the research

made. The fields that this chapter introduces are game development, game testing and quality

assurance, project manager and game producer, game production tools and finally, business and

game analytics.

The purpose of exploring the game development, game testing and game producer field, relies on

the fact that they fall under the game development management activity. The reason the game

production tools are researched is to identify the current state-of-the-art software solutions for a

game producer. Lastly, the purpose of exploring the business and game analytics is to present what

is the current trends of analytics that companies use.

2.1 Video Game Development
Video game development is the process of creating a video game. As mentioned in the introduction,

the development team consists of members belonging in different disciplines, namely

programmers, designers, artists, audio engineers and testers. Although every game development

team or game studio has its own scheduling and time tables, the most common game development

process starts with planning and ends with the maintenance.

A game title can stay in development for a few days [24] till many years [22], depending on the

quality and the size of the game and the target console. For example, GTA V, by Rockstar Games,

developed for PC, PlayStation3 and 4, Xbox360 and Xbox One, was developed from 2009 until

2015. In contrast, Flappy Bird was developed by a single developer in a couple of days [24].

Another important aspect of developing a game is the budget that the game studio has set, during

the planning process. The budget to develop a game varies due to multiple reasons. The first reason

is the development team. For some game titles one person is enough to develop a successful game

[24]. On the other hand, AAA games (games with high quality in graphics, music, promotion, etc.)

can occupy a development team of more than 600 members [25, 26].

Another reason is licensing. As mentioned before, developing a game for next-gen game consoles,

such as Xbox One and PlayStation 4 takes more time than developing a game for a mobile device.

The cost in development varies as well and not just because of the time period in development. The

games developed for consoles require to have their software development kit (SDK) [27, 28].

Although to develop a game in mobile devices is a bit more straightforward, there are also licensing

expenses that the developers or game studios need to take into account [29].

Most of game studios follow the same stages in the development of a game. The first stage is pre-

production. This is the first stage of the development, where the team develops an idea of the game.

In this stage the necessary documentation regarding the game concept is formed. Important

documents on this phase is the game design document (GDD), which is a document consisting of

all the aspects and requirements of the game that need to be developed, such as story, characters,

gameplay, art, controls and audio [30, 31]. Also, in pre-production, the game plan is constructed.

Finally, the development team constructs multiple game prototypes, aiming to identify what is more

suitable and more ‘fun’ for the end user [31].

As soon as the development team and the stakeholders (publishers and executive staff of the game

studio) have come to an agreement of what are the requirements of the game, the next stage begins,

the production. This is the most important development stage, since all the requirements and

features agreed on the GDD are developed [31]. Every team member works according to the GDD,

in order to develop an attractive and successful game title.

6

When the development team has created all the assets and necessary features, there is a stage of

polishing and perfecting the project. This stage is called post production. The game studios use

these stages to plan the development of a game.

Throughout the game development there are specific events that are of great importance, called

milestones. Most of the occasions, the milestones are at the end of each stage. The most common

milestones are [22]:

 Alpha. This is the milestone where the gameplay is functional, there are some assets

completed and the game is able to run on the target platform.

 Beta. In this milestone all the features of the game are present and there are only bug fixing

activities. Also, on this milestone, there cannot be any changes in the concept of the game.

 Code Release. This is the final milestone of the game development, in which the

development team can ship the game to the publishers for approval.

There are many methodologies of developing software. Waterfall methodology is the oldest in

software engineering [32]. It is a methodology that allows the development to occur in phases that

follow one another. After the last stage is being processed and executed, the whole development

loops back at the beginning. The waterfall process has been introduced to the video game

development as well. Figure 2 depicts an example of the phases that are executed during the

development of a video game or a piece of it.

There are game studios that follow this development model, because waterfall method is

“mandating milestones such as game design documents and deliverables such as assets or

functionality on a timetable” [33]. The main reason, as stated, is that “waterfall tends to give the

illusion of certainty and is the easiest method to explain at the executive level” [33]. On the other

hand, there are many game development teams and studios opposed to the waterfall methodology.

The main reason is that because of its structure, there is no room for adjustability and changes [33,

34].

Figure 2: The stages of a waterfall game development.

7

Because of this drawback, which limits the exploration of finding the “fun factor”, game

development studios and teams started using more flexible processes. One very common and

effective process of developing games is agile development [31, 35]. This is a process that consists

of iterations (most commonly two or four weeks), which allows the development teams produce on

each iteration a game, or a piece of it, that is able to be executed, demonstrated, evaluated and

tested. In Figure 3 the overview of agile game development is presented. Each iteration consists of

different activities that need to be made, in order to achieve the best outcome.

As it can be extracted from Figure 2, an advantage of agile development is that the product is being

developed in two- or four-week increments and the stakeholders can visualize the progress that the

product is making. By this, the development team can evaluate whether the game is heading

towards the right direction that the studio and the publisher have agreed upon. Also, the agile

development is much more flexible than the waterfall development, because with agile, the

development goals can change more often and can meet the stakeholders’ needs. An iteration of

developing a game feature that needs to be improved in early stage is feasible and the cost that is

required to do so is limited.

One very popular, in game development, agile methodology is Scrum [31, 35]. This methodology

uses iterations of two or four weeks, known as sprints. An overview of scrum is presented in Figure

4.

In order to implement scrum, a game development team needs to identify the scrum parts [31]. The

first and most important part of scrum are the sprints. Each sprint has a specific goal, named as

sprint goal, which all the team members are trying to achieve by the end of an iteration. When this

is over, the development team presents the outcome of the sprint goal to the stakeholders. Another

important part of scrum development is the product backlog that is a prioritized list, consisting of

all the requirements and features that are needed to develop the game. The product backlog is not

a static list that stays uninterrupted throughout the development. In every Sprint the needs,

requirements might change and the same can occur to the product backlog.

A subset of the product backlog is the sprint backlog, which consists of detailed tasks for the

development team throughout the sprint. In agile development these tasks are known as stories and

will be called as such for the rest of the thesis. Apart from the parts of scrum, there are also certain

Figure 3: The flow of agile game development.

Agile Game Development with Scrum by Clinton Keith, p. 31 (2010).

8

events that take place during a sprint. Sprint Planning is the first event in an iteration. In this

meeting the sprint goal is determined by the whole team. Also, the sprint backlog is constructed.

In order for all the development team members to keep track of the daily progress, scrum uses

another event; the Daily Scrum. It is a 10 to 15 minutes meeting, where all the team members

explain what have done the previous day, what would do that day and if they have encountered any

problems. This meeting is encouraging collaboration and problem solving activities for the

members.

At the end of the sprint there is the last event of scrum. This event is the Sprint Retrospective,

where the development team evaluates the progress of the development and investigate how the

progress can be improved. Because scrum should use the “inspect and adapt” policy, Sprint

Retrospective is claimed as the “most important event in agile development” [31, 36].

2.2 Software Project Manager and Game Producer
As mentioned in the introduction, video game development is a software development process. In

order to develop successful software solutions, the development team members need to have good

communication and coordination. Because of that the software engineering field has introduced a

specific role; the software project manager. This person is responsible for managing the progress

of the software development and takes part in multiple activities [8, 22, 23, 31].

 In more traditional software development methods, such as the waterfall methodology, the role of

the project manager is to lead the development team, aiming to produce a software that is accepted

by the stakeholders. However, in more modern development methods like agile and scrum, the role

of the project manager changes. In that occasion, the project manager is the person who oversees

the development process and collaborates with the development team to make decisions.

In video game development, the role of project management is typically assigned to the game

producer. A game producer has certain activities that needs to fulfill, in order to assist the rest of

the development team focus more on the development of the game.

A primary activity of a game producer is scheduling. The game producer, in association with the

development team, creates the long-term plan of the game [22, 37]. On the game plan there are the

estimates from all the development members and the milestones that the team has set for the

production of the game. The responsibility of the game producer on this task is to collect the

Figure 4: The scrum process.

Agile Game Development with Scrum by Clinton Keith, p. 39 (2010).

9

estimates from all the members and produce a viable schedule that the team members can follow

and is within the budget allocated for the specific game project.

Another important activity of the game producer is to create the game project budget and present it

to the game studio administration [22, 37]. The budget of the project is created taking into account

mainly the scope of the project and the resources needed to develop the project (programming team,

design team, art team, audio team, outsourcing and licensing).

A game producer is also responsible of acting as a liaison between the development team and the

stakeholders [22, 37]. By this, the stakeholders have frequent updates of the project progress. In

addition, the game producer ensures that the development team is able to meet the deadlines of

deliverables (milestones) that have been set at the game plan. In order to achieve it, the producer is

keeping track of the tasks that need to be done and compares the estimates with the actual time

spent.

Also, the game producer is updating the planning if there are any important changes to meet the

current plan, taking, also, into account the budget changes. This is the most demanding task of a

game producer, because the progress of the game development needs to be observed daily and if

any bottlenecks are detected, internal or external, they need to be tackled as soon as possible.

Otherwise, the development of a game can be stalled or even cancelled [15, 20, 21]. Also, if the

game studio is developing multiple games simultaneously, then this task of the game producer

becomes even more demanding and nontrivial.

These activities can also be noticed in every software development, but there are activities that

distinguish the role of the game producer with the project manager. An important task of a game

producer is to encourage the communication between development members of different

disciplines (art, engineering, design and audio). A video game development team consists of people

of different disciplines and, therefore, different way of thinking. There are occasions were team

members of different disciplines get into conflicts [37]. The role of the game producer is to

encourage the discussion in these situations and be the intermediate in finding a solution and

eventually resolve the conflicts.

Lastly, the game producer is responsible for scheduling the Quality Assurance (QA) together with

the lead testers. In large projects the game producer in association with the lead tester create the

test plan, a document stating all the important information the testing team needs to know, regarding

the testing methods corresponding game features and the goals that the testing team needs to

accomplish [38].

Figure 5 presents a mind-map of all the game producer’s activities and responsibilities. The mind-

map has been constructed by creating an initial version from literature and personal involvement

as a game producer. After this version was constructed, it was delivered to game producers and

through iterative process the final mind-map was developed.

In agile development, the game producer can also serve the role of the Scrum Master [31]. The

Scrum Master is the person making sure that the development team does not encounter any

obstacles in reaching the goals and also assists the team follow the process of scrum as it should

[31].

10

Figure 5: Game Producer’s Mind-map.

11

2.3 Game Testing and QA
The process of game testing, known also as quality assurance (QA), is a very necessary stage of

the game development [39]. During the pre-production phase, the development team with the

stakeholders construct a set of requirements that the game needs to fulfill. Game requirements is a

set of necessities that the game must support, the constraints that the game should have and finally,

the appropriate documentation, such as the GDD [22]. However, the game requirements are a non-

static set and they might change during development [40].

The complexity of game development has risen, making the need of quality game testing even more

important and necessary [39]. From pre-production until the end of the project the project is being

tested by the testing team, according to the test plan. By this, the game producer and the

development team is assured that the project is heading towards the proper route and the quality of

the game is as it should. Also, with game testing the development team and the game producer

evaluate whether the game meets the requirements set on the pre-production and offer the

experience the target group is expecting [38].

Figure 6 presents the cycle of game testing. The process begins with the development team

delivering the feature to be tested. According to the test plan, the tester tests the feature using a

specific testing technique. After the testing has finished, the testers report if there are found bugs,

i.e. malfunctions of features. As soon as the game producer receives the reports, prioritizes the bugs

according to the severity and necessity and assign them to the appropriate development member to

perform the necessary fixes [22, 38, 39].

In agile game development, the QA process occurs daily by the development team members, by

testing the feature they worked on [31]. However, the importance of the testing team is not

restricted. The testing team belongs to the development team, so it is present in all the agile

activities, such as sprint planning and sprint retrospectives [31].

As mentioned before the testing process is using certain testing methods, or testing techniques [22,

38, 39]. There are many testing techniques in the software engineering field, however there are

some techniques that are more productive in game testing [39].

Figure 6. The game testing cycle.

12

Combinatorial Testing is a technique that tests game elements in small sets, in order to determine

which combinations can cause bugs. It is a very effective technique with the ability to identify many

bugs fast and efficiently. The generation of a combinatorial test is constructed as a table, as shown

in Figure 7.

Test Flow diagrams (TFD) is another testing technique used often in game testing. This technique

is based on models that correspond to the behavior of the game from the player’s point of view. In

order to create testing scenarios, the TFD technique uses certain maps, known as flows, which assist

in executing the testing process. An example of a flow is depicted in Figure 8.

Another game testing technique is the Test Trees. This testing method uses trees in order to break

down complex game features in separate game elements that are easier to be tested. The most

common game testing technique is Playtesting. This technique is used to test the game generally

and not specific game elements. The importance of playtesting lies in the fact that it aims to evaluate

the “fun factor” [39]. So, the tester is behaving as a potential player and not as a tester. That is the

reason why this testing technique is mainly focusing in aesthetics, rather than facts. Ad-Hoc Testing

Figure 7: An example of a pairwise combinatorial test.

 Game Testing All in One by Charles P. Schulz, Robert Bryant and Tim

Langdell (2005).

Figure 8: A TFD map.

 Game Testing All in One by Charles P. Schulz, Robert Bryant and Tim Langdell (2005).

13

is a non-structured testing technique with the testers explore the game generally without any pre-

determined rules. It can appear in two different states; as Free Testing, where it occurs with no

rules and scenarios, and Direct Testing, which is a technique aiming to test an exact game feature

or element.

On Table 1 we determine which testing techniques are most suited for which game artifacts,

according to [38, 39]. This table has been constructed, iteratively. Firstly, the game testing field

was explored and the matching to most of the game features and the testing techniques was done.

After the initial construction, the case company was observed daily on how the testing process was

constructed and the table was completed.

Combinatorial testing is closely related to game features that depend on variables and thus it is

more used by programmers [39]. The game features associated with the TFD testing are related to

the behavior from the point of view of the player [39]. The test trees technique is associated with

more complex programming game features [39]. The rest of the testing techniques have been

associated with the game features arbitrarily. However, it is understood from the literature [38, 39]

and investigating the testing process of the case company, game features that are related with art

are more suitable with these techniques.

After the testing process is over, the QA team reports defects that have been found during testing.

The game producer, in order to prioritize the bugs and distribute them to the development team,

needs to obtain information regarding each bug. A very important attribute in the bug report is the

Bug Severity. Although the game producer and the lead tester can determine the bug severity levels

differently, the most common categorization is [4]:

Game Features Testing Techniques

 Combinatorial TFD Trees Playtesting Free Direct

Artificial Intelligence ✓ ✓ ✓ ✓

Animations ✓ ✓ ✓

Dialogs ✓ ✓ ✓

Game Balance ✓

Game Controls ✓ ✓

Game Design ✓ ✓ ✓

Game Difficulty ✓ ✓ ✓

Game Graphics ✓ ✓ ✓

Game Modes ✓

Game Paths ✓

Game Rules ✓

Game Settings ✓ ✓

Game Story ✓

Gameplay ✓

Online Features ✓

Parallel Choices ✓ ✓

Special Effects ✓ ✓ ✓

Text ✓ ✓ ✓

User Interface ✓ ✓

Table 1: The association between game features and testing techniques.

14

 Critical, the highest level in the hierarchy, because a bug categorized as critical causes the

game to crash and not respond.

 High. These bugs do not crash the game, however they are important to be fixed.

 Medium level bugs belong to bugs that are importance, but can be postponed if necessary.

 Low level bugs are minor bugs which are mainly recommendations that would improve the

game experience.

2.4 Game Production Tools
The most known tools within game production are the content creation tools, such as level editing

tools, animation tools, music conducting tools, etc. However, the development team consists of

people and therefore it is not solely a technical effort. It is also a social effort. In order to meet the

requirements for a game title, the development team is required to employ into a collaborative and

coordinated activity. That means that the members of the development team should interact with

each other efficiently and effectively. At that point the game producer gets involved, to assure that

these activities are operated by the team. That is the main reason that a game producer’s tasks are

demanding [8, 22, 37].

In order to fulfill successfully these activities, the game producer uses specific tools:

 Version Control. In software engineering, version control is the process of managing and

tracking changes to source code. Thus, version control is implemented in game

development as well [41]. There are a lot of software solutions in version control, such as

CVS1 and SVN2. These tools allow the development team work on the same project

simultaneously and successfully upload new functionalities. The game producer uses this

tool to manage changes in the game and documents.

 Bug Tracking. In order to keep track of the bugs that the testing team faces, the

development team and the game producer, use bug tracking tools. By these tools the testing

team can construct the bug reports and deliver to the game producer. An example of a bug

tracking solution is Jira3.

 Project Management. There are many challenges that the game producer encounters during

game development. First of all, keeping track of the game development progress is a key

activity that leads to a successful game title. For example, if a development team members

is late in delivery the game producer, needs to identify this situation and make decisions to

handle this situation. Also, the previous example is related to another game producer’s

activity, scheduling. In order for the game producer to identify this problematic situation,

a software solution is needed. A software that can provide this kind of information is a

project management tool [23]. A very popular software for that purpose is Microsoft

Project4. The composition of a successful development team is another challenging task

for the game producer. The way to form a development team depends on the scope of the

game and the available budget that can be distributed to the team. For example, a 3D high

quality game requires much more artists than a 2D arcade game. Also, if a game has a

minimum budget set, it affords less developers than a high budget project. Therefore,

1 http://savannah.nongnu.org/projects/cvs
2 http://subversion.apache.org/
3https://www.atlassian.com/software/jira
4 https://products.office.com/nl-NL/project?legRedir=true&CorrelationId=c55e43f3-355a-42d5-82da-

27c201489c9d

15

budgeting is also a task that a game producer needs to fulfill. There is a variety of project

management software that the project budget can be reported and monitored, in

combination to tracking the progress of the development. A prime example of this software

solution is Clarizen5.

2.5 Business and Game Analytics
Companies willing to evaluate the way they function, use business analytics [42]. This method

assists companies collect data on how a company perform in certain activities, either internal or

external. The data that are collected are not structured and thus they need to be transformed to

information that can be valuable for taking business decisions. The process of this transformation

is called business intelligence [43]. The processed data can be represented in different forms, such

as dashboards, analytical reports and table reports. The data analysis can be dealing with the

working process and the personnel of the company or customers. The process of business analysis

is presented in Figure 9.

Similarly, game development companies use game analytics. These analytics, however, focus on

the end user of the game that is developed [44] and are usually referred as User Analytics [45].

Game analytics have been introduced in the game development field recently and have been

implemented in many game studios [44, 45]. The purpose of the game analytics is to improve the

process of game development in different levels. The performance data are accompanying the

technical related aspects of game development, such as the FPS (frame rates per second) or the

server behavior. The process data is mainly related with the process of developing games, mainly

data obtained from a game producer and are important in monitoring the progress of the

development. Finally, the user data correspond to the data obtained from the user/player, such as

active users per day, or total playtime per user. In order to statistically analyze the data, some

measures need to be obtained. These measures are called Game Metrics [44, 45].

2.6 Conclusions
The literature study provided useful information regarding the game development process and the

role of the game producer in it:

5 http://www.clarizen.com/

Figure 9: An overview diagram of business analytics.

Source: https://motivitysolutions.com/business-intelligence/

16

 The main artifacts of game development were presented and identified and a comparison

between the waterfall and agile method was presented. Through this comparison we

identified that game studios that have a small and medium size, lean towards agile game

development.

 The differences between a project manager and a game producer were determined and a

mind-map of the overall game producer activities was constructed. The key differences of

a game producer and a project manager is that the game producer copes with people from

different disciplines and therefore different way of thinking and that the role of a game

producer is adjustable and dynamic in a game studio. By this exploration, we managed to

identify the key responsibilities of a game producer.

 The association between game testing techniques and game features was created and the

most trending game testing techniques were explained.

 The presentation of the state-of-the-art game production tools used by game producers was

held that will help us determine what the proposed software solution needs to integrate.

 Business and game analytics were introduced. In this part we draw an important

conclusion. In game development, experts focus in user metrics, which gives us the

opportunity to explore the process data from the scope of the game producer.

17

3 Design of the Solution

This chapter aims to introduce a conceptual model of the agile game production and introduce

metrics aiming to assist game producers in monitoring the progress of game development and the

effectiveness of the development team. Also, the suitability of the testing techniques for different

game features is presented.

3.1 The Conceptual Model
In order to design the software solution, certain tasks needed to be performed. The first task was to

identify which activities, artifacts and people are involved during the agile game development

process. These are necessary for the game producer to obtain valuable information on whether the

game development is heading towards the direction set during the project planning. These are

transformed in classes and relations, which construct a conceptual model. An overview of the

model can be observed in Figure 10, as a class diagram and the process can be observed in Figure

11.

Figure 10: The class diagram of the conceptual model.

18

In a game development company, there exist one or multiple teams working on different game

projects. Each team consists of members that belong to different disciplines. For example there are

teams that consist of artists, designers, programmers and testers and teams that only include

programmers and testers, on a very late stage of development. Every game title possesses a product

backlog, in which belong all the known stories to complete the game development, according to

the project plan.

During the development, new stories may arise that the development team needs to fulfill, so the

product backlog is a non-static set of stories [31]. Instead, it is updated in every change that might

occur but is in compliance with the company’s stakeholders and within the time and financial

borders [22, 31]. For instance, during the Alpha stage, the development team observe that it is

impossible budget-wise and time-wise to develop a new level. So, the game producer with the

development team decide to drop the creation of a new level and the project plan is updated

according to this decision.

The agile process, consists of multiple sprints, so there exist multiple sprint backlogs. Before the

start of the sprint the development team with the game producer create the sprint backlog, which is

a set of multiple backlog items and a sprint goal. For example, a development team creates a sprint

goal “Add Level 3 in game with basic functionality”.

The backlog items consist of product backlog items and also new stories that have been discussed

and have been acknowledged from the team, during the sprint planning [31]. An example of a new

story can be a new found bug that wasn’t identified during the testing session. Each backlog item

is related to a game feature and is assigned to a development team member or multiple members

from the same or different disciplines. As soon as the sprint is close to the end and the sprint backlog

Figure 11: The activity diagram of the model.

19

items are finished, the development team members construct the game build, which is a playable

version of the game consisting of all the delivered stories from the sprint backlog.

Then, the test team obtains the game build to perform the quality assurance of the current sprint.

According to the test plan, the testers implement a certain testing technique for the feature that is

tested. During the testing session the test team identifies defects on features. These defects are

reported after the testing session is over.

When the testing session has ended, the defects are prioritized, as mentioned in the literature study,

by the game producer and are handed into the corresponding team. During the next sprint planning,

the development team creates the new sprint backlog, taking into account, also, the results of the

testing session and the list of defects the game producer has delivered.

3.2 Metrics of the Conceptual Model
The next task to be performed, in order to design the game producer’s console, is the identification

of the metrics. These metrics are extracted from the literature study and also the conceptual model.

As mentioned in the previous chapter, the game metrics that currently exist are dealing mainly with

the user experience [44] and how the game can be improved from the user’s perspective. The

metrics proposed and introduced in this chapter aim to assist the game producers evaluate the

process of game development for multiple projects. So, these metrics are closely related to the

process data analytics, presented in the literature study. Most metrics deal with defects, because the

testing process is a very important activity in game development [38, 39], thus identifying and

fixing bugs are crucial steps in the process of developing a successful game title.

The metrics need to be formally determined to avoid ambiguity. In order to achieve this the metrics

definition is accompanied by creating SQL queries from the class diagram in Figure 10 and also

providing results, by using the following scenario:

We assume that there is a company that has in development 3 different projects, a project close to

the end with many bugs (A), a game that has started 2 sprints ago (B) and a project that is in

production and is bug free (C). The company has 3 development phases, Pre-Production, Needs

phase and Wants phase. In Needs phase the team develops the aspects of the game that have been

set during the requirements determination, whereas the Wants phase are features that add

additional value to the game, but are not required.

The Appendix presents the Microsoft Access diagram that was constructed, in order to execute the

queries.

In the following list the proposed metrics, are presented, with fictional results based on the

assumption. The reason to provide the results is to illustrate the differences that exist in projects

that are on different stages and status.

General Metrics

The metrics that belong on this category, are metrics that give a general idea of the game

development progress. These metrics present a high-level activity of the games that are developed.

The metrics that belong on the general category are presented below:

 Defects per Game. This metric presents the bugs each game currently has that have not

been resolved yet. The game producer is able to determine the overall unresolved defects

in the ongoing projects. The query is:

SELECT

COUNT(defect.ID), feature.gameTitleID

20

FROM

defect INNER JOIN feature ON defect.FeatureID =

feature.ID

WHERE

defect.Status<>"Fixed"

GROUP BY

feature.gameTitleID;

The query returns 17 bugs for project A, because it is a problematic project, as mentioned

on the hypothesis. By this result, the game producer is able to identify that there is need in

attention for project A, in order to identify what causes these problems.

Projects B and C have 0 zero bugs currently, because the first project is new and the latter

project is currently bugless.

 Defects per Game (based on Development Stage). This metric is an overview of all the

defects that a development team encountered during the process of developing a game,

acting as a reference for the development team and the game producer to draw conclusions

of the process.

SELECT

COUNT(defect.ID), feature.gameTitleID,

defect.DevelopmentStage

FROM

defect INNER JOIN feature ON

defect.FeatureID=feature.ID

GROUP BY

feature.gameTitleID, defect.DevelopmentStage;

The query returns for Project A 8 pre-production bugs, 15 needs bugs and 33 wants bugs

and it is clear that the game producer needs to take actions on that problematic project.

For Project B 4 pre-production bugs and 0 bugs for needs and wants, because the project

is still in pre-production stage. The game producer could be able to identify where these

bugs came from and take precautions for the future.

For Project C there are 10 pre-production bugs, 3 needs bugs and 0 wants bugs. By this

results, the game producer could praise the work of the development team, since the current

phase is the needs phase and the bugs on that stage, are limited compared to previous

projects.

 Defects per Severity. Using this metric the game producer is able to observe the defects

that the development teams are dealing with, based on the severity. The severity of each

bug is given from the associate tester, so the game producer is able to prioritize them and

observe in which project there are problems that need to be tackled.

SELECT

COUNT (defect.ID), feature.gameTitleID,

defect.Severity

FROM

defect INNER JOIN feature

ON defect.[FeatureID]=feature.[ID]

GROUP_BY

feature.gameTitle, defect.Severity;

In out scenario this query would return 2 low bugs, 20 medium bugs, 25 high bugs and 9

critical bugs for Project A, meaning that the game producer could conclude the fact that

this project’s bugs are very severe and take actions, regarding the nature of these bugs.

21

4 low bugs for Project B that the game producer is able to conclude that having low bugs

in pre-production is not something to worry about.

2 low bugs, 8 medium bugs, 3 high bugs and 0 critical bugs for Project C, helping the game

producer come to a conclusion that the project has bugs that do not fall off the average bug

rate for the company.

 Trend of Open Bugs. This metric aims to present the number of unresolved bugs in the

game development process over time. Observing this metric the game producer can judge

the progress of the development and the team’s productivity.

SELECT

Count(defect.ID), feature.gameTitleID, defect.Sprint

FROM

defect INNER JOIN feature ON defect.FeatureID =

feature.ID

GROUP BY

feature.gameTitleID, defect.Sprint

ORDER BY

feature.gameTitleID , defect.Sprint;

This query returns values for every sprint and the two adjacent values are calculated the

trend. In Project A there is an increasing trend, something that can aid the game observe

the time period that the bugs started to raise. In Project B there is a small increasing trend,

because the project just started. This trend, however, does not allow the game make

conclusions, because the game is still in a very early stage. In Project C the trend is

gradually decreasing and is currently in 0, because of the “ideal” development so far, so

the game producer can conclude that the development is on the correct track.

 Goal Completion per Development Stage. Every backlog item is characterized, amongst

others, by the development stage it belongs. This metric aims to assist the game producer

observe the percentage of the done stories regarding the development stage. By this, there

can be a better evaluation on the progress of development.

SELECT

(SELECT Count(backlogItem.ID)

FROM backlogItem

WHERE backlogItem.ItemStatus="Accepted")

/

(SELECT Count(backlogItem.ID)

FROM backlogItem)*100, backlogItem.DevelopmentStage,

feature.gameTItleID

FROM

feature INNER JOIN backlogItem ON feature.ID =

backlogItem.featureID

GROUP BY

feature.gameTitleID, backlogItem.DevelopmentStage

ORDER BY

feature.gameTItleID;

This query returns for Project A 85% in pre-production, 40% in needs phase and 25% in

wants phase, helping the game producer observe that the game is not on the stage that it

should be and some actions need to be made.

22

For Project B the values returned are 50% for pre-production and 0% for needs and wants

phase, which is accepted from the game producer, since the development of this project

started recently.

Project C has completed 100% of pre-production, 85% of needs and 60% of wants stories,

results that the game producer can conclude that the game development is praiseworthy.

 Goal Completion per Time Period. This is a similar metric with the abovementioned, with

the exception that it corresponds to the amount of successful sprints in a specific time

frame, such as month or trimester. The following query returns the goals completed in the

period between 2/2015 and 3/2015.

SELECT

Count(gameBuild.ID), gameBuild.gameTitleID

FROM

gameBuild

WHERE

gameBuild.[BuildDate]>=#2/1/2015# AND

gameBuild.[BuildDate]<#3/1/2015#

GROUP BY

gameBuild.gameTitleID;

The response of this query provides values for every month or trimester as trends. Project

A had an increasing trend (1 or 2 goals completed per month), but currently the project has

0 goals completed on the last 3 months. This trend can help the game producer identify that

there is a problematic situation that started some months ago in this project and actions

need to be taken.

Project B has 2 successful sprints so far, concluding that so far the development is accepted.

Finally, Project C has an almost straight trend of goals completed per time (1 or 2 goals

completed per month), aiding the game producer understand that the progress of the

development is ideal.

 Trend of Newly added stories per Game. As mentioned in the conceptual model, there can

be stories that were not inserted in the product backlog, but as the development progresses

they are essential. This metric calculates, during the development of every game, the

number of these stories. By this, the game producer might be able to observe the uncertainty

of the game project throughout time.

SELECT

(SELECT

Count(backlogItem.ID)

FROM

(backlogItem INNER JOIN sprintBacklog ON

backlogItem.ID = sprintBacklog.backlogItemID) INNER

JOIN productBacklog ON backlogItem.ID =

productBacklog.backlogItemID

WHERE

(backlogItem.CreatedAt)<=[sprintBacklog].[StartedAt])

/

(SELECT Count(backlogItem.ID) AS CountOfID

FROM (backlogItem INNER JOIN sprintBacklog ON

backlogItem.ID = sprintBacklog.backlogItemID) INNER

JOIN productBacklog ON backlogItem.ID =

23

productBacklog.backlogItemID)*100,

productBacklog.gameTitleID

FROM

(backlogItem INNER JOIN sprintBacklog ON

backlogItem.ID = sprintBacklog.backlogItemID) INNER

JOIN productBacklog ON backlogItem.ID =

productBacklog.backlogItemID

GROUP BY

productBacklog.gameTitleID, backlogItem.SprintNumber;

In Project A there are a lot of issues, so the trend is increasing and decreasing. This trend

helps the game producer understand that the product backlog is changing often, so that

could be one of the reasons of the problematic situation.

Project B is in pre-production phase so the percentage is still to 0, because so far the project

plan is being followed. Due to the success of Project C there are limited stories that do not

belong to the product backlog that the game producer can conclude the fact that, in order

to have a successful game development, the project plan has to be followed with limited

additions.

 Percentage of Product Backlog Items moved to Sprint Backlog (based on Development

Stage). This metric can aid the game producer observe how well-defined is the product

backlog, depending the development stage of the game.

SELECT

(SELECT Count(backlogItem.ID) AS CountOfID

FROM (backlogItem INNER JOIN sprintBacklog ON

backlogItem.ID = sprintBacklog.backlogItemID) INNER

JOIN productBacklog ON backlogItem.ID =

productBacklog.backlogItemID

WHERE

(backlogItem.CreatedAt)<=[sprintBacklog].[StartedAt])

/

(SELECT Count(backlogItem.ID) AS CountOfID

FROM (backlogItem INNER JOIN sprintBacklog ON

backlogItem.ID = sprintBacklog.backlogItemID) INNER

JOIN productBacklog ON backlogItem.ID =

productBacklog.backlogItemID)*100,

backlogItem.DevelopmentStage,

productBacklog.gameTitleID

FROM

(backlogItem INNER JOIN sprintBacklog ON

backlogItem.ID = sprintBacklog.backlogItemID) INNER

JOIN productBacklog ON backlogItem.ID =

productBacklog.backlogItemID

GROUP BY

productBacklog.gameTitleID,

backlogItem.DevelopmentStage;

The query returns high percentages for Project C in all development stages, concluding that

the stories that the project plan has determined are being followed. On the other hand,

Project A has much lower values, especially in needs phase. This result concludes that the

product backlog is changing often in needs phase, so the game producer can identify that

the needs phase is the most problematic. Project B is still in pre-production so the values

24

on needs and wants phase are 0. Whereas the percentage on pre-production is 100%,

meaning that so far the project plan is completely followed.

.

 Percentage of Product Backlog Items moved to Sprint Backlog (based on Story Type). This

metric is visualizing the percentage of the stories that exist in the product backlog, based

on their type. The story type can be trifold; feature, bug and chore. The definition of a

feature and a bug are straightforward. Story type chore is a task that one or multiple team

members need to fulfill that normally is not directly related to game features. An example

of a chore is a meeting with stakeholders.

SELECT

(SELECT Count(backlogItem.ID) AS CountOfID

FROM (backlogItem INNER JOIN sprintBacklog ON

backlogItem.ID = sprintBacklog.backlogItemID) INNER

JOIN productBacklog ON backlogItem.ID =

productBacklog.backlogItemID

WHERE

(backlogItem.CreatedAt)<=[sprintBacklog].[StartedAt])

/

(SELECT Count(backlogItem.ID) AS CountOfID

FROM (backlogItem INNER JOIN sprintBacklog ON

backlogItem.ID = sprintBacklog.backlogItemID) INNER

JOIN productBacklog ON backlogItem.ID =

productBacklog.backlogItemID)*100, backlogItem.Type,

productBacklog.gameTitleID

FROM

(backlogItem INNER JOIN sprintBacklog ON

backlogItem.ID = sprintBacklog.backlogItemID) INNER

JOIN productBacklog ON backlogItem.ID =

productBacklog.backlogItemID

GROUP BY

productBacklog.gameTitleID, backlogItem.Type;

This query returns a very high percentage for features in all projects, meaning that the

stories the product backlog includes are mainly features.

Feature-related Metrics

The metrics that belong on this category have in common the fact that deal with game features.

That means that the results that are visualized depend on the game features each game has. The

metrics are:

 Defects per Feature. This metric is based on the bugs of every feature the development

team is dealing with. Using this metric the game producer can assess the most problematic

features and to investigate whether there should be some changes in developing the

features.

SELECT

Count(defect.ID),feature.gameTitleID,

feature.FeatureName

FROM

feature INNER JOIN defect ON feature.ID =

defect.FeatureID

GROUP BY

25

feature.gameTitleID, feature.FeatureName;

This query returns for Project B bugs in features that are related to prototyping and

documents. Project A has many bugs in different features and mainly in Art-related features

and especially the character animations. So, the game producer is able to identify that there

is a problem situation in the team members that deal with the animations. Project C has a

balance in bugs for all the features, with some more programming-related features. So, the

game producer can conclude that the more demanding features belong to the programming

game features.

 Defects per Feature per Sprint. It is a relevant to the previous metric, which visualizes the

defects that exist for every feature for every sprint, giving the opportunity to the game

producer together with the development team tackle the most defective features.

SELECT

Count(defect.ID), feature.gameTitleID,

feature.FeatureName, defect.Sprint

FROM

feature INNER JOIN defect ON feature.ID =

defect.FeatureID

GROUP BY

feature.gameTitleID, feature.FeatureName,

defect.Sprint

ORDER BY

defect.Sprint, feature.gameTitleID;

The results for Project A provide information that the animations have defects in many

consecutive sprints, so the game producer is able to take actions regarding the members

responsible for the specific game feature.

In Project B there are bugs in design and documentation. The project is in very early

stage, so the game producer does not need to take actions.

Project C has bugs related to AI that the game producer can conclude that the most

demanding game feature is the AI and try to take actions regarding this feature.

 Defects per Feature (based on Development Stage). This would aid the game producer

identify in which stages of game development each feature was more problematic.

SELECT

Count(defect.ID), feature.gameTitleID,

feature.FeatureName, defect.DevelopmentStage

FROM

feature INNER JOIN defect ON feature.ID =

defect.FeatureID

GROUP BY

feature.gameTitleID, feature.FeatureName,

defect.DevelopmentStage

ORDER BY

feature.gameTitleID, defect.DevelopmentStage;

In all development stages of Project A, the most problematic features are the art features.

Another way for the game producer to identify that the art features are producing many

bugs.

In Project B the game development has just started and the design bugs do not need any

attention.

26

In Project C the bugs related to programming features are higher and especially regarding

the AI. These bugs have been resolved already, but the game producer can conclude that

the AI feature on the next games to be developed might need extra attention.

 Trend of Defects per Feature (based on Time Period). By this metric the game producer is

able to identify the progress a feature has made in time and whether the development team

needs to increase the productivity. Also, this metric can be helpful in identifying if the

deadlines and milestones that have been set, during the project planning, can be met. The

following query returns the defects per feature in the 2nd trimester of 2015.

SELECT

Count(defect.ID), feature.FeatureName,

feature.gameTitleID

FROM

feature INNER JOIN defect ON feature.ID =

defect.FeatureID

WHERE

defect.[CreatedAt]>=#4/1/2015# AND

defect.[CreatedAt]<#7/1/2015#

GROUP BY

feature.FeatureName, feature.gameTitleID;

Amongst the values that this metric returns in Project A, the character model feature

seems still with bugs, whereas it should have been already completed. By this, the game

producer can conclude that there need to be an addition in the art discipline, in order to

complete the feature and meet the goals.

Project B is very early in development so there cannot be any conclusions.

Project C seemed to have bugs regarding the menu art for some time, but the feature was

complete in schedule and eventually no new bugs were aroused. On this project, the game

producer can praise the art team for resolving the bugs fast and effective.

Discipline-related Metrics

On this category the proposed metrics are group per discipline. So, they handle the results according

to the different disciplines that exist on the game development teams. The proposed metrics are:

 Defects per Discipline. Another important metric for the game producer, due to the fact

that this metric helps understand which teams encounters the most challenges, within the

game development process. Therefore, the game producer can claim additional members

to assist this problematic situation. Also, it might assist the teams understand that some

projects, based on the requirements, need more effort in specific disciplines.

SELECT

Count(defect.ID, feature.gameTitleID,

defect.Discipline

FROM

feature INNER JOIN defect ON feature.ID =

defect.FeatureID

GROUP BY

feature.gameTitleID, defect.Discipline;

This query returns an increasing value for programming bugs in Project C that the game

producer can conclude the fact that the programming team has more bugs.

27

The bugs that belong to the art discipline are much more compared to the other disciplines

on Project A that the game producer can conclude that the art team is more problematic.

Only design bugs are returned for Project B. The game producer could conclude that the

design team faces issues in the current state.

 Defects per Discipline per Development Stage. This is a metric that could assist the game

producer as the previous metric and act more as a reference for future game planning.

SELECT

Count(defect.ID), feature.gameTitleID,

defect.Discipline, defect.DevelopmentStage

FROM

feature INNER JOIN defect ON feature.ID =

defect.FeatureID

GROUP BY

feature.gameTitleID, defect.Discipline,

defect.DevelopmentStage;

The query returns the design bugs from Project B in Pre-production. The game producer

cannot make conclusions for this metric, because the project is in a very early stage.

Project C has few pre-production and needs phase bugs that are spread in all the disciplines

and minimum programming bugs in wants phase. The game producer is able to make

conclusions that in all the disciplines issues raised, but none of them converges on a specific

discipline.

Project A has multiple pre-production bugs and much more art bugs in needs phase. So,

the game producer can observe that in the needs phase there is a problematic situation in

the art department.

Testing Technique-related Metrics

This category presents metrics that are related to the testing techniques. These metrics are:

 Defects per Testing Technique. This metric is focusing on the defects that each testing

technique a game developing company is facing. By this metric, the game producer might

be able to evaluate the necessity and efficiency of each testing technique and also propose

changes in the testing process.

SELECT

Count(defect.ID), feature.TestingTechniqueID,

feature.gameTitleID

FROM

defect INNER JOIN feature ON defect.featureID =

feature.ID

GROUP BY

feature.TestingTechniqueID, feature.gameTitleID

ORDER BY

feature.gameTitleID;

The resulting values of this query is almost the same in projects A and C. The testing

technique with the most bugs is playtesting. The game producer can conclude that the most

problematic testing technique is playtesting, however, in combination with the next metric

can be identified, whether there is a problem on the testing technique or it is the most

popular one.

However, project B has free testing bugs, due to the fact that the bugs are design-related.

28

 Use of Testing Techniques per Development Stage. This metric is a statistical

representation of the testing techniques for every development stage. The metric is able to

assist the game producer observe which is the most popular testing technique for each

development stage and also assist is defining the test plan in future projects.

SELECT

Count(backlogItem.ID), feature.gameTitleID,

backlogItem.DevelopmentStage,

testingTechnique.TechniqueName

FROM

testingTechnique INNER JOIN (feature INNER JOIN

backlogItem ON feature.ID = backlogItem.featureID) ON

testingTechnique.ID = feature.testingTechniqueID

GROUP BY

feature.gameTitleID, backlogItem.DevelopmentStage,

testingTechnique.TechniqueName

ORDER BY

feature.gameTitleID;

As an outcome from the previous metric, the most used testing technique, in every stage of

projects A and C, is playtesting. However, there is an increased value in direct testing for

project A, because the art assets to be tested are more specific. Project B has zero values

for wants and needs phase for all the testing techniques.

 Use of Testing Technique per Test Plan. This metric aims to identify the testing techniques

that the test plans are scheduling. By this metric, the game producer and the test lead can

observe which testing techniques is scheduled from the test plan. This metric with the

combination of the Use of Testing Techniques per Development Stage, can provide

valuable information regarding what is scheduled and what is actually performed.

On this metric, there are many direct testing results that contradict to the actual use of the

testing techniques from the previous metric. So, the game producer can conclude that the

test plan is not followed as it should. For the other 2 projects the metric returns that the

most used testing technique in respect to the test plan is playtesting.

3.3 Conclusions
On this chapter the conceptual model of the agile game development, from the game producer’s

point of view, was presented. Also, the right metrics regarding the process of an agile game

development were introduced and formalized. Those two steps are the fundamentals of developing

a console that would assist game producers manage the agile game development. The following

chapter, presents the way that this console was developed.

29

4 Prototype

The goal of this chapter is to present the console that has been developed, according to the

conceptual model and the metrics defined on the previous chapter. Also, the technical elements on

how the console was developed are explained.

4.1 PivotalTracker
As described in the previous chapters, the role of the game producer is very demanding. That is the

reason that game producers rely on software solutions that can assist them on their tasks.

PivotalTracker6 is an example of that software. It is an agile project management tool that allows

teams track and log their daily progress, but also promote collaboration and the game producers to

observe the progress of the project. An overview of a project in PivotalTracker can be viewed in

Figure 12.

In order to use the tool, all the development team members need to create an account and be invited

by the administrator of the project.

As it can be observed from Figure 12, the project consists mainly of 3 panels. The current panel is

concerning the sprint backlog, the backlog panel is concerning the product backlog and the icebox

panel is representing the stories that respond to stories that have yet to be determined and might not

be executed. For the purpose of developing the console, the role of these panels is slightly modified.

The current and backlog panels correspond to the sprint backlog and the icebox panel includes the

stories that correspond to the product backlog. This modifications allowed us to gain an advantage.

The number of stories included in the sprint backlog is automatically generated from the project’s

velocity. The velocity is calculated from the points that the development team obtained from

previous sprints. These points can be days or difficulty levels, but we use hour estimates. Due to

this automatic planning, the backlog panel hosts some stories from the current sprint. This is also

6 http://www.pivotaltracker.com/

Figure 12: An example of a Project overview in PivotalTracker.

30

the reason that the icebox panel hosts product backlog items. Apart from this reason, our case

company uses the system in such a manner.

Each panel consists of multiple stories that have a description. The description corresponds either

on the activity that the user is able to perform after the completion of the story or the tasks that the

development team member has to perform. Each story has a certain story type that are presented

below and are valuable in calculating the metrics of the console:

 Feature. It is the story type that, after its completion, a game feature is created or new

functionalities of a game feature are added. An example of a feature story type is “Create

level start and end sequence functionality”.

 Bug. This story type corresponds to defects that the testing or development team has

encountered during the testing session. An example of a bug story type is “Fix character

jumping animation”.

 Chore. It is a story type that the development team uses, in order to complete a task that

does not add direct value to the game. An example is “Buy plug-in from Unity Store”.

 Release. This story type mainly corresponds to milestones that the game development team

has set during the project planning. Also, releases can be set as sprint goals for every sprint.

When stories are created they can be accompanied with multiple labels. These labels are created

from the development team and group the user stories. For the purpose of developing the console,

some label groups were introduced and added to the stories. The categories and the values are:

 Development Team. This category determines which development discipline works on the

story, such as Art, Design, Programming and Audio.

 Feature. On this category, the stories are group depending on which game feature the story

adds value to, after the story is completed. Examples of game features added on

PivotalTracker as labels are menu, animations, character, server, models.

 Development Stage. With this label category, the stories are grouped depending on the

development stage that they belong. The labels that are used for this category are pre-

production, needs and wants.

 Testing Technique. The labels from the testing technique category correspond to the testing

method that is followed, in order to assess the game feature on the story. The testing

techniques are presented in Chapter 3.

 Severity. This label presents which severity level are the bug-type stories. The severity

levels are discussed in Chapter 2.

Also, apart from the title of the story and the accompanying labels, the story consists of some other

elements. For example, the points that the story has. Most of the times, the points are the estimated

hours to finish the story.

Figure 13 presents an example of a story and the labels accompanied. On the left, the star

corresponds to the type of the story, which is a feature. The number next to the star is the points

that the story has and the large text is the title of the story. The green words on the bottom of the

story are the labels that are followed by the story.

31

PivotalTracker is able to store user data through resources that have specific attributes and provides

an API that can be used to retrieve data from projects that are hosted by the system. In order to

have access to the data that PivotalTracker stores, the user obtains a unique API Token. This value

is important, because it is necessary for authentication. Through the API we are able to calculate

the metrics introduced in the previous chapter. In order to fulfill this task there are certain activities

to occur. The first activity is to identify and align the conceptual model elements with resources

from the PivotalTracker data model.

Table 2 presents the alignment between the elements of the conceptual model and the resources.

The next activity to be followed is to develop the console to retrieve data from PivotalTracker and

presents visually the metrics, which were introduced in the previous chapter. However, the metric

Use of Testing Technique per Test Plan is not implemented in the console, due to the fact that the

case data that we obtained do not include the projects’ test plans. Also, the test plan is a document

that cannot be integrated, at least on the prototype phase of the console.

4.2 Technology
The prototype of the console, proposed to assist the game producers in managing the game

development process, is a web-based application. For the purposes of the case study, the prototype

is hosted on a local host. The reason that the console is a web-application relies on the fact that

most of the project management software is hosted on the web.

The console is developed in HTML 5 and Javascript language, by using the Bootstrap framework7.

In order to obtain data, to calculate the metrics from PivotalTracker, there exist AJAX requests. To

visualize the metrics, the Morris Chart 8library has been used, a library that provides bar, donut,

line and area charts.

Figure 14 presents the high level architecture of the console. By this architecture we are able to

identify the process of how the metrics are obtained from PivotalTracker and then presented to the

users. The user requests to view a specific metric. As soon as there is this inquiry, the console sends

7 http://getbootstrap.com/
8 http://morrisjs.github.io/morris.js/

Conceptual Model

Element

PivotalTracker Resource

gameTitle Project_ID

productBacklog ALL stories

backlogItem story

employee person

defect story WITH story_type=bug

testingTechnique label

feature label
Table 2. Conceptual model elements to PivotalTracker resources.

Figure 13: A story example.

http://morrisjs.github.io/morris.js/

32

a request to the database of PivotalTracker. The response of the request is translated in a chart and

the user is able to view the result.

Figure 15 presents the component diagram of the procedure, which provides further details on how

the software is behaving.

Figure 14. Architecture of the console.

Figure 15. The component diagram of the console.

33

The requests that data are obtained from the PivotalTracker server, are based in cURL and the

HTTP protocol. cURL uses the URL syntax, with an example of a metric request returning the bugs

of project A that have high severity level for the console presented:

https://www.pivotaltracker.com/services/v5/projects/Project

A/stories?filter=story_type:bug label:’high’

4.3 Dashboard
The tool consists of multiple pages that each one represents a metric. The metrics are directly

available from each page, because of a menu that exists on the left side of the page that consists of

4 menu items. The first element is the “Dashboard”, where the user can return to the main page of

the tool. The main page, as shown on Figure 16, presents the most popular metrics that the user has

navigated to. For the purpose of the prototype, the main page presents 3 pre-determined metrics,

rather than the most popular ones.

The remaining 3 menu items correspond to categorization of the metrics. The first category is

“based on Data Sets”, which is categorization according to which data sets are obtained. This kind

of categorization is explained thoroughly on Chapter 5. The “All the Metrics” sub-menu presents

in alphabetical order all the metrics and the “based on Category” sub-menu presents the metrics

by dividing them in categories, such as testing technique, feature, development stage, etc. On the

top of the dashboard there exists a dropdown menu, where the milestones of all the ongoing projects

are presented. The purpose of this option is to allow game producers have immediate access to the

milestones and be able to monitor the progress of the projects, in respect to the deadlines.

Figure 16. The main page of the dashboard. On the left side there exist the menu items.

34

On every pages there is a chart that the metric is visualized and there are options to edit the

visualization. For example, in the metrics that the results depend on time, the chart can be visualized

per month or per quarter. Another option regarding the visualization of the metrics is to filter the

games and observe the metric for every game separately or altogether. Figure 17 presents an

example of a metric with the options on the top.

An example of a different metric is presented in Figure 18, where a bar chart is depicted with

different options.

Figure 17. The Trend of Open Bugs metric.

Figure 18. The Defects per Discipline metric.

35

A final example is presented in Figure 19, where a donut chart is visualizing a different metric.

Figure 19. The Goal Completion per Development Stage metric.

36

5 Case Study

This goal of this chapter is to introduce the case study that was executed, in order to evaluate the

console that was explained in the previous chapters.

5.1 Preparation
In order to conduct the case study, we needed to perform activities to prepare the evaluation. The

first activity was to identify the goals of the case study, which are presented on the following list:

 Evaluate the current functionality of the console. By this goal we aim to identify, whether

the console that we developed is sufficient to cover the needs of game producers regarding

the task of managing the agile game development.

 Identify potential of the console, during the agile game development management. This

goal aims to identify whether the console that is proposed is able to make the agile game

development more efficient.

 Evaluate the proposed metrics that aim to assist the game producers in managing the game

development process.

After the scope and the goals were defined, the next step was to formulate the hypothesis of our

case study:

H0: The proposed console and metrics do not help the game producers manage game development

effectively.

H1: The proposed console and metrics help the game producers manage game development

effectively.

By defining the null hypothesis and the alternative hypothesis, we try to reject the fact that the

console and the metrics that we developed do not assist game producers.

The term “effectively” that we employed in the hypotheses, refers to the capability of the game

producer to have a better overview of the current projects. It also refers to its capability to anticipate

or quickly react to negative events within those projects. We hypothesize that the console,

especially through the metrics that it embeds, will be conductive to effective management.

The next activity was to decide on which kind of evaluation should be held. The most suited

evaluation method seemed the semi-structured interviews. The reason that the semi-structured

interview was chosen is because this way of evaluation is more suited in qualitative research [46].

Also, this method of interviewing is allowing the field experts to provide with new ideas on a field

that is currently limited.

The protocol of the interview is presented below:

 The first phase of the protocol is a presentation of the console, in order to introduce to the

subjects the console and the purpose of its development. The presentation lasts for 5-10

minutes.

 Next, the subject explores the console, by observing the metrics that exist and the

functionality that the dashboard provides. By the meantime, the interviewer is keeping

track of the activity of the subject. The exploration lasts 10-15 minutes, so the subject is

able to identify the full potential of the console.

37

 The final phase of the protocol is the interview, in which the subject responds to the pre-

determined questions that concern the console, the metrics and the game producer’s

benefits from it. The duration of the interview lasts 15-20 minutes.

An important aspect of the preparation of the case study was to determine the sample that will

participate in the experiment. We decided to draw the sample by using non-probabilistic

convenience sampling. This way of selecting samples helps us conduct the experiments with people

who are directly available and we had access to [47, 48]. The main advantage on selecting this

method is the fact that we managed to perform the experiment in short period, without delays. A

main drawback of this method is that the subjects that were selected do not represent the field

experts, because the number of participants is rather small, compared to the number of our potential

users. Although the sample is not representative, in a sense that the people that were selected are

limited, the experiments give us the opportunity to conduct a qualitative research.

For the cause of obtaining relevant to the research information, the interview questions were

grouped according to the research questions, as follows:

1. What are the key responsibilities of a Game Producer?

a. Do you believe this console would be able to improve the process of managing the

game development? Why?

This question is related to the research question, because one of the key responsibilities of a game

producer, according to the literature study, is tracking the progress of the game development and

therefore managing the process.

2. What are the problems that come from a non-coordinated game development?

a. Do you believe that using this console, you would have avoided some issues during

the game development?

The above question is related to the research question, due to the fact that with the interview

question we try to extract if there were issues that have appeared in the process of game

development and observe whether, by using this console, some situations might have been

obviated.

3. What are the metrics to assess the effectiveness of coordinating the game development?

a. Do you believe that the metrics proposed on the console are sufficient to fulfill the

purpose of the console?

With this question, we try to identify whether the metrics we propose are enough to help the game

producer coordinate the game development effectively. That is the reason that the question is

related to the research question.

b. What additional metrics would you like to observe from the console?

This question aims to help us understand what other necessities game producers have, in order to

manage the game development effectively. It belongs to the research question 2, because the

answers of this question are a valuable addition of the already proposed metrics and therefore give

new effective metrics.

c. Which of the metric(s) proposed from the console you believe is (are) more

important? Why?

38

This is the question that help us evaluate the metrics that we propose, because it gives the

opportunity to the field experts determine the most important metrics. The outcome of this question

is a set of metrics that are more effective and necessary for a game producer.

4. What is an effective software solution to support the game producer’s coordination?

a. Are there any additional functionalities that you think that can improve the use of

this console?

With this question we try to evaluate what additional functionalities are able to make the prototype

of the console improve and become a valuable tool for the coordination of game development. It

falls under research question 4, because field experts give new insights that can make the software

more effective.

b. Would you use this console for managing the progress of the projects?

The answers of that question give us the opportunity to evaluate the console and identify the

potential that the console has. It is related to the research question 4, because the results of this

question help us conclude on what is an effective software solution for the game development

management.

c. Would you use a custom console, based on your needs, in order to manage the

game development process? Or rely on existing software solutions?

The goal of this question is to identify the preference of game producers in selecting a software

solution to manage the process of game development. The question is part of research question 4,

in the sense that the interview subjects declare what are the needs of an effective software that helps

game producers.

The questions are presented to the participants in a random order, since the order of the questions

do not affect the outcome of the interviews. We define a semi-structured interview, so the

participant is allowed to answer a question other than the one asked, by combining more than one

questions on the answer.

After the definition of the questions and the experiment design, the next step was to define threats

to validity. The threats are presented below:

 The number of participants is low, so the conclusions are hard to be generalized. By this,

we were able to draw conclusions regarding small and medium game studios within the

Netherlands.

 Another threat to validity is the fact that the subjects that we selected by the convenience

sampling method, are not only game producers. However, they are experts in other

positions in game development that have also management activities.

 The experiment allows the participants to explore the console for 15’ in data that they do

not have personal experience. A threat that is extracted from that is the fact that the

participants are not able to use the console for their own projects.

5.2 Data Sets
As mentioned on the previous chapter, the menu accommodates 3 categories of accessing the

metrics. The first of them is “Based on Data Sets”. This type of categorization was held, in

compliance with the data that we had access to. The company that the case study obtained data

from uses PivotalTracker and has multiple ongoing projects.

39

The “Current Potential Data Set” sub-category, requests the metrics that can be immediately

obtained from the projects un-edited. This means that the stories that each project consists of did

not get any modification or change. The metrics that belong on this sub-category are:

 Defects per Game

 Goal Completion per Time Period

 Trend of Open Bugs

 Trend of New Added Stories

 Percentage of Product Backlog Items moved to Sprint Backlog based on Story Type.

The next sub-category is “Full Potential Metrics” that an enriched version of the previous data set

are used to calculate the metrics. The additions of this data set rely on the fact that stories obtained

labels for the discipline they occupy, the development stage they belong and the feature they add

value to. If the stories are bugs, there is an additional label that concerns the severity of the bug.

We were able to give the appropriate labels to the stories, due to the fact that we had access to the

project plan of the company that the case study deals with. The following metrics belong to this

sub-category:

 Defects per Feature. On this metric the addition of the game feature label was necessary.

 Defects per Feature per Sprint. On this metric the addition of the game feature label was

necessary.

 Trend of Defects per Feature based on Development Stage. The additions required to

calculate this metric were the game feature and development stage label.

 Trend of Defect per Feature based on Time Period. On this metric the addition of the

game feature label was necessary.

 Defects per Severity. In order to calculate this metric the bugs were label on different

severity levels.

 Defects per Discipline. This metric was calculated by adding the discipline on which the

bugs refer to.

 Defects per Discipline based on Development Stage. To calculate this metric the labels of

the discipline the bug relates to and the development stage each bug concerns were added.

 Defects per Game based on Development Stage. The addition of the development stage of

each bug was necessary to determine this metric.

 Goal Completion per Development Stage. The same addition with the previous metric

applies to this one. The development stage that each story belongs to was added.

 Percentage of Product Backlog Items moved to Sprint Backlog based on Development

Stage. In order to calculate the metric, the addition of the development stage on every story

was necessary.

The last sub-category is “Assumption Data Set Metrics”. The reason that metrics belong on this

data set, relies on the fact that the company that we obtained the data to develop the console does

not follow a certain plan on testing. Thus, we propose the testing techniques that perform better,

based on the game feature each story concerns. This assumption is underpinned by the literature

40

study on game testing. In order to calculate the metrics we added the testing techniques on each

story as a label. The metrics that reside in this data set are:

 Defects per Testing Technique

 Use of Testing Techniques based on Development Stage

5.3 Results
After the structure of the case study was designed and all the appropriate activities were fulfilled,

we run the experiment. With the convenience sampling we managed to select 6 participants that

belong to the game industry. These participants are game producers or have managerial duties

within the game industry, such as art, design or technical directors. All of the participants belong

to companies that develop games with the agile method.

In order to keep the anonymity, the participants are addressed as Participant X, where X is the

unique number of every person. Table 3 provides demographic information regarding the

participants of the experiment.

As mentioned on the protocol presentation, while the participants were exploring the console, we

were tracking their activity. During this phase we managed to observe some interesting points:

 All of the participants seemed motivated in exploring the console and understanding the

purpose of the proposed metrics.

 The participants within the company that the data was collected, spent a lot of the

exploration time in the metrics that correspond to the un-edited data.

 Also, participants with different background focus on different metrics. Participants having

game design background spent more time in features, whereas participants in project

management positions were exploring more the metrics that were dealing with trends.

The next phase of the experiment consisted of individual interviews. The results of the questions,

determined in section 5.1 are presented below:

1. Are there any additional functionalities that you think that can improve the use of this

console?

The answers of this question were ranging on different aspects. Participant 4 responded

that ‘I think the console can be more user friendly and having more interactive features’.

Also, apart from the design enhancements, all the participants believed that the console can

be much more effective in managing the agile game development process by providing

feedback in situations where the game producer should take actions. ‘As the console

currently is, I still need to rely on external sheets or plans’ was the response from

Participant Sex Age Position Company

Size

Years in Game

Industry

Participant 1 M 35-40 CEO, Technical Director,

Game Producer

10-15 12

Participant 2 M 30-35 Art Director, Scrum Master 10-15 1

Participant 3 M 30-35 Design Director 10-15 7

Participant 4 M 25-30 Senior Designer, Scrum Master 5-10 3

Participant 5 M 25-30 Technical Director 5-10 4

Participant 6 M 25-30 Game Producer, Scrum Master 5-10 9
Table 3. The participants profile.

41

Participant 1. Furthermore, the response ‘I would like to see some guidelines to which

metric to view on which occasion’, from Participant 2 was also given from Participant 1

and Participant 3. Another interesting response from Participant 1, Participant 2,

Participant 4 and Participant 6 was to integrate a time tracking software, so new metrics

could be determined. Another potential addition on the console was proposed from

Participant 5 stating ‘I would like to see labels on the Y-axes, so I can understand better

what is represented’. He also added ‘I think adding a description on every metric is handy,

so I can have a clear view on what I am observing’. A response that Participant 3 also

proposed. Finally, Participant 6 added that ‘I would like to be able to visualize the trends

based on future references, so I could be able to prevent future hazards’.

2. Do you believe that using this console, you would have avoided some issues during the

game development?

Participant 4 stated that ‘Yes, I believe I would, because the proposed metrics give me the

ability of steering the game development and understand if there are any issues within the

game development that need to be resolved’. Participant 5 also believed that the console

would have prevented some issues, stating ‘The charts that are presented pinpoint the

necessary information for a game producer and also provide an overview of the games’

progress’. Participant 6 also supported that the console would have been able to prevent

problematic situations, saying ‘Yes, I think I would have an idea to plan better future

games, by pinpointing which discipline will be more problematic and which features will

be more demanding’. However, most of the rest participants agreed that the current

potential of the console is not helping in understanding the situation clearly and take actions

in problematic situations. In particular, Participant 2 responded ‘No, because the console

should provide some feedback, because there are differences in how things work on each

project. So, I am not sure, whether I had to take actions or not’.

3. Which of the metric(s) proposed from the console you believe is (are) more important?

Why?

This considered to be a very interesting question, because almost all the participants gave

a different response and for different reasons. Participant 1 and Participant 2 agreed that

‘From the proposed metrics, the ones that correspond to time are more important’.

Participant 1 stated ‘because this is how I imagine the progress can be tracked’, on the

other hand, Participant 2 explained that ‘because they relate to performance’. Participant

4 believed that ‘The metrics seem very important, however I believe that the goal

completion per development stage metric is of most concern. The reason is that I can check

how far in development are the games’. Participant 6 also agreed that goal completion per

development stage is the most important, because ‘I am able to evaluate what the status of

the development is, compared to the deadlines’. Although the previous participants were

focusing on metrics that are independent of bugs, Participant 3 responded that ‘I think the

bug-related metrics are more important, because you can easier identify if there is a

problem and where to take actions’. An interesting response on this question was given

from Participant 5 who stated ‘For me and I think for the company that I work, the most

important metrics are the ones that concern the disciplines. Defects per discipline metric

helps me realize how much workload each discipline has so I can take actions. Also, the

Defects per Discipline per Development Stage metric helps me tackle issues in every stage

and take actions to improve the process of the game development’.

42

4. Do you believe that the metrics proposed on the console are sufficient to fulfill the

purpose of the console?

The majority of the participants believed that the metrics are sufficient. Participant 2 stated

that ‘I believe the metrics are elaborate and cover the important aspects of the game

producer’s role in game development’. A statement that Participant 6 also supported.

However, Participant 1 stated that ‘I believe that the metrics are sufficient, however I

believe that they focus a lot on defects and I would like to see some more metrics in different

aspects of the game development’. Also, Participant 3 added that ‘Whereas the metrics are

enough, I am missing some metrics that correspond to budget’. On the other hand,

Participant 5 claimed that ‘They seem more than enough and I am overwhelmed’, a

statement that Participant 1 believed also.

5. What additional metrics would you like to observe from the console?

Most of the participants agreed that an important metric that would add value to the console

is the Percentage of Feature Completion. Participant 4 explained ‘This way, I would be

able to observe how far our features are, compared to time the development team has spent

and the development stage our games are’. Another interesting response was given from

Participant 3 ‘Some budget-related metrics seem very interesting, because that way I could

have an idea how the progress of the games is, compared to the budget’. A different insight

regarding a new metric was defined from Participant 5, who mentioned that ‘In order to

view the efficiency of every discipline, I would like to observe the Goal Completion per

Discipline’. A response that could assist the company that use PivotalTracker was given

from Participant 2, explaining that ‘I think Points of Sprint per Owner would be really

useful for our company, since this way would help identify the efficiency of every

employee’.

6. Do you believe this console would be able to improve the process of managing the game

development? Why?

The responses of this question were very positive, regarding the console, because all of the

participants agreed that the console can make the process of managing the agile game

development more efficient. Participant 3 stated that ‘Yes, definitely, because the current

software that the company uses makes it impossible to track the progress of the games that

are developed, something that this console does’. Also, another reason that the console

would improve the task of a game producer was given from Participant 4 that responded ‘I

think it would improve the process of managing the game development, because it gives

the option to a game producer to keep track of multiple things on the same time and give a

clear view of what is happening’. A reason that Participant 5 and Participant 2 shared as

well. Participant 6 added ‘The use of this tool seems to give better view for future

interventions’.

7. Would you use this console for managing the progress of the projects?

Most of the participants acknowledged the potential of the console. Particularly, Participant

3 stated ‘I see the potential of the system and I believe that it can add value to the tasks of

a game producer’. However, he continued ‘but due to design issues I don’t think I am yet

to use it’. Also, similar response was given from Participant 2 who claimed that ‘If I could

see some information regarding the metrics such as conclusions, I think I could use this

tool’. Participant 4 responded ‘Definitely yes, because it is very interesting to view these

metrics and compared to our current game development management, it would save me

time and effort’. Another positive response regarding the use of the console was given from

43

Participant 5. He said ‘I believe that a game producer can be really keen on using the

console and I believe I would have used it as well’. Participant 6 also stated ‘We see a lot

of tools in the market to evaluate which to use. The potential of this console seems one of

the tools we might need’.

8. Would you use a custom console, based on your needs, in order to manage the game

development process? Or rely on existing software solutions?

The responses on this question are categorized in 3 groups. There were participants arguing

that existing solutions are more useful. Specifically, Participant 4 claimed that ‘I prefer to

rely on already existing software, because the needs that the company currently has can

be covered from existing tools’. In addition, Participant 6 responded ‘The existing software

solutions provide us with the 80% that we need to perform and are sufficient for the time

being. However, we are still exploring on which solution is the most ideal for us’. On the

other hand, Participant 1 stated ‘I would use a custom console that can present metrics and

is able to add new insight on progress of the development’. He continued ‘We are currently

working on a custom time tracking software to integrate with our present project

management software’. Also, Participant 2 commented ‘By developing a custom system

you can adjust your needs and make it as you prefer’. The last category was defined by

Participant 3, who mentioned ‘I would prefer to use a customized version of a current

system, because I think I would be able to focus on my needs and not to the generic needs

of all the companies’. Participant 5 also agreed on a customized existing software

responding ‘What I believe would be an ideal solution is to use an existing project

management software by adding custom widgets to provide with the information we need’.

5.4 Enhancements
After the responses were collected, we decided to make some enhancements on the prototype, in

order to make the console more usable. The decisions on which suggested improvements to perform

and which to drop, depend on the following reasons:

1. The importance of adding value to the purpose of the console. By this, we decide which

suggestions would improve the agile game development management.

2. Collective suggestions. During the interviews, there were some suggestions for improving

the console that were unanimously stated. An example of suggestion is the addition of a

metric that corresponds to the percentage of game feature completion. Also, design

enhancements that make the console more applicable.

After taking into consideration those reasons we decided to implement certain improvements.

Design Improvements:

One comment that was mentioned from most of the participants was the fact that the console

currently is not very user friendly. So, we decided to implement the following enhancements:

1. Change the development stages view. Currently the bar presenting the development stages

is a text that does not provide direct insight on where in development each game is. The

enhancement that was implemented was to provide different fonts, depending on the

current state of each stage. The greyed out dates mean that the stage should have been

finished, the bold dates represent the current stage and the italics dates represent the future

stages. By this change, the user can have direct access on the current stage of the game. In

Figure 20 the differences between the old and the new design are depicted.

44

2. Loading screen on presenting the charts. During the experiment all the participants stated

that when a metric is about to be visualized, there is a time period where the console is not

responding. This is a known issue and is occurring, due to the fact that the responses that

are sent to obtain the data take time to be processed. The AJAX requests demand

authentication to provide access to the database and this authorization is time consuming.

Because this issue is not depending on the way the console is developed, we decided to add

a spinner that can assist the users understand that the console is active and the metric will

be visualized as soon as all the data are obtained.

Functional Improvements:

3. New metric. One of the questions that the participants responded was dealing with

additional metrics. Although the responsed depend on personal preference, we decided to

include a metric that was proposed from the majority of the participants. This metric is

Percentage of Feature Completion. This metric gives the opportunity to the game

producer, observe how completed each game feature is and draw conclusions regading the

time and budget that is remaining for the feature. The following SQL-query represents the

data that we obtain to calculate this metric:

SELECT

(SELECT COUNT(backlogItem.featureID)

FROM feature INNER JOIN backlogItem ON feature.ID =

backlogItem.featureID

WHERE backlogItem.ItemStatus="Accepted")

/

(SELECT COUNT(backlogItem.featureID)

Figure 20. Left: The initial design on the development stages.

Right: The new version of the design.

45

FROM feature INNER JOIN backlogItem ON feature.ID =

backlogItem.featureID)*100, feature.gameTitleID,

feature.FeatureName

FROM

feature INNER JOIN backlogItem ON feature.ID =

backlogItem.featureID

GROUP BY

feature.gameTitleID, feature.FeatureName;

 Figure 21 presents the new metric that was constructed by this query.

4. Feedback on charts. According to most of the participants, providing feedback in the charts

is the most important addition to transform the console from a prototype to an applicable

solution. By adding this functionality on the console, the game producer could be able to

identify problematic situations and take actions more direct than before, as stated during

the interviews. In order to implement this additional functionality, we identified different

alternatives to understand, whether the projects are on track or there are problematic

situations.

1) Definition of static indicators. By this algorithm we create a constant X that is

compared to the values of the metric like “more open bugs than X”. If the value that

we plot is above X then a feedback is given. This algorithm is easy to implement,

because only a comparison is executed, however the definition of X is difficult.

2) Check the norm of the results. This algorithm relies on statistics and the definition of

the average 𝜇 and the normal distribution 𝜎 are required. Using this algorithm, an area

of values is compared to the results that the metrics are visualizing and therefore the

feedback depends on the results. However, in order to implement this algorithm, the

data that are collected need to be normally distributed. Also, the implementation of the

Figure 21. The new metric that presents the completion of every feature.

46

algorithm is rather more complicated, because additional values need to be processed

and defined. An example of this algorithm is:

 if (𝜇 − 𝜎 ≥ 𝑏𝑢𝑔𝑠 𝑂𝑅 𝜇 + 𝜎 ≤ 𝑏𝑢𝑔𝑠){ 𝑝𝑟𝑜𝑣𝑖𝑑𝑒 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘}

3) Observe the path of a trend. This algorithm can be executed only by data that that are

dependent on time and can be plotted in curves. The algorithm observes the path of the

curve and provides feedback in situations where for example the curve was decreasing

and suddenly it started increase.

After examining these alternatives, we decided to select the algorithm where the norm of

the results is being examined. The selection of this algorithm was chosen, because we leave

out using an arbitrary number as the 1st algorithm does and also most of our metrics do not

depend on time, as the last algorithm proposes. An example of given feedback is given in

Figure 22.

Figure 22. The feedback of the defects per Game metric is observed on the bottom of the chart.

47

6 Discussion

The last chapter of the thesis presents the conclusions that we were able to draw in respect to the

research questions. The conclusions are determined from the literature study that we performed and

also the experiments that we executed. Also, the limitations and threats to validity and reliability

are presented. Finally, we propose additional work that can improve our research.

6.1 Conclusions
Through the literature study and the design and development of the prototype console, we can draw

conclusions regarding our research questions:

 Firstly, we explored the literature study to identify the key responsibilities of a game

producer. As can be observed from the mind-map we constructed in Figure 5, a game

producer has multiple responsibilities. We concluded that the internal responsibilities, in

order to produce a successful game title lie under the game development management.

During our research we focused on the agile game development, because as concluded in

Chapter 2, agile game development is a trending development method for small and

medium game studios.

 Also, through literature study, the interviews and also from personal experience in a game

studio as game producer, we were able to identify bottlenecks that game producers face in

managing the game development process. These barriers are observed mainly when

attempting to keep track of all the activities that occur in a game development process. By

this, the coordination of the game producer can be less effective and can result in failed or

cancelled games.

 Furthermore, we proposed metrics that aim to improve the management of agile game

development. Because the metrics are extracted from a conceptual model, the definition of

new queries is possible. Also, the schema can be obtained from specific companies and be

customized, allowing for more queries. Throughout the interviews with the case study

participants, we can conclude that these metrics are sufficient to improve the coordination

of agile game development.

 Finally, we developed a console that aims to assist game producers in managing the agile

game development. The evaluation of the console, from the case study participants, helped

us conclude that the software solution that we propose has potential of being introduced in

the field and can assist game producers. However, as it is still in prototype phase, the

console is not directly applicable.

6.2 Limitations
Our research is based on some assumptions or some decisions that we made, which create threats

to validity and reliability. To begin with, there is limited scientific research for the field that we

explored. So we were unable to substantiate the information we extracted from the web and books

that present personal experiences from experts. Furthermore, the case study was performed by not

solely game producer, due to the fact that the access to game producers within the Netherlands was

limited. So, the evaluation is not performed entirely by potential users and also the number of

participants does not allow us to draw robust conclusions on the potential of the console.

48

6.3 Future Work
According to the results that we obtained and the conclusions that we drew, the field shows

potential and it can be further explored to improve the role of a game producer. First of all, defining

additional metrics from the ones that we propose would convert the console in a tool that can be

used in further activities, apart from agile game development management. Also, we relied on data

that we obtained from a single tool, namely PivotalTracker. A further investigation on other tools

and integrating them within the console, can provide new functionalities. During our

experimentation, we relied on game producers or developers with managerial activities within the

Netherlands. Further experimentation, with game producers could make the evaluation process of

the console more concrete.

49

7 References
1. Baer, R., and Burnham, V. "Supercade: A visual history of the videogame age, 1971-1984". MIT Press,

2001.

2. Lowood, H. "Videogames in computer space: The complex history of pong." IEEE Annals of the History

of Computing 31.3 (2009): 5-19.

3. Herz, J.C. "Joystick nation: How videogames ate our quarters, won our hearts, and rewired our minds".

Little, Brown & Co. Inc., 1997.

4. Bethke, E. "Game development and production." (2003).

5. Peterson, S. "Digital Game Sales Growing 33%." GamesIndustry.biz. 29 Mar. 2013. [Online; Retrieved

4 May 2015].

6. Michaud, L. "World Video Game Market: Eight Key Trends to Watch in 2014." Game Summit.

DigiWorld, 12 Dec. 2013. [Online; Retrieved 4 May 2015].

7. "Top 100 Countries Represent 99.8% of $81.5Bn Global Games Market." Newzoo. 23 June 2014.

[Online; Retrieved 25 May 2015].

8. Nicholas, K., and Halprin, R. "What Does a Game Producer Do?" WiseGeek. Conjecture, 20 Apr. 2015.

[Online; Retrieved 4 May 2015].

9. Crecente, B. "Pirates of the Caribbean Game Canned as Layoffs Hit Propaganda

CONFIRMED." Kotaku. Kotaku, 14 Oct. 2010. [Archived; Retrieved 4 May 2015].

http://web.archive.org/web/20130615070634/http://kotaku.com/5664021/rumor-pirates-of-the-

caribbean-game-canned-as-layoffs-hit-propaganda

10. Tamaki. "Heroes: The Video Game [Cancelled - PS3, Xbox 360, Wii, PC] - Unseen64." Unseen64. 16

Feb. 2015. [Online; Retrieved 4 May 2015].

11. Makuch, E. "Young Justice: Legacy Canceled for Wii, Wii U." GameSpot. 28 Oct. 2013. [Online;

Retrieved 5 May 2015].

12. Briers, M. "Gone Home Console Version Cancelled." We Got This Covered. We Got This Covered, 4

Mar. 2015. [Online; Retrieved 4 May 2015].

13. Plunkett, L. "Star Wars: Battlefront Online Binned As Developers Laid Off." Kotaku. 9 Apr. 2010.

[Online; Retrieved 4 May 2015].

14. Goldfarb, A. "NBA Live 13 Canceled - IGN." IGN. Ed. 27 Sept. 2012. [Online; Retrieved 18 May 2015].

15. Makuch, E. "NBA Live 13 Canceled Six Days before Planned Release." GameSpot, 3 Oct. 2012.

[Online; Retrieved 18 May 2015].

16. MacDonald, K. "Comically Terrible Ashes 2013 Game Officially Cancelled - IGN." IGN. 28 Nov. 2013.

[Online; Retrieved 18 May 2015].

17. Cobbett, R. "The 10 Worst PC Games Of 2013." PCGamesN. 14 Dec. 2013 [Online; Retrieved 18 May

2015].

18. Healey, N. "Bethesda Confirms Prey 2 Cancelled - CNET." CNET. 30 Oct. 2014. [Online; Retrieved 18

May 2015].

19. "EA Unveils The Lord of the Rings, The White Council; Next Generation Lord of the Rings Game

Introduces First Epic Open World Adventure." Electronic Arts News RSS. 13 July 2006. [Online;

Retrieved 18 May 2015].

20. Hatfield, D. "White Council Adjourns - IGN." IGN. 2 Feb. 2007. [Online; Retrieved 18 May 2015].

21. Remo, C. "LOTR: The White Council Cancelled, Producer Gray Let Go." Shacknews. 5 Jan. 2007.

[Online; Retrieved 18 May 2015].

22. Chandler, H. M. "The game production handbook". Jones & Bartlett Publishers, 2009.

23. Bonin, H. "Gamasutra: Harvard Bonin's Blog - The Future of Being a Video Game Producer."

24. Heney, E. "How to Make Flappy Bird, #1 App – Interview with Game Developer Dong Nguyen:

Updated." 31 Jan. 2014. [Online; Retrieved 25 May 2015].

25. French, M. "Inside Rockstar North - Part 2: The Studio." Inside Rockstar North. 4 Mar. 2013. [Online;

Retrieved 25 May 2015].

26. Weber, R. "On Reflections: First Interview with the Ubisoft Studio's New MD." GamesIndustry.biz. 28

Feb. 2013. [Online; Retrieved 25 May 2015].

http://web.archive.org/web/20130615070634/http:/kotaku.com/5664021/rumor-pirates-of-the-caribbean-game-canned-as-layoffs-hit-propaganda
http://web.archive.org/web/20130615070634/http:/kotaku.com/5664021/rumor-pirates-of-the-caribbean-game-canned-as-layoffs-hit-propaganda

50

27. Warren, T. "Microsoft Launches Xbox One SDK to Let Any Developer Build Apps for Its Console."

The Verge. 4 Mar. 2015. [Online; Retrieved 25 May 2015].

28. Studyweb.com Team. "How to Homebrew Wii Games: 73 Tips, Tutorials and Resources -

StudyWeb.com." StudyWebcom. 29 Jan. 2008. [Online; Retrieved 25 May 2015].

29. Turke, Z. "Bargaining with Apple: Understanding the IOS Developer Program License Agreement | Law

of the Level." Law of the Level. 19 Feb. 2015. [Online; Retrieved 25 May 2015].

30. Rollings, A., and Adams, E. "Andrew Rollings and Ernest Adams on game design". New Riders, 2003.

31. Keith, C. "Agile game development with Scrum". Pearson Education, 2010.

32. Royce, W. W. "Managing the development of large software systems." Proceedings of IEEE WESCON.

Vol. 26. No. 8. 1970.

33. "Waterfall Development." 'What Games Are' [Online; Retrieved 25 May 2015].

34. Bates, B., and LaMothe, A. "The game design: The art and business of creating games". Premier Press,

2001.

35. Miller, P. "Top 10 Pitfalls Using Scrum Methodology for Video Game Development." Gamasutra

Article. [Online; Retrieved 25 May 2015].

36. Beck, K., et al. "The agile manifesto." (2001): 2009.

37. Cohen, D. S., and Bustamante S. A. "Producing games: from business and budgets to creativity and

design". CRC Press, 2012.

38. Schultz, C. P., Bryant, R., and Langdell, T. "Game testing all in one". Course Technology, 2005.

39. Redavid, C, and Farid, A. "An Overview of Game Testing Techniques."

40. Koepke, B., et al. "Agile Game Development".

41. Schultz, W. "The Importance of Version Control Management in Game Development." About.com.

[Online; Retrieved 8 June 2015].

42. Kohavi, R, Rothleder, N. J., and Simoudis, E. "Emerging trends in business analytics." Communications

of the ACM 45.8 (2002): 45-48.

43. Coker, F. "Pulse: Understanding the Vital Signs of Your Business". 2014. 41-42.

44. El-Nasr, M.S., Drachen, A., and Canossa, A. "Game analytics: Maximizing the value of player data".

Springer Science & Business Media, 2013.

45. El-Nasr, M.S., Drachen, A., and Canossa, A. "Intro to User Analytics." Gamasutra Article. 30 May 2013.

[Online; Retrieved 28 May 2015].

46. Bjornholt, M., and Farstad, G.R. "‘Am I rambling?’ on the advantages of interviewing couples

together." Qualitative Research (2012): 1468794112459671.

47. Kitchenham, B., and Pfleeger, S.L. "Principles of survey research: part 5: populations and

samples." ACM SIGSOFT Software Engineering Notes 27.5 (2002): 17-20.

48. Wohlin, C., et al. "Experimentation in software engineering". Springer Science & Business Media,

2012.

51

8 Appendix

The Microsoft Access Diagram

