
Utrecht University
Department of Information and Computing Sciences

Master Thesis in Computing Science

Parameter-less GOMEA
Applying Parameter-less Population Schemes to the Gene-pool Optimal Mixing

Evolutionary Algorithm in a Black-box Optimization Setting.

Author Supervisor
Willem den Besten, BSc Dr. ir. Dirk Thierens

Student Number
ICA-3685632

June, 2015

Abstract

The Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) is an optimiza-
tion framework with a single tunable parameter: the population size. In this thesis we
explore the use of parameter-less population schemes to remove this parameter. It allows
users to skip parameter tuning and makes scalability analysis easier to perform for re-
searchers. The Exponential Population Scheme (EPS) is tested, which simply restarts the
population upon convergence with double the population size. According to traditional
scalability analysis there is only minor constant overhead, but EPS inevitably throws away
several populations worth of fitness evaluations. The Parameter-less GA would reduce this
wasteful behavior using population racing, but it resulted in worse scalability instead. The
population pyramid scheme is extracted from the novel P3 algorithm and is applied to
EPS in order to reuse old populations. This makes EPS more efficient in the number
of fitness evaluations and allows for a slower growth of the populations. The memory
usage increases dramatically, but this is remedied by adding a selection procedure. As a
result of these experiments, the run-time of P3 is significantly decreased by operating on
populations (as EPS does) instead of single solutions.

Contents

1 Introduction 4

1.1 Problem Description . 4

1.2 Contributions . 5

1.3 Outline . 5

2 GOMEA 6

2.1 Background . 6

2.2 GOMEA . 7

2.3 Hierarchical Clustering . 7

2.4 Filtering the Family of Subsets . 9

2.5 Forced Improvement . 10

2.6 FOS Ordering . 10

3 Population Sizing 12

3.1 Experimental Studies . 12

3.2 Bisection . 13

3.2.1 Multiple Instances, One Bisection 15

3.2.2 Single Instance, Multiple Bisections 15

3.3 Conclusions . 16

4 Parameter-less Population Schemes 17

4.1 Population Schemes . 17

4.2 Exponential Population Scheme . 17

4.3 Parameter-less Genetic Algorithm . 18

4.4 Parameter-less Population Pyramid . 19

5 EPS and Parameter-less GA: Experimental Study 23

5.1 Configuration . 23

5.2 GOMEA . 24

5.3 Exponential Population Scheme . 24

5.3.1 Forced Improvement and Child Node Filtering 26

5.4 Parameter-less GA . 26

5.5 Conclusions . 28

6 P3: Experimental Study 30

6.1 Overview . 30

6.2 Configuration . 31

6.3 Results . 31

6.4 Conclusions . 33

2

Parameter-less GOMEA

7 Generalizing The Population Schemes 34
7.1 Visualizing Population Schemes . 34

7.1.1 GOMEA . 34
7.1.2 EPS . 36
7.1.3 P3 . 36
7.1.4 Anology to Graph Searching . 37

7.2 Multiple Insertion . 38
7.2.1 Definition . 38
7.2.2 Walkthrough . 40
7.2.3 Visualization . 41

7.3 Memory Management . 42

8 Multiple Insertion: Experimental Study 44
8.1 Configuration . 44
8.2 Growth Functions for Multiple Insertion . 46
8.3 Selection Procedure . 47
8.4 Conclusions . 48

9 Discussion 49
9.1 Other Parameter-less Genetic Algorithms 49

9.1.1 Parameter-less hBOA . 49
9.1.2 Parameter-less ECGA . 50

9.2 Adaptive Population Sizing Schemes . 51
9.2.1 Recommendations . 52
9.2.2 Realizing a scheme. 52

10 Conclusions 54
10.1 Summary . 54
10.2 Practical Recommendations . 55
10.3 Future Work . 56

A Test Problems 57
A.1 Deceptive Trap Function . 57
A.2 Hierarchical If and Only If . 57
A.3 Ising Spin Glass . 58
A.4 Nearest Neighbor NK Landscapes . 58
A.5 MaxCut . 59

B Practical Recommendations 60

C Experimental Results 63

Chapter 0 3

Chapter 1

Introduction

1.1 Problem Description

Research Goal: Removing the population size parameter from the Linkage Tree Ge-
netic Algorithm by applying parameter-less population schemes, and ensuring the incurred
overhead is minimal in terms of fitness evaluations and run-time.

The problem in black-box optimization is finding good solutions using only a fitness
evaluation function and no a priori knowledge of the problem domain. A single evalua-
tion of the fitness function is an expensive operation to perform, and no problem-specific
heuristics can be applied. Genetic Algorithms (GAs) are suited to this type of optimiza-
tion due to their ability to optimize using problem structure found in a population of
solutions.

But the user must specify a size for the population beforehand, and this parameter
has a large impact on the ability of the GA to solve the problem. Setting the right
population size is difficult even for users with a thorough understanding of the GA. Often
they will resort to using either a default value or finding a seemingly decent value through
trial-and-error. The same behavior occurs for the other parameters, such as the crossover
probability or mutation rates found in simple GAs. In either case it would be better if the
GA were to adaptively decide values for these parameters itself.

Several theories exist for the removal of the mutation rate and crossover probability by
setting them to a robust value. However, the population size single-handedly determines
whether the GA solve the problem (to optimality) based on the other parameter settings.
Underestimating the value of the population size will result in a prematurely converged
population with non-optimal solutions. Overestimating it will result in optimal solutions,
but at the cost of optimizing more solutions than was actually necessary. Hence the
population size cannot be set in a problem-independent fashion, so it is the most non-
robust parameter for any GA. Removing the population size requires a change to how the
GA manages its population, hence its population scheme must change.

For the user to easily use a GA to its full potential, it must run without setting a single
parameter. Hence a parameter-less population scheme must be applied to the GA, and the
overhead in performance it incurs on the GA should be minimal. We focus on applying
parameter-less population schemes to the competent Linkage Tree Genetic Algorithm [14]
from the family of Gene-pool Optimal Mixing Algorithms[15]. LTGA comes with no
existing parameters except for the population size, and it performs well on a variety of
benchmarks.

4

Parameter-less GOMEA

1.2 Contributions

In this thesis the first results on applying parameter-less population schemes to the
GOMEA framework are introduced. Three parameter-less population schemes are com-
pared to the original GOMEA configured through bisection analysis. The contributions
to the literature are explained in the remainder of the section.

The exponential population scheme (EPS) wraps GOMEA into a parameter-less popu-
lation scheme by forcibly restarting the population upon premature convergence, but with
double the population size. Because EPS partially incurs the cost of bisection, it would be
expected to perform significantly worse than the original. As it turns out EPS performs
only slightly worse if not on par with the original, thus showing some of the flaws inherent
in how scalability analysis is most often performed.

Several state-of-the-art genetic algorithms (GAs) adopted the parameter-less GA to
varying degrees of success, which extends the scheme of EPS with population racing.
Though the parameter-less GA is supposed to reduce the overhead of EPS through early
termination of the smaller populations, the results show quite the opposite behavior for
GOMEA. Few populations are terminated early on and more over-sized populations are
started than is necessary. It shows that simply adopting a well-known population scheme
is not sufficient for developing a good parameter-less version of an algorithm.

The population pyramid at the core of the parameter-less population pyramid (P3)
was analyzed for applicability to the GOMEA framework. We show that the population
pyramid is a viable population scheme even after removing the local searcher and changing
several parameters to conform with GOMEA. However, without the local searcher the run-
time overhead at least quadruples in comparison to P3.

We introduce a combination of the EPS and P3 schemes called multiple insertion, which
applies the population pyramid scheme to EPS in order to reuse the previously converged
populations. A binary tournament selection mechanism is added so the user can fine-
tune the growth of the pyramid as it can be very memory-intensive to store the previous
populations for many generations. The new population scheme improves upon the number
of fitness evaluations required by EPS, while drastically reducing the run-time overhead
caused by maintaining a population pyramid. Reintroducing the local searcher used by
P3 yields a robust GOMEA that performs better in the number of fitness evaluations and
on par with the run-time of the original GOMEA on the majority of the test problems.

1.3 Outline

The remainder of this thesis is organized as follows. First a review is given in chapter 2
on the current state of GOMEA with an emphasis on linkage trees. Chapter 3 explains
the process of analyzing a GA and some of the shortcomings when doing so. Chapter 4
reviews the three parameter-less population schemes tested in this thesis: the Exponen-
tial Population Scheme (EPS), the Parameter-less GA, and the Parameter-less Population
Pyramid (P3). In chapter 5 a scalability analysis is done for GOMEA and the afore-
mentioned population schemes with the exception of P3, which is analyzed in chapter 6 to
show the extraction of the population pyramid scheme. Lastly, chapter 7 explains a generic
representation of the population schemes and the Multiple Insertion scheme derived from
it. The experiments and their results on the Multiple Insertion scheme are detailed in
chapter 8. A discussion of the related work on parameter-less population schemes is given
in chapter 9 with a reflection on the previous results. The thesis is summarized in the
chapter 10 and some ideas are given for future work.

Chapter 1 5

Chapter 2

GOMEA

This chapter reviews the literature on the family of Gene-Pool Optimal Mixing Evolu-
tionary Algorithms (GOMEAs) [15] with a more specific focus on one of its members.
In the first section GOMEA and the generic linkage model called the family of subsets
are explained. The second section describes the linkage tree model and how it is con-
structed through a hierarchical clustering algorithm. The remaining sections summarize
the changes made to the GOMEA framework in recent years, namely the application of
child node filtering, the use of forced improvement, and a change in the ordering of the
family of subsets.

2.1 Background

The Linkage Tree Genetic Algorithm (LTGA) is a competent GA for solving optimization
problems using linkage learning introduced by D. Thierens [14]. GAs rely on their ability
to mix partial solutions into new fit solutions to be efficient optimizers. This works on the
assumption that solutions in a fit population share common substructures that strongly
contribute to the fitness of the population. Traditional GAs take a randomized approach
to selecting which problem variables should be mixed between solutions, hence they do
not take the dependencies between the problem variables into account. Not only does
the randomized approach lead to nonsensical combinations of the partial solutions, it
is disruptive towards good partial solutions as well. Preferably the problem variables
representing the partial solutions are identified so the GA can efficiently find and copy
these partial solutions into new solutions. Linkage learning allows the GA to identify
those sets of problem variables with strong probabilistic dependencies. LTGA is based on
these two concepts: a model for representing the linkage between problem variables called
the linkage tree, and a GA for optimally mixing solutions using the linkage tree. The
framework for GAs called the Gene-pool Optimal Mixing Evolutionary Algorithm is the
result of generalizing LTGA to use a more generic linkage model. Amongst the linkage
models compatible with GOMEA, the linkage tree has the best performance in general.
Further research on the subject of linkage trees has been incorporated into the research
on GOMEA itself. No other models than the linkage tree are considered in this thesis,
hence the terms LTGA and GOMEA can and will be used interchangeably. The latest
implementation of LTGA used by P. Bosman and D. Thierens is publicly available from
the CWI website 1 and was last described in the paper on LTGA and linkage measures[19].

1http://homepages.cwi.nl/~bosman/

6

Parameter-less GOMEA

2.2 GOMEA

GOMEA is a GA designed for optimally mixing partial solutions into new solutions. To
do so it requires a generic model for representing problem variables whose values should be
copied together during crossover. This model is called the family of subsets (FOS). Each
subset in the FOS is a set of problem variable indices. For example, a 4-bit problem could
have a FOS of {{1, 2}, {1, 2, 3, 4}, {3}}. Each subset identifies a group of problem variables
whose bits are copied together during crossover. GOMEA maintains a population of n
initially random solutions. How the FOS model is learned from the population is irrelevant
to GOMEA, it only requires a function taking as input the current population and giving
as output a FOS. It is assumed that the fitness evaluation function operates on solutions
encoded as bit strings of length l.

Each generation begins by learning a FOS from the population using the model learn-
ing function. Then each solution is subjected to the Gene-pool Optimal Mixing (GOM)
crossover operator. First the solution is cloned into an offspring population, so the building
blocks in this solution are preserved for GOM with the remaining unimproved solutions.
For each subset in the FOS, GOM will donate the bits indicated by the subset from a
donor randomly selected from the population into the current solution. For example, a
donation of bits {2, 3} from donor solution 110011 to parent solution 001100 would result
in an offspring solution 000000. If the donor and the parent solution have the same bits
for the problem variables, then the offspring solution is equal to the parent solution and
no fitness evaluation is performed. For example, a donation of bits {1, 4} from donor solu-
tion 101101 to parent solution 100001 would result in an offspring solution 100001, whose
fitness is already known and does not need to be recomputed. If the donation resulted in
an offspring solution with a greater or equal fitness to its parent solution, then the changes
are kept, otherwise the changes are undone. The donor changes between each donation to
ensure there is no bias towards a certain solution (which most likely consists of a specific
combination of partial solutions). Listing 1 shows the pseudo-code for the GOM operator.
The offspring population replaces the current population after each solution has undergone
GOM crossover. GOMEA continues evaluating generations until the termination criterion
has been met. Listing 2 shows the pseudo-code for the GOMEA framework.

Several termination criteria exist for when the GA should end. The first two criteria
are based on computational limitations set by the user. Either the maximum number of
fitness evaluations that are allowed to be performed has been reached, or some time limit
has been exceeded. Assuming the global optimum is known in advance, the GA can be
terminated upon finding a solution with the optimal fitness value. The other termination
is premature convergence of the population. Premature convergence happens when the
population cannot be improved any further, either because a few solutions have taken
over the population or there is not enough diversity to escape the local optima. More
specifically, the population has converged when the population has not changed between
two generations. If any of these criteria is met, then the GA is terminated after the current
generation has been completed.

2.3 Hierarchical Clustering

At the start of each generation, LTGA constructs a linkage tree whose nodes form the
family of subsets given to the GOM crossover operator. A linkage tree is a binary tree
over all problem variables that gives a concise hierarchical model of the strongest linkage
in the population. The leafs of a linkage tree are the singleton subsets of the problem
variables. Every other node is the union of the problem variables stored in its two child
nodes. The root node is the set of all problem variables. From definition of a binary tree

Chapter 2 7

Parameter-less GOMEA

for Ci ∈ FOS do
x′ = RandomlySelectedFrom(Population);
if xCi 6= x′Ci then

prev := fitness(x);
swap(xCi , x

′
Ci) ; /* Donate x′Ci

to xCi. */

if fitness(x) ≥ prev then
copy(xCi , x

′
Ci) ; /* Accept the donation.. */

else
swap(xCi , x

′
Ci) ; /* Undo the donation. */

return x
Algorithm 1: GOM(x, FOS, Population)

Population := RandomPopulation(size);
while ¬TerminationCriterionMet() do

FOS := LearnModel(Population);
for x ∈ Population do

x := GOM(x, FOS, Population)
Algorithm 2: GOMEA(size)

it follows that there are l leaf nodes, l − 2 intermediate nodes, and 1 root node.
Linkage information measures the mutual dependence between subsets of problem

variables, also called clusters. The motivation for measuring linkage is to efficiently find
clusters that represent building blocks. A building block is an assignment to a subset of
problem variables that is frequently present in the population and contributes strongly
to the fitness of a solution. This frequency of the building block is captured as a prob-
abilistic dependency between the problem variables, which is measurable using a linkage
measure based on entropy. GOMEA is able to exploit this linkage structure by copying
and preserving building blocks efficiently using the linkage tree model.

There are several applicable measures from information science, such as mutual in-
formation (MI) and variation of information (VI). The mutual information is shown in
equation 2.2. High values of mutual information indicate a strong dependency between
the variables and the reverse holds for the variation of information. These measures are
entropy-based computations of the linkage between clusters of variables. Let equation 2.2
denote the entropy of a cluster Ci, where ΩCi is the set of all possible assignments of bits
to the variables in Ci. Entropy scales with the number of variables, which biases the mea-
sure towards merging large clusters, so the measure is often divided by the joint entropy
H(Ci ∪ Cj). As a result, the normalized distance D is a metric in the range [0, 1] ∈ R.
The normalized variants of MI and VI are denoted by MNI and NVI, respectively. Mutual
information and the normalized distance measures tend to perform equally well, as shown
by P. Bosman and D. Thierens [17].

H(Ci) =
∑

x∈ΩCi

p(x) log p(x) (2.1)

MI(Ci, Cj) = H(Ci) +H(Cj)−H(Ci, Cj) (2.2)

The linkage tree is constructed by a hierarchical agglomerative clustering algorithm
based on a bottom-up approach of building the tree from the leaves up. The mutual
information is used as the similarity measure in this summary. The set of clusters is
initialized with the singleton sets of the variables. These are the leaves of the linkage tree.
Then the algorithm continues to merge the clusters with the highest average pair-wise
distance between two clusters until only the cluster containing all variables remains. Each

8 Chapter 2

Parameter-less GOMEA

merged := {{0}, {1}, . . . , {l − 1}};
unmerged := merged;
while |unmerged| > 1 do

(Ci, Cj) := min(Ci,Cj)∈unmergedD(Ci, Cj);

unmerged := unmerged+ {Ci ∪ Cj} − {Ci, Cj};
merged := merged+ {Ci ∪ Cj};
if ChildNodeF ilter(Ci ∪ Cj , Ci, Cj) then

merged := merged− {Ci, Cj}; /* Filter 2 */

for Ck ∈ unmerged do
Update(D(Ci ∪ Cj , Ck)); /* Update Distance */

merged := merged− {0, . . . , l − 1}; /* Filter 1 */

merged := FisherYatesShuffle(merged);
return merged

Algorithm 3: Clustering(P)

cluster forms a node in the linkage tree with its merged clusters as the children. Listing 3
shows the pseudo-code for the hierarchical clustering algorithm.

MIUPGMA(Ci, Cj) =
1

|Ci||Cj |
∑
x∈Ci

∑
y∈Cj

MI(x, y) (2.3)

Computing the exact entropy of large clusters is expensive because every possible assign-
ment of the variables must be enumerated. The UPGMA (unweighted pair group method
of arithmetic mean) has been adapted in recent literature on LTGA[17] to speed up the
hierarchical clustering algorithm. Equation 2.3 shows the new distance measure. Cluster-
ing starts by computing a matrix of MI values between the problem variables in O(nl2)
time. The distance between a merged cluster and the remaining clusters can be computed
in constant time, in contrast to the exponential time needed for the exact computation.
Computing the hierarchical clustering can be done in O(2) time as demonstrated by the
authors of UPGMA [12]. Both of the currently available LTGA implementations by B.
Goldman and P. Bosman use the reciprocal neighborhood chain algorithm outlined in the
UPGMA paper. The calculation of entropy for the initial distances depends on the gene-
frequencies between each pair of problem variables, which can be stored in a frequency
matrix. Each entry in the frequency matrix contains the frequencies in the population for
the four possible assignments to the pair of problem variables. Constructing this frequency
matrix requires O(nl2) time which is the upper bound in run-time for the construction of
a linkage tree.

2.4 Filtering the Family of Subsets

Not all subsets in the FOS formed by the linkage tree are useful during crossover. Prefer-
ably the bad subsets are removed before any fitness evaluations are wasted on them during
crossover. The most generic rule for filtering a FOS is removing the subset containing all
problem variables. Using this subset during crossover is equivalent to performing binary
tournament selection on the two parent solutions, which will speed up premature conver-
gence due to the loss of diversity in the population. Hence this subset is always removed
from the FOS.

Further filtering can be done using the parent-child relations formed by the subsets in
the linkage tree[19]. Each non-leaf cluster forms a parent-child relation with its left and
right child clusters. The exact rule for filtering a subset depends on the distance measure
used to build the linkage tree. Examples are provided for the UPGMA variant of mutual

Chapter 2 9

Parameter-less GOMEA

information. Child node filtering is the process of filtering the children of a parent-child
relation based on whether the children are fully dependent subsets. The linkage between
the children is ’perfect’, if the combined subset of variables forms a building block in
the population. The parent subset preserves the linkage between the two subsets, when
copying one of its child subsets would disturb the linkage. Hence the child subsets are
removed from the FOS during creation. The criterion for removing the children for the
mutual information measure is checking whether the distance between the parent and
both of its children is equal. Because of the limited precision available for floating-point
computations, the distance between a parent and child is called equal when their ratio lies
within [0.99, 1.01] ∈ R. Child node filtering is most effective on populations composed of
building blocks, because the strict subsets of a building block are more likely to be filtered
out by this rule. A rule has been proposed for filtering out parent subsets when the child
subsets are independent, but this rule was not implemented as part of the implementation
used in this thesis. An example of child node filtering using the normalized variation of
information can be found in the paper by B. Goldman and W. Punch[21].

2.5 Forced Improvement

Forced improvement is an addition to GOMEA introduced in order to improve its perfor-
mance on the MaxCut optimization problem[16] (see appendix A.5). If the fitness of a
solution has not improved during crossover, then forced improvement is performed on the
solution. Forced improvement applies the GOM crossover operator again, but the donor
solution is now set the best individual in the population. The difference is that crossover
will stop immediately after a fitness improvement has been found. If there again was no
improvement in the fitness of the solutions, then the solution is replaced entirely by the
best individual in the population. This alters the linkage between variables in the popu-
lation in favor of the best individual, but only if the solution could no longer be improved
upon. A population has converged when the fitness variance of its solutions has reached
zero, which is guaranteed to occur due to the final forced improvement step.

Since the addition of forced improvement to GOMEA, another adjustment was made
in order to perform better on combinatorial optimization problems. In the original LTGA
implementation[14] the acceptance criteria of the GOM operator was to only accept solu-
tions of better fitness, but the acceptance criteria was changed to accept solutions of equal
fitness as well [20]. The reasoning behind this change was the explosive number of fitness
plateaus present in complex instances of the Maximum Satisfiability problem. Since then
the forced improvement step has been changed to occur on two conditions[19]: either the
solution has not changed at all, or there has been no improvement in the entire population
for 1 + b10 log(n)c generations. The latter value was empirically tuned and is a robust
parameter to GOMEA.

2.6 FOS Ordering

The order in which the subsets of the FOS are stored determines the order in which
GOMEA applies them as crossover masks. Hence the cluster ordering has an influence
on how fitness landscape is traversed by crossover. When LTGA was first introduced[14],
the clusters were ordered in least linkage first order, which is the reverse order in which
the clusters were merged. From the perspective of LTGA, clusters with high linkage are
more likely to identify strong building blocks for crossover. Hence the clusters are applied
in order of least confidence in success first. The influence of the cluster ordering has
been explored in part by B. Goldman in his paper on variants of LTGA[18]. Goldman
compared the least linkage first order to the smallest cluster first order, and his results

10 Chapter 2

Parameter-less GOMEA

have shown neither ordering is optimal. Hence the FOS ordering is a tunable parameter
for performance, but to ensure there is no bias towards certain problems the ordering is
randomized in the latest literature on GOMEA.

Chapter 2 11

Chapter 3

Population Sizing

GAs differ from other heuristics because they maintain a population of solutions. The key
difference lies in the fact that the GA may not solve the problem to optimality depending
on the size of the population. For simple problems, such as Counting Ones, there exists
the Population Sizing theory for setting a theoretically robust population size. However,
the theory does not apply to most real-world problems, nor do similar theories exist for
LTGA. Dealing with and analyzing the population size parameter is integral to performing
experiments on GAs. This chapter is devoted to explaining how LTGA and GAs in general
are frequently analyzed in research, including the use of bisection for population sizing,
and the disadvantages that come with this in practice.

3.1 Experimental Studies

At the core of an experiment is the definition of a measure for the performance of a
GA. Whether one is more suitable than the other depends on the knowledge of the test
problems at hand. More specifically, knowing the global optimum beforehand gives a
different perspective on the efficiency of the GA. Suppose the global optimum is unknown,
then the performance measure can only report the best fitness the GA has encountered
at any point. This is often the case for case studies on real-world optimization problems.
Suppose the global optimum is known beforehand, then the performance measure can
be two-fold: can the GA find the global optimum before premature convergence occurs,
and in how many fitness evaluations it does so. The former measure is meaningful when
compared to the results of other algorithms, but is less informative on its own. The latter
measure is useful for both comparing algorithms against each other, and determining the
efficiency of the GA on a test problem. Researcher prefer test problems with known
global optima because the available performance measures are more expressive. The test
problems chosen for the experiments in this thesis have known global optima.

First the performance measure is defined more formally. The fraction of runs that
convergence on the global optimum is the success rate. Each successful run used a number
of fitness evaluations before it reached the global optimum. The average number of fitness
evaluations before reaching the global optimum is the measure for the efficiency of the GA.
Unsuccessful runs do not contribute to the average. Unless specified otherwise, the ’before
reaching the global optimum’ part is dropped for conciseness. In general there is a strong
correlation between the success-rate and the population size, because the latter determines
the likelihood of premature convergence. Figure 3.1 plots the expected behavior of the
success-rate against the population size in an idealized setting. On its own the success-rate
is not an interesting performance measure, because any value significantly lower than 100%
indicates that the GA could not solve the problem reliably. An ’optimal’ population size
guarantees that the GA reliably converges onto the global optimum, but is also minimal

12

Parameter-less GOMEA

Figure 3.1: A plot of the expected behavior of the success-rate against the population size.
The blue line indicates the success-rate. The green line indicates the ’optimal’ population
size.

in the number of fitness evaluations. Computing the exact optimal population size is
computationally infeasible, so a statistical approximation is used instead. Researchers
often use the bisection method to sample a reliable population size for the GA[10], [16],
[21].

Performing an experiment is equivalent to sampling a GA for a finite number of param-
eter configurations. A fair experiment measures the changes of adjusting one parameter
while setting the remaining parameters to a constant value. First the domain of each
parameter is reduced to a discrete finite range of values. Fully capturing the interdepen-
dencies would require the experiment to evaluate the Cartesian product of all parameters.
This leads to an explosion in the number of parameter configurations that must be run.
As shown before, the population size can be factored out by performing bisection search,
but it adds the computational burden of running bisection for the remaining parameter
configurations. Only so much data can be presented in a research paper due to page
limitations. Thus researchers are encouraged to remove parameters from experiments by
choosing robust values. The conclusion remains that designing algorithms with non-robust
parameters leads to additional complexity for both researchers and user alike. This is a
strong motivation for developing parameter-less algorithms from a scientific perspective,
especially to avoid the cost of bisection.

3.2 Bisection

Bisection is a method for finding a robust population size using a binary-search. A popu-
lation size is accepted if the success-rate of r runs exceeds some threshold. It is assumed
that the success-rate is a non-decreasing function of the population size, so the threshold
separates the domain of population sizes into two disjoint continuous ranges. If the as-
sumption holds, a binary search on the population sizes will return the first population size
for which the success-rate exceeds the threshold. Binary search requires an upper bound
on the interval, which is found by doubling the population size until the success-rate ex-
ceeds the threshold. The odds of failing x out of r runs follows the binomial distribution,
hence the number of trials r increases the minimal population size accordingly. The r pa-
rameter determines the expected success-rate of the GA, which can be estimated using the
Rule of Three [6]. Using a threshold of 100 with 100 runs gives an expected success-rate
of about 97%.

Bisection comes with a set of flaws one should be aware of. The assumption of the

Chapter 3 13

Parameter-less GOMEA

Figure 3.2: Box-plots of the bisected population sizes for the five test problems. The
statistics were gathered from 10 bisections per configuration of length and problem. The
box shows the data between the 10th percentile and the 90th percentile, and the whiskers
indicate the minimum and maximum of the data. The red line indicates the median of
the data.

14 Chapter 3

Parameter-less GOMEA

success-rate being a non-decreasing function of the population size does not hold in practice
due to the randomness factor in sampling only r runs. The results of performing multiple
bisections on the five test problems are shown in figure 3.2. Each box-plot was generated
from 10 bisections using 100 runs per parameter configuration. As one can see there a
large variance in the population size sampled by bisection, which can differ up to a factor
two between the minimum and maximum of the data. Not only does this significantly
affect the performance of GOMEA, but performing a single bisection hides this variance
in the population size. Hence it becomes obvious that the assumption of monotonicity
does not hold at all on any of the test problems. However, the bisected population sizes
do give a strong indication of how well GOMEA scales on the test problems. None of the
research papers referred to throughout this paper have used a bisection size larger than
100 in their experiments. Increasing r reduces the variance in the bisected population size,
were it not that performing 100 runs is already a prohibitively expensive operation. The
same reasoning applies to running multiple bisections and taking the median population
size.

Long time of execution has a negative impact on the length of the feedback loop of
research, when the researcher must wait for the results of the bisection before continuing
with his research. Performing bisection on small problem sizes is certainly doable, but this
constraints the researcher to assuming his results scale up to larger problem sizes. For this
reason the bisection on large instances is often postponed till the last part of the research
project.

3.2.1 Multiple Instances, One Bisection

It is not uncommon for experiments to perform a single bisection on multiple problem
instances by using a different instance per run[10], [16], [21]. For mathematical models
the instances are often randomly generated using a configurable random generator. But the
randomness has a negative effect on the quality of a bisection analysis. The complexity
of the problem instances will vary, and so will the minimally required population size
for solving the specific problem instance. But bisection will reject any population size
that cannot reliably solve every problem instance, so whether or not a population size is
accepted is determined by the most complex instances. The bisected population size will
be an overestimation of the minimum population size for most instances. This does not
bring into question the validity of bisection as a tool for scalability analysis, but it does
give a skewed perspective on the absolute performance of the algorithm. This may lead
conclusions where a parameter-less algorithm outperforms the bisected algorithm because
it can better exploit the less complex problem instances.

3.2.2 Single Instance, Multiple Bisections

Ideally the median population size of multiple runs of bisection is taken as the final popu-
lation size, because the median is a robust statistic against outliers. Additionally, results
of an earlier experiment are easier to reproduce (and thus verify) because the median bi-
sected population size is more likely to be reproduced than a single sample of a bisection
on the population size.

An example: the usefulness of forced improvement on the performance of GOMEA is
put to the test in an experiment. There are two options for comparing the two configura-
tions of parameters, namely sharing one bisected population size or performing separate
bisection runs for each configuration. The first case makes for a seemingly sound ex-
periment, because the only variable of the experiment is the use of forced improvement.
However, the assumption that the population size is constant may be flawed due to forced
improvement better exploiting non-improving solutions. This could intuitively lead to a

Chapter 3 15

Parameter-less GOMEA

decrease in the population size that is required for solving the problem to optimality. Hence
the bisection could also be performed separately, but how many bisection runs should be
performed? Even on single instance problems the variance in population size could result
in statistically significant differences when only one bisection is sampled, as seen in figure
3.2. Hence bisection is not that reliable for detecting shifts in the distribution of ’optimal’
population sizes, and so neither for the difference in the number of fitness evaluations.
The researcher is tuning two bisection parameters to ensure no statistical errors are made,
while also worrying whether the experiment can be run in a reasonable time.

3.3 Conclusions

Creating and running experiments for GAs is a costly procedure when there are several
non-robust parameters involved. It is a necessity to simplify the experiments by setting
(robust) fixed parameter values or reducing the coverage of parameter values. However,
removing the population size parameter requires either an expensive bisection or careful
configuration by the researcher. There is no clear definition of what an optimal population
size is in either scenario. Hence there is good motivation for adopting parameter-less
population schemes that do not suffer from these complications.

16 Chapter 3

Chapter 4

Parameter-less Population
Schemes

4.1 Population Schemes

A population scheme is a scheme for maintaining one or more populations as an evolu-
tionary algorithm progresses. Simple genetic algorithms (GAs) use a fixed size for the
population, which forces solutions to compete for a place in the population. Hence the
simple GA has at least one parameter: the population size. But selection and recombi-
nation methods come with their own parameters. This chapter is devoted to population
schemes without the population size parameter.

The population size parameter is an example of a non-robust parameter, meaning there
is no parameter setting that performs optimally regardless of the optimization problem.
This statement is observable by the difference in population sizes returned by the bisection
search on GOMEA for the test problems (shown in figure 3.2). From the plot it can be
inferred that the difference in optimal population sizes can be larger than an order of mag-
nitude. Hence no population size can be set without significantly under- or overestimating
the population size for a different problem, most notable seen for the HIFF function and
the NK-S1 problem instances.

Premature convergence is the problem of a population converging towards a set of
solutions that do not contain the information necessary for finding the global optimum.
Whether the selective pressure was too high or the population size was too small, prema-
ture convergence is the reason a run of the GA can no longer solve the problem. Simple
GAs require a sufficiently large population to ensure enough diversity is present initially
and can be preserved over time. Each population scheme deals with premature conver-
gence in its own way, be it with population racing or constantly introducing new solutions.

A population scheme is considered parameter-less if and only if all parameters it re-
quires are robust. This includes parameters with theoretically robust values such as a
recombination probability based on the Schema theory. Clearly the simple GA is not
parameter-less. The remainder of the chapter is devoted to parameter-less population
schemes taken from known literature.

4.2 Exponential Population Scheme

One of the simplest parameter-less population schemes is the scheme of restarting a single
population with an increased population size upon premature convergence until the solu-
tion quality has become acceptable. The growth function determines the rate at which
the population size grows in the number of converged runs. The scheme for doubling the
population size upon convergence is called the Exponential Population Scheme (EPS),

17

Parameter-less GOMEA

named for the exponential growth of the populations. This technique was first discussed
by George Harik and Fernando Lobo[8] in the context of GAs. EPS is comparable to the
behavior of a user of a GA, who will often keep doubling the population size until they
are satisfied with the result. Though users often start guessing at some arbitrary value
such as 100, EPS will start at population size 1 to ensure there is no overestimation of the
population size on smaller problem instances. Optionally, the user can provide some lower
bound as the starting population size, if he knows for certain that any smaller population
will prematurely convergence. An advantage of this population scheme is its simplicity,
because it can be applied to most algorithms without the need to modify the algorithm.

Determining whether a population has converged can be difficult, if not impossible, for
some problems and algorithms. Convergence can be extremely slow due to the genetic drift
that occurs when a population contains many building blocks of equal fitness. The point
at which one group of building blocks overtakes the population is determined mostly by
a random walk when there is no selective pressure between the groups of building blocks.
Genetic drift is a difficult problem with selecto-recombinative genetic algorithms, which
is why G. Harik & F. Lobo did not experiment upon the exponential population scheme
in their works. Alternatively, convergence can be slow by the design of the algorithm
in question. Algorithms using a niching technique, for example restricted tournament
replacement[10], maintain a diverse population meaning it is unlikely to converge quickly.
Hence algorithms using niching cannot be used in conjunction with this population scheme.

A convergence-based population scheme such as EPS is very effective when convergence
is easy to measure and happens at a consistent rate. The forced improvement step of the
GOMEA framework increases the rate of convergence towards the best individual in the
population once solutions are no longer improving. This eliminates the problem of genetic
drift on basis of which G. Harik and F. Lobo rejected this population scheme. In addition
to the fast convergence rates, the GOM operator evaluates 2l − 1 changes to the solution
during crossover, in contrast to the one or two solutions generated by a traditional crossover
operator such as two-point crossover. This means GOMEA converges in less generations
than a regular GA, because it performs more changes to the solution per generation. For
example, solving the HIFF function for l = 128 requires an average of 8 generations per
run. GOM is applied to the entire population, meaning n(2l − 1) changes are tested per
generation of the run. Hence one run of GOMEA has a not-so-varying cost in fitness
evaluations, because the number of generations does not vary much as well. As a result
the number of fitness evaluations for multiple runs of EPS can be divided into clusters
with little variance. In which cluster the run falls depends entirely on how many times
GOMEA was run and thus what the final population size was. Hence the samples of EPS
can be divided into two sets, the runs with a number of fitness evaluations lower than that
of GOMEA configured through bisection, and the runs with a higher number of fitness
evaluations. The ratio between the two sets determines whether EPS will outperform the
bisected GOMEA. This behavior holds true even when child node filtering (section 2.4) is
used which reduces the average number of changes tested by GOM. Read section 5.3 for
the experimental results involving this population scheme.

4.3 Parameter-less Genetic Algorithm

The Parameter-less Genetic Algorithm by George Harik and Fernandez Lobo was the first
work on a parameter-less population scheme. In their work, the authors argued about
the troubles practitioners face when confronted with non-robust parameters. Instead of
performing studies on decent parameter settings for specific problems they argued that the
genetic algorithm should estimate the parameters itself. Using the schema theorem, the
selection pressure and recombination rate of the selecto-recombinative genetic algorithm

18 Chapter 4

Parameter-less GOMEA

0 run generation 1 of population 1
1 run generation 2 of population 1
2 run generation 3 of population 1

00 run generation 1 of population 2
10 run generation 4 of population 1
11 run generation 5 of population 1
12 run generation 6 of population 1
10 run generation 2 of population 2
20 run generation 7 of population 1
21 run generation 8 of population 1
22 run generation 9 of population 1
20 run generation 3 of population 2

000 run generation 1 of population 3
100 run generation 10 of population 1
.

Table 4.1: Counter (base 3)

can be set to a theoretically robust value. The population size parameter of the GA is
removed by evaluating multiple populations in a racing setting. A counter mechanism was
introduced to schedule which population is evaluated next, while also ensuring smaller
populations are evaluated k times more than any larger population. Larger populations
require more fitness evaluations to evaluate one generation, hence this counter ensures
smaller populations get an equal share of fitness evaluations in order to develop. When
the largest population has been evaluated k times, a new population of double the highest
population size is spawned. Whenever the average fitness of a large population becomes
higher than that of a smaller population, the latter one is removed and the counter is reset
to zero. This mechanism helps terminate populations stuck in genetic drift early on, thus
wasting less fitness evaluations on the smaller populations. When the last population is
removed due to premature convergence, a new population with double the population size
is spawned. An example of the counter mechanism is shown in table 4.1.

GOMEA has not been combined with the Parameter-less Genetic Algorithm in research
up till now. The two GAs conflicts in their design intentions. GOMEA converges quickly
in terms of generations and the population racing scheme was designed to deal with slow
convergence due to genetic drift. Given a growth parameter of four, the set of populations
would mostly consist of one or two populations because of the fast convergence rate.
A growth parameter of two would have several populations racing against each other,
but performing an iteration of GOMEA becomes increasingly more expensive for higher
population sizes. Hence performance is lost in evaluating over-sized populations because
these are started faster. Because the Parameter-less GA uses an exponential growth for its
populations, it is basically an extension of the exponential population scheme (EPS). An
experimental study comparing EPS to the Parameter-less GA for three different values of
k is included in chapter 5.

4.4 Parameter-less Population Pyramid

The Parameter-less Population Pyramid (P3) is a parameter-less evolutionary algorithm
that was introduced by B. Goldman and W. Punch [21]. Both P3 and LTGA use GOM
crossover (chapter 2) with linkage trees to explore the fitness landscape through a pop-
ulation. They differ in how they exploit the solutions in the population, in other words
P3 uses a different population scheme than the fixed-size population scheme. It has been

Chapter 4 19

Parameter-less GOMEA

x := Hillclimb(RandomSolution(l));
AddIfUnique(P0, x);
for Pi ∈ P do

x′ := GOM(Pi, FOSi, x);
if Fitness(x′) > Fitness(x) then

AddIfUnique(Pi+1, x
′);
Algorithm 4: Iterate()

if x 6∈ Seen then
Pi := Pi ∪ x;
Seen := Seen ∪ x;
UpdateFrequencies(Pi, x);
FOSi := Clustering(Pi);

Algorithm 5: AddIfUnique(Pi, x)

shown that P3 outperforms LTGA configured through bisection in the number of fitness
evaluations required to solve the problem, though no run-time analysis has been published
as of yet.

Our interest in P3 comes from its novel population scheme: the population pyramid.
It is a set of populations with two specific rules for inserting new solutions and performing
crossover with the existing solutions. The set of populations expands slowly and forms
a pyramid-like structure where the populations are arranged in increasing fitness and
decreasing size. Hence each population can be referred to as a layer of the ’pyramid’, so
these two terms will be used interchangeably in the context of P3.

P3 operates on the population pyramid as follows. Initially there is only one empty
population P0. Every iteration, a new random solution undergoes local search by a first-
improvement hill climber and is then added to the bottom layer of the pyramid P0. Pop-
ulation P0 has changed due to the insertion of the solution, so the linkage tree of P0 is
reconstructed. Then the solution undergoes crossover with the layers of the population
pyramid, starting with the bottom layer and working its way up. The crossover operator
is the GOM operator (see listing 1) used by LTGA and uses a linkage tree learned from
the pyramid layer. If crossover at layer Pi results in a fitness improvement, then the so-
lution is added to the next population Pi+1. If the population Pi+1 does not exist, then
it is initialized empty and the solution is inserted. The population of layer Pi+1 changes
after inserting a solution, so the corresponding linkage tree is rebuilt. Then the solution
is GOM crossed over with population Pi+1, and this process is repeated until the top of
the pyramid has been reached. This is how the population pyramid grows over time. Any
change to the solution resulting in an equal or improved fitness during GOM crossover
is kept throughout the entire iteration. Even if the solution is not inserted into the next
population, it will undergo GOM crossover with the next population, unless the top has
been reached. To ensure diversity is preserved in the pyramid, a set data-structure is used
to check whether a solution is already present in any of the populations of the pyramid. If
it was already present in the pyramid, then the solution is not added to the next popula-
tion and the iteration simply continues. This means the linkage tree of the population is
not reconstructed as the solution is rejected as a duplicate. Note that when a solution has
reached the top of the pyramid and there was a fitness improvement, then a new layer is
allocated and the solution is crossed over with that layer. However, GOM crossover cannot
change a solution if the only available donor is the solution itself, so the iteration ends
because the new top has been reached and there can be no further fitness improvement.
Listing 4 shows the pseudo-code for one iteration of P3.

20 Chapter 4

Parameter-less GOMEA

The crossover operator used by P3 differs from GOMEA in two aspects: the cluster
ordering and selection of donors. Clusters are sorted in smallest-first order instead of the
randomized order used by the most recent version of GOMEA. GOMEA rejects a cluster
during crossover when the solution and donor have equal values for the problem variables.
P3 alters this procedure by searching the entire population in a random order until a donor
with non-equal values has been found. The upper-bound on the run-time of the crossover
operator increases by a factor linear in the population size, however the trade-off between
searching more donors and not rejecting an amount of clusters can be either positive or
negative. The authors of P3 opted to use this ’exhaustive’ donor searching because an
empirical experiment shows it decreased the run-time of P3 significantly.

P3 applies the child node filtering rules discussed in section 2 to reduce the FOS with a
focus on saving fitness evaluations on the smaller pyramid layers. Filtering has a stronger
effect than usual on the number of fitness evaluations because P3 regularly introduces new
empty layers. On small populations the child nodes are more likely to be filtered because
the entropy is computed from such a small sample. There is another difference, namely
the linkage measure used by P3 is the normalized variation of information, while GOMEA
uses the mutual information instead. Previous literature has shown that the two measures
agree on at least 92% of the clusters, and the difference in performance is negligible[17].

The run-time of P3 is significantly slower than that of GOMEA as a result of the
population pyramid. Instead of learning one linkage tree per generation, the linkage tree
in a layer is rebuilt every time a new solution is added to the layer. To speed up the
rebuilding process, the pair-wise gene-frequencies used to compute the initial distances
for the clustering algorithm are stored in a frequency matrix. Instead of using O(nl2)
time to recompute the frequency matrix every time the linkage tree is reconstructed, the
frequencies are incrementally updated whenever a solution is added to the population.
Hence P3 requires only O(l2) time instead of O(nl2) time for rebuilding the linkage tree,
because updating the matrix is cheaper than recounting the frequencies in the entire
population. During crossover at most O(|C|) = O(l) evaluations are performed, assuming
a suitable donor can be found. Amortizing the cost of building the linkage tree gives
a fair run-time analysis. Under the assumption of a lower bound of O(l) on the fitness
evaluation function, the cost of performing crossover is the upper bound on the run-time
of P3. Traversing the population can potentially take O(nl) time per fitness evaluation for
each of the O(l) evaluations per GOM crossover. Hence the cost of improving a solution
per layer is roughly O(nl2). An analysis of run-time per iteration is more difficult, because
the number of layer in the pyramid cannot be effectively estimated.

P3 solves the problem of premature convergence by introducing a new solution at
the start of each iteration. The solution’s fitness gradually increases as it traverses the
pyramid. This is an important property of the population pyramid, because bits donated
by highly fit solutions are more likely to be accepted by solutions of lower fitness. If
the solution is mixed with the higher layers of the pyramid without undergoing sufficient
optimization, the new information introduced by the solution is more likely to be destroyed.
Hence the population pyramid protects the diversity performing GOM crossover in order of
least-fit populations first. No solution is entered twice into the population, which ensures
that layers cannot be dominated by a small fraction of the unique solutions. Using these
two properties, P3 can continue exploring new parts of the fitness landscape until the user
decides it is done.

The first improvement hill climber (FIHC) is a hill climber designed to find good local
optima in a minimal number of fitness evaluations. Listing 6 shows the pseudo-code for the
first improvement hill climber. FIHC traverses the solution in a random order, evaluating
bit flips until a fitness improvement has been found. If no fitness improvement was found
after testing each index in the random order, then the algorithm terminates, otherwise the

Chapter 4 21

Parameter-less GOMEA

indices := [1,Length(solution)];
tested := ∅;
do

improved := False;
Shuffle(indices);
for i ∈ indices do

Flip(solution[i]);
newFitness := Evaluate(solution);
if BetterThan(newFitness, fitness) then

fitness := newFitness;
tested := ∅;
improved := True;

else
Flip(solution[i]);

tested := tested ∪ {i};
while improved;
return (solution, fitness)

Algorithm 6: FIHC(solution, fitness)

bit is flipped and the algorithm continues with the same order. FIHC assumes no problem-
specific knowledge; every tested bit flip is counted as one fitness evaluation. The random
order ensures there is no positional bias to specific bits. When a bit flip is evaluated
twice without the solution having changed, the next bit flip is tested instead to prevent
redundant evaluations. FIHC is used to optimize the solution at the start of each iteration
before it had undergone crossover with the pyramid.

Algorithms based on layers of populations have been researched in the past by G. S.
Hornby [11], but the focus was only on postponing premature convergence. Only fixed
population-size layers were considered in Hornby’s work. Previous algorithms have shown
that layering on the number of changes by the GA is more effective than distributing
solutions into layers based on average fitness.

22 Chapter 4

Chapter 5

EPS and Parameter-less GA:
Experimental Study

The goal of this chapter is to first show the performance of GOMEA on the test problems
alone, and then measure the overhead introduced by the exponential population scheme
and the parameter-less GOMEA. The first section shows the results of LTGA on the test
problems using bisected population sizes. Section two compares the results of running
the exponential population scheme against the results of GOMEA. Section three does the
same for the Parameter-less GA.

5.1 Configuration

The implementation of GOMEA was provided by P. Bosman and was last used in a paper
on MLNGA [19]. Further optimizations and a custom implementation of the parameter-
less GA were necessary, so the published code by Bosman is not entirely representative
of the results reported here. This pertains only to the experiments on the run-time of
the algorithms, because the number of fitness evaluations is an implementation-agnostic
performance measure.

The population sizes for GOMEA were determined using the bisection method (section
3.2) with an accepted success-rate of 99 out of 100 runs. In case of multiple instances, the
bisection performed each run on a separate instance. Running a bisection for each prob-
lem instance separately was beyond the computational scope of this paper. The median
population size returned by 10 bisection searches is used as the final population size. This
is to ensure that the population size used by GOMEA is not a terrible overestimation and
that it is more easily reproducible. The parameter-less population schemes were sampled
for 300 runs each to accurately capture the distribution of fitness evaluations and the
outliers. With the population size removed from sight, there are no other parameters left
for configuration besides the problem-specific parameters and the parameter tested in the
experiment. Appendix A explains the five test problems chosen for this paper and their
parameter configuration.

GOMEA has the following termination criterion: either premature convergence or find-
ing the global optimum. When the fitness variance of a population has reached zero, then
the population is said to have converged. Alternative, if the entire population has failed
to improve in fitness, then the population has also converged. None of the algorithms
explored in this chapter failed to find the global optimum within a reasonable time. Pre-
mature convergence is not a termination criterion when using a parameter-less population
scheme.

When it is unclear whether the results of an experiment are statistically significant,
a two-tailed Mann-Whitney U test will be performed on the data. The threshold for

23

Parameter-less GOMEA

statistically significance is set to α = 0.01.

5.2 GOMEA

This section covers the experimental results of running GOMEA using the population
sizes determined by bisection. Here follows a quick summary of the configuration of
GOMEA. The FOS ordering is randomized before crossover. A new solution is accepted
by GOM crossover if and only if the fitness is greater than or equal to the fitness of
the original solution. The UPGMA adaptation of the mutual information is used. Forced
improvement is applied only if a solution has not changed after crossover or the population
has not improved in b1 + log nc generations. Forced improvement ends immediately after
an improvement to the fitness has been found. Lastly, the fitness evaluations performed
during bisection do not contribute to the results at all.

The results in figure 5.1 show the mean number of fitness evaluations for two variants of
LTGA configured through bisection. The plot labeled with -NONE does not use child node
filtering, nor does it forced improvement. Together the plots illustrate the effect of child
node filtering and forced improvement on GOMEA for reference in the next experiment
on EPS. Drawing conclusions from these runs alone is difficult due to the variance in the
population size returned by the bisection search, as shown in figure 5.2. The error-bars in
figure 5.2 show the large standard deviation when sampling multiple bisection searches.
Whether it is forced improvement or child node filtering which significantly impacts the
population size on the MaxCut problem is unknown. The conclusions drawn in section 5.3
on the effects of forced improvement and child node filtering also apply to this experiment.

Lastly, note the low standard deviation indicated by the error bars in figure 5.1, which
are only noticeable on the tiniest of problems. A low standard deviation in the number of
fitness evaluations implies a low standard deviation in the average number of generations
as the population size is a constant. These results reinforce the view that the number of
fitness evaluations used by GOMEA is a function of the population size. This observation
was already made in section 4.2 on the influence of GOMEA on the performance of EPS,
and it is now verified.

5.3 Exponential Population Scheme

This section covers the experimental results of running the exponential population scheme
on the Exponential Population Scheme (section 4.2). Figure 5.3 shows a comparison of
the exponential population scheme and GOMEA.

The results show a constant overhead in added performance to GOMEA on the decep-
tive trap functions and the HIFF function. This behavior falls within the expectations set
beforehand, because the two problems consist of only one problem instance each. Hence
the bisection gives a reasonable estimation of the optimal population size.

However, the performance on the randomly generated problem instances is apparently
equivalent, even though the exponential population scheme incorporates the overhead of
partial bisection whereas GOMEA does not incorporate the cost of bisection at all. The
results are best explained as the bisection giving an overestimated population size for the
majority of the problem instances.

Figure 5.4 shows a comparison of the median bisected population size against the
average population size of the last population in use by the exponential population scheme.
It is clear from the plot that the bisection gives an upper bound on the required population
while the exponential population scheme shows GOMEA could often solve the problem
with a smaller population size. This holds for both the single-instance and the multiple-
instance problems. Performing the bisection is significantly more expensive than simply

24 Chapter 5

Parameter-less GOMEA

Figure 5.1: Comparison of the average number of fitness evaluations for the two LTGA
variants. The error-bars indicate the standard deviation in the number of fitness evalua-
tions.

Figure 5.2: Comparison of the median population size of 10 bisection searches for the two
LTGA variants. The error-bars indicate the standard deviation in the population size.

Chapter 5 25

Parameter-less GOMEA

running the exponential population scheme, so there is ample motivation for using the
exponential population scheme instead.

5.3.1 Forced Improvement and Child Node Filtering

Forced improvement was added to GOMEA to ensure the population converges properly
even when the GOM operator accepted solutions of equal fitness. However, Goldman has
shown that the population maintained by GOMEA still converges reliably without forced
improvement. To be exact, GOMEA reliably terminates when population convergence is
measured as not accepting a new solution for an entire generation. This seems counter-
intuitive because GOMEA accepts solutions of equal fitness as well. The influence of the
forced improvement and the adjusted termination criterion are put to test as part of this
small experiment.

Child node filtering is a mechanism that mostly enhances the performance of GOMEA
on problems such as the deceptive trap functions and the HIFF function. However, child
node filtering has the potential of removing large amounts of clusters when used on small
populations. Because the exponential population scheme begins with a population of size
one, the potential gain in fitness evaluation might be significant. The influence of child
node filtering is put to the test as part of this small experiment.

Figure 5.5 shows the results for the four variants of the exponential population scheme.
The abbreviations FI and CNF denote Forced Improvement and Child Node Filtering, re-
spectively. The observable influence of forced improvement is minimal on the deceptive
trap function, HIFF, and the NK-S1 instances. On the Ising Spin Glasses and MaxCut in-
stances there is a small observable difference in the plots. According to the Mann-Whitney
U test the use of forced improvement is statistically significantly better on the Ising Spin
Glasses and the largest MaxCut instances. In none of the samples does the use of forced
improvement negatively impact the performance of the exponential population scheme.
The difference in performance caused by child node filtering can be mostly addressed to
the problem characteristics instead of the population scheme. In conclusion, the expo-
nential population scheme performs best when using forced improvement and child node
filtering, though the difference in performance is not that significant.

5.4 Parameter-less GA

Figure 5.6 shows the average number of fitness evaluations until reaching the global opti-
mum for the parameter-less GA improved with GOMEA. The behavior of the parameter-
less Genetic Algorithm using LTGA is similar to the exponential scheme, as was predictable
due to LTGA’s convergence rate. The trade-off between converging populations and start-
ing the correct population early is balanced out in the total number of fitness evaluations
per run. The one virtue of the Parameter-less Genetic Algorithm for saving evaluations
on small population by early termination does not apply when using LTGA as the genetic
algorithm. Performance may be gained by early termination, but the trade-off in starting
more expensive populations is significantly higher than the aforementioned gain. This can
be seen by the poor scalability of parameter-less GOMEA when using a base growth of
2. There are no conclusive advantage to using the more complicated Parameter-less Ge-
netic Algorithm instead of the exponential population scheme on single-objective bit-string
optimization problems.

26 Chapter 5

Parameter-less GOMEA

Figure 5.3: Comparison of the average number of fitness evaluations for EPS and GOMEA
configured through bisection.

Figure 5.4: Comparison of the average final population sizes of EPS and the bisected
population sizes of GOMEA.

Chapter 5 27

Parameter-less GOMEA

Figure 5.5: Comparison of the average number of fitness evaluations for the four variants
of EPS. EPS-NONE uses no forced improvement or child node filtering. EPS-FI uses
no child node filtering. EPS-CNF uses no forced improvement. EPS-ALL uses forced
improvement and child node filtering.

5.5 Conclusions

GOMEA and two of its parameter-less variants were compared in an experiment to de-
termine the overhead of using the parameter-less population schemes. First the ’optimal’
population sizes for GOMEA were determined using the bisection search (section 3.2) for
each of the five test problems. Note that the cost in fitness evaluations of performing bi-
section does not contribute to the final results of GOMEA, hence these fitness evaluations
are considered free. In contrast, EPS performs a similar procedure for finding its final
population size as bisection does, but these fitness evaluations are counted towards the
final results. Given this observation, it seems counterintuitive that EPS actually performs
on par with GOMEA even though the latter gets an order of magnitude more fitness
evaluations for free in the preprocessing step. It reveals how the bisection search is likely
to overestimate the population size required to solve the problem instance, as EPS will
often solve the problem instance with a significantly lower population size. This average
difference in population sizes between EPS and GOMEA is large enough to compensate
for the overhead caused by EPS. Using a less strict threshold for the bisection search
would likely reduce the overestimation of the population size, but the expected success-
rate would drop as well. Given that EPS is required to solve the problem to optimality,
this would lead to a skewed comparison where GOMEA is allowed to fail but EPS is not.
From this point forward EPS will represent GOMEA in the benchmarks, as the perfor-
mance of the two is akin and comparing parameter-less population schemes against each
other is easier because the success-rate of the runs is no longer a factor. The adaptation
of the parameter-less GA proved to be less fruitful. Though it was originally designed as
a more efficient alternative to EPS, the concurrent racing of populations has a negative

28 Chapter 5

Parameter-less GOMEA

Figure 5.6: Comparison of the average number of fitness evaluations for the Parameter-less
GA and EPS. The integer suffix in a label denotes the growth factor k for the Parameter-
less GA.

impact on EPS due to the low number of generations in GOMEA versus the high number
of generations used by a traditional GA. From the experiments we conclude there is no
appropriate reason for exploring the parameter-less GA any further in this thesis. The
simplicity and effectiveness of EPS make it a suitable reference point for the performance
of other parameter-less population schemes.

Chapter 5 29

Chapter 6

P3: Experimental Study

6.1 Overview

In the original paper [21] Goldman presented P3 as a carefully crafted combination of a
hill climber, the pyramid, and the crossover method. The pieces complement each other so
optimal performance is obtained. Though the combination of pieces was shown to perform
admirably on all test problems, Goldman gave only a motivation for his choices, but no
actual results of running P3 with differently configured pieces. His algorithmic design
choices for the pieces form a set of tunable parameters that are worthy of exploration.

The goal of this chapter is to focus on P3 and figure out how its components contribute
to its performance. The first two parameters to explore are relate to the crossover method
used by P3. Crossover has two tunable parameters set differently from LTGA, namely
the FOS ordering and the donor searching. The third parameter is whether or not the
initial solutions are hill climbed by the first improvement hill climber. How these three
parameters influence the performance of P3 is the subject matter of this chapter. An
experiment is set up to explore those parameter configurations that are deemed worthy of
reporting. Table 6.1 shows the code names for each parameter configuration used when
reporting the results.

The influence of the FOS ordering is tested by comparing the random FOS ordering
against the smallest-first FOS ordering. Goldman has previously shown that the FOS
ordering does significantly alter the performance of LTGA [18] depending on the problem
characteristics. However, the random FOS ordering had not been introduced back then.
Sorting the FOS ordering is an O(l log l) operation, in contrast to the O(l) Fisher-Yates
shuffle for generating a random ordering. The null-hypothesis is assumed for the influence
of the FOS ordering on the performance of P3.

Searching for a new donor until the donated bits are different from the original bits
is a potentially expensive procedure where the entire population could be traversed. The
motivation provided Goldman was purely based on empirical results, and the usefulness
in copying converged deceptive traps. The odds of triggering an exhaustive donor search
increases as a building block becomes more frequent in the population. Without exhaustive
donor searching, the frequent building blocks introduce a bias towards solutions with the
same building block, because the probability of selecting a random donor with the same
building block increases with frequency. For LTGA this bias helps towards convergence
of the population, but for P3 this bias potentially reduces the diversity of the existing
populations. Hence the hypothesis for exhaustive donor searching is that the influence
is significant, but whether the difference in performance is positive or negative differs is
expected to differ per problem.

The hill climber provides decent quality solutions to the pyramid for crossover. Previ-
ous results have shown that performing crossover on populations of local optima works for

30

Parameter-less GOMEA

PT PTD PTLS PTLSD PThree P3

Exhaustive Donor Searching No Yes No Yes Yes Yes
First-Improvement Hill Climber No No Yes Yes Yes Yes
Smallest-first Cluster Order No No No No Yes Yes

Table 6.1: The names of the P3 variants and which components they include.

smaller populations. However, the cost of hill climbing solutions does not always outweigh
the gain in fitness evaluations during crossover. The height of the pyramid is dependent
on the fitness of the initial solutions and the number of fitness improving steps during
crossover. Thus using the hill climber should reduce the height of the pyramid signifi-
cantly. The hypothesis is stated as such: the efficiency of P3 degrades heavily without the
use of the first improvement hill climber.

6.2 Configuration

The experiments are performed under the same conditions as in chapter 5 unless specified
otherwise. Part of the initial work on P3 was verifying the results in the original paper[21]
using an independent implementation of the P3 algorithm. The results by Goldman were
verified and the resulting implementation was used to perform this experimental study.
This experiment was then cross-verified using the implementation by Goldman, though
those results are not reported here. Some of the test problems used by Goldman were not
used as part of the experimental study, mostly because the added computational burden
outweighed the only slightly larger coverage of problem characteristics.

6.3 Results

Figure shows the median number of evaluations until reaching the global optimum for the
five variants of P3 on the test problems. The data for the variants of P3 was divided
by results of P3 as Goldman originally designed it. This is to emphasize the differences
from the original implementation, instead of independently showing the scalability of the
variants.

Exhaustive donor searching shows the same erratic behavior regardless of whether
the hill climber is used. Forcing donations of building blocks on the HIFF problem helps
significantly with optimizing smaller building blocks and mixing the larger building blocks.
Forcing the copying of deceptive traps has a severe negative impact on the performance.
Forcibly copying non-trap clusters in a population of reasonably converged deceptive traps
leads to wasted fitness evaluations because non-optimal traps are created and then rejected.
The effect of exhaustive donor searching is largely positive on the Ising spin glasses, yet it
has a negatively impact on the NK-S1 instances. This identifies exhaustive donor searching
as a tunable parameter with a robust setting, i.e. not doing so, with significant impact on
the performance.

Local searching has the expected positive effect on the performance of P3, but the
hypothesis that hill climbing is quintessential for P3 to work is rejected. On the NK-S1
instances the use of a hill climber has a significant negative impact. The trade-off between
hill climbing solutions for better linkage is not exactly worthwhile for the nearest-neighbor
NK-landscapes. It is worth mentioning that local searching is part of the crossover operator
because the singleton problem variable clusters are included in the FOS. Each singleton
cluster is equivalent to attempting a bit flip, which is guaranteed happen when exhaustive
donor searching is used. Goldman put a large emphasis on the FOS ordering because this

Chapter 6 31

Parameter-less GOMEA

Figure 6.1: Comparison of the average number of fitness evaluations for the five variants
of P3. Table 6.1 explains the parameter configuration per label. See appendix C for a
magnified version of this plot.

Figure 6.2: Comparison of the average run-time for the five variants of P3. Table 6.1
explains the parameter configuration per label. See appendix C for a magnified version of
this plot.

32 Chapter 6

Parameter-less GOMEA

includes the order in which local search is performed by the crossover operator. Usage of
the hill climber with P3 is strongly recommended, but it is not a mandatory component
for decent performance.

Whether or not the random FOS ordering was used did not have a overly significant
impact on the performance. This identifies the FOS ordering as a robust parameter for
either variant of the ordering. Some variants using the smallest first ordering were culled
from the plots because they represented only redundant information.

Figure 6.2 shows the average runtime of P3 in milliseconds. The run-times of P3
and GOMEA give better insight on when to use one over the other. Evaluating a new
solution is costly in a black-box setting because the fitness is recalculated from scratch.
Additionally, fitness evaluations performed by the hill climber do not incur the cost of
learning a linkage tree. Lastly, the cost of learning linkage trees is a dominant factor in
the run-time of P3. These factors together determine the run-time of GOMEA, and the
variants of P3. GOMEA outperforms P3 by a large constant on the HIFF function and
NK-S1 instances. The original P3 exhibits exceptionally fast run-times on the deceptive
traps function due to the behavior of the population pyramid when using exhaustive donor
searching and the local searcher. This is so because the population pyramid will not grow
beyond two layers as the crossover is almost guaranteed to copy over all deceptive traps
in the first layer.

Goldman’s observation of using exhaustive donor searching to improve the run-time of
P3 were confirmed. Though exhaustive donor searching is not necessarily an improvement
in performance, the results confirm it better exploits each evaluation per linkage tree
resulting in a measurable decrease in run-time. The exception to the rule are the NK-S1
instances for reasons outlined earlier.

One observation remains true for all test problems: using the population pyramid
without the hill climber adds another large constant overhead to the run-time.

6.4 Conclusions

The original P3 algorithm was decomposed into a population scheme with three optional
components. The three components are the hill climber, exhaustive donor searching,
and the smallest-first FOS ordering. Each of these components is optional when using
GOMEA, so their influence on P3 was put to the test in an experiment. Two components,
namely the hill climber and exhaustive donor searching, had a significant yet non-robust
impact on the performance and run-time of P3. The FOS ordering was not as significant
on the performance nor the run-time of the algorithm. It has been shown that P3 is not
reliant on the hill climber to compete with GOMEA in performance, though GOMEA
still outperforms P3 in the average run-time. Further work must be done to reduce the
run-time and memory foot-print of the P3 algorithm to compete effectively with GOMEA
and the exponential population scheme.

Chapter 6 33

Chapter 7

Generalizing The Population
Schemes

The previous chapters applied already existing parameter-less population schemes to the
GOMEA framework and have shown their relative strengths and weaknesses. On one
hand there is the exponential population scheme known for efficiency in model-building,
and on the other hand there is the parameter-less population pyramid known for efficiency
in fitness evaluations. From a pseudo-code perspective the two algorithms look nothing
alike and share only the GOM operator and model learning from LTGA. The goal of this
chapter is to improve upon the existing population schemes by combining them into a new
population scheme. To do so, a visual interpretation of the population schemes is given
to more easily explain how they are similar as evolutionary algorithms.

7.1 Visualizing Population Schemes

The focus in this section is showing the similarities between the exponential population
scheme (EPS) and the parameter-less population pyramid (P3). Deriving a generic rep-
resentation for either population scheme requires a more careful look at how GOMEA
works. Each of the schemes relies on the GOM operator for performing crossover between
a solution and a population. Hence the natural building block for deriving a generic rep-
resentation is the GOM operator. There two key properties to describing a call to GOM:
the set of solutions that are available for donation, and what happens with the solution
after crossover. Figure 7.1 shows the visualization of the four population schemes used in
this thesis. A breakdown on how to read and interpret each visualization is given in the
following sections.

7.1.1 GOMEA

First the visualization of GOMEA is discussed, as shown in sub-figure 7.1a. The grid rep-
resents one run of the algorithm that had 5 generations (vertical axis) and a population
size of 7 (horizontal axis). Each cell of the grid represents the state of solution x at gen-
eration y. Then each row must represent the state of the population at generation y, and
each column is the progression of solution x over the generations. The solid arrows show
whether the solution changed by GOM was accepted into the next generation. Because
GOMEA always accepts the offspring solution into the new population, the progression
is a chain of arrows in the visualization. GOMEA traverses the grid in left-to-right first
(applying GOM to the population), bottom-to-top second order (initial generation until
termination). Lastly, the dashed lines show which solutions from the previous generation
have successfully donated bits to a solution.

34

Parameter-less GOMEA

(a) GOMEA (b) EPS

(c) P3 (d) Multiple Insertion

Figure 7.1: Visual representation of the population schemes: GOMEA, EPS, P3, and
Multiple Insertion.

The probability of a successful donation decreases over time, and this is seen in the
uppermost row where the donations are more sparse. If a cell has no dashed line with the
previous row, then there was no successful donation during crossover, hence the solution
indicated by the cell was not even improved. As seen by the mess of dashed lines in the
grid, each solution has the remainder of the population at its disposal for mixing.

Let the age of a solution x be the number generations y it has existed, in other words the
row index y of column x in the visualization. Two solutions ’live’ in the same population
if they are improved under the same circumstances, meaning they are improved using the
same linkage tree and have access to the same donor solutions. If two solutions live in the
same population and are of the same age, then applying GOM crossover to them should
be optimal as their fitness should be similar due the competition with each other over the
span of multiple generations. This automatically true for GOMEA, and together with the
high availability of donors, the GOM operator is able to optimally mix solutions.

GOMEA learns the model, namely the linkage tree, from the entire population (i.e.
row) of generation y. Whenever a model is learned before GOM crossover is applied,
the corresponding cell is colored gray. For GOMEA this is the start of the generation,
i.e. the first column. Clearly GOMEA is minimal in the number of times a model is
learned, because otherwise a model would have to be used over multiple generations. No
parameter-less population scheme can learn only one model on a row, because then it
would have perfectly predicted the population size. Only oracles can tell beforehand what
the population size necessary to solve the problem instance is.

The grid will be of similar size for most runs of GOMEA, assuming the average number
of generations is similar and the population size is constant. Because GOM will attempt
about 2l − 1 fitness evaluations during crossover, the total number of fitness evaluations
used by GOMEA will not vary much. Each run of GOMEA will have a grid of similar
size with an almost equal number of attempted donations per cell. The experiments in
chapter 5 on LTGA have shown this behavior to be true.

Chapter 7 35

Parameter-less GOMEA

The visualization highlights the strengths and weaknesses of a population scheme.
Given that the global optimum resides amongst solutions of similar fitness in the final
generation, GOMEA has the weakness that it must fully evaluate every generation until
the final generation has been reached. However, the sparsity of gray squares shows that
relatively few linkage trees are constructed during a single run. The dashed arrows show
how optimal mixing allows every solution to donate to every other solution over the en-
tirety of the run. These observations are more meaningful when compared to the other
population schemes.

7.1.2 EPS

Sub-figure 7.1b shows the visualization of the exponential population scheme (EPS). EPS
starts with a run of GOMEA of size one, and continuously restarts the population on
convergence with a doubled population size. Each of the pink squares denotes one run of
GOMEA and is traversed exactly as explained in the previous section. The pink squares
illustrate how EPS is a rather simplistic wrapper around GOMEA for doubling the popula-
tion size. An iteration of EPS is the complete evaluation of one run of GOMEA, traversed
from left-to-right in the grid. The remainder of the visualization builds on the previously
established rules.

One thing of note is that the horizontal axis no longer corresponds to a single popula-
tion. Instead each column represents one solution from the moment it was drawn from the
random generator. The first population of EPS draws one solution from the population
generator. The second population will draw two solutions from the population generator.
The third population will draw four solutions from the population generator, and so on.
New solutions are drawn from the generator after the previous solutions have been used
up. This interpretation of the horizontal axis as a sequence of solutions drawn from a
generator also applies retroactively to the GOMEA visualization. Learning a linkage tree
only uses the solutions of generation y inside the pink square instead of the entire row.

The visualization shows the two major weaknesses of the EPS scheme. First, there is
no optimal mixing between the runs of GOMEA as indicated by the lack of dashed arrows
between the runs. Second, the gray squares are more abundant and show the wasted effort
in building linkage trees for the previous generations. But it has already been shown
that no parameter-less population scheme can get away with learning only one model
per row, hence there being an additional cost of model learning is inevitable. Another
useful observation is how the final population is a smaller grid than before, illustrating
that the final population of EPS can be smaller in population size and the number of
generations than a run of GOMEA. This is the primary reason for how EPS performs on
par in fitness evaluations with GOMEA configured through bisection, because the latter
will overestimate the population size (and thus the grid) by a fair bit.

7.1.3 P3

Sub-figure 7.1c shows the visualization of the parameter-less population pyramid (P3). The
pseudo-code for P3 can be found for reference in listing 4 in section 4.4. With P3 comes
a slightly different interpretation of the visualization, which mostly changes how the grid
traversed. Green squares indicate that a solution was already present in the population
pyramid, hence it was not accepted into the next layer of the pyramid. There is no solid
arrow leading into a green square for this very reason. There is a direct correspondence
between a population and the layer of a pyramid. Both contain a set of solutions, but
the latter cannot contain duplicates by definition. The words for population and pyramid
layer will be used interchangeably from this point forward.

Almost every cell is colored gray to show just how often P3 learns a new model, with

36 Chapter 7

Parameter-less GOMEA

the only exception being when a solution is not accepted into the next population. That
only occurs when the solution is a duplicate already present in the pyramid, or the solution
did not improve in fitness after GOM crossover with the population. The latter happens
more often for the higher layers of the pyramid, because improving the fitness of an already
optimized solution is more difficult. The linkage tree must be updated every time a new
solution is inserted into the corresponding pyramid layer.

Each iteration of P3 a solution is drawn from the population generator, and is then
improved until GOM crossover has been performed with each layer of the pyramid. A
column x is then equivalent to x’th iteration of P3. Whereas GOMEA traverses the grid
from the left-to-right first, P3 traverses the grid from bottom-to-top first. This behavior
is the exact opposite of each other, as is illustrated further in the next subsection.

Looking at the dashed lines in the visualization, the solutions receive only donations
from the previously evaluated solutions. The mixing that occurs in P3 is unidirectional
over the horizontal axis, in contrast to the bi-directional mixing in GOMEA and EPS. Not
only that, a solution x at generation y only has access to other solutions that also reached
generation y. Hence the number of donors available to a solution (x, y) is lower than the
number of donors available to a similarly placed solution (x, y) in GOMEA.

Age becomes an even more important factor when GOM is applied to solutions that
were improved using different populations. How many the layers the solution has passed
(the row) is equivalent to the age of the solution in GOMEA. The linkage trees learned by
P3 become more precise as more solutions are added to the pyramid. However, a solution
x was improved with a different linkage tree and population from any other solution. Thus
when a solution is donated to, the age of the donor and the receiving solution will be the
same, but they were raised in different populations. Hence there is a possible discrepancy
in fitness and structure between the solution and the donor, which may lead to lesser
performance when performing GOM crossover. The entropy in a population grows slower
as more solutions are added, hence the linkage trees will change less over time. As a
result, the discrepancy between solutions and donors is reduced over time, but is never
truly eliminated.

Again, the visualization helps in understanding the strengths and weaknesses of P3.
The scheme is over-saturated with model learning at every step of the algorithm, even
though the entropy in the populations changes increasingly slower over time. Crossover
uses donors of equal age to the receiving solution, but the donors were constructed under
different circumstances. This may lead to fitness discrepancies in the early stages of the
algorithm, because the model and populations are changing significantly with the addition
of a single solution. In exchange for these weaknesses, the population pyramid requires
no population size parameter and it gains access to the older generations earlier on than
GOMEA.

7.1.4 Anology to Graph Searching

An analogy can be made between exploring a fitness landscape and searching a graph
through either dept-first or breadth-first search. The goal of this analogy is to relate the
population schemes in a manner that is more familiar to most computer scientists. The
graph is defined by its vertices, namely the initial random solutions, and its edges which
go to solutions in the local neighborhoods of the solutions. GOM crossover tests exactly
2l − 1 different solutions through donations, so a solution can be interpreted as a vertex
connected to 2l−1 other vertices. The result of GOM crossover is the offspring solution, so
only one out of the 2l−1 edges is actually traversed by the search. Together the solutions
in a population form a massive graph that explores the regions of the fitness landscape.
First we show how P3 and GOMEA have exactly the opposite approach to exploring the
’graph’ of solutions.

Chapter 7 37

Parameter-less GOMEA

GOMEA’s behavior is similar to that of a breadth-first search. First it greedily evalu-
ates the neighboring solutions of the current population through the use of GOM crossover.
Only after the entire neighborhood has been checked for each solution will it continue the
search from the new population. The inherent drawback to this approach is that the
breadth of the search (random solutions) is infinite, and so a limit (the population size)
is required to continue the search.

P3’s behavior is similar to that of a depth-first search. It greedily explores the neigh-
borhood of one solution by repeatedly applying GOM crossover. Only after the solution
has been fully exploited it continues the search from a new solution. The inherent draw-
back to this approach is that the linkage tree must be rebuilt for almost every solution. If
P3 accepted solutions of equal fitness into the next pyramid layer, the depth-first search
might never terminate. P3 can slowly expand the breadth of its search without setting a
population size only because its depth-first search will terminate as there is a finite number
of fitness values.

EPS combines this behavior of a breadth-first and a depth-first search. Each population
is explored with a breadth-first search on the neighborhood by GOMEA, but the current
population is fully exploited before the new population is started (hence the depth-first
search). EPS provides the best compromise between the high cost of searching depth-first
and requiring no fixed population size when searching breadth-first.

The parameter-less GA (section 5.4) was invented to cut the dept-first search of EPS
short if the populations drifted, but it is too eager in evaluating larger populations. One
might say it increases the breadth of the search too greedily based on the its growth
parameter, just to shorten the depth-first search it maintains in the form of populations.

7.2 Multiple Insertion

Multiple Insertion is a new population scheme for GOMEA designed around the previous
population schemes. The goal is to enhance EPS by using the population pyramid as
a way to reuse the solutions from the previously converged populations. Similarly, the
goal can be stated as using the strictly growing populations of EPS with P3 instead of
one solution per iteration. In either case the result is a combination of both population
schemes. The next subsection defines the multiple insertion (MI) scheme, followed by a
detailed walkthrough, and the section concludes with the visualization of the scheme.

7.2.1 Definition

Listing 7 and 8 show the pseudo-code for the multiple insertion scheme. Note how it
is similar to the pseudo-code for P3 (listing 4, section 4.4). The notion of iteration is
taken over from EPS, where each iteration a new population is generated. The Growth(i)
function determines the size of the population generated at the start of iteration i. This
could for example be the exponential growth function e(i) = 2i−1, or the linear growth
function l(i) = i. It is assumed the iterations start counting at 1, as the minimum
population size is also 1.

Let Pi be the i’th layer (or population) of the pyramid at the start of an iteration. First
a population X is randomly generated with the population size determined by the growth
function. Optionally the hill climber is invoked on each of the solutions in population X.
The entire population X is checked for duplicates already in the pyramid, and the unique
solutions are inserted into the bottom layer of the pyramid P0 using the UpdatePopulation
function. Then GOM crossover is applied to the population X using the pyramid layer
P0. The linkage tree for P0 was already reconstructed when the unique solutions were
inserted into the pyramid. Note that the unique solutions are now available as donors to

38 Chapter 7

Parameter-less GOMEA

X := {x0, x1, . . . , xGrowth(i)−1};
accepted := {};
for xj ∈ X do

xj := RandomSolution(l);
if useLocalSearch then

xj := Hillclimb(xj);
if xj 6∈ Seen then

Seen := Seen ∪ {xj};
accepted := accepted ∪ {xj};

UpdatePopulation(P0, accepted);
for Pi ∈ P do

accepted := {};
for xj ∈ X do

x′j := GOM(Pi, FOSi, xj);

if Fitness(x′j) > Fitness(xj) and x′j 6∈ Seen then

Seen := Seen ∪ {x′j};
accepted := accepted ∪ {x′j};

X := X ∪ x′j \ xj ;
UpdatePopulation(Pi+1, accepted);

Algorithm 7: Iterate(i)

if |X| > 0 then
Pi := Pi ∪X;
for xj ∈ X do

UpdateFrequencies(Pi, xj);
FOSi := Clustering(Pi);

Algorithm 8: UpdatePopulation(Pi, X)

the solutions in X during GOM crossover with P0. Those solutions whose fitnesses were
improved by the GOM crossover are inserted into the set of accepted solutions. Solutions
that are already present in the pyramid are filtered from the set of accepted solutions.
Finally, the set of accepted solutions is inserted into the next pyramid layer Pi+1 using the
UpdatePopulation function. This process repeats itself with X and the next pyramid layer
Pi+1 until the top of the pyramid has been reached. Note that the entire population X
transitions to the next pyramid layer for GOM crossover, not just the solutions accepted
into the next pyramid layer. As with P3, GOM crossover with the top layer may result
in a new layer Pt. The new top layer Pt contains every solution from the set of accepted
solutions at layer Pt−1. Unlike P3, the new layer may contain enough information for
GOM crossover to improve the solutions, which would lead to the construction of a new
top layer Pt+1. This process repeats itself until no fitness improvement is found in the top
layer of the pyramid.

The function UpdatePopulation is used to insert the solutions whose fitnesses were
improved into the next pyramid layer. It efficiently inserts every solution into the popula-
tion, updates the frequency matrix accordingly, and then reconstructs the linkage tree for
said pyramid layer. If none of the solutions were improved by the GOM crossover, then
nothing happens to the pyramid.

Chapter 7 39

Parameter-less GOMEA

7.2.2 Walkthrough

A walkthrough of the multiple insertion scheme is provided in the form three detailed
iterations of the algorithm. The notation from the previous subsection is used, in addition
to following notation: let xj denote the i’th solution of X, and let x′j denote solution xj
after applying GOM crossover once. The linear growth function f(i) = i is assumed.

1.
X : {x0}
Pyramid : {P0 = {}}

At iteration 1, the growth function is 1, so only solution x0 is generated. As the
pyramid is empty, solution x0 must be unique and is added to the bottom layer of
the pyramid P0. GOM crossover cannot produce new solutions from a population
of only one solution, so it is not necessary to construct a linkage tree for P0 as it
would have no effect. The iteration ends because there are no more pyramid layers
to perform crossover on X with.

2.
X : X = {x1, x2}
Pyramid : {P0 = {x0}}

At iteration 2, the growth function is 2, hence two solutions x1 and x2 are randomly
generated. These solutions are entirely random, so it is unlikely x1 and x2 are
duplicates of each other or x0. Assuming the solutions are not equal, they are added
to the population P0. GOM crossover is applied to the new solutions in X with the
updated population P0. Before this can happen, the linkage tree must be rebuilt
because the population P0 was altered by inserting the two solutions. Note that the
solutions x1 and x2 can be donors to each other because both were accepted into
P0. Let x′1 and x′2 denote the solutions after the GOM operator has been applied.
Assume the fitness of x′1 is strictly higher than that of x1, and similarly for x′2 and
x2. Then both x′1 and x′2 are inserted into the next population P1, which is allocated
at this point in time. Then the GOM operator at population P1 is applied to the new
solutions, before which the linkage tree of P1∪{x′1, x′2} must be constructed. Under
the assumption there were no fitness improvements, the iteration ends as there no
more populations to perform crossover with.

3.
X : X = {x3, x4, x5}
Pyramid : {P0 = {x0, x1, x2}, P1 = {x′1, x′2}}

At iteration 3, the growth function is 3, hence three solutions x3, x4 and x5 are
randomly generated. All of them are unique, so they are added to P0, and the
linkage tree for P0 is rebuilt. Applying GOM on X with population P0 results in the
solutions X = {x′3, x′4, x′5}. These solutions are added to P1, and subsequently the
GOM operator is applied to X with the updated population P1. The linkage tree
must be rebuilt first because the population P1 has changed since it was built last.
The resulting solutions are X = {x′′3, x′′4, x′′5}. Suppose x′′4 = x′2, then the solution
x′′4 was already in the pyramid as solution x′2 and it is not accepted into population
P2. Similarly assume that fitness(x′′5) = fitness(x′5), then x′′5 is not accepted into
population P2 as the fitness of the solution has not improved after GOM crossover.
Only x′′3 is accepted into P2, and subsequently crossover occurs with P2 = {x′′3}.
Constructing a linkage tree for P2 ∪ {x′′3} is not necessary, because the population
is only of size one. Child node filtering would remove every cluster from the linkage
tree, because the entropy between every cluster is equal (namely zero). The iteration
ends because there are no more pyramid layers to perform crossover on X with.

4.
X : {x6, x7, x8, x9}
Pyramid : {P0 = {x0, x1, x2, x3, x4, x5}, P1 = {x′1, x′2, x′3, x′4, x′5}, P2 = {x′′3, }}

40 Chapter 7

Parameter-less GOMEA

Repeat until the termination criterion has been met.

7.2.3 Visualization

Sub-figure 7.1d shows the visualization of the multiple insertion population scheme. The
density of the gray squares has been significantly reduced in contrast to P3. Assuming
the number of fitness evaluations remains similar to P3 for this scheme, then there should
be a drastic gain in run-time because less linkage trees are learned. Of course there is no
guarantee that the assumption holds, hence an experiment is set up in next chapter for
verification. We can however give a reasoning for why this assumption should hold.

Adding a population pyramid to archive every generation so far is rather expensive in
memory usage. This leads to worse caching behavior in an implementation, hence there
should be a run-time penalty compared to EPS. Because multiple solutions are being
improved at the same time, the likelihood of one solution being accepted into the next
population increases. Hence it is highly probable that the model in the next generation is
relearned after crossover. Storing and accessing the hash-map that ensures no duplicates
are entered into the pyramid is a costly task as well. However, the addition of the pop-
ulation pyramid should result in less fitness evaluations, so this may compensate for the
run-time cost of maintaining the population pyramid.

Only the mixing of the GOM crossover operator is left to be discussed. The dashed
lines show that solutions can receive donations from either the previous populations or
the current population under construction. There is the constraint that a solution is
only a donor if it was accepted in the previous generation, because otherwise it would
not be in the population. The receiving solution has more available donors during GOM
crossover than it would have in either EPS or P3. More importantly, the solutions in the
current population are improved using the same model, hence they are of the same age
and live in the same population. As mentioned for GOMEA, these conditions allow for
optimal mixing between the solutions. When mixing occurs with a donor from a previous
population, there may still be a fitness discrepancy as shown for P3.

The linkage tree is no longer relearned for every solution inserted into the pyramid,
so the population pyramid loses some of its immediate adaptiveness to a change in the
pyramid. As more solutions are inserted into the pyramid layer at once, namely a subset of
the population currently being improved, the entropy in the pyramid layer changes more
significantly than it would have if one solution were inserted. This means that even though
the model is relearned less frequently, the changes to the model are more substantial.

The observations made in the previous two paragraphs reinforce the idea that multiple
insertion will not result in more fitness evaluations. We hypothesize that learning the
model less frequently has little effect, or is at least compensated for by the better mixing
conditions due to the reuse of the previous populations and optimal mixing.

Forced improvement is not used during crossover because the final step duplicates solu-
tions and this is not allowed by the population pyramid. It is also partially present in the
population pyramid, because the solution receives crossover with higher populations even
if it was not improved previously. The termination criterion for population convergence is
a mix between EPS and P3, namely when the population has not been improved during an
entire generation and when there are no more layers of the pyramid to perform crossover
with.

Using the exponential growth function for EPS is a necessity because otherwise too
many fitness evaluations are wasted on prematurely converged populations. However,
multiple insertion is able to reuse the previous populations, so it is important to test
whether slower growth functions would be effective as well. It is likely that decreasing the
growth rate will result in less fitness evaluations because the population size of the final
iteration is less likely to be an overestimation.

Chapter 7 41

Parameter-less GOMEA

if |Pi| < 16 then
return

numPairs := bMin(c ∗ nimproved,
|Pi|
2)c;

tournament := Randomize(Pi);
for (x, y) ∈ Pairs(tournament, numPairs) do

deleted := nil;
if fitness(x) > fitness(y) then

deleted := y;
if fitness(x) < fitness(y) then

deleted := x;
else

deleted := Random(x, y);
Pi := Pi \ deleted;
UpdateFrequencies(Pi,−deleted);
Seen := Seen \ deleted;

Algorithm 9: BinaryTournament(Pi, c, nimproved)

A linkage tree is lazily rebuilt from the population at the moment it is required by
GOM crossover. The reason for this lazy behavior is twofold: rebuilding the linkage tree
for each inserted solution is redundant, and reconstructing the linkage tree before it has
been used by GOM crossover is a waste. The latter property lets other procedures alter
the population without requiring another reconstruction of the linkage tree.

7.3 Memory Management

Maintaining a population pyramid comes at the cost of storing every unique solution
in both the pyramid and the set data-structure of known solutions. By design the set
data-structure should have an expected O(l) lookup time and O(nl) memory requirement,
but there are no requirements for a specific implementation such as a hash-table. On
large problem instances the population pyramid may explode when local optima are not
guaranteed to have a high solution quality. In the worst-case each local optimum is stored
in some layer of the population pyramid. This worst-case bound explodes when no hill
climber is used and thus each of the 2l solutions can be inserted into the population
pyramid.

Even the number of local optima is potentially exponential, take for instance the
deceptive trap function (see appendix A). If any one trap has not converged to a local
optimum of all ones or all zeros, then the fitness can be improved by converging said trap,
hence the bit string is not a local optimum. The local optima of a deceptive trap function
can thus be encoded in a bit string of length l

k , where each bit encodes a trap set to all
ones or all zeros. The number of local optima on the deceptive trap function is exactly

by 2
l
k . Storing this many solutions can be difficult even on modern computers with tens

of gigabytes of memory. Ignoring the memory constraint, operating on data of such scale
is bound to slow down the implementation. For the population pyramid to scale on large
problem instances, some changes must be made to the population pyramid scheme.

Memorizing each solution encountered so far is expensive in memory and could be
unnecessary. For LTGA to mix solutions the building blocks must be present in the pop-
ulation, but not every solution containing them needs to be stored. Using another niching
technique (next to the removal duplicates) to select solutions for removal is inappropriate,
because this is harmful to building blocks that are propagated more often through the
population pyramid. Instead the solutions can be filtered using selection procedures from
the literature on traditional GAs. The population pyramid uses no procedures dependent

42 Chapter 7

Parameter-less GOMEA

on fitness proportions, and this useful property would be gone if fitness proportional se-
lection is used. Hence our the choice fell on binary tournament selection where solutions
compete against each other in pairs. Setting the tournament size to two helps avoid adding
another parameter to the population scheme.

Applying the selection procedure changes the population, so the associated linkage tree
must be relearned. There is one moment during crossover when the population can be
changed without needing to reconstruct the corresponding linkage tree, namely between
the moment of GOM crossover and insertion of the solutions into the population. Let
nimproved be the number of solutions inserted into a pyramid layer, assuming that multiple
insertion is used. The selection procedure proposed here performs a binary tournament
selection on s = 2c ∗ nimproved randomly selected solutions from pyramid layer. Note that
this excludes the newly introduced solutions from being selected, as they have not been
inserted yet. Ties in fitness are broken randomly. Let c be a parameter for tuning the
fraction of solutions to be removed from the pyramid layer. At the end of selection exactly
c ∗ nimproved solutions have been removed from the population. Selection is only applied
on populations containing at least 16 solutions to ensure small populations are given a
chance to grow. Listing 9 shows the pseudo-code for binary tournament selection. The
function is invoked during the UpdatePopulation function (listing 8) before the population
is modified on line 2.

This selection procedure culls more solutions after crossover with the lower pyramid
layers because the expected number of improvements during GOM crossover is higher
when the solutions have not been optimized yet. The motivation for this behavior is
twofold. First, the upper pyramid layers contain stronger building blocks that should be
protected from selection. Second, using this definition c scales robustly with the growth
function used by multiple insertion.

The selection procedure can be entirely avoided by setting c to zero, so there is a
robust parameter setting. However, no automatic adjustments are given for the value of
c, so it is a non-robust parameter in that sense. The parameter c scales with the number
of improvements during crossover, which is more robust than scaling with the non-robust
population size as occurs often for traditional selection.

If the selection procedure negatively impacts the efficiency of the population pyramid,
then there are two possible explanations as to why that happens. Either the selection
procedure introduces a negative bias towards fit solutions, or we have underestimated
the impact of maintaining a diverse population. Layers in the bottom of the population
pyramid are expected to be larger and contain more random solutions, so the selection
procedure should be more aggressively applied there.

Removal of solutions from the population pyramid has another potentially useful side
effect. When a solution has entered the population pyramid, it can no longer be inserted
into any other layer. This static behavior is relevant because the populations and thus
the average fitnesses change over time. After a solution has been removed by the selection
procedure, it can be reinserted into another part of the pyramid. Hence selection allows
the pyramid to change over time into populations that are more coherent in fitness.

Chapter 7 43

Chapter 8

Multiple Insertion: Experimental
Study

The goal of this chapter is to test whether the changes proposed in the previous chapter are
effective additions to P3. The first section describes the changes made to the experimental
setup for this particular experiment. The second section shows the results of adding
multiple insertion to the population pyramid scheme (PT) (section 6) and the original
parameter-less population pyramid (P3). The third section evaluates the effect of adding
binary tournament selection to the population pyramid scheme (PT). Lastly, a summary
of the results is provided along with a robust parameter setting to ensure that multiple
insertion remains a parameter-less population scheme.

8.1 Configuration

The experimental setup is the same as chapter 6 unless specified otherwise. P3 uses the
parameter configuration of the original P3 algorithm, as explained in section 4.4. The
population pyramid scheme (PT) removes from P3 the hill climber, exhaustive donor
searching, and it randomizes the FOS ordering. Multiple insertion is added to both pop-
ulation schemes. Multiple insertion requires the specification of a growth function to
determine how fast the population increase in size per iteration of the algorithm. Let f(i)
be the size of the population inserted into the population pyramid at iteration i. Three
growth functions are tested: the linear function f(i) = i, the quadratic function q(i) = i2,
and the exponential function e(i) = 2(i − 1). One can interpret both PT and P3 as a
form of multiple insertion if the growth function is a constant c(i) = 1. It is assumed the
number of iterations starts counting at 1.

Measuring the memory overhead of a population scheme is required to evaluate the
usefulness of the binary tournament selection. The memory overhead of a population
scheme is measured as the size of the pyramid at the moment of termination. This is a
robust measure that translates well between different implementations, which is exactly
the same reasoning behind measuring the number of fitness evaluations. The amount of
allocated memory allocations is easily optimized by a compiler or programmer and thus
is a poor indicator for the overall memory overhead of the algorithm. Learning a linkage
tree and performing crossover require only a static allocation of O(l2) memory, hence the
memory usage by P3 is bounded by the size of the population pyramid. Each solution is
replicated exactly twice when it is inserted into the pyramid.

44

Parameter-less GOMEA

Figure 8.1: Comparison of the median number of fitness evaluations for the multiple
insertion variants of PT and P3.

Figure 8.2: Comparison of the average running time for the multiple insertion variants of
PT and P3.

Chapter 8 45

Parameter-less GOMEA

Fitness Evaluations Pyramid Size
Problem l c 10p med 90p 10p med 90p

DT (k=7) 497 0 3.6 · 105 4.6 · 105 6.4 · 105 2 · 103 2.6 · 103 3.4 · 103

DT (k=7) 497 0.25 3.2 · 105 4.2 · 105 5.7 · 105 1.5 · 103 1.9 · 103 2.4 · 103

DT (k=7) 497 0.5 3 · 105 4.1 · 105 5.5 · 105 9.7 · 102 1.2 · 103 1.6 · 103

HIFF 512 0 1.3 · 105 1.9 · 105 2.9 · 105 4.6 · 102 6.3 · 102 9 · 102

HIFF 512 0.25 1.3 · 105 1.7 · 105 2.7 · 105 4.3 · 102 5.3 · 102 7.4 · 102

HIFF 512 0.5 1.2 · 105 1.7 · 105 2.5 · 105 3.2 · 102 4 · 102 5.3 · 102

MaxCut 100 0 5.3 · 104 1.9 · 105 6.8 · 105 5.3 · 102 1.5 · 103 4.4 · 103

MaxCut 100 0.25 5.3 · 104 1.7 · 105 5.4 · 105 4.6 · 102 1.1 · 103 3 · 103

MaxCut 100 0.5 5.1 · 104 1.8 · 105 6.4 · 105 3.5 · 102 8.5 · 102 2.5 · 103

NK-S1 400 0 7.1 · 105 9.8 · 105 1.8 · 106 1.8 · 103 2.5 · 103 4.3 · 103

NK-S1 400 0.25 7.6 · 105 1.1 · 106 1.8 · 106 1.6 · 103 2.2 · 103 3.6 · 103

NK-S1 400 0.5 9 · 105 1.2 · 106 1.8 · 106 1.3 · 103 1.7 · 103 2.5 · 103

Spin Glasses 484 0 2.1 · 105 4.7 · 105 1.9 · 106 5.7 · 102 1.2 · 103 4.4 · 103

Spin Glasses 484 0.25 2 · 105 4.3 · 105 1.5 · 106 5 · 102 9.3 · 102 2.8 · 103

Spin Glasses 484 0.5 2 · 105 4.3 · 105 1.5 · 106 3.9 · 102 6.8 · 102 1.9 · 103

Table 8.1: Results for binary tournament selection used on PT with multiple insertion
and the linear growth function.

8.2 Growth Functions for Multiple Insertion

Figure 8.1 shows the average number of fitness evaluations for the P3, PT, and its mul-
tiple insertion variants. The labels in the legend follow a specific format: {Scheme} −
MI − {Growth}, where Scheme is either PT or P3 and Growth is either the linear,
quadratic, or exponential growth function. See appendix C for an enlarged version of the
plot. Similarly to results in chapter 6, the results are normalized using the results of the
original P3 to better highlight the differences in the performance. As seen in figure 8.1,
the quadratic and exponential growth functions diverge significantly from PT at several
occasions. In contrast, the linear growth function is less prone to this erratic behavior.
Especially the exponential growth function tends to have outliers in the number of fitness
evaluations, to the point of exceeding EPS. For EPS it makes sense to scale exponentially,
as a slower growth leads to more population being converged and rejected, which is terribly
expensive. PT with multiple insertion is an extension of EPS that reuses every solution
whereas EPS cannot do that. Because PT with multiple insertion is less prone to outliers
with a slower growth function, there is little reason to use an exponential growth function.

Figure 8.2 shows the average run-time in milliseconds for P3, PT, and the multiple
insertion variants. Using multiple insertion with PT reduces the run-time to the level
of the original P3 which uses the hill climber. However, increasing the growth function
beyond linear has no significant effect on the run-time, as seen by the tightly grouped
lines per population scheme. Applying multiple insertion to the original P3 algorithm
greatly speeds up the run-time. On any of the test problems the run-time of P3 matches
or outperforms EPS, which is something it rarely achieved without multiple insertion. The
exception to the rule are the NK-S1 problem instances, but that is due to use the poor
performance caused by the hill climber. The effectiveness of multiple insertion shows that
P3 and the population pyramid as designed originally waste a liberal amount of processing
time on rebuilding linkage trees to little effect.

The addition of multiple insertion has introduced a new parameter in the form of the
growth function. Ensuring the multiple insertion scheme remains parameter-less requires

46 Chapter 8

Parameter-less GOMEA

Fitness Evaluations Pyramid Size
Problem l c 10p med 90p 10p med 90p

DT (k=7) 497 0 3 · 105 4.3 · 105 6 · 105 1.7 · 103 2.3 · 103 3.1 · 103

DT (k=7) 497 0.25 2.8 · 105 4.1 · 105 5.7 · 105 1.3 · 103 1.7 · 103 2.3 · 103

DT (k=7) 497 0.5 2.7 · 105 3.8 · 105 5.3 · 105 8.8 · 102 1.2 · 103 1.5 · 103

HIFF 512 0 1.2 · 105 2 · 105 3.2 · 105 4 · 102 6.5 · 102 9.5 · 102

HIFF 512 0.25 1.1 · 105 2 · 105 3.1 · 105 4 · 102 5.8 · 102 8.1 · 102

HIFF 512 0.5 1 · 105 1.7 · 105 2.7 · 105 3 · 102 4.2 · 102 5.7 · 102

MaxCut 100 0 5.9 · 104 1.9 · 105 6.2 · 105 5.8 · 102 1.5 · 103 4.2 · 103

MaxCut 100 0.25 6.3 · 104 1.9 · 105 6.6 · 105 5.3 · 102 1.2 · 103 3.6 · 103

MaxCut 100 0.5 5.3 · 104 1.8 · 105 5.6 · 105 3.9 · 102 8.9 · 102 2.1 · 103

NK-S1 400 0 7.9 · 105 1.2 · 106 2 · 106 2 · 103 2.9 · 103 5.1 · 103

NK-S1 400 0.25 7.8 · 105 1.1 · 106 1.8 · 106 1.7 · 103 2.3 · 103 3.5 · 103

NK-S1 400 0.5 8 · 105 1.2 · 106 2.1 · 106 1.3 · 103 1.7 · 103 2.8 · 103

Spin Glasses 484 0 2.5 · 105 4.4 · 105 1.8 · 106 6.6 · 102 1.1 · 103 4 · 103

Spin Glasses 484 0.25 2.5 · 105 4.3 · 105 1.3 · 106 6 · 102 9.5 · 102 2.4 · 103

Spin Glasses 484 0.5 2.3 · 105 4.1 · 105 1.2 · 106 4.5 · 102 6.8 · 102 1.6 · 103

Table 8.2: Results for binary tournament selection used on PT with multiple insertion
and the quadratic growth function.

us to set a robust, or even recommended, value for the growth function parameter. The
performance of the linear growth function is on par with the quadratic function and more
reliable than the exponential function, hence we recommend the use of the linear growth
function.

8.3 Selection Procedure

This section shows the results of performing the selection procedure in combination with
multiple insertion. Tables 8.1, 8.2, and 8.3 show the results of running PT using binary
tournament selection per configuration of the linear, quadratic, and exponential growth
function, respectively. Only the largest problem instances from the experiments done so
far are shown in the tables. The columns 10p, med, and 90p indicate the 10th percentile,
the median, and the 90-th percentile, respectively. The selection parameter c was tested
for values 1

4 and 1
2 , and the values for c = 0 were reused from the previous experiment.

We expect the selection procedure to reduce the population pyramid size to some
fraction of the previous results. As a fraction c of the solutions is removed through
selection, we would expect the population pyramid to be reduced by a similar factor. On
several of the problem instances the reduction in size did not match our expectations.
On the deceptive trap function applying selection has a positive effect on the number
of fitness evaluation and the pyramid actually shrinks as much as expected. Most likely
the solutions containing fewer converged (optimal) traps are removed more often, hence
crossover is more likely to select from the fit solutions of useful traps. HIFF responds
well to selection, but the reduction in solutions never comes close to the fraction c. This
behavior holds for each the growth functions as shown in the tables.

The behavior of selection on the NK-S1 instances stands out the most amongst the
results for the linear growth function. Performing selection on the NK-S1 instances has a
measurable negative impact in contrast to the other problem instances. A similar behavior
was observed when the influence of the hill climber on P3 was tested in chapter 6. It
also shows the importance of covering a broad range of problems in order to find these

Chapter 8 47

Parameter-less GOMEA

Fitness Evaluations Pyramid Size
Problem l c 10p med 90p 10p med 90p

DT (k=7) 497 0 3.6 · 105 7.5 · 105 8 · 105 1.9 · 103 3.6 · 103 3.8 · 103

DT (k=7) 497 0.25 3.5 · 105 3.6 · 105 7.3 · 105 1.4 · 103 1.5 · 103 2.8 · 103

DT (k=7) 497 0.5 3.3 · 105 3.4 · 105 7.1 · 105 1.2 · 103 1.3 · 103 2.3 · 103

HIFF 512 0 1.2 · 105 2.7 · 105 3 · 105 4.2 · 102 8.1 · 102 8.6 · 102

HIFF 512 0.25 1.2 · 105 2.6 · 105 2.8 · 105 4.1 · 102 7.1 · 102 7.5 · 102

HIFF 512 0.5 1.1 · 105 2.4 · 105 2.5 · 105 3.3 · 102 5.8 · 102 6.1 · 102

MaxCut 100 0 6.7 · 104 2.2 · 105 6.2 · 105 6.7 · 102 1.8 · 103 4 · 103

MaxCut 100 0.25 8.3 · 104 2.1 · 105 6.1 · 105 6.9 · 102 1.5 · 103 3.1 · 103

MaxCut 100 0.5 7.8 · 104 2.1 · 105 5.5 · 105 5.6 · 102 1.3 · 103 2.7 · 103

NK-S1 400 0 8.4 · 105 9.9 · 105 1.8 · 106 2.2 · 103 2.6 · 103 4.7 · 103

NK-S1 400 0.25 8.1 · 105 9.7 · 105 1.7 · 106 1.8 · 103 2 · 103 3.4 · 103

NK-S1 400 0.5 8 · 105 1 · 106 1.7 · 106 1.6 · 103 1.9 · 103 3 · 103

Spin Glasses 484 0 1.7 · 105 3.9 · 105 1.7 · 106 4.7 · 102 9.9 · 102 3.9 · 103

Spin Glasses 484 0.25 1.8 · 105 3.8 · 105 1.6 · 106 4.8 · 102 8.5 · 102 3 · 103

Spin Glasses 484 0.5 1.6 · 105 3.7 · 105 1.6 · 106 3.9 · 102 7.2 · 102 2.5 · 103

Table 8.3: Results for binary tournament selection used on PT with multiple insertion
and the exponential growth function.

anomalies. Ising Spin Glasses show exactly the opposite behavior, because high selection
pressure significantly reduces the pyramid size and the distribution of fitness evaluations.
Previous experiments on the Ising Spin Glasses have shown there is a clear advantage
to using a hill climber. This problem-specific behavior must be taken into account when
comparing results between algorithms with and without a local searcher or other techniques
biased towards high fitness.

Using selection is as much as a robust parameter as using hill-climber is a robust pa-
rameter. It can be safely used without hurting the number fitness evaluations significantly,
but it can be tuned (or turned off) if the problem at hand reacts poorly to elitist search
behavior.

8.4 Conclusions

The results of applying multiple insertion on the population pyramid scheme (PT) and
the parameter-less population pyramid (P3) were compared to those of the exponential
population scheme (EPS). Using multiple insertion results in drastically reduced run-times
compared to their original counterparts. The effect of the growth function on the number
of fitness evaluations varies per problem. The results indicate that using a quadratic- or
exponential growth function makes the algorithm more susceptible to outliers in perfor-
mance. Hence we recommended the use of multiple insertion in conjunction with either
EPS or P3, and more specifically using multiple insertion with the linear growth function
for reliable performance. Binary tournament selection was effective at reducing the size
of the population pyramid while also reducing the number of fitness evaluations required
on some of the problems. The usage of the selection procedure is entirely optional and
meant solely for reducing the memory requirements of the population pyramid. However,
setting the selection parameter to a value of 0.5 is practical on all but one of the problem
instances.

48 Chapter 8

Chapter 9

Discussion

This chapter is devoted to those insights on parameter-less population schemes that have
no proper place in the experimental studies. The first section summarizes the related work
done so far on other similar parameter-less GAs from known literature. The second section
focuses on adaptive population sizing schemes and particularly on the review of them by
F. Lobo and C. F. Lima [13]. The remainder of the section summarizes the pitfalls one
will encounter when designing an adaptive population sizing scheme (for GOMEA).

9.1 Other Parameter-less Genetic Algorithms

Existing GAs are rarely adapted to a parameter-less population scheme, but preliminary
research has been performed for two probabilistic model building GAs: the hierarchical
Bayesian Optimization Algorithm and the Extended Compact GA. Both algorithms were
adapted to the parameter-less GA, which was and still is the only comprehensive work on
parameter-less population schemes so far. The following sections illustrate the difficulties
of applying a parameter-less population scheme to other GAs, and how their results relate
to those in this thesis.

9.1.1 Parameter-less hBOA

The Hierarchical Bayesian Optimization Algorithm is a probabilistic building model ge-
netic algorithm that learns a Bayesian network from the population and samples new
solutions from the model. Learning the Bayesian network is a relatively expensive step
in comparison to learning a linkage tree. A niching technique called restricted tourna-
ment selection is used in which a solution must compete for its place in the population
against the closest amongst w solutions in terms of Hamming distance. Niching ensures
the population remains diverse in order to prolong premature convergence, though it will
still occur in practice. Parameter-less hBOA[10] uses the parameter-less GA by G. Harik
and F. Lobo[8] with a different counter. The alternative counter schedules the evaluation
of larger populations earlier than the original scheme would. The growth parameter was
set to 4, which means the window of concurrent populations tends to be small.

Figure 9.1 shows the results of the parameter-less hBOA solver on three optimization
problem: the deceptive trap function (size 3), the hierarchical trap function (a variant of
HIFF), and a set of randomly generated of Ising Spin Glass 2D ± J problem instances. On
the first two problems only a constant overhead was introduced by using the population
scheme, but the results do differ almost an order of magnitude in number of evaluations.
A non-constant overhead in number of evaluations was found on the Ising Spin Glass
instances. However, a best improvement hill climber was applied in conjunction with the
Parameter-less hBOA algorithm. It has yet to be verified whether the worse scaling of

49

Parameter-less GOMEA

(a) Deceptive Trap Function (b) Hierarchical Trap Function

(c) Ising Spin Glass

Figure 9.1: Figure 2, 3, and 4 from the paper on Parameter-less hBOA

hBOA can be attributed to the use of the local searcher or the use of restricted tournament
selection.

One property of the results here stand out though: using the parameter-less GA can
reduce the scalability of the algorithm on certain problems. A similar behavior was seen
when the parameter-less GA was combined with GOMEA (section 5.4). This happened
for the lowest values of the growth parameter, which causes the creation of too many
populations at the same time. Perhaps the worse results of hBOA can be addressed to a
poorly chosen growth parameter for their harder test problems. This has a stark contrast
with the parameter-less variants of GOMEA, which only suffer a constant overhead or
even improve on the performance of the original algorithm. With this said, there is yet
a lot of work that can be done towards designing a parameter-less population scheme for
hBOA that better reuses previous computations as was done with P3 and LTGA.

Goldman independently implemented the hBOA algorithm and the parameter-less vari-
ant for a comparison with his P3 algorithm. At the moment of writing the paper has
not been published yet, but the publicly available results show similar behavior for the
parameter-less hBOA. On the Nearest Neighbor NK-Landscapes and Ising Spin Glasses
the results showed a smaller constant overhead of using the parameter-less population
scheme on hBOA. Because this thesis was produced before the official publication of the
data, the results are not included here.

9.1.2 Parameter-less ECGA

The Extended Compact Genetic Algorithm is another probabilistic model building GA
that was extended with the parameter-less GA. ECGA learns a partitioning of the problem

50 Chapter 9

Parameter-less GOMEA

Figure 9.2: Table 1 from the paper on the Parameter-less ECGA

variables that efficiently compresses the population. When a building block occurs fre-
quently in the population, then replacing its occurrences with a unique symbol is likely to
compress the population. Hence the partitioning identifies the frequent building blocks in
the population, so the model captures the non-overlapping linkage between variables. The
authors recommend the use of an iterated local searcher (ILS) alongside the parameter-less
ECGA to ensure maximum performance. ILS uses a simple first-improvement hill climber
until it reaches a local optimum, and then applies increasingly larger mutations until the
local optimum has been escaped by the hill climber. The two algorithms are given an
approximately equal number of evaluations, which ensures the combination performs well
on a broad class of problems.

Amongst the test problems were the deceptive trap function and the OneMax problem.
The other three test problems were real-valued mathematical functions encoded in bit-
strings. These problems contain peaks that serve as strongly attracting local optima,
making them difficult to solve using only a local searcher. Particularly the Rastrigin
function is a well-known performance test problem for both real-valued and bit-string
optimizers. The authors did not include experiments of ECGA with bisected population
sizes, so the actual overhead introduced by the parameter-less GA is still unknown.

9.2 Adaptive Population Sizing Schemes

Over the course of the last decade there have been several attempts at designing GAs using
adaptive population sizing, as shown in the review of these algorithms by F. Lobo and
C. F. Lima[13]. Adaptive population sizing schemes are a subset of population schemes
that dynamically change the size of one or more populations between generations of the
GA. None of the adaptive population sizing schemes introduced in the literature so far
were parameter-less, with the only exception being the Parameter-less Genetic Algorithm.
Often the population size is replaced by some parameter for sizing the population that is
only slightly more robust. The first section discusses some of the recommendations made
in the review for authors of these types of population schemes. The second section reviews
our personal experience in trying to design a adaptive population sizing scheme that is
also truly parameter-less and failing at that.

Chapter 9 51

Parameter-less GOMEA

9.2.1 Recommendations

The authors of the aforementioned review made a few recommendations for other au-
thors to follow when researching adaptive population sizing schemes. We consider these
recommendations here and reflect our view on how these recommendations apply to our
research.

1. Do not enforce a bound for the maximum population size.

2. Test on problems with known population sizing requirements.

3. Do fair comparisons.

4. Do scalability analysis.

5. Make life easier for users.

Recommendation 1 and 5 can be merged into one requirement of ensuring that the
scheme is parameter-less. Any parameter-less algorithm cannot introduce a non-robust
parameter based on population size, nor can it make life harder for the user by introducing
other non-robust parameters. All population schemes discussed in this thesis fulfill this
one requirement.

Recommendation 2 requires that the test problems represents a diverse set problem
characteristics and have known population sizing requirements. Each of the test problems
mentioned in the appendix has at least one known global optimum, which in turn allows
for an analysis of the population sizing requirements using bisection. The test problems
cover several problem characteristics such as deceptive functions, hierarchical overlapping
functions, strongly overlapping functions, and a NP-Hard optimization problem. Figure
3.2 illustrates the diverseness of the population sizing requirements for each of the test
problems. Given the choice, we recommend using the deceptive trap function, HIFF, and
at least one NP-complete optimization problem. For example, HIFF and nearest neighbor
NK-landscapes have slow or fast growing population sizing requirements, respectively.
So any adaptive population sizing GA that reliably solves both problems is unlikely to
overestimate or underestimate the growth of its populations towards specific problems.

Recommendation 3 requires that experiments are performed to analyze the relation
between the run-time and the solution quality. Preferably an analysis is performed on
both the solution quality over time and the time until reaching a certain solution quality.
Both the number of fitness evaluations and run-time in seconds were analyzed in this thesis.
Solution quality over time is biased towards local searchers and can only be reported for
specific parameter configurations, hence this performance measure was not used in this
thesis.

Recommendation 4 requires that experiments are performed to analyze the scalability
of the algorithms for the set of test problems. In the context of applying a population
scheme to an algorithm it is important to analyze whether the scalability of the algorithm
changes. The scalability analysis was easier to perform for the parameter-less population
schemes and showed that the incurred overhead was at most constant.

9.2.2 Realizing a scheme.

Designing a parameter-less population scheme for GOMEA based on adaptive population
sizing turned out to be a lost cause without introducing extremely non-robust parameters.
The existing literature on adaptive population sizing depends either on the Population
Sizing theory or introduces replacement parameters. The behavior of GOMEA is different
from the simple GA in terms of crossovers performed per generation and thus also the
speed of convergence per generation. An adaptive scheme is constructed on basis of two

52 Chapter 9

Parameter-less GOMEA

rules: there are one or more populations and these may be dynamically resized. The
first attempt at designing an adaptive population sizing scheme was to dynamically grow
the population according to some function of the number of generations so far. Three
functions were tested f(g) = g, f(g) = g2, and f(g) = 2g before concluding this scheme
was infeasible. The gap created by resizing the population was filled with random solutions
and the model was learned from the previous population to avoid noise added by the
random solutions. After inspection of the populations the reasons for non-termination
were determined: either the population converged to a solution, or the population grew
too fast to converge properly. The latter case occurred only for the exponential function.
The first case occurred because the mixing of GOMEA depends on the donors being of
similar fitness to the receiving solution. Hence if a set of strong donors is present in the
population, then their building blocks are more likely to take over the population. This is
particularly the case when merging a population of random solutions against the previously
improved population. Techniques such as selection and niching can help solve this problem,
but they would introduce new non-robust parameters into GOMEA. A similar result was
obtained when trying to preserve solutions from smaller populations in the parameter-less
GA.

An analogy to the loops of population schemes can be made as done in chapter 7 on
the population pyramid and GOMEA. For example, the exponential scheme removes the
population size parameter by wrapping the GOMEA algorithm into an outer loop over
population sizes in the integer domain of powers of two. But the adaptive population
sizing schemes attempt to modify the inner-loop of GOMEA by traversing over (multiple)
(dynamic) populations per generation. However mechanisms such generational growth
(and shrinking), or age-based mechanisms are dependent on the number of generations,
which is itself a non-robust property dependent on the populations and the optimization
problem. More specifically, the problem determines the average number of generations
GOMEA would take to improve a solution to the global optimum or in other words its age.
The population consists of multiple solutions of different ages, and experiments have shown
that GOMEA does not work efficiently when learning linkage and mixing on solutions of
varying ages. Hence the traditional approaches to population sizing are inevitably based on
non-robust parameters and thus are not easily generalized to a parameter-less population
scheme. As side note, P3 does not suffer as much from adaptively sizing the population
pyramid because the old solutions are no longer operated on, whereas the other schemes
continue operating on the same populations.

Chapter 9 53

Chapter 10

Conclusions

When research on this thesis began there was one major question: how can P3 be a
parameter-less version of LTGA, and still improve on the results of the optimally configured
LTGA. The question was translated into the research goal of improving GOMEA and P3
by analyzing the core differences between the two algorithms. This chapter gives an
evaluation of the research goal and some examples for future work.

10.1 Summary

The original Gene-pool Optimal Mixing Evolutionary Algorithm framework requires the
user to set a population size that has a large impact on its performance. In this thesis
we implemented and tested several parameter-less population schemes for removing this
parameter from the framework. A more specific focus was taken on the Linkage Tree
Genetic Algorithm, which is the best-performing instance of the GOMEA framework. We
provide results for three known parameter-less population schemes compared against the
original framework configured to optimality with bisection. Beneficial additions were made
to the schemes by taking a closer look at the design choices behind the original schemes
and the behavior of GOMEA. This thesis contains the first results of its kind and provides
a foundation for future work on the subject.

First the exponential population scheme (EPS) was implemented, which simply restarts
GOMEA on population convergence with the population size doubled. This behavior
of trial-and-error is similar to that of a user figuring out a good population size. It
turns out that evaluating the prematurely converged populations doubles the total number
of fitness evaluations in the worst case. In fact, EPS performs on par with GOMEA
configured through bisection on the complex problem instances. Because of its simplicity
and efficiency it can directly substitute for GOMEA in any other experiment.

Secondly, the parameter-less GA was implemented with the selecto-recombinative GA
replaced by GOMEA. It extends EPS by having multiple populations racing against each
other concurrently. The trade-off between starting new populations before converging old
populations turns out to only worsen the scalability of EPS. Other state-of-the-art GAs
have adapted the parameter-less GA to varying degrees of success, but the reasons for
their adaptation do not apply to GOMEA.

Last but not least is the Parameter-less Population Pyramid (P3), an evolutionary
algorithm based on the works of LTGA before the framework of GOMEA was introduced.
P3 introduces a novel population scheme to LTGA called the population pyramid that
outperforms the original LTGA in overall fitness evaluations at the cost of a significantly
increased run-time. An experiment was conducted to test how P3 behaves when some of
its design choices are aligned with those made for GOMEA. This included changing the
FOS ordering, removing the hill climber, and removing exhaustive donor searching. The

54

Parameter-less GOMEA

resulting population pyramid (PT) is a parameter-less population scheme for GOMEA that
reduces the overall number of fitness evaluations, but at least quadruples the run-time.

However, by extending PT with multiple insertion and binary tournament selection,
the run-time and memory overhead are significantly reduced. Multiple insertion combines
EPS with the population pyramid, which allows solutions from previously converged popu-
lations to contribute to the current population. Because previous populations are retained
for donation, the growth rate is reduced from exponential to a linear function. Multiple
insertion can be applied to P3 to greatly reduce the time spent on relearning models.
Binary tournament selection introduces a robust tunable mechanism for reducing the size
of the population pyramid without disrupting the performance significantly.

Some of the population schemes turned out to be less effective or even disruptive,
such as the parameter-less GA. Regardless of that, the research goal has been met. En-
hancing GOMEA with the population pyramid and multiple insertion led to an improved
parameter-less version of GOMEA, in addition to providing a faster variant of P3.

10.2 Practical Recommendations

One question lingers on after summarizing the work: when is it appropriate to use which
parameter-less population scheme. Tuning the original GOMEA framework by hand is
never deemed necessary, so we give some practical recommendations for different scenarios
in which a parameter-less GOMEA can be used.

First we consider the scenario in which the user simply needs an optimizer with a
short run-time, or wants to evaluate a change to the GOMEA framework. In this case we
recommend the exponential population scheme for its similarity to the original framework
and its fast run-times. If an evaluation of the fitness function is a cheap operation, then
using any other scheme is most likely premature optimization. Changing the underlying
GOMEA implementation affects each population of EPS independently, which makes it
easier to reason about the effect of a modification without the change propagating through
the populations.

If every ounce of performance in fitness evaluations and run-time must be exploited,
then the population pyramid is the way to go. Several choices can be made to tune the
population pyramid in addition to the choices possible for GOMEA, such as exhaustive
donor searching, hill climbing, multiple insertion, etc. The performance can be tuned
to an extent in which the scheme outperforms a reasonably configured GOMEA. A valid
scenario would be a competition in which a problem instance must be solved to optimality.

The other scenario to consider is one closer to the principles of black-box optimiza-
tion. When a black-box optimizer is required for solving the problem, the fitness function
tends to be an expensive operation aside from being horribly complex. In this case we
recommend the population pyramid scheme with multiple insertion for its efficiency in
fitness evaluations. The linear growth function gives the best compromise between fitness
evaluations and the run-time cost of model learning.

What remains to be discussed is whether a hill climber should be used, and otherwise
how the selection procedure of multiple insertion should be tuned. Whether a hill climber
is useful depends on the cost of evaluating a bit-flip and the problem characteristics. Use
the hill climber when the effect of a bit-flip can be computed incrementally, which is
possible on many combinatorial optimization problems. Otherwise, start by using the hill
climber as they are applicable to a broad range of problems, and remove it afterwards if it
proves to be inefficient on the problem. In either case the selection procedure should not
be necessary when using the hill climber. When the algorithm responds poorly to the local
optima provided by the hill climber, or fitness evaluations (even bit-flips) are prohibitively
expensive, the use of a hill climber is discouraged. An example of the former are the NK-S1

Chapter 10 55

Parameter-less GOMEA

problem instances known for their rugged fitness landscape. The GOM operator performs
bit-flips itself, which are often wasted when the hill climber has already exhausted the local
neighborhood of bit-flips. In this scenario the setting of the selection procedure depends
entirely on the memory constraints set by the user. A non-aggressive setting (c ≤ 0.5) is
preferred to maximally reuse the solutions (and thus fitness evaluations) done so far.

See appendix B for an unspoiled plot of the recommended algorithms.

10.3 Future Work

Modern CPUs allow for embarrassingly parallel runs of GOMEA on the same problem in
order to speed up computations. Because parameter-less algorithms do not terminate due
to premature convergence, each run will expand its search until the termination criterion
is met. In practice this reduces the variance in run-time of GOMEA because every run is
terminated when the requested solution quality has been hit. However, the state is not
shared between runs when run in parallel. Sharing solutions between runs could lead to
higher efficiency, especially if they are mixed with populations of similar fitness.

Another possible method of threading would be to have a shared population pyramid
between multiple runs of P3. Multiple insertion has shown that solutions can be inserted
in batches without losing efficiency, which in turn can be divided over multiple threads.
Additionally, the crossover procedure can be evaluated concurrently for each layer of the
pyramid. There would be more emphasis on less redundant computations and less wasted
memory by focusing the search on a single growing population pyramid. Concurrently
building the linkage trees without blocking other threads would be the largest challenge
in achieving true parallelization.

Because the lowest pyramid layer of P3 is constantly changing, the linkage tree there
is constantly being rebuild. Without the hill climber, the linkage information contained
in the lowest pyramid layer of P3 is mostly random. Instead of storing those random
solutions, the bottom layer can be replaced by a random linkage tree. Less memory is
used because an entire population is no longer stored in memory, and learning a random
linkage tree is trivial in run-time. When using an aggressive setting for the selection
procedure, this assumption of random linkage may no longer hold. Whether this bias
towards fit random solutions is helpful depends on the problem at hand.

No adaptive scheme has been given yet for dynamically changing the c parameter of
the selection procedure while P3 is running. A simple scheme for scaling c depending on
the distance to some memory limit may be sufficient for removing this parameter. There is
also more work to be done on testing other selection procedures, or merging small layers in
the top of the population pyramid. These procedures help reshape the population pyramid
over time, which may lead to better performance as well.

56 Chapter

Appendix A

Test Problems

The test problems used throughout this paper are listed in this appendix. The optimization
problems are encoded into solutions of bit strings of length l. Each section lists the problem
definition and explains the problem characteristic for which it was chosen.

A.1 Deceptive Trap Function

The deceptive trap function is a benchmark problem designed to be difficult to solve for
local search heuristics and GAs[4]. A function is deceptive if the fitness landscape it
induces misleads heuristics towards a non-optimal configuration. Equation A.1 shows the
deceptive trap function for k bits, where t out of k bits are set to one. The benchmark
problem considered here is the concatenation of l

k deceptive trap functions into a bit string.
Hence the fitness function is the sum of the deceptive trap functions.

DeceptiveTrap(t) =

{
k − 1− t if t < k
k if t = k

(A.1)

Each trap is optimal when all bits are set to one, but every other configuration leads to
the strong local optimum of all bits set to zero. Escaping this local optimum requires
up to k non-improving bit flips, something that many local searchers are not capable of.
A trap set to all zeros or all ones would be a bad or good building block, respectively.
A population containing every good building block at least once is required in order to
effectively the solve deceptive trap function with a GA. This problem tests the ability of a
GA to preserve and combine good building blocks. The linkage between the bits in a trap
functions is easily detected by entropy-based linkage measures because the trap functions
do not overlap at all.

A.2 Hierarchical If and Only If

Hierarchical If and only If (HIFF) is a benchmark problem based on a hierarchy of overlap-
ping trap functions[7]. The hierarchy is a complete binary tree defined over the problem
variables. Each leaf is a single problem variable, and each node is the union of all its two
child nodes. Let t be the number of bits set to one for a node of size s. The trap function
is defined by equation A.2. A node contributes to the total fitness if and only if every bit
is set to the same value. The fitness function is simply the sum of the trap function for
every node in the tree. The global optimum is either the solution of all zeros or all ones.
HIFF is only defined for problems sizes that are powers of two.

HIFF (s, t) =

{
s if t = s ∨ t = 0
0 otherwise

(A.2)

57

Parameter-less GOMEA

The bits represented by a node form a building block. Local searchers face the problem of
improving towards mismatching optimal building blocks, meaning the parent node of the
mismatching blocks cannot contribute to the fitness. Overcoming this obstacle requires
at least s bit flips, where s is the size in bits of the child nodes. The likelihood of a
local searcher producing no mismatching building blocks becomes less likely as the tree
grows. HIFF tests the ability of a GA to recombine building blocks without converging to-
wards mismatching building blocks, in other words preserving diversity in the population.
Linkage learning allows the algorithm to detect the trap bits and use these when copying
solutions. The Linkage Tree learned by LTGA can perfectly match each node one-to-one
with a crossover mask given a population containing multiples of each building block.

A.3 Ising Spin Glass

Ising Spin Glasses are a set of optimization problems [1] based on the Ising Model, a
mathematical model for magnetization. The Ising Model represents (anti-)ferromagnetic
interactions between neighboring vertices in a lattice graph. The Hamiltonian (equation
A.3) measures the energy of the system when vertices of positive- or negative sign (xi ∈
{−1, 1}) interact with each other.

IsingModel(x) = −
∑
cij∈C

xicijxj (A.3)

Ising Spin Glasses are specific models where the interactions cij between the vertices are
drawn from a random distribution. The goal is finding a ground state, which is a state
in which the system has minimal energy. Spin Glasses are represented as two- or three-
dimensional toroidal grids, for example in two-dimensions a flattened torus. The problem
instances used in this thesis were taken from the public repository hosting the source of
the P3 algorithm. As such they were used in the latest publication on P3 by B. Goldman
and W. Punch [21]. The spin glasses are denoted by 2D± J , which indicates the use of a
two-dimensional toroidal grid and interactions of either 1 or -1 with probability p (= 0.5).
Ground states for these instances can be found in polynomial time[3].

A.4 Nearest Neighbor NK Landscapes

NK landscapes are a mathematical model of an NP-complete optimization problem with a
tunable parameter k for the ruggedness of the fitness landscape[5]. The fitness contribution
of a gene is a real function fi over itself and k other genes. Hence the sub-function depends
on k+1 bits, according to the original definition by Goldstein. The goal is to maximize the
sum of all sub-functions, as defined in equation A.4. In a Nearest Neighbor NK landscape
each gene depends on the k subsequent genes in the bit-string.

NearestNeighorNK(x) =
l∑

i=0

fi(xi, . . . , x(i+k)%l) (A.4)

Nearest Neighbor NK landscapes are solvable in polynomial time using a dynamic pro-
gram[9]. Sub functions fi map each configuration of k + 1 bits to a value drawn from
the uniform random distribution in the range of [0, 1). Depending on the definition there
may be a wrapping neighborhood in which genes at the end of the solution depend on
genes at the start of the solution. The NK-S1 instances have k = 4 and a non-wrapping
neighborhood.

58 Chapter A

Parameter-less GOMEA

A.5 MaxCut

MaxCut is the NP-hard optimization problem of finding a maximum cut on a given graph
G(V,E) [2]. A cut of graph G partitions the vertices V into two disjoint subsets X and Y .
The cut-set is the number of edges with an end-point in both X and Y . A maximum cut
is the largest possible cut-set of the input graph G(V,E). The optimization variant used
as a test problem takes as input a complete graph with integer-weighted edges. There is
a bijective mapping between bit-strings and partitions of two subsets, hence bit-strings
are a possible encoding of solutions for the MaxCut problem. The instances used in this
thesis were last used in this paper[19], and they were solved to optimality on the BIQMAC
server.

MaxCut(G(V,E), X, Y) =
∑

{(vi,vj)∈E|vi∈X∧vj∈Y }

c(vi, vj) (A.5)

Chapter A 59

Appendix B

Practical Recommendations

This appendix contains the plots of the number of fitness evaluations and the run-times of
the algorithms recommended in the practical recommendations section of the conclusions
(chapter 10).

60

Parameter-less GOMEA

Figure B.1: Comparison of the median number of fitness evaluations between the
parameter-less population schemes recommended in the practical recommendations.
Shows the Exponential Population Scheme (EPS), the Population Pyramid (PT) with
Multiple Insertion, the P3 with Multiple Insertion, and LTGA configured through bisec-
tion.

Chapter B 61

Parameter-less GOMEA

Figure B.2: Comparison of the average run-times between the parameter-less population
schemes recommended in the practical recommendations. Shows the Exponential Popu-
lation Scheme (EPS), the Population Pyramid (PT) with Multiple Insertion, the P3 with
Multiple Insertion, and LTGA configured through bisection.

62 Chapter B

Appendix C

Experimental Results

This appendix contains enlarged versions of the plots found in the experimental studies
in chapters 6 and 8. The table below is a copy of table 6.1 and explains the labels found
in the plots.

PT PTD PTLS PTLSD PThree P3

Exhaustive Donor Searching No Yes No Yes Yes Yes
First-Improvement Hill Climber No No Yes Yes Yes Yes
Smallest-first Cluster Order No No No No Yes Yes

Table C.1: The names of the P3 variants and which components they include.

63

Parameter-less GOMEA

Figure C.1: Magnified version of figure 6.1. Shows a comparison of the median number
of fitness evaluations for the five variants of P3. See the start of this appendix for a table
explaining the labels.

64 Chapter C

Parameter-less GOMEA

Figure C.2: Magnified version of figure 6.2. Shows a comparison of the average run-times
for the five variants of P3. See the start of this appendix for a table explaining the labels.

Chapter C 65

Parameter-less GOMEA

Figure C.3: Magnified version of figure 8.1. Shows a comparison of the median number of
fitness evaluations for the exponential population scheme (EPS), the population pyramid
scheme (PT) with multiple insertion, and the parameter-less population pyramid (P3)
with multiple insertion. The labels are formatted as such: {Scheme}-MI-{Growth},
where Scheme is the population scheme and Growth is the growth function used for
multiple insertion.

66 Chapter C

Parameter-less GOMEA

Figure C.4: Magnified version of figure 8.1. Shows a comparison of the average run-
times of the exponential population scheme (EPS), the population pyramid scheme (PT)
with multiple insertion, and the parameter-less population pyramid (P3) with multiple
insertion. The labels are formatted as such: {Scheme}-MI-{Growth}, where Scheme
is the population scheme and Growth is the growth function used for multiple insertion.

Chapter C 67

Bibliography

[1] D. Sherrington and S. Kirkpatrick, “Solvable model of a spin-glass,” Physical review
letters, vol. 35, no. 26, p. 1792, 1975.

[2] M. R. Garey and D. S. Johnson, “Computers and intractability: a guide to the theory
of NP-completeness,” San Francisco, LA: Freeman, 1979.

[3] F. Barahona, “On the computational complexity of ising spin glass models,” Journal
of Physics A: Mathematical and General, vol. 15, no. 10, p. 3241, 1982.

[4] D. E. Goldberg, “Simple genetic algorithms and the minimal, deceptive problem,”
Genetic algorithms and simulated annealing, vol. 74, p. 88, 1987.

[5] S. Kauffman and S. Levin, “Towards a general theory of adaptive walks on rugged
landscapes,” Journal of theoretical Biology, vol. 128, no. 1, pp. 11–45, 1987.

[6] B. D. Jovanovic and P. S. Levy, “A look at the rule of three,” The American Statis-
tician, vol. 51, no. 2, pp. 137–139, 1997.

[7] R. A. Watson, G. S. Hornby, and J. B. Pollack, “Modeling building-block inter-
dependency,” in Parallel Problem Solving from Nature—PPSN V, Springer, 1998,
pp. 97–106.

[8] G. R. Harik and F. G. Lobo, “A parameter-less genetic algorithm,” in Proceedings
of the Genetic and Evolutionary Computation Conference, ser. GECCO ’99, 1999,
pp. 258–267.

[9] A. H. Wright, R. K. Thompson, and J. Zhang, “The computational complexity of
nk fitness functions,” Evolutionary Computation, IEEE Transactions on, vol. 4, no.
4, pp. 373–379, 2000.

[10] M. Pelikan and T.-K. Lin, “Parameter-less hierarchical BOA,” in Genetic and Evo-
lutionary Computation – GECCO 2004, ser. Lecture Notes in Computer Science,
vol. 3103, Springer Berlin Heidelberg, 2004, pp. 24–35.

[11] G. S. Hornby, “ALPS: the age-layered population structure for reducing the problem
of premature convergence,” in Proceedings of the 8th Annual Conference on Genetic
and Evolutionary Computation, ser. GECCO ’06, New York, NY, USA: ACM, 2006,
pp. 815–822.

[12] I. Gronau and S. Moran, “Optimal implementations of UPGMA and other common
clustering algorithms,” Inf. Process. Lett., vol. 104, no. 6, pp. 205–210, Dec. 2007.

[13] F. G. Lobo and C. F. Lima, “Adaptive population sizing schemes in genetic algo-
rithms,” in Parameter Setting in Evolutionary Algorithms, ser. Studies in Compu-
tational Intelligence, vol. 54, Springer Berlin Heidelberg, 2007, pp. 185–204.

[14] D. Thierens, “The linkage tree genetic algorithm,” in Parallel Problem Solving from
Nature, PPSN XI, ser. Lecture Notes in Computer Science, vol. 6238, Springer Berlin
Heidelberg, 2010, pp. 264–273.

68

Parameter-less GOMEA

[15] D. Thierens and P. A. Bosman, “Optimal mixing evolutionary algorithms,” in Pro-
ceedings of the 13th annual conference on Genetic and evolutionary computation,
ACM, 2011, pp. 617–624.

[16] P. A. Bosman and D. Thierens, “Linkage neighbors, optimal mixing and forced
improvements in genetic algorithms,” in Proceedings of the 14th annual conference
on Genetic and evolutionary computation, ACM, 2012, pp. 585–592.

[17] ——, “On measures to build linkage trees in LTGA,” in Parallel Problem Solving
from Nature-PPSN XII, Springer, 2012, pp. 276–285.

[18] B. W. Goldman and D. R. Tauritz, “Linkage tree genetic algorithms: variants and
analysis,” in Proceedings of the 14th annual conference on Genetic and evolutionary
computation, ACM, 2012, pp. 625–632.

[19] P. A. Bosman and D. Thierens, “More concise and robust linkage learning by filtering
and combining linkage hierarchies,” in Proceedings of the 15th Annual Conference
on Genetic and Evolutionary Computation, ser. GECCO ’13, New York, NY, USA:
ACM, 2013, pp. 359–366.

[20] K. L. Sadowski, P. A. Bosman, and D. Thierens, “On the usefulness of linkage
processing for solving max-sat,” in Proceedings of the 15th annual conference on
Genetic and evolutionary computation, ACM, 2013, pp. 853–860.

[21] B. W. Goldman and W. F. Punch, “Parameter-less population pyramid,” in Proceed-
ings of the 2014 Conference on Genetic and Evolutionary Computation, ser. GECCO
’14, ACM, 2014, pp. 785–792.

Chapter C 69

