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In the ongoing strive to reach human-level intelligence with intelligent agents, it has

become clear that the agents should be able to deal with a host of different problem

domains. Being very good on one particular domain, like chess for instance, does not

suffice. That is why the area of General Video Game Playing (GVGP) was introduced.

Here, agents will play a wide range of different video games, while they do not know

which game they will be playing beforehand. The agents are forced to learn the game

by playing. This master thesis will research one particular version of the Monte Carlo

Tree Search algorithm that was created for GVGP, called the Knowledge-based Fast

Evolutionary (KB Fast-Evo) MCTS algorithm. This algorithm uses a knowledge base

to store information about the game and also an evolutionary approach to bias game

simulations. First a general study of the MCTS algorithm is given, together with a

detailed explanation of General Video Game Playing. Then the KB Fast-Evo algorithm

is analyzed, where a lot of room for improvement becomes apparent. In the final chapters

an attempt is made to improve the KB Fast-Evo algorithm, by changing the evolutionary

approach, by adding path finding and some other fine-tuning. The final algorithm does

perform a lot better, but there is still room for improvement. However, it is not likely

the algorithm will ever be optimal on its own.
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Chapter 1

Introduction

Artificial Intelligence (AI) is one of the most exiting and most talked about fields of

study in Computer Science. A lot of research has been dedicated to this field, where the

ultimate goal would be creating an agent with human-level intelligence. However, even

with the fast advances in technology over the past few decades, we’ve only seen the tip

of the iceberg when it comes to the potential of AI. This thesis will try and constitute

some useful research in order to make advances in the field.

1.1 The Approach

The particular algorithm that was chosen to be researched is a variant of the new and

promising Monte Carlo Tree Search algorithm (MCTS). This algorithm uses a lot of

simulations in order to make a fair estimate of what actions the agent should take to

reach its goals. The MCTS algorithm has seen some great success, mostly in (board)

games, such as Go for instance. But can an agent be deemed intelligent if it is only

good in playing one particular game? Most researchers agree that an intelligent agent

should be able to solve all different kinds of problems. That is why General Video Game

Playing (GVGP) was introduced. In this particular field in AI research, agents have to

play different kinds of video games, without them knowing the rules beforehand. So an

agent is forced to learn the games while playing them. In this thesis the Knowledge-based

Fast Evolutionary (KB Fast-Evo) MCTS algorithm will be analyzed and improved, with

the goal of creating a better General Video Game Playing agent. All of the above will

be extensively covered in the following chapters of this thesis.
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Introduction 2

1.2 Research Questions

In order to give structure to the research in this thesis, some research questions have

been formulated. The answers will be covered in the chapters to follow and the research

questions will be revisited and discussed in the final chapter.

• How does the KB Fast-Evo algorithm compare to a standard MCTS implementa-

tion for GVGP?

• What improvements can be made to the KB Fast-Evo algorithm for GVGP?

• What other techniques can be used to maximize performance of the MCTS algo-

rithm for GVGP?

1.3 Thesis Overview

The first chapters will give an overview and detailed explanation of the topics covered.

Chapter 2 ”Monte Carlo Tree Search” is a literature study of the MCTS algorithm. The

MCTS algorithm is explained here and the most important and relevant research about

the algorithm is also mentioned. Chapter 3 ”General Video Game Playing” describes

GVGP in detail and also the platform on which the research was conducted is given

here.

The next chapters cover the actual research, where the research questions are answered.

In Chapter 4 ”Implementation Analysis” the KB Fast-Evo algorithm is implemented on

the GVGP platform and compared to the normal MCTS algorithm. Then it’s analyzed in

detail and some issues will become apparent that hurt the performance of the algorithm.

Chapter 5 ”Improving KB-Fast Evo” will then try to solve the issues with the KB Fast-

Evo algorithm that were previously found. Additional interesting experiments and an

attempt to maximize performance of the KB Fast-Evo algorithm are shown in Chapter

6 ”More Improvements And Experiments”.

In the final Chapter 7 ”Discussion And Conclusion”, a discussion about the research

can be found, together with thoughts about what can be learned from it. The research

questions are also revisited and answered in short. Finally, suggestions for future work

are given there.



Chapter 2

Monte Carlo Tree Search

The Monte Carlo Tree Search (MCTS) algorithm is a relatively new algorithm that has

received a lot of scientific interest in the past few years. It has had some promising

results in the area of game playing and decision making. Games such as Go and Hex,

where human players used to be far ahead of computers, is where the MCTS algorithm

has shown to be very successful. But also in the area of General Game Playing (GGP)

and General Video Game Playing (GVGP), where the rules of a game aren’t given

beforehand, it has become one of the most promising algorithms.

2.1 Background

The MCTS algorithm is based on earlier ideas of random sampling (1940s) and tree

search (1928), but the name Monte Carlo Tree Search was first coined in 2006, where

R. Coulom used it to play the game Go [1]. One very popular variant of the MCTS

algorithm is Upper Confidence Bounds for Trees (UCT). This version was developed by

L. Kocsis and C. Szepesv [2] and uses the idea of Upper Confidence Bounds (UCB).

The MCTS algorithm is mostly applied to game-theoretic domains, as is also the case

in this thesis. Those domains are games with a set of established rules in which one or

more players (agents) act strategically to maximize personal utility. In other words, the

players try to win the game and/or get a high score. More formally, a game may be

described by the following components:

• S: The set of states, where s0 is the initial state.

• ST ⊆ S: The set of terminal states.

• n ∈ N: The number of players.

3



Monte Carlo Tree Search 4

• A: The set of actions.

• f : S ×A→ S: The state transition functions.

• R : S → Rk: The utility function.

• ρ : S → (0, 1, . . . , n): Player about to act in each state.

A game starts in state S0 and progresses over time t = 1, 2, . . . until some terminal

state ST has been reached. A player ki takes an action a ∈ A that leads via f , to

the next state st+1. Each player receives a reward for their performance defined by R.

Usually in board games, non-terminal states have a reward of 0 and terminal states have

a reward of +1, 0 or -1 for a win, draw, or loss, respectively. Video games typically have

a more intricate scoring system that awards (negative) points for non-terminal states.

The strategy of each player determines the probability of selecting action a in state s.

The player’s strategy should ideally be such that an optimal action is selected every

time, but this is a difficult task of course. This thesis aims to get closer to that ideal

performance in the area of General Video Game Playing.

2.2 The MCTS Algorithm

The vanilla version, i.e. basic unmodified version of the Monte Carlo Tree Search algo-

rithm will be explained in this section. The idea is to continually run simulations of an

entire game from its current state and building a game tree in the memory. The tree will

contain an approximation of the true value for all the possible actions from the current

state and further game states. When the deliberation time is up, the algorithm selects

an action based on the values it has given to each action. Then, when another game

state is reached and a new action has to be picked, the algorithm starts over and will

build a new tree again.

Figure 2.1 shows one iteration of the MCTS algorithm. The algorithm will continue to

build the tree until a predefined computational budget has been reached. This is usually

a time constraint, memory constraint or a limit to the amount of iterations. A node in

the tree represents a state in the game, with the root as the current actual state in the

game. A child node is a state that is reached by performing an available action from

the state represented by the parent node. As can be seen from the figure, an iteration

is comprised of four steps.

1. Selection

Starting at the root node, the algorithm will descend down the tree using some
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Figure 2.1: This figure shows the basic steps of one iteration of the MCTS algorithm.
Each time an action has to be picked these steps are repeated, until the stopping
condition is met. Image from [3].

child selection policy until an expandable node is reached. A node is expandable

if a new child node can be added to that node, i.e. the node does not represent a

terminal state of the game and there are reachable states that have not yet been

added to the tree.

2. Expansion

One (or more) child nodes are selected and added to the tree, according to the

reachable states from the current node.

3. Simulation

From the added node’s state, the game is played out to the end according to the

default policy. In the vanilla MCTS algorithm this is simply selecting actions at

random.

4. Backpropagation

The result of the simulation is backed up through the tree by updating the win/loss

ratio in all the nodes that were traversed during the selection and expansion step.

When the computational budget is reached, one of the children of the root node will be

selected as the next action to be played. This selection usually is either the child node

with the highest win/loss ratio, the child node with the most visits, or a combination of

those two.

The steps above may be grouped into two distinct policies.

1. Tree policy

Select or create nodes in the current tree. (Selection and expansion)
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Figure 2.2: The MCTS Algorithm in one overview. Image from [4].

2. Default policy

Play out the entire game in some way from a given state. (Simulation)

The backpropagation step does not use a policy itself, but does influence future tree

policy decisions. For the tree policy often UCB1 is applied as proposed by Kocsis and

Szepesvári [2]. This is referred to as Plain UCT, and balances the selection of child nodes

out nicely by appropriately choosing between nodes that seem to lead to good results

(exploitation) and nodes that haven’t been visited much, but might be rewarding in the

future (exploration). The UCT version of the MCTS algorithm will be explained more in

detail in section 2.4. In vanilla MCTS the default policy plays out the game by selecting

next actions at random. This might seem like a bad way to go, but it is very fast and

therefore leads to a lot of samples, which eventually does lead to informed decisions. So

even the non-enhanced vanilla MCTS works decently. More on enhancements later in

section 2.5.

2.3 Characteristics

This section will shortly explain some of the characteristics of the MCTS algorithm.

First of all, the algorithm is aheuristic. This means there is no need for any domain

specific knowledge, such as an evaluation function, for the algorithm to perform well.

The full-depth minimax algorithm is of course the very best you can hope for in a

game-theoretic sense, because you have full knowledge of how each move can play out.

But for most games a full-depth minimax tree would simply be too large to work with.

A limited-depth minimax algorithm could be used, but then you would need a good
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evaluation function for the leaf nodes. This is why the MCTS algorithm is better in

some domains; sometimes a good evaluation function just doesn’t exist (yet). Moreover,

it has been proven that given an infinite number of simulations, the UCT algorithm

with a default policy with random roll-out will eventually yield the correct full-depth

minimax tree and is thus optimal [5].

Furthermore, the MCTS algorithm is an anytime algorithm, meaning that it can be

stopped at any point during run-time and it will still return a reasonably good answer.

Of course running more simulations will yield a better result, as running infinitely will

actually result in the optimal answer, as stated above. This property is one of the

reasons why it is applied in General Video Game Playing, as actions are required at

run-time and the MCTS algorithm can take maximum advantage of the small amount

of time between each action.

Another characteristic of the MCTS algorithm is that it grows asymmetric search trees.

In particular the UCT algorithm focuses more towards the most promising nodes, with-

out the selection probabilities of other nodes ever reaching zero. Over time this leads

to an asymmetric tree, which can be used more efficiently than a symmetric tree. The

shape of the tree could even be used to analyze the game itself, which has been done by

Williams [6] for instance.

2.4 The UCT Algorithm

The Upper Confidence Bounds for Trees or UCT algorithm was already mentioned, but

will be explained a bit more in detail in this section. UCT is a variant of the MCTS

algorithm that uses Upper Confidence Bounds (UCB) for the selection policy. Kocsis

and Szepesvári proposed to use UCB1 for this in 2006 [2]. UCB1 is the simplest version

of UCB and was proposed by Auer et al. in 2002 [7]. This version is so popular because

it is simple, sound, and offers a nice way to balance the exploitation versus exploration

trade-off.

The formula used is the following and returns what action should be picked next from

a given state:

a∗ = argmaxa∈A(s)

{
Q(s, a) + C

√
2 lnN(s)
N(s,a)

}
(2.1)

Q(s, a) is the average return of a state-action pair, which is a value [0..1]. Simpler said,

this is how well action a has been doing when the game was played out (simulation step)

from state s and that action was picked first. N(s) is the number of times the algorithm
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has visited state s and N(s, a) is the amount of times action a has been sampled from

state s. A(s) is the set of possible actions from state s. Finally, C is a constant > 0.

To ensure each child is sampled at least once before any sibling is expanded further, the

formula will return ∞ when N(s, a) = 0. If a state has more children that aren’t visited

yet, one of the children will be selected at random.

The term added to Q(s, a) is called the UCT bonus. The UCT bonus is the exploration

part of the formula, where Q(s, a) itself is the exploitation part. Every time an action

is selected, its UCT bonus value goes down, as N(s, a) is incremented. Meanwhile their

siblings’ bonus value goes up, because N(s) is incremented. So when ‘good’ actions have

been sampled enough times, their siblings have had their bonus increase enough to start

exploring those as well.

The constant C can be adjusted to lower or increase the amount of exploration. Usually

the value is chosen experimentally, but some researchers have tried to tune it automat-

ically too. Kocsis and Szepesvári have shown that C = 1/
√

2 satisfies the Hoeffding

inequality for rewards that lie in range [0..1] [5]. In research papers, often the C =
√

2

seems to be used.

2.5 Existing Improvements

Since MCTS was first proposed, a lot of research has been dedicated to improving

the algorithm, either in general or for a specific application. The most important and

relevant improvements for the MCTS algorithm are mentioned in this section. The

enhancements that are shown below have been proposed by different researchers in the

past few years and improve upon MCTS by changing or adding to different parts of the

algorithm.

2.5.1 UCB1-Tuned

UCB1-Tuned was proposed by Auer et al. themselves as an enhancement to their UCB1

[7]. They found in their own experiments that it performed better than the original al-

gorithm. UCB1-Tuned is commonly used in MCTS implementations as an improvement

to UCB1, including Go [8], Othello [9], and the real-time game Tron [10]. Although not

all mentioned papers found that UCB1-Tuned improved their algorithm as compared to

normal UCB1.

In UCB1-Tuned the UCB1 formula is changed by replacing the upper confidence bound.

The whole formula is the following:
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a∗ = argmaxa∈A(s)

{
Q(s, a) + C

√
lnN(s)
N(s,a) min(1

4 , V (s, a))

}
(2.2)

where

V (s, a) =

 1

N(s, a)

N(s,a)∑
t=1

Qt(s, a)2

−
 1

N(s, a)

N(s,a)∑
t=1

Qt(s, a)

2

+
√

2 lnN(s)
N(s,a)

Notice that 2 lnN(s)
N(s,a) from the UCB1 formula is replaced by lnN(s)

N(s,a) min(1
4 , V (s, a)). The

left hand side of formula V (s, a), before the plus sign, is the sample variance of action

a in state s. Qt(s, a) is the result of play-out number t from state s when action a

was selected. The factor 1
4 is an upper bound on the variance of a Bernoulli random

variable. It should be noted that Auer et al. were not able to prove a regret bound for

UCB1-Tuned, but experimentally found that it performed better.

2.5.2 Decisive and Anti-Decisive Moves

This is a simple technique that checks for each action in the selection and simulation

steps if it is decisive or anti-decisive. A decisive move is an action that will win the game.

An anti-decisive move is an action that prevents the opponent from making a decisive

move. If the action is found to be either decisive or anti-decisive, it will always be picked.

This was proposed by Teytaud and Teytaud [11] and they show that this modification

significantly increases playing strength, even when the increased computational cost of

checking for decisive moves is taken into account.

2.5.3 Transpositions

Different sequences of moves in games could often lead to the same state. Two such

sequences would be two different paths in the MCTS tree. But the underlying game

could also be represented by a Directed Acyclic Graph (DAG), and in this case the two

sequences that lead to the same state could be represented by a single edge in the DAG.

Whenever two nodes in the MCTS tree represent the same game state, this is referred

to as a transposition.

Using transpositions, extra information can be extracted from the simulations and stored

in the nodes of the transposition. All transpositions are usually stored in a transposition

table that keeps track of which nodes are in the same transposition. Brodeur et al. [12]

and Kozelek [13] both use transpositions in their algorithm and find that it improves

upon the plain UCT algorithm. Both of them have an adapted score value for nodes
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that takes the transpositions into account. All the nodes in the same transposition share

the same score value. This is done by propagating a score update of a node to all nodes

in the same transposition using the transposition table. Nodes in the same transposition

do not share the same visits, as this could lead to a misleading bias as explained in [12].

2.5.4 Parallelisation

Parallelisation is an enhancement that exploits the independent nature of the simulations

in MCTS. Multiple simulations can be running at the same time and this makes for a

more efficient algorithm, especially when a computer can make use of multiple cores.

But this also raises some issues, such as combining the results of the simulations in the

right way, and synchronising the threads. There are several ways to deal with this and

they will be described shortly here.

Leaf parallelisation

Runs multiple simulations from one leaf. This is supposed to improve the initial

estimate of the leaf and thus influence the selection and expansion steps in a posi-

tive way. One problem is that the algorithm has to wait for the longest simulation

to finish before continuing.

Root parallelisation

Also named multi-tree MCTS. This builds multiple trees at the same time, so

it just runs the same algorithm in different threads. The advantage is that the

anytime property is still maintained. At the end a majority voting scheme is

used to select the action. Soejima et al. show that this technique improves upon

non-parallelised MCTS [14].

Tree parallelisation

Runs simultaneous simulations on different parts of the same tree. The issue here

is that the different threads should not be able to access the same areas of the tree

at the same time. This is done by locking either the whole tree when a thread uses

it for node updates (global lock), or by locking each individual node (local lock).

Also because different threads will often follow the same path down the tree, a

virtual loss is applied to a node when the first thread reaches it. This will push

the other threads to explore other areas of the tree. Bourki et al. find that this

performs slightly better than root parallelisation [15].
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2.5.5 History Heuristic

This improvement is closely related to the history heuristic in Alpha-Beta search [16].

The idea is to store information in some way that can be used again to influence decisions

later on; in the selection or simulation step in the MCTS case. Gelly and Silver used

a Grandfather heuristic [17], which initializes a node with the value of it’s grandfather.

This assumes a move is still good after the opponent has played a move. Gelly and Silver

found that this did not improve the algorithm as much as other initialization methods.

Kozelek [13] collected statistics (average value, number of visits) on every step in the tree,

regardless of the level. This was then used to influence the selection step by including a

value derived from these statistics in the UCB formula, using a technique from Chaslot

et al. called Progressive Bias [18]. He found that this technique had a very positive

impact on the performance of the algorithm.

The following three subsections also show history heuristics, but these techniques are

mainly used in the simulation step. They were introduced by Björnsson and Finnsson

for their world champion General Game Playing agent CadiaPlayer [19], [20]. They show

that these techniques all improve on the vanilla MCTS algorithm, but none dominates

the others. Some of the schemes work better for certain games, as the properties of

different games favor different techniques.

2.5.6 MAST

The Move-Average Sampling Technique or MAST was introduced by Björnsson and

Finnsson in [19]. For each action a in a full play-out, the average return of that play-out

is stored Qh(a). This value is then used to bias which unexplored action to investigate

next, both in the simulation step and in the expansion step for unexplored child nodes.

This is done using Gibbs sampling, with the formula below.

P (a) =
eQh(a)/τ∑n
b=1 e

Qh(b)/τ
(2.3)

P (a) is the chance action a will be chosen in the current state. Actions with a higher

Qh(a) are more likely to be chosen. τ is a constant that stretches or flattens the distri-

bution. τ → 0 stretches the distribution, whereas higher values make it more uniform.

There is a slight variation of this called Tree-Only MAST (TO-MAST), which uses only

the actions that are in the search tree (so not the actions in the simulation), to update

the Qh(a) value. This leads to less samples for the value, but generally the actions in

the tree are more informed, so the quality of the samples should be better.
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2.5.7 PAST

Predicate-Average Sampling Technique or PAST works as MAST, but uses predicates to

get a finer generalisation than MAST. Every state has certain predicates that are true

in that state. Now instead of a value Qh(a), a value Qp(p, a) is taken. Qp(p, a) is also

updated in the back propagation step, but now all values for action a in combination

with all p ∈ P (s) are updated. P (s) are all true predicates in state s. An action is chosen

again with Gibbs sampling, with the maximum value of Qp(p, a) over all predicates p in

the current state.

2.5.8 FAST

Feature-Average Sampling Technique (FAST) makes use of game features. Understand-

ing game features is essential for high level game playing, such as in chess, where knowing

the different piece types is important. Or for example in Othello, where the different

squares have varying importance (corners are high value). In FAST, the different features

are extracted from the game description and then the relative importance is determined

using TD(λ) [21]. The feature values are then used to calculate a value Q(a), which

is used for action selection as in MAST and PAST. Different game types have different

ways of calculating Q(a). In games such as chess, taking high ranking pieces with lower

ranking pieces will result in a higher value. In games such as Othello, having your piece

on an important square will result in a higher value.

2.5.9 AMAF

This technique is closely related to history heuristics. AMAF stands for All Moves As

First and was first proposed to use in UCT for the game Go by Gelly et al. [17]. It was

proven to be very successful in Go [22]. There are many variations to this enhancement,

but the basic idea is to treat each move during selection and simulation as if they were

the first move to be played. It follows the assumption that if a move was good when

played first, it is good in general. This means that when the play-out passes through a

node, that node will be updated and all its siblings that represent moves encountered

further in the play-out. This is because the same outcome would (possibly) be reached

when the order of the moves had been different. An example is shown in Figure 2.3.

Some implementations keep a separate AMAF score together with the normal score

instead of combining them. A few different AMAF enhancements are described below.
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Figure 2.3: This figure shows a simple 3x3 Go game, where the MCTS algorithm has
already built a partial tree. The next play-out can be seen on the right. UCT selects
Black C2 and White A1, then the simulation plays Black B1, White A3 and Black C3.
Black C2 was played first here, but Black B1 or C3 could also have been played first
to get the same final board. So all these nodes have their score/visits updated. The
same goes for White A1 and A3. All nodes labelled with an asterisk (*) get the extra
AMAF update. Image from [23].

α-AMAF

Keeps a separate AMAF score and combines it with the normal UCT score using

an α value. This was proposed Helmbold and Parker-Wood in [23]. The formula

looks as follows:

a∗ = αA+ (1− α)U (2.4)

where A is the AMAF score and U the UCT score.

RAVE

Was also proposed in [23]. This has become a very popular enhancement in com-

puter Go agents such as the well known MoGo. It is similar to α-AMAF, except

that the α value used at each node decreases with each visit. The following formula

is used to calculate the α value:

α = max

{
0,
V −N(s)

V

}
(2.5)

Where V is a positive integer representing the amount of visits a node will have

before the RAVE value isn’t used at all anymore. N(s) is the amount of visits for

a node.

There are a few more AMAF versions such as Killer-RAVE, which only uses the RAVE

update for the most important moves. Also PoolRAVE, which builds a pool from the

best moves according to their RAVE values, then selects one move and plays it with

probability p and otherwise plays the default policy. There are even more varieties, but
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it is noteworthy to mention the conclusion of HelmBold and Parker-Wood [23] when

they compare the AMAF variants:

• Random roll-outs provide more evidence about the goodness of moves made earlier

in the roll-out than moves made later.

• AMAF updates are not just a way to quickly initialise counts, they are useful after

every play-out.

• Updates even more aggressive than AMAF can be even more beneficial.

• Combined heuristics can be more powerful than individual heuristics.

2.5.10 Evolutionary Learning

This is a technique that was already applied to other algorithms and used to solve

different problems. It’s also known as genetic programming. In the case of MCTS, the

aim is to evolve some policy that biases the roll-out so that more reasonable actions are

picked, while trying to keep the decision making as fast as possible. The latter of course

is a returning aspect of MCTS, because more play-outs will lead to a better result. The

policies are evolved offline, meaning that the players in the population will play against

some benchmark player. All the players will be evaluated, then mutation, crossover and

selection will be applied to the population which should result in an overall stronger

population. After a set number of iterations, the player with the highest fitness will be

selected and that policy will be used. For more information on genetic programming

in general, see [24]. This technique can be applied in many forms and following are

a few examples of research in this area. One of the first people who applied genetic

programming to MCTS was Cazenave [25]. He used it to evolve a heuristic function for

the default policy in the game Go and found that it outperformed UCT with RAVE.

Pettit and Helmbold [26] evolved board patterns with weights for the game Hex that

also influences action selection in the simulation step. This version had a 90% win

rate against vanilla MCTS. Benbassat and Sipper [27] called their method EvoMCTS.

They evolved evaluation functions for action selection. Their technique is applicable to

many games. Finally Alhejali and Lucas [28] apply genetic programming to a MCTS Ms

Pac-Man agent. They also try to evolve a good evaluation function for the simulation

step.

It must be noted that the following two techniques were applied to real-time games. This

means that the MCTS algorithm doesn’t have as much time to run (∼40ms) as it would

normally have with a board game (several seconds). Given the small amount of running
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time, the amount of steps in a roll-out is set to a fixed limit, instead of completely playing

out a game.

2.5.11 Fast Evolutionary MCTS

Fast Evolutionary MCTS was proposed by Lucas et al. [29]. It also uses evolutionary

learning, but differs from all other research in that it evolves a heuristic online, rather

than offline. The previous technique of evolutionary learning would play an entire game,

after which the evolution to the population is applied. Fast Evolutionary MCTS evolves

a weight matrix that biases the default policy during the game, and applies evolution

after a number simulations. The algorithm starts with a feature set (each game state

has different feature values, see FAST in subsection 2.5.8) that is hand picked and a

weight matrix that is evolved. The weight matrix contains a weight for each feature in

combination with each action. Note that there are usually a lot less actions in video

games than board games, so the matrix will be relatively small. Using the feature set

and the weight matrix, each action is given a value, and like in MAST (subsection 2.5.6),

Gibbs sampling is used for action selection.

To evolve the weight matrix a (1+1) evolutionary strategy is used. This is a very simple

evolutionary strategy. First the weight matrix is mutated, then a set number K of play-

outs is ran. After that, the mean of the K play-out outcomes is taken and set as the

fitness of the current weight matrix. Because the roll-outs are a fixed depth, the game

is usually not played until the end. So the outcome of the play-out is some kind of game

score. The matrix with the highest fitness value in the population is chosen each time

and mutated again, the lowest is dropped from the population. So the population only

has a size of two.

Lucas et al. applied this algorithm to the Mountain Car problem and a simplified version

of Space Invaders. They conclude that the algorithm works a lot better than the vanilla

MCTS algorithm, but it doesn’t perform well every single game. There are some games

in which the algorithm isn’t able to evolve a good weight matrix. They also tested

with a pre-evolved weight matrix, which was the weight matrix that resulted after the

algorithm played a game particularly well. This lead to high scores in the games each

time.

2.5.12 Knowledge-Based Fast Evolutionary MCTS

This is also referred to as KB Fast-Evo and is an extension of the previous technique.

It was also proposed by Lucas et al. [4]. It is focused towards General Video Game
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Playing. There are small changes in the Fast Evolutionary technique, but the main

benefits come from combining the evolutionary strategy with a knowledge base. First

of all, features are no longer hand picked, but gotten from the game description. These

could be NPCs, resources, portals, etc. depending on the game. This means that there is

no longer a fixed amount of features, because the amount of features can change during

the game. So the size of the weight matrix can now change. The feature values are

the closest distance to each feature of that type. Secondly, evolution is now applied

after each simulation. This means a different fitness evaluation is needed. The scoring

function is now used both for updating node values and fitness evaluation at the end of

each play-out.

For each event i.e. collision with a sprite during a play-out, two values are kept: the

number of occurrences and the average score change. These values are then used at the

end of each play-out to calculate three other values:

• Score change. Simply the difference in score between the beginning and end of the

play-out.

• Knowledge change. This is a value calculated that will be higher when a play-out

produces more events, especially when those events have rarely occurred.

• Distance change. Will be a higher value when the avatar has reduced its distance

to sprites that are unknown or that generated high-reward events in the past.

The first value, score change, is used as the score/fitness value at the end of the play-out.

But if it is 0, a combination of the second and third value is used.

The knowledge base consists of a combination of two factors, namely curiosity and

experience. Discovering new events is the curiosity part. Both the second and the third

value steer towards this. Getting a score boost (from events that lead to a score boost

in the past) is the experience part; the first and third value guide actions towards this

factor.

This technique was tested on a General Video Game Playing platform (more on this

in section 3.2). The separate Fast Evolutionary technique and the Knowledge Base

technique were also tested. Both of these did not perform much better than the vanilla

MCTS algorithm in the different video games. However, the combination did perform

a lot better on most of the games, leading is some cases to a 100% victory rate. But

for other games there was nearly no improvement. Lucas et al. found that some of

the issues were due to the fact that the distance calculation didn’t take obstacles into

account, which was important for certain games. Moreover, sometimes features weren’t
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specific enough, for instance when the direction of a collision is important. Finally, the

scoring system of some games would make it hard for the algorithm to find the goal of

the game. For instance in the game Frogger, where it is really easy to die crossing a

road, but reaching the other side of the road is the only time a reward (score increase)

is given.



Chapter 3

General Video Game Playing

The idea to benchmark Artificial Intelligence through games has been around since AI

itself. In the early days, games such as Chess were used to do this, as was also proposed

by Turing. But since Deep Blue beat the reigning world champion Gary Kasparov in a

game of chess, largely using domain-specific heuristics, the benchmark was re-evaluated.

If an agent was really good at one specific thing, could it be considered intelligent? The

general opinion was: No, because different games require different cognitive skills. So in

2005, the field of General Game Playing (GGP) was introduced, where the agent does not

know beforehand what game he will be playing. A yearly GGP competition is still hosted

[30]. This has resulted in quite some research papers on the topic, often with some good

improvements on existing research or new ideas in the field of artificial intelligence. In

the previous chapter some of these were already mentioned, like Björnsson and Finnsson

[19] for example.

In GGP usually turn-taking board games are played. The agents do not know beforehand

what games they will be playing; only at the start of the game the rules will be specified

using GDL, the Game Description Language [31]. A turn-taking board game is often

quite slow-paced. Just like human players, agents get seconds or even minutes to do an

action. However, in the ongoing strive for reaching human-level intelligence, it is clear

that a different kind of general intelligence is also desired. Humans often face problems

that are quite different from board games, not in the least in the amount of time they

have to make a decision.

In 2013 the new field of General Video Game Playing (GVGP) was proposed in order

to broaden the perspective on General Artificial Intelligence [32]. GVGP is based on

the same idea as GGP, namely that one agent has to excel at multiple games, without

knowing the games in advance. But GVGP is based on video games, rather than board

games. This leads to some important differences in the problems the agents face. They

18
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have to react real-time, usually within a time frame of about 40ms. The environments

are also much more unpredictable, noisy and dynamic, compared to games in GGP. Also

the current focus is on single-player games, similar to the old Atari games, where GGP

games are usually multi-player. Lastly, the rules of the game are not given in GVGP,

where in GGP they are. The first General Video Game AI competition was held at the

IEEE Conference on Computational Intelligence and Games (CIG) in 2014 [33], and a

new one will be hosted in 2015 as well.

3.1 Prospects And Pitfalls

This section will give a short description of the prospects and pitfalls of General Video

Game Playing, in order to give a fair idea of the area.

As mentioned above, one of the most important prospects of GVGP is setting a bench-

mark for human-level intelligence. Previously this was done with specific games or the

Turing test. Lehman and Miikkulainen propose replacing those with GVGP [34], as

GVGP will be able to test many different levels and aspects of human intelligence. Also

it would be easy to scale up in difficulty (of the games) as AI capabilities mature. Fur-

thermore, agents will no longer be able to fit game-specific heuristics to problems (unless

they learn them by playing), so the agents could more easily be considered to have ’real’

AI. Lastly, one could say that video games are already a big part the human problem

domain, so it would be a logical area to explore.

There are also some aspects to GVGP that should be regarded carefully, before going

further into it. Firstly, agents will be very dependant on the game’s scoring system.

Some games will be designed (balanced) better than others, so games that are used

should be selected with care. Moreover, for a correct benchmark of human-level AI, the

inputs and outputs for agents and humans should be the same. So agents would get

visual and auditory inputs, and controller-type outputs, just like humans. Currently

this is not the case (yet) for the GVGAI Competition [33]. More on the framework that

is used for that competition in section 3.2. Another thing that would be important,

but currently not in the GVGP domain yet, is the ability to ’remember’ games that the

agent has played before. Learning the game while playing is a great thing, but this is

not something humans do each time from scratch. Finally, it is currently possible to do

simulations of the games, as is essential for the MCTS algorithm. But providing that

ability makes the benchmark for real AI more questionable. But as AIs get better, those

simulations could theoretically be done internally, but this isn’t done as of yet.
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3.2 The GVGAI Competition

The GVGAI competition is available online and a Java based framework is provided

so that anyone can submit their bot. The framework is based on the works of Tom

Schaul, who created a Video Game Description Language (VGDL) [35] [36]. VGDL is a

language that can describe a simple game easily, usually in less than 50 lines.

3.2.1 Games

There are three sets of 10 games available for the competition: the training set, the

validation set and the test set. The first one is the only one where all the games are

openly known. This set is used to train and prepare the bots. The second and third

are not publicly available. The validation set can be used as a hidden set of games to

compare performances between competitors. The test set is used for final evaluation of

the competition. Each set has 10 games and there are 5 different levels available for

each of game. The training set of the GVGAI 2014 competition is the set of games that

is used in the rest of the paper. This is done because Perez et al. [4] also used this set,

so results can be easily compared. All the games from the training set are described in

Table 3.1 and example screen-shots are visible in Appendix A.

Most games have a non-deterministic element in the behaviour of their entities (NPCs),

producing different play-outs each time the same game and level is played. The maximum

amount of time steps allowed for each game is 2000 and going over this amount will

usually result in a loss (survival games being the exception). This has been done so

all games will end, even with a degenerate bot. The games in the training set vary on

different aspects. Not only are there different actions available for each game, but also

the winning conditions, the scoring mechanisms, and the amount of objects and non-

player characters (NPCs) vary. In some games it might be desirable to collide with NPCs

(Butterflies, Chase), in others it means game over (Portals, Zelda, and Chase again).

Sometimes it is required to quickly finish the game (Missile Command, Butterflies),

other times the purpose is to survive as long as possible (Survive Zombies). Clearly, the

games require very different strategies to win them. This means implementing game-

specific heuristics will be very hard, and probably impossible for the (unknown) games

in the other sets. But of course, that is the whole point of General Video Game Playing.

3.2.2 The Framework

As stated, the framework is Java based and can be downloaded [33], so everything can

be set up locally. There are some sample controllers provided with the framework, such
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Game Description Score Actions

Aliens

Similar to traditional Space Invaders, Aliens features
the player (avatar) in the bottom of the screen, shoot-
ing upwards at aliens that approach Earth, who also
shoot back at the avatar. The player loses if any alien
touches it, and wins if all aliens are eliminated.

• 1 point is awarded
for each alien or pro-
tective structure de-
stroyed by the avatar.
• –1 point is given if
the player is hit.

LEFT,
RIGHT,
USE.

Boulderdash

The avatar must dig in a cave to find at least 10 dia-
monds, with the aid of a shovel, before exiting through
a door. Some heavy rocks may fall while digging,
killing the player if it is hit from above. There are en-
emies in the cave that might kill the player, but if two
different enemies collide, a new diamond is spawned.

• 2 points are awarded
for each diamond col-
lected, and 1 point ev-
ery time a new dia-
mond is spawned.
• –1 point is given if
the avatar is killed by
a rock or an enemy.

LEFT,
RIGHT,
UP,
DOWN,
USE.

Butterflies

The avatar must capture butterflies that move ran-
domly around the level. If a butterfly touches a co-
coon, more butterflies are spawned. The player wins
if it collects all butterflies, but loses if all cocoons are
opened.

• 2 points are awarded
for each butterfly cap-
tured.

LEFT,
RIGHT,
UP,
DOWN.

Chase

The avatar must chase and kill scared goats that flee
from the player. If a goat finds another goats corpse, it
becomes angry and chases the player. The player wins
if all scared goats are dead, but it loses if is hit by an
angry goat.

• 1 point for killing a
goat.
• –1 point for being
hit by an angry goat.

LEFT,
RIGHT,
UP,
DOWN.

Frogs

The avatar is a frog that must cross a road, full of
tracks, and a river, only traversable by logs, to reach a
goal. The player wins if the goal is reached, but loses
if it is hit by a truck or falls into the water.

• 1 point for reaching
the goal.
• –2 points for being
hit by a truck.

LEFT,
RIGHT,
UP,
DOWN.

Missile
Command

The avatar must shoot at several missiles that fall from
the sky, before they reach the cities they are directed
towards. The player wins if it is able to save at least
one city, and loses if all cities are hit.

• 2 points are given for
destroying a missile.
• –1 point for each
city hit.

LEFT,
RIGHT,
UP,
DOWN.

Portals

The avatar must find the goal while avoiding lasers
that kill him. There are many portals that teleport the
player from one location to another. The player wins
if the goal is reached, and loses if killed by a laser.

• 1 point is given for
reaching the goal.

LEFT,
RIGHT,
UP,
DOWN.

Sokoban
The avatar must push boxes so they fall into holes.
The player wins if all boxes are made to disappear,
and loses when the timer runs out.

• 1 point is given for
each box pushed into a
hole.

LEFT,
RIGHT,
UP,
DOWN.

Survive
Zombies

The avatar must stay alive while being attacked by
spawned zombies. It may collect honey, dropped by
bees, in order to avoid being killed by zombies. The
player wins if the timer runs out, and loses if hit by a
zombie while having no honey (otherwise, the zombie
dies).

• 1 point is given for
collecting one piece of
honey, and also for
killing a zombie.
• –1 point if the avatar
is killed, or it falls
into the zombie spawn
point.

LEFT,
RIGHT,
UP,
DOWN.

Zelda

The avatar must find a key in a maze to open a door
and exit. The player is also equipped with a sword to
kill enemies existing in the maze. The player wins if it
exits the maze, and loses if it is hit by an enemy.

• 2 points for killing
an enemy, 1 for collect-
ing the key, and an-
other point for reach-
ing the door with it.
• –1 point if the avatar
is killed.

LEFT,
RIGHT,
UP,
DOWN,
USE.

Table 3.1: The 10 games in the training set of the 2014 GVGAI competition [33].
These are the games used for the experiments in this thesis. Descriptions taken from
[4]. Screenshots can be seen in Appendix A
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as a vanilla MCTS controller, a one step look ahead controller, and a genetic algorithm

controller. These are quite simple and only implement the basics of each algorithm, but

do give a good idea of the different behaviours of the agents.

Controllers must implement two methods: a constructor for initializing the agent and

an act method to determine the action for the agent each time step. The constructor is

called once at the start and must be completed within 1 second before disqualification.

The act method only has a time budget of 40 milliseconds. Responding 10 ms late will

result in no action being executed, but taking longer than 50 ms results in disqualifi-

cation. Both methods receive a timer for keeping track of their response times, and a

StateObservation object that represents the current state of the game.

The StateObservation object provides information about the game state, such as the

current time step, the available actions, game score, and whether the game is over (win,

loss, or ongoing). Two additional pieces of information are also provided to the agent:

• A history of avatar events, sorted by time step, that have happened in the game

so far. An avatar event is a collision with the avatar, which is the sprite that

represents the agent, and another sprite. Also a collision with a sprite spawned by

the avatar (sword, bullet, etc) is included in this list.

• A list of observations and distances to the different sprite types. These are grouped

by the sprite category, which is the apparent behaviour of the sprite, such as NPC,

collectable, portal, etc.

One essential functionality the StateObservation object provides is the advance method:

the state can be advanced given an action. This means cloning the current state provides

a way to simulate the game further, as is of course needed for the MCTS algorithm. How-

ever, some games are stochastic, or more precisely, the games with NPCs are stochastic.

So it is up to the agent how much to trust the simulated next game states.



Chapter 4

Implementation Analysis

In this chapter the implementations of the vanilla MCTS and the KB Fast-Evo algo-

rithms will be analyzed. It is important to do this, so a foundation is laid down upon

which we can try to build a better performing algorithm for GVGP. Comparisons will be

made with the results from the paper by Perez et al. [4], which was the paper where the

KB Fast-Evo was originally proposed. All the experiments in this chapter were run in

the same fashion as in [4]. The framework from the GVGAI Competition [33] was used

(see Section 3.2), with the training set from the 2014 GVGAI Competition, as listed in

Table 3.1. Every game is played 25 times; each of the 5 levels is played 5 times. So for

each implementation, a total of 250 games is played.

A few things should be noted when looking at the result tables. Firstly, comparing score

results between the games doesn’t give much information, because every game has a

different scoring system. This is still included in the tables however, because comparing

the scores of the same game between different implementations does give meaningful

information about performance. Secondly, it turned out that number of roll-outs in a

game is relatively low at the start of the game, and goes up as the game goes on longer.

This means the average number of roll-outs as seen in the table might be misleading.

Games such as Sokoban or Portals take very long when the agent performs badly, but

are over very quickly if the agent performs well. So the reader must keep this in mind,

but it will be noted again if the average number of roll-outs is biased a lot between

implementations.

4.1 Vanilla MCTS

Firstly the Vanilla MCTS implementation was tested. This controller was provided by

the GVGAI Competition [33] itself. It uses UCT with C =
√

2 in the UCB1 formula (see

23
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Game Win % Avg. score Min. score Max. score Avg. roll-outs

Aliens 100.0% 64.00 ± 13.35 40 82 139.65

Boulderdash 44.0% 18.12 ± 6.86 3 33 36.28

Butterflies 92.0% 30.24 ± 16.57 10 66 153.02

Chase 48.0% 6.08 ± 3.55 0 15 132.57

Frogs 24% -0.64 ± 1.29 -2 1 62.45

Missile
Command

60.0% 3.64 ± 5.31 -3 16 147.71

Portals 4.0% 0.04 ± 0.20 0 1 142.23

Sokoban 12.0% 0.96 ± 0.89 0 3 204.37

Survive
Zombies

56.0% 16.48 ± 12.47 0 40 61.84

Zelda 24.0% 1.36 ± 1.96 -1 6 150.92

Average 46.4% 14.03 ± 2.24 123.10

Table 4.1: Results of the vanilla MCTS implementation.

Section 2.4), a maximum play-out depth of 10, node score values are normalized, final

action selection is based on the most visits, and a state with a win or loss get a large

positive or large negative score respectively. The full algorithm is described in Section

2.2. This same implementation was tested by Perez et al. [4]. Results from the vanilla

MCTS test can be seen in Table 4.1.

When looking at the results, something stands out immediately when compared to the

results shown in the paper by Perez et al. [4]. The vanilla MCTS algorithm performs

much better than the results in that paper. Especially Aliens, Boulderdash, Chase and

Missile Command have a significantly higher win percentage. Aliens goes from 8% in

the results by Perez et al. to 100% here. What causes this difference is uncertain.

4.2 KB Fast-Evo

Next the original KB Fast-Evo as described in [4] was implemented and tested. Results

are visible in Table 4.2. These results are quite similar to the results by Perez et al.,

as opposed to the above results. Only the win percentages of Sokoban and Missile

Command differ relatively much, but both results show an improvement over vanilla

MCTS. What causes the difference between the results from Missile Command is hard

to say. The games are usually over very fast, so the amount of roll-outs per action

should have a bigger impact on this game than on other games. The different systems

on which the algorithms were tested thus might cause the difference. As for the game

Sokoban, the problem space lies largely outside of what the current implementation is

able to solve. As Perez et al. also stated, for this game the direction of collisions should



Implementation Analysis 25

Game Win % Avg. score Min. score Max. score Avg. roll-outs

Aliens 100.0% 66.92 ± 12.51 44 81 98.86

Boulderdash 24.0% 20.24 ± 11.00 7 47 26.58

Butterflies 92.0% 26.96 ± 13.44 10 52 106.12

Chase 88.0% 8.80 ± 2.40 6 15 102.58

Frogs 28.0% -1.00 ± 1.38 -2 1 54.95

Missile
Command

92.0% 7.00 ± 5.48 -3 16 110.51

Portals 8.0% 0.08 ± 0.28 0 1 118.42

Sokoban 32.0% 1.24 ± 1.13 0 3 139.65

Survive
Zombies

44.0% 19.40 ± 14.54 2 47 45.22

Zelda 32.0% 1.52 ± 1.69 -1 5 106.79

Average 54.0% 15.12 ± 6.38 90.97

Table 4.2: Results of the KB Fast-Evo implementation.

be taken into account, which doesn’t happen at the moment. So it is hard to tie a

meaningful conclusion to higher or lower win percentages for this game.

4.2.1 Comparing With Vanilla MCTS

KB Fast-Evo performs a lot better overall than vanilla MCTS. In particular Chase and

Missile Command perform particularly well. The cause is the agent being drawn much

more towards ’good’ sprites, where the vanilla MCTS agent would often walk around

aimlessly. The average number of roll-outs per action are quite a bit lower for the

KB Fast-Evo implementation in comparison with the vanilla MCTS implementation.

This means that KB Fast-Evo slows the algorithm down, but is to be expected, as

a lot of extra calculations happen. One question that could be asked is: How much

does the lower amount of roll-outs influence performance? In Section 6.1 this question

answered in-depth. But for now we can conclude that improving the algorithm with

more calculations, at the cost of a lower amount of roll-outs per action, still increases

overall performance. This is visible when comparing above tables.

There are two games however on which the vanilla implementation performs better.

Those are Boulderdash and Survive Zombies. The first could be explained with the fact

that the agent is drawn to the score-boosting diamonds, but often gets stuck behind

some obstacles while keeping to try and reach the nearby diamond. The vanilla MCTS

agent walks around more randomly, so is less likely to get stuck in that way. Survive

zombies has a similar problem, but also the lower amount of roll-outs influences this
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game. Finding the very best path past the zombies and towards the honey is crucial,

but is more likely to fail with a fewer roll-outs.

4.2.2 Analysis Of Strengths And Flaws

In this section the KB Fast-Evo algorithm will be analyzed more thoroughly. After

implementation, some things were noticed that did not seem to work very well in practise,

and other things worked as expected. Keep in mind that this analysis is purely based

on observations seen from the implementation of the KB Fast-Evo algorithm from Perez

et al. [4]. The analysis is split in two parts, based on where the KB Fast-Evo algorithm

differs the most from the original MCTS algorithm. Some thoughts for improvements

will be given as well.

4.2.2.1 The Scoring Function

One of the biggest changes in the KB Fast-Evo algorithm is the use of a knowledge base

in the scoring function. The scoring function is used to update node values in the tree,

which influences the paths walked through during the tree policy, and ultimately the

chosen action. Note that this scoring function is also used for evaluation of the weight

matrices that bias action selection in roll-outs. This part will be discussed in the next

section.

In GVGP the end state of the game will usually not be reached during a roll-out. That’s

why a scoring function has to be used so that each roll-out will still have a score (rather

than score of 1 for a game win and a score of -1 for a game loss). In the vanilla MCTS

implementation, this scoring function is simply the scoring function of the game itself.

So for instance in Aliens, you get a +2 score whenever you shoot an alien.

As mentioned before, there is a problem with using this scoring function. When a score

change is beyond the horizon reachable by the roll-outs in the MCTS algorithm (10 steps

in this case), the algorithm is actually just selecting actions at random. This is clearly

visible in the game Butterflies: when the agent is near a butterfly it goes straight for it,

because the butterfly gives a score boost. This happens because a lot of the roll-outs

have provided a positive score change and thus the tree policy guides the agent to the

butterfly. However when the agent is not near any of the butterflies, it will just randomly

walk around until a butterfly is within reach again. In practise ’within reach’ means

around 3–4 steps away because the roll-outs are random, so they have to randomly reach

the butterfly from their starting point.
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The solution proposed by Perez et al. [4] introduces a knowledge base and a different

scoring function based on the knowledge base. The basic idea was already explained in

Section 2.5.12, but the scoring function will be given in full here:

Reward =

∆R : ∆R 6= 0

α×∆Z + β ×∆D : Otherwise
(4.1)

where ∆R is the score change, ∆Z the knowledge change, and ∆D the distance change.

The latter two values are calculated as follows:

∆Z =

N∑
i=1

∆(Ki) (4.2)

∆(Ki) =

ZiF : Zi0 = 0

ZiF
Zi0
− 1 : Otherwise

(4.3)

∆D =
N∑
i=1

∆(Di) (4.4)

∆(Di) =

1− DiF
Di0

: Zi0 = 0 OR Di0 > 0 and xi > 0

0 : Otherwise
(4.5)

Where Zi0 is the number of occurrences of event i at the beginning of the play-out and

ZiF the number of occurrences at the end of the play-out. Di0 is the euclidean distance

to the closest sprite of type i at the beginning of the play-out, DiF is the euclidean

distance at the end of the play-out. xi is the average score change of event i.

So for the final reward score, if there is a difference in score before and after the roll-out,

the score value is used, just like in the vanilla algorithm. But if there is no score change,

the values ∆Z (knowledge change) and ∆D (distance change) are used. The knowledge

base stores information about events (collisions): How often they have occurred, what

the score change was, and what sprites have collided. This information is used to cal-

culate the two values above. Essentially, the knowledge change will be higher when a

roll-out has produced more events, especially when those events have rarely occurred.

The distance change will be higher when the agent has reduced its distance from un-

known sprites or sprites that have provided a score boost in the past. In Perez et al.

[4], the values α = 0.66 and β = 0.33 are used, which were determined empirically. The

sames values are used in this thesis.
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This does solve the problem mentioned above, namely that the agent no longer moves

around randomly when there is no score change within his reach. It’s clearly visible that

the agent moves towards interesting locations. But there are some problems that occur

when using this.

First of all, in most cases, the ∆Z knowledge change part does not add a lot of in-

formation. The knowledge change only applies to events that do not result in a score

change, because otherwise the normal ∆R score change is used. In practise most events

result in a score change and other events aren’t very interesting. Also, the value quickly

converges very close to zero. It is not per se bad to use this, but in this form, the agent is

only stimulated to pick an action that leads to a lot of different events (that are without

score change, and rarely seen) within its reach. It should be much more beneficial to

direct the agent towards events that haven’t occurred (often) yet, especially when the

game lasts longer.

The distance change value works well in some cases; the agent no longer walks around

randomly when there is no score-boosting sprite nearby. The agent now moves towards

other sprites, even if he is far away. However, there are still some issues with this. The

first problem is not a very big one, but still causes problems sometimes. Namely when

there are two different sprites which give a score boost (or are undiscovered) on either

side of the avatar, the distance change value is essentially non-effective at that point.

This could be solved by prioritizing one sprite type over the other.

The other problem results in more serious issues, which can clearly be seen in the game

Butterflies, level 5 (see Figure 4.1) There are some sprites that can never be reached

because they are behind a wall. When the agent is near that wall and all the butterflies

are far away, the agent will stick to the wall because the distance change value will direct

it to the sprites that can’t be reached. The issue also arises when the agent is stuck

somewhere behind a wall. This is all because distance is measured in euclidean distance

and obstacles aren’t taken into account. One way to solve this (as also proposed by

Perez et al. [4]) is using a simple path finding algorithm to work around obstacles. The

question remains if it will actually improve the algorithm, because it will make it slower,

which will of course result is less roll-outs. Also in some games (Boulderdash), you can

remove obstacles, so the path finding algorithm must be able to work with that. A less

effective, but more simple solution might be to take actions out of consideration that

are not possible because of obstacles. This will increase the chance that the agent will

go out of the local optimum, but the problem essentially will be still there.
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Figure 4.1: In Butterflies level 5, the avatar sticks to the wall because it is trying to
reach sprites that cannot be reached.

4.2.2.2 Roll-outs

One of the problems with the vanilla MCTS algorithm is that roll-outs are random.

This means that not every roll-out produces information that is useful. This problem

goes especially for GVGP; because of the small amount of time per move there are fewer

roll-outs. The KB Fast-Evo algorithm introduces a function that uses features and a

weight matrix to bias action selection in the roll-outs, so that they will be guided in a

more meaningful direction. This is done by first giving each available action a value ai

ai =

N∑
j=1

wij × fj (4.6)

wij is the weight in the weight matrix for action i and feature j. fj is the feature value.

Then this value is used to select each action with a chance P (ai), using Gibbs sampling:

P (ai) =
e−ai∑A
j=1 e

−aj
(4.7)

Features are sprites such as NPCs, portals, resources, etc. The feature value is the

euclidean distance to the closest sprite of each type. The weight matrix contains a

weight for each feature in combination with each possible action. Initially it has weights

of 1, but it’s evolved during the game using a simple (1 + 1) evolutionary strategy and

the scoring function explained in the previous section as fitness function.

First the feature value will be analyzed. Sadly, Perez et al. [4] do not mention the

reasoning behind taking the euclidean distance to each sprite type as a feature value.
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However, it is clear why distance is important, because interesting things happen usually

when events are produced. Guiding roll-outs towards events will result in a higher chance

for useful information at the end of the roll-out. But is the euclidean distance a good

value? That seemed illogical at first, because the sprite types that are the furthest away

receive the highest value. Tests were ran with a new feature value, namely 1
fj

, so that

the closest sprites get the highest values. This resulted in the agents wanting to stay

near a close sprite way too much. The original feature value performed better by far.

The exact reason behind taking this feature value (not taking the weight matrix into

account) could be researched further, but is beyond the scope of this thesis.

Secondly, the weight matrix and its evolution will be discussed. At first, this seemed

like a great idea to bias the roll-outs in a meaningful way, but after implementation a

few issues arose. As said, the weight matrix contains a weight for each available action

(i.e. right, left, up, down and use), in combination with each feature. But there is a

serious problem with this. To illustrate this, let’s take the game Zelda for instance. In

that game, it is important to do the action ’use’, on a monster sprite in order to kill

it and receive points. Let’s say the matrix has evolved to learn this and the weight for

action use with the monster sprite is relatively high. But when the agent is next to a

monster, its feature value (distance) is low. Now looking at the Formula 4.6, all the

weights for action ’use’ are multiplied with every feature value and then added up to

get the action value. But as the monster is close and the feature value is low, the high

value of the weight will be lost in the total sum with the features that are far away. So

the current feature value in combination with the weight matrix might not be the best

way to approach this.

There are more issues. Move actions are very relative to the current state of the game. If

the agent starts at the left side of the map, it would quickly learn that going to the right

is a good thing to do. This is of course because going to the right will likely produce

more events, rather than going to the left (where the edge of the map is). But after a

few game steps, it is entirely possible that the agent has moved all the way to the right

side of the map. However, the weights for the actions are still there, meaning that it

has a high preference to go to the right rather than to the left. Then it has to learn

again that going to the left is better. In conclusion: with the move actions, the weight

matrix is always a few steps behind the actual state of the game. This does not go for

the ’use’ action, as for instance killing a monster with your ’use’ action will always be

a good thing to do throughout the game. So a solution to the problem could be taking

all the separate move actions out of the matrix and putting in one ’move’ action. This

weight then represents how desirable it is to go towards a certain feature. This takes

out the relative position issue mentioned.
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There is one final issue that arose when the KB Fast-Evo algorithm was implemented:

Once the scoring function reaches its highest value, the matrix is no longer evolved. This

is a problem because the value of the scoring function is completely dependant on the

state of the game. Let’s say in Butterflies, the agent manages to capture 3 butterflies

in one roll-out, early in the game. This leads to a score of 6, which is never improved

upon, because there are less and less butterflies. So now the matrix that was used in

that roll-out is always picked, evolved, and its child will always have a lower fitness and

is thrown away again. The agent can no longer learn. In the implementation it becomes

clear that the matrix very quickly converges to its final form. So there should be some

solution to this problem that will keep high scoring matrices relevant, but at the same

time makes sure the agent can still learn. The next Chapter 5 will try and solve most

of the issues mentioned in the above analysis in order the improve the KB-Fast Evo

algorithm as much as possible.
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Improving KB-Fast Evo

As can be read in Chapter 4, the KB Fast-Evo algorithm still has room for improvement.

In this chapter some of the suggestions from Chapter 4 will be implemented, tested and

analyzed. The idea is to try and make the original KB Fast-Evo algorithm from Perez

et al. [4] perform better for the GVGP platform. Each section will contain one specific

idea that was implemented, and then analyzed by using its test results.

The different implementations are tested in the same way as in Chapter 4, i.e. every

one of the 5 levels of a game is played 5 times, for a total of 25 runs per game.

5.1 Adding A Path Finding Algorithm

The first thing that was implemented is a path-finding algorithm. This was also sug-

gested by Perez et al. in their paper [4]. In Sections 4.2.2.1 and 4.2.2.2 can be read

that in the original KB Fast-Evo algorithm, the euclidean distance from the avatar to

different sprite types (features) was used two times: once for the distance change value

and once for the feature value. The first is used in the scoring function and the second

is used to guide the roll-outs. Problems with the euclidean distance arise when there are

obstacles preventing the avatar to reach the feature directly. And even worse, sometimes

features can’t be reached at all. A simple A* path-finding algorithm was implemented

to solve these problems, where euclidean distance was replaced by the actual distance

taking obstacles into account. The obstacles, or non-traversables are just the walls.

Results of this implementation can be seen in Table 5.1

The results show a slight improvement to the overall win-percentage. Some games

benefit clearly from the path finding, such as Butterflies, Chase and Zelda. This was

to be expected as the levels in those games contain a lot of walls which the agent has

32
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Game Win % Avg. score Min. score Max. score Avg. roll-outs

Aliens 100.0% 63.76 ± 12.41 40 77 37.37

Boulderdash 32.0% 14.56 ± 8.75 3 29 16.92

Butterflies 100.0% 30.16 ± 16.16 14 70 58.74

Chase 96.0% 9.12 ± 2.76 6 15 60.83

Frogs 16.0% -1.36 ± 1.18 -2 1 32.01

Missile
Command

88.0% 6.52 ± 5.01 -1 16 71.90

Portals 12.0% 0.12 ± 0.33 0 1 34.26

Sokoban 20.0% 1.04 ± 0.93 0 3 109.87

Survive
Zombies

40.0% 20.88 ± 16.32 -1 49 31.58

Zelda 48.0% 1.96 ± 2.03 -1 6 57.52

Average 55.2% 14.68 ± 6.59 51.11

Table 5.1: Results of implementing a simple A* path-finding algorithm. This replaces
the euclidean distance used in the original KB Fast-Evo algorithm.

to move through. Adding the path finding algorithm helps the agent not getting stuck

anymore. Games such as Portals and Sokoban also have a lot of walls, but the algorithm

currently cannot handle those games very well, so adding the path finding does not help

much.

One other thing that stands out, also as expected, is the lower amount of roll-outs per

action. On average for all the games, the amount of roll-outs is 43.82% lower than

without the path finding. This hurts the performance of other games, such as Frogs,

where the agent is much more likely now to make a bad decision and die while crossing

the road. More on the importance of the (amount of) roll-outs in Section 6.1

Because this was the most basic implementation of A* into the KB Fast-Evo algorithm,

there are still ways to improve the algorithm to make it faster. This is mostly because

it is used on all the features each time the avatar makes a move in the actual game or

in a roll-out. This quickly adds up to a lot of path finding per single move.

One way to improve is simply to not use the path finding when it is not necessary,

so when there are no obstacles in the level (Missile command), or when the agent has

only two move actions (Aliens). Another improvement could be identifying sprites that

cannot be reached and not calculating them again. The path finding algorithm will be

the slowest for those sprites, because it will search across the whole map before giving

up.

In order to reduce the amount of times the path finding algorithm is called, we could

only calculate it at the start and the end of a roll-out, which means we calculate it ∼82%
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(9 out of 11, if roll-out depth is 10) less. This means that the feature value needs to be

estimated from the distance calculated the first time. By using the euclidean distance

when the the actual distance and the euclidean distance are about the same this is partly

achieved. When the actual distance and the euclidean distance are not the same, we

can decrease distance when the agent follows the path, and increase it otherwise. The

analysis from Chapter 4 also suggested removing move actions from consideration that

have no effect (i.e. going right when there is a wall on the right side).

After implementing the above, it turned out that the path finding in the roll-outs did

not slow the algorithm down too much anymore. The more inaccurate improvement of

calculating the path only at the start and end of the roll-out will not have be imple-

mented. So even the roll-outs now have an accurate distance value, where the path is

calculated each time again. Removing useless move actions from consideration did turn

out to take long in the roll-outs, because a check had to be performed whether the agent

had moved, which is a slow operation. So tests were performed with removing useless

move actions from consideration only when expanding the tree. Results from that have

shown to not only not improve the algorithm speed much (only ∼3% faster), but in some

games (Boulderdash, Chase, Frogs) it hurt performance. This was because the agent

was more likely do collide with an NPC and die when cornered. So improving the path

finding algorithm is now only done with the following:

• Not using path finding when it’s not needed (i.e. there are no obstacles on the

map).

• Not calculating feature distance for features that cannot be reached.

The results for this implementation can be seen in Table 5.2.

The overall performance is slightly better than without the optimization, both in average

score and the win percentage. The average amount of roll-outs however increased by

41.09%, which is a significant increase. Most games perform about the same as without

the optimization to the path finding. There is one game that has a slightly lower

win percentage, which is Butterflies. The average score for the game is slightly higher

however, so overall performance is the about same. Two games perform clearly better

with the optimization, and that is due to the increased amount of roll-outs. Those games

are Frogs and Missile Command. As we saw before, Missile Command is sensitive for a

lower amount of roll-outs because the games are over very fast. Also Frogs is influenced

by a lower amount because the agent is more likely to collide with an NPC. Something

that could still improve the path finding algorithm is letting the agent learn which

sprites are actual obstacles besides the walls. In Boulderdash for instance the agent

cannot move through the boulders, but can ’dig’ through the dirt (see Figure A.2).
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Game Win % Avg. score Min. score Max. score Avg. roll-outs

Aliens 100.0% 67 ± 13.25 40 81 99.69

Boulderdash 32.0% 18.56 ± 12.33 3 55 20.46

Butterflies 92.0% 30.80 ± 17.25 14 72 72.29

Chase 92.0% 9.24 ± 3.35 5 15 72.76

Frogs 24.0% -0.96 ± 1.34 -2 1 37.83

Missile
Command

96.0% 7.40 ± 5.04 1 16 107.13

Portals 16.0% 0.16 ± 0.37 0 1 81.35

Sokoban 24.0% 1.36 ± 0.86 0 3 123.67

Survive
Zombies

40.0% 18.16 ± 11.90 3 38 36.11

Zelda 44.0% 2.44 ± 1.92 -1 6 69.75

Average 56.0% 15.42 ± 6.76 72.11

Table 5.2: Results of implementing a simple A* path-finding algorithm, with im-
provements to efficiency.

5.2 Changing The Evolutionary Approach

The next thing that was implemented in order to try and solve a lot of the issues

mentioned in the analysis was a different evolutionary algorithm. One of the main

things that was changed is the weight matrix. The problem of having all move actions

separately in the weight matrix was mentioned in the analysis from Chapter 4, so now

all different move actions are combined into one move action. The ’use’ action remains

the same. The way the matrix is used now will be described here, as some essential

parts have changed.

The weight matrix contains weights for each action (so at most ’move’ and ’use’), in

combination with each feature in the game. The action value for a move is the sum of

all weights for that action. In the roll-out the action is still chosen with Gibbs sampling,

according to the relative height of the action value, as in the paper. Now there is of

course a difficulty in getting the actual value for a certain move action, because in the

matrix there is only one move weight. This was solved by getting the distance change

per move action for each feature. The following formulas were used.

ai =
N∑
i=1

(
w′ij ×

fj
0.1t

)
(5.1)

w′ij = (1− dij) + (dij × wij) (5.2)
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w′ij is the new weight for action i and feature j, which is calculated with the weight wij

from the matrix and dij . The latter is the normalized distance change value to feature

j when action i is used. So let’s say a feature j is directly right of the agent, then

dij is 1 for action ’right’ (maximally decreased distance to feature j), 0 for action ’left’

(maximally increased distance to feature j), and some value in between for the ’up’ and

’down’ actions. So basically for w′ij , the more an action directs the agent towards the

feature, the more of the actual weight for that feature is used. The weights wij for the

different move actions i for a certain feature j are now of course the same value, because

move actions are combined into one in the matrix.

The action value ai is calculated with this adapted weight and with the feature value fj ,

but the other change from the original formula is that the feature value fj is divided by

a factor of the current time step t. The feature value fj is still the distance to the closest

sprite of that feature type, as in the original KB Fast-Evo algorithm. Experiments were

done without the feature value, only taking the weight w′ij , in order to solve the issue

mentioned in Section 4.2.2.2: the feature value cancels out the weight. This turned out

not to work very well. The agent takes a while to learn by evolving the matrix, while

the feature value directly gives a good working heuristic to bias the roll-outs. That is

why the feature value fj is now divided by a factor of the current time step t. As the

matrix evolves in the right direction, it becomes more important for the action value.

One of the other problems mentioned was that the matrices would reach a point where

they no longer evolved, because the maximum fitness value in a game was reached. To

solve this, the new implementation no longer uses a (1 + 1) evolutionary strategy, where

the population has a maximum size of two. Now, for each roll-out a new matrix is

copied and mutated from one parent matrix and used in that roll-out. The fitness value

for that matrix is the scoring function, as also in the original KB Fast-Evo algorithm.

New matrices are added to the population until the MCTS algorithm is done and has

selected an action. When the MCTS algorithm starts up again, it sorts all the matrices

according to their fitness and selects a new parent and throws away all other matrices.

The parent is selected with a high chance to be the matrix with the highest fitness in

the population, and with lower chances to be the next few matrices with lower fitness.

Selecting the parent this way will result in different parent matrices throughout the

game, as opposed to the same parent for the most part of the game.

The final change in the evolutionary part of the algorithm is the way the matrices are

evolved. In the KB Fast-Evo implementation a Gaussian distribution with a mean of

0 and a standard deviation of 0.1 was used to get a value to add to a weight of the

matrix. Each weight had a 0.2 chance to be mutated this way. Now, in order to evolve

the matrices faster in the right direction, we use knowledge from the game that was
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already present in the knowledge base. If an event (i.e. collision with a certain feature)

has occurred more than 100 times, we have a good indication of the score change this

event has produced. If the score change is positive, we change the mean of the Gaussian

distribution up and if the score change is negative, the mean goes down. This causes the

weights to be stimulated upwards for ’good’ features and downwards for ’bad’ features.

All the changes to the Evolutionary part of the KB Fast-Evo algorithm are listed below.

• All move actions are combined in the matrix into one. The individual move action

weights are calculated with the distance change to the features.

• The feature value used in calculation for the action values is divided by a factor

of the current time step.

• The population is grown during roll-outs and selection only happens at the start

of a MCTS run.

• The parent matrix is selected with a chance according to its fitness.

• Matrix mutation is biased by the knowledge base.

The results can be seen in Table 5.3.

We can see that the algorithm performs only slightly better than original KB Fast-

Evo algorithm. This is an unexpected result, because as we saw in the analysis, the

evolutionary part in the KB Fast-Evo algorithm hardly influenced the game outcome.

That was because the weight matrix very often stopped evolving in the beginning of

Game Win % Avg. score Min. score Max. score Avg. roll-outs

Aliens 100.0% 67.96 ± 13.14 42 81 97.44

Boulderdash 36.0% 18.00 ± 6.73 6 30 27.67

Butterflies 92.0% 30.56 ± 18.24 0 80 109.17

Chase 88.0% 8.96 ± 2.70 5 15 100.63

Frogs 8.0% -1.52 ± 1.00 -2 1 99.94

Missile
Command

92.0% 6.20 ± 5.50 -2 16 102.50

Portals 12.0% 0.12 ± 0.33 0 1 115.47

Sokoban 24.0% 1.08 ± 0.95 0 3 145.62

Survive
Zombies

44.0% 17.60 ± 16.82 -1 57 50.29

Zelda 64.0% 2.52 ± 2.10 -1 6 114.33

Average 56.0% 15.15 ± 6.75 96.30

Table 5.3: Results of implementing the improved evolutionary approach.
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the game. As this problem was now solved, with a weight matrix that keeps evolving

throughout the game, it does influence the action selection. Even though this new

evolutionary approach didn’t change the game results very much overall, there are still

a few differences.

What could be noticed firstly, is that the average number of roll-outs is actually higher

than in the original algorithm. Because the new implementation has no new heavy

calculations that would slow it down, we could expect that the algorithm would not

be slower. But the reason that it seems faster has to do with what was mentioned

earlier: the average number of roll-outs goes up as the games last longer. So actually

the algorithm is not faster, but rather the agent takes longer to finish (or fail) some

games. This is particularly visible in the game Frogs, which will be analyzed now.

There is one game which has a significant lower win-percentage with the new evolutionary

implementation when compared to the original KB Fast-Evo. That is Frogs, but the

reason seems clear. The agent gets ’scared’ of crossing the road because of the evolution

and will not try it anymore and stick to the starting area. The agent learns quickly

from its simulations now, and in those simulations he dies often to the trucks on the

road. The weight will drop for the feature that represents those trucks. While the agent

seldom reaches the end point of the game in its simulations, so that weight will evolve

more slowly. This is also why the average number of roll-outs is a lot higher in this

implementation, because the game is mostly lost after the time-out of 2000 time steps,

where in the KB Fast-Evo algorithm the agent sometimes died early while crossing the

road.

The game that performs a lot better is Zelda. The reason is less obvious than it was

for Frogs, but can be explained anyway. Firstly, the agent is able to avoid dying to

the NPCs better, because it will actively move away from them after the matrix had a

chance to evolve. Secondly, the agent is better at finding the key after a while, because

it gives a score boost and thus is more attractive. So the new evolutionary approach is

at least able to make a big difference for one game. But biasing the roll-outs does not

influence performance as much as first thought.

5.3 Combining Path Finding And The New Evolutionary

Approach

It would of course also be interesting to see what happens when we apply both the

improvements to the KB Fast-Evo algorithm and see how that improves the performance.

Those results can be seen in 5.4.
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Game Win % Avg. score Min. score Max. score Avg. roll-outs

Aliens 100.0% 67.60 ± 12.85 43 80 101.52

Boulderdash 24.0% 10.88 ± 10.24 -1 36 20.48

Butterflies 100.0% 28.08 ± 13.50 14 56 75.68

Chase 92.0% 9.20 ± 2.66 6 15 71.71

Frogs 16.0% -1.04 ± 1.24 -2 1 75.16

Missile
Command

92.0% 5.76 ± 5.70 -3 16 102.11

Portals 20.0% 0.2 ± 0.41 0 1 89.76

Sokoban 16.0% 1.04 ± 0.98 0 3 117.03

Survive
Zombies

44.0% 20.88 ± 17.38 1 51 35.84

Zelda 60.0% 2.24 ± 2.24 -1 6 67.58

Average 56.4% 14.48 ± 6.71 75.69

Table 5.4: Results of applying the path finding algorithm and the new evolutionary
approach to the KB Fast-Evo algorithm.

The combined improvements do not enhance the algorithm as much as expected, but

there are some interesting things to be noticed. Firstly, because of the path finding, the

algorithm is slower again. More specifically, the algorithm is ∼20% slower than the KB

Fast-Evo with only the changed evolutionary approach. Especially Zelda and Butterflies

are a lot slower, but those games both benefit from the path finding because they have

obstacles. In fact, Butterflies is the one game that actually performs very well with this

implementation, reaching a winning percentage of 100%.

The other games that performed well with the path finding still perform well here.

Frogs, the game that performed worse with the new evolutionary approach, gets some

better results again. The same goes for the games that performed well with the new

evolutionary approach. They still perform well here. As before there are still games

that are hard for the algorithm, like Portals and Sokoban.

All in all we can conclude that the combination of the improvements shows the benefits

from the separate improvements, but the overall increase in performance is not much

higher. Some better results were maybe expected when the KB Fast-Evo algorithm

was analyzed in Chapter 4, but still there is an increase in performance with the above

implemented as compared to the original KB Fast-Evo algorithm. In Section 6.3 some

additional (more general) improvements will be implemented, to see if the algorithm can

be enhanced some more.



Chapter 6

More Improvements And

Experiments

This chapter will be the final chapter where experiments will be performed with the

KB Fast-Evo algorithm. The chapter firstly aims to show the influence of changing

some of the default settings for the algorithm that were used previously in the thesis.

Secondly, there will be a final attempt to maximize the performance of the KB Fast-Evo

algorithm. Some smaller improvements based on the analysis from Chapter 4 and some

improvements based on observations will be implemented and tested.

The first section will test different roll-out settings and will confirm claims made earlier

about the influence of (less) roll-outs. The second section will show what happens when

the constant C parameter from the UCT algorithm is changed, which so far had been

assumed to be optimal. Finally, the last section will show the implementation and results

from the final improved KB Fast-Evo algorithm.

6.1 Importance Of The Roll-outs

In the MCTS algorithm, a lot is dependant on the roll-outs. The roll-outs provide data

on which states are desirable and which actions lead to those states. The more roll-outs

we have, the more certain we can be about the validity of the data. In fact, as stated in

Section 2.3, an infinite number of roll-outs would lead to the correct full-depth mini-max

tree. This applies only to roll-outs that play out the full game, and not as here, with a

limited depth (of 10). The full-depth mini-max tree is the optimal game tree, so can we

conclude that more and deeper roll-outs lead to better results? This section will try to

answer that for this algorithm.

40
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Action time 40ms
Roll-out depth 10

Action time 80ms
Roll-out depth 10

Game Win % Avg. roll-outs Win % Avg. roll-outs

Aliens 100.0% 98.86 100.0% 237.51

Boulderdash 24.0% 26.58 44.0% 60.65

Butterflies 92.0% 106.12 100.0% 248.78

Chase 88.0% 102.58 80.0% 221.40

Frogs 28.0% 54.95 28.0% 115.00

Missile Command 92.0% 110.51 92.0% 266.16

Portals 8.0% 118.42 4.0% 253.97

Sokoban 32.0% 139.65 24.0% 328.84

Survive Zombies 44.0% 45.22 60.0% 107.51

Zelda 32.0% 106.79 32.0% 252.45

Average 54.0% 90.97 56.4% 209.22

Action time 40ms
Roll-out depth 20

Action time 80ms
Roll-out depth 20

Aliens 100.0% 53.26 100.0% 116.20

Boulderdash 32.0% 14.97 40.0% 33.40

Butterflies 92.0% 58.15 96.0% 133.48

Chase 80.0% 54.86 80.0% 122.55

Frogs 4.0% 64.81 12.0% 149.56

Missile Command 84.0% 62.91 84.0% 164.73

Portals 16.0% 85.72 16.0% 188.94

Sokoban 36.0% 88.78 24.0% 203.60

Survive Zombies 44.0% 27.37 52.0% 58.81

Zelda 28.0% 66.53 40.0% 142.61

Average 51.2% 57.74 54.4% 124.39

Table 6.1: Results of running the KB Fast-Evo algorithm with different action time
settings and roll-out depths. Top left results in the table are with the default settings
as used in above chapters.

In the chapters above it was often visible that implementations of the algorithm with less

roll-outs would lead to worse results for certain games. Here, the amount of roll-outs per

action selection will be increased to see what happens then. This is done by increasing

the time the algorithm for action selection. The value used in the above chapters was

40ms, as is required for the GVGAI Competition, but will be altered here for the tests.

Experiments will also be ran with an increased roll-out depth, to show what influence

that has over the performance of the algorithm. The standard KB Fast-Evo from [4]

will be used so good comparisons can be made. All results are visible in Table 6.1

Firstly the KB Fast-Evo algorithm with an increased action time of 80ms is compared

with the normal 40ms action time. These can be seen on the top-right of Table 6.1.
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What immediately stands out is the large increase in average roll-outs for each game.

This is of course the purpose of this experiment and is caused by having twice as long

between each move to do the roll-outs. The second thing that is noticeable is that there

is not a huge increase in performance of the algorithm. Three games do score better,

which are Butterflies, Boulderdash and Survive Zombies. This has to do with the fact

that the agent has to either find or avoid NPCs. With an increased number of roll-outs,

the movements of the NPCs are better to predict and thus the agent survives longer

and/or scores better. But overall there is not a much better performance, even though

the algorithm runs twice as long. We can draw a good conclusion from this: 40ms is

enough for this algorithm to get a good approximation of the action values based on

the used scoring function. To confirm this conclusion the other way around, the same

experiment was ran except with the action time decreased to 20ms. The average win-

rate drops almost 10% and nearly every game performs worse than with an action time

of 40ms. So 40ms seems to be correctly chosen for a roll-out depth of 10.

Side note: The same experiment was ran with the vanilla MCTS algorithm instead of

the KB Fast-Evo algorithm. These results showed a bigger increase in performance, but

as the roll-outs are not guided in the vanilla algorithm, it is logical that there need to be

more roll-outs for accurate estimation of the action values. However, the 80ms vanilla

algorithm still performed worse than the KB Fast-Evo algorithm with an action time of

40ms.

So increasing the amount of roll-outs does not increase the performance of the algorithm

very much. But when the reachable search space is broadened by increasing the roll-

out depth, without decreasing the amount of roll-outs, it seems that there should be an

increase in performance. This was also tested and can be seen in the bottom half of Table

6.1. This time a roll-out depth of 20 was taken, instead of the default roll-out depth of

10. On the bottom-left, the action time is the default 40ms, and on the bottom-right

the action time is 80ms.

With the default action time and the increased roll-out depth, the average amount of

roll-outs is significantly lower. This also reflects in the performance of the algorithm,

which is lower than with the default settings. This was expected, because as can be read

above, decreasing the amount of roll-outs influences the performance in a bad way. But

now when looking at the bottom-right of Table 6.1, the average amount of roll-outs isn’t

lower than with the default settings. In fact, it is higher. Still the average amount of

wins is about equal to the normal KB Fast-Evo algorithm. This was quite unexpected,

but after some further investigation, can be explained. There are a few games that

perform better, which are Boulderdash, Survive Zombies and Zelda. And there are a

few games that perform worse, which are Chase, Frogs, Missile Command and Sokoban
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(see Appendix A for reference). The first set of games that did perform better all have

something in common. Namely it is important to find a path to a goal that might be far

away. The deeper roll-outs allow this to happen easier, because the agent has a bigger

search space and can ’see’ the goal from a greater distance. That is why these games

perform better.

The games that perform worse also have something in common (Frogs will be mentioned

separately). In these games, it is important to quickly go for the nearby score boost,

rather than having to find it further away. In Chase, once the goats had the time to

run, the agent has a more difficult time finding them and the goats have a chance to

kill the agent after a while. In Missile Command it is clear that the missiles need to be

reached as soon as possible, before the cities are destroyed. And in Sokoban, which is a

hard game for this algorithm, most games are solved when the agent pushes the boxes

straight in the holes. The harder levels where more complex movements are required are

rarely won. With deeper roll-outs, the agent is less likely to go for nearby score boosts,

because it can see more score boosts further away, which draws the agent away from

the nearby ones. That’s why these games perform less well. Frogs is different in that

there are not much score boosts, but the reason it performs worse is the same. Nearly

every time the agent dies in the first few game steps. As in the other games, the deeper

roll-outs blur the score change for nearby events, so the agent is a lot more likely to die

to the cars when he is near to them.

These results were mostly unexpected but interesting nonetheless. One important con-

clusion that can be drawn from this is that the default settings of 40ms per action

(mandatory setting for the competition) and a roll-out depth of 10 are good settings.

Also seeing that 40ms currently works well, there is no need to make the algorithm faster

than it already is. However, when additional calculations are required in order to make

the algorithm more effective, one should try not to lower the current amount of roll-outs

too much, as that does influence performance negatively.

6.2 Influence Of The C Parameter

Another factor in the performance of the MCTS algorithm, or more particularly, the

UCT algorithm, is the tuning of the constant C parameter in the UCT formula. A de-

tailed explanation of this formula and the C parameter were already given in Section 2.4.

The C parameter determines the amount of exploration in the tree policy. The value

used throughout this thesis was
√

2, as also used in the paper by Perez et al. [4]. But

different papers have described different parameter values for their algorithms. For in-

stance in high performing algorithms for Go [37] and Hex [38], the C value was 0. These
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C = 0 C = 1√
2

Game Win % Avg. roll-outs Win % Avg. roll-outs

Aliens 100.0% 104.32 100.0% 100.75

Boulderdash 32.0% 27.13 32.0% 26.76

Butterflies 96.0% 158.53 100.0% 111.98

Chase 96.0% 129.33 88.0% 99.54

Frogs 16.0% 63.66 24.0% 55.71

Missile Command 100.0% 192.07 88.0% 112.11

Portals 12.0% 187.86 4.0% 114.73

Sokoban 16.0% 147.63 20.0% 146.19

Survive Zombies 40.0% 55.86 40.0% 49.49

Zelda 40.0% 125.74 44.0% 113.58

Average 54.80% 119.21 54.0% 93.08

C = 1 C = 3

Aliens 100.0% 102.46 100.0% 100.25

Boulderdash 32.0% 27.49 36.0% 27.91

Butterflies 100.0% 109.24 92.0% 108.74

Chase 84.0% 102.67 88.0% 102.13

Frogs 28.0% 54.03 20.0% 57.84

Missile Command 88.0% 116.24 80.0% 122.92

Portals 20.0% 119.53 12.0% 118.92

Sokoban 16.0% 141.03 12.0% 140.91

Survive Zombies 32.0% 52.07 40.0% 51.67

Zelda 40.0% 113.97 32.0% 115.89

Average 54.0% 93.87 51.20% 94.72

Table 6.2: Results of running the KB Fast-Evo algorithm with different C parameter
values in the UCT formula. The results with the default value C =

√
2 can be viewed

in Table 6.1 or Table 4.2

algorithms completely relied on their history heuristics (AMAF/RAVE) for exploration.

Another example is the General Game Playing algorithm CadiaPlayer [19], which used

a C value of 0.4.

In this section we will test out 4 different values (besides the default of
√

2) for the

C parameter to see which performs the best. These values are 0, 1√
2

(≈ 0.71), 1, and

3. The value C = 1√
2

is the value that Kocsis and Szepesvári have shown to satisfy the

Hoeffding inequality [5]. Again, the normal KB Fast-Evo algorithm is used. The results

can be seen in Table 6.2.

Some interesting facts can be seen when looking at Table 6.2. First of all, the algorithm

is faster when C = 0: there is a ∼11% increase in roll-outs. Secondly, all C values

tested result in about the same average win percentage, except the highest C = 3. And
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finally, the results for C = 0 are quite different from the other ones, even though the

average win percentage is about the same. Here there are four games that (almost) get

a perfect score, which are Aliens, Butterflies, Chase and Missile Command. With other

C parameter settings, only Aliens and Butterflies perform that well. Some of the other

games (Frogs) perform less well than normal, and other perform about equal.

What can be concluded from these results? Firstly, setting the C parameter too high

will result in bad performance. The algorithm needs a good amount of exploitation to be

effective. Some tests were ran with even higher C values and these confirm the statement,

as they have even lower win percentages. Secondly, we can see that the C parameter

isn’t very sensitive for this algorithm, as all values around 1 score about the same.

Even C = 1√
2

doesn’t produce any notable differences. Lastly and most importantly,

setting the C parameter to 0 works particularly well for some games, especially Chase

and Missile Command score a lot better. As also stated in the previous Section 6.1,

these are games that benefit from getting score boosts as fast as possible. Setting the

C parameter to 0 stimulates the agent much more towards actions that get high score

values. The tree now only grows in the direction of high scoring states, rather than

states that might be high scoring in the future.

It might be beneficial for the algorithm to do something with the C parameter, so the

games that perform well on the low C value take advantage of this, while there is still a

good amount of exploration happening too. This will be tested, among other things, in

the next Section 6.3.

6.3 Final Improvements To The Algorithm

Throughout the writing of this thesis and experimenting with the KB Fast-Evo algo-

rithm, ideas for improvements came up that might increase performance of the algorithm

even more. This section will show the implementation of the most successful ideas, in

order to get the best performing implementation of the KB Fast-Evo algorithm currently

possible. The improvements are based on the suggestions from Chapter 4 that weren’t

featured in Chapter 5, and are based on observations from watching the algorithm play

the games.

The following four ideas were implemented and turned out to improve the algorithm

separately and together. All will be explained in detail.

• Decisive moves. This technique is simple and proved successful before for the

MCTS algorithm.
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• C = 0. Section 6.2 has shown increase in performance when setting the C param-

eter to 0.

• Courage over time. The agent will be less ’scared’ as the game progresses in order

to get out of local optima.

• Knowledge factor. As the knowledge change (∆Z) from the original algorithm did

not work optimally, this factor will guide the agent to more rare events.

The first improvement, decisive moves, was also mentioned as a general improvement

for the MCTS algorithm in Section 2.5.2. In this particular implementation each action

at action selection is checked to see if it will lead to a game-over state. If so, it will get

the lowest possible number of visits so it’s never picked (action selection here is based on

amount of visits). Also, each action will be checked for a win-state or score increase and

if so, that action is immediately picked. This simple technique has a huge influence on

performance. Mostly because it makes the agent die less because of collisions with NPCs

(Frogs, Boulderdash), but also because the agent will surely win the game or increase

score when next to a ’good’ sprite (Frogs, Zelda, Chase).

As can be seen in previous Section 6.2, setting the C parameter to 0 in the original

KB-Fast Evo algorithm caused a big increase in performance for some games (Chase,

Missile Command), while other games performed worse because there was not enough

exploration in the tree policy. With all improvements combined, setting the C parameter

to 0 no longer caused a performance decrease for certain games, but still the beneficial

effects for the other games where there. Especially the new evolutionary strategy and

the knowledge factor are reasons why exploration in the game tree no longer is necessary.

The agent will be attracted to events that haven’t occurred often yet, and when they

have occurred often, the agent knows the value increase even before the game tree is

built, so exploring possible score increasing actions has become mostly irrelevant.

Courage over time was an improvement that resulted from observing the games a lot.

Especially for games such as Frogs and Zelda it was clearly visible that the agent would

often be stuck in the same corner of the map because there were ’bad’ NPCs between

the agent and the objective. The agent would find not dying more important than the

score boost and thus would be stuck in a local optimum if no other easier paths could be

found around the NPCs. This technique linearly increases negative score changes values

(∆R) in the scoring function over time. In the first time step of the game, the negative

score change is as normal, in the final time step they are 0. This results in the agent

behaving as normal at the start of the game, but as the game lasts longer and the agent

has not yet been able to win it, the agent will take more and more risks until he does

win (or lose) the game.
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Finally, the knowledge factor was an idea that resulted from the analysis of the scoring

function in Section 4.2.2.1. There, the observation was made that the knowledge change

(∆Z) did not add much towards the performance of the algorithm. The idea was good:

the agent should be stimulated towards events that haven’t occurred often yet in order

to learn their value. The reason it performed not as expected was mostly because it

applied only to events that did not result in a score change, because otherwise only the

score change value (∆R) is used, and because it converged to 0 very quickly. So now

the knowledge factor KF
i is introduced, which increases the distance change value for

events that have rarely occurred. The agent is thus stimulated more towards rare events

in order to quickly learn their value, or towards hard-to-reach events, such as the goal

tile in Frogs or the key in Zelda. The following formula describes the knowledge factor

KF
i :

KF
i = 1 +

9ZtotF − 9ZiF
ZtotFZiF − ZiF

(6.1)

With the new scoring function then as follows:

∆DK =
N∑
i=1

∆(Di)×KF
i (6.2)

Reward =

∆R : ∆R 6= 0

α×∆Z + β ×∆DK : Otherwise
(6.3)

ZiF is the number of occurrences of event i after the roll-out. ZtotF is the total amount

of all event occurrences (in the game) after the roll-out. This results in a factor between

1 and 10, where a relatively low ZiF will be closer to 10, and a higher ZiF will quickly

converge to 1. This factor is multiplied with the distance change, which thus will increase

when the distance to more rare events has decreased.

The results of the final implementation of the improved KB Fast-Evo algorithm can be

seen in Table 6.3.

The results show an average increase in performance of over 10% when compared to

the original KB Fast-Evo algorithm. Also, 4 games get a 100% win percentage now, as

opposed to just 1. Another thing that stands out is that the average amount of roll-outs

is actually higher than in the original algorithm, so this implementation is faster. The

only cause of this is setting the C parameter to 0. There are 3 more games that perform

a lot better, but not optimal yet, which are Boulderdash, Frogs and Zelda. There is one

game that performs worse: Survive Zombies.
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Game Win % Avg. score Min. score Max. score Avg. roll-outs

Aliens 100.0% 68.76 ± 13.33 43 82 98.72

Boulderdash 56.0% 22.76 ± 8.09 9 47 26.38

Butterflies 100.0% 26.08 ± 10.95 14 52 149.55

Chase 100.0% 9.88 ± 3.21 6 15 107.40

Frogs 52.0% -0.28 ± 1.46 -2 1 58.09

Missile
Command

100.0% 10.2 ± 4.20 5 16 161.94

Portals 24.0% 0.24 ± 0.44 0 1 145.69

Sokoban 16.0% 1.00 ± 0.91 0 3 153.04

Survive
Zombies

28.0% 23.52 ± 17.14 0 58 48.69

Zelda 68.0% 2.40 ± 2.10 -1 6 109.06

Average 64.4% 16.46 ± 6.18 105.86

Table 6.3: Results of the final implementation of the KB Fast-Evo algorithm, includ-
ing path finding, improved evolutionary strategy, courage, knowledge factor, decisive
moves and C = 0.

The main reasons for the performance increases are that the agent now is much more

eager and likely to get score boosts and is less likely to ’die’. The other very important

reason is that the path finding, knowledge factor and courage over time will get the

agent out of local optima much more frequently. The games that were hard for the

agent throughout this thesis (Sokoban, Portals) are still hard for this implementation.

Portals mainly because of the scoring system in the game (no points for going through

a portal), so the agent rarely makes it far enough to see the goal. Sokoban is still hard

because the agent has to push in a certain direction, which is not a part of the agent’s

search space and because the agent cannot search deep enough to solve the puzzles.

The one game that surprisingly performed worse is Survive Zombies. For a small part

this has to do with courage over time, because towards the end the agent is a bit more

likely to die to the zombies. But for the most part this has to do with the decisive

moves technique. This was very unexpected, but can be explained as follows. With

decisive moves, the agent will always go for a score boost when next to it, which in

this case is either picking up honey, or killing a zombie with the honey. In the original

implementation the agent would be able to see far enough ahead that he would run out

of honey quickly when killing zombies and then dying to other nearby zombies when

no more honey is in the inventory. In this implementation the agent can also see that

he would die, but due to the decisive moves technique ignores that and kills a zombie

anyway when next to it. This causes the agent to run out of honey very quickly and

then dying when cornered by the zombies.
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The algorithm has improved a lot overall when compared to the original KB Fast-Evo

algorithm. The smaller and easier to implement techniques from this chapter increased

performance a lot more than the big changes from Chapter 5. This was unexpected, but

it was an interesting result nonetheless. Still there is room left for more improvement

of this algorithm, but whether it can ever be fully optimal is questionable. A lot more

discussion about this and a final conclusion can be found in the next Chapter 7.



Chapter 7

Discussion And Conclusion

The final chapter in this thesis will discuss the findings from the above chapters and will

explain what can be learned from them. The research questions will then be answered.

Lastly, some suggestions for future work will be given.

7.1 Discussion

Even though the KB Fast-Evo algorithm as described by Perez et al. [4] initially seems

like a very different and good approach to use the MCTS algoritm for GVGP, some

issues arose as can be seen in Chapter 4. KB Fast-Evo didn’t improve upon the vanilla

MCTS algorithm as much, mainly because the results of the vanilla MCTS algorithm

were so much higher than in the original paper. Still the KB Fast-Evo has a significant

higher average win-rate, so it definitely is a better algorithm. But this improvement is

almost exclusively because of the distance change value in the scoring function and even

that value was sub-optimal (euclidean distance). As could be seen, the evolutionary part

hardly influences the roll-outs, mostly because of position-sensitive move action weights

and the quick convergence of the matrix evolution. Also the knowledge change value in

the scoring function yields no large enhancement to performance.

The issues with the KB Fast-Evo algorithm that were found, were handled in next

chapter. But even though (most of) the issues mentioned were solved there, performance

did not nearly increase as much as expected. What can be concluded from this? For the

path finding part, it means that performance can only be increased slightly more if that

algorithm is improved further, by letting the agent learn obstacles for instance. But only

if that doesn’t take much additional computation time. For the evolutionary part the

question is harder to answer, because there are so many ways to approach this. If the

50
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parameters for the evolutionary algorithm are fine tuned some more, there will probably

be a slight increase in performance, but most likely the evolutionary algorithm has to be

much more sophisticated than it is now. This is a representational problem that might

not be easily solved. Also, steering the roll-outs turned out to be less influential than

first thought. In order to really improve the algorithm, a much deeper understanding of

the games should be realized, rather than what ’good’ and ’bad’ sprites are. This could

definitely also be done with an evolutionary approach, but just ’move’ and ’use’ weights

to bias the roll-outs no longer suffices. Pattern recognition or some way to learn the

goal of the game are suggestions for improvement.

Some additional smaller changes to the improved KB Fast-Evo algorithm were imple-

mented in Chapter 6, which did turn out to have a big positive impact on performance.

This is good news, because there might be room for even more improvement when new

or existing MCTS techniques are applied to this algorithm. But, as also asked at the end

of that Chapter 6, will the algorithm ever become fully optimal? On its own. . . probably

not. MCTS just has some serious problems when applied to a game such as portals,

where the scoring system only gives 1 point for a hard-to-reach goal and otherwise awards

no other scores. A game like Sokoban is also very hard for this algorithm, as it is forced

to solve a puzzle that requires looking many steps ahead. However, 4 out of 10 games

got a perfect score, so that means the algorithm certainly is good in some games. The

conclusion that could be drawn here is that the algorithm by itself isn’t enough to solve

the vastly different games GVGP provides, but combinations with other algorithm might

result in great performance. Recognizing a puzzle-type game (like Sokoban) and then

using a breadth-first search instead of MCTS is one example of combining algorithms.

7.2 Research questions

How does the KB Fast-Evo algorithm compare to a standard MCTS imple-

mentation for GVGP?

The most basic (vanilla) implementation of the MCTS algorithm already wins a

substantial percentage of the games in the tests. Some games even get a perfect

score, but others are almost never won. The KB Fast-Evo algorithm outperforms

the vanilla MCTS implementation significantly overall, but because of some issues

with the algorithm, on some games performance is equal or even worse than the

vanilla MCTS implementation.
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What improvements can be made to the KB Fast-Evo algorithm for GVGP?

There is a lot of room for improvement of the KB Fast-Evo algorithm. Especially

in the scoring function and the way the roll-outs are biased. Here, a path finding

algorithm was applied that results in more accurate values in the scoring function.

Furthermore, the evolutionary part of the algorithm was changed a lot, which now

produces a better weight matrix for guidance of the roll-outs.

What other techniques can be used to maximize performance of the MCTS

algorithm for GVGP?

Fine-tuning parameters, such as the C parameter in the UCT formula, can increase

performance significantly. Also existing improvements for the MCTS algorithm such

as the decisive moves technique prove to be beneficial. Finally, techniques that can

help get the agent out of local optima increases performance. For instance, in this

thesis ’courage over time’ was introduced for this purpose.

7.3 Future Work

Here a brief overview will be given with suggestions for future work. Most of these were

already mentioned in this chapter or earlier in the thesis.

• Improving the path finding algorithm. This can be done with a more efficient

algorithm than basic A* and also by letting the agent learn what obstacles are.

• Features and feature values can be researched more in-depth. There could be

a feature value that performs better. Also, adding additional features such as

collision direction might be beneficial.

• Further improvement of the scoring function. Here, the events caused by the avatar

and its spawned sprites (bullets, swords, etc.) are taken together. These could be

separated for possible enhanced performance.

• Fine-tuning, or even completely changing the evolutionary approach of the KB

Fast-Evo algorithm

• Combining the MCTS algorithm with another algorithm to cover a broader range

of problem spaces (games).



Appendix A

The Training Set In Detail

Figure A.1: Aliens
[1] The avatar. Can move from side to side and shoot upwards. Dies when an alien or
bomb touches it.
[2] Avatar projectile. Moves up and destroys an alien on contact.
[3] Alien. Moves down in a zigzag pattern, sometimes drops bombs.
[4] Bomb. Falls down and kills the avatar on contact.
[5] Protective structure. Doesn’t move and is destroyed when the projectile touches it.
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Figure A.2: Boulderdash
[1] The avatar. Can move in all directions and use a shovel to dig through the dirt.
[2] Dirt. Blocks the avatars path until it’s removed with the shovel.
[3] Boulder. Blocks the avatars path. Cannot be removed but falls down when dirt is
dug from under it. Kills the avatar if it falls on top of him.
[4] Diamond. The avatar can collect these. Gives points and is kept in the avatar’s
inventory.
[5] Enemies. Move around, but cannot go through the dirt. Kill the avatar on contact
and spawn a new diamond if in collision with another enemy.
[6] Exit. Wins the game if the avatar reaches it with 10 diamonds in its inventory.

Figure A.3: Butterflies
[1] The avatar. Can move in all directions.
[2] Butterfly. Moves around randomly and is destroyed when the avatar collides with
it. When all butterflies are destroyed the game is won.
[3] Cocoon. If a butterfly touches it, it is destroyed and a new butterfly is spawned.
The game is lost when all cocoons are gone.
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Figure A.4: Chase
[1] The avatar. Can move in all directions.
[2] Scared goat. Runs away from the avatar and is destroyed when the avatar touches
it. When all scared goats are destroyed the game is won.
[3] Goat corpse. When a scared goat touches this, the scared goat turns angry and will
chase and kill the avatar on contact.

Figure A.5: Frogs
[1] The avatar. Can move in all directions.
[2] Truck. Moves from one side of the screen to the other. Kills the avatar on contact.
[3] Log. Moves from one side of the screen to the other. The avatar can move across
this.
[4] Water. Kills the avatar on contact.
[5] The goal. If the avatar reaches this, the game is won.
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Figure A.6: Missile Command
[1] The avatar. Can move in all directions and spawn an explosion next to it.
[2] Explosion. Doesn’t move and lasts a few time steps. Destroys a missile on contact.
[3] Missile. Rapidly moves towards a nearby city and destroys it on contact.
[4] City. Is destroyed when a missile touches it. When there are no more missiles and
at least one city survives, the game is won.

Figure A.7: Portals
[1] The avatar. Can move in all directions.
[2] Lasers. Move around in a pattern and kill the avatar on contact.
[3] Entrance door. Spawns the avatar at a certain exit door when the avatar reaches
it.
[4] Exit door. Spawns the avatar when the appropriate entrance door was touched.
[5] The goal. When the avatar reaches this, the game is won.
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Figure A.8: Sokoban
[1] The avatar. Can move in all directions.
[2] Box. Move around in the direction the avatar pushes it. Disappears when it touches
a hole. The game is won when all boxes are gone.
[3] Hole. Removes a box from the field when the box is pushed in to it.

Figure A.9: Survive Zombies
[1] The avatar. Can move in all directions.
[2] Bee. When it touches a zombie, both sprites are destroyed and honey is spawned.
[3] Zombie. Is killed when the avatar touches it with honey in its inventory (one honey
is consumed), but kills the avatar when no more honey is available.
[4] Honey. The avatar can collect this and use it to kill zombies.
[5] Grave. Occasionally spawns a zombie.
[6] Bee hive. Occasionally spawns a bee.
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Figure A.10: Zelda
[1] The avatar. Can move in all directions and can use a sword to kill enemies.
[2] Sword. Kills an enemy when it touches the enemy.
[3] Key. The avatar must collect this before going to the goal.
[4] Enemy. Kills the avatar on collision with the avatar, but dies when it touches the
avatar’s sword.
[5] The goal. The game is won when the avatar reaches this with the key in its inventory.
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