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Introduction

The general goal of this thesis is to obtain a better understanding of the relations between
various weak systems of arithmetic. One specific relation we will investigate is interpretability,
a notion we explain below. Both semantical and syntactical aspects of these arithmetics will
play a role in this investigation. Thus, this thesis is a study of arithmetical theories, whose
methods come both from model theory and from proof theory. The more specific goal of this
thesis is to apply the concept of an interpretation to the theory Presburger Arithmetic. Let
us briefly explain what these two terms entail.

Where Peano Arithmetic, or PA for short, is meant to be about the natural numbers with
addition and multiplication, Presburger Arithmetic, or PrA for short, concerns itself only
with the former of these operations. That is, PrA is a theory about the natural numbers
with their addition structure. Since Mojżesz Presburger first studied PrA in 1929, the theory
has been an object of interest, partly because of its striking analogies and disanalogies with
PA. Leaving multiplication out makes PrA a lot less complicated than PA, but on the other
hand, some characteristic properties of PA are preserved. Disanalogies of PrA with PA include
completeness, decidability and the existence of recursive nonstandard models. Analogies
include the order type of countable nonstandard models and the impossibility of giving a
finite axiomatization. We will develop Presburger Arithmetic and its properties at length in
chapter 1.

An interpretation is a way of acting as if some theory V were about the contents of some other
theory U . More specifically, we translate U -statements into V -statements in such a way that
V proves all translations of U -theorems. All details concerning interpretations can be found
in section interpretations. During the rest of chapter 2, we will formulate two conjectures
about interpretations of PrA. The first of these turns out to reduce to the second, which is why
we dedicate chapter 3 to the investigation of this second conjecture. The first few sections
offer some important preliminary considerations, and in the final section, we will outline two
strategies that might lead to a proof of the conjecture under investigation.

While it is essential to explain what a thesis does, it is also important to note what it does
not do. In this thesis, we will not go into decision procedures concerning PrA and not use
automata theory, which has some applications in the study of PrA. These are beyond the
scope of a bachelor thesis.

As the above discussion indicates, this thesis assumes a background in logic. Although de-
cidability also plays a small role, no extensive knowledge in computability theory is required.
Some familiarity with the intuition behind computability suffices. When proving decidabil-
ity results, we use the Church-Turing thesis and for undecidability results, we will rely on
other undecidability results that are well-known. Before we start, let us fix some basic logical
concepts and notations.

• For sets A and B, we write A ⊂ B to indicate that every element of A also belongs to
B.

• For simplicity, constant symbols are considered 0-ary function symbols.

• We assume that our languages always contain the binary predicate symbol =. If M is
a structure for a certain language L, then we do not demand = to be interpreted in
M as real identity on M . We do suppose the validity of the axioms for identity. That

2



is, the interpretation of = should be some equivalence relation on M that respects the
interpretations of all the other predicate and function symbols in L. Note that, from
the point of view of predicate logic, this is the right way to handle identity. Indeed, the
identity axioms express everything we can say about identity in predicate logic.

When we consider isomorphisms between structures, we should note that injectivity and
well-definedness are relative to a notion of identity. It may seem that it doesn’t really
matter whether we allow the interpretation of = to be something else than real identity.
If = isn’t interpreted in M as real equality, we can construct an isomorphic structure
in which it is. We may do this by taking as domain the =-equivalence classes in M and
by inducing the other predicates and functions from M . However, when dealing with
interpretations we have to contrast internal and external notions of identity, and then
it is extremely convenient to employ the chosen conception of identity.

• We will use the symbols |= and ` for semantical and syntactical consequence respectively.
As our proof system, we pick a system that (i) satisfies the completeness theorem for
predicate logic and such that (ii) proofs are finite objects that can be recursively checked.
We know such proof systems to exist, and the specific choice doesn’t matter. Whenever
we want to prove a statement of the form Γ ` A, we apply the completeness theorem.
Such an application is indicated by a phrase like “Let M be a model of Γ”, and then
we continue to prove that M |= A.

• A theory T in a certain language L is a set of L-formulas that is closed under syntactical
consequence. That is, if T ` A for some L-formula A, then A ∈ T . Given two theories
T0 and T1, we write T0 +T1 for the smallest theory containing both T0 and T1 (and this
is not necessarily T0 ∪ T1).

Finally, I would like to express a few thanks. To Lev Beklemishev, for suggesting the article
[3], which eventually led to the strategy employed in section 3.3. To Clemens Grabmeyer, for
supplying this thesis with a very convenient axiomatization of PrA. And of course to Albert
Visser, who has taught me valuable lessons both about the subject-matter of this thesis, and
about putting it on paper.
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1 Presburger Arithmetic

This first chapter is devoted to developing Presburger Arithmetic. We start by giving its ax-
ioms, deriving some of its elementary properties and investigating its models. Subsequently,
we will use quantifier elimination to prove the most striking properties of Presburger Arith-
metic: completeness and decidability.

1.1 Definition and elementary properties

Throughout this thesis, our base language will be L− = 〈0, 1,+〉 . Here 0 and 1 are symbols
for constants and + is a binary function symbol. For (possibly open) L−-terms t and s, we
define

• t 6= s as ¬(t = s);

• t < s as ∃u (t+ (u+ 1) = s);

• t ≤ s as t < s ∨ t = s;

• t > s as s < t;

• t ≥ s as s ≤ t;

• nt for n ∈ N by recursion: 0t is 0 and (k + 1)t is (kt+ t) for k ∈ N;

• n as n1 for n ∈ N.

• t ≡n s as ∃u (t = nu+ s ∨ s = nu+ t), for integers n ≥ 1.

We also define the language L as 〈0, 1,+, <, {≡n| n ∈ Z≥1}〉. We will officially work in L−,
but in practice we will work in the definitional extension of our theory in L, given by the
above definitions. The advantage of working with the language L, besides prettier notation,
may not yet be clear, but it will become clear in section 1.4.

We are now ready to define the theory that interests us. The following axiom set is due to
Clemens Grabmayer [2], with a simplification due to Albert Visser [6].

Definition 1.1.1. The L-theory Presburger Arithmetic, which we denote by PrA, is given by
the following axioms:

PrAx1 x+ 1 6= 0;

PrAx2 x+ z = y + z → x = y;

PrAx3 x+ 0 = x;

PrAx4 x+ (y + z) = (x+ y) + z;

PrAx5 x = 0 ∨ ∃y x = y + 1;

PrAx6 x+ y = y + x;

PrAx7 x < y ∨ x = y ∨ x > y;

PrAx8 for n ≥ 1, (x ≡n 0) ∨ (x ≡n 1) ∨ . . . ∨ (x ≡n n− 1).
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Remember that in the above axioms, we are officially supposed to have the definitions of <
and ≡n. Also, note that PrAx8 is not a proper axiom, but rather a set of axioms, indexed by
the positive integers. We refer to the instances of PrAx8 as PrAx8n. We write PrA− for the
theory given by the first seven of the above axioms, and PrAn for the theory PrA− + PrAx8n.
Note that PrAx81 is just an abbreviation for the formula ∃u (x = u + 0 ∨ 0 = u + x), which
is provable in PrA− alone. So PrA1 is really just PrA−.

We will now introduce the standard model for Presburger Arithmetic.

Definition 1.1.2. The standard model, which we denote by N, is an L−-structure, where
the domain is the set of natural numbers, and where 0, 1 and + have their straightforward
interpretations. As a result, < is interpreted as the ordering on the natural numbers, while
≡n is interpreted as congruence modulo n.

It is rather obvious that N is a model of PrA and in particular, we see that PrA is consistent.
We now make some simple observations, but we will not include full proofs.

Proposition 1.1.1. Let n ≥ 1. The following statements are provable in PrAn:

1. < defines a discrete linear order with smallest element 0 and second element 1;

2. x < y ↔ x+ z < y + z;

3. ≡n defines an equivalence relation with exactly n equivalence classes;

4. x ≡n y ↔ x+ z ≡n y + z;

5. The disjuncts in PrAx7 are mutually exclusive, and the same holds for PrAx8n.

Proof. This is an exercise in predicate logic.

Proposition 1.1.2. Let t be a closed L-term that is interpreted in the standard model as
a ∈ N. Then PrA ` t = a.

Proof. Apply induction on complexity.

Proposition 1.1.3. Let φ be an atomic L-sentence. Then PrA ` φ if N |= φ, while PrA ` ¬φ
if N 6|= φ.

Proof. Use proposition 1.1.2 and the last item of proposition 1.1.1.

We mention the following important corollary:

Corollary 1.1.4. PrA decides atomic L-sentences.

We now shift our attention towards the relation between the various principles PrAx8n.

Proposition 1.1.5. For all integers m,n ≥ 1, PrAm + PrAn is equivalent to PrAmn.

Proof. Work in a model M of PrAmn and let x ∈M be arbitrary. Then there exists a u ∈M
and an r ∈ N such that M |= x = mnu+r and r < mn.1 Use the Euclidean division algorithm
to write r = mq + s with q, s ∈ N and s < m, so that

M |= x = mnu+ r = m(nu) +mq + s = m
(
nu+ q

)
+ s.

1By the definition of ≡n, we could also have M |= r = mnu + x, but in that case we can easily show
M |= u = 0 and we have the other case. This is because, for k ≥ 1, the principle PrAx8k mentions the smallest
representatives from each equivalence class. We will use this observation from now on.
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So PrAm holds in M ; the result for n can be obtained analogously.
Now work in a model N of PrAm + PrAn and let x ∈ N be arbitrary. Then there exists a
u ∈ N and an r ∈ N such that N |= x = mu + r and r < m. Furthermore, there are v ∈ N
and s ∈ N such that N |= u = nv + s and s < n. Now we get

N |= x = mu+ r = m(nv + s) + r = mnv +ms+ r.

Since ms+ r ≤ m(n− 1) + (m− 1) = mn− 1 < mn, we are done.

Corollary 1.1.6. For integers m,n ≥ 1, if every prime factor of m also divides n, we have
PrAn ` PrAm.

Proof. Immediate by proposition 1.1.5 and unique prime factorisation.

1.2 Models of PrA

In this section, we will investigate what a typical model of PrA or PrAn looks like. This
investigation will lead to the converse of corollary 1.1.6 and to the result that PrA is not
finitely axiomatizable. We start with a theorem that reminds us of an insight concerning
nonstandard models of PA.

Theorem 1.2.1. Let n > 1 be an integer. If M is some nonstandard model of PrAn, then
it has the order type N + Z · A, where 〈A,<A〉 is a dense linear order without endpoints. In
particular, every countable nonstandard model of PrAn has order type N + Z ·Q.

Proof. We use the same technique as in the proof for the analogous fact concerning PA: divide
the nonstandard part of M into copies of Z and let A be the set of these copies. If a ∈M−N,
we denote the copy that contains a by [a] and we say [a] <A [b] iff a < b and [a] 6= [b]. It
is straightforward to check that this is a linear order, so it remains to check density and the
absence of endpoints. That is, given [a] <A [b], we want to construct elements of A smaller
than [a], between [a] and [b], and larger than [b].
The principle PrAx8n asserts the existence of the quotient of an element x ∈M upon division
by n. We can quite easily prove that is unique, so we may without ambiguity denote it by⌊
x
n

⌋
. Now it isn’t difficult to show that, since n > 1, we have[⌊a

n

⌋]
<A [a] <A

[⌊
a+ (n− 1)b

n

⌋]
<A [b] <A [2b] .

This shouldn’t come as a surprise, because the only number theoretical fact used in the proof
for PA is that we can divide by 2. The above proof shows that it is in fact sufficient to be able
to divide by something larger than 1.

Now let us try to construct a nonstandard model of PrA. For simplicity, we index the copies of
Z in the nonstandard part by Q>0, which is of course order-isomorphic to Q, and we give the
standard part N the index 0. We represent each element by a pair (q, n), where q is the index
of the copy and n is its exact location in this copy. Thus, if q > 0, then n is some integer,
and if q = 0, then n ∈ N. Obviously, 0 is the element (0, 0), and 1 is (0, 1), so it remains
to define a suitable addition. A natural choice would of course be coordinate-wise addition.
We then get (p,m) < (q, n) precisely if p < q, or both p = q and m < n; congruence modulo
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n is simply congruence modulo n for the second coordinate. This choice in fact satisfies all
axioms of PrA.

The above model may not seem very interesting, but is shows that Tennenbaum’s theorem
does not hold for PrA. In other words, there are recursive nonstandard models for PrA. This
result in itself isn’t too surprising, because PrA is a rather less complicated object than PA.
But the reason why Tennenbaum’s theorem doesn’t hold here, is quite interesting. In the
case of PA, it is tempting to blame the presence of induction for the impossibility of defining
a recursive addition. Indeed, the order type of a nonstandard model is not a well-order, so
we do not expect induction to hold if the model looks too simple. However, as we will prove
in section 1.5, we do have an induction scheme in PrA. In fact, PrA is as strong as it can be,
given that it doesn’t talk about multiplication. So the reason why we can define addition so
easily in the case of PrA must be that it doesn’t have to be compatible with a multiplication
structure.

The model we have given above may seem a little artificial because we used ordered pairs,
but in fact, it is quite a natural mathematical object. Consider linear polynomials in one
variable X with coefficients in Q. There are obvious candidates for 0, 1 and +. If we want to
end up with a model of PrA, we need to define some order on this set.2 A common way to do
this is by making the variable X ‘infinitely large’. That is, when comparing two polynomials,
we first consider the coefficient of X and only when these are equal, we turn to the constant
coefficient.3 More to the point, we have aX+ b > cX+d precisely if a > c, or both a = c and
b > d. Now we immediately get another problem we have to solve, namely the existence of
negative polynomials. Indeed, we obviously have −1 < 0, and also −X < 0. Fortunately, we
can easily get around this by only considering the non-negative polynomials. Equivalently, we
consider only the zero polynomial and those polynomials whose leading coefficient is positive.
Thus, for example, X − 1010 belongs to our model, but −1 does not. The final problem we
have to solve is that the polynomial 1 should come immediately after the zero polynomial,
which is not the case since our coefficients are from Q. There is an ad hoc way around this:
we demand the constant coefficient to be an integer. The resulting structure satisfies PrA,
as one may check. In fact, it is isomorphic to the model we constructed earlier. This model
arises so naturally that we as well call it the simple nonstandard model. We summarize:

Definition 1.2.1. The simple nonstandard model, that we denote by S, is the L−-structure
given by the set of linear polynomials p in one variable X with coefficients in Q such that:

• the constant coefficient of p is an integer;

• if p is not the zero polynomial, then its leading coefficient is positive.

The obvious interpretations are given to 0, 1 and +. As a result, the order is given by making
X ‘infinitely large’, while ≡n is just congruence modulo n for the constant coefficient.

Let us consider the matter of congruence modulo n more closely. Why does PrAx8n hold in
S? Well, given a polynomial aX + b ∈ S, we can find q, r ∈ Z with 0 ≤ r < n and b = qn+ r,
so we can write aX+ b = aX+ (qn+ r) = n

(
a
nX + q

)
+ r, showing that we can indeed divide

by n with remainder. Now suppose that we would like to construct models of PrAn, but not
necessarily of the whole of PrA. If we want a model in the style of S, then we at least need

2In PrA, the order can be constructed from addition, but we do not yet have a structure satisfying PrA.
Indeed, the set under consideration is a group under addition of polynomials, so this gives us no information.

3An equivalent formulation is: a polynomial is larger than another one iff the first becomes larger than the
second for X large enough.
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to be able to divide the coefficient of X by n, as the above shows. So let us take all those
aX + b ∈ S such that the denominator of a is a power of n. This move could of course ruin
closure under addition, but it doesn’t. If a

nkX + b and c
nlX + d are in S, then

( a
nk
X + b

)
+
( c
nl
X + d

)
=
anl + cnk

nk+l
X + (b+ d)

is of the appropriate form. Here a, b, c and d are integers, and k and l are natural numbers.
Checking the axioms of PrAn is as easy as it can be.

Definition 1.2.2. For an integer n ≥ 1, we define the L−-structure Sn as the substructure
of S given by those polynomials aX + b ∈ S such that the denominator of a is a power of n.
It is even a substructure of S with respect to <.

The above models, due to Craig Smorynski [5], are constructed specifically for PrAx8n to
hold. Which other instances of PrAx8 are valid in Sn? The answer turns out to be: as few as
corollary 1.1.6 permits.

Proposition 1.2.2. For integers m,n ≥ 1, we have Sn |= PrAx8m iff every prime factor of
m also divides n.

Proof. Suppose PrAx8m holds in Sn. Then in particular there must be a u ∈ Sn and an r ∈ N
such that Sn |= X = mu+ r and r < m. Write u = a

nkX + b, then X = m
(
a
nkX + b

)
+ r =

am
nk X + (bm + r), so we get am = nk. In other words, m divides some power of n, which
means exactly that every prime factor of m also divides n. The other direction follows from
corollary 1.1.6.

In particular, not all of PrA holds in S. This also means that Sn cannot be a substructure
with respect to all the congruence symbols. Indeed, that would imply that Sn models all
instances of PrAx8, since these axioms, when formulated in L, are universal.

Corollary 1.2.3. For integers m,n ≥ 1, we have PrAn ` PrAm if and only if every prime
factor of m also divides n.

Proof. Immediate by corollary 1.1.6 and proposition 1.2.2.

This corollary has two important implications. The first is that, when we consider some
axiom PrAx8n, it only matters what prime factors occur in n. So it is in fact no restriction
to consider only axioms PrAx8p, where p is prime. We also expect these axioms to be rather
independent. This is partly expressed in the second implication, which is an analogy with PA:

Theorem 1.2.4. PrA is not finitely axiomatizable.

Proof. Suppose the contrary. Then PrA must be axiomatizable by some finite subset of the
axioms stated in definition 1.1.1, so in particular it is axiomatizable by the theory PrA− +
{PrAx8ni | 1 ≤ i ≤ k} for some n1, . . . , nk ≥ 1 and k ≥ 1. By proposition 1.1.5, this theory is
equivalent to PrAN with N = Πk

i=1ni. Now by our assumption, SN |= PrA, but by proposition
1.2.2, SN 6|= PrAx8N+1, since gcd(N,N + 1) = 1, contradiction.

It is this result that we will try to strengthen in various ways.
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1.3 Classification of terms and atomic formulas

Despite the extensive syntactic and semantic explorations concerning PrA we have conducted
so far, we have yet to expose the true nature of PrA. We will show PrA to be decidable,
complete, and in fact equal to the true theory of the standard model. This situation is
radically different from the one where multiplication is present, because theories like PA are
not only weaker than the true theory of N, but this shortcoming is also fundamental: there is
no recursive axiomatization for the latter. The technique we will use to show all these facts is
quantifier elimination. The fact that PrA admits quantifier elimination was first discovered by
Mojżesz Presburger in 1929. The version we will use can be found in Herbert Enderton’s [1].
In this section we will discuss some preliminary results, while the actual quantifier elimination
will be carried out in section 1.4. In section 1.5 we will discuss the implications mentioned
above.

Lemma 1.3.1. Let k ≥ 0 and let t(x1, . . . , xk) be an L-term. Then PrA proves that t is equal
to a term of the form

n0 + n1x1 + · · ·+ nkxk,

where n0, n1, . . . , nk ∈ N.

Proof. An easy induction on complexity.

Suppose φ is an atomic formula and x is a variable. Then φ is of the form t0Rs0, where t0
and s0 are L-terms and R is =, <, or ≡n for some n ≥ 1. By the above lemma, PrA proves
φ to be equivalent to (t+ ax)R(s+ bx) for some a, b ∈ N and L-terms t and s not containing
x. Furthermore, we can cancel out all x’s on at least one side of R. Since = and ≡n are
symmetric, we get:

Proposition 1.3.2. Suppose φ is an atomic L-formula in one variable x. Then φ is equivalent
in PrA to one of the following formulas:

ax+ t = s;

ax+ t < s;

ax+ t > s;

ax+ t ≡n s for some n ≥ 1,

where a ∈ N and s and t are L-terms not containing x.

More down to earth, we can extract x on both sides and cancel it out on one side. Finally,
we need the following well-known lemma:

Lemma 1.3.3. Let T be some theory. Suppose that for every formula φ of the form

∃x (α1 ∧ . . . ∧ αk), (1)

where k > 0 and the αi are atomic or the negation of an atomic formula, we can find a
quantifier-free ψ such that T ` φ↔ ψ. Then T admits quantifier elimination.
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1.4 Quantifier elimination for PrA

Let’s get straight to work.

Theorem 1.4.1. PrA admits quantifier elimination in the language L.

Proof. Suppose we have an L-formula φ of the form (1). We will show how to find a quantifier-
free equivalent for φ, which suffices by lemma 1.3.3.

1. First of all, we eliminate the occurrence of negated atoms. Suppose t and s are L-terms.
The last item of proposition 1.1.1 tells us that we can prove in PrA that:

t 6= s↔ t < s ∨ s < t;

¬(t < s)↔ t = s ∨ s < t;

¬(t ≡n s)↔ (t ≡n s+ 1) ∨ . . . ∨ (t ≡n s+ n− 1).

In this way, all negated atoms are replaced by disjunctions of atoms, which means that
the formula in the scope of ∃x is in conjunctive normal form. Put this in disjunctive
normal form by distributing the ∧’s over the ∨’s. Now we can distribute ∃ over the ∨’s
to obtain a disjunction of formulas of the form (1), where all αi are atomic. It is now
sufficient to find quantifier-free equivalents for φ of this form.

2. We can assume that x occurs in all αi, because otherwise we can just bring such an
αi out of the existential quantifier. So all αi are without loss of generality of one of
the forms mentioned in proposition 1.3.2, with a > 0. We call this a the coefficient
of x in the atom αi. The next step is to uniformize these coefficients. That is, let A
be the least common multiple of these coefficients and use the following easily provable
equivalences to make sure that x only occurs as Ax in our formula φ:

t = s↔ ct = cs;

t < s↔ ct < cs;

t ≡n s↔ ct ≡cn cs,

where c > 0 is an integer, and t and s are L-terms.

3. Next we eliminate the coefficient of x altogether by replacing Ax everywhere by x and
adding as a new conjunct: x ≡A 0. This obviously gives an equivalent formula, and
now x only occurs in φ with coefficient 1.

4. We distinguish two cases.
(a) Some αj is an equality, say x + t = s. Then there is only one option for x, so we

can eliminate x from all the other αi’s by replacing x by s and adding t on the
other side. Now we can bring all these αi out of the existential quantifier. We are
left with ∃x x+ t = s, but this is equivalent to t < s∨ t = s. We have arrived at a
quantifier-free formula.

(b) Equality does not occur. Now φ is ∃x θ, where θ is of the form∧
0≤i<k

x+ ti > si ∧
∧

0≤i<l
x+ ri < ui ∧

∧
0≤i<m

x+ vi ≡ni wi.

Here k, l, m and the ni are natural numbers, the ni are positive, and the ti, si, ri,
ui, vi and wi are L-terms not containing x. We say that θ consists of lower bounds,
upper bounds, and congruences respectively.
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Let N be the least common multiple of all the ni, which is well-defined because
there is at least one congruence, namely the one introduced in step 3. For simplicity,
we assume without loss of generality that one of the lower bounds is x+1 > 0. We
can do this because if this lower bound isn’t present, then we may simply add it,
since x+ 1 > 0 is provable in PrA. We can furthermore suppose that it is the first
one: t0 is 1, s0 is 0. We claim that PrA proves: if there is an x such that θ, then
there is such an x satisfying the following disjunction of equalities:∨

0≤i<k

[
(x+ ti = si + 1) ∨ (x+ ti = si + 2) ∨ . . . ∨ (x+ ti = si +N)

]
. (2)

We will prove this in lemma 1.4.2. Now we can simply add (2) as a conjunct to θ,
then distribute the ∧’s over the ∨’s, and finally distribute the ∃x over the ∨’s. We
then end up with a disjunction of formulas of the form we had at the beginning of
case 4. The difference is that all these formulas now contain an equality, and the
problem is reduced to case 4a.

It remains to prove the missing lemma. In the proof we will freely use facts about the ordering;
all of these follow quite easily from proposition 1.1.1.

Lemma 1.4.2. Let θ be the formula∧
0≤i<k

x+ ti > si ∧
∧

0≤i<l
x+ ri < ui ∧

∧
0≤i<m

x+ vi ≡ni wi,

where k, l, m and the ni are natural numbers, the ni are positive, and the ti, si, ri, ui, vi and
wi are L-terms not containing x. Then PrA proves: if there is an x such that θ, then there is
such an x for which (2), i.e.∨

0≤i<k

[
(x+ ti = si + 1) ∨ (x+ ti = si + 2) ∨ . . . ∨ (x+ ti = si +N)

]
,

holds.

Proof. Work in some model M of PrA and let x be such that M |= θ. For 0 ≤ i < k, we have
M |= x + ti > si, so we can select some yi ∈ M such that M |= x + ti = si + (yi + 1). Let
yj be the smallest of these yi. Since M |= PrAx8N , we can select u ∈M and r ∈ N such that
M |= yj = Nu+ r and r < N . Because we assumed that x+ 1 > 0 was the first lower bound,
we get M |= x+ 1 = 0 + (y0 + 1), so M |= x = y0 ≥ yj = Nu+ r ≥ Nu. This means we can
select some x0 ∈M such that x = x0 +Nu. We will show that x0 satisfies θ and (2).
For the lower bounds: for 0 ≤ i < k we have

M |= (x0 + ti) + yj ≥ (x0 + ti) +Nu = (x0 +Nu) + ti = x+ ti = si + (yi + 1) = (si + 1) + yi.

Because also M |= yj ≤ yi, we can now easily see that M |= x0 + ti ≥ si + 1, or equivalently
M |= x0 + ti > si.
For the upper bounds: just note that M |= x0 ≤ x.
For the congruences: for 0 ≤ i < m we have N = niki for some ki ∈ N, and now we easily
see M |= x = x0 +Nu = x0 + ni

(
kiu
)
, so M |= x ≡ni x0 and it is clear that x0 satisfies the

congruences.
For (2): we have

M |= (x0 +Nu) + tj = x+ tj = sj + (yj + 1) = sj + (Nu+ r + 1) = (sj + (r + 1)) +Nu,

and substracting Nu gives M |= x0 + tj = sj + (r + 1), where r + 1 is some number v such
that 1 ≤ v ≤ N .
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Note that the x0 we constructed is simply the smallest x such that θ holds. We couldn’t just
define x0 to be this smallest solution, because we don’t have a least number principle for PrA
(yet). The above proof makes it clear how this smallest solution can be found anyway, using
the division axioms.

1.5 Decidability and completeness

In the above procedure, it was crucial that we were working in the language L and not in L−.
Indeed, while PrA can easily be formulated in L−, it does not allow quantifier elimination in
this language. Without <, we cannot get rid of the last remaining conjunct in case 4a, and
without congruences, we don’t have any tools to eliminate the coefficient of x in case 3. On
the other hand, the presence of bounds and congruences presented us with the difficult case
4b, but it turned out to be quite feasible. Now let us turn to the implications of the quantifier
elimination.

Theorem 1.5.1. PrA is complete, in the sense that it decides all sentences.

Proof. Given some sentence φ, apply quantifier elimination and obtain some equivalent ψ
that is a truth-functional combination of atomic L-sentences. Now apply corollary 1.1.4 and
the fact that propositional logic is complete.

Corollary 1.5.2. PrA is the true theory of the standard model.

Proof. By the preceding theorem, any extension of PrA must be equal to PrA. But the true
theory of the standard model clearly extends PrA, so the claim is obvious.

By inspecting the proofs in sections 1.3 and 1.4 carefully, one can see that finding quantifier-
free equivalents is an automatic, or recursive, or effective, process. We get:

Theorem 1.5.3. PrA is decidable.

Proof. Any recursively axiomatized complete theory is decidable, but the quantifier elimina-
tion gives a much more insightful decision procedure. Again, given some sentence φ, apply
quantifier elimination and effectively obtain some equivalent ψ that is a truth-functional com-
bination of atomic L-sentences. Now all terms are closed, and therefore denote something in
N. It is not hard to see that we can effectively find these denotations. Since the function +
and the relations =, < and ≡n are recursive, we can effectively find the truth-values of these
atomic sentences in N. Since propositional logic is decidable, we can find the truth value of
ψ, and hence of φ, in the standard model. By corollary 1.5.2, this determines its provability
in PrA.

The above described decision procedure isn’t too fast, however. If quantifiers occur nested,
then the complicated procedure from the proof of theorem 1.4.1 must be carried out repeat-
edly. This causes the running time to be multi-exponential.

As we mentioned at the beginning of section 1.3, the above results put the theory of N
with addition in a rather different situation than the theory of N with both addition and
multiplication. Exactly how close is PrA to the latter theory? Given only addition, we can
already define many things in N: zero, one, the ordering and congruence modulo n for every
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n ≥ 1. A natural next step would be the divisibility relation, which essentially uniformizes
the infinitely many congruence relations. We end this section by showing that, in this sense,
PrA is very close to the theory of N with addition and multiplication. The following result is
due to Julia Robinson, who proves a somewhat stronger result in [4]. We are not concerned
with this stronger result here, so we can present a simpler proof, due to the author.

Theorem 1.5.4. Let L+ be the language L expanded by a binary relation symbol |, which
is to be interpreted in N as the divisibility relation.4 Then the multiplication relation, i.e.
x · y = z, is definable in the structure 〈N,L+〉. As a result, the divisibility relation is not
definable in the standard model 〈N,L〉.

Proof. First of all, we define the ternary relation C(x, y, z),5 which holds iff (x+y)(x+y+1) =
z. The definition is as follows:

C(x, y, z) :⇔ (x = 0 ∧ y = 0 ∧ z = 0)∨[
(x 6= 0 ∨ y 6= 0) ∧ z 6= 0 ∧ (x+ y | z) ∧ ((x+ y) + 1 | z)

∧ ∀w ((w 6= 0 ∧ (x+ y | w) ∧ ((x+ y) + 1 | w))→ z ≤ w)
]
.

In other words, if x+ y is nonzero, then z is the smallest positive w satisfying x+ y | w and
x + y + 1 | w. This is indeed (x + y)(x + y + 1), since gcd(x + y, x + y + 1) = 1.6 Before
defining multiplication, we first need the square relation y = x2, definable as:

y = x2 :⇔ ∃z (C(x, 0, z) ∧ x+ y = z).

Now multiplication can be defined as:

x · y = z :⇔ ∃w (C(x, y, w) ∧ x2 + y2 + x+ y + z + z = w).

Both definitions can be verified by expanding both sides of the equality.
Thus, the decision problem for the theory of 〈N,+, ·〉 reduces to that for the theory of 〈N,L+〉.
Since the former is known to be undecidable, the latter must be undecidable as well. Now if
the divisibility relation were definable in 〈N,L〉, then the decision problem for the theory of
〈N,L+〉 would reduce to that for the theory of the standard model, i.e. to that of PrA. But
the former is undecidable, while the latter is decidable, which is impossible.

4By convention, 0 | n iff n = 0.
5This approach was inspired by the Cantor pairing function.
6More generally, we can define lcm(x, y) = z in this way. We can also define gcd(x, y) = z in a similar

fashion.
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2 Interpreting PrA

We begin this chapter by introducing the second ingredient of this thesis: interpretations.
Next, we prove a result that was already known and continue the investigation from there.
This will lead to the formulation of two conjectures.

2.1 Interpretations

In this section, we introduce the concept of an interpretation, which we will apply to Pres-
burger Arithmetic later. More specifically, we will deal with what are called one-dimensional
parameter-free interpretations. Throughout this section, U and V will be theories in the
languages K and L respectively, where K and L only contain predicate symbols as non-logical
symbols. In other words, function symbols are not allowed. This may seem a restriction at
first, but it will turn out that this restriction isn’t essential.

Definition 2.1.1. A translation τ from K to L is a quadruple 〈K,D,F , L〉, where D is
some L-formula in one free variable, and where F assigns to every predicate symbol P in K
some L-formula F(P )(x0, . . . , xn−1), where n is the arity of P . These F(P ) should have the
property that

F(P )(x0, . . . , xn−1)→
n−1∧
i=0

D(xi) (3)

is provable in predicate logic. We call D the domain formula and we can write τ : K → L to
indicate that τ is from K to L.

As stated in the introduction, we consider identity to be an always present predicate. So note
that, in particular, it is not necessary that F sends identity in K to identity in L.

A translation is in fact nothing more than a piece of information that allows us to translate
K-formulas into L-formulas. Let us make this precise.

Definition 2.1.2. Given a translation τ : K → L, we define the function (·)τ from the set of
K-formulas to the set of L-formulas by recursion.

• For every predicate symbol P of K, we define (P (x0, . . . , xn−1))
τ as F(P )(x0, . . . , xn−1),

where x0, . . . , xn−1 are variables.7

• (·)τ commutes with the propositional connectives.

• For K-formulas A, we define (∀x A)τ as ∀x (D(x)→ Aτ ).

• For K-formulas A, we define (∃x A)τ as ∃x (D(x) ∧Aτ ).

One can notice something odd about this translation procedure, namely that everything seems
to be restricted to things satisfying D. Indeed, by (3), the translated predicates can only hold
for things satisfying D, and moreover, the quantifiers are relativized to D. We will soon see
what this restriction means, when we consider the matter from a semantical point of view.

7Note that variables are the only K-terms, since function symbols are not present.
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Until this point, we have only considered the languages K and L. Now let us bring the
theories U and V into the discussion.

Definition 2.1.3. An interpretation ι of U in V is a triple 〈U, τ, V 〉, where τ : K → L is a
translation satisfying U ` A ⇒ V ` Aτ for all K-sentences A. We say that ι is based on τ ,
and we can write ι : U → V to indicate that ι is an interpretation of U in V .

What exactly is happening here? Suppose that we are living in V , and that we are confronted
with the theory U , perhaps written in an entirely different language. Now we interpret the
concepts that U mentions in some way (this is the translation), such that they become provable
in our world, i.e. in V (and this makes it an interpretation). One should note that one of the
concepts of U that we interpret is ‘being an element’; we take that to be ‘satisfying D’. In
this way, although U may be something entirely different, we can act as if our world V were
about U .

Interpreting is not an unnatural concept. In fact, set theory interprets other theories all the
time. While set theory is, quite obviously, meant to be about sets, we can act as if it is, for
example, also about the natural numbers. A more trivial example is given by the theory of
linear orders in the language 〈<〉, and the theory of linear orders in the language 〈≤〉. These
interpret each other simply because < and ≤ are interdefinable. We can even look at theories
that interpret themselves. Consider, for example, duality in projective geometry. Given some
provable sentence, we can switch the concepts ‘point’ and ‘line’, and obtain another one. This
is a very informative self-interpretation of projective geometry. In fact, all theories have at
least one self-interpretation, namely the following trivial one.

Definition 2.1.4. The identity translation idK : K → K is the translation we obtain by
taking D to be some tautology and by taking F(P ) to be just P . The identity interpretation
idU : U → U is the interpretation based on idK . We can drop the subscripts of id if the
language or theory is clear from the context.

We also have a notion of composition of two interpretations. Let W be a theory in the
language J .

Definition 2.1.5. Let τ : K → L and σ : L→ J be translations. We define their composition
σ ◦ τ : K → J as follows:

• the domain formula Dσ◦τ (x) is given by Dσ(x) ∧ (Dτ (x))σ;

• for a predicate symbol P in K, its translation Fσ◦τ (P ) is given by

n−1∧
i=0

Dσ◦τ (xi) ∧ (Fτ (P )(x0, . . . , xn−1))
σ .

One can quite easily prove that, for all K-formulas, (Aτ )σ is equivalent to Aσ◦τ in W . So if
ι : U → V and κ : V →W are interpretations, then we have

U ` A⇒ V ` Aτ ⇒W ` (Aτ )σ ⇒W ` Aσ◦τ

for all K-sentences A, so 〈U, σ ◦ τ,W 〉 is an interpretation as well. We shall call this interpre-
tation the composition of ι and κ, and we denote it by κ ◦ ι.
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Until now our investigations have been purely syntactical, and it is quite useful to consider
interpretations from a semantical point of view as well. Suppose we have an interpretation
ι : U → V based on a translation τ : K → L, and a model M of V . We can now construct
a model N of U in the following way. As domain we take the set {x ∈ M | M |= D(x)};
by abuse of notation, we will denote this set also by D. For a predicate symbol P in K, we
take the extension of P in N to be the extension of F(P ) in M . Note that this makes sense
because of (3). One can easily prove by induction on complexity that for a K-sentence A, we
have N |= A iff M |= Aτ . This means that for every K-sentence A, we have

U ` A⇒ V ` Aτ ⇒M |= Aτ ⇒ N |= A,

so the model N indeed satisfies U . In particular, F(=K) is an equivalence relation that
respects all the F(P ). So although identity is in N not necessarily interpreted as the ‘real’
identity, i.e. the one inherited from M , it is a permissible notion of identity. We call N the
inner model in M given by ι.

An important question concerning interpretations is when we consider two interpretations
to be the same. A natural first attempt would be: two interpretations ι, κ : U → V with
underlying translations resp. τ, σ : K → L are the same if Dτ and Dσ are equivalent in V ,
and Fτ (P ) and Fσ(P ) are also equivalent in V for all predicate symbols P in K. This is,
however, a very strict notion of sameness, and there are more useful ones.8 The semantical
discussion above provides a hint: given two interpretations from U two V and a model M of
V , we can consider the inner models in M . As far as M is concerned, the two interpretations
are the same if these inner models are isomorphic. We also demand the isomorphism to be
representable in the language of M , so that the notion can be formulated completely in terms
of M .

Definition 2.1.6. Let M be a model of V . Two interpretations ι, κ : U → V based on
respectively τ, σ : K → L are representably isomorphic in M if there is some L-formula
F (x, y) such that the following formulas are valid in M :

• (∃y F (x, y))↔ Dτ (x);

• (∃x F (x, y))↔ Dσ(y);

•
∧n−1
i=0 F (xi, yi) → (Fτ (P )(x0, . . . , xn−1) ↔ Fσ(P )(y0, . . . , yn−1)) for all predicate sym-

bols P in K.

We write M |= F : ι ∼= κ (“M models F to be an isomorphism between ι and κ”).9

It takes some effort to see that the above constraints indeed express the fact that F represents
an isomorphism of models. The first constraint says that we have the right domain, and that
every element had at least one image. The second constraint says that we have the right
codomain and that our function is surjective. By the third constraint, we have in particular
(F (x0, y0)∧F (x1, y1))→ (Fτ (=K)(x0, x1)↔ Fσ(=K)(y0, y1)), which means exactly that our
function is well-defined and injective; it is important to realize that these two concepts are
relative to a notion of identity. The remainder of the third constraint of course says that
structure is preserved.

8This notion is interesting, however, when we consider the category of interpretations. This is the category
with theories as objects and interpretations modulo this strict notion of sameness as arrows. We need to con-
sider interpretations modulo this notion, because otherwise composition isn’t associative and identity doesn’t
behave like identity. Even worse, identity wasn’t even unique as we defined it, because we took the domain
formula to be ‘some tautology’.

9We will use F : ι ∼= κ as an abbreviation for the conjunction of the listed formulas.
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It is now easy to give a syntactical notion of sameness of interpretations as well.

Definition 2.1.7. Two interpretations ι, κ : U → V based on respectively τ, σ : K → L are
provably isomorphic if there is some L-formula F (x, y) such that the formulas mentioned in
definition 2.1.6 are provable in V . We write V ` F : ι ∼= κ (“V proves F to be an isomorphism
between ι and κ”).

This syntactical notion actually uniformizes the semantical model-relative notion of sameness,
in the sense that two interpretations are provably isomorphic in V if and only if they are
representably isomorphic in every model of V . We will not prove this result here, but we
can mention that it involves a compactness argument. If two interpretations are isomorphic,
representably in a model or provably, then the model respectively theory knows that these
two interpretations behave in similar fashions. Let us make this precise.

Lemma 2.1.1. Suppose ι, κ : U → V are interpretations based on translations τ, σ : K → L
respectively. Then for every K-formula A in n free variables, we have

`

(
(F : ι ∼= κ) ∧

n−1∧
i=0

F (xi, yi)

)
→
(

(A(x0, . . . , xn−1))
τ ↔ (A(y0, . . . , yn−1))

σ
)
.

In particular, we have ` (F : ι ∼= κ)→ (Aτ ↔ Aσ) for all K-sentences A.

Proof. We prove this by induction on the complexity of A. The atomic case is just the
third clause of definition 2.1.6, and the propositional clauses are trivial because (·)τ and (·)σ
commute with the propositional connectives. Since (∃x B)τ is equivalent (in predicate logic)
to (¬∀x ¬B)τ for all K-sentences B, and similarly for σ, it suffices to prove the theorem for
∀x0A(x0, . . . , xn−1), given that it holds for A(x0, . . . , xn−1), where n ≥ 1.
Let M be some L-structure such that M |= (F : ι ∼= κ) ∧

∧n−1
i=1 F (xi, yi) and such that

M |= (∀x0 A(x0, . . . , xn−1))
τ , i.e. M |= ∀x0 (Dτ (x0)→ (A(x0, . . . , xn−1))

τ ). Furthermore, let
y0 ∈M be an arbitrary element satisfying M |= Dσ(y0). Now there must be an x0 ∈M such
that M |= F (x0, y0), because F represents an isomorphism. By the induction hypothesis, we
have

M |= (A(x0, . . . , xn−1))
τ ↔ (A(y0, . . . , yn−1))

σ.

Moreover, since F represents an isomorphism, we see that M |= Dτ (x0) and this gives us
M |= (A(x0, . . . , xn−1))

τ . So we get M |= (A(y0, . . . , yn−1))
σ. Since y0 was arbitrary such

that M |= Dσ(y0), we may conclude that M |= ∀y0 (Dσ(y0)→ (A(y0, . . . , yn−1))
σ), which is

just M |= (∀y0 A(y0, . . . , yn−1))
σ. By the completeness theorem,

`

(
(F : ι ∼= κ) ∧

n−1∧
i=1

F (xi, yi)

)
→ ((∀x0 A(x0, . . . , xn−1))

τ → (∀y0 A(y0, . . . , yn−1))
σ) .

The other direction is proven analogously, and this completes the induction.

Note that the theorem makes a statement about provability in predicate logic; it doesn’t
really matter what U and V are here. In particular, we didn’t even use that ι and κ are
interpretations. We end this section by making a few remarks about more general interpreta-
tions. We only consider one-dimensional parameter-free interpretations. Our interpretations
are one-dimensional because our domain formula has exactly one free variable; as a result, an
inner model N consists of elements of the original M . We can also take the domain formula
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to be a formula in m free variables for some m > 1, and translate n-ary predicates to for-
mulas in mn free variables. Now inner models are composed of m-tuples of elements of the
original model. There is a slight technicality with more-dimensional interpretations, because
one needs a lot of new variables. But of course, such problems are solvable in predicate logic.

In an interpretation with parameters, we may first pick some elements satisfying certain
constraints at random (these are the parameters), and then specify the domain formula and
translations of predicate symbols. An elegant example is the interpretation of hyperbolic
geometry in Euclidian geometry via the Poincaré disk model; we first need to pick two distinct
points, before we can specify the actual domain and what our points, lines, distances, etc are.

2.2 Local interpretability for PrA in PrA−

Before we can apply the concepts from the previous section to our study of PrA, we need to
solve the problem that the languages from the previous section were not allowed to contain
functions, while L− does contain them. Fortunately, there is a way around this; we can also
formulate PrA and its related theories in a language containing as non-logical symbols only
the predicates +(x, y, z), 0(x) and 1(x), which hold iff x+y = z, x = 0 and x = 1 respectively.
It is quite obvious that we can translate statements in one language into a statement in the
other language. For example, the L−-formula x+ 0 = y + z can be translated as

∃u∃v (+(x, u, v) ∧+(y, z, v) ∧ 0(u)).

Translations the other way are even more obvious.10 So, when we talk about interpretations
from or to a theory in the language L−, we assume that we first formulate our starting theory
in a function-free language, then carry out the actual translation on which the interpretation
is based, and finally translate back to L−. In practice, this will provide no difficulties.

We now get to the central result of this section. It may happen that a theory is able to
interpret some stronger theory in the same language. In fact, we have a perfect example in
stock, as the following result from [6] shows.

Theorem 2.2.1. For all positive integers n, PrA− interprets PrAn.

Proof. The domain Dn of our translation τn is given by

∀z ≤ x ((z ≡n 0) ∨ (z ≡n 1) ∨ . . . ∨ (z ≡n n− 1)).

For Fn, we take the identity translation restricted to Dn, i.e.
• Fn(0) is Dn(x) ∧ 0(x);

• Fn(1) is Dn(x) ∧ 1(x);

• Fn(+) is Dn(x) ∧ Dn(y) ∧ Dn(z) ∧+(x, y, z);

• Fn(=) is Dn(x) ∧ Dn(y) ∧ x = y.

We need PrA− to prove (∃x 0(x))τn , (∃x 1(x))τn and (∀x∀y∃z + (x, y, z))τn .11 Writing this
out, we see that these three statements just claim that 0 and 1 belong to Dn and that Dn is

10This is just the introduction of Skolem functions.
11We need to check this because PrAn proves the functionality of 0, 1 and +. Of course, we also need

uniqueness of 0, 1 and x+ y, but this follows because they were already unique in PrA−.
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closed under addition. The first two claims are rather obvious in PrA−, so let us check that
Dn is provably closed under addition. Work in a model M of PrA− and consider x0, x1, z ∈M
such that M |= Dn(x0), M |= Dn(x1) and M |= z ≤ x0 +x1. We have to prove that there are
a y ∈M and an r ∈ N such that M |= z = ny + r and r < n.
If M |= z ≤ x0, then this is immediately clear. Therefore, we can suppose M |= x0 + u = z
for some u ∈M . We have M |= x0 + u = z ≤ x0 + x1, whence M |= u ≤ x1. Now there exist
y0, y1 ∈ M and r0, r1 ∈ N such that M |= x0 = ny0 + r0, M |= u = ny1 + r1 and r0, r1 < n.
We get:

M |= z = x0 + u = (ny0 + r0) + (ny1 + r1) = n(y0 + y1) + r0 + r1.

If 0 ≤ r0 + r1 < n, then we can take y = y0 + y1 and r = r0 + r1. Otherwise, we have
n ≤ r0 + r1 < 2n and we can take y = y0 + y1 + 1 and r = r0 + r1 − n.
It remains to check that the axioms of PrAn hold inside Dn. But this is easy; we can bound
every existential quantifier among the axioms of PrA− from above by some open L−-term,
and the the validity of PrA− then follows because Dn is downwards closed under ≤.12 For
PrAx8n: by the definition of Dn there are for every x ∈ Dn some y ∈M and r ∈ N such that
M |= x = ny + r and r < n. It is easy to see that M |= y ≤ x, so we also have M |= Dn(y),
again because Dn is downwards closed, and we are done.

In particular, every finitely axiomatizable subtheory of PrA can be interpreted in PrA−. We
also say that PrA is locally interpretable in PrA−. Since interpretability is not a compact
concept and PrA is not finitely axiomatizable, it remains open whether the whole of PrA can
be interpreted in PrA−. We will take up this question in the next section.

2.3 Interpreting PrA in PrA−

In this section we consider the question whether PrA is interpretable in PrA−. As we noted at
the end of the previous sections, the fact that PrA is not finitely axiomatizable has something
to do with this. Indeed, were PrA finitely axiomatizable, then we would have PrA = PrAN for
some integer N ≥ 1, and the affirmative answer to our question is given by theorem 2.2.1.
But since this is not the case, we conjecture the answer to be no.

Conjecture 2.3.1. The theory PrA is not interpretable in PrA−.

Note that this conjecture expresses a strengthening of theorem 1.2.4.

We will attack our conjecture by considering interpretations of PrA in PrA itself, i.e. self-
interpretations of PrA. The reason for doing so is that, unlike interpretations of PrA in PrA−,
we actually expect self-interpretations of PrA to exist, which is convenient when we wish
to consider examples. In fact, we know of a self-interpretation of PrA, namely the identity
interpretation. Are there others? Consider the following example.

Example 2.3.1. Let τ be the translation from the function-free variant of L− to itself given
by:

• The domain formula D is x ≡2 0, which is of course an abbreviation of ∃y + (y, y, x);

• We translate 0, + and = in the trivial manner, i.e. 0(x) is translated as D(x) ∧ 0(x),
+(x, y, z) as D(x) ∧ D(y) ∧ D(z) ∧+(x, y, z) and x = y as D(x) ∧ D(y) ∧ x = y.

12Note that this is not just in PrAx5; there is also a ‘hidden’ existential quantifier in PrAx7. When dealing
with PrAx8n, we shall also have to consider the fact that such a hidden quantifier is present.
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• We translate 1(x) as D(x) ∧ x = 2, where x = 2 of course abbreviates the formula
∃y (1(y) ∧+(y, y, x)).

Now ι := 〈PrA, τ, PrA〉 is an interpretation.

When we consider inner models of this interpretation, it becomes clear what ι does. Given a
model M of PrA, our ι picks out the even elements and preserves addition. As a result, order
is preserved, as we can easily check. The first element, i.e. 0, is the interpretation of 0, while
the second element, i.e. 2, is the interpretation of 1.

This inner model certainly looks a lot like the original M , and we can indeed give a provable
isomorphism ι → idPrA: take F (x, y) to be x = 2y. Checking that PrA ` F : ι ∼= id isn’t
too difficult. We thus see that ι is provably isomorphic to the identity interpretation; we
also say that ι is provably trivial. When dealing with a certain model, we can say that ι is
representably trivial if in M , it is representably isomorphic to the identity interpretation. ♦

The above example is a bit simple, but we can give more complicated ones.

Example 2.3.2. Take as domain all numbers congruent to 0 or 1 modulo 3, send 0, 1 and

= just to 0, 1 and =, and translate x+ y as

{
x+ y if x ≡3 0 or y ≡3 0;

x+ y + 1 if x ≡3 1 and y ≡3 1.

Something like this can clearly be made into a translation, and one may prove that it yields
an interpretation. What happens here is that we delete all elements congruent to 2 modulo
3, then jam the remaining elements together, and finally define 0, 1 and + as if nothing had
happened. In other words, the elements congruent to 0 modulo 3 play the role of the even
numbers, while the elements congruent to 1 modulo 3 play that of the odd numbers. In the
standard model we may picture this by the following array, with on the first line the standard
model, and with on the second line the standard model with elements congruent to 2 modulo
3 removed.

0 1 2 3 4 5 6 7 8 9 10 11 . . .
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 . . .

Our translations of 0, 1, = and + are now the ones induced on the second line by the first
line.

So is this interpretation provably trivial? Well, if we view the first line as representing the
trivial translation, then we can the above array tells us immediately what the isomorphism
from our interpretation to the identity should be. We should send elements of the form 3a to
2a and elements of the forms 3a+ 1 to 2a+ 1. But such a function is expressible in L as

(x ≡3 0 ∧ 2x = 3y) ∨ (x ≡3 1 ∧ 2x+ 1 = 3y).

It isn’t hard to show that this is a provable isomorphism, so this interpretation is provably
trivial as well. ♦

We will give one more example, which shows, unlike the previous two examples, that we can
distort the ordering in interesting ways.
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Example 2.3.3. As domain, we take some tautology and we send identity to identity. We
again picture our interpretation by an array.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 . . .
0 2 1 4 6 3 8 10 5 12 14 7 16 18 9 20 22 11 . . .

Again 0, 1 and + are induced from the first line. It takes some effort to see that addition is
actually definable in L−. We will not give the definition here, because it is a bit of a mess, but
it is a useful exercise.13 Under this translation, all axioms of PrA hold in N, and this means
that we indeed have an interpretation, since PrA is the theory of the standard model. This
interpretation is interesting because of the peculiar ordering; the odd numbers are running
away twice as fast as the even numbers.

Again, the array suggests that this interpretation is trivial. One may check that in N, an
isomorphism from our interpretation to the identity is given by

(x ≡4 0 ∧ 3x = 4y) ∨ (x ≡4 2 ∧ 3x = 4y + 2) ∨ (x ≡2 1 ∧ 3x+ 1 = 2y),

so this interpretation is provably trivial, again because PrA is the theory of N. ♦

One may search for further examples, but all of these will prove to be provably trivial. We
thus make another conjecture:

Conjecture 2.3.2. Every self-interpretation of PrA is provably trivial.

Our conjecture 2.3.1 turns out to follow from this one, as the following general result shows.

Theorem 2.3.3. Let U be some theory such that all its self-interpretations are provably
trivial. If U is interpretable in one of its finitely axiomatizable subtheories, then U itself is
finitely axiomatizable as well.

Proof. Let ι : U → U0 be an interpretation based on the translation τ : K → K, where
U0 ⊂ U is finitely axiomatizable and K is the language of U . For all K-sentences A, we have

U ` A⇒ U0 ` Aτ ⇒ U ` Aτ ,

so κ := 〈U, τ, U〉 is a self interpretation of U . By our assumption, κ is provably trivial, i.e.
there is some K-formula F (x, y) such that U ` F : κ ∼= id. Since F : κ ∼= id can be expressed
as a finite K-statement, it must have a finite proof in U , and therefore it must be provable in
some finitely axiomatizable U1 ⊂ U . By lemma 2.1.1, we have ` (F : κ ∼= id)→

(
Aτ ↔ Aid

)
for all K-sentences A. Because Aid is obviously equivalent (in predicate logic) to A itself, we
have U1 ` Aτ ↔ A for all K-sentences A.
Now let U2 = U0 + U1; then U2 is a finitely axiomatizable subtheory of U as well. Since
U1 ⊂ U2, we have U2 ` Aτ ↔ A for all K-sentences A. We use this to get

U ` A⇒ U0 ` Aτ ⇒ U2 ` Aτ ⇒ U2 ` A,

for all K-sentences A. But this is to say that U2 ` U , so U must be finitely axiomatizable.

Corollary 2.3.4. Suppose that every self-interpretation of PrA is provably trivial. Then for
all integers n ≥ 1, PrA is not interpretable in PrAn.

13For the reader who wishes to attempt it: when defining x+ y, distinguish cases modulo 4.
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Proof. Suppose the contrary. Applying theorem 2.3.3 to PrA and its finitely axiomatized
subtheory PrAn gives that PrA itself is finitely axiomatizable, which contradicts theorem
1.2.4.

This result provides the motivation for an investigation into self-interpretations of PrA, which
we will conduct in chapter 3.

2.4 Approximating PrA in PrA−

Before we set out to attack conjecture 2.3.2, we will investigate what we can do, should it
turn out that PrA isn’t interpretable in PrA−. Let us consider the interpretations given in
the proof of theorem 2.2.1; we will use the notation introduced there. These interpretations
turn out to have some nice properties. We can prove that, for integers m,n ≥ 1, the domain
formula of ιn ◦ ιm, i.e. Dn ∧ Dm, is equivalent in PrA− to Dmn.14 The proof is quite similar
to the proof of proposition 1.1.5, so we omit it.

What does this mean? Suppose we have some model M of PrA−. If we take the inner model
given by ιn, and take in this model the inner model given by ιm, we end up with the same
structure we would have ended up with if we had just taken the inner model in M given by
ιmn. So in particular, this inner inner model still satisfies PrAn, and not just PrAm. This
means we can interpret the division axioms one by one, and obtain a sequence of models with
decreasing domains, which approximate the whole of PrA better as we get up the sequence.15

Let us make this precise by the following definition.

Definition 2.4.1. Let M be a model of PrA−. We define the sequence (Jn(M))n∈N of L−-
substructures of M by

• J0(M) = M ;

• Jn+1(M) is the inner model in Jn(M) given by ιpn , where pn is the nth prime number.
Here p0 = 2.

We set J (M) =
⋂
n∈N Jn(M).

All the Jn(M) are L−-substructures of M because all predicates are translated in the trivial
manner by the ι’s. They are even substructures with respect to < as well, because their
domains are downwards closed under ≤. Consequently, J (M) is a (L− + {<})-substructure
of M as well. We only interpret for the division axioms for the prime numbers because
corollary 1.2.3 tells us that this suffices. By the above remarks, we have J (M) |= PrAPn ,
where Pn =

∏n−1
i=0 pn. One can now quite easily prove that J (M) is a model of the whole of

PrA. However, and fortunately for our conjectures, this procedure does not necessarily yield
an interpretation of PrA in PrA−. Indeed, taking an infinite intersection prevents the domain
of J (M) from being definable by a first order sentence.

14The notation ιn ◦ ιm may seem a bit odd, because the interpreting theory of ιm, i.e. PrA−, is not equal
to the interpreted theory of ιn, i.e. PrAn. But can naturally view ιm as an interpretation of PrAm in PrAn as
well, and when we write ιn ◦ ιm, it is understood that we do so.

15The equivalence of domains we described above also has a consequence for the category of interpretations
from footnote 8, namely that ιn ◦ ιm = ιmn = ιm ◦ ιn. We can express this as a commutative diagram. As a
result, the ‘route’ we choose to approximate PrA doesn’t really matter.

22



We may wonder whether this approximating procedure always gives us PrA after a finite
number of steps, no matter what M we start with. In other words, does there always exist
an n ∈ N such that Jn(M) |= PrA (and consequently Jk(M) = J (M) for every k ≥ n)? It is
obvious that for a lot of models, this is the case. Indeed, let M be any model of PrA, then
we have Jn(M) = M for all n ∈ N and in particular J (M) = M = J0(M). Also note that
an affirmative answer to our question would again follow if PrA were finitely axiomatizable,
because in that case we would have PrA = PrAN for some integer N ≥ 1. However, since
PrA cannot be finitely axiomatized, we conjecture the answer to be no. That is, we do not
expect that our procedure in general only takes a finite number of steps. This will be another
strengthening of theorem 1.2.4.

We will now have to look for a countermodel that shows the answer to our question to indeed
be no. It seems plausible that the models Sn from definition 1.2.2, which are specifically
constructed for some principles PrAm to hold and some others not, are candidates. However,
the fact that the domain in our interpretations ιn are downwards closed under ≤ makes
matters more complicated. Consider, for example, the model S1 and suppose we wish to
execute ι2. In S1, there is a smallest nonstandard element, namely X. It is not hard to
see that X is neither even nor odd. But now the domain of J1(M1) cannot contain any
nonstandard element, since such an element must at least be X, for which PrAx82 doesn’t
hold. So J1(S1) contains only standard elements of S1 and, being a model of PrA−, it should
contain all of them. That is, J1(S1) ∼= N, so our sequence immediately collapses.

In S2, matters aren’t any better. When we execute ι2 our sequence does not collapse, but this
is for the rather trivial reason that PrAx82 already held in S2. When we go to the next step,
our sequence does collapse, again onto N. Although S2 does not have a smallest nonstandard
element, there are arbitrarily small nonstandard elements for which we can guarantee that
they are not divisible by 3 with remainder. Indeed, consider elements of the form 1

2k
X with

k ∈ N. So J0(S2) = J1(S2) = S2, whereas Jn(S2) ∼= N for n ≥ 2. In general, we can show: as
soon as we try to carry out ιp in Sn for some prime p not dividing n, our sequence collapses
onto N.

These considerations show that we have to be more clever to find a countermodel. Thus far,
we haven’t even found a model of PrA− in which PrAx82 doesn’t already hold and in which
our sequence doesn’t immediately collapse when we execute ι2. So let us first try to find
such a model. When carrying out ι2, we want to end up with more than just N. That is, we
want to end up with some nonstandard model of PrA2. However, we cannot start with such
a model. These observations lead to the following idea: let us take some nonstandard model
of PrA2 and paste another piece at the end of it (more precisely, construct an end-extension)
in which division by 2 with remainder is not always possible.

Let R1 denote the set of all a+bX+cX2 ∈ Q[X] such that a and c are in Z, the denominator
of b is a power of 2, and the leading coefficient is nonexistent or positive. Note that the
last constraint just means that we consider X to be infinitely large. One easily checks that
this is a model of PrA−, with 0, 1 and + induced by Q[X]. What happens if we carry out
ι2 in this R1? First of all, consider an element a + bX without quadratic coefficient. We
can divide this element by 2. Indeed, a + bX = 2

(
q + b

2X
)

+ r for some standard q and
r, namely the quotient resp. remainder of a upon division by 2. We conclude that J1(R1)
contains all elements without quadratic coefficient. To see which elements cannot be divided
by two, we use an argument similar to the one we used for S1: there is a smallest element
with nonzero quadratic coefficient, namely X2, and one easily checks that division by 2 is

23



impossible. Summarizing, J1(R1) contains exactly the elements with c = 0.

We take matters a step further. We now want a model in which the executions of both ι2
and ι3 are nontrivial and do not cause our sequence to collapse. But it is quite obvious how
to accomplish this. Let R2 be the set of all a+ bX + cX2 + dX3 such that a and d are in Z,
the denominator of c is a power of 2, the denominator of b contains only prime factors 2 and
3,16 and it is nonnegative when we consider X to be infinitely large. We can prove: J1(R2)
contains exactly the elements without cubic coefficient, and J2(R2) loses the elements with
nonzero quadratic coefficient as well. The ideas for the proof have been encountered before,
so we will not give it here.

It is possible generalize these examples in an infinitary way and obtain the desired counter-
model.17 We now have to leave the world of polynomials, since they would become infinitely
large. It is, however, instructive to see what this our model amounts to in terms of infinite
“polynomials”. What we want to construct is N, followed by segments in which we can divide
by pi, but not by pi+1, but in reverse order. That is, i runs . . . , 2, 1, 0. This gives a cer-
tain ungroundedness that makes it impossible to work with a single variable any longer. We
therefore introduce a countable set of variables X0, X1, . . . and we consider linear, possibly
infinite, “polynomials” P in these variables, that satisfy the following constraints:

• For all i ≥ 0, Xi in infinitely large and Xi+1 is infinitely larger than Xi;

• P is nonnegative in the above sense;

• The prime divisors of the denominator of the coefficient of Xi are among p0, . . . , pi−1;

• The constant coefficient is an integer.

We now introduce the model in terms that do not use infinite polynomials, but rather functions
from a certain ordinal to the set of rational numbers.

Definition 2.4.2. Let R∞ be the set of functions f : ω + 1→ Q such that

• If f is not the zero function and α is the smallest element of ω + 1 such that f(α) is
nonzero, then f(α) > 0;

• For i ∈ ω, the denominator of f(i) is not divisible by pj for all j ≥ i;

• f(ω) ∈ Z.

We make this set into a L−-structure by interpreting 0 as the zero function, 1 as the function
given by f(i) = 0 for all i ∈ ω and f(ω) = 1, and + as addition of functions.

One now has to do a lot of checking: that this is indeed a L−-structure; that it is a model
of PrA; and what happens when we start interpreting the division axioms. There are no new
ideas involved, and we give the answer to the last question at once. For n ∈ N, we have
Jn(R∞) = {f ∈ R∞ | f(0) = . . . = f(n − 1) = 0}. Letting n tend to infinity, we see that
J (R∞) = {f ∈ R∞ | ∀i ∈ ω f(i) = 0} ∼= N. We have our desired model.

16An equivalent formulation is: some denominator of b is a power of 6, a constraint we have encountered
before. Since we are primarily working with prime numbers now, the now chosen formulation is more conve-
nient.

17We can also generalize the above examples in a finite manner, and use a compactness argument to prove
the existence of a desired counterexample. However, our procedure gives such a counterexample explicitly,
which is more informational.
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This model does not only show that the conjecture we made at the beginning of this section
is indeed true, it also provides an insight into the nature of the division axioms PrAx8p, for p
prime. We already expressed a feeling that these are rather independent, and R∞ confirms
this. For every prime p, there is a region in R∞ where we can divide by p but by no means
by everything.
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3 Self-interpretations of PrA

Motivated by conjecture 2.3.2, we dedicate this chapter to studying self-interpretations of
PrA. The first sections present results about L-definability, inner models in N, definable order
types and definable functions respectively. In the final section, we use these ideas to give two
possible proof strategies for conjecture 2.3.2.

3.1 Definable predicates in N

In this section, we will discuss a rather important preliminary result about unary predicates
that are L-definable in the standard model, and several of its implications. This result will
provide us with a fundamental insight in the nature of definability in the standard model.

Theorem 3.1.1. Let φ(x) be some L-formula in one free variable. Then the set A that φ
defines in the standard model is eventually periodic. That is, there exist M,N ∈ N such
that for all x ≥ N , we have x ∈ A iff x + M ∈ A. Furthermore, if φ is quantifier free, we
can choose M = lcm(m1, · · · ,mr), where the mi are the moduli of all congruence symbols
occurring in φ.

Proof. We first consider the quantifier free case and proceed by induction on the L-complexity
of φ.
Every closed term must denote some standard number, so if φ is atomic, proposition 1.3.2
tells us we may assume φ to be of one of the following forms:

ax+ b = c; (4)

ax+ b < c; (5)

ax+ b > c; (6)

ax+ b ≡n c for some n ≥ 1, (7)

where a, b, c ∈ N. If a = 0, then the above formulas define either ∅ or N, and both are purely
periodic with period 1. So suppose that a > 0. If φ is of form (4), then A has at most one
element; if φ is of the form (5), then it defines a finite set; and if φ is of the form (6), then it
defines a cofinite set. In all cases, A is eventually periodic with period 1. Finally, if φ is of
the form (7), then A is purely periodic with period n.
Suppose φ is ¬ψ for some ψ with corresponding set B that is eventually periodic with period
M . Now for some N ∈ N, we have: if x ≥ N , then

x ∈ A⇔ x 6∈ B ⇔ x+M 6∈ B ⇔ x+M ∈ A.

So A is also eventually periodic with period M . We can pick M to be the least common
multiple of all moduli occurring in ψ; exactly the same moduli occur in φ.
Finally, suppose φ is ψ0 ∧ ψ1 for some ψ0 and ψ1 with corresponding sets B0 and B1 that
are eventually periodic with periods M0 and M1 respectively. Furthermore, suppose the
periodicity holds for x ≥ N0 and x ≥ N1 respectively. Now define N = max(N0, N1) and
M = lcm(M0,M1). Since M is a multiple of both M0 and M1, we have for x ≥ N :

x ∈ A⇔ x ∈ B0 and x ∈ B1 ⇔ x+M ∈ B0 and x+M ∈ B1 ⇔ x+M ∈ A.

So A is eventually periodic with period M . We can pick M0 and M1 to be the least common
multiple of all moduli occurring in ψ0 resp. ψ1, so that M is the least common mulitple of
all moduli occurring in both ψ0 and ψ1, that is, in φ.
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For the general case: the theory of the standard model in the language L admits quantifier
elimination, so this reduces to the quantifier free case.

Conversely, every eventually periodic subset of N is definable in the standard model, as one
can easily show. Although L-definable unary predicates behave rather well in the standard
model, things are not so tidy for more-place predicates. A general result can be found in
[3], but we will not be able to use those results here. We will give some corollaries of
the preceding theorem concerning L-definable binary predicates, one of which concerns L-
definable functions. A full attack on definable functions will be placed in section 3.4, where
we show that they have a decent normal form.

Corollary 3.1.2. Let φ(x, y) be a L-formula in two free variables. For n ∈ N, let An be the
set {y ∈ N | N |= φ(n, y)}. Then there is an M ∈ N such that: there are no n0, . . . , nM ∈ N
such that all Ani are infinite and pairwise disjoint.

Proof. Let M be the least common multiple of all moduli occurring in a quantifier free version
of φ and consider n0, . . . , nM ∈ N. Now for 0 ≤ i ≤ M , we can define Ani by φ

(
ni, y

)
, so

by theorem 3.1.1, the Ani are eventually periodic with period M . Let N ∈ N be sufficiently
large such that all Ani are periodic for x ≥ N .
Consider the set V = {N,N + 1, . . . , N + M − 1}. If all Ani are infinite, then they must all
contain at least one element from V . Indeed, if some Ani does not contain an element of V ,
then by the periodicity of Ani , it can contain only elements smaller than N , and therefore it
is finite. But now by the pigeon hole principle, the Ani cannot be disjoint.

Corollary 3.1.3. With the notation as in corollary 3.1.2: if all An are pairwise disjoint,
then there are only finitely many n such that An is infinite.

Proof. Immediate.

Corollary 3.1.4. Let F (x, y) be an L-formula defining a function f in the standard model.
That is, we have N |= ∀x∃!y F (x, y) and we denote this unique y by f(x). If f has finite range,
then it must be eventually periodic, i.e. there exist M,N ∈ N such that f(x) = f(x+M) for
all x ≥ N .

Proof. All values of f must lie in the set {0, 1, . . . , S} for some S ∈ N. For 0 ≤ i ≤ S, we can
define the pre-image f−1(i) in L as F (x, i). So by theorem 3.1.1, all these pre-images must
be eventually periodic; let us say that f−1(i) has period Mi beyond a certain Ni. Now we
can take M = lcm{Mi | 0 ≤ i ≤ S} and N = max{Ni | 0 ≤ i ≤ S}.

3.2 Interpretations in N

When considering interpretation from some theory to PrA, it is quite interesting to study the
behaviour of such an interpretations in N. First of all, N is an object we already know a lot
about, and which we can embed in larger number systems, such as Z and Q. Secondly, it
isn’t really a restriction.

Lemma 3.2.1. Suppose U is some theory and ι, κ : U → PrA are interpretations. Then ι
and κ are provably isomorphic if and only if they are representably isomorphic in N.

Proof. The lemma claims that there is an L−-formula F (x, y) such that PrA ` F : ι ∼= κ if
and only if there is an L−-formula F (x, y) such that N |= F : ι ∼= κ. But this is obvious, since
PrA is the true theory of N.
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So if we want to prove our conjecture that every self-interpretation of PrA is provably trivial,
then it suffices to prove that every such interpretation is representably trivial in the standard
model. It is for this reason that we now dedicate a section to investigating the general
behaviour of interpretations from some theory to PrA in the standard model. In particular,
we will show that we can get rid of the subtleties concerning identity and the domain formula.

As a first step, we use the least number principle in N to show that identity may always be
translated to identity on the appropriate domain.

Lemma 3.2.2. Suppose U is some theory in the language K and ι : U → PrA is some
interpretation based on τ : K → L−. Then there is an interpretation κ : U → PrA based on a
σ : K → L− such that

• Fσ (=U ) (x, y) is equivalent in N to Dσ(x) ∧ Dσ(y) ∧ x = y;

• ι and κ are representably isomorphic in N.

Proof. For Dσ(x), we take

Dτ (x) ∧
[
∀y ((Dτ (y) ∧ Fτ (=U ) (x, y))→ x ≤ y)

]
.

For a predicate symbol P in U , we take Fσ(P ) to be

n−1∧
i=0

Dσ(xi) ∧ Fτ (P )(x0, . . . , xn−1).

In other words, we take as domain the smallest representatives from the F (=U )-equivalence
classes, and let the predicates be induced from τ . Note that such a smallest representative
always exists in N. Since each Fτ (=U )-equivalence class has at most one representative in Dσ,
we have (Dσ(x)∧Dσ(x))→ (Fτ (=U ) (x, y)↔ x = y) in N, so the first constraint is satisfied.
It is very easy to see that κ is an interpretation: because Fτ (=U ) respects all the Fτ (P ), really
nothing has changed about the inner model apart from the fact that the Fσ (=U )-equivalence
classes are all singletons now. This insight also shows us that the isomorphism F (x, y) from
ι to κ should be

Dτ (x) ∧ Dσ(y) ∧ Fτ (=U ) (x, y),

which sends every element of Dτ to the unique representative of its Fτ (=U )-equivalence class
in Dσ.

The advantage of having the above κ is that, when one considers some K-definable function
f , the translation of f behaves well. More precisely, we do not only have functionality in the
Fσ (=U )-sense, but even in the =-sense. That is, for every x there is a (really) unique y such
that y is the f of x, and not only a Fσ (=U )-unique y. Next, we eliminate concerns about the
domain formula.

Lemma 3.2.3. Suppose U is some theory in the language K and ι : U → PrA is some
interpretation based on τ : K → L−. Then there is an interpretation κ : U → PrA based on a
σ : K → L− such that

• Dσ is some tautology.

• Fσ (=U ) (x, y) is equivalent in N to x = y;

• ι and κ are representably isomorphic in N.
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Proof. By lemma 3.2.2, we may assume without loss of generality that Fτ (=U ) (x, y) is equiv-
alent in N to Dτ (x) ∧ Dτ (y) ∧ x = y.
We work in N. Our goal is to define a bijection between the domain Dτ and N. By theorem
3.1.1, the domain Dτ is eventually periodic, so there exist M,N ∈ N such that for x ≥ N , we
have x ∈ Dτ if and only if x+M ∈ Dτ . Suppose that

Dτ ∩ {0, 1, . . . , N − 1} = {b0, b1, . . . , br−1},

where b0 < b1 < · · · < br−1, and that

Dτ ∩ {N,N + 1, . . . , N +M − 1} = {N + k0, N + k1, . . . , N + ks−1},

where k0 < k1 < · · · < ks−1. Possibly, some of r and s are zero. Note that beyond N ,
precisely the elements from some equivalence class N + kj modulo M belong to Dτ . Now we
can build our bijection by sending bi to i and beyond N , by sending the equivalence class
N + kj modulo M to the equivalence class r + j modulo s. It is not hard to check that this
indeed gives a bijection, and that it is L−-definable as

r−1∨
i=0

(
x = bi ∧ y = i

)
∨
s−1∨
j=0

∃u
(
x = N +Mu+ kj ∧ y = r + su+ j

)
.

Call this formula F (x, y) and take Dσ to be some tautology. Now we let the translations of
the predicate symbols P in U be induced by τ and this bijection, i.e. Fσ(P ) is

∃y0∃y1 · · · ∃yn−1

[
n−1∧
i=0

F (yi, xi) ∧ Fτ (y0, . . . , yn−1)

]
.

Because of the way we constructed σ, it is immediately clear that κ is an interpretation as
well, and that ι are κ are representably isomorphic in N. Indeed, the isomorphism is F itself.
To finish the proof, we show that the second constraint is satisfied. By definition, we have
Fσ (=U ) (x, y) if and only if there are u, v ∈ Dτ such that F (u, x), F (v, y) and u = v. But
since F represents a bijection from Dτ to N, such u and v exist if and only if x = y.

The above lemma shows that, when we are concerned with the behaviour in N of interpreta-
tions from some theory U to PrA, we may assume without loss of generality that the domain
is trivial and that U -identity is translated to identity in N.

3.3 Definable order types in N

Although addition possesses a much simpler structure than multiplication, its simplicity does
not stretch far enough. Indeed, we can view addition as a ternary predicate, and we haven’t
gathered results about such predicates yet. This is why we focus on the ordering in this
section. The ordering still gives an interesting structure, but is easier to handle because it is
a binary predicate.

What can we say about the ordering, when we consider self-interpretations of PrA carried out
in the standard model? The inner models we get are countable, so theorem 1.2.1 tells us the
ordering must be the standard one, or isomorphic to N + Z ·Q. The goal of this section is to
show that the expressive power of L isn’t enough to define the latter in N.
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Theorem 3.3.1. Let LO be the theory of linear orders written in the language 〈<〉 and suppose
we have an interpretation ι : LO→ PrA. Then the ordering in the inner model in N given by
ι cannot be isomorphic to N + Z ·Q.

Proof. Let τ be the translation that ι is based on. By theorem 3.2.3, we may assume without
loss of generality that the Dτ is trivial and that Fτ (=)(x, y) is equivalent in N to x = y. For
the sake of readability, we write x <∗ y for Fτ (<)(x, y).
We suppose the contrary of the theorem. Let X ⊂ N be the set defined by the L-formula

∀y (y < x→ y <∗ x). (8)

Informally, an x ∈ N is in X precisely if it is <∗-larger than all the natural numbers smaller
than x in the usual ordering. We now make the following crucial observation.

Lemma 3.3.2. The set X is <∗-cofinal. That is, there is no b ∈ N such that x <∗ b for all
x ∈ X. In particular, X is infinite.

Proof. Suppose there is such a b. There exist n ∈ N such that n ≥∗ b.18 Indeed, b is such
an n. Now let x the <-smallest such n. Note that this x must exist, since < is a well-order.
Now, by the minimality of x, for every y < x, we have y <∗ b. We also had b ≤∗ x, so by
transitivity, y <∗ x. But this means that x is in X, contradiction with our assumption.
Now if X were finite, then we could pick some b ∈ N that is <∗-larger than all x ∈ X. Such
a b must exist, because N + Z ·Q does not allow a largest element.

Let φ(x, y) be the formula

x ∈ X ∧ ∃z [z ∈ X ∧ z > x ∧ ∀w ((w ∈ X ∧ w > x)→ w ≥ z) ∧ (x <∗ y <∗ z)]. (9)

Here x ∈ X is of course shorthand for the formula (8), with a suitable different choice for the
bound variable y. Furthermore, x <∗ y <∗ z is shorthand for x <∗ y ∧ y <∗ z. So (9) is an
L-formula. Informally, (9) says that y is <∗-between x and the <-successor of x in the set X.
We can speak of the <-successor of x in X because the set X with the induced order from N
is isomorphic to 〈N, <〉, in which successors always uniquely exist.
We now use the notations from corollary 3.1.2 for φ given as in (9), and for x ∈ X, we denote
the <-successor of x in the set X by sX(x). We first claim that all An are pairwise disjoint. So
consider different m,n ∈ N. If m 6∈ X, then Am is empty, so Am and An are certainly disjoint.
We handle the case n 6∈ X similarly. So we can assume m,n ∈ X; w.l.o.g. m < n. Suppose
there is a y ∈ (Am ∩An). That is, m <∗ y <∗ s

X(m) and n <∗ y <∗ s
X(n). Since m < n, we

can quite easily see that sX(m) ≤ n. Now, because n ∈ X, we also have sX(m) ≤∗ n. But
now we get y <∗ s

X(m) ≤∗ n <∗ y, contradiction. So Am ∩An = ∅.
We can now apply corollary 3.1.3: only a finite number of An is infinite. So there is an N ∈ N
such that for all n ≥ N , we have |An| <∞. We call a, b ∈ N segment-equivalent if we can get
from a to b or from b to a by applying the <∗-successor function a finite number (possibly
zero) of times. It is rather well-known that this is an equivalence relation. Informally, a and
b are segment-equivalent iff they are both in the standard part N, or in the same copy of
Z. Note that, if a and b are not segment-equivalent, then there are infinitely many elements
<∗-between them.
Since X is infinite, there is some x ∈ X such that x ≥ N . Let v the <-smallest such x. We now
prove by induction on the order in X that every x ∈ X such that x ≥ N is segment-equivalent
to v.

18Of course, this notation means b <∗ n∨b = n, or equivalently, ¬(n <∗ b). We will use similar abbreviations
as well.
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Basis. The smallest x ∈ X such that x ≥ N is v itself, so this is obvious.
Step. Consider an x ∈ X such that x ≥ N and x is segment-equivalent to v. Now if sX(x)
were not segment-equivalent to x, then there would be an infinite number of elements <∗-
between x and sX(x). This means exactly that Ax is infinite. But x ≥ N , so this cannot
be the case. We conclude that sX(x) is segment-equivalent to x, and therefore to v. This
completes the induction.
Now for any x ∈ X such that x < N , we have x < v, and therefore also x <∗ v, because
v ∈ X. So every x ∈ X that is <∗-larger than v is still segment-equivalent to v. But now X
can be <∗-bounded from above by some b ∈ N that is larger than, but not segment-equivalent
to, v. Such a b must exist, since the ordering of the segments in N + Z · Q has order type
1 + Q, which does now allow a largest element. We have arrived at a contradiction with
lemma 3.3.2.

The above proof works so well because the set X allows us to create an interplay between the
two orderings < and <∗. To end this section, let us indicate the relevance of the above result
for our project and in a more general setting. Theorem 3.3.1 provides us with an important
insight. Of course, since PrA ` LO, a self-interpretation of PrA also yields an interpretation
LO → PrA. So the inner model in N given by a self-interpretation of PrA cannot have order-
type N + Z · Q and therefore it must be isomorphic to the standard model. So not only
are we working in a familiar object, namely N, but the inner model is also isomorphic to
this familiar object. This also means that this inner model is completely determined by its
successor function, so it might be feasible to attack conjecture 2.3.2 by studying this function.

In a more general setting, we can use a similar proof to show that order types like Q and ω2

are not definable in N. Let us consider the last result a bit more closely. We say that two
theories U and V are bi-interpretable if there are interpretations ι : U → V and κ : V → U
such that κ ◦ ι and ι ◦ κ are provably isomorphic to idU and idV respectively. Define T as the
true theory of the structure 〈ω2; 0, 1,+, f〉, where f is a function such that f(ω · a + b) = a.
Now we can give an interpretation ι of PrA in T by taking as domain all x such that f(x) = 0
and by translating 0, 1 and + trivially. There is, however, no interpretation the other way
around, since that would cause the order type ω2 to be definable N, which is not the case. It
turns out that we can give a two-dimensional interpretation κ of T in PrA such that the two
compositions of ι and κ are provably isomorphic. So PrA and T are bi-interpretable if we may
use more-dimensional interpretations, but not if we are restricted to one-dimensional ones.

3.4 A normal form for definable functions

As indicated near the end of the previous section, we may approach conjecture 2.3.2 by
considering a certain definable function. In order to do this, we first need to know something
about L-definable functions. Let us consider some intuitions concerning definability in PrA

we have developed so far. First of all, the examples in section 2.3 we can distinguish cases
modulo a certain fixed number. Secondly, as theorem 3.1.1 shows, PrA may make a mess
for small numbers, but if we make our numbers sufficiently large, things behave nicely. And
finally, the predicate symbol in L we typically expect to behave functionally, is identity. All
these intuitions are expressed in the following result. Basically, it says that for x sufficiently
large, we can express F (x, y) as a normal form involving a case-distinction according to x’s
value modulo a certain number and in each separate case, an equality.
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Theorem 3.4.1. Let F (x, y) be an L-formula defining a function f in the standard model.
Then there exist M,N ∈ N and for 0 ≤ i < M , coefficients ai, bi, ci, di ∈ N such that

x ≥ N →

[
F (x, y)↔

M−1∨
i=0

(
x ≡M i ∧ aiy + bi = cix+ di

)]

holds in N, and ai > 0 for 0 ≤ i < M .

Proof. Since the proof is somewhat involved, we will show how to find the appropriate M ,
N , ai, bi, ci and di by transforming the formula F in a number of stages.
Stage 1. Apply quantifier elimination to obtain a quantifier free equivalent F0(x, y) of F (x, y).
Since F0 is nothing but a truth-functional combination of atomic L-formulas, we may write
it in disjunctive normal form. Next, we eliminate negation the same way as in the quantifier
elimination from section 1.4, using the equivalences

t 6= s↔ t < s ∨ s < t;

¬(t < s)↔ t = s ∨ s < t;

¬(t ≡n s)↔ (t ≡n s+ 1) ∨ . . . ∨ (t ≡n s+ n− 1).

and distributing the ∧’s over the ∨′s. We obtain a new disjunctive normal form.

Stage 2. This is the most involved part of the proof. At all points where we say that we
can pick x sufficiently large for a certain purpose, we assume x to be at least this large for
the rest of this stage. To ensure that the procedure is easy to follow, we have indicated these
points by boldfaced text.
The previous step showed F to be equivalent to a formula F1 that is a disjunction of con-
junctions of atomic L-formulas. We claim that, for x sufficiently large, F is equivalent to
such a form where each conjunction contains a nontrivial equality. By the nontriviality we
mean that the equality doesn’t hold for all (x, y) ∈ N2, or for no (x, y) ∈ N2. So consider
one of the conjunctions of F1, say α0 ∧ · · · ∧ αk−1, where k ∈ N and the αj are atomic L-
formulas. Furthermore, we suppose that there are infinitely many pairs (x, y) ∈ N2 satisfying
the conjunction. We assume w.l.o.g. that one of the αj is y + 1 > 0.
If one of the αj already is a nontrivial equality, we can leave the conjunction unchanged. We
can forget about the trivial qualities: an always true equality can simply be omitted, and an
always false equality causes the whole conjunction to be always false, which cannot be the
case. So suppose all the αj are inequalities or congruences. By lemma 1.3.1, we can write
every inequality in the form r0x+ s0y+ t0 < r1x+ s1y+ t1, where the coefficients are natural
numbers. So this inequality holds for exactly those pairs of natural numbers (x, y) satisfying
r0x + s0y + t0 < r1x + s1y + t1. Bringing all the y’s to the left and everything else to the
right, we see that the inequality holds for exactly those (x, y) satisfying sy < rx+t for certain
integers r, s and t.19

First suppose s = 0, then the inequality only puts either a lower or an upper bound on x.
But it cannot put an upper bound, because that would contradict our supposition that there
are infinitely many pairs (x, y) satisfying our conjunction. So they all put a lower bound on
x, and we may choose x sufficiently large such that it satisfies all of them. Now suppose
s 6= 0, then we can divide by s and write the inequality in one of the forms y > px + q or
y < px + q, where p, q ∈ Q. The sign may change because s may be negative. We call the
first form a lower bound on y, and the second an upper bound on y.

19Note that this is not an abuse of notation in L. We are working in N now, and the natural numbers simply
are embedded in Z. We even have the freedom of using Q, which we will do shortly.

32



Since we added y + 1 > 0, there is at least one lower bound. Consider all the lower bounds
and pick the one with largest coefficient of x. If these are equal for some lower bounds, pick
the one with largest constant coefficient. If even these are equal, then the lower bounds say
the same, so it doesn’t matter which one we pick. We call this lower bound, say y > βx+ γ,
the major lower bound. One can quite easily prove that, for x sufficiently large, a pair
(x, y) satisfies all the lower bounds if and only if it satisfies the major one. Indeed, the major
lower bound is just the one with steepest slope. Suppose that there are upper bounds as
well. Then similarly, we may pick the upper bound with smallest slope, say δx+ ε, and call it
the major upper bound. Again, for x sufficiently large, a pair (x, y) satisfies all the upper
bounds precisely if it satisfies the major one.

Major upper bound

Major lower bound

x

y

We now consider three cases.
1. β > δ. Then the lines y = βx+ γ will eventually, i.e. for x large enough, lie above the

line y = δx + ε. But then for x sufficiently large, no pair (x, y) can satisfy both the
upper and the lower bounds, which contradicts our supposition that there are infinitely
many pairs (x, y) satisfying our conjunction. So this case cannot occur.

2. β < δ. Define A as the least common multiple of the moduli of all the congruence
symbols occurring in our disjunction. Note that, since y + 1 > 0 was a conjunct, we
have at least one lower bound on y where the coefficient of x is zero, so β must be at
least zero. Now the lines y = βx+ γ and y = δx+ ε, both with nonnegative slopes, will
diverge. Thus for x sufficiently large, we have: for a fixed x, the values of y ∈ N that
satisfy both the major upper and the major lower bound, i.e. all the inequalities, form
a consecutive sequence of at least length 2A. Furthermore, we can pick x such there
is a z such that (x, z) satisfies our conjunction. We can do this because the number of
such x is infinite. Now (x, z+A) and (x, z−A) both satisfy all the congruences as well.
But also, one of those pairs satisfies all the inequalities. Therefore the function f has
two values for this x, contradiction. So this case cannot occur.

3. β = δ. Then the lines y = βx + γ and y = δx + ε are parallel. So all (x, y) satisfying
the inequalities must be on some parallel line between the upper and lower bound. But
the number of such lines with rational coefficients that pass through lattice points of
N2 is finite, as one may show with some number theory. Every equation of a line with
rational coefficients can be expressed in L; just multiply by all the denominators and
bring some terms to the other side to get rid of negative numbers. So we may replace the
conjunction of all our inequalities with a finite disjunction of equalities. Now distribute
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the remaining ∧’s over the ∨’s and obtain a disjunction of conjunctions, each of which
contains an equality.

≥ 2A

x

y y y

x x

β > δ β < δ β = δ

The case in which there are no upper bounds can be handled in a way similar to the above
case β < δ. But it is even easier, because we don’t have to wait for our lower and upper
bounds to diverge far enough.
We can carry out this procedure for every conjunction α0 ∧ · · · ∧αk−1 having an infinitude of
pairs (x, y) satisfying it. Finally, we pick x sufficiently large such that there are no pairs
(x, y) satisfying the other conjuncts any more. This proves the claim of this stage.

Stage 3. The previous stage showed that there are an N0 ∈ N and an L-formula F2(x, y)
such that x ≥ N0 → (F (x, y) ↔ F2(x, y)), where F2 is a disjunction of conjunctions of
atomic formulas, such that each conjunction contains an equality. We may assume that each
conjunction is satisfied by infinitely many pairs (x, y); if this is not already the case, we can
pick N0 a bit larger.
Now let C(x, y) be one of F2’s conjunctions. We can define the set Px(C) of x’s for which
there is a y such that (x, y) satisfies C in L as ∃z C(x, z). So this set Px(C) must be eventually
periodic, by theorem 3.1.1. Let M(C) be its period and suppose the periodicity holds for x
larger than N(C). Now consider a nontrivial equality occurring in C and write it as sy = rx+t
for certain integers r, s and t. Now s cannot be zero, because either r = 0, and the equality
would be trivial, or r 6= 0, and there would be at most one possible value for x, contradicting
our assumption. So s is nonzero, and we can divide by s, obtaining the equality y = px + q
for certain p, q ∈ Q. Now p cannot be negative, because that would cause y to be negative
for x too large. So p ≥ 0, and if we multiply by the denominators and bring the constant to
the appropriate side, we obtain an equality of the form ay + b = cx + d, where a, b, c, d ∈ N
and a > 0.
Given x, the value of y is determined completely by this equality, so we may replace C(x, y)
by ∃z C(x, z) ∧ ay + b = cx+ d. Doing this for all the conjunctions, we obtain a disjunction
of formulas of this form. Now pick N larger than N0 and all the N(C) and let M be the least
common multiple of all the M(C). In the sequel, x will be at least N . For a conjunction C
of F2, we can replace ∃z C(x, z) by a disjunction of formulas of the form x ≡M i, because M
is an eventual period of Px(C), since M(C) | M . Do this for all the C, and distribute the ∧
in ∃z C(x, z) ∧ ay + b = cx+ d over the disjunction of congruences we introduced, obtaining
a disjunction of formulas of the form x ≡M i ∧ ay + b = cx + d. If some congruence x ≡M i
occurs multiple times, then the corresponding equalities should be equivalent, otherwise f
would have multiple values for x ≡ i mod M . Now pick as ai, bi, ci and di the coefficients of
the equality corresponding to x ≡M i. We are done.
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3.5 Possible strategies

In this final section, we will combine the ideas of the previous sections to give two possible
proof strategies for our conjecture that every self-interpretation of PrA is provably trivial. By
lemma 3.2.1, it suffices to show that every self-interpretation of PrA is representably trivial
in N. So let ι be a self-interpretation of PrA based on some translation τ . By theorem 3.2.3,
we may assume without loss of generality that Dτ is some tautology and that the equivalence
Fτ (=)(x, y) ↔ x = y holds in N. If x, y ∈ N, then we write x +∗ y for the (really!) unique
z such that N |= Fτ (+)(x, y, z). Similarly, we write 0∗ and 1∗ for the (again really) unique
numbers that satisfy Fτ (0) respectively Fτ (1) in N. We will also use these notations in
L-formulas, and it should be obvious how to transform them into real L-formulas.

We define the L-formula x <∗ y as ∃z x +∗ (z +∗ 1∗) = y. Note that this is simply the
translation of ∃z x+(z+1) = y, which defines the order in PrA. We also define the translated
successor function s∗ by the L-formula S∗(x, y) :⇔ y = x +∗ 1∗. Because y = x + 1 defines
a function in PrA, its translation S∗ must define a function as well. We will also refer to <∗
and s∗ as the internal ordering and the internal successor function respectively.

We have already proven that the inner model in N given by ι must be isomorphic to the
standard model. Since the standard model has only one automorphism, there is only one
isomorphism from the standard model to the inner model in N given by ι, and it must be the
function f : x 7→ sx∗ (0∗). Our goal is now to define f by an L-formula F (x, y); this will be a
representable isomorphism from id to ι.

The first strategy is inspired by the technique we used in section 3.3. Let X ⊂ N be the set
defined by

∀y (y < x→ y <∗ x).

We can copy the proof of lemma 3.3.2 to show that X is cofinal in the ordering <∗ and
infinite.20 Since X is clearly L-definable, it is eventually periodic with some period P ≥ 1
and must, for x large enough, contain at least one equivalence class mod P . Let b ∈ N be
such that X0 := {b+ Pu | u ∈ N} ⊂ X.

We define the internal difference function on X0, which we will denote by δ∗(u), by the
L-formula

∆∗(u, y) :⇔ (b+ Pu) +∗ y = b+ P (u+ 1).

Note that, for u ∈ N, we have b + P (u + 1) ∈ X0 ⊂ X. So since b + Pu < b + P (u + 1), we
have b+ Pu <∗ b+ P (u+ 1), and δ∗(u) always uniquely exists.

We now make the following observation:

Lemma 3.5.1. For every L-definable set A ⊂ N, the set f(A) ⊂ N is L-definable as well.

Proof. Suppose A is definable by some L-formula φ(x). Then if a ∈ A, we have N |= φ (a),
and also PrA ` φ (a), because PrA is the true theory of N. But now its translation must also be
provable in PrA, because ι is a self-interpretation of PrA. It takes little effort to see that this

translation is equivalent to φτ
(
f(a)

)
, so we have PrA ` φτ

(
f(a)

)
and also N |= φτ

(
f(a)

)
.

Similarly, we can show that a 6∈ A implies N |= ¬φτ
(
f(a)

)
. So f(A) is L-definable by φτ .

20Because 〈N, <∗〉 is isomorphic to 〈N, <〉, these two properties are in fact equivalent in the current situation.
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Note that the above proof does not need the L-definability of f ; it is therefore completely
independent of the validity of conjecture 2.3.2. It is not at all clear whether the converse
of lemma 3.5.1 also holds. This turns out to be an extremely interesting question, as the
following theorem shows.

Theorem 3.5.2. Let ι be a self-interpretation of PrA and use the notations introduced above.
Then the following are equivalent:

(i) ι is representably trivial in N;

(ii) the function δ∗ has finite range;

(iii) for every L-definable set A ⊂ N, the set f−1(A) ⊂ N is L-definable as well.

Proof. (i) =⇒ (iii). Suppose we have an L−-formula F (x, y) representing the function
x 7→ sx∗ (0∗). If some L−-formula φ defines A, then we can define f−1(A) simply by the
L−-formula ∃y (F (x, y) ∧ φ(y)).

(iii) =⇒ (ii). Suppose the function δ∗ does not have finite range. Then by this assumption,
the set Y : {u ∈ N | ∀y (y < u → δ∗(y) <∗ δ∗(u))} is infinite. It is also clearly L-definable,
so it must be eventually periodic with some period ` ≥ 1, and we can pick a c ∈ N such that
Y0 := {c+ `v | v ∈ N} ⊂ Y . If B is some finite set of natural numbers and g : B → N is some
function, we write

∑∗
i∈B g(i) for the +∗-sum of all the g(i), where the i ranges over B. That

is,
∑∗ is completely analogous to

∑
, but works with internal addition instead of the usual

addition. Now for all z ∈ N, we have the following internal telescoping series:

b+ Pc+ P`z = (b+ Pc) +∗

∗∑
0≤u<`z

δ∗(c+ u) ≥∗
∗∑

0≤u<`z
δ∗(c+ u) =

∗∑
0≤v<z

∗∑
0≤i<`

δ∗(c+ (`v + i))

≥∗
∗∑

0≤v<z

∗∑
0≤i<1

δ∗(c+ (`v + i)) =
∗∑

0≤v<z
δ∗(c+ `v).

For x ∈ N, write δ(x) for f−1 (δ∗(x)). Now since all the numbers c + `v are in Y0 ⊂ Y , all
terms in the above rightmost sum must be different. But that means that all the δ(c + `v)
must be different as well. We get

∗∑
0≤v<z

δ∗(c+ `v) =

∗∑
0≤v<z

s
δ(c+`v)
∗ (0∗) ≥∗

∗∑
0≤v<z

sv∗ (0∗) = s
1/2·z(z−1)
∗ (0∗) = f

(
1
2z(z − 1)

)
.

Combining the above two internal inequalities, we see that b + Pc + P`z ≥∗ f
(
1
2z(z − 1)

)
,

which means exactly that f−1(b+ Pc+ P`z) ≥ 1
2z(z − 1).

Now take A = {b + Pc + P`z | z ∈ N}; it is obviously L-definable. If z < z′, we have
b + Pc + P`z < b + Pc + P`z′, and since the right hand side is in X0 ⊂ X, we see that
b + Pc + P`z <∗ b + Pc + P`z′. Taking f−1 on both sides gives us f−1(b + Pc + P`z) <
f−1(b+Pc+P`z′). So the sequence f−1(b+Pc), f−1(b+Pc+P`), f−1(b+Pc+P` ·2), . . . is
an increasing sequence containing all the elements from f−1(A). By the above considerations,
it grows at least quadratically. But now f−1(A) cannot be L-definable, because by theorem
3.1.1, it would have to be eventually periodic, and in particular, its terms would grow at most
linearly. So (iii) doesn’t hold.

(ii) =⇒ (i). Suppose the function δ∗(u) has finite range, then by corollary 3.1.4, it must be
eventually periodic. Suppose the periodicity holds for u ≥ c and denote its period by `. We
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set R = b + Pc, K :=
∑∗

0≤i<` δ∗(c + i), r := f−1(R) and k := f−1(K). Now we again apply
an internal telescoping series to find:

R+ P`z = (b+ Pc) + P`z = (b+ Pc) +∗

∗∑
0≤u<`z

δ∗(c+ u) = R+∗

∗∑
0≤u<`z

δ∗(c+ u)

= R+∗

∗∑
0≤v<z

∗∑
0≤i<`

δ∗(c+ (`v + i)) = R+∗

∗∑
0≤v<z

∗∑
0≤i<`

δ∗(c+ i)

= R+∗

∗∑
0≤v<z

K = sr∗ (0∗) +∗

∗∑
0≤v<z

sk∗ (0∗) = sr+kz∗ (0∗) = f(r + kz).

This means that for 0 ≤ i < k, we have si∗(R+P`z) = si∗(f(r+kz)) = f(r+(kz+i)). Because
the function si∗ for a fixed i is L-definable, we have a way of defining our function f(x) for
x ≥ r. For x < r, we can define it manually. So we may take F (x, y) to be

r−1∨
l=0

[
x = l ∧ y = f(l)

]
∨
k−1∨
i=0

[
∃z
(
x = r + i+ kz ∧ y = si∗ (R+ P`z)

) ]
.

This theorem tells us that, no matter what mathematical reality turns out to be, we find
ourselves in an interesting situation. Either conjecture 2.3.2 is true, and conjecture 2.3.1
follows as well. In the other case, there is a self-interpretation of PrA such that the set of
L-definable sets suddenly becomes larger when we pass to the inner model. That is, there are
sets that aren’t definable by internal means, but that do form a definable set when viewed
externally. This would be quite an intriguing phenomenon in itself.

Let us now indicate a second strategy, which uses the result from section 3.4. According to
theorem 3.4.1, we have the following normal form for s∗:

x ≥ N →

[
S∗(x, y)↔

M−1∨
i=0

(
x ≡M i ∧ aiy + bi = cix+ di

)]
,

where M , N and all the ai, bi, ci and di are natural numbers, and the ai are nonzero. In
example 2.3.3, we can write S∗(x, y) as

(x ≡4 0 ∧ y = x+ 2) ∨ (x ≡4 1 ∧ y = 2x+ 2) ∨ (x ≡4 2 ∧ 2y = x) ∨ (x ≡4 3 ∧ y = 2x+ 2).

Here N = 0, or in other words, the ‘decent’ behaviour of s∗ starts immediately.

Note that the sequence 0∗, s∗ (0∗) , s
2
∗ (0∗) , . . . is a permutation of N. Thus, we may select

some R0 ∈ N such that R0 occurs in this sequence after every element of {0, 1, . . . , N − 1}.
Now for every x such that x ≥∗ R0, the formula S∗(x, y) holds precisely if

M−1∨
i=0

(
x ≡M i ∧ aiy + bi = cix+ di

)
holds. As we have already seen, we can write aiy+bi = cix+di as the linear form y = pix+qi
for certain pi, qi ∈ Q. In order to know which of these linear forms we apply when, we want to
know how the inner model walks through the clauses of the above disjunction. More precisely,
we want to know how x behaves itself modulo M if we apply s∗ repeatedly. It turns out that
the answer to this question immediately tells us whether conjecture 2.3.2 is correct or not.
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Theorem 3.5.3. Let ι be a self-interpretation of PrA and use the notations introduced above.
Then the following are equivalent:

(i) ι is representably trivial in N;

(iv) the sequence 0∗, s∗ (0∗) , s
2
∗ (0∗) , . . . is eventually periodic modulo M ;

(v) for all n ∈ Z≥1, the sequence 0∗, s∗ (0∗) , s
2
∗ (0∗) , . . . is eventually periodic modulo n.

Proof. (i) =⇒ (v). Suppose we have an L-formula F (x, y) representing the function x 7→
sx∗ (0∗). Now we can define the relation “y is the xth term in our sequence” simply by F (x, y).
The function that sends a number to its remainder upon division by n is also L-definable,
so we can define the function that sends x to the xth term in our sequence modulo n. This
function has finite range, so by corollary 3.1.4, it must be eventually periodic, which proves
this direction.

(v) =⇒ (iv). Trivial.

(iv) =⇒ (i). Suppose that the sequence 0∗, s∗ (0∗) , s
2
∗ (0∗) , . . . is eventually periodic modulo

M . Pick R ≥ R0 sufficiently large such that the sequence R, s∗(R), s2∗(R), . . . is purely periodic
modulo M , and denote its period by `. We denote the remainders of the first ` terms of this
sequence upon division by M by k0, . . . , k`−1. In example 2.3.3, we can take R = 0, and the
sequence R, s∗(R), s2∗(R) simply is the second line of the array. Modulo 4, it becomes periodic
immediately, with period 0, 2, 1, 0, 2, 3 (these are the kj ’s), and ` = 6.

Consider some j with 0 ≤ j < `. All terms in the sequence sj∗(R), sj+`∗ (R), sj+`·2∗ (R), . . . are
congruent to kj modulo M . Furthermore, we can get from one term in the sequence to the
next by applying the linear form y = pix + qi successively for i = kj , . . . , k`−1, k0, . . . , kj−1.

So the function that sends sj+`u∗ (R) to the next term s
j+`(u+1)
∗ (R) is itself given by a linear

form, say y = αjx+ βj , where αj , βj ∈ Q. Moreover, αj must be nonnegative, since all the pi
are. We claim that αj = 1, and we will prove this by eliminating the following two cases.

1. αj < 1. In that case the sequence sj∗(R), sj+`∗ (R), sj+`·2∗ (R), . . . converges to γ :=
βj

1−αj
.

Because all terms of the sequence are natural numbers, γ must be in N and the sequence
becomes eventually constant and equal to γ. But this means that an `-fold application
of s∗ to γ gives us γ again, which is absurd, because s∗ is the internal successor function.

2. αj > 1. Then the sequence sj∗(R), sj+`∗ (R), sj+`·2∗ (R), . . . grows exponentially. For u ∈ N,

we have sj+`u∗ (R) = s`u∗

(
sj∗(R)

)
= sj∗(R) +∗ s

`u
∗ (0∗) = sj∗(R) +∗ f(`u). But since the set

of multiples of ` is L-definable, the set of numbers of the form f(`u) is L-definable as
well, by lemma 3.5.1, and therefore the set of terms of our sequence must be L-definable
as well. By theorem 3.1.1, the latter set must be eventually periodic, which cannot be
the case as the sequence shows exponential growth.

So αj is indeed equal to 1, and we get sj+`u∗ (R) = sj∗(R) + βju for u ∈ N. Because the terms

sj+`u∗ (R) should be different natural numbers, βj must be some positive natural number.
Now it is time to give an L-formula F (x, y) that represents the function x 7→ sx∗ (0∗). Define
r = f−1(R) then the previous paragraph gives us

sr+j+`u∗ (0∗) = sj+`u∗ (sr∗ (0∗)) = sj+`u∗ (R) = sj∗(R) + βju

for u ∈ N. This shows that a number of the form r + j + `u should be sent to sj∗(R) + βju.
Because j could range 0, 1, . . . , ` − 1, we have our definition for x ≥ r. For x < r, we can

38



define it manually. So we may take F (x, y) to be

r−1∨
l=0

[
x = l ∧ y = f(l)

]
∨
`−1∨
j=0

[
∃u

(
x = r + j + `u ∧ y = sj∗(R) + βju

) ]
.

Given what PrA has shown us about L-definability, the truth of (v), and hence also of (iv),
seems rather plausible. However, the presence of iteration makes this particular question
more complicated. A priori, the behaviour of x modulo M isn’t determined by the normal
form for s∗. Indeed, if all we know is that x ≡ i mod M , then we can only determine s∗(x)
modulo piM . On the other hand, it would be quite strange if a sequence arising from an
L-definable function does not behave in the manner typical for L-definable objects, that is,
periodically.

39



Conclusion

Let us reflect briefly in what we have done in this thesis. We formulated two conjectures
concerning interpretations and PrA. Unfortunately, we haven’t been able to prove them, and
they still stand as conjectures. This doesn’t mean that all our efforts have been in vain. Let
us list the insights and results we have gained.

• The question about the interpretability of PrA in PrA− is connected to the study of
self-interpretations of PrA. More precisely, if all self-interpretations of PrA are provably
trivial, then PrA is not interpretable in PrA−.

• The model R∞ shows two things. First of all, we can use the interpretations Dn from
theorem 2.2.1 at most to approximate PrA. There is a chance we never arrive at a
structure satisfying the whole of PrA. Secondly, R∞ illustrates the independence of the
division axioms PrAx8p, for primes p.

• Suppose we have an interpretation from some theory U to PrA. If we carry out this
interpretation in N, then we may forget concerns about the domain and about identity.

• Suppose we have a self-interpretation of PrA. Then the inner model in N given by this
interpretation is isomorphic to the standard model. Our conjecture 2.3.2 concerns the
definability of this isomorphism.

• Several order types, like Q, ω2 and N + Z ·Q are not definable in the standard model.

• There is a decent normal form for L−-definable functions.

• We have discovered various statements that are equivalent to conjecture 2.3.2.

Let us end with some suggestions for further research.

• We begin by stating the obvious: find out whether conjecture 2.3.2 is true. There are,
however, other interesting questions arising from this conjecture.

• Let U be some theory such that all its self-interpretations are provably trivial. We can
consider the category that has theories as objects and arrows modulo provable isomor-
phism as objects.21 Let V be a theory such that U and V are mutually interpretable.
That is, there exist ι : U → V and κ : V → U . Now by our assumption, κ ◦ ι is the
identity arrow in this category, so κ : V → U is split epi. One can show that, in gen-
eral, finite axiomatizability is preserved by split epis in our category. This essentially
is the reasoning we employed in the proof of theorem 2.3.3. Are there other interesting
mathematical properties of theories that are preserved by split epis? And can we find
interesting examples of theories that have only provably trivial self-interpretations?

• If conjecture 2.3.2 is false, then there is a self-interpretation of PrA such that certain
(externally) L−-definable sets grow at least quadratically when viewed internally. Can
we strengthen this result, e.g. to find definable sets that internally grow faster than a
fixed polynomial? Or faster than all polynomials? Would such results help us to prove
conjecture 2.3.2?

21Note that this is not the same category as the one we mentioned in footnote 8.
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[5] Craig Smoryński. Logical Number Theory, An Introduction, volume I. Springer-Verlag,
1991.

[6] Albert Visser. Hume’s Principle, Beginnings. Review of Symbolic Logic, 4(1):114–129,
2011.

42


	Introduction
	Presburger Arithmetic
	Definition and elementary properties
	Models of PrA
	Classification of terms and atomic formulas
	Quantifier elimination for PrA
	Decidability and completeness

	Interpreting PrA
	Interpretations
	Local interpretability for PrA in PrA-
	Interpreting PrA in PrA-
	Approximating PrA in PrA-

	Self-interpretations of PrA
	Definable predicates in N
	Interpretations in N
	Definable order types in N
	A normal form for definable functions
	Possible strategies

	Conclusion
	Index of symbols
	Index of terms
	References

