
Utrecht University

Real-time Ray tracing and Editing of Large
Voxel Scenes

Thijs van Wingerden (4123565)
Supervisor: dr. ing. Jacco Bikker

ICA-4123565

June 25, 2015

Abstract

A novel approach is presented to render large voxel scenes in real-time. The
approach differs from existing solutions in that a large emphasis is put on allowing
the user to edit and stream large datasets. Previous solutions often use compression
schemes involving hierarchical data layouts such as sparse voxel octrees that require
some form of preprocessing, which prevents efficient editing. By keeping data in
raw format we avoid having to preprocess the data making it directly editable. We
allow for efficient storage of large empty spaces using a system of layered grids . Our
results show our solution has competitive rendering performance and memory usage
and allows fast and easy access to the data. Along with the raytracing algorithm
and datastructure an occlusion based streaming system is presented. Our system
also includes an easy interface for editing voxels. Furthermore, we support streaming
from disk and basic level of detail. Combining these features we are able to render
and edit potentially infinite landscapes while using a finite amount of memory.

Contents

1 Introduction 1
1.1 Triangles versus

Voxels . 1
1.2 Voxel Applications . 1
1.3 Context . 2
1.4 State of the Art . 2
1.5 Discussion . 2
1.6 Research Question . 3
1.7 Contribution . 3

2 Related Work 4
2.1 Historical Overview . 4
2.2 Smoothed Voxels . 5
2.3 Sparse Voxel Octrees . 5
2.4 Voxel Compression . 7
2.5 Voxel for Games . 7
2.6 Summary . 7

3 Algorithm 9
3.1 Voxel Data Representation . 10

3.1.1 Brickmaps . 10
3.1.2 Brickgrid . 11
3.1.3 Shading Attributes . 11
3.1.4 Memory Management . 12

3.2 Streaming . 12
3.2.1 Occlusion Based

Streaming . 12
3.2.2 Editing . 13
3.2.3 Streaming From Disk . 13

3.3 Ray tracing . 14
3.4 Additional

Optimizations . 14

4 Implementation 15
4.1 Ray tracing . 15
4.2 Streaming . 16
4.3 Memory

Management . 17
4.4 Editing . 17
4.5 Streaming from Disk . 18

5 Results 19
5.1 Measurements . 19
5.2 Experiments . 20
5.3 Memory Usage . 23

5.3.1 Comparison with SVOs . 23
5.4 Ray tracing

Performance . 25
5.4.1 Comparison with SVOs . 25

5.5 Streaming
performance . 26

5.6 Summary . 26

6 Conclusion 29
6.1 Future Work . 29

A
Ray-Box intersection algorithm 32

1 Introduction

1.1 Triangles versus
Voxels

Historically voxels have been a less
popular alternative to triangles. Modern
rasterization hardware does not directly
support voxel rendering, and unlike tri-
angles, voxels do not represent continous
data. On top of this, substantially less
research has gone into animation of
voxel data as triangle mesh animation.
However, advances in hardware and ever
increasing geometry detail justify a recon-
sideration of voxels as the fundamental
primitive for rendering and editing in
interactive applications such as games.

The main reason triangles have been
the prefered solution is their compact
storage. Given the large amounts of mem-
ory available on modern systems voxel
datasets can now be stored at sufficient
resolutions to represent even the largest of
environments. Since storage has become
less of an issue voxels have recently
become an attractive option to represent
highly detailed geometry. Fine detail is
stored directly, rather than in auxiliary
data structures such as textures, normal
maps and displacement maps. Triangles
can represent similarly detailed data as
voxels but become less efficient as the
detail increases. The benefit of compact
storage of triangles is lost when we no
longer describe large surfaces using only a
few triangles. This is most apparent once
the number of triangles per pixel is less
than one. Voxels on the other hand store
high resolution data efficiently because of
their fixed resolution nature. This data

can easily be augmented with lower reso-
lution versions of the same data, allowing
for efficient level of detail operations and
reduced memory requirements for distant
geometry. Finally, the regular grid layout
of voxel data allows for efficient streaming
algorithms.

1.2 Voxel Applications

The primary benefit of voxels is their
capability of representing complex volu-
metric data. Voxels are currently the best
solution for representing subsurface data
or editable geometry, which is useful in
applications such as 3d sculpting tools or
procedural world generators. Prodecural
world generators using voxels do not
suffer from the same limitations imposed
by alternatives such as 2D heightmaps,
it is possible to generate true 3D struc-
tures such as overhangs, bridges and caves.

Even when the geometry does not
contain subsurface data voxels provide
notable benefits. Ray tracing of voxels is
efficient and can be done with little or no
preprocessing. The voxel data layout is
intuitive, and suitable for high detail as
well as raw data from e.g. medical scans.

An important application of voxels is
editable geometry. If subsurface data
is stored editing becomes natural and
easy. Removing a voxel will reveal the
underlying geometry and not create
artifacts such as holes. Normals and
colors are stored directly with the voxels,
rather than separately. For editing only
two operations are needed; changing the
color of a voxel and turning voxels on or
off. Editing can be used to simulate large

1

scale animations, e.g. erosion or fluid
propagation if done efficiently.

1.3 Context

Our system is designed with video games
in mind. This means the system must
run in real-time an not exceed the stor-
age limits of modern consumer hardware.
Realistic physically based rendering is not
our goal, but we do not want to exclude
the possibility. Our system must poten-
tially support advanced features such as
shadows, reflections or ambient occlusion.
What we do focus on is allowing real-time
interaction on a large scale with the envi-
ronment. We want to be able to perform
real-time modifications on the entire envi-
ronment combined with advanced feature
such as streaming or procedural content
generation. Furthermore we want to be
capable of handling worlds of virtually in-
finite size. The voxel resolution must be
high enough to represent sufficient detail
and the draw distance must be far enough
to render large landscapes.

1.4 State of the Art

Datastructures have been developed which
are capable of rendering and storing large
voxel datasets. Yet most of them come
with significant drawbacks. They are
geared towards static scenery and do not
allow editing and streaming, nor do they
support additional shading parameters.
Techniques such as sparse voxel octrees
(SVOs) provide efficient storage and fast
raytracing. Most voxel raytracing tech-
niques today use some form of sparse voxel
octrees. The most significant drawback of

SVOs is their inherent static nature. If
a voxel is changed the octree must be re-
constructed which induces significant la-
tency. Even if little preprocessing is nec-
essary editing is still inefficient, especially
when neighbouring data lookups are re-
quired. Efficient editing systems could be
developed that minimize the number of re-
constructions done in the octree but this
would limit the user in freedom and ease of
use. Modifying the datastructure to add,
for example, more shading parameters is a
complex task.

1.5 Discussion

As mentioned in the previous paragraph,
most solutions store voxels in a way that
hinders editing. These solutions were
developed with converted triangle data
and high quality lighting in mind. There
seems to be a tradeoff between these ad-
vanced features and editability of the data.

A simple solution that allows for effi-
cient editing is raw storage of voxel data,
as used in the earliest voxel rendering
algorithms. While editing and attribute
lookups are fast the problems become
apparent at high data resolutions. Ray
tracing an enormous voxel grid will be
too slow and take up large amounts of
memory. Without a hierarchy large open
areas can not be stored or ray traced
efficiently. Obviously this is not the right
solution for high resolution data sets used
today.

2

1.6 Research Question

The goal of this project is to efficiently
store and render large voxel datasets with
potentially infinite view distance. Our pri-
mary aim is to render large landscapes, as
these in particular benefit from the abil-
ity to represent complex shapes and large
data sets. While, as mentioned before,
there already exist some compact datas-
tructures which are capable of rendering
large voxel datasets. They all come at
a cost, often related to to flexibility in
editing, streaming and storing additional
shading parameters; features which are
important for games. The aim is thus
to develop a scheme for efficiently storing,
editing and rendering large voxel environ-
ments. Our research questions in more de-
tail are:

• What is the maximum detail level
that can be used within these con-
straints on consumer graphics hard-
ware.

• Are there compression schemes for
color and geometry that do not limit
editing and rendering efficiency, and
how do these compare to hierarchical
voxel representation schemes.

• Can streaming be used the reduce
the amount of in-core data.

• Compared to existing schemes, what
are the consequences of the addi-
tional flexibility, both in terms of
storage and performance.

1.7 Contribution

The algorithm presented in this thesis is
suitable for many applications and allows

editing and streaming while maintaining
competitive performance. The algorithm
does not use a sparse octree like most
current similar solutions; instead it stores
geometry in small brickmaps which con-
tain raw data. An extensible framework
is provided which supports advanced
features such as streaming and editing.
Compression, occlusion based streaming
and level of detail are shown to signfi-
cantly reduce memory usage. A stackless
ray tracing algorithm is presented which
offers competitive performance. Memory
usage is shown to be slightly higher than
other solutions but remains competitive.

In summary the work presented in
this paper shows that editability and
flexibilty can be maintained at little cost
in speed and memory usage. It shows
it is possible to render, stream and edit
large datasets in real-time. Advanced
features such as occlusion based streaming
and world scale simulations can be done
while maintaining full flexibilty for the
user.

3

2 Related Work

Voxels received considerable interest in re-
cent years, both in academia and the in-
dustry. For this research, we focus on ex-
isting work that could store large datasets
and render them in real-time. Some of
these focus on compression or efficient ren-
dering. Very little has been done on the
subject of editing and little on streaming.
We also discuss work on compression, not
necessarily applied to voxels, where this is
relevant to our research.

2.1 Historical Overview

The first research done on ray tracing
voxels was in 1987 by John Amanatides
and Andrew Woo [1]. They provide a
simple algorithm to traverse a ray through
a voxel grid. They store the voxels in an
array and use no hierarchical structure.
The voxels however do not describe the
actual geometry as they store triangles
within the voxels. In their benchmarks
ray tracing a scene with a 512x512 resolu-
tion took between 20 minutes and an hour
to render, therefore at that time being far
from real-time. In subsequent years little
research on the subject of voxels has been
done, until 2005 when there was another
rise in interest in voxels. Since then more
efficient ways of storing and ray tracing
voxel grids have been presented.

The Far Voxels [11] framework devel-
oped in 2005 extended the idea of the
previous paper by developing more sophis-
ticated methods of dividing triangles in
voxels while also keeping a fixed number
of triangles. Their algorithm runs in

real-time from 10 to 73 fps and can render
large datasets with over 50M primitives.
They also provide a method for streaming
which progressively refines the detail of a
dataset.

Another paper by Afra [10] proposes
a technique to render extremely large
models by using a voxel hierarchy frame-
work. The data is preprocessed and a
kd-tree datastructure is produced which
stores the primitives and LOD voxels.
The datastructure is ray traced on the
CPU and provides one bounce global
illumination. Another key feature is
the asynchronous streaming of the data-
structure from disk, which means even
with low memory large models can still
be rendered. They can render 337 million
triangles at 37 fps using only 800MB
memory. With global illumination they
can render the same dataset at 7 fps using
1000MB memory.

An alternative approach is proposed
in a paper by Forstmann [9] which RLE
encodes voxels in an array on the up(Y)
axis. The scene is raycasted in planes
perpendicular to the x-z plane and passing
through the viewpoint. All RLE elements
intersecting a plane are then rasterized.
The RLE elements are rendered at a
level of detail based on distance to the
viewpoint. Finally smoothing and anti-
aliasing of the voxels is performed.

Several algorithms have also been
proposed for ray tracing raw voxels not
containing any other primitives. A good
example is the paper on Efficient Sparse
Voxel Octrees by Laine and Karras [13].
They provide an efficient algorithm for
ray tracing a sparse voxel octree on the

4

GPU.

A paper by Crassin et al. [7] presents
an algorithm that calculates indirect
illumination in real-time with up to two
bounces. The algorithm uses a sparse
voxel octree generated in real-time from
an input mesh which can support ani-
mations. Visibility and incoming light is
calculated by approximate cone tracing.
It supports ambient occlusion, diffuse and
glossy reflections. The algorithm does not
require heavy precomputations and gives
real-time performance.

The work of the previously mentioned
paper was based on the PhD thesis by
Crassin [6], in which he developed a
framework that can render several billion
voxels on the GPU. The scheme makes
use of paging and caching to dynami-
cally load data onto the GPU, based on
visibility information gathered during
rendering in a feedback loop. This is
similar to the streaming approach used in
our system. The voxels are pre-filtered
by integrating several shading parameters
over the area of a voxel which has the
size of a pixel. Additionally by using cone
tracing, similar to the followup paper by
Crassin et al. [7], they achieve real-time
indirect lighting. The datastructure used
is a combination of a sparse voxel octrees
and brickmaps.

An alternative to regular sized grids
is proposed by Costa and Pereira [5].
They also store primitives in a voxel
grid, in their case from scanned models.
However they propose a rectilinear grid
instead which does not have a fixed size
in all dimensions. They measured it can
be up to 79% more efficient at ray tracing

irregular scenes than a regular grid.

2.2 Smoothed Voxels

Both rasterization and ray tracing tech-
niques exist to render voxels. Depend-
ing on their application, voxels can con-
tain other geometry such as triangles, be
smoothed or triangulated. When con-
verted from triangle data the blocky na-
ture of voxels is often obscured by a
smoothing technique. If the data exists
in raw voxel format smoothing is optional
and could be done as a post processing
step. The blocky nature of voxels be-
comes less of an issue at high resolutions,
becoming unnoticeable at one pixel level
resolutions. An example of a smooth-
ing and triangulization technique is the
marching cubes algorithm [4]. A compari-
son between raw data and the results pro-
vided by this algorithm can be seen in fig-
ure 1 and 2.

2.3 Sparse Voxel Octrees

The paper on sparse voxel octree presents
a related concept to our system. A basic
octree is a hierarchy that divides every
node into eight child nodes. A node
represents a cube which is then divided
into eight smaller cubes. The sparse
voxel octree only divides nodes if the
child nodes contain geometry. This is an
efficient way of storing empty space. Ray
tracing works by recursion, going one level
deeper on solid nodes and terminating
on non-solid nodes. This makes travers-
ing empty space efficient when ray tracing.

This does mean nodes must contain

5

Figure 1: Raw voxel data.
Figure 2: Smoothed triangle mesh using
marching cubes.

Figure 3: Cubical voxels. Figure 4: Voxels with contours.

pointers to their child nodes. By storing
children close to their parents nodes only
need 16 bit pointers. In case this is not
possible the pointer points to another 32
bit pointer. Color and normal attributes
are stored separately from the solid nodes
and are retrieved using implicit pointers
based on the node location. While this
datastructure has shown to be efficient in
terms of storage due to the structuring it
becomes clearly inefficient to edit.

They did not use cubical voxels in
their representation of the data. Instead
they propose a technique called contours,
which smooths the voxels by intersecting
them with two parallel planes. This
reduces the number of voxels needed and
can represent more complex geometry.
A comparison between raw voxels and
contours can be seen in figure 3 and
4. They also provide some streaming
based on distance to camera. Using their
approach they need up to 3 gigabytes of

6

GPU memory for high resolution datasets
and achieve, depending on the scene,
between 30 and 100 million rays per
second.

2.4 Voxel Compression

Sparse voxel octrees is an obvious first
step when compressing voxel data. This
approach has been significantly improved
by reusing data patterns. In a paper
by Kämpe et al. [12] a directed acyclic
graph datastructure is presented which
can render voxels faster than a sparse
voxel octree and store it more efficiently.
Compared to an SVO the number of
nodes needed is decreased for 26 up to
576 times based on the regularity of the
geometry. In another paper [16] they pro-
pose a more efficient way to use DAGs to
store shadows by using undefined voxels
to require less DAG nodes. While this
allows for very compact storage, run-time
modifications of the data are not possible.
The storage of shading parameters in an
additional SVO further restricts flexibility.

In a paper by Smith [17] two algo-
rithms are described that enhance the
details of voxels while they can still be
edited at original resolutions. One tech-
nique subdivides the voxels and another
uses pixel art scaling algorithms to create
more detail. This paper is meant to
increase the detail in games as Minecraft
or Voxelstein 3D while not increasing the
difficulty of editing the world.

2.5 Voxel for Games

Since Minecraft [15] made voxels popular
there has been a rise in commercial ap-
plications that use voxels. A lot of sim-
ilar games exist which allow some form
of world generation or editing. Voxels
in these games are commonly quite large
due to technical limitations. Our platform
could benefit future generations of simi-
lar games as it supports high resolution
datasets and has been designed with edit-
ing and world generation in mind. Sev-
eral commercial engines exist that facili-
tate the use of voxels in games. Exam-
ples of these engines are Atomontage [2],
Voxel Farm [18] and the C4 Engine [3].
Most of these allow editing of the environ-
ment.

2.6 Summary

So far the work done on voxels has ei-
ther been on high image quality in most
academic research or on high interactiv-
ity in most commercial games. Current
research on voxels focuses on high qual-
ity physically based rendering. For games,
voxels are attractive because of their ver-
satility and editability. The combination
of high resolution datasets and editability
presents new possibilities in both worlds;
this allows games to support smaller vox-
els or an increased draw distance and gives
academic research the option to efficiently
edit large datasets.

7

Figure 5: Example of large vox-
els and low draw distance in the
game Minecraft [15].

Figure 6: Example of large vox-
els and low draw distance in the
game CubeWorld [8].

8

3 Algorithm

For our algorithm the focus has been on
keeping GPU memory requirements low
and performance high. The CPU is in
charge of data and memory management
and the GPU is in charge of rendering.
The system allows for a lot of freedom
on the CPU to implement voxel loading,
editing and generation.

In order to render large worlds with
finite memory we store different versions
of the data on disk, in RAM and on
the GPU. The entire world, including
subsurface data, is stored on disk in a
compressed format. The largest amount
of memory is available here and by
compression we ensure large worlds can
be stored. The CPU then stores a part
of the entire world based on what is
required for rendering and editing. Here
we keep voxels in raw data format to
allow fast access and modification. Using
a streaming system we then upload the
data required for visualization to the
GPU. We ensure low memory usage by
removing hidden voxels and compressing
color.

Figure 7: Data representation on different
storage devices.

For real-time performance we propose an
efficient rendering and streaming system.
Ray tracing is done on the GPU for high
performance. Streaming is done in a
feedback loop which only uploads non-
occluded data to the GPU. It retrieves a
buffer from the GPU which tells us based
on the last render pass what data needs to
be uploaded. If the data is not yet avail-
able in RAM we load the required part
from disk. Once the data is acquired we
upload it to the GPU. An overview of the
system can be seen in figure 8. We also
use the occlusion based streaming system
for editing. Instead of directly uploading
the modified data we make it behave as if
it has not yet been uploaded to the GPU.
If the streaming system then requests it
we simply upload the new version.

9

Figure 8: System overview.

3.1 Voxel Data Representa-
tion

Our datastructure consists of a hierarchy
of uniform grids. At the lowest layer
the grids contain raw voxel data, called
brickmaps. Brickmaps encode solid data
in a bitmask and store color seperately,
they are small and can be stored in high
numbers.

Brickmaps are stored in the brick-
grid, which is a uniform grid spanning the
entire draw distance. This grid contains
pointers to brickmaps. Figure 9 shows
a brickmap, as a blue grid, contained in
the brickgrid, as a red grid. This data-
structure is already capable of efficiently
representing a large voxel world due to
the sparse storage of brickmaps.

Figure 9: Datastructure Overview. Solid
nodes in the brickgrid represent a pointer
to a brickmap. Non-solid nodes represent
an empty pointer.

Figure 10: Brickmap datastructure.

3.1.1 Brickmaps

Brickmaps are the core of our data-
structure and together they form the
actual representation of the data. We
empirically determined a good size for
the brickmap to be DB = (8, 8, 8). Since
brickmaps represent fine detail, which
can be random in nature, the size of
the brickmap is equal in all dimensions.
Given this size 512 bits are required to
represent the solid data of the brickmap.
All together the datastructure consists of
exactly 71 bytes, not counting shading
attributes. The exact layout can be seen
in figure 10.

We store shading attributes such as
color separately because a relatively high
number of voxels are empty and have no

10

shading attributes. Instead the brickmap
contains a pointer to an array where these
attributes are stored.

Finally the brickmap datastucture
contains a level of detail(LOD) color
which is used in case the brickmap is out
of LOD range.

3.1.2 Brickgrid

Every cell of the brickgrid contains a
pointer. A pointer either points to a
loaded brickmap, an unloaded brickmap
or is an empty pointer. If the pointer is
empty the corresponding brickmap is also
empty and no additional data is required.
For streaming and editing purposes the
grid cell can contain a brickmap which is
not yet loaded into GPU memory. In this
case the first three bytes of the pointer
contain a LOD color and the last byte
contains flags to determine it is unloaded.

The dimensions of the brickgrid can
be set freely, and will generally follow the
relative dimensions of the bounding box
of the geometry. It should be noted that
the size of the brickgrid also determines
the draw distance as no brickmaps can
be loaded outside of the grid. Given
brickmap size DB ∈ R3 and brickgrid size
DG ∈ R3 the draw distance DV is given
by

DV = (DB
0 D

G
0 , D

B
1 D

G
1 , D

B
2 D

G
2)

Figure 11: Brickgrid pointers.

3.1.3 Shading Attributes

Shading attributes are stored separately
from the brickmaps. In our implementa-
tion we only store color. The voxels are
rendered as cubes so normals are derived
implicitly. The color data is stored in
a compressed format based on S3 color
map compression [14], specifically DTX1.
DTX1 stores 16 pixels in 64 bits of data,
achieving a compression ratio of 1:6.
Applied to voxels this averages out to
4 bits per voxel. DTX1 also allows for
an alpha mask to be applied, for our
purposes we ignore this capability.

Color compression is applied right
before uploading the brickmap to the
GPU. This means colors can be stored
in raw format in RAM which makes
editing of the voxel data significantly
easier. For static geometry it might be
preferable to compress the color data in
a preprocessing step. This will improve
streaming performance without affecting
any other parts of the system.

Compression combined with compact
storage provides a flexible low memory
solution to storing and retrieving shading
attributes. Since compression is done
in blocks of 16 colors there is a small
overhead to be considered, in the worst

11

case space for an additional 15 colors must
be allocated. Given the good compression
ratio this is not much of an issue. Another
advantage of this approach is that it can
easily be extended to include additional
shading parameters. Examples of these
are normals or additional non cubical
geometry, all of which can optionally be
compressed.

3.1.4 Memory Management

Since brickmaps and color data are stored
in dynamic quantities memory manage-
ment is required to control memory usage.
Built-in GPU memory allocation could
be used but the nature of the data can
be exploited resulting in faster and more
efficient allocation.

Brickmaps are of constant size and
stored in a simple object pool. The
CPU keeps track of this pool and any
allocations are sent to the GPU as an
index in the object pool buffer. Allocation
and deallocation are then done in O(1)
time without any memory overhead. This
simple yet elegant solution is trivial to
implement.

For color data a more complex sys-
tem is required as color data is of dynamic
size depending on the number of visible
voxels in a brickmap. We use a memory
allocation scheme that stores memory
nodes at different levels. Every level has
a different node size and on allocation we
remove a node from the lowest level with
a sufficiently high node size. This system
allows for fast O(1) allocation and in
the worst case O(F log(F)) deallocation.
Where F stands for the number of free

nodes at the corresponding level.

3.2 Streaming

Support for streaming is a natural exten-
sion to our system. Since little reconstruc-
tion of the datastructure is required to
modify data streaming can be done fast
and efficiently. Unlike voxel octrees there
is not much room for LOD based stream-
ing since our LOD level count is lower.
While the system could be extended to al-
low for more LOD levels we have chosen
for occlusion based streaming. This means
the voxel data is gradually uploaded to the
GPU based on feedback from the ray trac-
ing algorithm. Therefore in practice only
visible areas are ever uploaded to the GPU
saving a lot on memory usage and allowing
for large worlds to be rendered.

3.2.1 Occlusion Based
Streaming

The process works by a feedback loop
between GPU and CPU. The brickgrid is
loaded into GPU memory in its entirety.
Pointers to brickmaps are replaced by
special pointers where the first three bytes
determine the LOD color and the last
byte has the ’unloaded flag’ set.

During rendering if the algorithm en-
counters an unloaded brickmap it is
added to the feedback list and the LOD
color is used to render it. Once the
rendering algorithm has completed the
feedback buffer is retrieved from the GPU.
This buffer determines what brickmaps
need to be uploaded. For every brickmap
a visibility test is performed. This test

12

removes invisible voxels, along with its
corresponding shading attributes. During
rendering this information is entirely un-
necessary. Once the tests are completed
we send the brickmaps in a batch to the
GPU.

While memory management is done
on the CPU this information is included
in the unpack buffer. This way the GPU
knows where to place the brickmap, the
color data and which brickgrid pointer to
replace. In our system we have set the
unpack and feedback buffer size to 256
brickmaps per frame. In practice this
works quite well and the entire scene can
be updated within seconds while never
heavily impacting the frame rate.

3.2.2 Editing

Our streaming system can easily be used
to support real-time editing of the voxels.
Editing is done on the CPU which then
only has to send information to the GPU
telling it which brickmaps are out of date.
The brickgrid pointers are then set to
unloaded and the streaming system will
take care of the rest.

Since color compression and the visi-
bility test are done right before uploading
the CPU only needs to worry about
memory management. When updating
a brickmap the brickmap object pool
pointer and color data must be freed.
Since these operations are fast editing
is easy and allows the user a lot of
freedom. Editing can easily be executed
in parallel, notifying the main thread
once a brickmap has been edited. The
data in fact only needs to be ready when

it is requested to be uploaded by the GPU.

Since the editing process is so simple
it can be done at almost the same speed
as our streaming system. This allows
entire landscapes to be updated and
global effects such as erosion, snow, rain
and fluid propagation can efficiently be
simulated in real-time.

3.2.3 Streaming From Disk

Because of occlusion based streaming it
is possible to render large geometry while
only holding a part of it in GPU memory.
Streaming from the CPU is fast but
unfortunately RAM is usually a limited
resource. By streaming from disk even
larger geometry can be streamed while
almost never running out of resources.

In this case data is stored in a cache
between the GPU and disk. First
the brickmaps are grouped together
in a brickchunk, containing a group of
brickmaps. Each time a brickmap is
accessed we first determine what chunk
it is in. We then look up the brickmap
in the chunk and its corresponding color
data.

If the GPU requests a brickchunk which is
not yet in the cache it will be loaded from
disk. We only allow a limited number of
brickchunks to be stored in RAM so we
never run out of memory. In our case
we set the limit to one thousand based
on the memory available. To enforce our
artificial limit we store the brickchunks in
a list. Each time a brickchunk is accessed
it is moved to the front of the list. If the
chunk is not yet in memory it is loaded

13

from disk and placed at the front of the
list. If the list is full the last element
of the list is freed and removed, keeping
the number of brickchunks below the limit.

Additionaly the data on the disk is
encrypted using LZ4 compression. Each
chunk is compressed separately to allow
for independent loading. This compres-
sion algorithm is fast at decompressing
while yielding still good compression
ratios. Especially for raw data, as is
the case in our system, the algorithm is
efficient. In our experiments the typical
compression ratio for landscapes is 1:10.
The compression combined with the cache
means potentially infinite landscapes can
be rendered while never running out of
resources. The data could be streamed
over a network or simply loaded from
disk.

3.3 Ray tracing

Ray tracing is performed using a 3DDDA
grid traversal on each level of the hierar-
chy and terminates when a solid cell is
encountered or the ray leaves the grid.

Ray tracing a brickgrid works by first
calculating the initial cell hit, which is
determined by discretizing the intersec-
tion of the ray and the bounding box
of a grid. After finding this cell we
progress through the grid by comparing
the intersections between the ray and
every face of the current cell. We then
change the current cell depending on
the face we intersect first, until a cell is
either solid or out of bounds. Since faces
are axis aligned it is straightforward to
calculate the intersection point and the

cell index corresponding to that axis is
modified.

Figure 12: Ray tracing a grid. Red bars
represent faces passed through. The cyan
dot represent the initial entry point of the
ray.

3.4 Additional
Optimizations

For the purpose of optimization we add a
third layer on top of the brickgrid. This
layer is another uniform grid containing
one bit per cell, spanning the entire draw
distance. The bit determines whether the
cell contains any geometry. This can be
seen visually in figure 9 where the extra
layer is the green grid on top of the brick-
grid. When ray tracing we first ray trace
this grid before descending into the brick-
grid. Since the cells of this grid are gener-
ally very large it can traverse large empty
areas very efficiently. This results in faster
rendering of scenes with large open ar-
eas.

14

4 Implementation

In our implementation we focused on
creating a working proof of concept and
real-time ray tracing performance. Using
toolkits such as OpenCL and CUDA we
are allowed to deviate from the standard
graphics pipeline and do real-time ray
tracing on the GPU. While CPU ray
tracers exist they are almost always
outperformed by their GPU equivalents.
With the support on most modern GPUs
our implementation can run on a great
variety of hardware.

During development CPU performance
has not been our focus, it has not
proven to be a bottleneck since most
of the implementation on the CPU is
straightforward. The pipeline is not
complicated either since there is no
preprocessing and the whole system is
based on one feedback loop which takes
care of all communication between GPU
and CPU.

4.1 Ray tracing

Initially the viewmatrix is sent from the
CPU to the GPU. Then, after initializing
the feedback buffer, the ray tracing
algorithm is executed. The core of our ray
tracing algorithm can be seen in appendix
A, it calculates the intersection between a
ray and a cube.

The ray tracing algorithm begins by
calculating the view ray and then initial-
izing the ray tracing procedure for the
highest layer. On hit the algorithm ray
traces the brickgrid corresponding to the

current cell on the highest layer. In our
implementation one cell in the higher
layer contains (4, 4, 4) brickgrid cells.

On brickgrid hit the algorithm per-
forms differently then before. In this case
we hit a brickmap. First a check is done
whether we are out of LOD range. If so
the LOD color is retrieved. Based on
whether the brickmap is loaded the color
is either retrieved from the brickmap or
from the first three bytes of the brickmap
pointer.

In case we are in LOD range we check the
pointer flag to determine whether the cor-
responding brickmap has been uploaded
yet to the GPU. If this is the case we ray
trace the brickmap. Otherwise we check
for another flag to determine whether this
brickmap has already been requested to
be uploaded. If this is not the case we add
the brickmap index to the feedback array.
We also set the mentioned flag for this
pointer, so it is not added to the array
again. However if the feedback array is
full we abort the function and we do not
set the requested flag. The user is free to
set the size of the feedback array which
can affect the streaming speed.

If the brickmap is loaded we continue
to ray trace the corresponding grid. In
case we hit a voxel we calculate the color
index. This is done by counting all set
bits at every index lower then the current
bit index. For example if 13 visible voxels
have a lower index than our current voxel
the color attachment index is 13.

Bitcounting can be done fast and ef-
ficiently giving the worst performance
for the voxel with the highest index. By

15

Figure 13: Color Attachment Lookup.

storing additional index offsets per a
number of voxels would increase speed at
a memory cost. Since color attachment
lookups are done only once per pixel
it is not a priority for optimization.
Memory costs become even lower since we
reduce the number of visible voxels by the
visibility test.

Once we have found the color index
we look it up in the color array and
decompress it. By keeping track of the
last face we passed through during the
tracing of the grid we can determine the
normal. In case we immediately hit a
solid voxel, and did not pass through any
faces, we find the normal by normalizing
and rounding the difference between the
hit point and center of the brickmap.
Upon completion the color and normal
are returned and shading is applied.

4.2 Streaming

Based on the last render pass the feedback
array is retrieved from the GPU. The
elements in this array denote missing
bricks in GPU memory. This information
is used by the CPU to retrieve data from

disk, or to generate the data (in case of
procedural content).

Retrieved brickmaps are processed
before uploading. Voxels completely sur-
rounded by opaque voxels are removed.
The visibility test can be extended to
test neighbouring brickmaps for occluded
voxels. Doing this comes at an extra
performance cost but can save a lot of
memory around the borders. In case
streaming from disk is enabled the border
test should only be performed if the
neighbouring brickmap is already loaded
into RAM. Loading an additional chunk
from disk may not be worth the memory
reduction it gives. Turning visibility
testing on has no effect on the ray tracing
results. This would only be the case if it
were possible to look inside voxels, which
we assume is not the case.

After invisible voxels have been removed
we compress the colors of the remaining
voxels by DTX1 compression. Each
DTX1 block stores two 16-bit R5G6B5
color values c0 and c1. Each color in the
block then has two corresponding bits. If
the no bits are set the color is equal to
the c0, if all bits are set the color is equal
to c1. If only the first bit is set the color
is equal to 2

3
c0 + 1

3
c1. If only the sec-

ond bit is set the color is equal to 1
3
c0+ 2

3
c1.

After brickmaps are processed they
are put into an array. This array contains
unpack entries which contain the raw
brickmap data and offer enough data to
store any number of colors attachments.
Colors are stored in blocks of 8 bytes
containing 16 colors. Since a brickmap
contains at most 512 voxels the maximum
data used by color attachments is, with

16

4 bits per voxel, 256 bytes. It also stores
the brickmap pool pointer, color pointer
and color size. Using these pointers the
brickmap and color data can be moved to
the correct place in GPU memory. The
datastructure is memory-wise not efficient
since every entry takes up the maximum
color data possible for a brickmap. Since
the size of this array is equal to the size
of the feedback array, which is 256, this is
not an issue.

Streaming can be done efficiently since
brickmap data is only actually required
once the GPU has requested it. It is even
possible to generate brickmaps on the fly
while the ray tracer is running. The only
thing that is required beforehand is that
it is known which brickmaps will contain
voxel data. By putting a limit on the
number of updates per frame we ensure
the frame rate on both GPU and CPU is
not too heavily impacted by streaming.
If the frame rate is high enough this will
not heavily impact the streaming rate
either.

4.3 Memory
Management

The color memory management system
works by keeping a list of free nodes at
a number of levels. The lowest level is 16
bytes and the highest level 256 bytes. Ini-
tially all nodes are stored at the 256 byte
level. In case a node is required at a level
that has no nodes a node from a higher
level is taken and split into two nodes of
the current level. If one level contains too
many free nodes all nodes are sorted and
adjacent nodes merged and moved up to a

higher level.

4.4 Editing

The streaming system can easily be used
in conjunction with editing. It runs on
a different thread and notifies the main
thread once a brickmap has been modi-
fied. The main thread only needs to know
which brickmap index has been updated,
so we store the indices in a buffer.

At the end of the render pass we
check whether new indices have been
added to the buffer and once we are done
we clear it. Below is a list of steps that
describe the editing process.

• We look up the brickmaps by in-
dex and read the LOD color, which
might have changed.

• The brickpool and color pointers are
freed since they will be reallocated
during uploading.

• We then send the index and LOD
color to the GPU in an array.

• The GPU processes this array and
for each index the corresponding
pointer in the brickgrid is set to un-
loaded

• The new LOD color is stored in the
pointer so the level of detail is al-
ready updated before streaming.

In our system editing can be done at little
performance loss. This is due to the asyn-
chronous in which editing can be done.
The rendering thread operates completely
separately and must only be notified when
something has changed.

17

4.5 Streaming from Disk

When loading or saving to disk the
brickmaps are grouped in chunks. In
our implementation chunks contain
(16, 16, 16) brickmaps. In our format we
first stored the brickgrid, with a solid
bit and a LOD color. This buffer is
then compressed using LZ4 compression.
When streaming from disk this buffer is
loaded so it is known which brickmaps are
empty and which are not.

Then an array of offsets into the file
are stored. Each offset represents a
chunk. This is where the initial loading
ends.

When a chunk is required, which has
not yet been loaded into memory, the
chunk offset is looked up in the offset
buffer. Then using the offset the chunk
is read from the file and decompressed.
All brickmaps contained in the chunk are
then loaded in one by one. The chunk
also keeps a local brickgrid indexing the
brickmaps. When a brickmap is requested
it can simply be looked up in the local
brickgrid.

While streaming from disk does slow
the process down it allows memory usage
on CPU to be constant. It also allows the
cache size to be dependent on available
RAM. Storage on disk is not an issue
either since LZ4 compression gives a
signficant size reduction when storing raw
voxel data while giving fast decompression
speeds.

18

5 Results

To get a clear answer to our research
questions we setup experiments to test
the performance of our system. Initially
we set out to create a system that can
render large voxel datasets in real-time
with support for advanced features such
as real-time streaming and global editing.
In order to verify whether our system is
capable of these conditions a few criteria
must be met. Most importantly the mem-
ory usage on GPU must remain under
the limit of current hardware capabilities.
Low memory usage means more detail
can be put into the system providing
higher quality. Since our datasets are so
large this is the primary condition for the
system to be feasible.

Secondly the system must run in
real-time. In order to compete with
rasterization-based techniques ray tracing
performance must be similar. If our
approach adds a lot of extra latency it
might not be worth the advantages it
provides over other methods. Support for
real-time editing becomes useless if slow
ray tracing performance makes it feel slow
and unresponsive.

Thirdly the performance impact of
streaming and editing must be reason-
able. The advantage of having a simple
and dynamic datastructure is that modi-
fication should be fast. If this is not the
case more complex datastructures might
be equally suited for editing and stream-
ing. While our focus has been partially
on user freedom over performance we still
expect much better editing performance
than other techniques.

5.1 Measurements

For every test scene several statistics have
been gathered. To measure memory usage
we first calculate the static memory usage
which depends on the scene parameters.
Given a brickgrid size DG ∈ R3 and extra
layer node size DL ∈ R3 we can calculate
the the brickgrid memory usage MG and
the extra layer memory usage ML.

MG = 4(DG
0 D

G
1 D

G
2)

ML =
DG

0 /D
L
0D

G
1 /D

L
1D

G
2 /D

L
2

8

In our case on cell in the extra layer
contains 64 brickgrid pointers due to
corresponding node size DL = (4, 4, 4).
For this node size the ratio of memory
usage between the brickgrid and extra
layer is 2048. That is the brickgrid
uses 2048 times as much memory. We
keep track of dynamic memory usage by
counting the allocations and deallocations
in our memory managers. We do not
count the static buffers used for streaming
and editing since they are small and the
user can set the size of these buffers.

Rendering performance is measured
in millions of rays per second. This is
done by calculating the time per frame
in nanoseconds and taking into account
the screen resolution. Rays per second
(RPS), given frametime dt and screen
resolution w × h, is then:

RPS =
109

dt/(w ∗ h)

To get a representative result we measure
100 frames and take the average.

To measure streaming and editing

19

performance we store along with the
frametime the number of brickmaps
uploaded to the GPU. Then by comparing
the frametime against the number of
brickmaps uploaded we find the streaming
performance. Editing can be measured
in a similar manner. When editing the
number of brickmaps uploaded will be
higher than one as well, therefore it
can again be used to compare results.
The editing simulation itself happens on
another thread and should not influence
ray tracing performance.

5.2 Experiments

We used three test scenes and measured
our data from three different perspectives.
We use three perspectives since our
occlusion based streaming system only
loads in visible brickmaps resulting in
different memory usage. We attempted
to use three perspectives in all our test
scenes. The first perspective uses a
distant camera to test memory usage
and performance when viewing the entire
environment. This perspective is also
best suited for comparison with other
approaches that do not use occlusion
based streaming. The second perspective
is at medium distance and at a different
angle. The third perspective is only a
part of the environment from up close.

The first test scene we used is a landscape
generated by perlin noise (Figure 14, 15,
16). We generated this scene on a reso-
lution of 8096x8096x256. It is designed
to alternate between small mountains and
flat terrain. The algorithm was designed
with large generated editable terrains in
mind so it makes a natural testing scene.

Since the scene is customly generated we
can not compare the results with other
techniques. Fortunately it does allow for
great testing of the streaming and editing
functionalities.

The second test scene is the Confer-
ence Room scene (Figure 17, 18, 19).
We used this in order to compare memory
usage between our algorithm and that of
Efficient Sparse Voxel Octrees by Laine
and Karras [13]. Out of their test scenes
it most resembles a large environment for
which our system was designed. While
also single models can be used all of our
testing has been done in landscape-like
environments. We tested the scene on
two resolutions, 1024x1024x1024 and
2048x2048x2048. These are equivalent to
octrees of respectively depth 10 and 11.

The third scene we used is the Hair-
ball scene (Figure 20, 21, 22). A very
irregular scene also used in Sparse Voxel
Octrees to test worst case performance.
This scene would make an interesting
addition since our algorithm might be
effective at rendering and storing highly
random geometry. Constructing a sparse
voxel octree on such geometry is memory
consuming. Unlike brickmaps which
do not increase in memory usage for
more random data. Also occlusion based
streaming could provide significant bene-
fits for such dense geometry.

The system used for the experiments
consists of an Intel i7-3770 CPU @ 3.40
GHz, 10GB RAM and an ATI Radeon
HD 7970 video card.

20

Figure 14: Landscape 8096x8096x256
Viewpoint 1.

Figure 15: Landscape 8096x8096x256
Viewpoint 2.

Figure 16: Landscape 8096x8096x256
Viewpoint 3.

Figure 17: Conference 2048x2048x2048
Viewpoint 1.

Figure 18: Conference 2048x2048x2048
Viewpoint 2.

Figure 19: Conference
2048x2048x2048Viewpoint 3.

21

Figure 20: Hairball 2048x2048x2048
Viewpoint 1.

Figure 21: Hairball 2048x2048x2048
Viewpoint 2.

Figure 22: Hairball 2048x2048x2048
Viewpoint 3.

22

5.3 Memory Usage

The measurement results can be viewed
in the table below. The memory usage
consists of static memory required for the
grid and extra layer and dynamic memory
usage required by brickmaps and color
data. Voxel resolutions used for confer-
ence and hairball are 2048x2048x2048, for
landscape we used 8096x8096x256. For
all test scenes static memory usage is the
same. The brickgrid uses 64MB and the
extra layer uses 0.03125MB.

Scene Viewpoint
Memory
Usage(MB)

Landscape 1 90.265
2 71.806
3 64.539

Conference 1 99.710
2 82.935
3 71.492

Hairball 1 112.146
2 77.267
3 64.948

Table 1: Memory usage on GPU in MB
per scene. Scenes and viewpoints can be
seen in figures above.

First we observe that static memory
makes up the largest part of memory
usage for all test scenes. For some
viewpoints that occlude most of the
environment almost all data is taken up
by static memory. Since we are storing
small brickmaps in a large grid the grid
takes up most memory by far. Due to
occlusion based streaming the memory
used by brickmaps and color is fairly
low. Visibility testing on voxels and color
compression make sure the memory usage
is even lower. However if the entire scene

would be loaded onto the GPU dynamic
memory would probably be larger than
static memory.

Comparing the viewpoints we see that
for more up close viewpoints the memory
usage goes down. A higher viewpoint id
means the camera is more zoomed in.
From this we can clearly notice the effect
of occlusion based streaming. Viewpoint
1 in all scenes almost loads in the entire
scene. Viewpoint 3 only loads in a small
part. Taking into account the 64MB
static memory the difference is very large.
Even though the memory savings are
significant one may chose to not use
streaming anyways since it is noticeable
while moving through the world. Storing
level of detail in the pointers does a good
job of hiding the streaming process but
LOD popping is still visible.

Looking at the difference between scenes
we see hairball takes significantly more
memory than conference or landscape.
This is to be expected since it is the most
random and complex geometry out of the
three. Landscape uses the least memory
which is also to be expected since the
system was designed around landscapes.
Since the landscape is so much larger
on the width and length it is easier for
LOD to pop in and reduce memory usage.
Conference is in equal size across all
dimensions and therefore LOD does not
come much into effect.

5.3.1 Comparison with SVOs

If our algorithm is to be truly feasible it
must compete with other current solu-
tions. The most similar and prominent

23

one being sparse voxel octrees. We have
taken measurements from the paper
Sparse Voxel Octrees paper by Laine and
Karras [13] and compared them to our
own. We used their cubical voxel memory
usage for the conference and hairball
scene, not taking into account their
smoothing technique called contours. Our
measurements are taken from viewpoint 1
of the previous section. The results can
be seen below.

Scene Brickmap SVO
Conference 1024 23 21
Conference 2048 100 89
Hairball 1024 25 262
Hairball 2048 112 1157

Table 2: Memory usage comparison in
MB between our brickmap approach and
Sparse Voxel Octrees by Laine and Karras
[13].

The results show that for the conference
scene their memory usage is slightly lower
than ours. For the Hairball scene however
our memory usage is much lower than
theirs. As expected sparse voxel octrees
(SVOs) struggle handling random organic
data than our brickmap approach. SVOs
rely on the fact that large cubical regions
are either empty or solid. The hairball is
most likely a worst case scenario for SVOs
since it has few solid or empty cubical
areas. Our approach can deal with this
more efficiently since detailed geometry
is stored the same way in a brickmap
no matter its shape. We only rely on
small cubical areas the size of a brickmap
being empty which is much more likely to
happen.

For the Conference Room our mem-

ory usage is slightly worse. In fact SVOs
are probably more efficient at storing
this kind of geometry than the results
show. While we used a global viewpoint
and tried to store as much geometry
in one view occlusion based streaming
still saved us a signficant amount of
memory. SVOs only use LOD based
streaming, if they used occlusion based
streaming their memory usage would
drop significantly. Even though we are
less efficient at storing Conference Room
the difference is not very large. Our
memory usage seems to grow at the
same rate as well for both scenes. This
suggests our memory usage will never be
much higher than SVOs for any resolution.

As can be observed from our mea-
surements, memory usage of our system
is competitive with SVOs. Our system
does benefit a lot from occlusion based
streaming which could be implemented for
SVOs as well. Yet our algorithm allows
for natural and simple implementation
of streaming where it would be more
involved for SVOs.

24

5.4 Ray tracing
Performance

The number of rays we can trace per sec-
ond is another important property of the
system. A higher number of rays allows
for more advanced rendering techniques
such as shadows, ambient occlusion,
anti-aliasing or indirect lighting. Table
3 shows the measurements for the three
test scenes.

Scene Viewpoint MRays/s
Landscape 1 104.252

2 164.275
3 117.941

Conference 1 75.819
2 86.349
3 111.623

Hairball 1 40.015
2 68.448
3 84.243

Table 3: Rendering performance in million
rays per second. Screen resolution: 1068
x 986. Scenes and viewpoints can be seen
in figures above.

As can be seen we achieve real-time
performance in every test scene ranging
from 40 to 164 MRays/s. If we look at
the difference between viewpoints we see
that, as one would expect, zooming out
has a negative impact on the frame rate.
For Hairball the performance doubles
when viewing from up close compared
to viewing the entire mesh. One notable
thing is that for the landscape scene we
achieve better performance for the second
viewpoint. This is because of the angle
taken which shows a large portion of open
air. This means less rays hit a brickmap
and exit the grid faster resulting in better

performance.

Ray tracing performance does seem
quite viewpoint or scene dependent.
Which is a good since it implies environ-
ment based optimization is going on. It
is also bad since a non steady frame rate
can ruin immersion and make the user
perceive lag. Optimization is not perfect
however since there is a noticeable drop in
frame rate for larger resolution brickgrids
meaning more empty grid cells to trace
through. This can be fixed by increasing
the node size of the extra layer making
it skip more brickgrid cells. This is
however inefficient for detailed geometry
for which the node size is too large giving
bad performance in that case. Having
multiple extra layers above the brickgrid
can fix this problem.

5.4.1 Comparison with SVOs

Comparing ray tracing performance with
Sparse Voxel Octrees is a bit more difficult
since they are unclear on what dataset size
they used in their performance measure-
ments. They claim they used maximum
size they can fit in 4 GB. For hairball this
is most like the 2048x2048x2048 version
since they did not provide a higher resolu-
tion in their results.

Scene MRays/s
Conference 43.8
Hairball 22.5

Table 4: Rendering performance results in
million rays per second for Sparse Voxel
Octrees by Laine and Karras [13].

It seems that we achieve better perfor-
mance looking at our results. For Hair-

25

ball this is to be expected since our algo-
rithm is much more efficient at storing the
dataset. For Conference Room it is hard
to say if our results are better depending
on the dataset resolution they used. Still
it would appear our performance is on a
competitive level with SVOs. In our sys-
tem there is no need for a stack which is a
bottleneck for SVOs on the GPU as men-
tioned in Efficient Sparse Voxel Octrees by
Laine and Karras [13]. Laine and Karras
also provide additional measurements with
beam improvements which traces a lot of
rays at once providing better ray starting
points. A similar algorithm can be devel-
oped for our solution potentially improv-
ing rendering performance.

5.5 Streaming
performance

We measured streaming performance for
the generated landscape test scene. In fig-
ure 23 we plotted the ray tracing perfor-
mance and number of brickmaps uploaded
against the frame index. The frame in-
dex increases over time as frames are pro-
cessed and the world is streamed to the
GPU. The results show a drop in rays
per second as more data is loaded in.
Right before the final batch of brickmaps
is uploaded we measure a rendering per-
formance of 75.8 MRays/second against
104.3 MRays/second in the first frame no
brickmaps are uploaded. This suggest a
frame drop of about 27% while streaming.
While noticeable our system is still real-
time during all stages of the streaming pro-
cess. The performance is at its worst right
before all brickmaps are uploaded. We im-
plemented a snow simulation to test our

editing system. We chose the snow simu-
lation since it is a global simulation that
modifies the entire landscape. Only our
system is capable of editing at this scale.
It gives the same performance as stream-
ing since actual editing happens on a dif-
ferent thread and streaming loads in mod-
ified or new brickmaps.

Figure 24: Landscape after snow simula-
tion.

5.6 Summary

Our implementation has shown the data-
structure can support a high number of
features and is easily extensible. Cer-
tainly it is also possible for a large num-
ber of performance improvements to be
implemented. But we have shown the al-
gorithm to be robust and highly flexible
which was our main focus. Our imple-
mentation could serve as a basic frame-
work for either lage landscape simulations
or games/applications with an editable
world. There is still a lot of room for
improvement, especially for level of detail
and optionally smoothing voxels. All in all

26

with our implementation we have shown
what we wanted to and hope it can be
built upon to provide more reliable and
applicable solutions.

27

Figure 23: Ray tracing performance against number with number brickmaps streamed per
second over time.

28

6 Conclusion

We have presented a system that provides
a real-time solution to ray tracing of large
voxel datasets. It allows interactive edit-
ing at large scales and supports stream-
ing to allow for potentially infinite land-
scapes. There is support for color com-
pression and level of detail. Yet one of
the strongest points of the system is that
the dataformat is kept in raw format. Ac-
cessing the datastructure becomes fast and
easy allowing the system to be extended
upon and easily changed to suit the user’s
needs. We believe the results are promis-
ing. It already shows good results and
great promise for the future by allowing
a lot of extensions and further improve-
ments to be done. Finally it asks the ques-
tion whether constructing complex data-
structure such as sparse voxel octrees is
worth the constraints it puts on editing
and flexibility.

6.1 Future Work

One thing there could be improved on is
level of detail. While there is already some
minor support there is still a lot of work to
be done. Extra levels of detail in the brick-
grid can make ray tracing a lot faster for
high resolution datasets. Also empty areas
could be traversed a lot faster. Our results
have already shown adding extra layers
above the brickgrid does not significantly
increase memory costs. On brickmap level
LODs might improve visual quality and al-
low for better compression and faster re-
trieval of shading parameters.

29

References

[1] John Amanatides and Andrew Woo.
“A Fast Voxel Traversal Algorithm
for Ray Tracing”. In: In Eurograph-
ics 87. 1987, pp. 3–10.

[2] Atomontage Engine. http://www.a
tomontage.com/.

[3] C4 Engine. http://www.terathon.
com/.

[4] Evgeni V. Chernyaev. Marching
Cubes 33: Construction of Topolog-
ically Correct Isosurfaces. Tech. rep.
1995.

[5] Vasco Costa and João M Pereira.
“Compact Rectilinear Grids for the
Ray Tracing of Irregular Scenes”. In:
WSCG 2011. 2011.

[6] Cyril Crassin. “GigaVoxels: A Voxel-
Based Rendering Pipeline For Ef-
ficient Exploration Of Large And
Detailed Scenes”. English and web-
optimized version. PhD thesis. UNI-
VERSITE DE GRENOBLE, 2011.
url: http://maverick.inria.fr/
Publications/2011/Cra11.

[7] Cyril Crassin et al. “Interactive Indi-
rect Illumination Using Voxel Cone
Tracing”. In: Computer Graph-
ics Forum (Proceedings of Pacific
Graphics 2011) 30.7 (2011). url:
http : / / maverick . inria . fr /

Publications/2011/CNSGE11b.

[8] Cube World. https://picroma.co
m/cubeworld.

[9] Sven Forstmann and Jun Ohya. “Ef-
ficient, High-Quality, GPU-Based
Visualization of Voxelized Surface
Data with Fine and Complicated
Structures.” In: IEICE Transactions

93-D.11 (2010), pp. 3088–3099. url:
http : / / dblp . uni - trier . de /

db / journals / ieicet / ieicet9

3d.html#ForstmannO10.

[10] Attila T. fra. “Interactive Ray Trac-
ing of Large Models Using Voxel Hi-
erarchies”. In: Computer Graphics
Forum 31.1 (2012), pp. 75–88. issn:
1467-8659. doi: 10.1111/j.1467-
8659.2011.02085.x. url: http:

//dx.doi.org/10.1111/j.1467-8

659.2011.02085.x.

[11] Enrico Gobbetti and Fabio Mar-
ton. “Far Voxels: A Multiresolution
Framework for Interactive Render-
ing of Huge Complex 3D Models on
Commodity Graphics Platforms”.
In: ACM Trans. Graph. 24.3 (July
2005), pp. 878–885. issn: 0730-0301.
doi: 10 . 1145 / 1073204 . 1073277.
url: http://doi.acm.org/10.114
5/1073204.1073277.

[12] Viktor Kämpe, Erik Sintorn, and Ulf
Assarsson. “High Resolution Sparse
Voxel DAGs”. In: ACM Trans.
Graph. 32.4 (July 2013), 101:1–
101:13. issn: 0730-0301. doi: 10.1
145/2461912.2462024. url: http:
//doi.acm.org/10.1145/246191

2.2462024.

[13] Samuli Laine and Tero Karras. Effi-
cient Sparse Voxel Octrees – Anal-
ysis, Extensions, and Implemen-
tation. NVIDIA Technical Report
NVR-2010-001. NVIDIA Corpora-
tion, Feb. 2010.

[14] D.-M. Liou, Y. Huang, and N.
Reynolds. “A new microcomputer
based imaging system with C3 tech-
nique”. In: Computer and Commu-
nication Systems, 1990. IEEE TEN-

30

CON’90., 1990 IEEE Region 10
Conference on. 1990, 555–559 vol.2.
doi: 10.1109/TENCON.1990.15267
1.

[15] Minecraft. https://minecraft.ne
t/.

[16] Erik Sintorn et al. “Compact Pre-
computed Voxelized Shadows”. In:
ACM Trans. Graph. 33.4 (July
2014), 150:1–150:8. issn: 0730-0301.
doi: 10 . 1145 / 2601097 . 2601221.
url: http://doi.acm.org/10.114
5/2601097.2601221.

[17] Adam M. Smith. “Two Methods
for Voxel Detail Enhancement”. In:
Proceedings of the 2Nd International
Workshop on Procedural Content
Generation in Games. PCGames
’11. Bordeaux, France: ACM, 2011,
6:1–6:4. isbn: 978-1-4503-0872-4.
doi: 10 . 1145 / 2000919 . 2000925.
url: http://doi.acm.org/10.114
5/2000919.2000925.

[18] Voxel Farm. http://voxelfarm.co
m/.

31

Appendix

A

Ray-Box intersection algorithm

Below is the algorithm pseudocode used to determine the intersection between a cube
with extremes p0 and p1 and a ray. The ray is given by l = ray.start + t(ray.delta).

Data: p0 : Point; p1 : Point; ray : Ray;
Result: Hit : Boolean
Vec3 t1 = (p0 - ray.start)/ray.delta ;
Vec3 t2 = (p1 - ray.start)/ray.delta ;
Vec3 vmax = max(t1,t2) ;
Vec3 vmin = min(t1,t2) ;
Float tmax = min(vmax.x, vmax.y, vmax.z);
Float tmin = max(vmin.x, vmin.y, vmin.z);
return (tmin ≤ tmax && tmax ≥ 0) ;

Algorithm 1: Ray-Box intersection

The algorithm works by first determining the t-values for both extreme points on
the cube. The t-values are then split between two vectors one containing the minimum t
for each axis and one containing the maximum. By taking the maximum of the minimum
vector we find the t-value tmin at which the ray intersects the box. This holds since for
every axis the t-value required to pass the corresponding edge is either lower or equal.
Similarly by taking the minimum of the maximum vector we get the t-value tmax at which
the ray exists the box. If tmax ≥ tmin the ray does not intersect the box since the exit
point can not be before the entry point. If tmax ≤ 0 the box is exited before the ray starts,
therefore the box is not intersected either.

32

