
Velocity Tuning for Air Traffic Control

Sander van der Hurk∗

Supervisors : prof. dr. M.J. van Kreveld
dr. ir. A.F. van der Stappen

June 19, 2015

Abstract

In this thesis we study air traffic conflict resolution via speed con-
trol. Each aircraft is assumed to have a fixed route and no speed
change during its route. We use a fast and intuitive approach to the
conflict resolution which finds an exact solution using velocity tuning,
a concept from robot motion planning.

The choice in priority for a pair of conflicting aircrafts introduces
a binary branch in the solution space. We solve the problem using
linear programming with branching constraints and reduce the search
space by using a branch cutting solution method.

In this study we will reveal that the order in which the branch-
ing constraints are entered in a linear solver influences the calcula-
tion time. When using a random initialization of our branching con-
straints, the branch cutting solution method has outliers of a factor
100 above its average runtime. We introduce a novel method for the
dynamic reordering of the decision tree, which removes these outliers.
Furthermore, we show that changing the initial order of the branch-
ing constraints can have an effect similar to the dynamic reordering,
and suggest and compare multiple initial sortings. Our computational
study reveals that using an initial sorting based on geometrical prop-
erties of the branching constraints can result in a substantial reduction
in computation time, enabling the use for real time applications.

We will run our tests using synthetic scenarios in a single-layered
air sector based on CTA Amsterdam South 1. With our proposed
solution method a realistically sized problem can be solved within
seconds, and a extremely complicated scenario with more than 100
conflict points can be solved within minutes.

∗s.e.vanderhurk@uu.nl — 3083942

1

1 Introduction

1.1 The problem

Air traffic control is tasked with keeping airplanes separated in the sky. Dur-
ing the largest portion of their flight, aircrafts have plenty of space and little
work is needed to keep them separated. Because an aircraft needs to land
at an airfield bottlenecks manifest around these relatively small areas, re-
sulting in more work for the Air Traffic Controlling Officer (ATCO) to keep
them separated. Two airplanes under radar control are, in general, hori-
zontally separated with a distance of 5 nautical miles (NM) around them,
and a vertical separation of 1000 feet [6]. See Figure 1. To facilitate the
vertical separation, ATCOs use flight levels to indicate height on cruising
altitudes instead of feet. Flight levels are spaced 100 feet, and aircrafts are
only assigned to flight levels which are a multiple of 10.

1000 ft

5 NM

Figure 1: The volume around an airplane in which no other airplane is
allowed.

The air space is getting more crowded with flights, and the number of
flights is expected to grow in Europe from a current 10.0 million annual flights
to 16.9 million annual flights by 2030 [12]. All these aircrafts need to be kept
separated during their flight, and arrive with as little delay as possible. With
the increase in traffic, the workload for the Air Traffic Controlling Officer
(ATCO) will continue to grow. If two or more aircrafts need instructions
in order to maintain separation, it is called a conflict resolution. There is a
maximum number of conflict resolutions that an ATCO can handle within a
certain amount of time. This means that an air space is limited in its capacity,
amongst other factors, by the quality of the conflict resolution of the ATCO.
Each conflict resolution will require mental capacity of the ATCO, and mental

2

capacity is limited. According to the Eurocontrol 2013 report [11], 92.7% of
the air traffic delay in The Netherlands was caused by a shortage of capacity
or staffing. In other countries these numbers are equally high. European
delays are estimated to have cost 2.2 billion euro in 2013 alone. To help with
air traffic control, and increase capacity, computer systems are needed to
help with conflict detection and resolution, which will reduce the amount of
mental capacity needed per conflict resolution, or even improve the quality
of the chosen resolutions.

1.2 Related work

Several studies have been conducted towards aiding systems and air traffic
control automation. Many of the early papers focused on trajectories but in
the last two decades a shift to speed adjustment can be noticed [2,4,8]. Early
work included research into neuro control and fuzzy control [7], in an attempt
to transfer the expert knowledge of the air traffic controllers into a neural
network. Later work focused more on the conflict resolution by calculating
the problem areas. In order to save calculation time, these algorithms tend
to use heuristic methods such as potential field [3] or genetic algorithms [1]
to adjust the speed and route. The PHARE programme [9] solves the speed
via exact calculations, but only for one aircraft at the time, considering all
other aircrafts to maintain their current speed. A decision support system
that optimized speed for all aircraft simultaneously using MILP was explored
by Vela et al. [14]. Their system could handle peaks of 30 aircrafts within 10
minutes calculation time on a modern quadcore computer and used a time
limit of 10 minutes. Not every scenario could be fully calculated in these 10
minutes, so after these 10 minutes had passed the program reported which
aircrafts it could not give a conflict free speed to, and it would be up to an
ATCO to make the final solution. It did show that the capacity could be
greatly increased while using just a single flight level.

Air traffic will always have conflicts. To resolve these conflicts an ATCO
can change altitude, direction and speed of an aircraft. Currently whenever
a delay is needed for an aircraft, a common choice by air traffic controllers
is the use of fanning, the practice of offsetting the heading of the aircraft to
the left by a few degrees and after a short while letting it turn to the right,
or vice versa. This fanning will increase the distance the aircraft will have
to fly to the airport, effectively delaying it. The advantage of this is that
the air traffic controller can easily see that his traffic stays separated. Two
mayor disadvantages are the increase in monitoring time needed from the
air traffic controller and a negative effect on the environment [14]. Studies
have found that it is hard for ATCOs to see the consequences of subtle speed

3

changes [1]. This makes it easy to understand why an ATCO would prefer
to resolve a conflict using altitude or direction adjustment instead of speed
adjustment. However, these speed adjustments have proven to be highly
effective for solving conflicts [13,14].

The PHARE programme makes the information the algorithm gives very
visible [9]. It has infeasible regions displayed as blobs, and shows what speed
changes will result in, as can be seen in Figure 2. This system mainly allows
the ATCO to see what a change will result in, but will only allow one aircraft
to be changed at the time. It maintains the mental image of the ATCO but
it does not give a complete solution. Vela et al. [14] on the other hand use
a system of formulas, based on time separation between aircraft. This yields
solutions in which the ATCO will not be able to see why the choices have
been made, and thus failing to help the ATCO with his or her mental image.

alternative
tracks

original

crossing
aircraft

no-go zone

aircraft

track

Figure 2: Left: concept of alternative tracks and the no-go zone with crossing
traffic. Right: No-go zone blobs as displayed in the PHARE programme.
Images from [9].

1.3 Our focus

We will look into a speed-based decision support system with an intuitive
approach in order to easily visualize the problem and solution. This will
allow the ATCO to remain involved in the decision making.

The first choice we make is that our model will focus on speed. An ATCO
has three different ways of controlling the aircrafts, namely by changing al-
titude, direction and speed. The reason we choose speed is because it has
proven to be very effective for solving conflicts, and because speed is the
toughest of the three for an ATCO to mentally visualize.

4

The second choice we make is to focus on the controlled air space called
the control area. The air space is divided into multiple sections, see Figure 3.
In order from nearest to furthest away from an airport we find the control
zone (CTR), terminal control area (TMA), control area (CTA), and upper
control area (UTA). The CTR has no radar separation and can therefore
not benefit from air traffic control purely based on speed. The TMA has too
little space to effectively separate aircrafts purely based on speed [8]. We will
focus on the CTA, which can highly benefit from air traffic control based on
speed. It has a high concentration of traffic but with a larger area than the
TMA, and small changes in speed have large effects in separation [1]. The
CTA also provides multiple types of traffic such as crossing, descending, and
ascending traffic, which will not be found in UTA. We will base one of our
tests on the Dutch CTA South. According to an interview with the LVNL,
there are on average 5 aircrafts at the same time in CTA South, with peaks
reaching 15 aircrafts1. Based on the amount of time an ATCO has before a
coordinated aircraft enters his air space, we choose 5 minutes as a realistic
goal for solving a minimum of 15 aircrafts. Because a consumer’s desktop is
not a good indication, we are also interested in the trend the data will show,
and therefore we will not set a time limit on our program.

Amsterdam UTA

Amsterdam CTA

Schiphol TMA

Schiphol CTR

Figure 3: A simplified cross section of the different areas of controlled airspace
around an airport

The third choice we make is that we will focus on finding an exact solution
instead of using heuristics. The main reason listed for choosing a heuristic
approach is reducing computation time [2]. Since the solution approach by

1Interview on 14 April 2014 with LVNL Senior Human Factor Consultant.

5

Vela et al. [14] is already considered a real time solution, there is no reason
to reduce computation time by using heuristics. At the moment, not many
aids are implemented at the Dutch air traffic control (LVNL). When enquired
about the lack of decision support systems, the main reason given was that
most systems do not show why certain decisions are made. This excludes the
ATCO from the solution, and makes it impossible to form a mental image.
This mental image is necessary for the ATCO in case of needed adjustments
or system failure. We will base our model on geometric information in order
to more easily clarify the decisions made by the model, helping the ATCO
form a mental image of the chosen solution. To solve our problem, we will
use velocity tuning as described by Lavalle [10]. This basically gives us the
problem of choosing which aircraft goes first past each intersection. Guy
et al. [5] solved a speed-based collision avoidance problem using geometric
information and velocity tuning as well, but choose from the start which
agent goes first past an intersection. We will not reduce our solution space
by making such choices.

Finally, we choose to study two methods to reduce the search space of our
problem. Solving our problem with velocity tuning creates a branching linear
program. Vela et al. [14] have a similar branching, but do not mention how
they enter their constraints in a linear solver. We will study a branch cutting
solution method, which limits the search space. We expect the initial sorting
of the branching constraints to have influence on the runtime of the branch
cutting solution method, and will therefore initialize the solution method
with different sortings of the branches. To further test the influence of the
ordering of the branches with branch cutting, we will introduce a dynamic
re-sorting of the branches which we will call the swap method.

1.4 Thesis organization

We will first, in Section 2, describe the problem definition and our goal.
Thereafter we will define the simplified airplanes, named bodies, and describe
the other simplifications and assumptions of the model.

The concepts velocity tuning and solution space will be explained in Sec-
tion 3, where we will also introduce the concept of the infeasible region. We
continue by showing how the infeasible region has the shape of a rotated
ellipse, and explain how to compute its parameters. After mentioning the
non-standard cases for conflicting bodies, wedges are introduced which will
result in binary choices in our search space. Lastly, it will also be illustrated
how to visualize the area where two bodies can be in conflict.

Next, in Section 4 the conversion of the model to linear constraints will
be given, along with a support for choosing the sum of all velocities as our

6

goal function. Thereafter, we will mention a possible visualization for the
solution as given by the linear solver.

Section 5 explains how to explore the entire search space, and contains
two different approaches to reducing the search space. We first discuss a
method for early detection of infeasible solution choices, and then we intro-
duce our dynamic reordering of the branching linear constraints. Finally, we
will mention the four different initial sortings of the branching linear con-
straints.

In Section 6 we will describe the test scenarios for testing the different
optimizations. We will continue in Section 7 with listing our test meth-
ods, and showing the consistency of our time measurements. Then, we will
examine which factors and variables influence the runtime when finding a
solution. Thereafter, we will compare the runtime of the different solution
methods. We end the section by exploring the performance of the fastest
solution method, discuss the runtime for unsolvable scenarios, and evaluate
how one of the sorting methods could be designed better.

Lastly, Section 8 will have our conclusions and suggestions for future
work.

2 Forming a model

In this section we will start by giving the problem definition and goal. There-
after, we define our simplified substitution for an airplane, named body. We
will introduce the notation for the different variables, as well as shortly mo-
tivate certain simplifications.

2.1 The goal of the model

The problem we will be solving is as follows: Let there be n aircrafts in a two-
dimensional plane with a starting position and a goal. For each aircraft select
a speed that guarantees the aircraft stays separated from all other aircrafts
until it reaches its goal. To keep the ATCO in the loop of the decisions made
by the speed assistance model, we want to be able to visualize the reasoning
behind the decisions, similar to the PHARE [9] system. To do this we want
to base our decisions on geometric information, as was previously done by
Guy et al. [5].

Our performance goal comes from the interview with the LVNL as men-
tioned in Section 1.3. We want to find a solution for 15 airplanes, in an
air space with a size equal to CTA South, within 5 minutes on a modern
hexa-core computer. Because this computer is not representative for the

7

computing power an air traffic control center would be able to use, we will
not set a time limit on our solution method, but also look at the trend the
data shows after we passed the 5 minute goal.

2.2 Bodies

We start by simplifying the airplanes in our model. To avoid assumptions
about the properties of our airplanes, we will not use the word airplane from
here on forward, but refer to our simplified substitutes for an airplane as a
body instead.

We will now continue to define a body. A body is a point in a 2 dimensional
plane. Bodies are not allowed to come within a certain distance of each other.
Body i, denoted by Bi, will have a separation distance Di to other bodies,
with Di effectively creating an empty circle around Bi with a radius of Di, as
illustrated in Figure 4. If Bi and Bj have a Euclidean distance of at least Di,
we call the bodies separated. For convenience, we will assume in the rest of
the thesis that, for each pair of bodies Bi and Bj, there is a single minimum
separation distance D where D = Di = Dj. If unequal separation distances
for bodies are needed, D has to be replaced with max(Di, Dj).

B3 B4B1 B2 B5 B6

DD D

Situation 1 Situation 2 Situation 3

Figure 4: Separation of bodies. Only B5 and B6 are not separated.

Each body Bi has a path P i, a directional line-segment from their starting
point P i

S to their endpoint P i
E with P i

S, P
i
E ∈ R2. For each pair of bodies Bi

and Bj, the distance between P i
S and P j

S is at least D. If not, the bodies
would not start separated, making it impossible to keep them separated.
The distance between P i

E and P j
E does not need to be at least D. This is

because bodies will be no longer considered for separation once reaching their
endpoint, which makes it possible that one body may reach the endpoint
before the other body does. We focus on straight routes. Vela et al. [14]

8

handle piecewise straight routes, which are not allowed to bend in conflict
areas. The handling of piecewise straight routes can be easily added to the
model.

Each body i has a minimum speed V i
Min and maximum speed V i

Max. A
speed will be assigned to a body at the start of its path, which it will adopt
instantaneously.

3 Using velocity tuning

In this section we will start by describing velocity tuning and introducing
state space and infeasible region. Then, we will show that, if there is a non-
zero angle between their paths, the shape of every infeasible region between
two bodies is a 45 degrees rotated ellipse, and explain how to compute the
parameters for the ellipse. Thereafter we will cover how to compute the
infeasible region for special cases, such as parallel paths. We continue by
introducing the concept of wedges, and finish this section by illustrating how
to visualize the infeasible region in the two-dimensional plane.

3.1 Velocity tuning basics

Velocity tuning is described by Lavalle [10] as a decoupling of path planning
and motion timing. Since the bodies in the model described in Section 2
have predefined paths, the only focus needed is the motion timing. We will
explain velocity tuning based on two bodies.

Because velocity tuning does not include the path planning, the position
of body Bi can be reduced to a one-dimensional parameter. The position of
the body on the path can be described by τ , the distance Bi traveled along
its path P i, where τ ∈ I = [0, ‖P i‖] and ‖P i‖ is the length of P i. Contrary
to the description in Lavalle, we do not scale this domain back to [0,1].
Leaving this range unscaled gives us geometric properties of the infeasible
region which will be used later on in Section 3.2. The position of Bi in the
two-dimensional plane when given τ can be described by the function Bi(τ)

Bi(τ) = P i
S + τHi

where Hi is the unit vector describing the direction of the path P i. The
position for Bj will be referred to as σ ∈ J = [0, ‖P j‖]. A state s = (τ, σ)
represents the situation where Bi is at position Bi(τ) and Bj is at position
Bj(σ).

The state space S ij is a 2 dimensional space S ij = I × J containing all
possible states s for Bi and Bj. The origin of the state space represents Bi

9

and Bj at their respective starting points. Because we defined in Section 2.2
that the distance between P i

S and P j
S is at least D, Bi and Bj are separated

at the s = (0, 0). The infeasible region S ij
Obs is a subset of S ij containing all

s ∈ S ij where Bi and Bj are not separated.
In general, a solution to velocity tuning can be found by constructing a

path, originating from the origin, through the state space which keeps clear of
the infeasible region. When taking into account that the bodies in the model
are unable to move backwards or stand still, this path needs to be strictly
increasing with respect to both axes. Because bodies are not considered for
separation whenever they reach their endpoint, the strictly increasing path
needs to reach either a state where τ = ‖P i‖ or σ = ‖P j‖.

A path through the state space will gives us the relative speeds of Bi

and Bj. The bodies will be assigned a single speed at the beginning of their
path, meaning that we need to find a single ratio between the speed of Bi

and Bj. To find this ratio, a line l needs to be found with solution angle θ
where 0 < θ < 90 and l does not intersect with S ij

Obs. We choose θ to be
the angle between l and the horizontal axis. In Figure 5, the possible ranges
within which θ can be chosen are marked green and the range in which l
would intersect with S ij is marked red.

Sij
obs

||P i||0

||P j ||

τ

σ

l

θ

Figure 5: State space for Bi and Bj with infeasible region S ij
Obs and line l

with angle θ.

3.2 The infeasible region: A 45 degrees rotated ellipse

To be able to determine the possible ranges for solution angle θ the geomet-
ric properties of the infeasible region S ij

Obs need to be computed. For the

10

computation of S ij
Obs, we will assume that there is a non-zero angle between

the paths P i and P j and that S ij
Obs is not an empty set. We will also assume

that there is no state in S ij
Obs containing either P i

E or P j
E. We will explain

in Section 3.3 how to compute the infeasible region for cases where there P i

and P j are parallel, and for cases where a body at his endpoint can be in
conflict with another body.

In this section, we will show that S ij
Obs has the geometrical properties of

an ellipse in the state space S ij for every pair of paths P i and P j where P i

and P j have a non-zero angle α between them. Thereafter, we will show
that the angle ϕ, the rotation of the ellipse, equals 45 degrees regardless of
D and α. Then, we will explain how to determine a and b, the length of the
semi-major axis and semi-minor axis of the ellipse. The semi-major axis is
half the major axis, the longest axis of the ellipse, and the semi-minor axis is
half of the minor axis. See also Figure 6. The intermediate steps for finding
equations 1, 3, and 4 can be found in Appendix A.

a

b τ

σ

ϕ

Figure 6: Generic ellipse

Given two intersecting paths P i and P j with angle α between them,
where α is in the range 〈0, 90]. By viewing P i and P j as lines, instead of
line segments, where σ and τ are in the range 〈−∞,∞〉 P i and P j will
have an intersection. The pair can be rotated and translated so that P j

aligns with the horizontal axis and the intersection between P i and P j is
at point (0, 0) without loss of generality. The implicit function for distance
between a point on Pi and Pj will be used the compute the points with a
distance of D. P i can be parametrized as (τ cos(α), τ sin(α)) and P j can be
parametrized as (σ, 0), see Figure 7. The points σ and τ with a distance of
D are (σ − τ cos(α))2 + (0 − τ sin(α))2 = D2, which can be rearranged to

11

equation 1.

α

(σ, 0)

(τ cos(α), τ sin(α))

P j

P i

(0,0)

Figure 7: P i and P j with angle α

σ2 − 2 cos(α)στ + τ 2 −D2 = 0 (1)

We will now show that equation 1 is the equation for an ellipse or circle,
independent of α. The general form of ellipse is given as

Aτ 2 +Bτσ + Cσ2 +Dτ + Eσ + F = 0 (2)

with

A = a2(sinϕ)2 + b2(cosϕ)2

B = 2(b2 − a2) sinϕ cosϕ

C = a2(cosϕ)2 + b2(sinϕ)2

D = −2Aτc −Bσc
E = −Bτc − 2Cσc

F = Aτ 2c +Bτcσc + Cσ2
c − a2b2

where (τc, σc) is the center of the ellipse, which we chose to be (0, 0), a
and b are the length of the semi-major axis and semi-minor axis, and ϕ is
the rotation of the ellipse, see Figure 6. For the classification of the conic
described in equation 2 to be an ellipse or circle, the discriminant B2− 4AC
needs to be lesser than 0. In equation 1 A = 1, B = −2 cos(α), and C = 1.
So the discriminant is

B2 − 4AC = (−2 cos(α))2 − 4 ∗ 1 ∗ 1 = cos(α)2 − 1

12

Because α is in the range 〈0, 90], cos(α)2 is in the range [0, 1〉. This results
in the determinant being in the range [−1, 0〉, and therefore always less than
0, and thus an ellipse or circle.

Having shown that equation 1 is the equation for an ellipse, or circle,
we will now show that the ellipse is rotated by 45 degrees. When matching
equation 1 to the general form of the equation for an ellipse, it can be seen
that A and C are equal. If A = C then

a2(sinϕ)2 + b2(cosϕ)2 = a2(cosϕ)2 + b2(sinϕ)2

and thus

a2 = b2 ∨ ϕ = 45

The intermediate steps can be found in Appendix A. If a2 = b2, then B =
2(b2 − a2) sinϕ cosϕ = 2(0) sinϕ cosϕ = 0. In equation 1 we see B =
k ∗ −2 cos(α), with k as a non-zero constant, which is only 0 when α = 90.
Therefore, when α is in the range 〈0, 90〉, ϕ = 45. If α = 90 then a = b which
makes the ellipse a circle for which ϕ is irrelevant.

Now that we know that equation 1 is the equation for an ellipse with
a rotation of 45 degrees, we can determine a and b. With ϕ = 45 and
τc = σc = 0, we get the following equations for A, B and F.

A =
1

2
a2 +

1

2
b2

B = b2 − a2
F = −a2b2

Because, in equation 1, σ2 has a factor of 1 we use the following form of the
formula for an ellipse

τ 2 + (B/A)τσ + σ2 + F/A = 0

making the equations equal. We can now say B
A

= −2 cos(α), and F
A

= −D2.
Solving for a2 and b2 gives us:

a2 =
1
2
D2

1− cos(α)
(3)

b2 =
1
2
D2

1 + cos(α)
(4)

With equations 3 and 4 we can construct the implicit function from equa-
tion 2 for the infeasible region S ij

Obs when α and D are given.

13

3.3 Special cases

We will explain in this section how to compute the infeasible region for cases
where there P i and P j are parallel, and for cases where a body at its endpoint
can be in conflict with another body. Whenever a body at its endpoint can
be in conflict with another body the infeasible region S ij

Obs is the intersection
of S ij and S ij

Obs-full, where S ij
Obs-full is the infeasible region if σ and τ are in

the range 〈−∞,∞〉. When P i and P j are parallel, and Bi and Bj have
a possibility of not being separated, S ij

Obs is a slab. We will show with an
example where Bi and Bj travel in opposite direction, see also Figure 8.
Changing the direction of a path will result in a mirroring of the state space.
Let state s1 = (τS, ‖P j‖) be the first point on P i where the distance between
Bi and P j

E equals D. Because P i and P j are parallel, at any state s =
(τS + ε, ‖P j‖− ε) the distance between Bi and Bj equals D. This means that
one boundary of S ij

Obs is parallel to the line σ = −τ . Let state s2 = (τK , ‖P j‖)
be the second point on P i where the distance between Bi and P j

E equals D.
For any state s = (τK +ε, ‖P j‖−ε) the distance between Bi and Bj equals D.
This means that the other boundary of S ij

Obs is parallel to the line σ = −τ .
Being bound by two parallel lines, the infeasible region S ij

Obs is a slab.

DDD D
σS

τS0

||P j ||

||P i||
τ

σ

S ij
Obs

P i
S P i

E
Bi(τS)

P j
SBj(σS)P j

E

τK

σK

Bj(σK)

Bi(τK)

Figure 8: Left: P i and P j are parallel. Right: The corresponding state space
S ij with the infeasible as a slab.

3.4 Wedges

The possible range within which angle θ can be chosen to keep bodies Bi

and Bj separated is affected by the infeasible region S ij
Obs. We define the

tangent angle as the angle for θ for which line l is a tangent to the infeasible
region contained within the state space. By limiting the tangent angle to the
infeasible region contained within the state space, the range for the tangent

14

angle is [0, 90]. Tangent angle Rij
GT is the largest angle where l is tangential

to the infeasible region within the state space. Tangent angle Rij
LT is the

smallest angle where l is tangential to the infeasible region within the state
space. If there is no infeasible region within the state space, Rij

GT = 90 and
Rij

LT = 0.
The possible range for θ is not just defined by S ij

Obs. There are certain
states s in state space S ij which can only be reached if either Bi moves
below its minimum speed, or Bj moves above its maximum speed. Due to
this minimum and maximum speed θ will always be bound by two implicit
angles, Rij

IMin and Rij
IMax, regardless if S ij

Obs exists or not. Rij
IMin and Rij

IMax

are defined as follows.

Rij
IMin =V j

Max/V
i
Min

Rij
IMax =V j

Min/V
i
Max

Rij
IMin is the angle indicating the states reached when Bi moves at its min-

imum speed, and Bj moves at its maximum speed. Rij
IMax is the angle in-

dicating the states reached when Bi moves at its maximum speed, and Bj

moves at its minimum speed.
The infeasible region S ij

Obs can divide the possible range for θ in up to two
ranges, see in Figure 5. We will call these ranges wedges. Wedges W ij

GT and
W ij

LT are defined as follows.

W ij
GT =[Rij

GT , R
ij
IMin]

W ij
LT =[Rij

IMax, < Rij
LT]

Intuitively, W ij
GT is the wedge that is above S ij

Obs and W ij
LT is the wedge below

S ij
Obs, see Figure 9. To compute W ij

GT and W ij
LT , the line through the origin

and tangent to S ij
Obs needs to be calculated. For this, we use the derivative of

the implicit equation for the ellipse, found in Section 3.2. Note that W ij
GT and

W ij
LT are the tangent lines to the infeasible region S ij

Obs which is contained
within state space S ij, and therefore will always be within the range [0, 90].
Both W ij

GT and W ij
LT can be empty ranges, as shown in Figure 10. If both

ranges are empty there is no solution to the problem. If there is no infeasible
region, the state space consists of a single wedge W ij

GT where

W ij
GT = [Rij

IMin, R
ij
IMax]

15

||P j ||

||P i||
0

W ij
GT

W ij
LT

τ

σ

Rij
IMin Rij

GT

Rij
LT

Rij
IMax

Sij
obs

Figure 9: State space with the upper wedge W ij
GT and lower wedge W ij

LT

||P j ||

||P i||
0

W ij
GT

τ

σ

Rij
IMax

Rij
GT

Rij
IMin

Sij
obs

Rij
GT

Figure 10: State space with a single wedge W ij
GT .

16

3.5 Visualizing the conflict area

Whenever two bodies have a possibility of not being separated, this can be
visually conveyed by showing the conflict area. The conflict area Aij consists
of two ranges, [τS, τE], [σS, σE]. The order in which Bi and Bj enter Aij is
equal to the order in which they exit Aij. If a state space has two wedges,
the choice of within which wedge the angle θ is chosen equals the choice of
which body enters Aij first.

To compute Aij, two states need to be calculated, sS = (τS, σS) and
sE = (τE, σE). When Bi and Bj are in state sS, the only solution for which
Bi and Bj stay separated is when either Bi moves at maximum speed and Bj

at minimum speed, or when Bi moves at minimum speed and Bj at maximum
speed. The infeasible region is contained by a Rij

IMin,Rij
IMax aligned bounding

box. State sS is the lower left corner of this bounding box. State sE is the
upper right corner of the axis-aligned bounding box. See Figure 11.

σS

σE

τS τE0

||P j ||

||P i||
τ

σ

S ij
Obs

Rij
IMin

Rij
IMax

Bi(τS)

Bi(τE)

P i
E

Bj(σS)

Bj(σE)

P i
S

PjE

PjS

D

Figure 11: Visualizing the conflict area.

4 From model to linear programming

We will begin by explaining how our problem can be solved by using linear
programming, and listing the variables, constraints, and the objective func-
tion for our linear solver. Thereafter, we will explain how we convert wedges
into branches and stable constraints.

17

4.1 Forming linear constraints

If for every pair of bodies, the state space has a single wedge available, then
feasibility is determined by a set of linear constraints. We therefore choose
to use a linear solver to find a solution to our problem. The variables are the
solution speeds. The solution speed V i

Sol is the speed we seek for body Bi with
which Bi remains separated. Logically, V i

Sol is constrained by the minimum
and maximum speed V i

Min and V i
Max. The other constraints on V i

Sol originate
from the possible ratios from the state space. The possible ratio from state
space S ij concerns two unknowns, V i

Sol and V j
Sol.

For the linear solver, a linear goal has to be set. To reduce the delays
in the air space, maximizing the sum of all speeds has been chosen as the
objective function. This promotes overall throughput in the air space. The
objective function can easily be replaced with any other linear function.

4.2 Branches and stable constraints

To solve the problem, we convert all wedges to linear constraints in order to
be able to enter them into a linear solver. Every wedge can be converted to
a single linear constraint concerning two unknowns. Because the state space
has at most one infeasible region, every wedge has at least one implicit angle
defining its range, which do not need to be added to a linear solver.

We differentiate between state spaces with a single wedge and state spaces
with two wedges. If there is only one wedge, a stable constraint is created
representing the range, W ij

GT , within which θ can be chosen. If there are two
wedges, a branch is created representing the ranges W ij

GT and W ij
LT . Because

a linear solver is not capable of handling choices in its constraints, a branch
contains a parameter indicating which wedge will be entered in the linear
solver. How to explore these branches will be discussed in Section 5.

4.3 Visualizing the solution

To help understand the choices made by the linear solver, we will give an
example of how to visualize the solution by showing for which conflict areas
the distance between bodies becomes D, and for which conflict areas the
bodies would stay separated with a different speed ratio. As discussed in
Section 3.1, there can be many different speed ratios in which two bodies
with a conflict point stay separated. If we take our previously mentioned goal
function into account, maximizing the sum of all speeds, this range is reduced
to a single ratio, or two equivalent ratios in cases which are symmetrical. If
Bi has no conflict area Aij for any Bj, Bi can assume maximum speed. If Bi

18

has a conflict area Aij, then either Bi can assume maximum speed or there is
a Bj with which Bi will have minimum separation distance D at some point
in time.

To visualize the solution for a problem, for each pair of bodies Bi and Bj

where Aij is not empty, an indication needs to be given about which body
enters Aij first, and which conflict areas limit the speed of Bi. Giving this
information can help transform the list of speeds from the solution into a
mental image. In Figure 12, this information is conveyed by the red, yellow
and blue bridges. The path which gets intersected by the bridge is the path
of the body which enters the conflict area second. Red bridges indicate a
crossing where the speed of the body gets limited. Blue bridges indicate
the order in which the bodies enter the conflict area, but there would have
been a possibility to change the ratio. For example, the red bridges crossing
P 1 at the intersection of P 1 and P 2 indicates that B2 will enter the conflict
area first, and the speed of B1 is not its maximum speed because it would
otherwise not be separated from B2.

5 Exploring and reducing the search space

Due to the branching constraints, the linear solver has a vast search space.
There is a possibility of a branch for each pair of bodies, resulting in

(
n
2

)
branches. This means there are 2(n

2) possible combinations of constraints for
the linear solver in which the optimal solution lies.

In this section, we will start by explaining how to explore the entire search
space in a brute force manner. Thereafter, we will show how to reduce this
search space by cutting branches without skipping feasible combinations of
branches. Then, we will introduce the swap method as an extension to the
branch cut. Finally, we mention the four different sortings of the branches
with which we will initialize the branch cut.

5.1 Brute force

To iterate over all possible combinations of branches, we view each combina-
tion as a binary number. Each branch has a GT and an LT wedge. We will
view a 1 as a choice for a GT wedge, and a 0 as a choice for a LT wedge. The
first tested combination starts at 0, meaning for every branch h the choice in
wedge Wh = 0. We will use the binary number as notation, so for example:
1011 has W1 = 1, W2 = 0, etc. As long as the order of the branches remains
the same, all possible combinations will be explored when we use all binary
numbers. We increment the combination from right to left, as if the least

19

P 2
S

P 1
S P 0

S

P 3
S

P 2
E

P 1
EP 0

E

P 3
E

Figure 12: Visualizing the solution.

20

significant bit is on the right side. Incrementing combination 00111 with 1
will result in combination 01000.

When using brute force exploring, we will enter the combination in the
linear solver, run the solver to find a solution, and if the reported solution
is better than the previously obtained solution, remember that as our best
solution. Then, if not all combinations have yet been tested we increment
the combination by 1.

5.2 Branch cut

Branch cut is based on the idea that if a certain combination of a subset
of branches, T , has no solution, the total set of branches will also have no
solution if it contains T . This means that as soon as such a subset is detected,
there is no need to enter additional branches. We start entering the branch
combination from left to right. After each addition we check if there is still
a feasible region. If a combination starting with 0100 has no solution, we
do not have to look at the combinations of branches 5, . . . , n. Note that
there is a possibility that the first addition of the branch is infeasible, due to
the stable constraints. As soon as we encounter an infeasible combination at
branch j, we can set every Wi with i > j to 0, and increment the combination
from j’s position or in other words, incrementing the combination with 2n−j.
For example, if combination 010101 is infeasible after adding branch 3, we
continue with combination 011000.

To reduce redundant exploration of the search space even further, we will
also cut if the best solution for a subset falls below a previously obtained
solution. We know that if a subset of combination of branches, T , has a best
solution q, the total set of branches will have a best solution of at most q.
This means that we can cut the branches as soon as a solution is reported
which is worse than the previously obtained solution.

5.3 Swap

We want to be able to cut problematic branches as soon as possible. However,
since the we don’t know which subset of branches will cause infeasibility, there
is a possibility that a branch that causes infeasibility has a high position,
making it reduce the search space by only small portion.

The idea is to move branches which cause infeasibility to the front, so
that they will be entered first in the linear solver, while still exploring the full
feasible search space and without repeating combinations. For every branch
we will keep track of how many times the adding of that branch resulted
in a branch cut. As soon as we detect a branch that causes such a branch

21

cut, we add 1 to its counter, and sort all branches based on the number of
times they caused a branch cut in descending order from left to right. This
reordering needs to be done in a way that no combination is skipped, and
no combination is explored multiple times. We enforce these properties by
using HML-sort, a special kind of insertion sort which only allows branches
to be swapped with neighbors that have the same wedge choice W .

To show the workings of HML-sort we will first show that, if we would
only explore our search space by incrementing every combination with 1, we
would still explore every combination exactly once, even after a reordering
at any given moment. Thereafter, we will show how to combine swap sort
with branch cut. Let SB be a branch at position i which we will reorder
in a combination with n branches. We divide the combination into three
parts: high, mid and low. High contains the branches with their position
in the range [0, j − 1], where j ≤ i, Wj−1 = 1 − Wi, and Wm = Wi for
every m where j ≤ m < i. Low contains the branches with their position
in the range [i + 1, n], and mid contains the branches with their position in
the range [j, i]. See also Figure 13 for a visual representation where Wi =
0. After every combination in mid and low has been explored, we look at
the next combination of the branches in high, making the order mid and
low had previously irrelevant. A reordering of mid will have no influence
on which combination of low will be explored after incrementing the entire
combination. Therefore, we only need to focus on if incrementing a reordered
mid will still explore every combination of its branches exactly once. Consider
the two possible wedge choices for Wi. If Wi = 0 then, since every wedge
choice in mid is 0, we have only explored this one combination of mid and
a reordering would still explore every combination of its branches exactly
once. If Wi = 1 then, since every wedge choice in mid is 1, we have explored
all combinations of mid, and can therefore reorder the branches without
consequences.

. 1 0 0 0

High Mid Low

SB

Figure 13: Branch SB with Wi = 0.

Now that we know that we can use HML-sort when we only explore
our search space by incrementing every combination with 1, we will show
how to combine HML-sort with branch cut. Using branch cut, we have to
make sure that we do not skip any feasible combinations. Note that it is

22

impossible to explore a combination multiple times when using branch cut
instead of incrementing by 1. Let SB be a branch at position i which causes
a branch cut. This means that the subset T containing the branches at
position 0, . . . , i has no solution. After the combination is reordered, we
need to get the next combination of T . This is achieved by initializing a
cut at the highest position of a branch in T . Because we increment T , there
is no possibility of skipping feasible combinations. By using HML-sort with
branch cut, we possibly sacrifice the cutting of a few branches in the hope of
making bigger branch cuts later on.

5.4 Sorting

When exploring the search space with brute force, the initial sorting of the
branches is irrelevant. However, when using branch cut, or branch cut with
swap, the initial sorting of the branches could have an influence on the run-
time. To test the influence of the initial order in which the branches are
explored with branch cut and branch cut and swap, we will study four dif-
ferent sortings:

• Random: All branches are put in a random order.

• Incremental: First every branch for body Bi added, then from the
remaining branches every branch for Bi+1, and so on.

• Smallest wedge : All branches are sorted on the smallest wedge they
contain. Branches are added in ascending order of size.

• Sum of wedges: All branches are sorted on the sum of wedges they
contain. Branches are added in ascending order of size.

The sortings based on wedge size should quickly limit the feasible region,
and thereby accelerate the detection of a possible branch cut.

6 Testing scenarios

In this section we will describe our test setup basics. All tests will be per-
formed with similar bodies. They will have a separation distance D of 5
NM, a minimum speed VMin of 120 knots, and a maximum speed VMax of
250 knots. Because the solution algorithm does not explicitly work with
time, the absolute speeds for all bodies could also be chosen as any other set
of speeds where VMax = 2.083 ∗ VMin. As described in Section 2.2, for each
pair of bodies Bi and Bj, the starting points P i

S and P i
S will have a minimum

23

distance of 5 NM from each other. All time measurements will be run on a
6-core Intel i7 4960 with 32 GB RAM, using Gurobi as linear solver.

Test scenario 1 uses a rectangular area with a width of 694.44 NM and
a length of 701.39 NM, see Figure 14. Bodies can have a starting point PS

in the southern blue area, which has a width of 694.44 NM and a length of
6.94 NM. The endpoint PE is can be any position on the northern red line
segment.

694.44 NM

6.94 NM

694.44 NM

S

E

Figure 14: Test scenario 1: Bodies can start in the blue section S and can
end on the red line segment E.

Test scenario 2 is an area based on CTA South in the Netherlands with
a width of 3854.17 NM and a length of 3652.78 NM, see Figure 15. Bodies
will can have a starting point PS in the light blue areas, marked 1, 2, 4 and
7. The endpoint PE can be in the orange areas, marked 0, 3, 5, and 6.

7 Tests and results

We will begin this section by listing our test methods and their abbreviations.
Thereafter, we will demonstrate the consistency of our time measurements.

We continue by showing that the number of branches has the most influ-
ence on the runtime for solving a problem instance, and that the number of
bodies and number of stable constraints have minimal influence on the run-
time. The relation between bodies and branches in T1 and T2 is examined,

24

0

1

2

3

4

5

6

7

3854.17 NM

3652.78 NM

Figure 15: Test scenario 2: Based on CTA South. Bodies can start in the
light-blue sections and can end in the orange sections.

25

and we show that the required runtime for finding a solution is independent
of the test scenario by comparing two vastly different test scenarios.

Thereafter we will be comparing runtimes for the different solution meth-
ods. We start by comparing the runtime of brute force (BF) with branch
cut with random initialization (BC+R). Then, we discuss the influence of
the initial sortings for BC and BCS, and thereafter explore the stabilizing
effect of the swap method on the sortings. The last runtimes we compare are
the fastest branch cut method, branch cut with a sum of wedges sort, with
the fastest branch cut and swap method, branch cut and swap with random
initialization.

We continue by measuring the runtime of branch cut with sum of wedges
sort with up to 222 branches, and discuss the runtime needed for, and oc-
currence of, unsolvable problem instances. We finish the test section by
evaluating the incremental sorting.

7.1 Preliminaries

7.1.1 Tested methods and their abbreviations

We will compare the brute force (BF) method to two other solution methods,
branch cut (BC) and branch cut and swap (BCS). Both BC and BCS will be
initialized with each of the following four sortings of branches: random (R),
incremental (I), wedge (W), and sum of wedges (SW). The initial sorting of
the branches for the brute force method is irrelevant. See also Table 1.

Abbreviation Solution method Sorting
BF Brute force Irrelevant
BC+R Branch cut Random
BC+I Branch cut Incremental
BC+W Branch cut Wedge
BC+SW Branch cut Sum of wedges
BCS+R Branch cut and swap Random
BCS+I Branch cut and swap Incremental
BCS+W Branch cut and swap Wedge
BCS+SW Branch cut and swap Sum of wedges

Table 1: An overview of the tested solution methods and their abbreviations.

26

7.1.2 Consistency of time measurements

In the next section we will measure the runtime for solving a problem instance
with different solution methods. To be able to compare test results we need
to know if the measured runtime is consistent when run multiple times.

In this section we will test the consistency of the runtime for solving a
problem instance. For the brute force (BF) solution method we will use a
different test setup than the test setup we will use for all the other solution
methods. This is because BF takes more time to solve a problem instance
than the other solution methods. Using the same setup for BF as for every
other solution method would either result in BF taking days to solve a single
problem instance, or the other solution methods solving every generated
problem instance within a few milliseconds.

Our test setup for BF is as follows. We create 10 random problem in-
stances in T2 for each number of bodies between 10 and 13. With 14 bodies,
BF had to run multiple days to solve a single problem instance. Each prob-
lem instance is solved 10 times by the BF solution method and its runtime
is measured.

Our test setup for all other solution methods is as follows. We create 10
random problem instances in T2 for each number of bodies between 10 and
20. Each problem instance is solved 10 times by the BF solution method and
its runtime is measured.

To determine the consistency of a solution method, the average runtime
tavg for each problem instance is calculated. Then, for each measured run-
time, the ratio r between the measured runtime tm and the average runtime
of that problem instance is calculated by using r = max(tm/tavg, tavg/tm).
Looking at Table 2 and Table 3, we can see there are large differences be-
tween average runtime and single measured runtime. For example, for one
problem instance there was a factor 25.95 difference in runtime between the
a single measured runtime and the average runtime with the BC+I solution.
Examining the results, this difference in runtime is most likely a result of
different startup times for the Gurobi linear solver. If we filter out all prob-
lem instances with an average runtime of less than 1000 milliseconds, we
see that the solution methods have a much more deterministic runtime, see
Table 4 and Table 5. With random initialization of the branches the maxi-
mum difference between measured and average runtime is a factor 7.26 for
BC, and 2.08 for BCS, which is to be expected from a random initialization.
Every other solution method has a median of 1% difference in runtime, and
a average difference below 3%. We will therefore choose to only measure the
runtime once for each problem instance in the remaining tests.

27

BF BC+R BC+R BC+I BC+S
Min 1,00 1.22 1.12 1.00 1.00
Max 3,18 2.08 10.48 25.95 6.71
Average 1,20 1.57 2.29 1.63 1.22
Median 1,03 1.56 1.77 1.04 1.04

Table 2: Consistency in time measurements for branch cut

BCS+R BCS+I BCS+S BCS+SW
Min 1.14 1.00 1.00 1.00
Max 7.74 7.41 7.21 8.52
Average 1.67 1.27 1.27 1.36
Median 1.46 1.04 1.04 1.04

Table 3: Consistency in time measurements for branch cut and swap

7.2 Influences on runtime

7.2.1 Most influential variable for runtime

To be able to decide the maximum capacity of the solving methods, we need
to know which variables influence the runtime. In this section, we will test
the influence on the runtime when varying the number of bodies, the number
of stable constraints, and the number of branches. For each variable that we
test, we will keep the other two variables constant.

We choose to test problem instances with up to 60 branches. This will
give us a broad enough range to see correlation while keeping the runtime
manageable. Because we can only generate problem instances based on the
number of bodies, we ran tests to determine what the highest number of
bodies was which could generate 60 branches or less. As can be seen in
Table 6, with 43 bodies or more, all generated problem instances have more
than 60 branches. The maximum encountered number of stable constraints
in T is 72. To form our initial test set T we generated 4000 random problem
instances in T2 and stored every unique combination of number of bodies,
number of branches, and number of stable constraints.

For each variable, we will test the top two largest subsets in T where the
other two variables are constant. The branch cut with sum of wedges solving
method (BC+SW) will be used for the runtime measurement, which we will
show to be the fastest solver in Section 7.3.6. From the results we will filter
the problem instances without solution. With BC+SW the runtime needed

28

BF BC+R BC+I BC+S BC+SW
Min 1,00 1.12 1.00 1.00 1.00
Max 1,03 7.26 1.14 1.04 1.09
Average 1,01 3.17 1.03 1.01 1.02
Median 1,01 2.81 1.01 1.01 1.01

Table 4: Consistency in time measurements for branch cut, for problem
instances with a runtime of 1000 msec or more

BCS+R BCS+I BCS+S BCS+SW
Min 1.22 1.00 1.00 1.00
Max 2.08 1.02 1.19 1.09
Average 1.57 1.01 1.02 1.02
Median 1.56 1.01 1.01 1.01

Table 5: Consistency in time measurements for branch cut and swap, for
problem instances with a runtime of 1000 msec or more

to discover a problem instance has no solution is near constant. This would
distort the results. We expand more on the runtime for unsolvable problem
instances in Section 7.5.

We start by computing the correlation between the number of bodies and
the runtime. The first set we test has 20 branches and 8 stable constraints.
With a correlation of 0.56 it indicates a weak positive linear correlation. The
second set has 49 branches and 16 stable constraints. With a correlation
of 0.11 it indicates there is no linear correlation. Combined with a visual
analysis, which can be seen in Figure 16, we conclude there is most likely no
linear correlation between number of bodies and runtime.

We continue by computing the correlation between the number of stable
constraints and the runtime. The first set we test has 54 branches and
31 bodies. With a correlation of −0.51 it indicates a weak negative linear
correlation. The second set has 48 branches and 26 stable constraints. With
a correlation of −0.24 it indicates a very weak negative linear correlation.
Combined with a visual analysis, which can be seen in Figure 17, we conclude
that it is possible that the number of stable constraints has a weak negative
linear correlation with the runtime.

Lastly, we compute the correlation between the number of branches and
the runtime. The first set we test has 22 bodies and 8 stable constraints.
With a correlation of 0.76 it indicates a strong linear correlation. The sec-

29

24 branches, 6 stable constraints

bodies

0
runtime

in
msec 0 10 20 30

bodies

0
0 10 20 30 40

1000

1400

runtime
in

msec

6000

12000

18000
49 branches, 16 stable constraints

600

Figure 16: Runtime of the BC+SW when keeping the number of branches
and stable constraints constant.

stable constraints

0
runtime

in
msec 0 10 20 30 40 50

stable constraints

0
0 10 20 30 40 50

5000

15000

20000

runtime
in

msec

4000

8000

12000

10000

54 branches, 31 bodies 48 branches, 26 bodies

Figure 17: Runtime of the BC+SW when keeping the number of branches
and bodies constant.

30

Bodies 36 37 38 39 40 41 42 43 44 45 46 47 48 49
Branch min 42 46 46 48 40 56 43 68 68 78 71 77 88 97
SC max 57 62 58 65 72 70 71 70 75 85 77 85 85 99

Table 6: Minimum encountered branches and maximum encountered stable
constraints for the given number of bodies.

ond set has 48 branches and 26 stable constraints. With a correlation of
0.92 it indicates a very strong linear correlation. Combined with a visual
analysis, which can be seen in Figure 18, we conclude that there is a very
strong correlation between the number of branches and the runtime. As can
be seen in Figure 19, this correlation is most likely exponential. When com-
puting the exponential correlation for both sets, the correlation changes to
respectively 0.95 and 0.95, confirming our expectation. A further analysis
of the relation between branches and runtime for the BC+SW solver can be
found in Section 7.3.6.

22 bodies, 6 stable constraints

branches

0
runtime

in
msec 0 10 20 30 40 50 60 70

branches

0
0 10 20 30 40 50 60 70

5000

15000

25000

runtime
in

msec

4000

8000

12000
20 bodies, 13 stable constraints

Figure 18: Runtime of the BC+SW when keeping the number of bodies and
stable constraints constant.

In summary, the number of branches has the most influence on the run-
time. There could be a weak influence from the number of stable constraints,
and the number of bodies has most likely no effect on the runtime. We will
therefore present the results of the runtime with the number of branches on
the horizontal axis.

7.2.2 Branches as a function of bodies in T1 and T2

Since the runtime for solving a problem instance is dependent on the number
of branches, but the overall goal is specified in number of bodies within a
certain amount of time, it is necessary to examine the relation between the

31

22 bodies, 6 stable constraints 20 bodies, 13 stable constraints

branches

1

102

104

105

10
runtime

in
msec

103

0 10 20 30 40 50 60 70

branches

1

102

104

105

10
runtime

in
msec

103

0 10 20 30 40 50 60 70

Figure 19: Runtime of the BC+SW when keeping the number of bodies and
stable constraints constant on a logarithmic scale.

number of bodies and the number of branches. We create 1000 problem
instances in T2 for each number of bodies between 2 and 50 and count the
number of branches in each problem instance. In T1 there is a maximum of 11
starting positions. Therefore, we only create problem instances in T1 for each
number of bodies between 2 and 11. Figure 20 shows the relation between
the number of bodies and the number of branches in T1 and T2. For each
number of bodies it shows the percentage of occurrences of a certain number
of branches. The percentage of occurrences is colored on a logarithmic scale.
Note that the number of branches has an upper bound of

(
n
2

)
. As can be

seen in Table 7, this theoretical maximum is not reached in T2. T1 has
not enough possible starting positions to provide a helpful insight in its true
maximum number of branches.

Number of bodies 5 10 15 20 25 30 35 40 45 50
Max
possible 10 45 105 190 300 435 595 780 990 1225
branches
Max
measured 10 38
branches T1
Max
measured 8 28 43 79 105 181 200 242 274 353
branches T2

Table 7: The maximum possible number of branches compared to the maxi-
mum encountered number of branches.

32

7.2.3 Runtime in T1 versus T2

We compared the runtime of solution methods BC+SW and BCS+R in T1
and T2. As can be seen in Figure 21 and Figure 22, the T1 plot follow the
same trend as the T2 plot for both solution methods. Note that for T1, no
more than 11 bodies fit in the starting area. We conclude that the runtime
is not dependent on test environment.

7.3 Comparing time measurements

To form our test set for the time measurements, we generated 1000 random
problem instances in T2 using 20 to 24 bodies and stored every unique com-
bination of number of bodies and number of branches. This resulted in a
test set consisting of 6 to 96 branches.

In our comparisons, we remove the problem instances which had no pos-
sible solution, this leaves 327 individual problem instances. The reason for
removing these problem instances is that the runtime needed to discover
a problem instance has no solution is near constant the BC+SW solution
method and all solution methods using the swap method. Leaving the un-
solvable problem instances in the set would distort the results. We expand
more on the runtime for unsolvable problem instances in Section 7.5. Every
solving method, except the brute force method, will use this test set for the
time measurements. Because brute force (BF) is too slow a solver, we test
BF on a smaller set in T2, consisting of 2 to 18 branches.

We will first explain how to read the tables which compare the solution
methods. Thereafter, the improvement in runtime branch cut has compared
to brute force is shown, using a random initial sorting of the branching con-
straints. Then, we will demonstrate the influence of the initial sortings on
the branch cut solution method. We will then first evaluate the influence
of the initial sortings on the branch cut and swap solution method before
examining the influence the addition of the swap subroutine has on branch
cut. To examine the influence of the swap subroutine, we compare for each
initial sorting the runtime for branch cut and branch cut and swap. We finish
our time measurements comparisons by comparing the fastest initial sorting
of the branch cut solution method to the fastest initial sorting of the branch
cut and swap solution method.

7.3.1 Our comparing method

We want to be able to compare the performance of the different solution
methods. Because every solution method, except brute force, uses the same

33

10 20 30 40 50

bodies

40

80

120

160

200

240

280

320

360

10 20 30 40 50

40

80

120

160

200

240

280

320

360

0.1

0.8 3.2 12.8 51.2
Occurence in %

branches

T1 T2

0.4 1.6 6.4 25.6

0.2

bodies

branches

Figure 20: The percentage of occurrences for a certain number of branches
when given the number of bodies. Left: Test scenario 1. Right: Test sce-
nario 2

34

runtime
in
msec

102

1

branches

20 40 60 80 100

104

106

108

BC+SW - T2

BC+SW - T1

BF

Figure 21: Runtime of branch cut with sum of wedges ordering in T1
(BC+SW - T1) compared to runtime of branch cut with sum of wedges
ordering in T2 (BC+SW - T2)

runtime
in
msec

102

1

branches

20 40 60 80 100

104

106

108

BCS+R - T2

BCS+R - T1

BF

Figure 22: Runtime of branch cut with swap and random ordering in T1
(BCS+R - T1) compared to runtime of branch cut with swap and random
ordering in T2 (BCS+R - T2)

35

set of problem instances, we can compare the runtime per problem instance.
Whenever we compare a set solution methods M, we will express the per-
formance on a problem instance for each solution method m ∈M as a linear
factor times the minimum time needed for that problem instance by any of
the solvers in M. For each solution method we will list the maximum, av-
erage, and median performance factor, as well as the percentage of problem
instances for which it was the fastest, and the total time in minutes it took
to finish solving the entire test set. Note that for a single problem instance
there can be multiple solution methods listed as fastest, and the percentages
can therefore add up to a number above 100%.

7.3.2 Brute force versus branch cut, random sorting

We compare brute force (BF) to branch cut with random initialization (BC+R),
see Figure 23. Both sets depict problem instances in T2. We can see the
a great improvement in runtime, especially in the lower bound for solving
problem instances, but BC+R has many outliers where the runtime is more
than 100 times the lower bound.

runtime
in
msec

102

1

branches

20 40 60 80 100

104

106

108

BC+R

BF

Figure 23: Runtime of brute force (BF) solution compared to branch cut
with random initialization (BC+R).

7.3.3 Branch cut, comparing initial sortings

We want to be able to determine the influence of changing the initial sorting
of the branching constraints when using the branch cut solution method.
Therefore, we will compare branch cut with random initialization (BC+R),

36

incremental initialization (BC+I), wedge sort initialization (BC+W), and
sum of wedges initialization (BC+SW). As can be seen in Table 8, BC+SW
is the solution method which takes the least extra time when it’s not the
fastest, with a maximum of 3.04 times the minimum time any BC solver
needed. For 78.59% of the problem instances BC+SW has the lowest runtime
and finished solving the full set in 48.62 minutes. We can also see that every
sorting finish the test set faster than BC+R. However, BC+I is only the
fastest solution method for 4.28% of the problem instances, and has some
heavy outliers which are 1934.88 times above the lower bound.

When we visually analyse the four different initial sortings, we can see that
every initial sorting has a similar lower bound for solving problem instances,
see Figure 24. However, BC+R, BC+I, and BC+W have large outliers which
are not observed with BC+SW.

BC+R BC+I BC+W BC+SW
Max 2070.14 1934.88 744.69 3.04
Average 26.38 22.08 9.25 1.08
Median 2.40 3.08 1.88 1.00
% fastest 9.48 4.28 7.65 78.59
Total time in min 2286.96 1515.58 1906.36 48.62

Table 8: Branch cut initial sortings compared.

7.3.4 Branch cut and swap, comparing initial sortings

We want to be able to determine the influence of changing the initial sorting
of the branching constraints when using the branch cut and swap solution
method. Therefore, we will compare branch cut and swap with random
initialization (BCS+R), incremental initialization (BCS+I), wedge sort ini-
tialization (BCS+W), and sum of wedges initialization (BCS+SW). As can
be seen in Table 9, BCS+R is the solution method which takes the least extra
time when it’s not the fastest, with a maximum of 3.40 times the minimum
time of any BCS solver needed, but the difference in solvers is not as obvious
as with the BC solution, For 34.86% of the problem instances BCS+R has
the lowest runtime. The total runtime of BC+R, BC+I, and BC+W are very
similar, with only BCS+SW taking 1.54 times longer to finish the test set
compared to BCS+R.

When we visually analyse the four different initial sortings, we can see that
every initial sorting has a similar lower bound for solving problem instances,

37

BC+I

branches

runtime
in

msec 0 10 20 30 40 50 60 70

108

107

106

105

104

103

102

10

1
80 90 100

BC+SW

branches

runtime
in

msec 0 10 20 30 40 50 60 70

108

107

106

105

104

103

10

1
80 90 100

BC+W

Random

branches

runtime
in

msec 0 10 20 30 40 50 60 70

108

107

106

105

104

103

102

10

1
80 90 100

branches

runtime
in

msec 0 10 20 30 40 50 60 70

108

107

106

105

104

103

102

10

1
80 90 100

BC+R

Incremental

Wedges

Sum of wedges

102

Figure 24: Runtime of branch cut with all four different initial sortings.

38

see Figure 25. There are some small outliers noticeable with BCS+SW
around the 90 branches, which could explain why its total time 1.54 times
higher than BC+R.

BCS+R BCS+I BCS+W BCS+SW
Max 3.40 5.53 5.75 13.33
Average 1.26 1.48 1.41 1.54
Median 1.10 1.31 1.26 1.33
% fastest 34.86 19.88 25.08 21.10
Total time in min 90.35 107.78 100.17 138.95

Table 9: Branch cut and swap initial sortings compared.

7.3.5 Branch cut versus branch cut and swap, same sorting

To study the effect of adding the swap subroutine to the branch cut solution
method, we do a pairwise comparison. We start by comparing branch cut
with random initialization (BC+R) to branch cut and swap with random
initialization (BCS+R). When putting Figure 24 and Figure 25 side by side,
it can be observed that the lower bound for solving a problem instance is the
same for BC+R as for BCS+R, but the outliers that occurred with BC+R
do not exist when adding the swap routine to the solution method.

Table 10 shows that, although BCS+R finished the entire set considerably
faster than BC+R, the addition of the swap method only removes the outliers
and does not greatly reduce the lower bound for solving a problem instance.
This can be seen by the median for BC+R, which is 1.85, and the fact that
in 20.18% of the problem instances BC+R was the fastest.

BC+R BCS+R
Max 799.34 2.99
Average 14.86 1.07
Median 1.85 1.00
% fastest 20.18 79.82
Total time in min 2286.96 90.35

Table 10: BC+R compared to BCS+R.

When comparing the time measurements for branch cut and branch cut
and swap it can be observed that the addition of the swap method also re-
moves the outliers which occured with the incremental and smallest wedge

39

branches

runtime
in

msec 0 10 20 30 40 50 60 70

108

107

106

105

104

103

102

10

1
80 90 100

BCS+SW

branches

runtime
in

msec 0 10 20 30 40 50 60 70

108

107

106

105

104

103

10

1
80 90 100

BCS+W

Random

branches

runtime
in

msec 0 10 20 30 40 50 60 70

108

107

106

105

104

103

102

10

1
80 90 100

BCS+I

branches

runtime
in

msec 0 10 20 30 40 50 60 70

108

107

106

105

104

103

102

10

1
80 90 100

BCS+R

Incremental

Wedges

Sum of wedges

102

Figure 25: Runtime of branch cut and swap with all four different initial
sortings. 40

initialization. The addition of the swap subroutine results in a faster solu-
tion method for 84.40% of the problem instances with the incremental ini-
tialization, and for 72.48% of the problem instances with the smallest wedge
initialization. See also Table 11 and Table 12. However, BC+SW has no

BC+I BCS+I
Max 1086.17 2.02
Average 10.76 1.03
Median 1.93 1.00
% fastest 15.60 84.40
Total time in min 1515.58 107.78

Table 11: BC+I compared to BCS+I.

BC+W BCS+W
Max 671.78 3.15
Average 6.67 1.11
Median 1.34 1.00
% fastest 27.83 72.48
Total time in min 1906.36 100.17

Table 12: BC+W compared to BCS+W.

outliers, and adding the swap subroutine to this solver slows the solver down.
As can be seen in Table 13, BC+SW is faster than BCS+SW for 81.95% of
the problem instances. BCS+SW takes 2.86 times as long to complete the
full set of problem instances, and is a maximum of 19.09 times as slow on
specific problem instances.

BC+SW BCS+SW
Max 2.17 19.09
Average 1.05 1.90
Median 1.00 1.53
% fastest 81.96 18.04
Total time in min 48.62 138.95

Table 13: BC+SW compared to BCS+SW.

41

7.3.6 Fastest of branch cut versus fastest of branch cut and swap

We compare the overall fastest branch cut solver, BC+SW, to the overall
fastest branch cut and swap solver, BCS+R. The measured runtimes for
each solver are combined in Figure 26.

runtime
in
msec

102

1

branches

20 40 60 80 100

104

106

108

BCS+R

BC+SW

BF

Figure 26: Runtime of branch cut and swap with random initializa-
tion (BCS+R) compared to branch cut with sum of wedges initialization
(BC+SW).

We can see that the runtime for solving with BC+SW is slightly lower
for equal problem instances than for solving with BCS+R. When comparing
BC+SW and BCS+RW, the lowest runtime has been selected and for each
solution method the runtime has been expressed as a factor of the lowest
time, see also Table 14. Solving with BC+SW results in the lowest runtime
in 72.17% of the tested problem instances. BC+SW also had the lowest
maximum factor it took extra compared to the lowest time, the best average
factor, and the lowest median factor.

BC+SW BCS+R
Max 2.42 7.77
Average 1.07 1.58
Median 1.00 1.30
% fastest 72.17 28.13

Table 14: Comparing performance

42

7.4 Performance of BC+SW

The goal of our algorithm is to be able to find a solution for 15 bodies within
5 minutes. Configurations with up to 232 branches have been measured for
runtime, see Figure 27. When allowing a maximum of 5 minutes runtime, 107
branches can be handled. This equals a maximum of 25 conflicting airplanes
in T2, see Figure 20 and accompanying Table 7. From Table 7, we also can
see that a random generated problem instance with 15 bodies has up to 43
branches. The highest measured runtime for solving a problem instance with
43 branches with the BC+SW solver is 6742 msec, well within our targeted
5-minute bound.

To see the trend of the runtime for BC+SW, we use Excel to plot the
trendline. The best fitting function is y = 0.0049x3.6069 with a coefficient of
determination R2 of R2 = 0.9478, meaning that the function fits our results
very well.

102

1

runtime
in
msec

branches

50 100 150 200 250

104

106

108

BC + SW
5 minutes
BF

Figure 27: Runtime of branch cut with sum of wedges ordering (BC+SW)
with up to 250 branches.

7.5 Unsolvable situations

Not every problem instance can be solved. Out of the 330 problem instances
tested in Section 7.3, only 3 gave unsolvable situations. With BC+SW, these
situations are detected in less than 11 milliseconds, regardless of number of
branches. In comparison, the BC+I solution method took 9.24 hours to solve
one of these unsolvable problem instances.

43

The near constant runtime for detecting these unsolvable problem in-
stances is most likely due to the existence of an empty branch in the problem
instance, which gets evaluated first, resulting in a direct detection of the
unsolvability.

7.6 Evaluation incremental ordering

As can be seen in Section 7.3.3 and Section 7.3.4, the incremental order only
slightly reduces the runtime with BC. This can be explained by looking at
one of the tested problem instances. In Figure 28 an example of branches is
visualized as a graph where every body Bi is represented by node i, and every
branch for Bi and Bj is represented by an edge between i and j. The idea
of the incremental order is to first explore the branches that influence each
other. Because not every pair of bodies causes a branch, and the numbering
of the bodies has no relation to their relative position in the graph, the
incremental order based on numbering does not work.

0 6 4

8 2

9

1 5

Figure 28: Graph representing the branches with bodies as nodes and
branches as edges.

In order for the idea of incremental order to work, the adding of the
branches needs to be graph based, instead of numerical based.

8 Conclusion and future work

This thesis was set out to form a decision support system that could keep
airplanes separated by only modifying their speed. Based on real life data,
the goal was to be able assign a speed to 15 airplanes within 5 minutes. We

44

build a model that simplifies airplanes to bodies, and performs far above the
previously set requirement. It can handle even the most conflicting problem
instances of 15 bodies in less than 7 seconds, and can solve up to 25 bodies
within 5 minutes. We found that the runtime depends on the number of
branches in the problem instance, or in other words the number of conflicting
bodies for which a choice can be made which body has priority at their
intersection. The program calculates the number of branches before starting
to solve, and can therefore indicate if the problem instance is too hard to
solve. A useful addition, for the use in air traffic control, would be to allow
for indication of priorities by the air traffic controller. This would reduce
branches, allowing for even more bodies to be handled by the solver. In
normal situations, the number of branches will be low enough to solve within
seconds. The model we used is quite simplified. It would be interesting to
look into the influence on runtime when adding more realism, such as wind,
multiple flight levels and air fuel optimizers like Vela et al. [14].

A secondary goal was to be able to convey the choices made by the pro-
gram visually. We showed that the information from our decision support
system can be visually conveyed similar to the PHARE [9] system. By show-
ing before which point the priority of aircrafts on their intersection can still
be changed, and visualizing the solution of our solver by showing the which
intersections limit the throughput of the aircrafts, the mental image of an
air traffic controller can be maintained. However, with our current model it
is not useful to further test the clarity of such a visualization.

For solving our problem, we used three different solution methods for ex-
ploring our search space: a brute force method, a branch cut method which
pruned the binary tree while exploring the search space, and a branch cut
with swap method which added dynamic reordering of the branches to the
branch cut solution method. The brute force solution method was signif-
icantly slower than the methods using branch cut, taking days instead of
minutes to solve problem instances.

With our branch cut solution methods, we tested the influence of the ini-
tial order of the branches in the tree on the runtime. We compared a random
initialization of the branches to three different initial sortings: incremental,
smallest wedge size, and sum of wedge size. When using the branch cut
with swap solution method the random order of branches in the tree was
the fastest most of time although the other sortings were not much slower,
with exception of the sum of wedge size sorting. This could be because a
random initialization allowed for the branches to be freely rearranged at the
beginning of exploring the search space, without getting stuck in a local op-
timum. The reason why the sum of wedges performed the worst could be
be because the sorting is already near optimal, which gives false positives on

45

which branch causes a branch cut to occur.
When looking at the branch cut solution method, it was the random

sorting which was the slowest initialization and the sum of wedges sorting
showed a huge improvement. It was on average 47 times faster than a random
initialization and 1.86 times faster than the branch cut with swap and random
initialization solution method. It was to be expected that the sum of wedges
would be the fastest initial ordering, because a small sum of wedges limits the
search space with both choices of wedges, and therefore would quickly cause
a branch cut to occur. The smallest wedge sorting leaves the possibility for a
large wedge to be at the top of the tree, and thereby not limiting the search
space fast enough. The slow performance of the random sorting further
suggest that infeasibility is caused by subsets of branches. If some of them
are low in the decision tree, the possible branch cuts are small, and thereby
leaving a large search space to explore.

Even though we found a solution method without the swap method to
be the fastest, the swap method can still be of use. The branch cut solution
method showed many outliers, where the runtime is more than 100 times
more than the trend would indicate, for all sortings except the sum of wedge
size sorting. Both the addition of the swap method and the changing of
the initial sorting removed these outliers. The lower bound for the runtime
remained the same. This leads us to believe that only when a good initial
sorting is known for the constraints, the addition of the swap method is
slowing the program down. However, if no good initial sorting of constraints
is known, the swap method stabilizes the branch cut. It should be tested if
the swap method would show the same behaviour on other branching linear
programming problems.

The incremental ordering we tested was flawed. It would be interesting
to see if the incremental order based on which clusters there are in the graph
with branches could improve results even further. Such a graph based ap-
proach to adding branches could even continue in exploring ways to divide
the branches in multiple disjoint subsets to reduce time.

References

[1] Averty, P., Johansson, B., Wise, J., & Capsie, C. 2007. Could Eras-
mus Speed Adjustments Be Identifiable By Air Traffic Controllers?. 7th
USA/Europe Air Traffic Management Research and Development Sem-
inar

46

[2] Cafieri, S., & Durand, N. 2013. Aircraft deconfliction with speed regu-
lation: new models from mixed-integer optimization. Journal of Global
Optimization, Volume 58, Issue 4, 613-629.

[3] Eby, M. S. 1995. A self-organizational approach for resolving air traffic
conflicts. Lincoln Lab. J. 7, 2 (September 1995), 239-254.

[4] Ehrmanntraut, R. 2004. The potential of speed control. Proc. 23rd
Digital Avionics Systems Conference (DASC 2004), vol. 1, Oct. 2004,
3.E.33.17.

[5] Guy, S.J., van den Berg, J., Lin, M.C., & Manocha, D. 2010. Geometric
Methods for Multi-Agent Collision Avoidance Proceedings of the twenty-
sixth annual symposium on Computational geometry, 115-116.

[6] ICAO. 2007. Procedures for Air Navigation Services Air Traffic Man-
agement (PANS-ATM, Doc 4444 ATM/501), Fifteenth Edition.

[7] Idris, H. 1994. Human-Centered Automation of Air Traffic Control Op-
erations in the Terminal Area Flight Transportation Laboratory. MIT.

[8] Jones, J.C., Lovell, D.J., & Ball, M.O. 2013. En Route Speed Con-
trol Methods for Transferring Terminal Delay. Proceedings of the Tenth
USA/Europe Air Traffic Management Research and Development Sem-
inar (ATM2013), Chicago, IL, USA.

[9] Jorna, P.G.A.M., Pavet, D., van Blanken, M., & Pichancourt, I. 1999.
PHARE Ground Human Machine Interface (GHMI) project: Summary
report. EUROCONTROL.

[10] LaValle, S. M. 2006. Planning Algorithms. Cambridge University Press,
Cambridge, UK, 2006.

[11] Performance Review Commission. 2013. Performance review report: An
assesment of air traffic management in europe during the calendar year
2013. Eurocontrol, Brussels, Belgium, Tech. Rep., March 2014.

[12] SESAR factsheet. 2014. SESAR 2020: developing the next
generation of European Air Traffic Management. Press-
release by ec.europa.eu, European Union, retrieved from
http://ec.europa.eu/research/press/jti/factsheet sesar-web.pdf on
22-02-2015.

47

[13] Steria, G.G., Allignol, C., & Durand, N. 2001. The Influence of Uncer-
tainties on Traffic Control using Speed Adjustments. 9th USA/Europe
Air Traffic Management Research and Development Seminar

[14] Vela, A., Solak, S., Singhose, W., & Clarke, J.P. 2009. A Mixed Integer
Program for Flight-Level Assignment and Speed Control for Conflict
Resolution. Joint 48th IEEE Conference on Decision and Control and
28th Chinese Control Conference, 5219 - 5226.

48

A Formula rearrangements from Section 3.2

Rearranging equation 1:

(σ − τ cos(α))2 + (0− τ sin(α))2 = D2

σ2 − 2 cos(α)στ + τ 2 cos(α)2 + τ 2 sin(α)2 = D2

σ2 − 2 cos(α)στ + τ 2 −D2 = 0 (5)

Showing that if A = C, a2 = b2 or ϕ = 45:

A = C

a2(sinϕ)2 + b2(cosϕ)2 = a2(cosϕ)2 + b2(sinϕ)2

a2((sinϕ)2 − (cosϕ)2) = b2((sinϕ)2 − (cosϕ)2)

a2 = b2 ∨ (sinϕ)2 − (cosϕ)2 = 0

a2 = b2 ∨ ϕ = 45

Rearranging to get equations 3 and 4, part 1:

B

A
= −2 cos(α)

b2 − a2
1
2
a2 + 1

2
b2

= −2 cos(α)

b2 − a2 = − cos(α)a2 − cos(α)b2

b2 + cos(α)b2 = a2 − cos(α)a2

a2 =
b2 + cos(α)b2

1− cos(α)
(6)

b2 =
a2 − cos(α)a2

1 + cos(α)
(7)

Rearranging to get equations 3 and 4, part 2:

F

A
= −D2

−b2a2
1
2
a2 + 1

2
b2

= −D2

−b2a2 = −1

2
D2b2 − 1

2
D2a2 (8)

49

Substituting a2 for equation 6 on the right hand side of equation 8 to get
equation 3:

−b2a2 = −1

2
D2b2 − 1

2
D2 b

2 + cos(α)b2

1− cos(α)

a2 =
1

2
D2 +

1

2
D2 1 + cos(α)

1− cos(α)

a2 =
1
2
D2 − 1

2
D2 cos(α) + 1

2
D2 + 1

2
D2 cos(α)

1− cos(α)

a2 =
1
2
D2

1− cos(α)

Substituting b2 for equation 7 on the right hand side of equation 8 to get
equation 4:

−b2a2 = −1

2
D2a

2 − cos(α)a2

1 + cos(α)
− 1

2
D2a2

b2 =
1

2
D21− cos(α)

1 + cos(α)
+

1

2
D2

b2 =
1
2
D2 − 1

2
D2 cos(α) + 1

2
D2 + 1

2
D2 cos(α)

1 + cos(α)

b2 =
1
2
D2

1 + cos(α)

50

