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Abstract—DKI is an emerging technique based on non-Gaussian water
diffusion analysis. A better explanation of the meaning of kurtosis in
terms of features of microstructural anatomy would make DKI more
concrete and accessible for clinicians. This work aims at a better un-
derstanding on the meaning of kurtosis in the human brain. A literature
study is performed on possible causes of changes in kurtosis according
to some popular diffusion models. First we review some of these models
and their validity. Second we give an overview of anatomical links
between diffusion models and kurtosis metrics that are implied by the
reviewed models. Tortuousity differences, exchange, axon/neurite frac-
tion, axon radius, neurite distribution orientation, intrinsic axon/neurite
diffusivity, axon bending, bulging, breaking and crimping are in this
way found to affect kurtosis metrics. Axon orientation dispersion, CSF
contamination, astrocytes, trapped water and axon undulation could
possibly also affect kurtosis metrics. Several rules of thumb are stated
which provides anatomical explanations for a positively or negatively
observed change in a kurtosis metric.

Index Terms—DKI; Diffusion kurtosis imaging; Non-Gaussian diffusion
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1 INTRODUCTION

Due to its unique sensitivity to the directional origin of tis-
sue microstructure, diffusion weighted magnetic resonance
imaging (MRI) has found many applications in clinical and
fundamental science [1]. Water molecules move randomly, and
hence follow macroscopically a probability density function
(pdf) like in figure 1. This pdf is Gaussian in a glass of
water, but deviates in the brain because of hindrance and
restriction from tissue microstructure. Measuring this deviation
from Gaussianity could obtain extra information about the
anatomical status of this tissue. Diffusion kurtosis imaging
(DKI) is a model-independent MRI method that provides an
estimate for the kurtosis of the diffusion pdf, which is a statistic
of the deviation from a Gaussian distribution [2].
As DKI is model-independent and kurtosis is just a statistic
which measures the degree of non-Gaussianity of the diffusion
distribution, a certain kurtosis value measured by DKI does
nothing less and nothing more than quantifying how non-
Gaussian the diffusion distribution is. However, if a pathology
would change the diffusion kurtosis significantly, then one
could possibly detect and monitor this pathology with DKI.
According to Steven (2014) [3], kurtosis has many potential
clinical applications in being such a pathologic biomarker,
but more studies are required to link changes in kurtosis
to changes in anatomical parameters such as membrane and
myelin integrity. These links between kurtosis and anatomi-
cal parameters can be investigated empirically [4], but also
theoretically. Since diffusion models are essentially Fourier
transforms of a diffusion distribution, they imply by definition
a certain kurtosis. Jensen (2010) [5] consulted the literature for
such relations between diffusion models and kurtosis metrics.
This resulted in an overview of some anatomical features
that theoretically affects kurtosis: tissue heterogeneity, com-
plexity and diffusional exchange. However, recent preclinical
studies demand a more specific explanation of kurtosis, e.g.
cerebrospinal fluid (CSF) contamination Yang (2013) [6] and
astrogliosis Zhuo (2012) [7].
This work builds further on the theoretical and literature-
based approach of Jensen (2010) [5] to give an answer to the
question: what can cause changes in kurtosis in the human
brain? This answer should ideally be specific enough to answer
the demands from the mentioned preclinical studies whereas
it should be at least more specific than ”tissue heterogeneity,
tissue complexity and exchange”, since we want to extend
rather than repeat the conclusions of Jensen (2010) [5]. The
’causes of kurtosis’ are in this work ultimately formulated
as ’rules of thumb’, such that, after being investigated and
validated more extensively, these rules could be used in the
(pre)clinic. However, one is encouraged to follow the whole
reasoning behind these ’rules of thumb’ to get a feeling for
which and how anatomical parameters affect kurtosis.
This work is structured as follows. We start with a general
introduction in DKI. The second section is a literature review
on diffusion models and the kurtosis metrics they imply. Since
not all models are possibly equally sufficient also the models
itself are reviewed in this section, since the validity of the
kurtosis properties depends critically on the validity of the
models from which they are derived. In the third section, the
possible causes of kurtosis will be discussed, resulting in a
comprehensive overview of ’rules of thumb’ on kurtosis. In
the fourth resp. fifth section the limitations of this work and
some directions for future work will be discussed. Finally we

end with a conclusion. A list of abbreviations can be found at
the end of this work.

2 INTRODUCTION TO DIFFUSION MRI

2.1 Diffusion kurtosis imaging

In what follows some very basic background in probability and
statistics is required to follow the whole story. Those readers
who are not familiar with concepts such as random variable,
probability density function, expectation value, variance and
covariance, are referred to appendix A or to any introductory
book on probability and statistics like [8]. In this section we first
start with some underlying mathematics of diffusion. Then we
will study some physics of diffusion, whereafter we will see
how the kurtosis of a diffusion process can be measured by
MRI. This theoretical background on DKI is also well described
in Veraart (2013) [9], however, possibly with slightly different
notations.

2.1.1 Mathematics of diffusion

To understand diffusion kurtosis imaging well, one should first
aim to understand some underlying mathematical and physical
concepts. In this mathematical section, V denotes a random
variable.
2.1.1.1 Kurtosis: Water diffusion in white and gray matter of
the brain is not Gaussian distributed [10]. One quantity that
can give information about the deviation from the Gaussian
distribution is the kurtosis, which we define for the scope of
this work as2:

K[V ] =
E[V 4]

E[V 2]2
− 3 (1)

The subtraction of 3 is a convention such that the Gaussian
distribution has a kurtosis of 0. In the DKI literature, a diffusion
distribution with positive kurtosis is often associated with a
higher peak or with heavier tails [5].
2.1.1.2 The function E[e−isV ] : There are a few facts
to consider about the function E[e−isV ] of the pdf fV (s) of
V . 1. dnE[e−isV ]

dsn
|s=0 = (−i)nE[V n], provided that the n-th

derivative exists. 2. If V has a symmetric pdf, then E[e−isV ] =
E[cos(sV )] 3. if V ∼ N(0, σ2), then

E[e−isV ] = e−
σ2

2
s2 , (2)

for which a derivation can be find in appendix D.
2.1.1.3 Cumulant expansion: Suppose V follows a symmetric
pdf. Then E[eisV ] = E[cos(sV )]. For small angles θ the cosine
can be approximated by cos(θ) ≈ 1 − θ2

2
+ θ4

4!
. Hence for a

symmetrically distributed random variable, since the expected
value operator is linear, one can make the approximation

E[e−isV ] = E[cos(sV )] = 1− E[V 2]

2!
s2 +

E[V 4]

4!
s4 +O(s6). (3)

By taking the log of E[cos(sV )] and using the Taylor approx-
imation log(1 + x) = x − x2

2
+ O(x3), this gives the variance

2. This is actually the definition of excess kurtosis. Because in the
rest of the DKI literature the term kurtosis is used instead, we will
also speak about kurtosis without the excess prefix.
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and the kurtosis of V :

log(E[cos(sV )])= log(1− E[V 2]

2!
s2 +

E[V 4]

4!
s4 +O(t6))

=−1

2
E[V 2]s2 +

1

24
(E[V 4]− 3E[V 2]E[V 2])s4

+O(s6) (4)

=−1

2
κ2s

2 +
1

24
κ4s

4 +O(s6) (5)

with κ2 = E[V 2] = V ar[V ] and κ4 = E[V 4]− 3E[V 2]E[V 2] =
K[V ]∗V ar[V ]2. This expansion is called the (quadratic) cumu-
lant expansion where κ2 and κ4 are called the cumulants. An
appealing property of cumulants is that they cumulate, i.e. for
W = V1 + . . .+ Vn, provided that the Vi are independent and
identical distributed, κ2(W ) = nκ2(V1) and κ4(W ) = nκ4(V1).
A consequence of this is that

K(W ) =
κ4(W )

κ2(W )2
=

nκ4(V1)

n2κ2(V1)2
= K(V1)/n. (6)

Hence, by summing up independent and identical distributed
random variables, the kurtosis decreases by a factor 1

n
whereas

the variance increases by a factor n. The cumulants show a
remarkable relation with the moments E[V k] for symmetric
and centralized distributions (see appendix M),

κ2(V ) = E[V 2] (7)

κ4(V ) = E[V 4]− 3E[V 2]E[V 2] (8)

κ6(V ) = E[V 6]− 15E[V 4]E[V 2] + 30E[V 2]3 (9)

2.1.1.4 Brownian motion: Suppose every second, a molecule
takes a step of size V , where V is a random variable with
expected value E[V ] = 0 and E[V 2] = σ2. After n seconds, the
molecule has made an accumulated step of size V1 + . . .+ Vn.
The central limit theorem (CLT) guarantees that the distri-
bution of the accumulated step sizes of the molecule will
approximate a Gaussian distribution after sufficient steps [8].
Let Vt be the position of a particle at time t. Suppose the
particle takes a random step every ∆t seconds and let ∆t→ 0.
This kind of random motion is called Brownian motion, and
can be modeled by a generalized Wiener process [9], for which
we take the following properties for granted:

1) V0 = 0
2) The function t→ Vt is continuous for t > 0
3) Vt has independent increments such that

Vt − Vs ∼ N(0, σ2(t− s))
From these properties it follows immediately that V ar[Vt] =
σ2t and hence Vt =

√
tV1.

It also follows that the probability density function (pdf) p of
Vt at time t is the centralized Gaussian distribution

p(Vt = s) =
1

σt
√

2π
e
− s2

2σ2t (10)

2.1.2 Physics of Gaussian diffusion

From this point, we consider ’real’ physical diffusion. Let
~R(t) = (Xt, Yt, Zt)

> be the displacement at time t due to
diffusion. Let ~R = (X,Y, Z)>, be the diffusional displacement
in ’unit time’, i.e. ~R = (Xt√

t
, Yt√

t
, Zt√

t
)>. Notice that, by the third

property of the Wiener process, ~R is a quantity that is time-
independent.

Figure 1. a. Particles start at the origin. b Each particle performs
a random walk in space. c This leads to the distribution of the
particles in space [11].

2.1.2.1 Isotropic Gaussian diffusion: In the scope of this
work, water diffusion is defined as the random motion of
water molecules due to thermal energy. Water diffusion haves
two basic characteristics. 1. It is Gaussian or non-Gaussian. 2.
It is isotropic or anisotropic. Let us start with the simplest case
of isotropic Gaussian diffusion. In this case the coordinates
Xt, Yt and Zt of ~R(t) each follow a Wiener process such that
σ2
X = σ2

Y = σ2
Z = σ2 and such that Xt, Yt, Zt are mutually

independent.
Then it is easy to see that

p(~R(t) = ~r) = p(Xt = x)p(Yt = y)p(Zt = z) (11)

where ~r = (x, y, z)>. Hence the pdf of the diffusion dis-
placement distribution ~R(t) follows a multivariate Gaussian
distribution

p(~R(t) = ~r) =
1√

(4π)3t3|D|
e
~r>D−1~r

4t (12)

where | · | is the matrix determinant, ~r =

xy
z

 and D =
σ2
X
2

0 0

0
σ2
Y
2

0

0 0
σ2
Z
2

. The matrix D is called the diffusion tensor.

Because σ2
X = σ2

Y = σ2
Z ,

~r>D−1~r =
2

σ2
(x2 + y2 + z2) = ~r>

2

σ2
~r (13)

Hence in the case of isotropic diffusion the displacement pdf
becomes

p(~R(t) = ~r) =
1√

(4π)3(Dt)3
e−
|~r|2
4Dt (14)

Where D = σ2

2
. We call D the diffusion coefficient or shortly

the diffusivity. D has units of µm2/ms. Dfree, that is diffusion
in free water, i.e. water without substances that hinder the
diffusion process, is found to be around 2.5 µm2/ms at 37 C◦

[12].
2.1.2.2 Anisotropic Gaussian diffusion: Diffusion can be
anisotropic, which means that the diffusivities vary over the
directions. In this case the diffusion pdf is still a multivariate
Gaussian but the diffusion tensor D also has off-diagonal

entries

DxxDxyDxzDyxDyyDyz
DzxDzyDzz

. The off diagonal elements are the

mutual covariances of the coordinates, e.g. Dxy = E[XY ]
2

. D
is always positive definite and symmetric [13]. Therefore D
can be diagonalized, which means that a basis can be chosen



4

Figure 2. The diffusion tensor can be diagonalized by a coordi-
nate change [11].

such that

D =

λ1 0 0
0 λ2 0
0 0 λ3

 ,

see figure 2. Suppose ~v1 is the first basis vector for which the
diffusivity is maximal, for example when a bundle of axons
(fiber) points in this direction. Then λ1 is the diffusivity in the
direction ~v1, whereas ~v2 and ~v3 correspond to the directions
perpendicular to ~v1.

2.1.3 Kurtosis measured by MRI
After having reviewed the mathematical and physical basics of
diffusion, we can consider how we can measure diffusion by
MRI, especially diffusion kurtosis in DKI experiments.
2.1.3.1 From diffusion to signal attenuation: In the most
elementary way the measurement of diffusion by MRI goes
as follows: First a 90◦ excitation pulse is applied. Suppose a
proton is at position ~R = 0 at time t = 0 while a gradient
vector ~g is applied during a very short time interval [0, δ]. At
time T , the proton is at another position ~R(T ) due to diffusion.
Suppose during the time interval [T −δ, T ] there is an opposite
gradient vector −~g applied (This gradient scheme is drawn in
figure 3). This yields at time T

Φ(T ) = −
(
γ

∫ t=δ

t=0

~g · ~R(t)dt+ γ

∫ t=T

t=T−δ
−~g · ~R(t)dt,

)
(15)

where γ is the gyromagnetic ratio of a proton [14]. Notice that
we use a capital Φ because the phase of a particle is a random
variable since it depends on the random position at time T .
Now we make the ’short pulse approximation’, by assuming
that all the gradient strength is added during a single time
point. This approximation yields Φ(T ) ≈ γδ~g ·(~R(0)− ~R(T )) =

−γδ~g · ~R(T ). Let M(t) be an isochromat of spins that are all in
phase at time 0. After some time, the spins will get different
positions due to diffusion and therefore different phases. This
causes the isochromat to dephase, resulting in the attenuation
of the signal because spins will partially cancel each other out,
as drawn in figure 3. We know that the signal arising from an
individual spin is simply proportional to the complex exponent
of the phase eiφ(t). Hence, the signal intensity (normalized to its
’starting value’, i.e. the signal intensity without any diffusion

Figure 3. Basic principle of diffusion weighting in MRI. The
red arrows represent the spins in the rotating frame of reference.
The signal can in some sense be regarded as the sum of the red
arrows [11].

gradients applied) of the isochromat is the average of the signal
contributions of all the individual spins:

SM(t)

SM(0)

= E[eiΦ(t)] = E[e−iγδ~g·
~R(t)], (16)

where ~R(t) is the displacement of a particle in the isochromat.
The voxel signal intensity S at time t is the sum over the signal
intensities of all the isochromats and is hence equal to

S

S(0)
= E[e−iγδ~g·

~R(t)], (17)

where ~R(t) is in this case the displacement of a particle in the
voxel.
2.1.3.2 Gaussian diffusion measured by MRI: Let ~n be the
direction of ~g, i.e. ~n = ~g

|g| . By equation (2), it is easy to see
that for isotropic Gaussian diffusion the signal attenuates by a
factor

E[e−iγδ~g·
~R(td)] = E[e−iγδ|~g|(nxX+nyY+nzZ)

√
td ] = e−γ

2δ2|~g|2tdD

(18)
By calling b = γ2δ2|~g|2td the diffusion sensitivity (b-value),
the signal attenuation reduces to the simple expression

e−bD (19)

For anisotropic Gaussian attenuation the phase is equal to

Φ(b) = −(nxX + nyY + nzZ)
√
b (20)

which is a Gaussian distributed random variable such that

E[Φ(b)2]=2b(n2
xDxx + n2

yDyy + n2
zDzz

+nxnyDxy + nxnzDxz + nynzDyz) (21)

Hence
E[eiΦ(b)] = e−~n

>D~nb (22)

Because the diffusion displacement is weighted by the gradient
strength, field inhomogeneities could make Gaussian diffusion
appear non-Gaussian in a MR experiment [15].



5

Figure 4. Signal measured at different b-values [16].

2.1.3.3 A simple DKI experiment: Suppose the diffusion
in a voxel is isotropic, but non-Gaussian. The kurtosis value
K is then clearly non-zero, and we would like to know its
value. From the acquisition of 3 MRI images we can estimate
the parameters S0, D and the desired K. First we make a
reference image without diffusion gradients applied to obtain
S0. Thereafter we make two images by applying two times
a sequence with two different gradient strengths, i.e. one with
strength b1 and the other with strength b2. These three acquired
images are shown in figure 4. Suppose one voxel has an
intensity 150 in the second image and an intensity 100 in
the third image. By fitting these intensities to the quadratic
cumulant expansion we obtain

150 = S0e
−Db1+ 1

24
κ4b

2
1

100 = S0e
−Db2+ 1

24
κ4b

2
2

Taking the log yields

log(150)− log(S0) = −Db1 +
κ4

24
b21

log(100)− log(S0) = −Db2 +
κ4

24
b22

These equations can be solved for D and K = κ4

κ2
2

= κ4
4D2 .

If diffusion is anisotropic, or the gradients are not very short
applied, by solving the equations we still get a value for D
and K. Because a gradient is of course never infinitely short
applied and we don’t know beforehand if diffusion is isotropic,
it is more correct to speak about the apparent diffusivity and
kurtosis Dapp and Kapp. In real experiments, multiple images
are acquired and more sophisticated parameter estimation
methods and gradient schemes are used.
2.1.3.4 Anisotropic non-Gaussian diffusion measured by
MRI: When diffusion is anisotropic one can naturally consider
Dapp and Kapp in all directions. Like Dapp becomes a second
order tensor Dapp by going from isotropic to anisotropic
diffusion, we will see that Kapp becomes a fourth order tensor.
The random displacement of water molecules as probed by
MRI is a symmetric random variable, i.e. E[X2k+1] = 0 [13].
Therefore, when a gradient in the ~n direction is applied, the
log of the anisotropic signal attenuation yields by equation (5)

log

(
Sb(~n)

S(0)

)
=−1

2
κ2(nxX + nyY + nzZ)b

+
1

24
κ4(nxX + nyY + nzZ)b2 +O(b3)

where by equation (7)

1

2
κ2(nxX + nyY + nzZ) =

1

2
E[(nxX + nyY + nzZ)2]

and by equation (8)

κ4(nxX + nyY + nzZ)=E[(nxX + nyY + nzZ)4]

−3E[(nxX + nyY + nzZ)2]2

with

E[(nxX + nyY + nzZ)4] =

n4
xE[X4] + n4

yE[Y 4] + n4
zE[Z4]

+ 4(n3
xnyE[X3Y ] + n3

xnzE[X3Z] + n3
ynxE[Y 3X]

+ n3
ynzE[Y 3Z] + n3

znxE[Z3X] + n3
znyE[Z3Y ])

+ 6(n2
xn

2
yE[X2Y 2] + n2

xn
2
zE[X2Z2] + n2

yn
2
zE[Y 2Z2])

+ 12(n2
xnynzE[X2Y Z] + n2

ynxnzE[Y 2XZ] + n2
znxnyE[Z2XY ])

By using the notation

Wijkl=9 ∗ E[RiRjRkRl]− E[RiRj ]E[RkRl]

E[(~R · ~R)2]

+9 ∗ −E[RiRk]E[RjRl]− E[RiRl]E[RjRk]

E[(~R · ~R)2]
,

where R1 = X , R2 = Y and R3 = Z, a more convenient
expression can be obtained [2]

log[
Sb(~n)

S0
]=−b

3∑
i=1

3∑
j=1

ninjDij

+
1

6
b2
(

1

3

3∑
i=1

Dapp
ii

)2 3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

ninjnknlWijkl

+O(b3)

We will call W the kurtosis tensor. W has 34 = 81 com-
ponents. However, because of symmetry, only 15 components
are independent. We then can solve for the 22 independent
parameters S0, (Dxx Dyy Dzz Dxy Dxz Dyz) and (Wxxxx Wyyyy

Wzzzz Wxxyy Wxxzz Wyyzz Wxxyz Wyyxz Wzzxy Wxxxy Wxxxz

Wyyyz Wyyyx Wzzzx Wzzzy). With these parameters in hand,
the diffusion and kurtosis can be estimated in every direction.
2.1.3.5 Diffusion metrics: There are several metrics of inter-
est to derive from the diffusion and kurtosis tensor that are
summarized in table 1. The mean diffusivity (MD) and mean
kurtosis (MK) say something about the overall diffusion (notice
that for isotropic diffusion, MK ≈ Kapp). The radial and axial
diffusivity and kurtosis (RD, AD, RK and AK) are especially
useful to assess the diffusion perpendicular and parallel to
a fiber. The diffusion and kurtosis fractional anisotropy (FA
resp. KA) measures the amount of anisotropy of the diffusion
distribution in a voxel. Since the kurtosis tensor contains more
information about the diffusion process than the diffusion
tensor alone it should provide extra information about tissue
microstructure. Empirically, however, a strong correlation has
been found between the radial kurtosis and the radial diffusion
and also a correlation between FA and MK (see figure 5).
2.1.3.6 Eigenvalues of the kurtosis tensor: Since a kurtosis
tensor consists of 15 independent parameters, there are more
possibilities to extract relevant metrics out of the kurtosis
tensor. For example, ’eigenvalues’ of the fourth order kurtosis
tensor can be found, in a manner analogues to the eigenvalues
of a diffusion tensor [18].
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Directional Diffusion [5] D(~n) = ~n>D−1~n

Mean Diffusivity [12] MD = λ1+λ2+λ3
3

Diffusivity in main direction [12] D‖ = λ1

Radial Diffusion [12] D⊥ = λ2+λ3
2

Diffusion Fractional Anisotropy [12] FA =

√
3
2

(λ1−MD)2+(λ2−MD)2+(λ3−MD)2

(λ2
1+λ2

2+λ2
3)

Directional Kurtosis [5] K(~n) = MD2

D(~n)2

∑
ninjnknlWijkl

Parallel Kurtosis [5] K⊥ = K(~v1)

Radial Kurtosis [5] K⊥ = 1
2π

∫
K(~n)δ(~n · ~v2)dΩn

Mean Kurtosis [5] MK = 1
4π

∫
S2 K(~n)d~n

Kurtosis Fractional Anisotropy [19] AK =

√
3
2

(K1−MK)2+(K2−MK)2+(K3−MK)2

K2
1+K2

2+K2
3

Table 1
DTI and DKI metrics . Other authors may use (slightly) different definitions. δ(x) is the Dirac delta function.

Figure 5. Correlation between diffusion metrics in healthy white
matter, means and standard deviations [17].

Figure 6. Segmentation of (B) GM, and (C) WM [20].

2.2 Diffusion in the human brain

2.2.1 Anatomy

The brain can be divided into gray matter, white matter and
CSF, as shown in figure 6. A drawing of various cell compo-
nents that appear in both WM and GM is given in figure 7.

Figure 7. Drawing of the cell components in neural tissue [21].
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Figure 8. Allocation of space in the optic nerve [22]. These per-
centages are not always consistent among different published
reports [15].

Figure 9. Myelinated axons in the optic nerve (electron micro-
graph) a. transverse view b. longitudinal view [23].

Figure 10. a) Myelinated axon diagram [24]. b) Representation
of the axon showing the nodes of Ranvier [25].

2.2.1.1 White matter: The white matter of the central nervous
system contains axons, their myelin sheats and glial cells. The
relative fractions of each type of microtissue are illustrated in
figure 8. The axons carry the chemical and electrical signals to
and from neurons concentrated in the gray matter. They are
grouped into bundles forming tracts. Most axons are arranged
in parallel bundles, such as in the optic nerve. As can be seen in
figure 9, axons often have an insulating sheath called myelin to
increase the speed at which impulses propagate along the axon.
The myelin sheath does not cover the entire axon; it leaves
small exposed sections uncovered which are called nodes of
Ranvier (see figure 10). As shown in figure 11, the extra- axonal
space consists of glial cells. The glial cells are named after their
structure: oligodendrocytes because they have few branches,
astrocytes due to their star shape and microglia because of
their small size. The primary function of oligodendrocytes is to
produce myelin. Both oligodendrocytes and astrocytes provide
physical support to the axons. Also capillary bloodvessels are
present in WM. The mean fraction v of myelinated axons in
a voxel is found to be around 0.33 and is higher in denser
regions such as the corpus callosum. Fractions up to v = 0.7
have been reported for the ex vivo commisura anterior of rat
brain [26]. The mean radius of an axon is found to be around
5 µm [27]. The diffusivity in the extra-axonal space is found
to be only about 15% less than Dfree and much higher in the
directions parallel to the axons than perpendicular to the axons
[26].
2.2.1.2 Gray matter: The gray matter of the central nervous
system contains neuronal cell bodies, dendrites and axons.
These dendrites and axons are, unlike white matter, mostly not
myelinated and are oriented in a three structure around the cell
body (see figure 12). Gray matter also contains capillary blood
vessels and glial cells.
2.2.1.3 Diffusion metrics measured in the brain: In table
2 some values of diffusion kurtosis metrics are given. Ev-
erywhere in the GM and the WM a positive mean kurtosis
between 0.6 and 1.32 is measured. In WM a higher amount
of isotropy is measured than in GM. In general, also a higher
mean, radial and axial kurtosis is measured in WM. In figure
13 a kurtosis map of the human brain is given, which clearly
shows the contrast between GM and WM. There can be a large
difference between in vivo and ex vivo measurements [19].

2.2.2 Potential clinical applications of DKI
After considering the theoretical foundations of DKI the reader
may wonder about the clinical importance of this technique. In
this section, a brief overview of potential applications of DKI
will be given.
2.2.2.1 Aging: Diffusion kurtosis in the prefrontal lobe is
found to be age dependent (n=24) [30]. The GM MK shows
an increase with age. The WM MK showed an increase until
age 18, with a shift to lower values with aging. The WM FA
appears to be highly correlated with the WM MK in this study.
2.2.2.2 Attention-Deficit Hyperactivity Disorder (ADHD): A
study on prefrontal WM (n=17) [31] suggested that the process
of changing mean kurtosis with age is slower for children with
ADHD. This study does not mention if the FA shows a similar
pattern.
2.2.2.3 Multiple sclerosis (MS): A significant lower mean
kurtosis has been observed in MS patients (n=11). Also a less
significant lower FA value has been found [32].
2.2.2.4 Schizophrenia: A WM decrease in MK and FA is
observed in schizophrenia patients (n=18) [33]. The decrease
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ROI MK RK MD RD FA
External Capsule 0.81± 0.05 1.02± 0.09 0.9± 0.05 0.70± 0.04 0.41± 0.03
ALIC 1.04± 0.10 1.6± 0.28 0.87± 0.05 0.53± 0.05 0.60± 0.04
PLIC 1.23± 0.09 2.04± 0.23 0.89± 0.09 0.45± 0.07 0.71± 0.04
CC, body 1.17± 0.07 2.07± 0.41 0.92± 0.07 0.38± 0.07 0.78± 0.04
CC, genu 1.06± 0.11 2.07± 0.45 0.93± 0.06 0.36± 0.07 0.80± 0.04
CC, splenium 1.32± 0.09 2.72± 0.41 0.89± 0.09 0.31± 0.07 0.83± 0.03
Centrum semiovale 1.09± 0.04 1.72± 0.16 0.80± 0.04 0.47± 0.05 0.63± 0.04
Cingulate, body 1.07± 0.07 1.85± 0.26 0.86± 0.07 0.48± 0.08 0.66± 0.06
Cingulate, temporal 0.85± 0.08 1.13± 0.21 0.92± 0.12 0.60± 0.10 0.55± 0.05
Corona Radiata 1.09± 0.04 1.49± 0.09 0.84± 0.05 0.56± 0.04 0.53± 0.03
CST, cerebral crus 1.23± 0.07 2.04± 0.28 0.88± 0.08 0.40± 0.09 0.75± 0.05
IFO, anterior basal 0.86± 0.07 1.29± 0.19 0.89± 0.05 0.58± 0.05 0.54± 0.05
ILF, posterior 0.96± 0.06 1.60± 0.18 0.90± 0.06 0.51± 0.07 0.64± 0.05
SLF, posteroir 1.11± 0.04 1.84± 0.13 0.83± 0.04 0.50± 0.05 0.62± 0.04
Frontal sWM 0.94± 0.05 1.23± 0.12 0.91± 0.05 0.66± 0.05 0.48± 0.04
Parietal sWM 1.00± 0.05 1.41± 0.12 0.86± 0.06 0.56± 0.07 0.56± 0.05
Temporal sWM 0.96± 0.07 1.27± 0.13 0.88± 0.08 0.61± 0.06 0.52± 0.03
Caudate head 0.61± 0.08 0.59± 0.07 0.87± 0.05 0.80± 0.04 0.14± 0.03
Globus pallidus 1.06± 0.08 1.05± 0.10 0.86± 0.08 0.74± 0.06 0.27± 0.04
Putamen 0.67± 0.08 0.61± 0.08 0.79± 0.03 0.73± 0.03 0.15± 0.02
Thalamus 0.86± 0.07 0.92± 0.09 0.87± 0.10 0.73± 0.09 0.32± 0.03

Table 2
Regional values of diffusion metrics in healthy volunteers (n=36), mean and standard deviation. ∆ = 37.4 ms [17]. ALIC Anterior
limb of the internal capsule PLIC Posterior limb of the internal capsule CC Corpus callosum sWM Superficial white matter CST
Corticospinal tract IFO Inferior fronto-occipital fasciculus ILF Inferior longitudinal fasciculus SLF Superior longitudinal fasciculus

Figure 11. Schematic representation of different types of glial
cells [28].

in MK was much more significant than the decrease in FA.

2.2.2.5 Alzheimer: A frontal WM MK decrease has been
found in Alzheimer patients, accompanied by a MD increase
and a FA decrease in one study (n=8) [34]. Another study [35]
found that DKI may be more sensitive to Alzheimer than DTI.

Figure 12. A neuron with the neurites uniform oriented in a three
structure around the cell body [29].

Figure 13. Map of diffusivity and kurtosis metrics in a human
brain [5].
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2.2.2.6 Mild cognitive impairment (MCI): The mean kurtosis
and radial kurtosis in the anterior corona are found to be the
best discriminators between MCI patients and healthy controls
(n = 13) [36].
2.2.2.7 Parkinson: In a study on Parkinson’s disease, the
mean kurtosis is found to be higher in the basal ganglia. MK
has a significant higher diagnostic accuracy than FA [37].
2.2.2.8 Cerebral infarct: Kurtosis metrics show significantly
higher percent changes than complementary diffusion tensor
metrics during a cerebral infarct (n=44) [38].
2.2.2.9 Epilepsy: A relation between MK, FA and epilepsy
has been found in some parts of the brain [39].
2.2.2.10 Grading of brain tumors: Higher graded brain tu-
mors are found (n=28) to increase the kurtosis metrics MK, RK,
and KA whereas the DTI metrics MD and FA do not change
significantly [40].
2.2.2.11 Hydrocephalus: In hydrocephalus patients, the DTI
metrics FA, MD, λ1 are found to be significantly higher
whereas the DKI metrics MK and K‖ are found to be signifi-
cantly lower (n=17) [41].
2.2.2.12 Huntington disease: In a rat study on Huntington
disease, the kurtosis anisotropy has been found to be the only
metric that changes significant [42].
To obtain significant results in a study, a minimal group size is
needed. By acknowledging that the minimal group size needed
in DKI studies is usually around 30 but can be as large as 199
[43], it is clear that most studies may not comply to this mini-
mal size. However, all these studies together demonstrate that
DKI metrics could be used as a biomarker to detect pathologies.
But when DTI metrics can detect the same pathologies just as
good, DTI is preferred since it needs a lower group size and
shorter echo times. However, DKI may still be preferable to
DTI in tissue where the DTI model is invalid, for example, in
regions with complex fiber organization [43].

2.3 The central limit theorem
Before considering any paper from the literature about diffu-
sion kurtosis, we can already say a lot about it by only using
the central limit theorem. This theorem says that under some
conditions every infinite sum of random values is a Gaussian
random variable.

Theorem. Let X1, . . . , Xn be independent and identical distributed
random variables3 such that E[X] = 0 and E[X2

i ] = σ2 <∞. Then∑n
i=1 Xi/

√
n converges to a Gaussian distribution with mean 0 and

standard deviation σ. [8]

So when diffusion is not Gaussian, clearly at least one of these
conditions could be violated. Let us take Xi as the diffusion
displacement in an arbitrary time interval [i,i+1]. Where can
the central limit theorem fail?
2.3.1.1 1. The Xi are not independent: Over a short period
of time X0 and Xδ are correlated (hence not independent),
because the diffusion displacement obviously depends on the
starting position. In the long term, however, Xi might not be
dependent on the starting position anymore. The time it takes
that Xi becomes uncorrelated with X0 will be called the corre-
lation time and will be only a few milliseconds because of the
micrometer-scale structure that particles encounter. Hindered
diffusion is non-Gaussian, but becomes Gaussian when the
diffusion time is larger than the correlation time [2]. If diffusion

3. The identical distribution assumption can be weakened, which is
beyond the scope of this work.

Figure 14. Diffusion distribution of a diffusing particle starting at
x = 2.5 µm for diffusion times ranging from 0.1 ms to 100 ms.
The motion is restricted by two plates at x = 0 µm and at x = 10
µm [11].

is totally restricted by a non-permeable membrane, then after
sufficient time the diffusion distribution becomes non-Gaussian
but uniform (see figure 14), which results in a negative kurtosis
of around −0.5 [2].
2.3.1.2 2. E[X2

i ] is infinite: This might appear as an odd
violation of the CLT because in real life diffusing particles in
the brain should always have a begin and endpoint somewhere
in the brain. Some mathematical models may, however, (im-
plicitly) assume that E[X2

i ] is infinite, such as the stretched
exponential model, in which we will go into detail in section
3.4.
To summarize, the central limit theorem teaches us that non-
Gaussian diffusion due to hindrance may become Gaussian
after sufficient time. However, non-Gaussian diffusion due to
restriction or an infinite E[X2

i ], remains non-Gaussian with
increasing diffusion time.

2.4 Propagation of the compartmental kurtosis in the
voxel kurtosis
Suppose there are several compartments in a voxel each having
relative fractions pi, diffusivity Di and apparent kurtosis Ki.
The apparent kurtosis of the voxel in this case is

Kapp =
3 ∗
∑n
i=1 pi(Di − D̄)2 +

∑n
i=1 piD

2
iKi

D̄2
(23)

Hence, if a compartment has a low diffusivity, the kurtosis of
that compartment barely propagates in the overall kurtosis of
the voxel. This can be seen easily by considering that the tails of
a distribution with a low standard deviation are generally the
shoulders of a distribution with a high standard deviation. This
formula turns out to be very helpful, therefore it will be given
a name, i.e. the partial volume kurtosis formula. I did not find
this formula in the diffusion imaging literature, therefore I will
derive it in appendix F.

3 LITERATURE REVIEW ON NON-GAUSSIAN DIFFUSION
MODELS AND THEIR RELATION TO KURTOSIS METRICS.
This section is a critical review of some popular human brain
diffusion models and their relations to kurtosis metrics. There
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are numerous diffusion models available in the literature of
varying complexity; one can model diffusion by a simple
biexponential, but also by advanced graduate mathematics,
see [44] for example. Since deriving the kurtosis by a cumu-
lant expansion of a simple model already can be a tedious
exercise and arguably one first should aim at the most simple
explanations of kurtosis, this work will generally restrict itself
to the more simple but popular diffusion models. For every
reviewed model in this work, we will state the general ideas
and assumptions, possible validation results from experiments
and simulations, and possible relations with kurtosis. At the
end of every model or class of models a discussion follows.

3.0.1 Model assessment criteria
To perform a critical review on diffusion models, one would
want to have some general criteria for the quality of a diffusion
model. The BIC and AIC are popular measures of how well
a model explains the experimental data by quantifying the
trade-off between goodness of fit and complexity. A lower
value should indicate that a model is more predictive [27].
It is nice to have a model that haves a low BIC or AIC, but
one also wants a model that explains the measured signal in
more than a statistical way. Therefore in diffusion modeling
arguably the current emphasis lays on microstructural models
which for example model the signal as being dependent on
axon diameter or membrane permeability. However, a disad-
vantage of assessing a model by how it can estimate anatomical
parameters, is that a ground truth from histology is not always
available, since histology has it artifacts such as shrinkage,
tissue disintegration and non-uniform staining [45]. In model
validation experiments, the use of higher b-values gives the
validation more (statistical) ’power’ [15].

3.1 Biexponential model

3.1.1.1 Idea and assumptions: The biexponential model is
a ’classic’ diffusion model, proposed by Niendorf (1996) [10].
It consists of two compartments where diffusion is Gaussian
but with a different diffusion coefficient, i.e. a fast and a slow
compartment Dfast and Dslow, which each obey a fraction of
pfast resp. pslow of the voxel.

S(b)

S(0)
= pslowe

−bDslow + (1− pslow)e−bDfast . (24)

These compartments were originally interpreted as the intra-
and extracellular space .
3.1.1.2 Experimental and simulation results: The fractions
of intra- and extracellular space implied by the biexponential
model do not match with the physiological values in the
literature [46]. Biexponential diffusion is observed within the
intracellular space of a single cell [47].
3.1.1.3 Relation to kurtosis: For the apparent kurtosis of the
biexponential model, we have [26]

Kapp = 3 ∗ pslow ∗ (1− pslow) ∗ (Dslow −Dfast)2

D2
app

(25)

3.1.1.4 Discussion: In [48], it is suggested that the two com-
partments correspond to structured water around the mem-
brane and free water in the cytoplasm, which allows biex-
ponential signal decay also in single cells. According to [22],
the compartmental mismatch can be due to the fact that some
intracellular water, such as myelin water, is MR-invisible at
clinical echo times. To date however, none of the explanations

of the biexponential model has gained acceptance [49]. Some
authors suggest therefore to accept that the biexponetial model
is ”largely insufficient” [46]. However, WM can be modeled
in the radial direction by a biexponential model, which is for
example stated in Fieremans (2011) [26]. In this case, the two
compartments correspond to the intra- and extra-axonal space
(IAS and EAS). I derived in appendix G that the kurtosis is
maximal whenever

v =
DEAS

DIAS +DEAS
, (26)

where v is the axonal fraction, i.e. the fraction of water that
belongs to the IAS. Because axon diffusion is highly restricted
by the axon membrane in the radial direction, we have that
DIAS << DEAS , and hence this formula reveals that generally
a high axonal fraction would cause a high radial kurtosis.

3.2 The Kärger model
3.2.1.1 Idea: The (simple) Kärger model originates from
chemical physics and is investigated in the context of diffusion
MRI for example by Fieremans (2010) [50]. The idea of the
Kärger model is that compartments exchange particles with
each other, at a rate linearly proportional to the relative dis-
tribution of the spins over the compartments. This introduces
the parameter τ , which describes the mean time that a particle
resides in one compartment. For myelinated axons, the in
vivo estimated τ ranges from 300 ms to 2500 ms [22]. For
non-myelinated membranes, data about τ is scarce, but for
erythrocytes it is found to be between 6 and 17 ms [26]. The
mean exchange time in glial cells is estimated to be around 50
ms [51].
3.2.1.2 Assumptions: The following assumptions are made in
the simple Kärger model: 1. The voxel consists of two compart-
ments, with diffusivities D1 and D2, such that D1 > D2. 2. The
membrane permeability is assumed to be low, otherwise the
’fast’ component would vanish leading to Gaussian diffusion.
3. The diffusion time is longer than the correlation time. 4.
Diffusion is isotropic Gaussian in a single compartment. 5.
Every particle has an equal chance to pass the membrane,
independent of the location.
3.2.1.3 Analytical properties: Suppose at t = 0 there are two
compartments with relative fractions p1 and p2 and diffusion
coefficients D1 and D2. This yields the following system of
ordinary differential equations for the signal intensity:

δS1

δt
= −q2D1 −

S1

τ1
+
S2

τ2
δS2

δt
= −q2D2 −

S2

τ2
+
S1

τ1

with initial value S1(0)
S2(0)

= p1
p2

and p1
τ1

= p2
τ2

. Here q2 = b
t
. Solving

this equation gives the following expression for the voxel signal

S(t)

S(0)
= p

′
1e
−D
′
1q

2t + p
′
2e
−D
′
2q

2t (27)

where the diffusion coefficients are

D
′
1,2 =

1

2

[
D1 +D2 +

1

q2
(

1

τ1
+

1

τ2
)

]
±

√(
D2 −D1 +

1

q2
(

1

τ2
− 1

τ1
)

)2

+
4

q4τ1τ2

with p
′
1 = 1 − p

′
2 and p

′
2 =

p1D1+p2D2−D
′
1

D
′
2−D

′
1

. From these two
equations, it is straightforward to show that in this model
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exchange does not change the apparent diffusivity [50]

D̄ = p1D1 + p2D2. (28)

3.2.1.4 Relation to kurtosis: At time t = 0, the kurtosis is the
same as in the non-exchange case [50]

Kapp = 3
V ar[D]

D̄2

but when t > 0 [50] ,

Kapp = 3
V ar[D]

D̄2

2

t̄

(
1− 1

t̄
(1− e−t̄)

)
(29)

where τex = p1τ2 = p2τ1 and t̄ = t
τex

. Hence, Kapp is strictly
decreasing in time. By filling in the numbers with a realistic
exchange time of τex = 20 ms, at td = 30 ms the apparent
kurtosis will have been decreased to 0.64 times its initial value.
At td = 10 ms, the apparent kurtosis will have been decreased
to 0.46 times its initial value.
3.2.1.5 Extension of the Kärger model: The simple Kärger
model is extended by Meier (2003) [52] to model exchange in
WM between a restricted intra-axonal compartment with zero
radius and a Gaussian extra-axonal space.
3.2.1.6 Results from experiments: Experiments give ambigu-
ous outcomes on the dependence of the water signal on diffu-
sion time. In in vivo rat brain gray matter, the kurtosis is found
to be strictly decreasing after a certain time, as predicted by the
Kärger model [46] (see figure 15). In contrast, in [53] a positive
correlation between mean kurtosis and time in gray matter is
found. There are, however, at least 4 other experiments known
where the in vivo signal-vs.-b curve is independent of the
diffusion time [22].
3.2.1.7 Results from simulations: Fieremans (2010) [50] per-
formed a simulation on a tissue model consisting of a set
of parallel cylinders. When the diffusion time td is longer
than the correlation time of the restricted diffusion in the
cylinders, the kurtosis matched well with the Kärger model
for a range of permeabilities that apply to most ’leaky’ cells,
except myelinated axons. The lowest permeability for which
a simulation was performed had an exchange time of τ = 20
ms, considerably shorter then the range of supposed exchange
times in myelinated axons.
3.2.1.8 Discussion: The Kärger model is interesting since it
predicts Gaussianity after sufficient time from voxels consisting
of multiple compartments if they allow exchange between each
other. This justifies models which for example assume that the
extra-axonal space consists of just one Gaussian compartment.
The idea behind the formulas of the Kärger model is that
due to exchange, less diffusion heterogeneity arises between
compartments, i.e. the fast compartment becomes effectively
more slow and the slow compartment becomes more fast. A
rule of thumb from the Kärger model is therefore that a higher
permeability results in a lower kurtosis. This could arguably
explain why GM has a lower MK than WM, since GM tissue
is generally less myelinated and hence more permeable.
Fieremans (2010) [50] should have considered higher axon
exchange times than 20 ms, since these exchange times may
be as long as 2500 ms in axons [22].

3.3 Statistical model

Yablonskiy (2003) [54] proposes to model the intravoxel sig-
nal intensity caused by diffusion as a continuous spectra of
isotropic ’compartments’, because spins at different positions

Figure 15. Variation of the apparent kurtosis over diffusion time
in rat brain cortex[46].

encounter different environments. This motivates the following
model

S(b)

S(0)
=

∫
P (D)e−bDdD (30)

where P (D) can be any probability density function. This
model is called the statistical model. Yablonskiy (2003) [54]
proposes to use for P (D) a Gaussian that is truncated at zero
to not allow a negative diffusivity

P (D) =

A ∗ e−
(D−ADC)2

2σ2 if D ≥ 0

0 if D < 0,
(31)

where A is a normalization constant.
Other distributions for P (D) that are suggested in the literature
are the gamma [5], log-normal [55], and beta [15] distribution.
The gamma and log-normal statistical models are improve-
ments over the truncated-Gaussian, since both only allow pos-
itive values of D, and allow more variation in shape of P (D),
in particular in skewness. The beta model is an improvement
over the gamma model, since the beta statistical model bounds
the diffusion coefficient by Dfree.
3.3.1.1 Results from experiments: One study considering b-
values up to 5000 s/mm2 showed that a truncated-Gaussian
statistical model does not give a bad fit but performs sig-
nificantly worse than models with comparable amounts of
parameters [16].
3.3.1.2 Anisotropic statistical models: The ’statistical model’
can be made anisotropic by not imposing a distribution of
diffusivities P (D), but a distribution of diffusion tensors P (D)

S(~n, b)

S(0)
=

∫
P (D)e−b~n

>D~ndD. (32)

Jian (2007) [56] chooses a Wishart probability distribution for
P (D). One could roughly say that the Wishart distribution
is the multivariate equivalent of the chi-square distribution.



12

Figure 16. Images of increasing complexity. Fractal dimensions
are (a) 0.31, (b) 0.477 and (c) 1.041 [58].

Basser (2003) [57] proposes a ’Gaussian’ tensor distribution

P (D) = C ∗ e−
1
2

∑
DijWijklDkl , (33)

where C is a constant and W a fourth order tensor.
3.3.1.3 Relation to kurtosis: When D is distributed as a
truncated-Gaussian distribution, the kurtosis equals [15]

Kapp =
3

D2
app

(σ2 −D2
app +Dapp ∗ADC), (34)

where ADC and σ2 are the mean and variance of P (D). The
model of Jian (2007) should be an anisotropic extension of the
’statistical’ models. However, Jensen (2010) [5] showed that the
kurtosis implied by this model is isotropic.
3.3.1.4 Discussion: The statistical model assumes that the
individual compartments follow a Gaussian distribution. This
might even be a reasonable assumption for non-Gaussian
models with a relatively low diffusivity, according to the partial
volume kurtosis formula (equation 23).
A disadvantage is that the statistical models lack a biophysical
basis. However, as we will see in later sections, parts of other
’physical’ models are in fact statistical models, such as a model
with a random gamma distributed cylinder radius in section
3.5.3.2 and an axonal dispersion model in section 3.5.2.3.
The Wishart distribution of Jian (2007) [56] may be a good dis-
tribution to model anisotropic diffusion that is non-Gaussian,
but for example has a small isotropic apparent kurtosis, like
CSF [53].
Basser (2003) [57] gives an interesting interpretation of the
kurtosis tensor; the kurtosis tensor can in this framework be
seen as a measure of how likely it is to observe a certain
diffusion tensor in a voxel, equivalent to how a diffusion tensor
can be seen as a measure of the likeliness of observing a certain
diffusion displacement vector in a voxel.

3.4 Stretched exponential
3.4.1.1 Idea: Hall (2008) [58] proposes the following GM
model called the stretched exponential model

S(0)

S(b)
= e−Cb

α

, (35)

where C is a constant and where α is a measure of the fractal
dimension of the microstructure [59]. Examples of several
geometries with different fractal dimensions are given in figure
16.
3.4.1.2 Relation to kurtosis: The underlying distribution of
the stretched exponential haves the property that for indepen-
dent and identical distributed X1, . . . , Xn, the sum

∑
Xi is up

to scaling identical distributed as a single Xi [60]. The Gaussian
distribution is an example of such a distribution, in fact when

Figure 17. The symmetric alpha-stable distribution for different
values of α. Decreasing α results in more peaked and heavier
tailed distributions [60].

α = 1 the stretched exponential corresponds to a Gaussian.
For other values of α, the variance is infinite because such a
distribution has too heavy tails (see figure 17). In that case the
kurtosis is undefined [5]. However, as can be acknowledged
from figure 17, C and α describe the width and the amount
of heavy-tailedness of the stable distributions in a manner
equivalent to the diffusivity and the kurtosis.
3.4.1.3 Results from experiments: One study [61] compared
the goodness of fit of the stretched exponential and the biex-
ponential model in rat cortical ribbon (n=6) up to a b-value of
6500 s/mm2 and found that in 20% of the voxels the stretched
exponential (which has one parameter less) gives a better fit.
In [58] tissue contrast is observed from the parameters of the
stretched exponential. In [16] a good fit to the signal for b-
values up to 5000 s/mm2 is observed in GM, whereas in
[62] a significant difference is observed between α in human
high-grade gliomas and healthy tissue for b-values up to 4000
s/mm2.
3.4.1.4 Discussion: GM neurites are arguably oriented in a
’fractal’ three structure around the cell body (see figure 12) and
may therefore be well characterized by their fractal dimension.

There are a few experimental studies supporting the stretched
exponential up to b-values of 6500 s/mm2. It would be in-
teresting to investigate if the stretched exponential still gives
good results at higher b-values, because a minor change in
the signal curve can have a considerable effect on the implied
distribution [63]. For this reason, according to [63], the use of
a stretched exponential to model diffusion is more likely due
to its convenient mathematical representation than due to the
validity of the underlying distribution.

The stretched exponential can describe the deviation from
Gaussian diffusion in one parameter, while there are in theory
an infinite amount of cumulants κ4, κ6, κ8, . . . possibly bearing
information on the deviation from Gaussianity. For this reason
α might be a better measure of non-Gaussianity, of course
provided that the stretched exponential model is valid.
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3.5 Microstructural compartmental models without ex-
change
A class of models that are popular in modeling white matter
are what is called in this work microstructural compartmental
models without exchange. These models consist generally of
two compartments, i.e. an intra-axonal (IAS) and an extra-
axonal (EAS) compartment, but can also contain a third com-
partment, for example CSF. Because myelin water is invisible
at clinical scan times [22], we can only probe water diffusivity
within the axon membrane, not in the myelin sheath. Exchange
between the IAS and the EAS is neglected, for reasons of a
’negligible’ axon permeability due to myelination [26] [64].
These models can be split in three subgroups by how they
model the axon radial diffusion. The first subgroup of models
that is reviewed assumes that the radial diffusivity is Gaussian.
The second assumes that the axon radius is zero (hereafter
referred to as a stick models). The third subgroup that is
reviewed assumes that the axon is a totally impermeable cylin-
der (hereafter referred to as cylinder models). An overview of
each presented microstructural compartmental model with the
underlying assumptions can be found in table 3.

3.5.1 biTensor models
3.5.1.1 biTensor model: Tuch (2002) [65] proposes a biTensor
model consisting of two tensors that corresponds to the IAS
and the EASDa,11 Da,21 Da,31

Da,21 Da,22 Da,32

Da,31 Da,32 Da,33

 De,11 De,21 De,31

De,21 De,22 De,32

De,31 De,32 De,33


This model uses 14 parameters. How could we reduce the
amount of parameters? One can hypothesize that the diffusion
distribution is cylinder symmetric around the axon axis in both
the IAS and the EAS. This gives an IAS and EAS tensor [66]Da,⊥0 Da,‖

0 0 Da,‖

 De,⊥0 De,‖
0 0 De,‖


We call these two tensors a zeppelin tensor because the radial
diffusivities are equal, which gives the 3-dimensional diffusiv-
ity distribution a zeppelin shape. This biZeppelin model uses
9 parameters.

3.5.2 Stick models
3.5.2.1 Tensor & stick: The tensor & stick model studied by
Fieremans (2011) [26] is a restriction of the biTensor model. The
axonal perpendicular diffusivity is in this model assumed to
be zero, which should be a reasonable assumption whenever
td >> R2/Da [26]. This gives two tensors

Da,11 Da,12 Da,13

Da,21 Da,22 Da,23

Da,31 Da,32 Da,33

 D‖,ecosθ 0 0
0 0 0
0 0 0


Relation to kurtosis The tensor & stick model implies a radial
kurtosis of [26]

K⊥ = 3 ∗ v

1− v , (36)

where v is the axonal fraction. Therefore the axonal fraction
can be estimated by the radial kurtosis

v =
K⊥

K⊥ + 3
. (37)

Hence, according to this model, kurtosis solely depends on the
axon fraction v.

3.5.2.2 Stick models with orientation dispersion: Axons are,
however, almost never totally coherent aligned. The full-width
at half-maximum (FWHM) of the dispersion to the main axon
direction is found to be around 34◦ in the corpus callosum [22].
This motivates the extension of the stick component Sc with a
dispersion component, i.e.

Sc(~n) =

∫
ν

p(~ν)e−bDe,‖(~n·~ν)2d~ν, (38)

for which the axons in directions ~ν are dispersed around the
central axon direction ~µ. The (continuous) relative fraction of
axons with direction ~ν is denoted by p(~ν). This is called the
orientation distribution function of ~ν.
3.5.2.3 Noddi : The NODDI model [67] is a stick model ex-
tended by a Watson distribution, which orientation distribution
function is given by

p(~ν) = [1F1(
1

2
,

3

2
, κ)]−1eκ(~µ·~ν)2 (39)

where ~µ is the mean axon direction, κ is a dispersion parameter,
and where 1F1 is the confluent hypergeometric function of the
first kind [67]. The Watson distribution should be the simplest
spherical pdf that can account for orientation dispersion.
The EAS is modeled by a distribution of zeppelins, with an
extra tortuousity restriction De,⊥ = De,‖ ∗ (1 − v). Every
zeppelin in this distribution corresponds to a particular axon
orientation. Hence if a fraction of the axons point in ~ν, a
fraction of the EAS is tortuous in the direction perpendicular
to ~ν because of hindrance from this fraction of axons. Also an
isotropic Gaussian CSF compartment is included.
3.5.2.4 Validation of stick models with orientation dis-
persion: In a preliminary work Ferizi (2013) [66] compares
stick models with and without orientation dispersion in the
human brain in vivo on relatively coherently oriented fibers in
the corpus callosum (CC). Stick models with an orientation
dispersion component give considerably better results than
those without orientation dispersion. For regions with a minor
orientation dispersion a CSF compartment is favored over
a zero radius sphere (dot) as a third compartment. When,
however, the orientation dispersion increases, a dot model is
favored. A zeppelin is found to be the best choice to model the
EAS.
3.5.2.5 Discussion: It makes sense to accommodate for ori-
entation dispersion in WM diffusion models. The remarkable
behavior of dot and sphere compartments when the dispersion
is varied is an indication that the inclusion of a third EAS com-
partment based on microstructure should not be undisputed.
The orientation dispersion models are in fact ’statistical’ mod-
els in the sense of section 3.3. Because the cylinders make
different angles with the gradient vector, for every neurite
direction a different effective diffusivity is measured [15]. This
gives variance in diffusivity and hence kurtosis.

3.5.3 Cylinder models

The cylinder models presented in this section essentially differ
from the previously reviewed stick models by just one aspect,
that is the axon radius R, which is non-zero in these models.
3.5.3.1 Composite hindered and restricted model of diffu-
sion (CHARMED) : The CHARMED model of Assaf (2004)
[68] assumes that the radial axon diffusion is totally restricted.
A formula for restricted diffusion within impermeable cylin-
ders from Neuman (1974) [69] is used to model the signal from
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the IAS in the perpendicular direction4

Sa,⊥(TE, |~g|)
S(0)

= e
−R

4γ2|~g|2
Da

7
96

(
TE− 99

112
R2

Da

)
(40)

where Da is the intrinsic intra-axonal diffusivity and TE is the
echo time. This formula tacitly assumes that td >> R2/Da.
Diffusion in the EAS is modeled by a zeppelin component.
Relation to kurtosis DeSantis (2012) [70] investigates numeri-
cally the relations between Da‖, v and K⊥ that are implied by
the CHARMED model. As can be seen in figure 18 a positive
relation is found between v and K⊥ and also between Da‖ and
K⊥, for v < 0.8. When v > 0.8, for Da ≤ 1 µm2/ms the relation
between K⊥ and v is negative, whereas for other values of Da
this relation is positive. These trends are also tested in vivo in
the same study. The relation between K⊥ and v is found to be
significant, whereas the relation between K⊥ and the intrinsic
diffusivity Da‖ was found to be insignificant.
3.5.3.2 AxCaliber : The CHARMED model is extended to
the AxCaliber model by Assaf (2008) [45] to accommodate for
variation in axon diameters. The axon diameter is not fixed like
in the CHARMED model, but randomly distributed following
a gamma distribution.
Results from experiments High correlations of 0.98 and 0.86
between the axon radii measured by AxCaliber and by light
microscopy are reported in [45] (see figure 20). However,
small axon diameters are difficult to probe, since the apparent
diffusivity goes rapidly to zero over time in those axons [45].
3.5.3.3 Minimal model of white matter diffusion
(MMWMD): Alexander (2010) [64] proposes a ’minimal’
white matter model consisting of 4 compartments. This
MMWMD model is essentially the CHARMED model
extended with a CSF and a trapped water compartment (such
that D ≈ 0). This trapped water component should correspond
to water bound to membranes and water inside glial cells and
other small structures. Also the restriction Da,‖ = De,‖ holds.
The model only uses the parameters S0, Da‖, DCSF , R, ~µ and
the relative fractions ptrapped, pIAS and pEAS .
3.5.3.4 Discussion: Modeling a restricted axon component by
solving differential equations like Neuman (1974) [69] seems to
explain the measured signal reasonable and seems to estimate
the axon radius well. However, for those who are not familiar
with the tedious derivation of differential equations like in
Neuman (1974) the signal formulas for the restricted axon
are a black box. Because the CHARMED model assumes that
td >> R2/Da, for which the radial axon diffusion distribution
should be approximately uniform [2], it should be possible
to derive a simpler expression for the radial axon diffusivity
without trading in too much accuracy.
In figure 19, I plotted K⊥ of an ’ordinary’ biexponential
function to the same values of v as DeSantis (2012) [70] did
for the CHARMED model. One can appreciate from this figure
that it captures for v < 0.8 the same trends (notice that the axon
fraction v is in practice never larger than 0.8) as the CHARMED
model. It would have been arguably far more interesting
if DeSantis (2012) [70] has investigated the theoretical time
dependence of the radial kurtosis implied by the CHARMED
model.
A totally restricted axon in the radial direction leads to time
dependence of the radial diffusivity and kurtosis, whereas

4. In the original article of Neuman (1974) [69] 7/296 instead of 7/96
appears in the signal formula. It is to the best of my knowledge not
clear where this discrepancy comes from.

Figure 18. K⊥ vs axonal fraction RF for 3 different Da‖ values
according to the CHARMED model [70].

Figure 19. K⊥ vs axonal fraction RF for the same 3 differentDa‖
values according to the biexponential model, assuming Da,⊥ =
0.05.

Figure 20. a: Extracted AxCaliber axon diameter distribution
b: Axon diameter distribution derived from electron microscopy.
ON and SN: porcine optic and sciatic nerve [45].
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BiZ TS NOD MMW CHD AxC
# Parameters 9 12 9 10 9 10
No exchange X X X X X X
Straight
& parallel axons X X X X X
Gaussian parallel
axonal diffusion X X X X X X
t >> R2

Da
X X X X X

Restricted axonal
diffusion X X X X X
Zero axon radius X X
Random distributed
axon radius X
EAS dimension 2 3 2 2 2 2
Da‖ = De‖ X X
Trapped water
compartment X
CSF compartment X X

Table 3
Overview of microstructural compartment models that have

been reviewed in this work.

experiments show no dependence between the kurtosis and
the diffusion time in white matter [71], [22]. It is therefore
questionable if the high correlations between the AxCaliber
model and histological parameters that are measured would be
consistent over a broader range of diffusion times. Moreover,
true restricted diffusion effects have not been really observed
for water in the brain, according to [48]. It seems more logical
that axons are not totally restricted, but allow limited exchange
between the IAS and EAS. In section 6.1 I will show that the
apparently negligible difference between total restriction and
almost total restriction can have a significant effect on the radial
kurtosis.

3.6 Comparison of microstructural multi-compartment
models without orientation dispersion

Ferizi (2013) [27] performed an systematic experimental com-
parison of all types of multi-compartment models without
orientation dispersion. These models are a combination of the
following compartments:
• Restricted extra-axonal diffusion possibly consisting of

two compartments. The first compartment can be chosen
to be

1) Isotropic (ball).
2) Anisotropic with cylinder symmetry (zeppelin).
3) Fully anisotropic (tensor).

A possible second EAS compartment can be chosen from
1) Astrosticks; uniform orientation distributed cylinders

with zero radius.
2) Astrocylinders; uniform orientation distributed cylinders

with non-zero radius.
3) Isotropic spheres; diffusion inside a sphere. This can be

interpreted as CSF contamination.
4) Dot; spheres with zero radius, which implies that parti-

cles inside do not move.
• An intra-axonal compartment modeled as a cylinder point-

ing at ~µ, where the cylinder radius can be zero, fixed, or
gamma distributed.

All combinations of those compartments were tested in vivo
on relatively straight fibers in the corpus callosum of a human
brain and evaluated to the BIC criterion. B-values ranged from

218 to 10.308 s/mm2 in 45 directions. The study draws some
interesting conclusions:

1) Even the simplest two-compartment models, such as the
ball & stick model, explain the signal intensity much
better than the diffusion tensor model.

2) The tensor and zeppelin models consistently perform
better than the isotropic ball in the EAS, supporting the
need to accommodate for anisotropy in the EAS. The
radial eigenvalues of the tensor are found to be similar,
therefore a zeppelin is the best model for the EAS.

3) Three compartment models outperform two compart-
ment models. ”Sphere” and ”dot” are favored over ”as-
trosticks” and ”astrocylinders”.

4) ”Sphere” and ”dot” three compartment models underesti-
mate the axon fraction by almost a half, probably caused
by some restricted diffusion from the cylinders that is
captured by the third restricted component. ”Astrosticks”
models overestimate the mean axonal radius roughly four
times.

5) The fitting procedure estimates the radius of the astro-
cylinders and sphere to be almost zero (0.1 µm), therefore
the BIC prefers the simpler astrosticks and dot compart-
ments.

3.6.1 Discussion
According to the comparison study, white matter models
should accommodate for cylindrical symmetric diffusion in
both the IAS and the EAS. On top of that, the addition of a
third restricted compartment to a model gives a better BIC, but
a worse estimation of parameters. In this light it is interesting
that another experiment did not find any suggestion for an
extra-axonal isotropic restricted compartment [72].
Irrespective of whether such a third restricted compartment
should be included or not, one can ask: what should be the
third compartment? A trapped water compartment is favored
by the BIC, but it can be challenging to distinguish a water sig-
nal arising from environments with highly restricted diffusion
(D ≈ 0) from noise [22]. The second best choice according to
the BIC is a spherical compartment, which can be interpreted
as CSF contamination. It should be kept in mind, however,
that diffusion in the CSF is not truly Gaussian, because of flow
effects, choroid plexus and membranes [53]. The worst BIC
belongs to an astrocyte compartment. The reader should not be
surprised: at clinical diffusion times, a substantial part of water
molecules may already been leaked out, whereas the astrocytes
are modeled as impermeable cylinders. What the results of the
comparison study show but what is not further addressed
in Ferizi (2013) [27], is that a biZeppelin model gives better
results than a zeppelin & stick or a zeppelin & cylinder model.
Therefore the radial axonal diffusion may be better modeled
as Gaussian diffusion than by a restricted stick or cylinder.
By assuming diffusion to be equal in all radial directions, one
reduces the diffusion process in fact to 2 dimensions. Therefore
the kurtosis tensor reduces to the independent parameters
E[X4], E[X2Y 2] and E[Y 4]. Because independence implies
that E[X2Y 2] = E[X2]E[Y 2] = 4D‖D⊥, the only independent
kurtosis parameters in the kurtosis tensor are essentially K⊥
and K‖. Hence one can see, by making a cumulant expansion
of the model signal intensity, that this signal does not depend
on so many parameters as one might a priori expect. Therefore
one -regarding the many parameter that are involved in those
microstructural models- should be cautious for overfitting in
studies like Ferizi (2013) [27].
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3.7 Modeling neurite orientation and compartmentaliza-
tion in GM

Since WM can be modeled well by intra- and extracellular
compartmentalization and orientation distributed axons, one
may ask if we could use this approach to model GM neurites
as well. The literature provides far less such microstructural
models for GM, but one such model seems to explain GM
diffusion particular well. This is the neurite orientation model
of Jespersen (2007) [73] which can, by some minor adjustments,
also model WM diffusion. This model is included because it
has an interesting relation with kurtosis, but also to give a
taste of more advanced diffusion modeling. Because within the
framework of Ferizi (2013) [27] simpler microstructural WM
models are already well modeled and validated, this section
will only focus on the application of the neurite orientation
model in GM.

3.7.1 Neurite orientation model

The in this work called neurite orientation model of Jespersen
(2007) [73], contains an isotropic Gaussian compartment and
a compartment that exists of a distribution of neurites which
point in different directions. This leads to the the signal inten-
sity

S(b, ~n)

S(0)
= (1−v)e−bDeff+v

∫
S2

p(~ν)e−b(DL(~ν·~n)2+DT (1−~ν·~n)2)d~ν

(41)
where Deff is the diffusivity outside the neurite compartment,
DL and DT are the parallel resp. radial diffusivity of the
neurites, and p(~ν) is the fraction of neurites that point in
direction ~ν. A visual example of such an distribution is given
in figure 21. Since ~ν is a vector on the sphere, we can also write
p(~ν) as a function of spherical coordinates

p(~ν) = p(θ, φ) (42)

where θ and φ are the spherical coordinates of ~ν. It is well
known from basic anatomy that p(θ, φ) should generally be
more uniform for GM neurites than for WM axons, that often
have only one or two main orientations.
Jespersen (2007) [73] expands the spherical distribution func-
tion p(θ, φ) into certain basis functions called spherical har-
monics. This expansion is based on the fact that any well
behaved function on the sphere can be written as a sum of
some basis functions, like a Fourier expansion does for periodic
functions. In appendix N we will provide a rigorous derivation,
especially for the reader who is not yet convinced of this
striking mathematical fact. The spherical harmonics expansion
yields the following signal intensity

S(b, θ, φ)

S(0)
=(1− v)e−bDeff

+vπe−bDT ·
∑
l,m

flmCl(b(DL −DT ))Ylm(θ, φ)(43)

where Cl and Ylm(θ, φ) are functions related to the spherical
harmonic expansion. The harmonic series is truncated at l = 2
or l = 4, which results in an amount of parameters between
10 and 18 depending on the truncation.
3.7.1.1 Results from experiments: Jespersen (2007) [73] com-
pares the truncation of the harmonic series ex vivo in a
newborn baboon brain at l = 2 and at l = 4, with ∆ = 50
ms and with b-values up to 15000 s/mm2 in 153 directions.

Figure 21. Orientation distribution of neuronal processes [74].

Figure 22. Plots of the real combinations of the spherical
harmonics. Black corresponds to negative values [75].

In GM regions the l = 2 truncation is sufficient to explain the
measured signal.
The truncation at l = 4 has been studied on ex vivo rat brain by
[1], with b-values up to 15000 s/mm2 in 144 directions. Because
dendrites have a low exchange time of τ = 10 ms, ∆ is set
to 8 ms. Significant Pearson correlations in GM were observed
between the measured neurite fractions and the neurite fraction
measured by light microscopical staining.
3.7.1.2 Relation to kurtosis: In general, we have for the
apparent kurtosis tensor of the neurite orientation model,
according to Jespersen (2012) [74]

Kapp =
[vD2

AW + (1− v)v((Deff −DT )I −DAT )⊗2)

Tr(Dapp/3)2
(44)

with Dapp = (1− v)Deff + v(DT I +DAT ), DA = DL −DT ,
⊗2 the tensor product of a tensor with itself (see appendix C),
and T resp. W the second resp. fourth order tensor of the
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orientation distribution function p(~ν), i.e. Tij = E[νi · νj ] and

Wijkl=3E[νiνjνkνl]− E[νiνj ][νkνl]

−E[νiνk]E[νjνl]− E[νiνl]E[νkνj ]. (45)

What this formula especially reveals is that the kurtosis tensor
metrics -according to this model- depend on the kurtosis tensor
of the orientation distribution.
If the orientation distribution of the neurites is isotropic, then
the mean kurtosis is equal to (see Mulkern (2009) [76] and
appendix J for a derivation)

3
(1− v)D2

eff + v
(
D2
T + 2∗DT (DL−DT )

3
+ (DL−DT )2

5

)
(
(1− v)Deff + v( 2

3
DT + 1

3
DL)

)2 − 3

(46)
This formula is especially useful to calculate the kurtosis of an
astrocyte compartment, since we already saw that this can be
modeled as an uniform distribution of impermeable cylinders.
Because the directional kurtosis K(~n) is, in all generality, a
function on the sphere, it can also be expanded into spherical
harmonics [44]. Notice, however, that this is something dif-
ferent than expanding an orientation distribution function of
neurites or axons in spherical harmonics.
3.7.1.3 Discussion: The neurite orientation model can make
a good fit to the signal and seems to estimate the neurite
fraction reasonably in ex vivo rat brains. The imaging protocol
that is used in the validation experiments is, however, clinical
impractical [67]. Therefore the model is not yet validated in
the human brain in vivo. This model uses almost 5 times as
much parameters as alternative GM models like the stretched
exponential or the Kärger model. Therefore one should be
cautious for overfitting.

3.8 Axonal morphology

Axonal morphology, e.g. bulging, bending and undulation
could have an effect on the kurtosis metrics in WM. Monte
Carlo simulations can reliable estimate diffusion distributions
[77] and can be used as a tool to investigate diffusion processes
in axons with different morphologies.

3.8.1 Axonal damage
Landman (2010) [77] investigates the effect of axon damage
on the kurtosis with a Monte Carlo simulation. The kurtosis
metrics of healthy, bulged, crimped and broken axons resulting
from the simulation are shown in figure 23. The largest effect
from axon damage is observed for the axon kurtosis in the
parallel direction in case of a bulging axon, in which case the
radial axon kurtosis is also affected. A crimped axon causes in
both principal directions a very small increase in axon kurtosis.
A broken axon only changes the parallel axon kurtosis.

3.8.2 Axonal bending
Landman (2010) [77] also performed a simulation on the effect
of axonal bending on the radial and perpendicular diffusion
probability distribution. As shown in figure 24, the effective
radial diffusivity of the axon increases when the axon bends.

3.8.3 Axonal undulation
Axonal courses change due to tension and compression in a
manner similar to that of the bellows of an accordion. This
axonal undulation is considered to have a protective function,
and is present in those parts of the central nervous system that

Figure 23. The simulated effect of axon damage on kurtosis
[77].

Figure 24. Effects of axonal bending on the axonal diffusion
distribution [77].

are subjected to strain during locomotion such as the optic
nerve. The undulation pattern is observed to be sinusoidal,
see figure 25, or helical [78]. Nilsson (2012) [78] investigated
the effect of axonal undulation on the diffusion distribution
analytical and by simulations. In case of axon undulation the
effective radial axon diffusivity will be higher, see figure 26.

4 DISCUSSION

After we obtained in the previous section some feeling for
how to model diffusion in the human brain, this part of the
text will summarize the causes of kurtosis in the human brain
which are implied by the reviewed diffusion models in the
literature. The discussion is structured as follows. First, we
will give an answer to the question: how to model diffusion in
the human brain appropriately with simple models? Then we
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Figure 25. Undulation in sagittal sections through the cervical
cord at the level of C6 [78].

Figure 26. Radial diffusion displacement distribution, from
straight and undulated axons obtained analytical (circles) and
by simulation (broken line) [78].

will sum up all the relations that could be established between
diffusion model parameters and kurtosis metrics. After these
considerations, a conclusion will be given on which parameters
could be expected to have an effect on kurtosis metrics.

4.1 How to model diffusion in the human brain with rela-
tively simple models?
In WM, relatively simple signal intensity models are suc-
cessfully applied in vivo to regions of high fiber coherence;
models which account only for orientation dispersion in the
IAS and diffusion anisotropy in the EAS already can explain
the measured signal well and estimate parameters reasonably.
The inclusion of an exchange, CSF, trapped water or astrocyte
component may also improve a WM diffusion model, but this
has yet not been totally clarified. Making new diffusion models
by combining components from different existing models has
proven to be successful in WM. In table 4 an overview is given
of the WM models reviewed in this work together with their
relative performance.
The literature shows less advancement in the modeling of GM.
In the neurite orientation model, GM is modeled in a same
fashion as WM where the axons are replaced by neurites. In the
stretched exponential model, the signal intensity arising from
GM is related to the microstructural fractal dimension. Both

WM models Realistic parameters Signal explanation
BiZeppelin +/- +
Tensor & stick +/- +/-
MMWMD +/- +
CHARMED +/- +/-
AxCaliber +1 -
NODDI +/- ++

Table 4
Relative in vivo performance of WM models in regions of

coherent fibers, based on [27] [66]
1. Ex vivo

models provide some good results, but are sparsely validated
and compared to other models.

4.2 Relations between biophysical parameters models
and kurtosis metrics

This section discussed the causes of kurtosis and ultimately
leads to some DKI rules of thumb. Jensen (2010) [5], Jespersen
(2010) [1], DeSantis (2012) [70], Mulkern (2009) [76], Fieremans
(2010) [50], Fieremans (2011) [26], and Yablonskiy (2010) [15]
are examples of articles in the literature which relate diffusion
models to kurtosis metrics or at least to a cumulant expan-
sion. From these articles I obtained some relations between
anatomical parameters and kurtosis. I will show, however, that
it is possible to derive even more relations by combining for
example several sources from the literature.

4.2.1 Relations which can be directly obtained from the litera-
ture

This section is about relations between kurtosis and diffusion
models which can be straight obtained from the articles just
named.
4.2.1.1 Difference between directional tortuousity between
compartments: When a compartment is more tortuous, i.e.
particles have to travel a longer path to reach the same point
because of hindrance, it has effectively a lower diffusivity.
Therefore, a difference in tortuousity between compartments in
a certain direction causes variance in diffusivity and therefore
kurtosis in that direction [26].
4.2.1.2 Exchange: According to the Kärger model studied by
Fieremans (2010) [50], exchange reduces the kurtosis metrics.
4.2.1.3 Axon/neurite fraction: According to the tensor & stick
model of Fieremans (2011) [26], axon fraction is the only
parameter that makes sense in WM radial kurtosis. A higher
axon fraction leads to a higher kurtosis. This is confirmed by
the numerical calculations of DeSantis (2012) [70] as shown in
figure 18 which where performed on the CHARMED model
of Assaf (2004) [68]. The kurtosis tensor of the GM neurite
orientation model from Jespersen (2010) [1] reveals us that
neurite fraction has an effect on the kurtosis metrics.
4.2.1.4 Axon radius: According to DeSantis (2012) [70], the
radial kurtosis is dependent on the axon radius.
4.2.1.5 Intrinsic axon/neurite diffusivity: The numerical cal-
culations of DeSantis (2012) [70] show that a higher axonal
intrinsic diffusivity causes a higher radial kurtosis, according
to the CHARMED model of Assaf (2004) [68]. Jespersen (2012)
[74] derived that the GM voxel kurtosis metrics are depended
on the intrinsic neurite diffusivity according to the neurite
orientation model.
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4.2.1.6 Second and fourth order tensor of the orientation
distribution: Jespersen (2012) [74] derived that the kurtosis
metrics of a voxel which includes a compartment of orientation
distributed neurites depends on the second and fourth order
tensor T and W of the orientation distribution. One can con-
clude from Jespersen (2012) [74] that in general higher values
in the kurtosis tensor W of the axon orientation distribution
causes a higher kurtosis in the voxel.

4.2.2 Relations which can be indirectly obtained from the
literature
In this section relations between the kurtosis and the reviewed
diffusion models are stated for which one has to combine
several sources from the literature and possibly perform some
calculations.
4.2.2.1 Axon radius: DeSantis (2012) [70] states that kurtosis
is dependent on the axon diameter but does not specify in
which direction. However, since a larger radius causes a higher
radial diffusivity Da,⊥ and hence less diffusion heterogeneity
in the radial direction, a higher axon radius causes a lower
radial voxel kurtosis in WM.
4.2.2.2 Glial cells and other small restricted compartments:
According to the MMWMD model of Alexander (2010) [64],
water in glial cells and other small restricted compartments
is trapped, i.e. for these compartments it holds that D ≈ 0
µm2/ms. Since these trapped water particles add up to the
peak of the diffusion displacement distribution, the trapped
water fraction can almost surely be expected to increase the
kurtosis metrics. After all, in the context of diffusion MR,
kurtosis is a measure of peakedness [70].
4.2.2.3 Water that is bound to membranes: Water that is
bound to membranes has, because D ≈ 0 µm2/ms, following
an equivalent reasoning a similar effect on kurtosis metrics as
glial cells.
4.2.2.4 Axonal radial kurtosis : Because an axon has a small
radial diffusivity of around Da,⊥ = 0.05 µm2/ms, for which
the exact value depends on the axon diameter, again the
partial volume kurtosis formula (equation 23) is of use. With
this formula we can derive that assuming restricted diffusion,
which typically gives an axonal kurtosis Ka,⊥ of around -0.5,
the effect of Ka,⊥ on the voxel RK is generally negligible since
Ka,⊥ gets weighted by the relatively very small D2

a,⊥.
4.2.2.5 Axon crimping: Landman (2010) [77] performed a
simulation to asses the effect of crimping on axons, as in figure
23, on Ka,⊥ and Ka,‖. From the axon diffusion distribution (not
shown), no change in diffusivity was apparent. An effect on
Ka,⊥ was measured, but this will only contribute marginally
to the voxel radial kurtosis as discussed in the previous para-
graph. Hence the crimping of axons has a negligible effect on
the voxel RK and a small effect on the voxel AK.
4.2.2.6 Bulging and broken axon: A bulging and a broken
axon are found by Landman (2010) [77] to have a Ka,‖ of 1.4
resp −0.4. If the fiber points straight in one direction, Ka,‖ of
the bulged or broken axon compartment has a major impact
on the voxel AK, because of the relatively large diffusivity of
the axon, by the partial volume kurtosis formula (equation 23).
4.2.2.7 Orientation dispersion, axon undulation & axon
bending: Everything that makes the width of the radial dis-
placement distribution of an axon wider causes less diffusion
heterogeneity in the radial direction and hence less kurtosis.
Hence one could argue that more orientation dispersion within
a fiber, axon bending and undulation all causes a decrease of
the voxel RK.

4.2.2.8 Astrocyte fraction: Because, according to Ferizi (2013)
[66], one can model astrocytes as cylinders or sticks that are
uniformly distributed over the sphere, one can use equation
(46) to obtain, assuming an intrinsic astrocyte diffusivity of
0.8 µm2/ms, an apparent kurtosis of 0.46 for a stick, and an
apparent kurtosis of 0.45 for a cylinder. Hence for an uniform
distribution of cylinders, the kurtosis seems to be independent
on the cylinder radius. Now consider the genu of the CC. In
table 2 one can find the in this region RK and RD to equal
2.07 resp. 0.38. Suppose, for example due to astrogliosis, that
10% of the voxel fraction becomes occupied by astrocytes. The
new radial kurtosis will, according to equation (23), decrease
from 2.07 to 2.01. Hence in this example a slightly lower RK is
caused by a higher astrocyte fraction. This may be somewhat
counter intuitive since one may think that more variety in voxel
composition may automatically lead to a higher kurtosis. In
general, the effect of the astrocyte compartment depends on
the exact value of a handful of parameters: the DKI metrics of
the voxel without an astrocyte fraction, the astrocyte diffusivity
and the relative fraction of the astrocyte compartment.
4.2.2.9 Astrocyte radius: As derived in the latter paragraph,
the radius of cylinders in the uniform orientation model which
is applicable to astrocytes does not have a significant effect on
the apparent kurtosis.
4.2.2.10 CSF fraction: Yang (2013) [6] experimentally investi-
gated the effect of CSF contamination on GM and WM mean
kurtosis in vivo. According to Yang (2013) the direction of
the effect of CSF contamination on kurtosis metrics is not
a priori obvious because experiments have found that CSF
has a low kurtosis which would reduce the voxel kurtosis,
whereas on the other hand diffusion heterogeneity caused by
CSF contamination would raise the voxel kurtosis. Because I
derived formula (23) which states how kurtosis behaves under
partial volume effects and how the two contributions that Yang
(2013) describes are weighted against each other, i.e.

3vcsf (1− vcsf )(Dcsf −D)2 + vcsfD
2
csfKcsf + (1− vcsf )D2K

D2
app

where D an K are the voxel diffusivity and kurtosis before
the addition of an (extra) CSF compartment. My hypothesis
is therefore that one a priori could have known how CSF
changes the kurtosis, by considering this formula. Yang (2013)
also founds that GM kurtosis is more susceptible for CSF
contamination than WM kurtosis. The reason should be the
location of GM and WM relative to each other and to the
CSF. Again, my hypothesis is that this can be explained by
the partial volume formula (equation 23).
Consider an isotropic voxel such that D = 0.8 µm2/ms and
such that K = 0.7. Suppose this voxel gets for 5% contami-
nated by CSF, for which D and K are observed to be around 2
µm2/ms resp. 0.5 [53]. The kurtosis of the voxel contaminated
by CSF can be calculated by formula (23) to increase from 0.7
to 0.99. Hence, we can generally expect the mean kurtosis to
be increased by CSF contamination. It depends however, on a
handful of parameters: the DKI metrics of the voxel without
CSF contamination, the diffusivity of the CSF compartment,
and the relative fraction of the CSF in the voxel.
4.2.2.11 Shape of distribution of axon radii: According to the
AxCaliber model, axons in the same voxel do not have a fixed
radius, but a whole distribution of radii. This distribution is
originally assumed to be a gamma distribution, but according
to the comparison study of Ferizi (2013) [66], it can be also
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modeled by a Gaussian distribution. Because the diffusivity is
proportional with the square of the radius, the distribution of
the diffusivities is again a gamma distribution [8], for which
the shape parameter α should be at most 1.5 to be physically
plausible. Hence, by formula (53) the axonal radial kurtosis
Ka⊥ is due to the diffusivity variance at most 2. By applying
the partial volume kurtosis formula (equation 23), the effect
of the axon radii distribution on the voxel RK can be found
to be very small (< 0.05). However in an extreme situation
where the mean radius and axon fraction are relatively high,
the shape of the axon distribution has a heavy tail and the
extracellular space is very tortuous, one can calculate that the
voxel RK could be increased by as much as 1 due to the shape
of the axon radii distribution.

4.2.3 ”What causes kurtosis in the human brain?”
In this work we try to formulate an answer to the question:
”What causes kurtosis in the human brain?”, from an theoret-
ical and literature-based approach. Ideally, we would like to
have encountered in the literature microstructural models that
are thoroughly validated and from which all relations between
parameters and kurtosis metrics are established. However,
studies that compare several models according to an uniform
criterion such as the AIC and BIC are sparse. Also studies that
derive kurtosis metrics analytical from diffusion models are
sparse, given the numerous possible relations between kurtosis
and model parameters. It is difficult to compare histological
parameters with parameters derived from a MR signal. More-
over, not necessarily every parameter of a model could have a
significant effect on the kurtosis.
Therefore it is not obvious how to make a distinction between
parameters that affect kurtosis and parameters that do not
affect kurtosis, based on this literature study. I, however,
ordered the parameters that a priori, i.e. before performing
experiments, could reasonably be expected to have an effect on
the kurtosis metrics according to two criteria: 1. A parameter
should be included in a reasonable diffusion model, that is
reviewed in this work 2. Theoretical results in the literature
should turn out that the contribution of the parameter to a
kurtosis metric is generally significant.
Parameter that meet both of these criteria, and therefore one
can say affect kurtosis theoretically, are :
• Tortuousity differences between compartments
• Axon/neurite fraction
• Axon radius
• Neurite distribution orientation
• Intrinsic axon/neurite diffusivity
• Exchange
• Axon bulging, breaking and crimping (in the parallel

direction)
Parameters that are suspected to have a relation with kurtosis,
but for which these possible relations have not yet been derived
in the literature, are:
• Axon orientation dispersion
• CSF fraction
• Astrocyte fraction
• Water that is bound to membranes
• Glial cells and other small restricted compartments
• Axon undulation & axon bending

Parameters that, generally, cannot meet criterion 2, and hence
in theory generally do not affect kurtosis are:
• Radial kurtosis of a restricted axon compartment.

• Distribution of axon radii.
• Axon bulging, breaking and crimping (in the radial direc-

tion)
• Astrocyte radius

This list may answer the main question of this work satis-
factory. However, one has to keep in mind that we are not
talking about empirical relations between kurtosis and tissue
microstructure, but that we have limited ourself to a more
theoretical question of what effect parameters would have
when the voxel was exactly composed as in the tissue models.
In table 5 and 6, some rules of thumb are stated about kurtosis
metrics according to some of the reviewed diffusion models.
A warning should be made again that the kurtosis metrics are
practically never a linear function of the model parameters, and
are almost never only depended on just one single parameter.
Therefore the precise magnitude, but possibly also the direc-
tion, of the effect of a parameter on a kurtosis metric depends
simultaneously on the exact values of all relevant parameters.

5 LIMITATIONS

In this work, we investigated the sources of non-Gaussian
diffusion measured with DKI by a literature study on theoret-
ical diffusion models. There are some limitations to this work,
which should be noted.
5.1.1.1 Crossing fibers: The value of the voxel K‖ and K⊥
makes sense because they correspond to the voxel kurtosis
in the radial and axial direction of the fiber. However this
logically does not hold anymore if there are two or more major
bundles of fibers with different directions in the voxel. In this
case one could of course consider other kurtosis metrics, but
in this work most results on WM kurtosis are about K⊥ and
K‖ and are hence only valid in voxels with one major fiber
direction.
5.1.1.2 Model simplicity: As shown in the latter section,
many parameters can be linked to the kurtosis metrics. These
relations are derived by using models and simulations, which
treats water molecules movements as drunken man walks
in a hindered environment. With this approach, someone
with a minimal knowledge of anatomy and physics, and
virtually without any knowledge about chemistry, can infer
much information about the diffusion behavior of the chem-
ical compound dihydrogen monoxide, i.e. water, in tissue
microstructure. However, one of the pioneers of diffusion MRI,
Dennis Le Bihan, points out that cell water largely differs
from bulk water and is not just a structureless, space-filling
background medium, but a chemical that is not homogeneous
at the nanoscopic level and that makes all kind of interactions
with the environment. Therefore the non-Gaussian diffusion in
brain tissue could well result from strong interactions between
water, proteins, phospholipids, etc within the cytoplasm and
at the interface with membranes LeBihan (2007) [48]. It could
therefore be that the models reviewed in this work are too
simple. I believe, however, that at a micro scale all the special
properties of water may play a role, but on a macro scale
one can simplify the diffusion process of water as a hindered
random walk, regarding all the promising validation studies
done on some of the reviewed models.
5.1.1.3 Does kurtosis really measure the degree of non-
Gaussianity?: It is widely stated in the literature [5] [2] [70]
[79] [80] that a kurtosis of < 0 is more sharply peaked than a
Gaussian distribution, that kurtosis is a measure of deviation
from a Gaussian distribution, or a measure of peakedness. All
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WM
Lower K⊥ • Higher EAS tortuousity Tensor & stick [26]

• Lower axonal fraction Tensor & stick [26]
• Lower intrinsic axonal diffusivity DeSantis (2012)/CHARMED [70]
• ”Higher mean axon diameter” biTensor [26]
• ”More IAS EAS exchange” Kärger model [50]
• ”Axon undulation” Simulations [78]
• ”Axon bending” Simulations [77]
• ”More axon orientation dispersion” NODDI [67]
• ”Less water that is bound to membranes” MMWMD [64]
• ”Less glial cells” MMWMD [64]
• ”Less CSF contamination” MMWMD [64]
• ”Higher astrocyte fraction” Ferizi (2013) [27]

Higher K⊥ • Lower EAS tortuousity Tensor & stick [26]
• Higher axonal fraction Tensor & stick [26]
• Higher intrinsic axonal diffusivity DeSantis (2012)/CHARMED [70]
• ”Lower mean axon diameter” biTensor [26]
• ”Less IAS EAS exchange” Kärger model [50]
• ”Axon ’straightening’” Simulations [77]
• ”Less axon orientation dispersion” NODDI [67]
• ”More water that is bound to membranes” MMWMD [64]
• ”More glial cells” MMWMD [64]
• ”More CSF contamination” MMWMD [64]
• ”Lower astrocyte fraction” Ferizi (2013) [27]

Lower K‖ • Less diffusion heterogeneity
between EAS and IAS Tensor & stick [26]
• ”More exchange” Kärger model [50]
• ”Less water that is bound to membranes” MMWMD [64]
• ”Less glial cells (trapped water)” MMWMD [64]
• ”Less CSF contamination” MMWMD [64]
• ”Broken axons” Simulations [77]

Higher K‖ • More diffusion heterogeneity
between EAS and IAS Tensor & stick [26]
• ”Less exchange” Kärger model [50]
• ”More water that is bound to membranes” MMWMD [64]
• ”More glial cells” (trapped water) MMWMD [64]
• ”More CSF contamination” MMWMD [64]
• ”Bulging and crimping axons” Simulations [77]

Table 5
Rules of thumb about possible causes of changing kurtosis metrics in WM, based on reviewed diffusion models and simulations.

Relations between inverted commas ”” are not literally stated in the literature, but are in this work derived from the literature.

GM
Lower MK • More exchange Kärger model [26]

• Less variance in tortuousity Biexponential model [10]
• ’Lower’ orientation

kurtosis tensor Neurite orientation model [73]
• ”Less CSF contamination” MMWMD [64]
• ”Less water that is bound to membranes” MMWMD [64]
• ”Less glial cells (trapped water)” MMWMD [64]

Higher MK • Less exchange Kärger model [26]
• More variance in tortuousity Biexponential model [10]
• ’Higher’ orientation

kurtosis tensor Neurite orientation model [73]
• ”More CSF contamination” MMWMD [64]
• ”More water that is bound to membranes” MMWMD [64]
• ”More glial cells (trapped water)” MMWMD [64]

Table 6
Rules of thumb about possible causes of changing kurtosis metrics in GM, based on reviewed diffusion models and simulations.

Relations between inverted commas ”” are not literally stated in the literature, but are in this work derived from the literature.
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K(~n)(t) K⊥ K‖ Ref

Restricted diffusion -3/7 [2]

Biexponential 3 ∗ fslow∗(1−fslow)∗(Dslow−Dfast)2

D2
app

[2]

Kärger model 3 ∗ V ar[D]

D̄2
2
t̄

[
1− 1

t̄
(1− e−t̄)

]
[2]

Statistical truncated-Gaussian 3
D̄2 (σ2 − D̄2 + D̄ ∗ADC) [15]

Statistical log-normal1 3(eσ
2 − 1) (55)

Statistical gamma 3
α

[2]

Statistical beta1 3 ∗ ν
µ(ν+µ+1)

(54)

Statistical Wishart 3
p

[2]

Stretched exponential1 undefined [5]

Tensor & stick 3 ∗ v
1−v [26]

CHARMED ∼ De,‖, ∼ −R, ∼ v ∼ t [70]

Neurite orientation3 [vD2
aW+(1−v)∗v(D−IDT−DAT )]⊗2

Tr(Dapp/3)2
[74]

Isotropic neurite orientation 3 ∗
(1−v)∗D2

eff+v∗
(
D2
T+

2∗DT (DL−DT )
3

+
(DL−DT )2

5

)
((1−v)∗Deff+v∗( 2

3
DT+ 1

3
DL))2

− 3 [76]

Bulged axon -0.2 ↓2 1.4 ↑2 [77]

Crimped axon -0.4 ↑2 0.1 ↑2 [77]

Broken axon -0.52 -0.4 ↓2 [77]
Table 7

Kurtosis metrics implied by various diffusion models. 1. Obtained by the author. 2. Kurtosis of the IAS 3. Kurtosis tensor

Figure 27. Graph of a Gaussian, a less peaked (K < 0) and
a more peaked (K > 0) distribution [79]. When distributions
get more complicated, the relation between kurtosis and non-
Gaussianity becomes less straightforward.

this does not have to be necessarily true; Balanda (1988) [81]
wrote a review about kurtosis showing an example of a non-
Gaussian distribution which has kurtosis 0 whereas being more
peaked than a Gaussian. The conclusion of the review was: ”It
is best to define kurtosis vaguely as the location- and scale-

free movement of probability mass from the shoulders of a
distribution into its center and tails.” Figures appearing in the
DKI literature showing a Gaussian distribution accompanied
with similar but less and more peaked distributions which
have a negative and positive kurtosis, such as figure 27, are in a
sense misleading, because distributions can have other shapes
than a bell curve. They can have for example finite support, or
be multimodal. In appendix B we will give a physical more or
less plausible situation which has a kurtosis of zero but a non-
Gaussian distribution. However, it seems that the distributions
one encounters in diffusion imaging experiments are bell curve
like and are indeed more peaked and tailed whereas their
kurtosis is > 0. Therefore the statement ”kurtosis is a measure
of tailedness and peakedness in comparison to a Gaussian”
may be a good explanation for what kurtosis measures in DKI
experiments.

6 FUTURE WORK

After we have completed the literature study on the causes
of kurtosis in the human brain, I would like to present some
ideas for further original, non-literature based, work which I
gained from this study on non-Gaussian diffusion and diffu-
sion kurtosis. These ideas are partitioned in the following three
sections

• Modeling of axonal exchange.
• Use of the partial volume kurtosis formula.
• The cumulant expansion.
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6.1 Modeling of axonal exchange

The microstructural models that are compared by Ferizi (2013)
[27] model the radial part of axons as being impermeable and
hence neglect exchange. This should be justified by the fact that
the myelin sheath makes the axon permeability very low. How-
ever, Nilsson (2013) [22] performed a literature study on the
role of exchange in WM, and concluded that exchange should
be included in WM models. I performed a simulation to asses
the necessity of an exchange component in diffusion models
at very low axon permeabilities from a kurtosis perspective.
Motivated by the outcomes of this simulation I will propose a
modification to existing WM models.
6.1.1.1 Monte Carlo simulation : Fieremans (2010) [50] per-
formed a simulation on the RK of WM when axonal exchange
was allowed. However, the highest axonal exchange time τ
used was 20 ms. I performed a similar simulation5, but limited
to 1D, on K⊥ of WM using more plausible, higher axonal τ
values ranging from 500 − 2500 ms. This gave a few promis-
ing preliminary results, shown in figure 28, which could be
investigated further:
• For the range of τ used, K⊥ was increasing with td,

whereas in the simulation of Fieremans (2010) [50], K⊥
decreases with td.

• Even very low axon permeabilities had an effect on K⊥
(and hence on S⊥). Hence, a low axon permeability might
be anything but negligible. This supports the claim of
Nilsson (2013) [22] to include exchange in WM models.

• By allowing limited exchange, only few particles pass
the membrane, whereas the bulk of them stays in the
axon, resulting in a highly peaked and tailed distribution.
This simulation therefore reported an effect on the axon
radial kurtosis Ka,⊥ up to 25 due to axonal exchange, see
figure 29. This is a major effect on Ka,⊥, for example in
comparison with the effect on Ka,⊥ reported in Landman
(2010) [77] due to axon damage. However, one has to
acknowledge that Ka,⊥ gets weighted by D2

a,⊥ in the voxel
RK, which dampens the effect of Ka,⊥ on the voxel RK.

6.1.1.2 Hypothesis about the axonal exchange time: It is
not yet clarified what the axonal exchange time is, other than
somewhere in the range of 300 − 2500 ms [22]. According
to Nilsson (2013) [22], in most studies K⊥ is found to be
independent of diffusion time td. In the simulation that I
performed, K⊥ was almost independent of td for τ = 500
ms, but was increasing with td for higher exchange times. This
leads to an interesting hypothesis. If τ is (much) below 500 ms,
according to the Kärger model and simulation of Fieremans
(2010) [50] the kurtosis decreases with td. If τ is (much) higher
than 500 ms, K⊥ increases with td. It would hence follow
logically that the axonal exchange time must be in the order
of 500 ms.
6.1.1.3 Modeling axon permeability analytically : To ac-
count for exchange in WM models, I would add an extra
compartment to WM models, which represents the particles
that pass the axon membrane during the diffusion pulse se-
quence. Because myelinated axons have a non-zero but very
low permeability, and the diffusion time is not very long in MR
experiments, the amount of particles that cross the membrane
more than once is arguably negligible and the rate of exchange
over time can be assumed to be constant. For these reasons a

5. I used some different parameters than Fieremans (2010) [50], i.e.
v = 0.7, R = 2.5 µm, Da = 0.46 µm2/ms and De = 0.99 µm2/ms.
The qualitative results should, however, be generally valid [50].

Figure 28. Radial voxel kurtosis plotted against diffusion time for
several exchange times.

Figure 29. Radial kurtosis of the axon compartment plotted
against diffusion time for several exchange times.

differential equation, which is proposed by Meier [52], should
not be necessary to model exchange in WM.
Let us model the IAS by a permeable stick. One can observe
that the diffusivity of an individual particle that starts in the
IAS is D ∗ p ∗ td, where p is the proportion of time that the
particle resides in the EAS. Because it is assumed that the
exchange rate is constant over time, and that particles pass
the axonal membrane not more than once, p = tpass/td for
particles originating from the EAS, and p = (tpass − td)/td for
particles originating from the IAS, where tpass is the time when
the particle makes the ’jump’ from between the IAS and the
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EAS. Therefore an uniform distribution of Gaussian tensors can
be used to model the particles that cross the axon membrane
during the pulse sequence, where the distribution P (D) is
essentially the distribution of tpass that is uniform because we
assumed a constant rate of exchange. This gives the following
compartmental signal intensity

Sex(~n, b)

S0
=

∫ td

t=0

ξe
−b~n>De~n

t
td dt (47)

where ξ is the fraction of water particles that cross the axon
membrane per millisecond and De is the EAS diffusion tensor.
Notice that this expression incorporates particles that start in
the IAS and end in the EAS, but also the other way around,
since both result in Gaussian diffusion with limited diffusivity.
The exchange tensor distribution could be easily extended to
account for orientation dispersion. In this case, for a given tpass,
one considers the random variable

R =
√
tpassXcosΘ +

√
td − tpassY (48)

where X and Y are standard normal distributed, and Θ is
distributed according to some orientation distribution. R is
then Gaussian distributed, but for every combination of tpass
and Θ, it has a different effective diffusivity. This gives a signal
intensity of ∫

θ

∫ td

t=0

P (θ)e−b(Datcosθ+De(td−t))dtdθ. (49)

6.1.1.4 Relation to dot and sphere compartments: If we
assume the exchange compartment from the previous section
to be isotropic and if we evaluate the integral in equation (47)

S(b)

S(0)
=

∫ td

0

ξe−bDe∗t/tddt, (50)

we get the signal expression

S(b)

S(0)
=

tdξ

bDe
(1− e−bDe). (51)

Hence the extra exchange compartment that I just proposed, is
actually a dot compartment subtracted by a sphere compart-
ment. This could explain the remarkable shift in preference of
the BIC criterion between the dot model and the sphere model
after a change of orientation dispersion in the work of Ferizi
(2013) [66].

6.2 Use of the partial volume kurtosis formula.

The partial volume kurtosis formula (equation 23) is not yet
apparent in the diffusion literature. For two compartments, this
formula yields

Kapp =
3 ∗ v(1− v)(D1 −D2)2 + v ∗D2

1K1 + (1− v) ∗D2
2K2

D2
app

(52)
and hence exactly tells what happens with the kurtosis when
an extra compartment is added to a voxel. This is useful when
for example the effect of a CSF or astrocytes compartment is
studied. It reveals also that the effect of the radial kurtosis
on the voxel kurtosis is generally negligible. Combined with
the argument that axons are arguably the only really non-
Gaussian compartments in a voxel, it justifies the statistical
model to assume that a voxel is composed of a variety of
Gaussian compartments. Furthermore the formula shows that

generally the shape of the distribution of radii has no effect on
the voxel kurtosis.
Future work should incorporate and exploit this formula in
investigating the effects of diffusion compartmentalization on
the kurtosis metrics.

6.3 Cumulant expansion

The cumulant expansion is the mathematical ’trick’ to infer the
DTI and DKI parameters from a model or an empirical MRI
signal. In this section I will discuss some topics where the cu-
mulant expansion plays a central role in further investigations
on non-Gaussian diffusion.
6.3.1.1 A general relation between the ’statistical’ model and
the kurtosis: The kurtosis of the gamma, log-normal and beta
’statistical’ model can be derived by a cumulant expansion to
equal (see appendix E)

Kgamma =
3

α
Dgamma =

α

β
(53)

Kbeta = 3 ∗ ν

µ(ν + µ+ 1)
Dbeta =

ν

µ+ ν
(54)

Klognormal = 3 ∗ (eσ
2

− 1) Dlognormal = eµ+σ2

(55)

For example, one can easily derive that in the gamma model
α = 3

K
and β = 3

DK
. We see hence that the parameters of these

3 statistical models are functionally related to the apparent
kurtosis and diffusivity. Therefore one should be cautious that
the parameters of the ’statistical’ model are not superfluous
to the DKI metrics, as in figure 30. This was also noted by
Jensen (2010) [5], but only for the gamma model at small b-
values. Future work should further investigate this possible
false dichotomy between DKI and ’statistical’ parameters.
6.3.1.2 Interpretation of higher order cumulants: The signal
intensity of the ’statistical’ model is E[e−bD], which is a mo-
ment generating function of D, i.e. a function which derivatives
in b at zero are the moments6 of D. Therefore the ’statistical’
model gives an interpretation of the higher order cumulants κ6

and κ8 as being the skewness and ’kurtosis’ of the distribution
of diffusivities P (D). When the SNR would allow it, future
work could explore the use of these parameters as pathological
biomarkers on top of DKI and DTI metrics.
6.3.1.3 Cumulant expansion of diffusion models: If axons
are directionally distributed over the sphere, I derived in
appendix K that Ka‖ gets multiplied by the ’kurtosis’ of the
orientation distribution function

Ka,‖(~n) =
E[X4

a‖]E[(~ν · ~n)4]

E[X2
a‖]

2E[(~ν · ~n)2]2
− 3 (56)

where ~ν and ~n are the orientation of the axon resp. diffusion
gradient. This ’kurtosis’ of the orientation distribution function

E[(~ν · ~n)4]

E[(~ν · ~n)2]2
(57)

could be investigated further. How should the axons be dis-
tributed on the sphere to give a maximal or minimal (mean)
kurtosis, and what are these extreme values like? Does this
spherical ’kurtosis’ increase or decrease the voxel kurtosis, and
for which kind of distributions does this happen? And how is
the dispersion parameter κ of the Watson distribution related
to this?

6. Up to a minus sign.
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The fourth moment of the orientation distribution E[(~µ · ~n)4]
can be split in the fourth moments of the spherical harmonics
basis functions Ylm

EH [(~µ · ~n)4] =
∑

flmEYlm [(~µ · ~n)4]. (58)

Hence the ’kurtosis’ of an orientation function can be expanded
in the ’kurtosis’ of the spherical harmonics. Therefore it would
be interesting to derive the 4-th moment E[(~µ ·~n)4] of some of
the spherical harmonic basis functions.
Similar to the expression that Fieremans (2011) [26] has derived
for the radial kurtosis of a tensor & stick model of

K⊥ = 3 ∗ v

1− v , (59)

one could also derive insightful expressions for radial kurtoses
of other models in future work, such as a biZeppelin model
with the restrictions De,⊥ = (1 − v)De,‖ and Da,‖ = De,‖. I
derived for example, that when v ≈ 0.5 (see appendix I)

K⊥ ≈ 3 ∗ v

1− v

(
1− 1

(1− v)2

Da⊥
Da‖

)2

(60)

Furthermore, the (radial kurtosis) of the WM exchange model
of Meier (2003) [52] and of the CHARMED model of Assaf
(2004) [68] are interesting to derive analytically in future work,
to see how those kurtoses depend on the diffusion time.
6.3.1.4 Model comparison criteria : Suppose diffusion within
a voxel is non-Gaussian but isotropic, and free of noise. At
very low b-values, log[S(b)/S(0)] is almost linear, and therefore
already 2 parameters may cause overfitting. At some higher b-
values, log[S(b)/S(0)] is almost quadratic, and therefore 3 or
more parameters may cause overfitting. It may for example
be investigated that the biexponential model fits the measured
signal better than the quadratic cumulant expansion, but as [82]
noted the biexponential model can be casted into the quadratic
cumulant expansion as

logS = −bD̄ +
1

2
b2
[
p1(D1 − D̄)2 + p2(D2 − D̄)2] +O(b3).(61)

One can thus not draw conclusions about how good an analytic
model explains the signal by not using b-values beyond the
range where a cumulant expansion of that model with equal
or less parameters fits the data equally well [82]. Criteria that
quantify the tradeoff between goodness of fit and complex-
ity should therefore acknowledge the specific signal intensity
function arising from diffusion MRI experiments, which is
approximately a polynomial of a certain degree, depending on
the range of b-values. Future work could, possibly heuristically,
tailor criteria such as the AIC and BIC to penalize for exam-
ple the amount of parameters in comparison to the minimal
amount of parameters that a cumulant expansion polynomial
needs to fit the same signal curve well.
6.3.1.5 Convergence of the cumulant expansion: This last
piece of future work is a bit more technical. In this section let
q = γδg

√
t, such that b = q2. The cumulant expansion of a 1D

random diffusion displacement X , is in fact a Taylor series.
This Taylor series only converges to the actual function within
a certain range of b-values, bounded by the radius of conver-
gence (which can be infinite). In [82], an example is given of a
function log(2− exp(−x)) for which the radius of convergence
is finite, whereafter it is derived that by assuming a certain
amount of noise the cumulant expansion of a biexponential
model only converges for b-values such that bD̄ < 7.44.

Figure 30. The σ parameter of the log normal ’statistical’ model
and the MK of the DKI model give very similar contrast in
ischaemic lesions in three animals. Since MK is a function of
σ 55, this may not be surprising. [55]

Figure 31. Fit of different models to a signal generated by the
statistical model on a (a) normal scale, (b) log scale, (1) mono-
exponential model, (2) biexponential model 3.1, (3) cumulant
expansion truncated at the first three terms, (4) cumulant ex-
pansion truncated at four first terms, (5) cylindrical model [15],
(6) stretched-exponential model 3.4 [15]. At low b-values, these
signal curves are hardly distinguishable.

The problem is essentially on the level of high school mathe-
matics: if E[e−iqX ] is zero, the log of E[e−iqX ] cannot be taken.
However, E[e−iqX ] has an infinite radius of convergence (see
appendix L). One could make the Taylor expansion of E[e−iqX ]
directly, without taking the log first. One can obtain in this way
the second and fourth order moments, whereafter the second
and fourth order cumulants can be obtained by equation (8). By
this moment expansion, one could possibly obtain the kurtosis
metrics even outside the supposed radius of convergence of
the cumulant expansion.

7 CONCLUSION

In summary, this work demonstrate that it is possible to derive
from the literature a list of causes of changing kurtosis metrics
due to microstructural changes beyond tissue heterogeneity
and complexity, based on various diffusion models. This work
shows that deriving kurtosis metrics from diffusion models
shows promising insights in the microstructural basis of kur-
tosis. However, not all possible relations between models and
kurtosis metrics are investigated yet. Future studies should
therefore not only focus on improving and validating diffu-
sion models, but should also examine relations between these
diffusion models and kurtosis metrics.
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ABBREVIATIONS

Medical abbreviations
WM White matter
GM Gray matter
IAS Intra-axonal space
EAS Extra-axonal space
CSF Cerebrospinal fluid
CC Corpus callosum
MS Multiple sclerosis
MCI Mild cognitive impairment
Biophysical parameters
R Axon radius
v Neurite fraction
De Extra-axonal diffusivity
Da Intra-axonal diffusivity
Dfree Diffusivity in free water
τ Mean exchange time
~µ Main fiber orientation
MRI symbols
γ Gyromagnetic ratio of a proton (267.51 rad/s)
~g Gradient vector
~n Gradient direction
∆ Time between the onsets of the two gradients
δ Time that the diffusion weighting gradient is applied
td Diffusion time (∆− δ

3
)

b B-value (δ2|~g|2td)
Φ Phase of a particle
M(t) Isochromat of spins at time t [14]
S Voxel signal intensity
SM(t) Signal intensity of an isochromat M(t) at time t
S(0) Voxel signal intensity when b = 0.
S(b) Voxel isotropic signal intensity when b is applied
S(~n, b) Voxel intensity when b is applied in direction ~n
‖ Parallel to the main diffusion direction
⊥ Perpendicular to the main diffusion direction
Mathematical symbols
1D One dimensional
|~v| Eucledian length of a vector ~v
| · | Determinant of a matrix
tr Trace of a matrix
> Transpose
M Tensor
⊗ Tensor product
S2 Sphere
O(xk) Error term of order k [83]
Probability theoretic abbreviations and symbols
IID Independent and identically distributed
pdf Probability density function
E[X] Expected value
~Rt Molecule position at time t, Rt = (Xt, Yt, Zt)

>

~R(t) Idem
f~Rt(p) Pdf of ~Rt at point p
V ar[X] Variance
X ∼ N(µ, σ2) X follows a Gaussian with mean µ and sd σ
σ Standard deviation (symbol)
κ2(X) Second cumulant of a random variable X
κ4(X) Fourth cumulant of a random variable X

Diffusion MRI terminology, abbreviations and symbols
DKI Diffusion Kurtosis Imaging
DTI Diffusion Tensor Imaging
λ Eigenvalue of the diffusion tensor
D Diffusivity (when diffusion is isotropic)
Dapp Apparent diffusivity
MD Mean diffusion (abbreviation)
D̄ Mean diffusion (symbol)
D(~n) Diffusivity in direction ~n
D Diffusion tensor
FA Fractional Anisotropy
K Kurtosis (when diffusion is isotropic)
Kapp Apparent kurtosis
MK Mean Kurtosis (abbreviation)
K̄ Mean Kurtosis (symbol)
K(~n) Kurtosis in direction ~n
W Kurtosis tensor
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in die Grundlagen und Techniken der Diffusionsbildgebung. Der
Radiologe, 51(3):170–179.

[12] Leemans A, 2006. Modeling and processing of diffusion tensor
magnetic resonance images for improved analysis of brain con-
nectivity. Ph.D. thesis, University of Antwerp, Belgium.

[13] Basser P, Mattiello J, LeBihan D, 1994. Estimation of the effective
self-diffusion tensor from the NMR spin echo. Journal of Magnetic
Resonance, Series B, 103(3):247–254.

[14] Haacke E, Brown R, Thomsom M, Venkatesan R, 1999. Magnetic
Resonance Imaging. Physical Principles and Sequence Design. Wiley-
Liss (John Wiley Sons), New York.

[15] **Yablonskiy D, Sukstanskii A, 2010. Theoretical models of the
diffusion weighted MR signal. NMR in Biomedicine, 23(7):661–681.

[16] Kristoffersen A, 2011. Statistical assessment of non-Gaussian dif-
fusion models. Magnetic Resonance in Medicine, 66(6):1639–48.

[17] Lätt J, Nilsson M, Wirestam R, Ståhlberg F, Karlsson N, Johansson
M, et al., 2013. Regional values of diffusional kurtosis estimates in
the healthy brain. Journal of Magnetic Resonance Imaging, 37(3):610–
8.



27

[18] Qi L, Wang Y, Wu EX, 2008. D-Eigenvalues of Diffusion Kur-
tosis Tensors. Journal of Computational and Applied Mathematics,
221(1):150–157.

[19] Hui ES, Cheung MM, Qi L, Wu EX, Theory A, 2008. Towards
better MR characterization of neural tissues using directional
diffusion kurtosis analysis. NeuroImage, 42(1):122–34.

[20] Aljabar P, Bhatia KK, Murgasova M, Hajnal JV, Boardman JP,
Srinivasan L, et al., 2008. Assessment of brain growth in early
childhood using deformation-based morphometry. NeuroImage,
39(1):348–58.

[21] Fields R, 2008. White matter matters. Scientific American, 298(3):54–
61.

[22] Nilsson M, Westen DV, 2013. The role of tissue microstructure
and water exchange in biophysical modelling of diffusion in
white matter. Magnetic Resonance Materials in Physics, Biology and
Medicine, 26(4):345–370.

[23] Beaulieu C, 2002. The basis of anisotropic water diffusion in the
nervous system - a technical review. NMR in Biomedicine, 15(7-
8):435–55.

[24] Sherman D, Brophy P, 2005. Mechanisms of axon ensheathment
and myelin growth. Nature Reviews Neuroscience, 6(9):683–690.

[25] Freeman S, 2005. Biological Science and CW+ Grade Tracker Acces
Card 2/E. Benjamin Cummings.

[26] **Fieremans E, Jensen JH, Helpern JA, 2011. White matter
characterization with diffusional kurtosis imaging. NeuroImage,
58(1):177–188.

[27] **Ferizi U, Schneider T, Panagiotaki E, Nedjati-Gilani G, Zhang
H, Wheeler-Kingshott C, et al., 2013. A ranking of diffusion MRI
compartment models with in vivo human brain data. Magnetic
Resonance in Medicine.

[28] Allen NJ, Barres BA, 2009. Neuroscience: Glia - more than just
brain glue. Nature, 457(7230):675–677.

[29] Caserta F, Eldred WD, Fernandez E, Hausman RE, Stanford LR,
Bulderev SV, et al., 1995. Determination of fractal dimension of
physiologically characterized neurons in two and three dimen-
sions. Journal of Neuroscience Methods, 56(2):133–44.

[30] Falangola MF, Jensen JH, Babb JS, Hu C, Castellanos FX, Di
Martino A, et al., 2008. Age-related non-Gaussian diffusion pat-
terns in the prefrontal brain. Journal of Magnetic Resonance Imaging,
28(6):1345–50.

[31] Helpern J, Falangola M, Martino AD, 2007. Alterations in brain
microstructure in ADHD by diffusional kurtosis imaging. In
Proceedings of the 15th Annual Meeting of ISMRM, 2006, p.1580,
Berlin, Germany.

[32] Yoshida M, Hori M, Yokoyama K, Fukunaga I, Suzuki M, Ka-
magata K, et al., 2013. Diffusional kurtosis imaging of normal-
appearing white matter in multiple sclerosis: preliminary clinical
experience. Japanese Journal of Radiology, 31(1):50–5.

[33] Ramani A, Jensen J, Szulc K, Ali O, 2007. Assessment of abnor-
malities in the cerebral microstructure of schizophrenia patients:
a diffusional kurtosis imaging study. In Proceedings of the 15th
Annual Meeting of ISMRM, p.648, Berlin, Germany.

[34] Lu H, Jensen JH, Ramani A, Helpern J, 2006. Three-dimensional
characterization of non-gaussian water diffusion in humans using
diffusion kurtosis imaging. NMR in Biomedicine, 19(2):236–47.

[35] Gong NJ, Chan CC, Leung LM, Wong CS, 2013. Axonal loss
or demyelination? Decreased integrity of white matter tracts
revealed by diffusional kurtosis imaging in Alzheimer’s disease
and mild cognitive impairment. Alzheimer’s Dementia, 9(4):88–89.

[36] Falangola MF, Jensen JH, Tabesh A, Hu C, Deardorff RL, Babb
JS, et al., 2013. Non-Gaussian diffusion MRI assessment of brain
microstructure in mild cognitive impairment and Alzheimer’s
disease. Magnetic Resonance Imaging, 31(6):840–6.

[37] Wang J, Lin W, Lu C, Weng Y, 2011. Parkinson disease: diagnostic
utility of diffusion kurtosis imaging. Radiology, 261(1):210–17.

[38] Hui ES, Fieremans E, Jensen JH, Tabesh A, Feng W, Bonilha L,
et al., 2012. Stroke assessment with diffusional kurtosis imaging.
Stroke, 43(11):2968–73.

[39] Zhang Y, Yan X, Gao Y, Xu D, Wu J, Li Y, 2013. A preliminary
study of epilepsy in children using diffusional kurtosis imaging.
Clinical Neuroradiology, 23(4):293–300.

[40] Cauter SV, Veraart J, Sijbers J, 2012. Gliomas: diffusion kurtosis
MR imaging in grading. Radiology, 263(2):492–501.

[41] Nakanishi A, Fukunaga I, Hori M, Masutani Y, Takaaki H, Miya-
jima M, et al., 2013. Microstructural changes of the corticospinal
tract in idiopathic normal pressure hydrocephalus: a comparison

of diffusion tensor and diffusional kurtosis imaging. Neuroradiol-
ogy, 55:971–976.

[42] Blockx I, Verhoye M, Audekerke JV, Bergwerf I, Kane JX, Delgado
R, et al., 2012. Identification and characterization of Huntington
related pathology : An in vivo DKI imaging study. NeuroImage,
63(2):653–662.

[43] Szczepankiewicz F, Lätt J, Wirestam R, Leemans A, Sundgren P,
van Westen D, et al., 2013. Variability in diffusion kurtosis imag-
ing: impact on study design, statistical power and interpretation.
NeuroImage, 76:145–54.

[44] Schultz T, Fuster A, Ghosh A, Deriche R, Florack L. Higher-Order
Tensors in Diffusion Imaging. 1–34.

[45] **Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser PJ, 2008. AxCal-
iber: a method for measuring axon diameter distribution from
diffusion MRI. Magnetic Resonance in Medicine, 59(6):1347–54.

[46] Pyatigorskaya N, Le Bihan D, Reynaud O, Ciobanu L, 2013.
Relationship between the diffusion time and the diffusion MRI
signal observed at 17.2 tesla in the healthy rat brain cortex.
Magnetic Resonance in Medicine.

[47] Sehy JV, Ackerman JJH, Neil JJ, 2002. Evidence that both fast
and slow water ADC components arise from intracellular space.
Magnetic Resonance in Medicine, 48(5):765–70.

[48] Le Bihan D, 2007. The ’wet mind’: water and functional neu-
roimaging. Physics in Medicine and Biology, 52(7):R57–R90.
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APPENDIX A
SOME BASIC CONCEPTS OF PROBABILITY AND STATIS-
TICS

Suppose we denote the outcome of throwing a dice by X .
Then X is a random number between 1 and 6, for which each
outcome has an equal probability (assuming that we have a fair
dice, of course). Therefore we call X , in all generality, a random

Figure 32. The histogram of X, i.e. throwing a dice once.

Figure 33. The histogram of X + Y , i.e. throwing a dice twice.
One can appreciate that this is the convolution of the histogram
of a single dice.

variable. Suppose we make a histogram of the outcomes of the
experiments. This histogram would have 6 bins which are all
equally filled, see figure 32. Suppose we throw another dice
Y and we denote the outcome of the sum of the two dices by
X+Y . Clearly, we throw minimal a 2 and maximal a 12. What
are the chances of a particular outcome?
For a 2, we would need to have X = 1 and Y = 1.
For a 3, we would need to have X = 1 and Y = 2 or X = 2
and Y = 1.
For a 4, ,, ,, X = 3 and Y = 1, or X = 2 and Y = 2, or X = 1
and Y = 3.
......
For a 12 ,, ,, X = 6 and Y = 6.

When we draw a histogram of X + Y in figure 33, we see
that this is essentially a convolution of X and Y . We also see
that X + Y is more bell shaped than the flat histograms of
X and Y . The more dices one throws, the more bell shaped
the histogram of the sum will become (this effect is called the
central limit theorem).
What is the mean value of throwing a dice, say 100000 times?
This is of course 3.5 and is denoted by E[X]. This is called the
expected value or expectation value, because this is the value



29

one could expect from the experiment. If we only knew the
histogram of X we could also have just sum all the bins times
their value, divided by the total amount of bins:

E[X] =

∑
i ∗ binX(i)∑
binX(i)

. (62)

If we now smooth and normalize the histogram such that we
get a continuous function f , which is called a probability
density function, then

E[X] =

∫
t

fX(t)tdt. (63)

What is E[X +Y ]? Of course we can look what we can expect
from X and what from Y and add both up. Hence E[X + Y ]
should be E[X] + E[Y ]. This also follows from the fact that
integrals can be split up, so formally

E[X + Y ]=

∫
t(fX(t) + fY (t)) (64)

=

∫
tfX(t) +

∫
tfY (t) (65)

=E[X] + E[Y ] (66)

If we predict that 3.5 is the mean outcome of throwing, say 10
times, a dice, then we also would like to know how accurate
this prediction is. Therefore we take the ’mean square error’:
E[(E[X] − X)2], this is also called the variance because it
says how variable the outcomes of an experiment are. The
square root of the variance is called the standard deviation. In
histogram terms, this can be seen for now as the full width at
half maximum. Another special expectation is the covariance,
which is denoted by E[XY ]− E[X]E[Y ]. This can be seen as
a measure how related the outcomes of two experiments are.
For example if X1, . . . , X1600 are pixel values in image X and
Y1, . . . , Y1600 are the corresponding pixel values in image Y ,
one can register the images by trying to reach a maximum
covariance between the Xi and T (Yi) for a transformation T .
We can generally apply any function h on X which would give
an expectation of

E[h(X)] =

∫
s

fX(s)h(s)ds.

Hence we can also ask our self what the outcome of for
example cX , cos(X), X2 and eiXt is. The expected value
of the latter is actually the inverse Fourier transform of the
probability density function f of X

E[eiXt] =

∫
s

fX(s)eitsds.

We already know that convolution means multiplication in
Fourier space, therefore we can investigate sums of random
variables like X + Y better in Fourier space. Suppose now
for example that X and Y not dependent on each other and
are standard normal distributed. Taken for granted that the
characteristic function of a standard Gaussian distribution is
just e−

1
2 , it is easy to calculate that the characteristic function

of X + Y , since

E[ei(X+Y )t] = E[eiXt]E[eiY t] (67)

is equal to
e−

1
2 e−

1
2 = e−1. (68)

Hence X + Y is in this case also Gaussian distributed, but
then more wider, one could say more blurred. This would be
considerably more elaborate to calculate outside Fourier space.

APPENDIX B
EXAMPLE OF A DIFFUSION DISTRIBUTION THAT IS NOT A
GAUSSIAN DISTRIBUTION BUT CAN HAVE KURTOSIS 0, >
0 OR < 0

Consider a voxel consisting of an extra-axonal and a intra-
axonal part with a axonal fraction of v = 0.82. Assume that
diffusion in the axonal part is restricted. Then the intra-axonal
diffusion is after sufficient time nearly uniform distributed and
could have therefore a radial kurtosis of −1.2 [2]. Suppose that
because of the high axonal density the extra-axonal diffusivity
is somewhat lower than normal, say 0.31 µm2/ms. Suppose
the intra-axonal radial diffusivity is 0.13 µm2/ms. Then by the
partial volume kurtosis formula (equation 23), the voxel radial
kurtosis is equal to

3 ∗ 0.82 ∗ 0.18(0.31− 0.13)2 − 0.82 ∗ 0.132 ∗ 1.2

(0.82 ∗ 0.31 + 0.18 ∗ 0.13)2
= −0.09

Suppose now the extra-axonal diffusivity is 0.325 µm2/ms.
Then

3 ∗ 0.82 ∗ 0.18(0.325− 0.13)2 − 0.82 ∗ 0.132 ∗ 1.2

(0.82 ∗ 0.325 + 0.18 ∗ 0.13)2
= 0.002

For some extra-axonal diffusivity in between the kurtosis is
zero, for a non-Gaussian diffusion distribution. These values
are all stretched to their maximum or minimum level to make
the kurtosis zero, but are on the other hand still not totally
physical unplausible. A negative kurtosis is, however, to the
best of my knowledge never observed in the human brain,
probably because total restricted diffusion is not apparent in
the human brain [48].

APPENDIX C
TENSOR PRODUCT

Suppose V and W are n×n matrices. Then we call the tensor
product the product of all combinations of elements of V and
W

(V ⊗W )ijkl = VijWkl

One can also take the tensor product of V with V , i.e.

(V ⊗ V )ijkl = VijVkl

which can also be denoted by V ⊗2.

APPENDIX D
THE CHARACTERISTIC FUNCTION OF THE GAUSSIAN DIS-
TRIBUTION 2
Lemma. Suppose X ∼ N (0, σ2). Then E[e−itX ] = e

−σ2
2
t2

Proof.

E[e−ixb]=
1

σ
√

2π

∫ ∞
∞

e
− x2

2σ2 e−itxdx

=
1√
2π

∫ ∞
−∞

e−
u2

2 e−itσudu

=e−
σ2b2

2
1√
2π

∫ ∞
−∞

e−
v2

2 dv

=e−
σ2b2

2

Where the substitutions u = x
σ

and v = u + itσ and the fact
that (u+ iσt)2 = u2 + 2itσu− σ2t2 are used.
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APPENDIX E
HOW TO DERIVE THE KURTOSIS FROM A MODEL SIGNAL
INTENSITY?

The kurtosis can be derived from the model signal intensity in
two different ways:

1) Taylor expand the log of the model signal intensity
S(~n, b)/S(0). This leads to

log[
S(~n, b)

S(0)
] = −κ2

2
b+

κ4

24
b2 +O(b3) (69)

.
2) Obtain κ2 and κ4

3) Derive the kurtosis in direction ~n by

K(~n) =
κ4

κ2
2

(70)

Moment expansion

1) Taylor expand the model signal intensity S(~n, b)/S(0).
This leads to

S(~n, b)/S(0) = 1− 1

2
E[(~R ·~n)2]b+

1

24
E[(~R ·~n)4]b2 +O(b3)

(71)
2) Obtain E[(~R · ~n)2] and E[(~R · ~n)4].
3) Derive the kurtosis in direction ~n by

K(~n) =
E[(~R · ~n)4]− 3E[(~R · ~n)2]2

E[(~R · ~n)2]2
, (72)

which can be simplified to

E[(~R · ~n)4]

E[(~R · ~n)2]2
− 3 (73)

In general generally both methods are equivalent, although the
moment expansion is easier to make but gives less insightful
kurtosis expressions.

APPENDIX F
KURTOSIS OF A NON-GAUSSIAN ISOTROPIC MIXTURE

Consider a mixture having n compartments with relative
fractions, diffusivities and kurtosis p1, . . . , pn, D1, . . . , Dn,
K1, . . . ,Kn. We already know how to compute the kurtosis of
a Gaussian mixture from formula 25. Therefore we will only
look at which part should be added to that formula.
We have a signal intensity of

S(b)

S(0)
= c ∗ b+

1

24

n∑
i=1

piκ
i
4b

2 +O(b3) (74)

Hence we have that, by using log[x] = x− x2

2
+O(x3)

log[
S(b)

S(0)
] = c ∗ b+

1

24

n∑
i=1

piκ
i
4b

2 + e ∗ b2 +O(b3) (75)

Where c and e are constants independent of Ki.
Because

κi4 = (κi2)2 ∗Ki = 4D2
iKi,

we have

log[
S(b)

S(0)
] = c ∗ b+

1

24

n∑
i=1

4piD
2
iKib

2 + e ∗ b2 +O(b3),

therefore ∑n
i=1 piκ

i
4

κ2
=

∑n
i=1 4piD

2
iKi

4D̄2

=

∑n
i=1 piD

2
iKi

D̄2

hence the part that should be added to the formula 25 is∑n
i=1 piD

2
iKi

D̄2

where D̄ =
∑n
i=1 piDi.

Hence the voxel kurtosis is equal to

K =
3 ∗ V ar[D] +

∑n
i=1 piD

2
iKi

D̄2

where V ar[D] =
∑n
i=1 pi(Di − D̄)2

APPENDIX G
MAXIMUM KURTOSIS OF THE BIEXPONENTIAL MODEL 26
Suppose there are two Gaussian compartments with relative
fractions p1 and p2, and diffusion coefficients D1 and D2. Then,
because for a Gaussian E[X4] = 12D̄2 and E[X2] = 2D̄ we
have for the kurtosis:

K = 3 ∗ p1D
2
1 + p2D

2
2

D̄2
− 3 (76)

To find the maximal kurtosis, the derivative of the logarithm
with respect to p1 of the latter expression is solved to zero.
This leads (since p1D1 + p2D2 = D̄) to the following equality

δlog(p1D
2
1 + p2D

2
2)

δp1
=
δlog((p1D1 + p2D2)2)

δp1
(77)

which is equivalent to

D1 +D2

p1D2
1 + p2D2

2

=
2

p1D1 + p2D2

which leads to

p1D1D2 + p2D1D2 = p1D
2
1 + p2D

2
2

which yields

p1 =
D1

D1 +D2

APPENDIX H
DERIVATION OF 3.5.2
In a particular direction, we have for the diffusion coefficient
Di

Di = fDa,i + (1− f)De,i, (78)

and the kurtosis in a particular direction is

Ki=3 ∗ f(Di −Di,a)2 + (1− f) ∗ (Di −Di,e)2

D2
i

=3 ∗ f(Di,a − (1− f)Di,e − fDi,a)2

D2
i

+3 ∗ (1− f)(Di,e − fDi,a − (1− f)Di,e)
2

D2
i

=3 ∗ f(1− f)2(Di,e −Di,a)2 + (1− f)f2(Di,e −Di,a)2

D2
i

=3 ∗ f(1− f)
(Di,e −Di,a)2

D2
i

(79)
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APPENDIX I
RADIAL KURTOSIS IMPLIED BY A BIZEPPELIN MODEL
WITH TORTUOUSITY RESTRICTIONS

Under the assumption that De,‖ = Da,‖ and that De,⊥ = (1−
v) ∗De,‖, we have for the radial kurtosis

K⊥=3 ∗ (1− v)v(De⊥ −Da⊥)2

((1− v)De⊥ + vDa⊥)2

=3 ∗
(1− v)v(Da‖(1− v)−Da⊥)2

((1− v)2Da‖ + vDa⊥)2

=3 ∗
(1− v)3v(Da‖ − Da⊥

1−v )2

(1− v)4(Da‖ + v
(1−v)2

Da⊥)2

=3 ∗
v(Da‖ − Da⊥

1−v )2

(1− v)(Da‖ + v
(1−v)2

Da⊥)2

=3 ∗ v

1− v

1− 1−v
(1−v)2

Da⊥
Da‖

1 + v
(1−v)2

Da⊥
Da‖

2

≈3 ∗ v

1− v

(
1− 1

(1− v)2

Da⊥
Da‖

)2

(80)

where we used the approximation 1−δ1
1+δ2

≈ x − δ1 − δ2 when
δ1 + δ2 << 1, which is reasonable since Da,⊥ << Da,‖ and
since we assumed that v ≈ 0.

APPENDIX J
DERIVATION OF THE KURTOSIS OF AN ISOTROPIC CYLIN-
DER MODEL

(Part of this derivation is adapted from Mulkern (2009) [76])
Every axon direction vector starts in the origin and has a length
of 1 and thus lies on the surface of the unit sphere. If we cut
the sphere in circles around the gradient axis, every direction
endpoint lies on such a circle. When the orientation is isotropic,
the amount of directions that make a certain angle θ with the
gradient axis is proportional to the circumference of the circle
around the gradient axis which is touched by a direction of
angle θ. This circumference approaches zero for angles of zero,
and approaches 2π when the angle approaches π/2. It can be
simply shown that the circumference and thus the amount of
spins that make a certain angle θ varies as sinθ between 0
and π/2. Hence we can write for the signal intensity when the
distribution is uniform

Sc = v ∗
∫ π

2

0

sinθe−b(DLcos
2θ+DT sin

2θ)dθ

By using that

sin2θ = 1− cos2θ,

we obtain

Sc = v ∗
∫ π

2

0

sinθe−bDT e−b(DL−DT )cos2θdθ

By Taylor expanding the exponentials, neglecting O(b3) and
higher terms and performing the integrals we obtain

Sc=v ∗ (1−DT b+
D2
T b

2

2
) ∗∫ π/2

0

sin(θ)− b(DL −DT )cos2θsinθ

+
b2(DL −DT )2

2
cos4θsinθdθ

=v ∗ (1−DT b+
D2
T b

2

2
) ∗

(1− b

3
(DL −DT ) +

b2

10
(DL −DT )2)

=v ∗ (1− (1/3DL + 2/3DT )b) +

v ∗
(
D2
T

2
+
DT (DL −DT )

3
+

(DL −DT )2

10

)
b2

Where we use the fact that
∫ π

2
0
cosnθsinθdθ = 1

n+1

Because of the moment expansion

S(b)

S(0)
= 1− E[X2]

2
b+

E[X4]

24
b2 +O(b3)

Hence for the cylindrical compartment we have

D̄c =
1

3
DL +

2

3
DT

and

E[X4
c ] = 12 ∗

(
D2
T +

2 ∗DT (DL −DT )

3
+

(DL −DT )2

5

)
The total signal is equal to

S(b) = (1− v) ∗ e−bDeff + v ∗ SC

Hence, by using K = E[X4]

E[X2]2
− 3 we obtain for the kurtosis

3∗
(1− v) ∗D2

eff + v ∗
(
D2
T + 2∗DT (DL−DT )

3
+ (DL−DT )2

5

)
(
(1− v) ∗Deff + v ∗ ( 2

3
DT + 1

3
DL)

)2 −3

APPENDIX K
KURTOSIS OF THE BALL & RACKETS MODEL.
Let X be the radial displacement of an axon. Then

Sc(~n)=

∫
x

∫
S2

f(x)h(~µ)e−iqx~µ·~nd~µdx

=

∫
x

∫
S2

f(x)h(~µ)(1− x2(~µ · ~n)2

2
b+

x4(~µ · ~n)4

24
b2 +O(b3))

=1− 1

2

∫
x

∫
S2

x2(~µ · ~n)2bd~µdx+O(b3)

+
1

24

∫
x

∫
S2

x4(~µ · ~n)4b2d~µdx+O(b3)

=1− 1

2
E[X2(~µ · ~n)2]b+

1

24
E[X4(~µ · ~n)4]b2 +O(b3)

=1− 1

2
E[X2]E[(~µ · ~n)2]b+

1

24
E[X4]E[(~µ · ~n)4]b2

The latter step is justified if the radial displacement X is
independent of the angle it makes with the gradient vector.
Hence the kurtosis in direction ~n for the axonal compartment
is

K(~n) =
E[X4]E[(~µ · ~n)4]

E[X2]2E[(~µ · ~n)2]2
− 3 (81)
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For a centralized Gaussian distribution, it is well known that
E[X2] = σ2 and E[X4] = 3σ4. This yields

K(~n) = 3 ∗
(
E[(~µ · ~n)4]

E[(~µ · ~n)2]2
− 1

)
and for the cylindrical diffusivity we have

Da‖(~n) = Da‖E[(~µ · ~n)2]

Thus

v ∗Da‖(~n)2 ∗K(~n) = 3D2
a,‖(E[(~µ · ~n)4]− E[(~µ · ~n)2]2)

Because of the partial volume kurtosis formula (equation 23)
we have that the total voxel kurtosis in direction ~n is indepen-
dent of D‖ and equal to

3
v(1− v)(1− E[(~µ · ~n)2])2 + v(E[~µ · ~n]4 − E[(~µ · ~n)2]2)

((1− v) + vE[(~µ · ~n)2])2

APPENDIX L
E[eiqX ] HAS AN INFINITE RADIUS OF CONVERGENCE

If for any q

limn→∞
|qn|E[|Xn|]

n!
→ 0, (82)

the radius of convergence of the Taylor expansion of E[e−iqX ]
is infinite [84]. The particle displacement X during a pulse se-
quence is of course bounded6 . Therefore qnE[|Xn|] is bounded
by (qM)n for some M > 0, and hence the n! term dominates
for sufficiently large n in equation (82), which therefore goes
to zero.

APPENDIX M
CUMULANTS (2.1.1.3)
In this section, the coefficients of the cumulant expansion
will be obtained by plain counting. As often is the case with
counting problems, one may find it easier to read the derivation
and use it as a hint to count the coefficients by himself rather
then trying to keep track of all the counting and notation in
somebody else’s derivation.

Lemma. Let n ∈ N. Let the collection (set of sets) Nn be defined as

Nn := {{r1, . . . , rk}|ri ∈ N>0,

k∑
i=1

ri = n}

Let Nn be all permutations (in the high school meaning of the
word) one can make out of elements in Nn. For example, if
n = 4, then N4 = {{1, 1, 1, 1}, {1, 2, 1}, {1, 3}, {4}} and N4 =
{(1, 1, 1, 1), (1, 1, 2), (2, 1, 1), (1, 2, 1), (1, 3), (3, 1), (4)}.
Let r ∈ Nn. Than ar is defined as the coefficient belonging to∏
ri∈r E[Xri ] in the n-th cumulant κn, i.e.

κn =
∑

r∈Nn

ar
∏
ri∈r

E[Xri ]

Let M∗ be the set of all matrices such that Mij = 0 if i < j. Let
us define the set of matrices Mn as all matrices M∗ where the row
sums are equal to (r1, . . . , rk) for a r ∈ Nn.

Mn := {M ∈M∗|∃r ∈ N : ∀ri :

n∑
j=1

Mij = ri − 1} (83)

6. By the skull of the brain or at least by the thick walls of the MR
room.

Then

an = (−1)(|n−1|)(|n| − 1)!
∑

M∈Mn

∏
j≤n

(∑
iMij∏
iMij !

)

Proof. The first derivative of E[eitX ] is iE[XeitX ]

E[eitX ]
. The second

derivative of E[eitX ] is according to the product rule of differ-
entiation equal to

i2
(
E[X2eitX ]

E[eitX ]
− E[XeitX ]E[XeitX ]

E[e2itX ]

)
.

Hence, every time a derivative is taken, the product rule
doubles the amount of terms by deriving the denominator or
the numerator. A term E[X2]E[X] could hence be established
by deriving the numerator, numerator and denominator in any
order. However, when a term like E[etX ]E[etX ] appears in the
numerator, the first term or the second term can be derived in
the product rule, which makes the coefficients less straightfor-
ward to count than just looking at Pascals triangle. Consider
E[X2]E[X]E[X]. Let us distinguish the different X by the
order in which they where ’created’ by the product rule. Hence
E[X2

1 ]E[X2]E[X3] means that the first X that was ’created’ gets
a power of two at the end, the second and third created gets a
power of one. We can code the combinations E[X2

1 ]E[X2]E[X3]
as (2, 1, 1). The coefficient of E[X2]E[X]E[X] is the amount
of possibilities to start at (1, 0, 0), which codes for E[X], and
to arrive at (2, 1, 1), but also at (1, 2, 1) and at (1, 1, 2). Now
let us consider a higher order example. E[X3]E[X3]E[X3] is
coded as (3, 3, 3). How to arrive from (1, 0, 0) at (3, 3, 3)? It is
obvious that this path crosses through (1, 0, 0), through (a, 1, 0)
and through (b, c, 1). We can easily count those sub paths,
e.g. from (a, 1, 0) to (b, c, 1) yields

(
b−a+c−1
c−1

)
different paths. By

considering all intermediate a, b and c, we obtain all paths and
thus the coefficient of the corresponding moment expression if
we also multiply it by (−1)n−1(n− 1)! where n is the amount
of moments in the expression, i.e. every time one wants to go
from E[X] to E[X]E[X], the denominator needs to be derived,
which multiplies the expression by an extra constant, e.g. the
derivative of 1

E[e2tX ]
is − 2E[Xe2tX ]

E[e3tX ]
.

Now lets consider a more advanced example. How to go from
(1, 0, 0) to (5, 6, 4) via (x1, 1, 0) and (x2, y2, 1)? Call X1 = x1−1,
X2 = x2 − x1, X3 = 5 − x2, Y2 = y2 − 1, Y3 = 6 − y2, Z3 =
4− 1 = 3. The amount of different paths is equal to(

X2 + Y2

X2

)
∗

(
X3 + Y3 + Z3

Y3 +X3

)
∗

(
X3 + Y3

X3

)

By writing out the binomial coefficients, this can be simplified
to

X2 + Y2

X2!Y2!
∗ X3 + Y3 + Z3

X3!Y3!Z3!

For a convenient notation we can make a matrix M where we
store the numbers X1, . . . Z3.X1X2X3

0 Y2 Y3

0 0 Z3

 (84)

Every such matrix codes for all paths going trough (x1, 1, 0)
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and (x2, y2, 1) and must therefore obey the relations

X1 +X2 +X3 =5

Y1 + Y2 =6

Z1 =4

By summing over all these intermediate points, i.e. the matrices
Mn, we obtain the lemma.

Lemma. Suppose

M∗n := {M ∈Mn|M is a diagonal matrix}

then

an = (−1)(|n−1|)(|n|−1)!

 ∑
M∈Mn

∏
j≤n

(

∑
iMij∏
iMij !

) +
∑

M∈M∗n/Mn

1


Proof. When M is a diagonal matrix, this means that first the
first coordinate is totally ’filled’, then the second, then the
third... There is obviously only one way to do this.

Example: The coefficient of E[X2]2E[X]2 in κ6 is equal to 270.

The set r = {2, 2, 1, 1} ∈ N6 corresponds to E[X2]2E[X]2 . The
list of all permutations of r has the following elements:

(2, 2, 1, 1)

(2, 1, 2, 1)

(2, 1, 1, 2)

(1, 2, 2, 1)

(1, 1, 2, 2)

(1, 2, 1, 2)

Consider the first permutation (2, 2, 1, 1). To make a matrix out
of this permutation that is contained inM each sum of the first
two rows has to be 1 and each sum of the last two rows has
to be 0. This is an example of such a matrix.

1000
0100
0000
0000


As we can see there are 15 ways to make a matrix M ∈ M
out of (2, 2, 1, 1), and 3 ways to make such a matrix that Mi ·
Mj = 1, i.e, M ∈ M∗. Thus the first permutation gives an
contribution of 3 ∗

(
2
1

)
+ (12 − 3) = 15. In general we can see

that the contribution of a permutation is a∗b+b where a is the
index of the first 2, b is the index of the second 2 (for example
(2, 1, 2, 1) gives a = 4, b = 2)

(2, 2, 1, 1) 4 ∗ 3 + 3 = 15

(2, 1, 2, 1) 4 ∗ 2 + 2 = 10

(2, 1, 1, 2) 4 ∗ 1 + 1 = 5

(1, 2, 2, 1) 3 ∗ 2 + 2 = 8

(1, 1, 2, 2) 2 ∗ 1 + 1 = 3

(1, 2, 1, 2) 3 ∗ 1 + 1 = 4

Together this sums up to 45, multiplied with (|r| − 1)!(= 6)
gives us the desired 270.

APPENDIX N
SPHERICAL HARMONICS (3.7.1)

I modified this section from [85], by reorganizing the argu-
ments and filling in some gaps.
Let S2 be a sphere of radius 1:

S2 := {(x, y, z) ∈ R3|x2 + y2 + z2 = 1} (85)

The Laplacian is given by

∆f =
δ2f

δx2
+
δ2f

δy2
+
δ2f

δz2
(86)

The idea is essentially that every function on the sphere is
a solution of the Laplacian, whereas every solution of the
Laplacian is a sum of some ’basis’ functions.
The spherical coordinates are

x=rsinθcosφ (87)

y=rsinθsinφ (88)

z=rcosθ (89)

And the chain rule for partial differentiation is

δ

δx
=
δr

δx

δ

δr
+
δθ

δx

δ

δθ
+
δφ

δx

δ

δφ
(90)

With these facts in hand, we can derive the Laplacian in
spherical coordinates.

∆f =
1

r2

δ

δr
(r2 δf

δr
) +

1

r2
∆S2f (91)

where

∆S2f =
1

sinθ

δ

δθ

(
sinθ

δf

δθ

)
+

1

sin2θ

δ2f

δφ2
(92)

Let us look for functions f(r, θ, φ) = rkg(θ, φ) such that ∆f = 0

We get

∆f=
1

r2

δ

δr

(
r2 δ(r

kg)

δr

)
+

1

r2
∆S2(rkg) (93)

=
1

r2

δ

δr
(krk+1g) + rk−2∆S2g (94)

=rk−2k(k + 1)g + rk−2∆S2g (95)

=rk−2(k(k + 1)g + ∆S2g) (96)

Therefore,
∆f = 0⇔ ∆S2g = −k(k + 1)g (97)

that is, g is an eigenfunction of ∆S2 for the eigenvalue −k(k+
1).
If we use the separation method g(θ, φ) = Θ(θ)Φ(φ), then we
get the equation

Φ

sinθ

δ

δθ
(sinθ

δΘ

δθ
) +

Θ

sin2θ

δ2Φ

δφ2
= −k(k + 1)ΘΦ (98)

Dividing by ΘΦ and multiplying by sin2θ,

sinθ

Θ

δ

δθ
(sinθ

δΘ

δθ
) + k(k + 1) sin2 θ = − 1

Φ

δ2Φ

δφ2
(99)

Since Θ and Φ are independent functions, it follows that both
sides are equal to a constant, say µ. This leads to two equations
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δ2Φ

δφ2
+ µΦ = 0 (100)

sinθ

Θ

δ

δθ
(sinθ

δΘ

δθ
) + k(k + 1)sin2θ − µ = 0 (101)

However, we want Φ to be periodic in φ since we are consider-
ing functions on the sphere, so µ must be of the form µ = m2.
Then, we know that solutions of the equation

δ2Φ

δφ2
+m2Φ = 0 (102)

are

Φ = λ1cos(mφ) + λ2sin(mφ). (103)

We also have to solve the equation

sinθ
δ

δθ
(sinθ

δΘ

δθ
) + (k(k + 1)sin2θ −m2)Θ = 0 (104)

which is equivalent to

sin2θΘ
′′

+ sinθcosθΘ
′

+ (k(k + 1)sin2θ −m2)Θ = 0. (105)

For this, by using the change of variable, Θ(θ) = y(cosθ) and,
with x = cosθ, we get:

(1− x2)y
′′
− 2xy

′
+

(
k(k + 1)− m2

1− x2

)
y = 0 (106)

where y
′

= δy
δx
.

To solve this equation, we can make the substitution

y(x) = (1− x2)
m
2 u(x). (107)

Notice that by subsequently applying the chain rule and the
product rule, we have

y
′

= (1− x2)
m
2 u
′
(x)−mx(1− x2)

m
2
−1u(x) (108)

y
′′

= (1− x2)
m
2 u
′′

(x)− 2xm(1− x2)
m
2
−1u

′
(x) (109)

−m(1− x2)
m
2
−1u(x) +m(m− 2)x2(1− x2)

m
2
−2u(x) (110)

We get the equation:

au
′′

+ bu
′

+ cu = 0 (111)

with

a=(1− x2)(1− x2)
m
2

b=−2x[(1− x2)
m
2 ]− 2xm(1− x2)

m
2

=−2(m+ 1)x(1− x2)
m
2

c=[k(k + 1)− m2

1− x2
][(1− x2)

m
2 − (2mx2(1− x2)

m
2
−1)

−m(1− x2)
m
2 +m(m− 2)x2(1− x2)

m
2
−1]

=[k(k + 1)[(1− x2)
m
2 ]−m2(1− x2)(1− x2)

m
2
−1

−m(1− x2)
m
2

=(k(k + 1)−m(m+ 1)) (1− x2)
m
2 (112)

Dividing by (1− x2)
m
2 we get

(1− x2)u
′′
− 2(m+ 1)xu

′
+ (k(k+ 1)−m(m+ 1))u = 0 (113)

When m = 0, we get the Legendre equation

(1− x2)u
′′
− 2xu

′
+ k(k + 1)u = 0 (114)

We propose that

Pk(x) =
1

2kk!

dk

dxk
(x2 − 1)k (115)

is a solution of the Legendre equation.
Let

v = (x2 − 1)l

Then

dv

dx
= l(x2 − 1)l−12x (116)

and
(x2 − 1)

dv

dx
= l(x2 − 1)l2x = 2xlv (117)

Differentiating the left hand side l + 1 times wrt x gives

dl+1

dxl+1
(x2−1)

dv

dx
= (x2−1)

dl+2v

dxl+2
+(l+1)2x

dl+1v

dxl+1
+

(l + 1)l

2!
2
dlv

dxl
(118)

Differentiating the right hand side l + 1 times wrt x gives

2lx
dl+1v

dxl+1
+ (l + 1)2l

dlv

dxl
(119)

and thus

(x2 − 1) d
l+2v
dxl+2 + (l + 1)2x d

l+1v

dxl+1 + (l+1)l
2!

2 d
lv
dxl

= (120)

2lx d
l+1v
dxl+1 + (l + 1)2l d

lv
dxl

(121)

(122)

which simplifies to

(x2 − 1)
dl+2v

dxl+2
+ 2x

dl+1v

dxl+1
− l(l + 1)

dlv

dxl
= 0. (123)

Hence Pk(x) is a solution of the Legendre equation.
Let us now return to our differential equation

(1− x2)u
′′
− 2(m+ 1)xu

′
+ (k(k+ 1)−m(m+ 1))u = 0 (124)

If we differentiate with respect to x we get the equation

(1−x2)u
′′′
−2(m+2)xu

′′
+(k(k+1))− (m+1)(m+2))u

′
= 0.

(125)
This shows that if Pk(x) is a solution of (124) for a given k and
m = 0, then P

′
k(x) solves (124) for the same k and m = 1 and

P
′′
k (x) solves (124) for the same k and m = 2.

Therefore the original equation

(1− x2)y
′′
− 2xy

′
+ (k(k + 1)− m2

1− x2
)y = 0 (126)

has the solution

y(x) = (1− x2)
m
2
dm

dxm
(Pk(x)) (127)

The function y(x) is denoted Pmk (x) and is called the associated
Legendre function.
Recall that the original function was a solution of the equation

sinθ
δ

δθ

(
sinθ

δΘ

δθ

)
+ (k(k + 1)sin2θ −m2)Θ = 0 (128)
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By making the reverse substitution y(cosθ) = Θ(θ) to get the
function Θ back, we have that

Θ(θ) = Pmk (cosθ) (129)

is a solution of the above equation. Putting everything together,
as

f(r, θ, φ) = rkΘ(θ)Φ(φ) (130)

we proved that the functions

cmk =cosmφPmk (cosθ) (131)

smk =sinmφPmk (cosθ) (132)

are eigenfunctions of the Laplacian ∆s2 , on the sphere of radius
1 for the eigenvalue −k(k + 1).
If we now define the inner product on L2(S2) as

< f, g >=

∫ 2π

0

∫ π

0

f(θ, φ)g(θ, φ)sinθdθdφ (133)

Then, because the functions 131 and 132 are eigenfunctions
belonging to the eigenvalue k(k−1), they form -with the proper
scaling- an orthonormal system.
The Laplacian is self-adjoint on the sphere, that is,

< ∆S2v, w >=< v,∆S2w > (134)

The latter fact combined with the fact that cmk is an eigenfunc-
tion of ∆S2 with eigenvalue k(k + 1), gives

k(k + 1) < cmk , c
m
l >=< ∆S2c

m
k , c

m
l >

=< cmk ,∆S2c
m
l >

= l(l + 1) < cmk , c
m
l > (135)

and therefore < cmk , c
m
l >= 0 if l 6= k. This also holds for

< smk , s
m
l > and < smk , c

m
l >.

It turns out that every sufficiently smooth function on the
sphere f ∈ L2(S2) can be written as a linear combination of
cmk and smk

f =
∞∑
k=0

∞∑
m=0

amk c
m
k + bmk s

m
k (136)


