
Master’s Thesis

Parameterized Complexity
of Graph Constraint Logic

Author:

Tom C. van der Zanden

Supervisor:

Prof. Dr. Hans L. Bodlaender

ICA-3713784

Department of Information and Computing Sciences

Faculty of Science

Abstract

Graph constraint logic is a framework introduced by Hearn and Demaine, which provides

several problems that are often a convenient starting point for reductions. We study the

parameterized complexity of Constraint Graph Satisfiability and both bounded

and unbounded versions of Nondeterministic Constraint Logic (NCL) with re-

spect to solution length, treewidth and maximum degree of the underlying constraint

graph as parameters. As a main result we show that restricted NCL remains PSPACE-

complete on graphs of bounded bandwidth, strengthening Hearn and Demaine’s frame-

work. This allows us to improve upon existing results obtained by reduction from NCL,

and we show that reconfiguration versions of several classical graph problems (inclu-

ding independent set, feedback vertex set and dominating set) are PSPACE-complete

on planar graphs of bounded bandwidth.

Acknowledgements

Working on my Master’s Thesis has been tremendous fun and a great experience. I

would like to thank my advisor, Hans Bodlaender, not only for his terrific guidance and

advice, but also for his encouragement in getting my results published. This has lead

to one publication (not part of this thesis) which I presented at CIAC 2015. Part of

this thesis is currently under review for publication at another conference. I am very

glad that this thesis does not mark the end of our cooperation, as I eagerly look forward

to working with Hans as a PhD student, starting in September. I would also like to

thank all other staff members at Utrecht University who have made my studies there so

enjoyable. Finally I would like to thank my fellow students who also worked on their

theses in room BBG 502, with whom I played the occasional game of cards.

Contents

1 Introduction 1

1.1 Prior Work . 2

1.2 Our Contributions . 3

2 Preliminaries 5

2.1 Graph Constraint Logic . 5

2.2 H-Word Reconfiguration . 7

2.3 Constraint Graph Gadgets . 9

2.4 Graph Parameters . 11

2.5 Dynamic Programming on Tree Decompositions 12

3 Parametrization by Treewidth 13

3.1 Constraint Graph Satisfiability . 13

3.2 Unbounded Nondeterministic Constraint Logic 15

3.3 Bounded Nondeterministic Constraint Logic 20

4 Parametrization by Solution Length 23

5 Applications 27

6 Conclusions 30

Bibliography 32

Chapter 1

Introduction

Consider a search or optimization problem where the goal is to find a single solution that

meets some criteria. We can obtain a reconfiguration version by specifying an adjacency

relation for solutions (usually a small local change): given a starting solution and a goal

solution, we want to find a sequence of solutions, every consecutive pair of solutions

adjacent, from the starting solution to the goal solution.

Reconfiguration problems have many practical applications, such as planning roadworks

without obstructing traffic or moving items around in a storage space to retrieve a

given item, though in this thesis we take a more theoretical approach (and also consider

applications to the complexity of games and puzzles, which is somewhat recreational).

Many interesting optimization problems are NP-complete, meaning it is widely believed

that these problems require exponential time to be solved. In this context, the para-

meterized complexity of these problems is studied: we try to identify special cases in

which the problems become tractable. For reconfiguration problems the situation is

even more dire: when we take an NP-complete optimization problem its reconfiguration

variant is often PSPACE-complete1. This means not only that finding a solution is likely

very hard, it also means that it is provably hard to execute the solution: the solution

might have exponential length in the worst case! This means that identifying tractable

special cases does not only make solving the problems easier, it is essential to ensure

executing solutions is feasible.

1Though problems in P can have PSPACE-complete reconfiguration variants as well, for instance
Constraint Graph Satisfiability on bounded treewidth 3-regular graphs.

1

Chapter 1. Introduction 2

In this thesis, we study the (parameterized) complexity of Constraint Graph Satisfi-

ability and its reconfiguration variant, Nondeterministic Constraint Logic. We

consider parametrizations involving the maximum degree, solution length and treewidth

of the graph. Constraint Graph Satisfiability is NP-complete and Nondeter-

ministic Constraint Logic is PSPACE-complete, even on planar, 3-regular graphs.

As our main contribution, we show that Nondeterministic Constraint Logic re-

mains PSPACE-complete even if we further restrict the instances to have bandwidth

bounded by a constant.

1.1 Prior Work

Nondeterministic Constraint Logic (NCL) was introduced by Hearn and Demaine

in [1] and extended in [2] to a more general graph constraint logic framework. The frame-

work provides a number of problems complete for various complexity classes, that aim

to be a convenient starting point for reductions - particularly for showing the hardness

of games and puzzles.

As part of the constraint logic framework, Hearn and Demaine [1] provide a restricted

variant of Nondeterministic Constraint Logic (restricted NCL), in which

the constraint graph is planar, 3-regular, uses only weights in {1, 2} and the graph is

constructed from only two specific vertex types (AND and OR). Restricted NCL

is PSPACE-complete, and (due to the restrictions) is particularly suitable for reduc-

tions. Hearn and Demaine’s [1] reduction creates a graphs of unbounded treewidth. We

strengthen their original result, by providing a new reduction, showing that restricted

NCL remains PSPACE-complete, even limited to graphs of bandwidth at most a given

constant (which is a subclass of graphs of treewidth at most a given constant). We show

hardness by reduction from H-Word Reconfiguration, introduced in [3]. In this

reduction we also use existing constraint logic gadgets due to Hearn and Demaine [2].

The first study of the complexity of reconfiguration problems in a parameterized setting

is due to Mouawad et al. [4], in which the authors recognize two types of parametrization:

the solution size k and the length of the reconfiguration sequence l. The use of solution

size k as a parameter does not make sense for constraint logic. However, we do consider

Chapter 1. Introduction 3

l as a parameter. To avoid confusion, throughout this paper we will use K to refer to

the treewidth of a graph (usually a lowercase k is used).

The use of treewidth as a parameter for reconfiguration problems is studied in [3, 5]. By

reducing from H-Word Reconfiguration the authors show reconfiguration versions

of several graph problems PSPACE-complete on graphs of bounded bandwidth. Our

proof regarding the hardness of NCL on bounded treewidth graphs also reduces from

the H-Word Reconfiguration problem and bears some similarities to the reductions

given in these papers.

For several reconfiguration problems, their hardness on planar graphs of low maximum

degree is known by reduction from NCL, while their hardness on bounded bandwidth

graphs is known by reduction from H-Word Reconfiguration [3, 5, 6, 7]. We unify

these results, showing that these problems are hard on graphs that are both planar, have

low maximum degree, and are of bounded bandwidth.

1.2 Our Contributions

We study the parameterized complexity of Constraint Graph Satisfiability and

Nondeterministic Constraint Logic with respect to combinations of solution length,

maximum degree and treewidth as parameters. As our main result, we show that

Nondeterministic Constraint Logic remains PSPACE-complete even on planar,

3-regular graphs of bandwidth at most a constant (note that bandwidth is a stronger

parameter than treewidth).

Our results concerning the hardness of constraint logic problems are summarized in Table

1.1. This table shows the complexity of Constraint Graph Satisfiability (CGS),

unbounded configuration-to edge (C2E) and configuration-to-configuration (C2C) vari-

ants of Nondeterministic Constraint Logic and their respective bounded counter-

parts (bC2E and bC2C) with respect to the parameters solution length (l), maximum

degree (∆) and treewidth (K). Where a traditional complexity class is listed this de-

notes that the problem is hard for this class even when restricted to instances where the

parameter is at most a constant.

Chapter 1. Introduction 4

Problem
CGS C2E C2C bC2E bC2C

P
a
ra

m
et

er
s - NP-C PSPACE-C PSPACE-C NP-C NP-C

l - W[1]-hard W[1]-hard W [1]-hard FPT
l + ∆ - FPT FPT FPT FPT
K weakly NP-C PSPACE-C PSPACE-C weakly NP-H weakly NP-H

K + ∆ FPT PSPACE-C PSPACE-C FPT FPT

Table 1.1: Parameterized complexity of graph constraint logic problems.

The solution length parameter does not apply to CGS, since it does not have such a

notion. By reduction from k-Clique, we show that C2E, C2C and bC2E variants of NCL

are W[1]-hard when parameterized by solution length. On the positive side, the bC2C

variant is fixed parameter tractable with respect to solution length. When parametrized

with both solution length and maximum degree all variants become fixed parameter

tractable. Note that on 3-regular graphs the unbounded variants are PSPACE-complete

and the bounded variants are NP-complete [2], so considering maximum degree as a

parameter on its own is not interesting.

We show that CGS is weakly NP-complete even on treewidth 2 graphs, but becomes fixed

parameter tractable when parametrized by a combination of treewidth and maximum

degree. The bounded NCL variants respond similarly: they are weakly NP-hard even

on treewidth 2 graphs, but become fixed parameter tractable when parameterized by

both treewidth and maximum degree.

Our main result is regarding (unbounded) Nondeterministic Constraint Logic

(NCL). Unlike CGS, which is fixed parameter tractable with respect to treewidth plus

maximum degree, NCL (the reconfiguration version of CGS) remains PSPACE-complete

even on planar, 3-regular graphs of bounded treewidth constructed using only ”AND

vertices” and ”OR vertices”. Our result is in fact stronger, since the graphs created in

our reduction have bounded bandwidth - a stronger parameter than treewidth.

As an application of our hardness result for NCL, we show that reconfiguration versions

of several classical graph problems are PSPACE-complete, even on bounded bandwidth,

planar graphs of low maximum degree2. Additionally, we show that deciding whether

an instance of the Rush Hour puzzle is solvable is PSPACE-complete, even when the

game is played on a n× c board where c is a constant.

2Note that while having bounded bandwidth implies having bounded degree, the degree bounds we
obtain are stronger than the bound obtained from bandwidth.

Chapter 2

Preliminaries

2.1 Graph Constraint Logic

Hearn and Demaine’s framework [2] provides several decision problems that are based

around the central notion of constraint graphs:

Definition 2.1 (Constraint Graph). A constraint graph is a graph with edge weights

and vertex weights. A legal configuration for a constraint graph is an assignment of an

orientation to each edge such that for each vertex, the total weight of the edges pointing

in to that vertex is at least that vertex’ weight (its minimum inflow).

Note that we only count the edges incident to a given vertex towards satisfying its

minimum inflow.

A fundamental decision problem regarding constraint graphs is that of their satisfiability:

Constraint Graph Satisfiability (CGS)

Instance: A constraint graph G.

Question: Does G have a legal configuration?

Constraint Graph Satisfiability is NP-complete [2]. Hearn and Demaine [2] pro-

vide a redution from 3-SAT.

Another important problem regarding constraint graphs is whether they can be recon-

figured in to each other:

5

Chapter 2. Preliminaries 6

Nondeterministic Constraint Logic (C2C)

Instance: A constraint graph G and two legal configurations C1, C2 for G.

Question: Is there a sequence of legal configurations from C1 to C2, where every

configuration is obtained from the previous configuration by changing the orientation of

one edge?

This problem is called the configuration-to-configuration (C2C) variant of Nondeter-

ministic Constraint Logic . It is PSPACE-complete [2]. The configuration-to-edge

variant (C2E) is also PSPACE-complete [2]:

Nondeterministic Constraint Logic (C2E)

Instance: A constraint graphG, a target edge e fromG and an initial legal configuration

C1 for G.

Question: Is there a sequence of legal configuration, starting with C1, where every

configuration is obtained from the previous by changing the orientation of one edge, so

that eventually e is reversed?

For the C2C and C2E problems, bC2C and bC2E denote their bounded variants which

ask whether there exists a reconfiguration sequence in which each edge is reversed at

most once. These problems are NP-complete [2].

Hearn and Demaine [2] consider only a restricted subset of constraint graphs, those

which are planar and are constructed using only two specific types of vertices: AND and

OR vertices (Figure 2.1).

2 2

2

2

(a) OR vertex

2 1

2

1

(b) AND vertex

Figure 2.1: The two vertex types from which a restricted constraint graph is con-
structed: (a) OR vertex and (b) AND vertex. Following the convention set in [1], as a
mnemonic weight 2 edges are drawn blue (dark grey) and thick, while weight 1 edges

are drawn red (light grey) and thinner.

Chapter 2. Preliminaries 7

The OR vertex has minimum inflow 2 and three incident weight 2 edges. Its inflow

constraint thus is satisfied if and only if at least one of its incident edges is directed

inwards (resembling an OR logic gate). The AND vertex has minimum inflow 2, two

incident weight 1 edges and one incident weight 2 edge. Its constraint thus is satisfied

if and only if both weight 1 edges are directed inwards or the weight 2 edge is directed

inwards (resembling an AND logic gate).

Both C2C and C2E NCL remain PSPACE-complete even for this restricted subset of

constraint graphs. CGS also remains NP-complete under these restrictions. We note

that the hardness is in the strong sense, since the weights used are at most 2. We will

however consider arbitrary weights, and some cases will turn out to have weak hardness.

Hearn and Demaine define several other constraint logic games and puzzles, complete

for classes such as P , EXPTIME, NEXPTIME and even an undecidable game played

on constraint graphs. However, we limit ourselves to considering just CGS and NCL.

2.2 H-Word Reconfiguration

To show hardness of NCL on bounded bandwidth graphs, we reduce from the H-Word

Reconfiguration problem, introduced in [3].

Definition 2.2 (H-word). Let H = (Σ, E) where Σ is an alphabet and E ⊆ Σ × Σ a

relation. An H-word is a word over Σ, such that each pair of consecutive characters

(a, b) is an element of E.

H-Word Reconfiguration

Instance: Two H-words Ws,Wg of equal length

Question: Is there a sequence of H-words W1, . . . ,Wn, so that every pair of consecutive

words Wi,Wi+1 can be obtained from each other by changing exactly one character to

another and W1 = Ws,Wn = Wg?

Theorem 2.3 (Wrochna [3]). There exists an H such that H-Word Reconfig-

uration is PSPACE-complete.

Chapter 2. Preliminaries 8

In our reduction, the bandwidth of the resulting constraint graph will only depend on

H. Due to Theorem 2.3, this means that the problem is hard even when the graph’s

bandwidth is bounded by a constant.

Wrochna’s proof [3] of Theorem 2.3 is very interesting. It shows how to simulate a

Turing Machine with a polynomially bounded tape as an H-Word Reconfiguration

problem, and is in some sense an analogue of Cook’s Theorem [8]. A simplified version

of the proof (omitting some technical details) is reproduced here.

Proof. Fix some PSPACE-complete language L and a deterministic Turing machine T

deciding L whose tape is polynomially bounded. We construct an H so that whether T

accepts a given input can be reduced to H-Word Reconfiguration.

Let Q be the set of states of T and Σ be the alphabet of T . We begin by defining a

string rewriting problem on the alphabet Σ ∪ (Σ×Q). We represent a configuration of

the machine where the tape contents are σ1, . . . , σn, the machine is in state q and the

machine’s head is in position i by a string σ1, . . . , σn where σi is replaced by (σi, q).

The state transitions can now be modelled as follows: if the machine in state q1 over

symbol σi would write symbol σj , move left and change to state q2 then we would

introduce a string rewriting rule stating that characters σk, (σi, q1) can be replaced by

(σk, q2), σj . Similarly, we can define rules for transitions where the head moves right or

stays in the same place.

These string rewriting rules are of the form a1, b1 → a2, b2. We simplify this by (for each

rule) introducing helper symbols X,Y . We replace the rule a1, b1 → a2, b2 by a set of

four new rules: a1, a2 → X, a2, X, a2 → X,Y , X,Y → b1, Y , b1, Y → b1, b2. Now, each

rule only changes one symbol at a time.

We now reduce this string rewriting problem over alphabet Σ′ = Σ ∪ (Σ × Q) to a

H-Word Reconfiguration problem over H = (Γ, E) where Γ = Σ′ × Σ′.

For a, b, c ∈ Σ′, we let (a, b), (b, c) ⊆ E. A string σ1, σ2, σ3, . . . , σn−1, σn ∈ Σ′∗ is then

represented as a string (σ1, σ2), (σ2, σ3), . . . , (σn−1, σn) ∈ Γ∗.

We now need to show how to allow a string rewriting rule of the form a, b1 → a, b2

as an operation in H-Word Reconfiguration problem. To this end, we intro-

duce (for each rule) a helper character x and break down this transformation in to

Chapter 2. Preliminaries 9

3 steps: (·, a), (a, b1), (b1, ·) is replaced by (·, a), x, (b1, ·), which is in turn replaced by

(·, a), x, (b2, ·), and finally replaced by (·, a), (a, b2), (b2, ·). Here · is a wildcard repre-

senting that any character can take its place. To allow this reconfiguration sequence to

happen, we add the following pairs to H: ((·, a), x), (x, (b1, ·)) and (x, (b2, ·)).

A rule a1, b→ a2, b can be represented in a similar way.

For the full details of this proof we refer to [3] but we note one interesting detail: all

steps in H-Word Reconfiguration are reversible. The Turing machine computation

however, is not reversible. This might seem cause for concern, but since the Turing

machine is deterministic, being able to reverse steps does not matter.

2.3 Constraint Graph Gadgets

In our reductions, we use several constraint graph gadgets due to Hearn and Demaine

[2]. For the purpose of being self-contained, we reproduce these gadgets here and state

(without proof) their functionality.

Edge Terminators. Hearn and Demaine [2] introduced 3 types of edge terminator

gadgets. We do not use the free (blue-)edge terminator, so we only list the two types

we do use. The constrained blue-edge (Figure 2.2a) terminator allows us to have a loose

blue edge that is forced to point outwards, effectively removing the edge from the graph

while still meeting the requirement that the graph is built from only AND and OR

A

(a) Constrained blue-edge ter-
minator

A

(b) Free red-edge terminator

Figure 2.2: Gadgets for terminating loose edges. The constrained blue-edge terminator
(a) forces the blue edge A to point in towards the gadget at all times, while the free

red-edge terminator (b) allows the red edge A to point out of the gadget.

Chapter 2. Preliminaries 10

vertices. The free red-edge terminator (Figure 2.2b) allows us to have a loose red edge

whose orientation can be freely chosen, effectively decreasing the minimum inflow of the

vertex to which it is incident by one.

Red-blue Conversion. It is useful to be able to convert a blue edge to a red edge,

i.e. we require a gadget which has a blue edge that can (be reconfigured to) point

outwards only if its red edge is pointing inwards and vice-versa. Hearn and Demaine [2]

provide a construction that allows red-blue conversion in pairs, but also note a simpler

construction is possible: an AND vertex, with one of its red edges attached to a free

red-edge terminator (Figure 2.2b) can serve as a red-blue conversion gadget.

Crossover Gadget. The crossover gadget (Figure 2.3a) has 4 incident blue edges

A,B,C and D, with the property that A can (be reconfigured to) point outward only if

B is pointing inwards and vice-versa, with the same property also holding for C and D.

The crossover gadget is constructed using degree-4 vertices (of minimum inflow 2) that

are incident to four weight-1 edges. These can be replaced with the half-crossover gadget

(Figure 2.3b) to obtain a construction that only uses AND and OR vertices. Note that

this replacement requires using red-blue conversion gadgets.

Note that to cross a red edge with a blue edge (or a red edge with another red edge) we

can use the aforementioned crossover gadget, paired with red-blue conversion gadgets.

Latch Gadget. The final gadget we require is the latch gadget (Figure 2.4). It can

be unlocked by reversing the edge L, after which its state (the orientation of edge A,

and adjacent edges) can be changed. The latch can be locked by reversing the edge L

A

B

C D

(a) Crossover (b) Half-crossover

Figure 2.3: The crossover gadget (a) may be constructed with help of the half-crossover
gadget (b).

Chapter 2. Preliminaries 11

again. It is useful to reduce C2E NCL problems to C2C NCL problems, replacing the

target edge in the C2E problem by a latch gadget, and creating a C2C problem in which

the goal configuration differs from the start configuration only in the state of the latch

gadget.

L
A

Figure 2.4: The latch gadget can be (un-)locked by reversing edge L, and edge A may
reverse if and only if the gadget is unlocked. The gadget is shown in its locked state.

2.4 Graph Parameters

As one possible parametrization we consider a graph’s treewidth. The main result

(Theorems 3.3 and 3.4) considers graphs of bounded bandwidth, a subclass of graphs of

bounded treewidth [9].

Definition 2.4 (Treewidth). A tree decomposition of a graph G = (V,E), is a tree T

in which every vertex t of T is associated with a bag Xt ⊆ V , such that:

• For all v ∈ V , there is a t such that v ∈ Xt

• For all (u, v) ∈ E, there is a t such that u ∈ Xt and v ∈ Xt

• For all v ∈ V , T [{t ∈ T : v ∈ Xt}] is connected

The width of a tree decomposition is maxt∈T |Xt|−1. The treewidth of G is the minimum

width over all tree decompositions of G.

Definition 2.5 (Bandwidth). Let G = (V,E) be a graph and define a one-to-one cor-

respondence f : V → {1, . . . , |V |}. The bandwidth of a graph is the minimum over all

such correspondences of max(u,v)∈E |f(u)− f(v)|.

Finally, in the proof of Theorem 5.3 we use the notion of cutwidth:

Definition 2.6 (Cutwidth). Let G = (V,E) be a graph and define a one-to-one corre-

spondence f : V → {1, . . . , |V |}. The cutwidth of a graph is the minimum over all such

correspondences of maxw∈V |{(u, v) ∈ E|f(u) ≤ f(w) < f(v)}|.

Chapter 2. Preliminaries 12

A graph that has bounded bandwidth also has bounded cutwidth [9].

2.5 Dynamic Programming on Tree Decompositions

For some of the positive results in this paper, we use the technique of dynamic program-

ming on tree decompositions. For an excellent survey of and introduction to this topic,

see [10].

To simplify the algorithms, we assume tree decompositions are given in nice form, that

is, all of the nodes of the tree decomposition are of one of the following types:

• Leaf : all leaves of the tree decomposition contain exactly one vertex.

• Introduce: a node with one child that contains the same set of vertices as its

child, with the addition of one new vertex.

• Forget: a node with one child that contains the same set of vertices as its child,

but with one vertex removed.

• Join: a node with two children so that both the node itself and both of its children

contain the exact same set of vertices.

Given a tree decomposition, it is possible to find a nice tree decomposition of the same

width (and of linear size) in linear time.

Chapter 3

Parametrization by Treewidth

In this section, we study the complexity of constraint graph problems when parametrized

by treewidth, and by treewidth plus maximum degree. We first examine Constraint

Graph Satisfiability, then prove our main result, showing that (unbounded) Non-

deterministic Constraint Logic is PSPACE-complete on graphs of bounded band-

width. Finally we look at the bounded variant of Nondeterministic Constraint

Logic.

3.1 Constraint Graph Satisfiability

We first examine Constraint Graph Satisfiability (CGS) with respect to treewidth

K and maximum degree ∆ as parameters. CGS is strongly NP-complete even for graphs

where ∆ = 3 [2]. We show that CGS is weakly NP-complete for graphs of treewidth at

most 2, but that CGS is fixed parameter tractable with respect to K+∆ and solvable in

polynomial time for fixed K if the input is given in unary. Note that even though CGS

becomes fixed parameter tractable with respect to K + ∆, its reconfiguration variant

remains hard (Theorem 3.3) even when this parameter is bounded by a constant.

Theorem 3.1. Constraint Graph Satisfiability is weakly NP-complete on con-

straint graphs of treewidth 2.

Proof. By reduction from Partition. Let x1, . . . , xn ∈ N such that Σn
i=1xi = 2N be an

instance of Partition. Construct a constraint graph with vertices U,W with minimum

inflow N , and vertices v1 . . . , vn where the minimum inflow of vi is equal to xi. For

13

Chapter 3. Parametrization by Treewidth 14

1 ≤ i ≤ n, create edges (U, vi), (W, vi), both of weight xi. In any legal configuration for

this constraint graph, either edge (U, vi) or (W, vi) must be directed towards vertex vi

and the other edge will be directed towards either U or W . A solution to the partition

problem and a legal configuration for the constraint graph correspond as follows: for

all xi in one half of the partition, the edge (U, vi) is directed towards U (and the edge

(W, vi) is directed towards vi) and for all xi in the other half of the partition, the edge

(W, vi) is directed towards W (and the edge (U, vi) is directed towards vi). The graph

restricted to vertices {v1, . . . , vn, U} forms a tree, and thus the constraint graph itself

has treewidth 2 (we can add the vertex W to all bags). We have thus shown CGS weakly

NP-hard on constraint graphs of treewidth 2.

The following theorem shows that CGS can be solved in polynomial time on graphs of

treewidth 2 when the input is given in unary (and completes the proof of theorem 3.1).

Theorem 3.2. Constraint Graph Satisfiability is fixed parameter tractable with

respect to parameter K + ∆ and solvable in time O∗(|x|K) on constraint graphs of

treewidth K when the size of the input numbers given in unary is |x|.

Proof. We provide a dynamic programming algorithm on tree decompositions. In the

case where ∆ is a parameter, in each bag we store for every combination of orientations

of the edges incident to vertices in that bag (at most 2∆(K+1) combinations) whether

that combination leads to a valid configuration for the subgraph induced by the subtree

rooted at that bag. We assume that the tree decomposition is given as a nice tree

decomposition:

• Leaf : In a leaf node, we enumerate all possible combinations of orientations for

edges incident to this vertex (at most 2∆), and see which combinations satisfy the

minimum inflow of that vertex.

• Introduce: In an introduce node, enumerate all combinations of orientations of

edges incident to the vertices in the bag (at most 2∆(K+1)). A combination is valid

if it satisfies the inflow of the vertex being introduced, and (when restricted to the

appropriate edges) is also a valid assignment of orientations for the child bag.

• Forget: In a forget node, an assignment of orientations is valid if it can be extended

(by picking appropriate orientations for the missing edges) to a valid configuration

for the child bag.

Chapter 3. Parametrization by Treewidth 15

• Join: In a join node, an assignment of orientations is valid if it is valid for both

child nodes.

The amount of work done in each bag is O∗(2∆(K+1)), so the total running time is

O∗(|I| · 2∆(K+1)), where |I| is the number of bags (which can be assumed to be linear in

the size of the input graph, since there always a linear size tree decomposition).

A similar algorithm can be used in the case where the input is given in unary. Instead

of storing the orientations of the edges directly, we store only the resulting inflow values.

For all possible combinations of inflow that the vertices in the bag can be receiving (at

most |x|K+1 combinations), we store whether that combination of inflows is attainable

using only the edges present in the subgraph induced by the subtree rooted in that bag

(i.e. edges to vertices in parent bags are not considered) in configurations that are legal

for the vertices in the induced subgraph excluding the vertices in the bag itself. This

requires (in particular) modification of the forget case, marking as invalid any inflow

configurations that do not satisfy the minimum inflow of the vertex being forgotten

(detection of whether a vertex is receiving sufficient inflow is deferred to the forget node

instead of being checked in the leaf or introduce cases).

3.2 Unbounded Nondeterministic Constraint Logic

In this section we prove the main result, namely that restricted Nondeterminis-

tic Constraint Logic remains PSPACE-complete even when restricted to graphs

of bounded bandwidth (which is a subclass of graphs of bounded treewidth).

To show PSPACE-completeness, we reduce from H-Word Reconfiguration. The

bandwidth of the constraint graph created in the reduction will depend only on the size

of H. Since H-Word Reconfiguration is PSPACE-complete for a fixed (finite) H,

we obtain a constant bound on the bandwidth.

Theorem 3.3. There exists a constant c, such that C2C Nondeterministic Con-

straint Logic is PSPACE-complete on planar constraint graphs of bandwidth at most

c that use only AND and OR vertices.

Chapter 3. Parametrization by Treewidth 16

Proof. Let H = (Σ, E) be so that H-Word Reconfiguration is PSPACE-complete.

We provide a reduction from H-Word Reconfiguration to (unrestricted) NCL and

then show how to adapt this reduction to work for restricted NCL.

Let Ws,Wg be an instance of H-Word Reconfiguration and let n denote the length

of Ws. In the following, all vertices are given minimum inflow 2.

We create a matrix of vertices Xi,j for i ∈ {1, . . . , n}, j ∈ Σ, the character vertices. Xi,j

corresponds to whether the character at position i in the word is character j. For every

row i of this matrix we create a universal vertex Ui and for every j ∈ Σ we create a blue

(weight 2) edge connecting Ui and Xi,j .

In each row i ∈ 1, . . . , n− 1 and for all pairs (A,B) 6∈ E, we create a relation vertex

∆i,A,B. We create a red (weight 1) edge connected to Xi,A and pass it through a red-blue

conversion gadget and connect the blue edge leaving the conversion gadget to ∆i,A,B.

Similarly, we create a red edge connected to Xi+1,B, convert it to blue, and connect

it to ∆i,A,B. Finally, we connect one additional blue edge to ∆i,A,B and connect it to

a constrained blue-edge terminator. This edge serves no purpose (its inflow can never

count towards ∆i,A,B) except to make ∆i,A,B an OR vertex as claimed.

A single instance of this construction is shown in figure 3.1, which depicts a slice of two

rows from the matrix of vertices. Having created an instance of this construction for

A,B, we might need to create an instance for A,C. Rather than attaching another red

edge to Xi,A, we instead split the existing red edge leaving Xi,A by connecting it to a

red-blue conversion gadget, and attaching the resulting blue edge to an AND vertex.

The edges leaving the AND vertex may be oriented outward if and only if the red edge

leaving Xi,A is oriented in to the AND vertex, effectively splitting it. We then convert

two red edges of the AND vertex to blue and attach them to ∆i,A,B and ∆i,A,C as before.

To create further copies of this construction we can repeat the splitting process, so that

Xi,A eventually has two incident red edges (where one of the red edges is used to connect

to vertices in the next layer, and the other used to connect to vertices in the previous

layer, making it an AND vertex as claimed), one connecting to gadgets in layer i − 1

and one connecting to layer i+ 1 (the excess red edges in rows 1 and n may instead be

connected to a free red edge terminator).

Chapter 3. Parametrization by Treewidth 17

Ui

Xi,A Xi,B Xi,C Xi,D

Xi+1,A Xi+1,B Xi+1,C Xi+1,D

Ui+1

∆i,A,B

Figure 3.1: Slice of two rows from the matrix of vertices (over an alphabet of Σ =
{A,B,C,D}), and the construction for enforcing non-adjacency of A and B.

We define a character j to be in the word at position i if the edge (Ui, Xi,j) is oriented

towards Ui.

Claim. In any legal configuration, at least one character is in the word at each position.

Proof. Ui has minimum inflow 2, so at least one of its incident edges (Ui, Xi,j) must be

oriented towards it and hence j is in the word at position i.

Claim. In any legal configuration, if (A,B) 6∈ E then A can be in the word at position

i only if B is not in the word at position i+ 1.

Proof. If A is in the word at position i, then Xi,A is not receiving inflow from Ui, so

both of the red edges incident to Xi,A most point in towards Xi,A. After passing through

the red-blue conversion gadgets and possible AND vertices splitting the red edge, the

associated blue edge incident to ∆i,A,B must point out of ∆i,A,B (and in the direction of

Xi,A to help satisfy its minimum inflow). Hence the other blue edge incident to ∆i,A,B

(the third blue edge is constrained by the blue-edge terminator) must point in towards

∆i,A,B. Again passing through the conversion gadgets and the splitting AND vertices,

the associated red edge must point out of Xi+1,B (and in the direction of ∆i,A,B to help

satisfy its minimum inflow) and hence B can not be in the word at position i + 1 as

claimed.

Chapter 3. Parametrization by Treewidth 18

Note that this claim implies that if for each position we pick some character that is in

the position at that word, we end up with a valid H-Word. We say that a configuration

for the constraint graph encodes a word W if each of that word’s characters is in the

word at the appropriate position.

Claim. If a legal configuration for the constraint graph encoding Ws may be reconfigured

in to a legal configuration encoding only Wg (and that encodes no other word), then Ws

may be reconfigured in to Wg.

Proof. Suppose we have a reconfiguration sequence of legal configurations C1, . . . , Cm

so that C1 encodes Ws and Cm encodes only Wg. We define a reconfiguration sequence

of words W1, . . . ,Wm which will have the property that Ci encodes Wi. Let W1 = Ws,

we recursively define Wi, 1 < i ≤ m as follows: Since Ci+1 differs from Ci in the

orientation of only one edge, the set of words encoded by Ci+1 differs only from the set

of words encoded by Ci by making one character at a position allowed (in the word) or

disallowed (no longer in the word). If a character at a position becomes allowed in Ci+1,

let Wi+1 = Wi (since Ci encodes Wi, Ci+1 also encodes Wi). If a character at a position

becomes disallowed, we obtain Wi+1 from Wi by changing the character at that position

to some allowed character (of which there is at least one). Following these steps, since

the final configuration encodes only Wg, we obtain a reconfiguration sequence from Ws

to Wg as claimed.

Claim. Given a H-word W of length n, there exists a legal configuration for the con-

straint graph encoding only W .

Proof. Pick the orientation of edge (Ui, Xi,j) to be towards Ui if the character in W

at position i is j, and towards Xi,j otherwise. Clearly this constraint graph encodes

only W . This configuration can be extended to a legal configuration for the remaining

(relation) vertices by noticing the following: if there is a relation vertex ∆i, A,B then

either A is not in the word at position i or B is not in the word at position j. Suppose

w.l.g. that B is not in the word, then Xi+1,B is receiving inflow from Ui+1 and hence its

incident red edges may be pointing outwards, which (after passing through the red-blue

conversion gadgets and splitting AND vertices) allows us to satisfy the inflow requirement

of ∆i,A,B.

Claim. If two H-Words W1,W2 differ by only one character, then a constraint graph G

encoding only W1 can be reconfigured in to one encoding only W2.

Chapter 3. Parametrization by Treewidth 19

Proof. Suppose that W1 and W2 differ by changing the character at position i from A

to B. We may first reconfigure G from encoding only W1 to encoding both W1 and W2,

and then reconfigure it to encode only W2. This temporarily increases the inflow Ui

receives from 2 (receiving inflow only from Xi,A) to 4 (receiving inflow from both Xi,A

and Xi,B) back to 2 (receiving inflow from only Xi,A). It may be required to reconfigure

some edges in relation to relation vertices, but this is always possible because neither A

nor B conflicts with any preceding or succeeding characters.

Note that this claim implies that if Ws can be reconfigured in to Wg, then a constraint

graph encoding only Ws can be reconfigured in to one encoding only Wg. This completes

the reduction.

All that remains to show is that this graph can be adapted so that it only uses AND

and OR vertices and is planar, and that the resulting graph has bounded bandwidth.

The only vertices that are not already AND or OR vertices are the universal vertices Ui.

These may be replaced by a binary tree of OR vertices (or some other structure) that

repeatedly splits a blue edge, similar to splitting the red edges.

To make the graph planar, we can use Hearn and Demaine’s crossover gadget. While

this may increase the graph’s bandwidth, this argument shows that it remains bounded

by a constant:

We obtain a bag decomposition by (for each i) taking all vertices Ui, {Xi,j : j ∈

E}, {∆i,A,B : (A,B) 6∈ E}, {Xi+1,j : j ∈ E} and Ui+1 and the vertices in gadgets

connecting them in a single bag Bi. Since the size of such a bag depends only on H

(which is fixed) and edges only run either between vertices in the same bag Bi, or from

vertices in a bag Bi to vertices in a bag Bi−1 or from vertices in a bag Bi to vertices in

a bag Bi+1, the bandwidth of this graph is at most a constant c.

We have thus shown how to reduce H-Word Reconfiguration to NCL, shown how

to adapt our reduction to use only AND and OR vertices, how make the graph planar,

that the resulting graph has bounded bandwidth and have thus shown Theorem 3.3.

Theorem 3.3 also holds for C2E Nondeterministic Constraint Logic:

Theorem 3.4. There is a constant c, such that C2E Nondeterministic Constraint

Logic is PSPACE-complete, even on planar constraint graphs of treewidth (bandwidth)

at most c that use only AND and OR vertices.

Chapter 3. Parametrization by Treewidth 20

Proof. H-Word Reconfiguration remains PSPACE-complete, even when instead of

requiring that one H-word is reconfigured in to another, we ask whether it is possible

to reconfigure a given H-word so that a given character appears at a specific position

(without requiring anything regarding the remaining characters in the word). This can

be seen by examining the proof in [3], noting that we may modify the Turing machine

to, upon reaching an accepting state, move the head to the start of the tape and write a

specific symbol there. The proof of Theorem 3.3 can then easily be adapted to work for

C2E NCL (since a character appearing at a specific position corresponds to reversing a

specific edge).

We note that Theorems 3.3 and 3.4 may be further strengthened by requiring that all

OR vertices in the graph are protected, that is, in any legal configuration at least one of

its incident edges is directed outwards. Hearn and Demaine [2] show how to construct

an OR vertex using only AND vertices and protected OR vertices.

It is interesting that while CGS is fixed parameter tractable with respect to treewidth

plus maximum degree, NCL remains hard even for fixed values of these parameters.

Much like how shortest path reconfiguration is PSPACE-complete [11] while finding

a shortest path is in P, this gives another example of how a reconfiguration problem

can be much harder than the respective decision problem. We note that the converse

is also possible: finding a graph 3-colouring is a classical NP-complete problem but

reconfiguring 3-colourings is in P [12].

3.3 Bounded Nondeterministic Constraint Logic

We now consider the bounded variant of NCL, in which each edge is allowed to reverse at

most once. We show that the bounded variants of NCL are weakly NP-hard on graphs

of treewidth at most 2, but, unlike their unbounded variants, fixed parameter tractable

when parameterized by K + ∆.

Theorem 3.5. Bounded NCL (both C2E and C2C) is weakly NP-hard on constraint

graphs of treewidth 2.

Proof. By reduction from Partition. Construct an NCL graph in the same manner

as in the proof of Theorem 3.1, but create an additional edge (U,W) of weight N . In

Chapter 3. Parametrization by Treewidth 21

the initial configuration, let the edge (U,W) be directed towards W , the edges (U, vi)

towards U and the edges (W, vi) towards vi.

• For the C2E variant, ask whether it is possible to reverse the edge (U,W).

• For the C2C variant, ask whether the configuration in which all edges are reversed

is reachable.

It is possible to reverse (U,W) is and only if there is a partition: initially, vertex U is

receiving 2N units of inflow (from the edges (W, vi)) and V is receiving N units of inflow

(from the edge (U,W)). To reverse (U,W), we must reverse some of the edges (U, vi)

and (W, vi) so that W is receiving exactly N units of inflow from them. If W is receiving

less than N units of inflow from these edges it is not possible to reverse (U,W), if it is

receiving more than N inflow then V would not be receiving enough inflow. Being able

to select these edges so that W receives exactly N units of inflow from them corresponds

to a partition.

This completes the proof for the C2E variant. For the C2C variant, note that after

reversing (U,W) we may reverse the remaining edges (that have not been reversed

yet) while the graph remains satisfied: after reversing (U,W), U is receiving 2N units

of inflow and W is receiving N units, after reversing the remaining edges U will be

receiving N units of inflow and W will be receiving 2N units.

Bounded NCL (on graphs of treewidth 2) is clearly in NP, however, it is not clear

whether there exists a pseudopolynomial algorithm for the problem, so we can not claim

weak NP-completeness. This is an open problem.

Theorem 3.6. Bounded NCL (both C2E and C2C) is fixed parameter tractable with

respect to parameter K + ∆.

Proof. The problems can be solved by dynamic programming on tree decompositions.

For every bag, we consider all possible sequences of reversing the edges in that bag (since

each edge may be reversed at most once, there are at most (∆K)! such sequences) that

result in a valid solution for the subgraph induced by the subtree rooted at that bag.

For C2C, we additionally require that a reversal sequence reverses exactly those edges

that need to be reversed. For C2E, we additionally require that the reversal sequence

Chapter 3. Parametrization by Treewidth 22

reverses the target edge. We assume that the tree decomposition is given as a nice tree

decomposition:

• Leaf : Enumerate all reversal sequences of incident edges (at most ∆!). For the

C2C variant, a sequence is valid if it reverses exactly the edges that must be

reversed and additionally respects the minimum inflow of the vertex. For C2E,

all sequences that respect the minimum inflow of the vertex are valid, unless the

vertex is incident to the target edge in which case we additionally require that a

valid reversal sequence reverses the target edge.

• Introduce: Enumerate all reversal sequences of incident edges (at most (∆K)!

sequences). A sequence is valid if it is valid for the vertex being introduced (as

described in the leaf case) and also valid for the child bag (when restricted to the

appropriate edges).

• Forget: A reversal sequence is valid if and only if it can be extended (by intro-

ducing reversal operations for the missing edges) to a valid reversal sequence for

the child bag. Note that this is simply a projection of the reversal sequences valid

for the child.

• Join: A reversal sequence is valid if and only if it is valid for both child bags.

Since checking whether a reversal sequence is valid can be done in polynomial time (if

the memoization tables are stored in a suitable data structure), the amount of work

done in each bag is O∗((∆K)!). Since the number of bags can be assumed to be linear

[10], this gives a fixed-parameter tractable algorithm.

Chapter 4

Parametrization by Solution

Length

We consider parametrization by the length of the reconfiguration sequence l. This para-

meter does not bound the input size, but rather bounds the set of potential solutions

considered. It asks not whether a reconfiguration sequence exists, but whether a recon-

figuration sequence exists that has length (number of edge reversals) at most l. This

parametrization does not apply to CGS (since it does not have such a notion), we thus

consider this parametrization only for C2E and C2C NCL and their respective bounded

variants.

Theorem 4.1. (Unbounded) C2E, C2C and bounded C2E Nondeterministic Con-

straint Logic are W[1]-hard with respect to l.

Proof. We show W[1]-hardness by reduction from k-Clique, which is W[1]-complete

due to Downey and Fellows [13]:

Let G = (V,E) be an instance of k-Clique. Let n = |V | and let ∆ be the maximum

degree of G. We create a constraint graph with vertices v1, . . . , vn (copies of the original

vertices from G) with minimum inflow equal to that vertex’ degree in G, vertices v(i,j)

with minimum inflow 2 for all edges (i, j) ∈ E, and three additional vertices U, V,W

with minimum inflows n−∆ · k, k(k − 1) and 0 respectively.

For every edge (i, j) ∈ E, two edges in the constraint graph are created: an edge (vi, v(i,j))

and an edge (v(i,j), vj), both with weight 1. Effectively, the edge (i, j) is split and an

23

Chapter 4. Parametrization by Solution Length 24

additional vertex v(i,j) is added between vertices vi and vj . In the initial configuration,

both edges are oriented away from v(i,j) (and towards vi and vj). Note that after adding

these edges, the minimum inflow constraints in all vertices v1, . . . , vn are satisfied (since

their minimum inflow is equal to their degree).

For every vertex vi, add an edge (U, vi) to the graph with weight ∆. The edge is oriented

towards U in the initial configuration, satisfying its inflow constraint.

For every edge (i, j) ∈ E, create an edge (v(i,j), V) of weight 2, oriented towards v(i,j) in

the initial configuration. This satisfies the minimum inflow constraint of v(i,j).

Finally, create an edge (V,W) of weight k(k − 1), oriented towards V in the initial

configuration, thus satisfying V ’s minimum inflow. This edge is the target edge. Note

that W ’s minimum inflow is trivially satisfied.

The target edge (V,W) can be reversed if and only if we have first reversed k(k−1)
2 of the

weight 2 edges to point in to V (or else V ’s inflow constraint would no longer be satisfied

after reversing (V,W). A weight 2 edge (v(i,j), V) can be reversed if and only if we have

first reversed the weight 1 edges (vi, v(i,j)) and (v(i,j), vj) (or else v(i,j)’s minimum inflow

would not remain satisfied). This in turn is possible if and only if both edges (U, vi) and

(U, vj) have been reversed.

Because the minimum inflow of U is n−∆ · k, we may reverse at most k edges to point

away from U . Since we may reverse the edge (v(i,j), V) if and only if both edges (U, vi)

and (U, vj) have been reversed, the NCL instance thus constructed has a solution if and

only if there are k vertices in G such that G restricted to these vertices has k(k−1)
2 edges.

This corresponds to these vertices forming a clique.

We have thus reduced k-Clique to C2E NCL. Note that if the instance created in the

reduction has a solution of any length, then it has a solution of length at most O(k2) in

which each edge reverses at most once. Hence the reduction is parameter-preserving, and

works for both bounded and unbounded C2E NCL which we have thus shown W[1]-hard.

To show W[1]-hardness for C2C NCL, we replace the vertex W with a latch gadget.

The latch gadget has two states, and can change between these states if and only if the

edge (U,W) is pointing in to it. We ask whether there is a reconfiguration sequence that

changes the state of the latch gadget, but where all the other edges are in their initial

orientation. Such a sequence exists if and only if (in the original instance) it is possible

Chapter 4. Parametrization by Solution Length 25

to reverse the edge (U,W), since we may first reverse (U,W), activate the latch gadget,

and then backtrack to return the rest of the graph to its original state.

The construction using the latch gadget does not work for bounded C2C NCL, since each

edge can only be reversed once. Effectively, the hardness of NCL when parameterized by

solution length is not due to the complexity of finding a reconfiguration sequence, but

rather that of finding a suitable goal configuration. This is captured by the following

theorem:

Theorem 4.2. Bounded C2C Nondeterministic Constraint Logic is fixed para-

meter tractable in O∗(2l) time.

Proof. If the number of edges that differ in orientation between the goal and start

configuration exceeds l, we may reject immediately because is is impossible to reverse

all of them in l moves. We may thus assume at most l edges need to be reversed. Since

in bounded NCL each edge may be reversed at most once, feasible solutions consist of

some order of reversing the edges that need to be reversed; reversing an edge that does

not need to be reversed makes the instance unsolvable, and reversing an edge more than

once is not possible. There are thus at most l! solutions each of which can be evaluated

in polynomial time. This can be improved to a O∗(2l) time algorithm using a dynamic

programming approach, similar to the Held-Karp algorithm [14] for TSP.

Parametrization by Maximum Degree. The graphs created by the reduction in

the proof of Theorem 4.1 may have arbitrary degree, while Hearn et al. [2] consider only

graphs of maximum degree 3. We show that the hardness result of Theorem 4.1 is strict

in this regard, that is, when we parameterize by the maximum degree ∆ in addition to

l, the problem becomes fixed parameter tractable.

Theorem 4.3. Both bounded and unbounded C2E and C2C Nondeterministic Con-

straint Logic are fixed parameter tractable with respect to l + ∆.

Proof. For the C2E variants, note that an edge that is at a distance greater than or

equal to l from the target edge never needs to be reversed in a solution of length at

most l: The only valid solution of length at most 1 is to reverse the target edge, which

indeed is at distance 0 from itself. Consider a solution of length at most l + 1 and that

it reverses an edge e at distance l+ 1 or greater from the target edge. After this edge is

Chapter 4. Parametrization by Solution Length 26

reversed, we are left with a solution of length at most l which by induction only needs

to reverse edges at distances less than l from the target edge. We note that we can omit

the reversal of e from the reconfiguration sequence, since the vertex that gains inflow as

a result of that reversal is not incident to any of the edges reversed subsequently, and

hence omitting this reversal also results in a valid solution.

For any candidate solution, we only need to consider edges at distance at most l − 1

from the target edge, of which there are at most O((∆− 1)l−1). We may omit the other

edges from the graph (adjusting the minimum inflows of their incident vertices according

to the initial orientations of the edges) and consider only the graph restricted to these

edges and their incident vertices.

In the C2C variants, similar to the proof of Theorem 4.2, we may assume at most l

edges need to be reversed. We can thus bound the size of the set of edges that can be

reversed in any candidate solution by O(l(∆ − 1)l−1), since as before, for any of the l

edges needing to be reversed, we are only concerned with the edges at distance at most

l from that edge. As before, we can omit the remaining edges from the graph.

The problems thus admit kernelizations and are therefore fixed parameter tractable.

Chapter 5

Applications

As a result of our hardness proof for NCL, we (nearly) automatically obtain tighter

bounds for classical problems that reduce from NCL in their hardness proofs. If the re-

duction showing PSPACE-hardness for a problem is bandwidth-preserving in the sense

that the bandwidth of the resulting graph only depends on the bandwidth of the orig-

inal constraint graph, then that problem remains PSPACE-hard even when limited to

instances of bounded bandwidth. Since reductions from NCL usually work by locally re-

placing AND and OR vertices in the graph with gadgets that simulate their functionality,

such reductions are almost always bandwidth-preserving.

Theorem 5.1. Independent Set (IS-R), Vertex Cover (VC-R), Feedback Ver-

tex Set (FVS-R), Induced Forest (IF-R), Odd Cycle Transversal (OCT-R)

and Induced Bipartite Subgraph (IBS-R) are PSPACE-complete on planar graphs

of bounded bandwidth.

Proof. Hearn and Demaine [15] provide a reduction from restricted NCL to IS-R. This

reduction is for reconfiguration under a Token Sliding (TS) model, however the same

proof also works for Token Jumping (TJ) which in turn is equivalent to Token Addition

and Removal (TAR). For definitions and this equivalence, see [6]. In this thesis, we

consider the TAR model.

By Theorem 3.3, restricted NCL is PSPACE-complete on graphs of bounded bandwidth.

The reduction from restricted NCL to IS-R in [16] creates planar, maximum degree 3

graphs. Because the reduction works by replacing every AND and OR vertex with a

construction of at most 9 vertices, the bandwidth is at most 9 times the bandwidth of

27

Chapter 5. Applications 28

the input graph. IS-R is thus PSPACE-complete on planar, maximum degree 3 graphs

of bounded bandwidth.

The following argument (due to Wrochna [3]) shows that this hardness result also applies

to the other problems: Since a vertex cover is the complement of an independent set, VC-

R is also PSPACE-complete on planar, maximum degree 3 graphs of bounded bandwidth.

Replacing edges with triangles (increasing the bandwidth by at most a multiplicative

factor) shows that FVS-R, IF-R, OCT-R and IBS-R are PSPACE-complete on planar,

maximum degree 6 graphs of bounded bandwidth.

Another related reconfiguration problem is that of Dominating Set Reconfiguration

(DS-R). In [7], the authors show that DS-R is PSPACE-complete on planar graphs

of maximum degree six by reduction from NCL and PSPACE-complete on graphs of

bounded bandwidth by a reduction from VC-R. The following theorem that unifies

these results follows immediately from our improved result concerning VC-R:

Theorem 5.2. Dominating Set Reconfiguration is PSPACE-complete, even on

planar, maximum degree six graphs of bounded bandwidth.

The implications of our result showing that NCL is PSPACE-complete even on bounded

bandwidth graphs are not limited to graph problems. For instance, the puzzle Rush

Hour, in which the player moves cars horizontally and vertically with the goal to free a

specific car from the board, is PSPACE-complete [17] when played on an n × n board.

A consequence of our result is that Rush Hour is PSPACE-complete even on rectangular

boards where one of the dimensions of the board is constant:

Theorem 5.3. There exists a constant c, so that Rush Hour is PSPACE-complete when

played on boards of size n× c.

Proof. Hearn and Demaine [16] provide a reduction from restricted NCL, showing how

to construct AND and OR vertices as gadgets in Rush Hour and how to connect them

together using straight line and turn gadgets. Given a planar constraint graph, it can be

drawn in the grid (with vertices on points of the grid and edges running along the lines

of the grid), after which vertices can be replaced by their appropriate gadgets and edges

with the necessary line and turn gadgets. However, starting with a graph of bounded

bandwidth does not immediately give a suitable drawing in a grid of which one of the

Chapter 5. Applications 29

dimensions is bounded (from which the theorem would follow, since all of the gadgets

have constant size).

Starting with a restricted NCL graph of bounded bandwidth, we note that this graph

also has bounded cutwidth [9]. Given a restricted NCL graph on n vertices with cutwidth

k, it is possible to arrange it in a 3n × (k + 1) grid, so that vertices of the graph are

mapped to vertices of the grid, the edges of the graph run along edges of the grid, and

no two edges or vertices get mapped to the same edge or vertex in the grid. This is

achieved by placing all of the vertices of the graph in a single row (noting that 3 columns

are required for each vertex since it has 3 incident edges) and using the remaining k rows

for the edges (placing each edge in a distinct row). However, even when starting with

a planar NCL graph, the resulting graph may have crossings. These can be eliminated

using the crossover gadget, noting that since the crossover gadget has constant size, the

resulting graph can still be drawn in a O(n)× O(k) grid. We can now use the existing

gadgets from [16] to finish the reduction, showing Rush Hour PSPACE-complete on

boards of which one of the dimensions is bounded by a constant.

Chapter 6

Conclusions

We have studied the parameterized complexity of constraint logic problems with regards

to (combinations of) solution length, maximum degree and treewidth as parameters. As

a main result, we showed that Nondeterministic Constraint Logic is PSPACE-

complete on planar, 3-regular graphs of bounded bandwidth constructed using only

AND and (protected) OR vertices. We gave several applications of this result, showing

reconfiguration versions of several classical graph problems PSPACE-hard on planar

graphs of bounded bandwidth, as well as showing Rush Hour PSPACE-complete when

played on a rectangular board where one of the lengths of the sides is bounded by a

constant.

We showed that when parameterized by solution length, C2E, C2C and bounded C2E

variants of Nondeterministic Constraint Logic are W[1]-hard, but bounded C2C

NCL becomes fixed parameter tractable. Essentially, the hardness of bounded C2E NCL

when parameterized by solution length is due to the complexity of finding a suitable

target configuration, rather than from that of determining a reconfiguration sequence.

However, when parametrizing by maximum degree in addition to solution length, all

cases become fixed parameter tractable.

When parameterized by treewidth, Constraint Graph Satisfiability becomes weakly

NP-complete (rather than strongly NP-complete). When considering maximum degree

in addition to treewidth, CGS becomes fixed parameter tractable. Note that this is

in stark contrast to the complexity of NCL, which remains PSPACE-complete even for

30

Chapter 6. Conclusions 31

fixed values of this parameter. This is an interesting example of how reconfiguration

problems can be much harder than their decision variants.

Bounded NCL also becomes fixed parameter tractable when parameterized by treewidth

and maximum degree. In the case where bounded NCL is parameterized by treewidth

alone we proved weak NP-hardness. It is an open problem whether there exists a pseudo-

polynomial algorithm for this case, or if the problem is also strongly NP-complete.

We have strengthened Hearn and Demaine’s framework [2] by proving that NCL remains

PSPACE-complete even on graphs of bounded bandwidth. This result benefits any

reduction from NCL that preserves the bandwidth of the original constraint graph.

By combining Wrochna’s proof [3] and Hearn and Demaine’s [2] constraint logic tech-

niques, we have managed to get the best of both worlds: for a several reconfiguration

problems, we showed hardness for graphs that are not only planar and have low maxi-

mum degree, but that also have bounded bandwidth. This not only strengthens Wrochna’s

results, but also makes it easier to prove hardness for reconfiguration on bounded band-

width graphs by distilling Wrochna’s proof in to Hearn and Demaine’s NCL framework.

The prior work of Raman et al. [5] and Wrochna [3] has already exhibited problems

that, even though their satisfiability version are fixed parameter tractable with respect to

treewidth, their reconfiguration versions remain hard when parameterized by treewidth

or even bandwidth. This raises the question of, if treewidth and bandwidth are not good

parameters for bringing down the complexity of reconfiguration problems, then on what

kinds of graphs do reconfiguration problems become easy? For instance, the Token

Jumping model of Independent Set Reconfiguration is known to be fixed parameter

tractable for certain classes of planar graphs [18], and also on cographs [19]. These

classes might be suitable candidates on which NCL is also tractable.

We have studied the parameterized complexity of CGS and NCL. Hearn and Demaine

[2] have defined several other problems related to constraint graphs, including two player

and multiple player constraint graph games, complete for classes such as EXPTIME and

NEXPTIME. Studying these problems in a parameterized setting gives rise to several

interesting open problems.

Bibliography

[1] Hearn, Robert A., Demaine, E.D.: The nondeterministic constraint logic model

of computation: Reductions and applications. In: Widmayer, P., Eidenbenz, S.,

Triguero, F., Morales, R., Conejo, R., Hennessy, M. Automata, Languages and

Programming. LNCS, vol. 2380, pp. 401-413. Springer, Heidelberg (2002)

[2] Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. AK Peters,

Wellesley (2009)

[3] Wrochna, M.: Reconfiguration in bounded bandwidth and treedepth. arXiv

preprint, arXiv:1405.0847 (2014)

[4] Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki A.: On the para-

meterized complexity of reconfiguration problems. In: Gutin, G., Szeider, S. Para-

meterized and Exact Computation. LNCS, vol. 8246, pp 281-294. Springer, Heidel-

berg (2013)

[5] Mouawad, A.E., Nishimura, N. Raman, V., Wrochna, M.: Reconfiguration over

Tree Decompositions. In: Cygan, M., Heggernes, P. Parameterized and Exact Com-

putation. LNCS, vol. 8894, pp. 246-257. Springer, Heidelberg (2014).

[6] Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set reconfig-

urability problems. Theoretical Computer Science, vol. 439, pp. 9-15. (2012)

[7] Haddadan, A., Ito, T., Mouawad, A.E., Nishimura, N., Ono, H., Suzuki, A., Tebbal,

Y.: The complexity of dominating set reconfiguration. arXiv:1503.00833 (2015)

[8] Cook, S.A.: The complexity of theorem-proving procedures. Proceedings of the

third annual ACM symposium on Theory of computing, pp. 151-158. ACM, New

York. (1971)

32

Bibliography 33

[9] Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. The-

oretical Computer Science, vol. 209, pp. 1-45. (1998)

[10] Bodlaender, H.L.: Treewidth: Algorithmic techniques and results. In: Igor, P.,

Ružička, P. Mathematical Foundations of Computer Science. LNCS, vol. 1295, pp.

19-36. Springer, Heidelberg. (1997)

[11] Bonsma, P.: The Complexity of Rerouting Shortest Paths. arXiv:1009.3217 (2010)

[12] Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings.

J. Graph Theory, vol. 67, pp. 69-82. (2011)

[13] Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II:

On completeness for W[1]. Theoretical Computer Science, vol. 141, pp. 109-131.

(1995)

[14] Held, M., Karp R.M.: A dynamic programming approach to sequencing problems.

Journal of the Society for Industrial & Applied Mathematics, vol. 10, pp. 196-210.

(1962)

[15] Hearn, R.A., Demaine E.D.: PSPACE-Completeness of Sliding-Block Puzzles and

Other Problems through the Nondeterministic Constraint Logic Model of Compu-

tation. Theoretical Computer Science, Game Theory Meets Theoretical Computer

Science, Special Issue, vol. 343, pp.72–96. (2005)

[16] Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and

other problems through the nondeterministic constraint logic model of computation.

Theoretical Computer Science, vol. 343, pp. 72-96. (2005)

[17] Flake, G.W., Baum, E B.: Rush Hour is PSPACE-complete, or “Why you should

generously tip parking lot attendants”. Theoretical Computer Science, vol. 270, pp.

895-911. (2005)

[18] Takehiro, I., Kamiński, M., Ono H.: Fixed-parameter tractability of token jumping

on planar graphs. In: Ahn, H., Shin. C. Algorithms and Computation LNCS, vol.

8889, pp. 208-219. Springer, Heidelberg. (2014)

[19] Bonamy, M., Bousquet, N.: Reconfiguring independent sets in cographs.

arXiv:1406.1433 (2014)

	1 Introduction
	1.1 Prior Work
	1.2 Our Contributions

	2 Preliminaries
	2.1 Graph Constraint Logic
	2.2 H-Word Reconfiguration
	2.3 Constraint Graph Gadgets
	2.4 Graph Parameters
	2.5 Dynamic Programming on Tree Decompositions

	3 Parametrization by Treewidth
	3.1 Constraint Graph Satisfiability
	3.2 Unbounded Nondeterministic Constraint Logic
	3.3 Bounded Nondeterministic Constraint Logic

	4 Parametrization by Solution Length
	5 Applications
	6 Conclusions
	Bibliography

