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Abstract

This master thesis deals with the construction of analytical solutions to small-
amplitude internal gravity waves. In the first part analytical solutions to inter-
nal waves in inviscid and uniformly stratified fluids confined to a two-dimensional
trapezoid are constructed. The new method by which these exact solutions are
constructed gives new insight into the complex self-similar structure of the velocity
field. In the second part the generation of internal waves in a uniformly stratified
ocean by barotropic flow over irregular topography is described. Exact solutions
to the internal wave field derived from solutions to Abel’s functional equation are
presented for a finite support bottom topography which lacks tidal conversion for a
specific barotropic tidal frequency.
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1 General Introduction

Internal waves can arise in stratified and rotating fluids, such as oceans and interi-
ors of (fluid) stars. These fluids exhibit a motionless stable state, called hydrostatic
or cyclostrophic equilibrium, in which the pressure gradient force is balanced by
gravity or centrifugal forces. Small perturbations in the direction of the pressure
gradient on this equilibrium lead to oscillation of the fluid particles around their
stable motionless state. In the absence of viscosity the kinetic energy added by the
perturbation cannot be lost, which means that there is no return to the hydrostatic
equilibrium. Instead the perturbation, here after called internal wave, propagates
through the interior of the fluid. An outstanding property of internal waves in a
uniformly-stratified fluids is that their propagation direction has a fixed angle with
respect to the pressure gradient in the fluid (dependent on the frequency associated
with the internal wave). A direct consequence of this property is the abnormal “rule
of reflection” for internal waves: the angle of reflection equals the incident angle
with respect to the pressure gradient - independent of the orientation of the surface
where the internal wave is reflected. This is contrary to the familiar reflection rule
for surface waves, where the angle of the incoming wave equals the angle of the
reflected wave with respect to the reflecting boundary.
Depending on the slope of the reflecting boundary with respect to the propagation
direction of the internal wave the amplitude of the internal wave perturbation can
be intensified or weakened upon reflection. Repeated intensification - called focusing
- of the small amplitude internal waves upon reflection leads to spatially localized
large amplitude internal waves in the fluid.
While a viscous fluid in a state of sufficiently small perturbations on hydrostatic equi-
librium is well approximated by an ideal fluid (frictionless), this is certainly not the
case when velocity gradients become large. The amplification of a small amplitude
internal wave by focusing is well described by the linearised, incompressible, inviscid
Navier-Stokes equations under Boussinesq approximation close to hydrostatic equi-
librium. Upon infinite repeated focusing the internal waves can accumulate on a
one-dimensional subspace inside the two-dimensional domain. Such a subspace of
the domain is called attractor. As the attractor is approached the kinetic energy of
the internal waves goes to infinity. This leads to a state in which both friction and
non-linear terms do play a significant role, making the small-amplitude assumption
invalid. The large amplitude internal wave can lead to mixing of the fluid through
wave breaking and Stokes drift, among other processes.

In the stratified oceans internal waves are generated by barotropic tidal oscilla-
tion over irregular bottom topographies. A barotropic velocity field is by definition
vertically uniform in its horizontal components and the barotropic tidal flow is ex-
cited by the gravitational force exerted by the moon on the oceans. Approximately
30 % of the total tidal energy dissipation goes into the generation of internal waves
[6], referred to as tidal conversion. Most of this energy is eventually turned into
mixing of the ocean. Mixing is observed to take place above steep topographies (see
[16] and [6]) where the internal waves are generated. Propagation of the internal
waves can also lead to mixing far away from the location of tidal conversion. Tidal
conversion is far from uniformly distributed over the ocean and the shape of the
bottom topography plays a crucial role in the generation of internal waves.
Deep water formation at high latitudes has to be compensated by upwelling some-
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where else in the ocean. This requires a process which stirs the abyssal ocean [14].
Mixing of internal waves is potentially important in facilitating upwelling of deep
water. In [15] it is estimated that more than 40 % of the energy needed to explain
the upwelling comes from tidal energy. The contribution of radiated internal tides is
approximately 10 %. The uncertainties in these numbers are large due to sparse ob-
servations of the abyssal sea as well as due to the spatially localized internal waves.
It is this role of internal waves in the deep ocean circulation which has put research
on internal waves back onto the scientific agenda in the last two decades.

This master thesis is concerned with finding exact solutions for internal waves in a
closed trapezoidal domain (section 2) and internal waves generated by barotropic
flow over irregular topography (section 3).
Constructing and analysing exact solutions to internal wave problems is useful for
the general understanding of internal waves in a number of ways.
Solving the governing equations analytically is the only way to resolve the velocity
field on all spatial scales. This is of interest especially for closed domains with re-
peated focusing, as the steady state velocity fields for such domains exhibit complex
fractal structures.
The method by which the internal waves are constructed gives insight into the so-
lution itself. This turns out to be useful for the understanding the fractal structure.
The construction procedure can also be incorporated in numerical solvers for inter-
nal wave problems. This can potentially lead to a numerical solver which conserves
more properties of the internal waves than standard numerical solvers.
Last but not least exact internal wave solutions are essential in testing the perfor-
mance of numerical internal wave models.

In section 2 of this thesis analytical solutions for small-amplitude internal waves
in a frictionless uniformly-stratified two-dimensional fluid constrained to a trape-
zoidal basin are constructed. All standing internal wave solutions inside trapezoidal
domains exhibiting a so-called (1,1) attractor are constructed analytically. A (1,1)
attractor reflects on all four boundaries (surface, bottom and two sides, one of which
is sloping) exactly once. ’Standing’ means that the system is in steady state without
external forcing. This turns out to be an ill-posed problem as the solution space is
infinite-dimensional. A solution is unique once it is prescribe on a so-called funda-
mental interval [13]. For all non-trivial prescriptions on the fundamental intervals
the solution exhibits complex self-similarities around the attractor.
The presented exact solutions are a generalization of an exact self-similar solution
for a special case of the class of trapezoids with (1,1) attractors presented in [11].
The analytical solutions are constructed independently using two methods: first the
method also used in [11] is applied. This method reduces the governing equations,
introduced in section (1.1), to a functional equation known as Schröder’s functional
equation. This functional equation is solved in Fourier space, which results in exact
expressions for all Fourier coefficients of the internal wave solution.
As an alternative, the exact standing internal wave solutions are constructed using
a new method, which finds solutions to the Abel functional equation. This method
is developed within this master project in collaboration with Grant Keady and pre-
sented in theorem 6 in Beckebanze and Keady, 2014. This article is added as an
appendix to this thesis. The construction procedure gives new insight into the self-
similarity of the standing internal wave solution. The new method can also be used
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for the construction of internal waves generated by tidal flow over irregular bottom
topography.

Section 3 describes the generation of internal waves in uniformly stratified fluid
due to oscillation of barotropic flow over weakly sloping bottom topographies. An
interesting feature of this process, called tidal conversion, is the existence of to-
pographies lacking tidal conversion [10]. In section (3.1) tidal conversion is put into
context with solutions to Abel’s functional equation. This makes it possible to give a
measure-theoretic probability to encounter a topography lacking tidal conversion in
the space of all topographies with finite support. It is conjectured that in Lebesgue
measure this probability is zero.
Certainly there exist infinitely many topographies that can lack tidal conversion.
In section (3.3.1) exact solutions by Law [8] are used to construct infinitely many
topographies which lack tidal conversion for a specific forcing frequency.
For a family of piecewise quadratic ridges the baroclinic internal wave fields gener-
ated through tidal conversion are constructed analytically in section (3.4). This is
done for a range of barotropic tide frequency, which includes a frequency for which
no tidal conversion takes place. Streamfunction solutions are also computed exactly
for different relative heights of the ridge, varying from 0 to 50% of the entire ocean
depth.
The baroclinic streamfunction at some fixed time can be derived from solutions to
Abel’s functional equation, similar to the method applied in section 2. This method
is not capable of constructing exact time-dependent streamfunctions. Above the
flat part of the bottom this can be achieved by adding a complex component to
the exact streamfunction in Fourier space. For the part of the domain above the
irregular bottom the extension to a full time-dependent streamfunction is done by
a numerical method, verifying the correctness of the analytical streamfunction solu-
tion above the flat part of the bottom.
The analytical baroclinic wave fields at some fixed time are used to calculate the
barotropic tide energy dissipation (averaged over one tidal period). This is done in
section (3.4.6) and reveals interesting dependencies of the energy dissipation of the
frequency of the barotropic tide and the relative height of the irregular part of the
bottom.

Conclusions are drawn in section 4.

1.1 Derivation of governing equation

The Navier-Stokes momentum equations in a co-rotating frame, referred to as an
f -plane, with gravity g = −gẑ working in the vertical direction z only, are given by

ρ
du

dt
= −ρ f × u−OOOp+ ρ g. (1)

Here u = (u, v, w)T is the three dimensional velocity vector in Cartesian coordinates
(x, y, z), ρ is the density, p is the pressure and f = 2Ω is the Coriolis parameter. See
chapters 3 and 4 in [3] for a detailed derivation of (1).
The continuity equation is given by

∂ρ

∂t
+OOO · (ρu) = 0.
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The system is closed by adding an equation of state for the density ρ if this equation
does not introduce new unknowns. Here it is assumed that the density is conserved,
which means that

dρ

dt
= 0, hence

∂ρ

∂t
+ u ·OOOρ = 0, (2)

leading to the incompressibility equation

OOO · u = 0.

Internal waves have co-dimension two. This means that any internal wave in a
three-dimensional fluid can (locally) be confined to a two-dimensional subspace.
This subspace always includes the vertical direction. It is therefore appropriate to
neglect all dependency on one of the horizontal directions, here chosen to be the
y-direction.
The density perturbations ρ′(t, x, z) on the height-dependent average ρ0 + ρ∗(z) are
assumed to be small and the height-dependency in turn is assumed to be small
compared to the overall average ρ0. These assumptions are usually appropriate
for the abyssal ocean where the density varies in the order of permil over kilome-
tres height. It allows to apply the Boussinesq approximation, which means that
ρ(t, x, z) = ρ0 +ρ∗(z)+ρ′(t, x, z) is replaced by ρ0 in all terms except for the gravity
term.
Under these assumptions the linearised momentum equations become

ρ0∂tu = +ρ0fv − ∂xp
∂tv = −fu

ρ0∂tw = ∂zp− ρg.
(3)

and the equation of state (2) becomes

∂tρ = −wΓ, (4)

where Γ = ∂zρ∗ is a constant (for uniform stratification). Here ∂s denotes the
derivative with respect to some variable s.
Taking the time derivative of the first and third equations in (3) and dividing them
by ρ0, removing ∂tv by substituting the second equation for it and removing ∂tρ by
using (4) results in

∂ttu = −f2u− ∂xtp

∂ttw = −∂ztp+
Γg

ρ0
w.

(5)

The pressure term is removed by subtracting the x-derivative of the second equation
in (5) from to the z-derivative of the first equation, giving

∂zttu− ∂xttw = −f2∂zu+N2∂xw (6)

where N2 = − gΓρ0 and N is known as the Brunt-Väisälä frequency. For a stable
stratification the density must increases with depth, so Γ < 0, which corresponds to
N2 > 0.
Notice that the continuity equation ∂xu + ∂zw = 0 is implicitly satisfied if one
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introduces streamfunction Ψ̂ with u = ∂zΨ̂ and w = −∂xΨ̂. Expressing (6) in terms
of the streamfunction Ψ gives

∂zzttΨ̂ + ∂xxttΨ̂ = −f2∂zzΨ̂−N2∂xxΨ̂.

This linear equation can be solved by superimposing solutions for monochromatic
waves, Ψ̂ = e−iωtΨ(x, z). For a given frequency ω the spatial dependency Ψ(x, z)
has to satisfy

∂2Ψ

∂x2
− ϑ2 ∂

2Ψ

∂z2
= 0, (7)

where ϑ =
√

ω2−f2

N2−ω2 . In the following it is Ψ(x, z) which is referred to as the

streamfunction. In section (2) only real-valued streamfunctions (corresponding to
standing internal waves) are considered. In section 3 the spatial dependence of the
streamfunction is extended with an imaginary part, which is emphasized by adding
a bar on the streamfunction: Ψ̄.
In this study only the hyperbolic case, in which ϑ > 0, is considered. In that case
scaling and stretching of the spatial coordinates (x, z) leads to

∂2Ψ

∂x2
− ∂2Ψ

∂z2
= 0. (8)

This is the equation which is central in section 2.
In the subsequent part on tidal conversion, section 3, the fluid is assumed to be non-
rotating, f = 0. Adding the assumption that N >> ω (very close to hydrostatic
equilibrium) leads to ϑ = ω

N .
In section 3 the interest lies on the dependence of the velocity field above irregular
topography on the forcing frequency ω for fixed Brunt-Väisälä frequency N . Rather
than scaling the vertical coordinate with ϑ = ω

N , which depends on ω and N , it
is more appropriate to scale the vertical coordinate in the governing equations (7)
with 1/N , leading to

∂2Ψ

∂x2
− ω2 ∂

2Ψ

∂z2
= 0. (9)

Scaling the time t makes it possible to consider ω of magnitude 1. The forcing
frequency ω for which no tidal conversion takes place is in all cases chosen to be
ω = 1.

Boundary condition

Every fluid is confined to some domain. It is an elementary constraint to assume
no flow through the boundary of the domain. For the frictionless fluid considered
in this thesis this results in the so-called free slip boundary condition, which means
that at the boundary the velocity field is parallel to the boundary. As the velocity
is along constant lines of the streamfunction Ψ this means that the streamfunction
must be constant on the boundary of the domain.
For the closed domains considered in section 2 the streamfunction is chosen to
take the value zero on the boundary. The slightly different boundary condition
for barotropic tides in horizontally infinitely wide domains is introduced in the be-
ginning of section 3.
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2 Standing internal waves in trapezoid

In this section analytical streamfunction solutions confined to trapezoidal domains
and exhibiting (1,1) attractors are constructed and analysed. The construction is
done by two different methods. The first method finds solutions by first translating
the boundary condition to Fourier space. This method is presented in subsection
(2.1).
In subsection (2.2) the second method leading to exact streamfunction solutions is
presented. The method reduces the boundary condition to a so-called Abel’s func-
tional equation first. This functional equation is then solved by a method presented
in [1], which is inspired by a group action algorithm presented in [9]. The calcu-
lations are much shorter and the resulting exact streamfunction solutions give new
insight into the fractal structure of the streamfunction. This fractal structure is
discussed in section (2.3). In section (2.4) the two methods leading to exact internal
wave solutions are compared and discussed.
The kinetic energy of the internal wave velocity field integrated over the trapezoidal
domains is infinite. Distributing the kinetic energy over the Fourier modes of the
velocity field leads to a well-defined series. In appendix A it is shown that for the
trapezoidal domain considered in [11] this series has log5-periodicity as the Fourier
mode approaches infinity.
Appendix B, section (5.2), discusses a set of countable-infinite linear equations. This
set of equations, referred to as Γ-equation, appears in the derivation of the exact
streamfunction solutions in [11]. In (5.2.1) its derivation is presented in detail,
(5.2.2) shows that the countable-infinite matrix Γ in the Γ-equation is a well-defined
operator on the Hilbert space `2 and (5.2.3) shows that Γ is unter-determined, im-
plying that it is not invertible.
Constraints on solutions to the functional equation derived in (2.1.1) are discussed
in appendix C, section (5.3). Appendix D, section (5.4), presents a proof that any
non-trivial internal wave solution in a domain exhibiting an attractor is a weak
solution.

2.1 Method 1: constructing exact solution in Fourier space

In [11] an analytical internal wave streamfunction solution for a trapezoidal domainis
constructed by transforming the boundary condition into Fourier space and finding
exact expressions for the Fourier coefficients of the streamfunction. This stream-
function solution has previously also been calculated numerically [17].
Here the method used in [11] is applied to construct exact streamfunction solutions
for a much larger class of trapezoidal domains. This is divided in the derivation of
a functional equation, which guarantees the vanishing of the streamfunction on all
boundaries, in subsection (2.1.1) and how it can be used to derive the Fourier coef-
ficients of the streamfunction (subsection (2.1.2)). Subsection (2.1.2) also presents
a series of plots from the family of trapezoidal domains for which streamfunctions
are constructed.
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2.1.1 Derivation of functional equation

Here exact streamfunction solutions Ψ for standing internal waves are constructed
for the trapezoidal domain

Dτ := {(x, z) ∈ R2 : z ∈ (−τ, 0) if x ∈ (−1, 0) and z ∈ (τ(x− 1), 0) if x ∈ (0, 1)}

with τ ∈ (1, 2). The streamfunction Ψ must satisfy (8) and ’standing’ means that
Ψ is real-valued. On the boundary ∂Dτ of the domain Dτ the streamfunction Ψ
has to be constant, as discussed in section (1.1) and it is chosen to take Ψ = 0 on
∂Dτ . The streamfunction Ψ is constructed by determining its Fourier coefficients.
In order to satisfy (8) one has to restrict the general Fourier expansion of Ψ to
the sum over products of the form ane

iωnxeiωnz for arbitrary constants ωn. All
boundary conditions except the sloping wall boundary condition z = τ(x − 1) are
already satisfied when taking

Ψ(x, z) =

∞∑
n=1

an sin

(
nπ

x+ 1

τ

)
sin
(
nπ

z

τ

)
. (10)

In the coordinates ζ± = x+ 1± z (10) takes the form

Ψ =
1

2

∞∑
n=1

an

(
cos

(
nπ

ζ−

τ

)
− cos

(
nπ

ζ+

τ

))
.

Since we require the streamfunction Ψ to vanish at the sloping boundary z = τ(x−1)
for x ∈ [0, 1]:

Ψ(x, τ(x− 1)) =
1

2

∞∑
n=1

an

(
cos(nπ(

x+ 1

τ
− x+ 1))− cos(nπ(

x+ 1

τ
+ x− 1))

)
= 0.

To derive a functional equation as in [11] it is necessary that the constant terms of
the arguments of both cosines terms are equal. This is achieved by the coordinate
transformation x = ξ

2 + τ − 1, which leads to

∞∑
n=1

an

(
cos(nπ

(
τ − 1

2τ
ξ + τ − 1

)
)− cos(nπ

(
τ + 1

2τ
ξ + τ − 1

)
)

)
= 0. (11)

Defining F (ξ) :=
∑∞
n=1 an cos(nπ( τ−1

2τ ξ + τ − 1)) and forcing power p := τ+1
τ−1 > 1

the condition (11) is equivalent to the functional equation, known as Schröder’s
functional equation

F (ξ) = F (pξ). (12)

Notice that the transformation x = ξ
2 + τ − 1 projects x ∈ [0, 1] onto ξ ∈ [2(1 −

τ), 2(2− τ)]. For τ ∈ (1, 2) we have that 1− τ < 0 < 2− τ , so ξ can be positive as
well as negative. So if F (ξ) is prescribed on the intervals I− := [2(1−τ), 2(1−τ)p−1]
and I+ := [2(2− τ)p−1, 2(2− τ)], then F (ξ) is known for all ξ ∈ [2(1− τ), 2(2− τ)]
due to the functional equation (12). Intervals with this property are referred to
as fundamental intervals [13]: once a choice for a solution F on some fundamental
interval is made, then F is uniquely defined by the functional equation on all of its
domain. A fundamental interval is in general not unique and does not have to be
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connected.
Notice that any solution F (ξ) to (12) can be split into symmetric and antisymmetric
part. It turns out that F (ξ) must be purely symmetric around the centres c− :=
(1− τ)(1 + p−1) and c+ := (2− τ)(1 + p−1) of the intervals I− and I+. In order to
prove this for I+ assume that F (ξ) is antisymmetric on I+. Any function F (ξ) for
ξ ∈ I+ which is antisymmetric around c+ can be written as

F (ξ) =

∞∑
l=1

αl sin

(
lπ

(
ξ

(2− τ)(1− p−1)
− 1 + p−1

1− p−1

))
=

∞∑
l=1

αl sin(lπζ+) (13)

for some sequence (αl)l∈N ∈ `2 and ζ+ ∈ [−1, 1] because ζ+(ξ) := ξ
(2−τ)(1−p−1) −

1+p−1

1−p−1 maps I+ onto [−1, 1]. Inserting now the inverse relation ξ = (2− τ)p−1
p ζ+ +

(2− τ)p+1
p into the definition of F (ξ) and using the functional equation (12) we get

Fτ (ξ) = Fτ (pξ) =

∞∑
n=1

an cos

(
nπ

(
τ − 1

2τ
pξ + τ − 1

))

=

∞∑
n=1

an cos

(
nπ

(
τ − 1

2τ
((2− τ)(p− 1)ζ+ + (2− τ)(p+ 1)) + τ − 1

))

=

∞∑
n=1

an(−1)n cos

(
nπ

(
2− τ
τ

ζ+

))
.

(14)
Notice that the assumption that F (ξ) is antisymmetric on I+ leads to a contradiction
because F (ξ) cannot simultaneously be antisymmetric (by (13)) and symmetric (by
(14)). So F (ξ) must be symmetric on I+. The proof that F (ξ) must be symmetric
on I− is analogous.

2.1.2 Calculating Fourier coefficients an for general (1, 1)-attractor

The idea is to derive the Fourier coefficients an by integrating F (ξ) times cos(nπ( τ−1
τ ξ+

τ − 1)) over an interval for ξ of length 4τ
τ−1 , which of course requires F (ξ) to be pre-

scribed on an interval of length 4τ
τ−1 . To show this, assume that F (ξ) is known for

ξ ∈ Is := [s, s+ 4τ
τ−1 ] for some s ∈ R. The mth Fourier coefficient Fm for m ∈ N of

F (ξ) over this interval Is is then given by

Fm =

∫ s+ 4τ
τ−1

s

cos

(
mπ

(
τ − 1

2τ
ξ + τ − 1

))
F (ξ)dξ

=

∫ s+ 4τ
τ−1

s

∞∑
n=1

cos

(
mπ

(
τ − 1

2τ
ξ + τ − 1

))
an cos

(
nπ

(
τ − 1

2τ
ξ + τ − 1

))
dξ

=
2τ

τ − 1
δnman = 2

τ

τ − 1
am.

(15)
From this it is clear that we can extract the Fourier coefficients an of the stream-
function Ψ once we are able to calculate the Fourier coefficients Fm over an interval
some interval Is.
The interval [2(1 − τ), 2(2 − τ)], on which F (ξ) is defined once F (ξ) is prescribed
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on the two fundamental intervals I+ and I−, is not sufficiently large to derive the
Fourier coefficients an as suggested by (15).
A natural extension of F (ξ) for ξ /∈ [2(1−τ), 2(2−τ)] is to use the functional equation
F (pξ) = F (ξ). It turns out that expanding F (ξ) to ξ ∈ Ic := [pc−, pc+] and then re-
quire F (ξ) to be periodic with period Tτ = p(c+−c−) = p((1+p−1)(2−τ−1+τ)) =
pp+1

p = p+ 1 = τ+1
τ−1 + τ−1

τ−1 = 2τ
τ−1 leads to non-trivial analytical streamfunction so-

lutions for Dτ . Notice that the length of Ic is exactly half the length of Is. So we
can for example choose s = pc− and then integrate F (ξ) ·cos(mπ( τ−1

2τ ξ+τ−1) from
pc− to pc− + 4τ

τ−1 .

It turns out that it is sufficient to integrate F (ξ) · cos(mπ( τ−1
2τ ξ + τ − 1) from pc−

to pc+ = pc− + 2τ
τ−1 , so only over half of the interval [pc−, pc− + 4τ

τ−1 ]. This is the
case because

Fm =

∫ pc+

pc−

cos(mπ(
τ − 1

2τ
ξ + τ − 1))F (ξ)dξ

=

∫ pc+

pc−

∞∑
n=1

cos(mπ(
τ − 1

2τ
ξ + τ − 1))an cos(nπ(

τ − 1

2τ
ξ + τ − 1))dξ

=

∞∑
n=1

τ

τ − 1
δnman =

τ

τ − 1
am.

One is free to choose F (ξ) on the fundamental intervals I+ and I−. If one maps both
fundamental intervals I+ and I− onto [−1, 1] with the coordinate transformations

ζ+ = ξ
(2−τ)(1−p−1) −

1−p−1

1+p−1 (inverse map: ξ = (2 − τ)p−1
p ζ+ + (2 − τ)p+1

p ) and

ζ− = ξ
(1−τ)(p−1−1)+ 1−p−1

1+p−1 (inverse map: ξ = (1−τ) 1−p
p ζ−+(1−τ)p+1

p ) then choosing

F (ξ) freely on the fundamental intervals is equivalent to choosing α+
i , α

−
j ∈ R for all

i, j ∈ N arbitrarily for F (ζ+) =
∑∞
i=1 α

+
i cos(πiζ+) and F (ζ−) =

∑∞
i=1 α

−
i cos(πiζ−).

In [11] the analytical streamfunction solution for τ = 3
2 is calculated for the choice

α+
1 = α−1 = 1 and all other coefficients zero. This is the motivation to plot analytical

streamfunction solutions for this choice of F (ξ) on the fundamental intervals, as done
in the following.

Analytical streamfunction solution

The choice α+
1 = α−1 = 1 leads to

am =
τ − 1

τ
(S+

1 + S−1 + S+
2 + S−2 ) (16)

with

S+
1 =

∞∑
n=0

∫ 2(2−τ)p−(n+1)

2(2−τ)p−n
cos

(
mπ

(
τ − 1

2τ
ξ + τ − 1

))
cos

(
π

(
ξpn

(2− τ)(1− p−1)
− 1 + p−1

1− p−1

))
dξ,

S−1 =

∞∑
n=0

∫ 2(1−τ)p−n

2(1−τ)p−(n+1)

cos

(
mπ

(
τ − 1

2τ
ξ + τ − 1

))
cos

(
π

(
ξpn

(1− τ)(p−1 − 1)
+

1 + p−1

1− p−1

))
dξ,

S+
2 =

∫ pc+

2(2−τ)

cos

(
mπ

(
τ − 1

2τ
ξ + τ − 1

))
cos

(
π

(
ξ

(2− τ)(1− p−1)
− 1 + p−1

1− p−1

))
dξ
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and

S−2 =

∫ 2(1−τ)

pc−

cos

(
mπ

(
τ − 1

2τ
ξ + τ − 1

))
cos

(
π

(
ξ

(1− τ)(p−1 − 1)
+

1 + p−1

1− p−1

))
dξ.

The plots of the streamfunction and the kinetic energy of the internal waves shown
below are achieved by first integrating S±1 , S±2 in Mathematica and then calculating
the streamfunction Ψ(x, z) as given in (10) on a grid with 1000 × 1000 grid points
in MATLAB. This has been performed for a number of values of τ1.
The kinetic energy is defined by E = 1

2 (u2 +w2) with u = ∂zΨ̂ and w = −∂xΨ̂. This
definition for the kinetic energy is independent of density ρ because ρ is assumed to
be (approximately) constant and can therefore be scaled out.

Figure 1: This figure shows the analytical streamfunction solution for τ = 1.0501. The
solution is generated on 1000 × 1000 grid points (everything below sloping boundary
is zero). Colours towards red indicate at positive streamfunction value while negative
streamfunction are in blue.

1It turns out Mathematica does not give the correct integrals for S±1 and S±2 for a number of values
of τ ∈ (1, 2) because inserting for example τ = 3

2
gives Inf in MATLAB, indicating (in this case) that

one divides by zero. It is not correct to get infinite values because the integrals are all bounded for
τ ∈ (1, 2). This issue can easily be solved by treating cases like τ = 3

2
separately. In the following plots

this computational issue is avoided by adding 0.0001 to values τ . No analytical expressions of am is
given due to this issue.
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Figure 2: This figure shows the analytical streamfunction solution for τ = 1.2501.

Figure 3: This figure shows the analytical streamfunction solution for τ = 1.5001. Ne-
glecting the unnoticeable perturbation due to the fourth decimal in τ this is equal to the
streamfunction solution in [11] for τ = 1.5.
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Figure 4: This figure shows the analytical streamfunction solution for τ = 1.7501.

Figure 5: This figure shows the analytical streamfunction solution for τ = 1.9999.
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Figure 6: This figure shows the kinetic energy E = 1
2(u2 + w2) for τ = 1.701 on a log10

scale. It shows that the kinetic energy increases by several orders of magnitude as one
approaches the attractor. In fact the kinetic energy goes to infinity as one takes the limit
to the attractor. The kinetic energy integrated over the entire domain is also infinite.
The presented kinetic energy is evaluated on a grid with 1500 times 1500 grid points and
all values below 1 (on the log10 scale this is below 0) are shown white.

2.2 Method 2: construction by solving Abel’s functional equa-
tion

A general real-valued solution to the governing equation (7) is given by Ψ(x, z) =
f(x−z)+g(x+z) for arbitrary functions f, g : R→ R. Vanishing of the streamfunc-
tion Ψ at the surface z = 0 gives that g = −f . The task in finding all streamfunction
solutions to (7) which vanishes at the boundary ∂D is therefore to find functions f
with the property

f(x− z) = f(x+ z) for all (x, z) ∈ ∂D, z < 0. (17)

In [9] an algorithm is presented which solves the Abel functional equation. This
has been the inspiration for the solution procedure presented in [1] and applied in
the following to the trapezoidal domains. In order to apply the method to internal
waves confined to the trapezoidal domain Dτ the boundary condition (17) has to be
reformulated to Abel’s functional equation.

2.2.1 Reduction to Abel’s functional equation

Here the boundary condition for an internal wave field in the trapezoidal domain

Dτ := {(x, z) ∈ R2|−τ ≤ z ≤ 0 for −1 ≤ x ≤ 0 and τ(x−1) ≤ z ≤ 0 for 0 < x ≤ 1}
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is reformulated to Abel’s functional equation. This is done by tracing so-called
characteristics through the domain. A characteristic is a inclined line through the
domain of interest, which has a fixed angle with respect to the vertical (same angle
as internal wave propagation, here this is 45 degrees). Physically characteristics
are meaningful as the kinetic energy of internal waves is propagated along char-
acteristics. A web is a trajectory along characteristics through the domain, such
that changes between characteristics only occur on the boundary. See figure (7) for
an illustration of some characteristics and webs. Notice that either −f(x − z) or
f(x + z) is conserved along a characteristic. Upon reflection at the boundary the
web changes direction, following another characteristic and the other component of
the streamfunction Ψ(x, z) is thus conserved. If x is one reflection point of a web at
the surface z = 0 and x′ is another reflection point at the surface of the same web,
then f(x) = f(x′). A comprehensive discussion of characteristics and webs in the
context of internal waves can be found in [13].
Let (x0, 0) for x0 ∈ [−1, 1] be some point on the surface z = 0. In the follow-
ing it is determined where the web passing through (x0, 0) along the characteristic
downwards to the right next reflects at the surface (after being reflected once at
the sloping wall, the bottom z = −τ and the vertical wall x = −1). The positions
of these reflections are denoted by (xi, zi), i = 1, 2, 3 and the next reflection at the
surface z = 0 is at x4.
The interest lies in the the map T (x1) = x4 = x4(x1), which captures the relevant
properties of the two-dimensional topography by following interection points of webs
from one surface point to the next surface point. See also figure (7) for an illustration
of the map T . From the topography Dτ it is immediately clear that z2 = −τ and
x3 = −1. The web through surface point x0, parametrized by the characteristic
c0(x) = −x+ x0 for the first section, intersects the sloping wall z = τ(x− 1) at

c0(x1) = −x1 + x0 = z1 = τ(x1 − 1),

which gives x1 = x0+τ
τ+1 . The web continues along the characteristic c1(x) = x+z1−x1

with z1 = τ(x1 − 1) = τ x0+τ
τ+1 − τ and intersects the bottom z = −τ at

c1(x2) = x2 + (τ − 1)
x0 + τ

τ + 1
− τ = −τ.

So x2 = − τ−1
τ+1 (x0 + τ), leading the web to follow the characteristic c2(x) = −x +

x2 + z2, which intersects the vertical wall x3 = −1 at

c2(−1) = 1− τ − 1

τ + 1
(x0 + τ)− τ = z3.

The characteristic c3(x) = x− x3 + z3 intersects the surface z = 0 at

c3(x4) = x4 − (−1) + 1− τ − τ − 1

τ + 1
(x0 + τ) = 0,

giving

T (x0) = x4(x0) =
τ − 1

τ + 1
(x0 + τ)− 2 + τ = p−1(x0 + r)

where p = τ+1
τ−1 > 1 and r = 2 τ

2−τ−1
τ−1 . This leads to the Schröder functional equation

f(T (x)) = f(x) for x ∈ [−1, 1] (18)
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to be solved, as f is conserved along webs for Ψ(x, z) = f(x − z) − f(x + z). The
constraint

f(−1− z) = f(−1 + z) for z ∈ [−τ, 0], (19)

given by the wall at x = −1, means that f has to be defined over a larger range
than [−1, 1], namely over [−1 − τ,−1 + τ ]. This interval is extended to R by the
constraint

f(x− τ) = f(x+ τ) for x ∈ [−1, 0], (20)

which requires the vanishing of Ψ(x, z) at the flat bottom z = −τ for x ∈ [−1, 0]. So
f(x) has period 2τ and is symmetric around x = −1 + τn for all n ∈ Z (this follows
from symmetry around x = −1 and 2τ -periodicity).

Figure 7: This figure gives an illustration of the four characteristics (blue lines) along
one loop through the trapezoidal domain (from surface to surface). The attractor for
this trapezoidal domain with τ = 3

2 is shown in red, which is the limit cycle for all
characteristics. The characteristics starting at x0 reflects at (x1, zy), (x2,−τ), (−1, z3)
and reaches the surface at x4. The map T is defined such that it projects x1 onto x4.
The yellow intersections of the surface z = 0 show two possible fundamental intervals.
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The map T has a fixed point in s0,− = −1+τ2−τ ∈ (−1, 1), which follows by solving
T (s0,−) = p−1(s0,−+r) = s0,− for s0,−. The meaning of the zero and the minus sign
in the subscript will become clear in the following. The fixed point s0,− = −1+τ2−τ
of T is projected onto s0,+ = −1− τ2 + τ ∈ (−3,−1) by symmetry of f(x) around
x = −1. The sign subscript therefore indicates that s0,− and s0,+ indicates that
these two fixed points are related by symmetry around x = −1. The periodicity with
period 2τ projects the two points s0,± onto sn,± = −1+2τn∓ (τ2−τ) for all n ∈ Z.
Notice that sn+1,+ ∈ [−1+2τn,−1+2τ(n+1)] and sn,− ∈ [−1+2τn,−1+2τ(n+1)]
for each n ∈ Z. This means that each interval Jn = [−1+2τn,−1+2τ(n+1)] contains
exactly two fixed points for T , namely sn+1,+ and sn,−. Due to the periodicity one
can also define f on the circle S = 2τS1, where S1 denotes the unit circle. The fixed
points sn,− and sn,+ split this circle S into two regions.
The Schröder functional equation (18) has to be solved on both regions separately
because non-trivial continuous solutions to (18) can only be attained if one excludes
fixed points of T . See Appendix D (5.4) and Theorem 3 in Beckebanze and Keady,
(2014) for the solvability of the Schröder’s functional equation, which is closely
related to fixed point of the map T . A comprehensive analysis of the solvability of
the Schröder’s functional equation can be found in [7].
Lets focus on the subintervals S1 = (s0,+, s0,−) and S2 = (s0,−, s1,+) of S. These
two subintervals span S excluding its fixed points because s1,+ = s0,+ + 2τ . The
center of these subregions are respectively −1 and −1 + τ , so any solution f on
Si, i = 1, 2, has to be symmetric around the center of the interval (this to satisfy
constraints (19) and (20)).
One way to find all solutions f to Schröder’s functional equation (18) is to find
injective solutions a1 on S1 and a2 on S2 to the Abel’s functional equation

a(T (x)) = a(x) + 1

and compose the injective solutions ai with all continuous period-1 functions Pi, e.g.

f = Pi ◦ ai on Si.

2.2.2 Solving Abel’s functional equation

The implication of theorem 5 in [1] is that the composition f = P ◦ a gives all
possible solutions to (18).
The solution f being symmetric around the centres of the intervals S1 and S2 can
be guaranteed by taking P1 and P2 even functions and a1 and a2 antisymmetric
around the centres −1 and −1 + τ , respectively. Clever choices for the fundamental

intervals of ai on Si, i = 1, 2 are the intervals I
[0]
i , i = 1, 2 which are centred around

−1 and −1 + τ . The index [0] indicates that these are fundamental intervals and
the use of this index will become clear in the following.

Lets determine the bounds of these fundamental intervals centred around −1
and −1 + τ :
For I

[0]
1 = [γ1, T (γ1)) solve

T (γ1)− (−1) = |γ1 − (−1)|

to get γ1 = −τ . Similarly solve

|T (γ2)− (−1 + τ)| = γ2 − (−1 + τ)
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Figure 8: This figure shows a (blue) as defined in (21) and f = P ◦ a (red) for τ = 1.75,

where P (x) = cos(2πx). The fundamental intervals I
[0]
1 and I

[0]
2 are indicated by the

orange ranges on the x-axis. Apparent discontinuities in a are due to numerical errors
made by the plotting algorithm in Mathematica.

for γ2 to get I
[0]
2 = [T (γ2), γ2) = [T (1), 1) = [−3+2τ, 1). The easiest injective choices

for ai which are antisymmetric around the center of the intervals I1 and I2 are linear

functions a
[0]
i = x−T (γi)

γi−T (γi)
− 1

2 . Here the superscript [n] for functions a denotes that

a is valid on the interval I [n] := Tn(I [0]) for n ∈ Z. Iteratively prescribing a
[n]
i on

intervals I
[n]
i = [Tn(γi), T

n+1(γi)) gives

a
[n]
i (x) =

x− Tn(γi)

Tn+1(γi)− Tn(γi)
+ n− 1

2
for x ∈ I [n]

i . (21)

In figure (8) the solution a(x) from (21) as well as f(x) = P (a(x)) with P (x) =
cos(2πx) and τ = 1.75 is shown. For this choice of P the streamfunction Ψ(x, z) =
P (a(x−z))−P (a(x+z)) is identical to the streamfunctions plotted in figures (1)-(5).

2.3 Fractal structure

In the figures in section (2.1.2) one can see that the streamfunction features many
self-similarities. The analytical description of the streamfunction by method 2 makes
it possible to analyse the fractal structure in the streamfunction in more detail.
In the previous section it has been shown that Ψ(x, z) = f(x− z)− f(x+ z) where
f = P ◦ a for arbitrary period-1 function P and a satisfying a(T (x)) = a(x) + 1. It
is the map T which is crucial in understanding the self-similarities of the internal
waves in the trapezoidal domains.
Consider some point (x∞, z∞) on the attractor. Without loss of generality we assume
that (x∞, z∞) lies on part of the attractor which can be parametrized by z = −x+c
for some constant c. In the following it is shown that

Ψ(ζ + x∞, ζ + z∞) = Ψ(p−1ζ + x∞, p
−1ζ + z∞)
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for p = τ+1
τ−1 > 1 and ζ sufficiently close to the attractor2. This means that the

fractal structure on the cascade {(xi, zi) = (p−iζ + x∞, p
−iζ + z∞)}i∈N onto the

attractor point (x∞, z∞) is exact with focusing power p for any starting points
(x0, z0) sufficiently close to the attractor (of course inside the domain and closest to
the part of the attractor of interest).
As the attractor corresponds to fixed points of the map T it must hold that T (x∞+
z∞) = x∞ + z∞. Writing out Ψ(ζ + x∞, ζ + z∞) and using the linearity of T (x) =
p−1(x+ r) gives

Ψ(ζ + x∞, ζ + z∞) = f(x∞ − z∞)− f(2ζ + x∞ + z∞)

= f(x∞ − z∞)− f(T (2ζ + x∞ + z∞))

= f(p−1ζ + x∞ − p−1ζ − z∞)− f(p−1(2ζ) + x∞ + z∞)

= Ψ(p−1ζ + x∞, p
−1ζ + z∞).

2.4 Discussion

Here advantages and disadvantages of the two methods that lead to exact stream-
functions are discussed. Method 1 (subsection(2.1)) is referred as the Fourier method
and method 2 (subsection (2.2.2) as the functional equation method.
When using this Fourier method for practical purposes, e.g. plotting the stream-
function Ψ, then the Fourier series has to be truncated at some n = Nmax. This
results in an approximation of the exact solution which is defined on all of Dτ , but
which is only an approximation.
The description of Ψ by the functional equation method also has to be truncated
after a finite number of iterative prescriptions. The resulting streamfunction is not
defined on all of Dτ : an area around the attractor is left unspecified, but it is exact
wherever it is defined.
For any point in (x0, z0) ∈ Dτ , which does not lie on the attractor, finitely many
steps are sufficient to determine the exact value of Ψ(x0, z0) with the functional
equation method. For the Fourier method all countable infinite many Fourier coef-
ficients an have to be computed to determine Ψ(x0, z0) exactly.
The theoretically exact computation of Ψ(x0, z0) is in practice limited by the fact
that numerical errors are made in each function composition. This means that the
errors in Ψ(x0, z0) can build up considerably if a large number of function composi-
tions Tn have to be computed numerically. For the trapezoidal domain the map T
happens to be linear, making its superposition easy to calculate.
It depends on the specific practical purposes whether the Fourier method or the
functional equation method is more appropriate. For the analysis of the fractal
structure of the streamfunction the functional equation method is certainly more
useful.

It is suggested that the functional equation method can also be used to build numer-
ical schemes which solve the Schröder functional equation and can thereby numeri-
cally calculate the internal wave streamfunction. To give a possible structure of such
a numerical scheme consider some domain with an irregular bottom such that the

2The variable ζ has to be sufficiently small such that (ζ + x∞, ζ + z∞) ∈ Dτ and such that (x∞, z∞)
is the closest part of the attractor. This means that there is not other part of the attractor which is
closer to (ζ + x∞, ζ + z∞).
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map T cannot be calculated analytically. If however the map T can be calculated
numerically by tracing characteristics and numerically calculating intersections with
the boundary of the domain (in many cases this can be done efficiently with bounded
numerical errors) then one can construct an exact piecewise linear solution a to the
Abel’s functional equation with this numerically approximated map T . An advan-
tage is that once the solution a is calculated one can find all solutions to Schröder’s
functional equation by superposition with arbitrary periodic functions.
If experimental data of standing internal waves are given then one can also use the
freedom in the periodic function P and the given function a to find the best fit
of a standing internal wave solution to the data. As P is periodic one could use
sinusoidal functions as the basis for the function space of P .
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3 Tidal conversion

It is estimated that approximately 30% of the tidal energy in the oceans is lost to in-
ternal waves. This process is called tidal conversion. The dissipation of tidal energy
to internal waves is far from uniformly distributed over the oceans, as illustrated in
figure (9), where the estimated rate of energy loss of the barotropic M2 tide is shown.
The regions of intense energy dissipation correspond to regions of irregular bottom
topography (compare the M2 dissipation rate with the ocean’s bottom topography
in figure (10)). There are also regions with ridges and shelfs where the energy dissi-
pation of the M2 is not significantly intensified. This qualitative comparison shows
that tidal conversion is linked to bottom topography in a complicated manner.
In this section the response of two-dimensional monochromatic barotropic flow over
irregular bottom topography is analysed It is assumed that the barotropic mode is
sufficiently weak such that non-linear responses and changes in the surface elevation
can be neglected. Throughout the section it is also assumed that the fluid is uni-
formly stratified, not rotating and frictionless. In [10] it is shown that for a fluid
satisfying these assumptions there exist irregular bottom topographies which lack
tidal conversion. The exact streamfunction solutions for a specific monochromatic
barotropic flow over smooth bottom topography and its response presented in [10]
show that there are internal waves trapped to the region of irregular bottom topog-
raphy, but no internal waves propagate away from this region. This is a remarkable
result as it is known that barotropic tides over bottom topographies other than a
flat bottom generally lead to the generation of propagating internal waves. In a
steady state the kinetic energy of the trapped internal waves is constant over time,
so the irregular bottom topography does not lead to any dissipation of tidal energy.
In this section the emphasis lies on constructing exact solutions for topographies
which lack tidal conversion for a specific frequency of the barotropic tide.
The Abel functional equation and the solution method presented in [1] is put into
context with tidal conversion in subsection (3.1). In subsection (3.3) the analytical
solution presented in [8] is revised to put it into context with tidal conversion. A
more sophisticated bottom topography which lacks tidal conversion for one specific
parameter value is constructed in section (3.4). The construction of the solution
consists of several steps and makes the main part of this section.

3.1 Mathematical description of tidal conversion

In the following the baroclinic response due to barotropic flow over irregular bottom
is analysed Here barotropic flow is by definition a velocity field whose horizontal
components are vertically uniform. Be aware that there are different definitions of
barotropic flow in literature. The assumptions on the fluid are identical to those
proposed in section (1.1). This means that the velocity field (u,w) can be described
by superposition of (possibly infinitely many) monochromatic waves u(x, z, t) =
∂Ψ
∂z e
−iωt, w(x, z, t) = ∂Ψ

∂x e
−iωt with the streamfunction Ψ satisfying

Ψxx − ω2Ψzz = 0. (22)

Here ω is the forcing frequency, which is not removed by scaling and stretching of the
spatial coordinates in order to find velocity fields dependent on ω. In the following
problems the time t is scaled such that no tidal conversion takes place for ω = 1.
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Figure 9: This figure shows the estimated rate of energy loss from the barotropic M2 tide,
from [5].

Figure 10: This figure shows the bottom topography of the oceans, from [18]. Changes in
the color indicate the ridges and shelfs in the bottom of the oceans.
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It is useful to split the streamfunction

Ψ = Ψ̂ + Ψ′

into its barotropic part3 Ψ̂ and its baroclinic part Ψ′. The barotropic flow is pre-
scribed to be Ψ̂(x, z) = −z

h(x) , where h(x) now denotes the bottom topography

z = −h(x). This gives the velocity field u = − 1
h(x) and w = −z h

′(x)
h(x)2 = z ∂u∂x ,

which is barotropic because its horizontal component u is independent of z and
thereby independent of the vertical stratification. The barotropic flow is along the
bottom z = −h(x) because Ψ̂(x,−h(x)) = 1 is a streamline. The surface z = 0 is
also a streamline of the barotropic flow: Ψ̂(x, 0) = 0. The baroclinic (internal wave)
part Ψ′ has to be constant on the boundaries z = 0 and z = −h(x) and it is chosen
to be zero. The boundary condition for Ψ is therefore given by

Ψ(x, 0) = 0 and Ψ(x,−h(x)) = 1.

A general solution to (22) is given by Ψ(x, z) = a(x + z/ω) + g(x − z/ω) for
arbitrary functions a and g. The boundary condition at z = 0 gives that a = −g

3The barotropic streamfunction Ψ̂ used in this section has nothing to do with the time-dependent
streamfunction, denoted by the same symbol, in section (1.1).

Figure 11: This sketch shows a bottom topography with finite support irregularity under
a rigid lid surface (both black lines). The part of the two-dimensional domain above
the irregularity of the bottom is in yellow. Four characteristics oriented towards the
right for some (unspecified) ω are shown in blue. The bottom topography is subcritical
for this ω because the slope ω of the characteristics with respect to the vertical is larger
than the largest slope of the bottom. The map Tω = δ+ω ◦ δ−1−ω depends on ω and takes
one intersection of such a (rightward-oriented) characteristic to its next intersection (x-
coordinate) with the surface. For those characteristics which do not reflect a the irregular
part of the bottom the map Tω takes the form Tω(x) = x+ 2/ω. Notice that Tω(x1) and
Tω)(x2) are much closer together than x1 and x2, because the bottom is focusing for
rightward characteristics between x1 + 1/ω and x = 0. The bottom is defocusing for
rightward characteristics between x = 0 and x3 + 1/ω. As an illustration also the action
of δ−1− is shown for x2. The map δ−1− determines the x-coordinate of the reflection point
of a characteristic with the bottom, given the characteristics previous intersection (to the
left) with the surface.
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and from Ψ(x,−h(x)) = 1 follows that

a(x− h(x)/ω)− a(x+ h(x)/ω) = 1. (23)

The bottom topography being subcritical means that |h′(x)/ω| < 1 where the prime
denotes the derivative. This means that the arguments δ± := x ± h(x)/ω in (23)
are both strictly increasing and therefore invertible, so (23) can be rewritten as the
functional equation

a(T (x)) = a(x) + 1 (24)

with T = δ+ ◦ δ−1
− and δ±(x) = x± h(x)/ω. This equation (24) is known as Abel’s

functional equation. See [7] for a general discussion of this functional equation and
[1] for its application to internal wave problems. The map T takes a surface reflection
point (x, 0) of some characteristic to its next reflection point (x′, 0) = (T (x), 0) at
the surface, which is to the right of x. This is illustrated in the sketch shown in
figure (11).
Notice that if a is a solution to (24), then so is a+P (a) for arbitrary periodic function
P with period 1. This can be seen as taking an inhomogeneous solution a and a
homogeneous solution f = P ◦ a with f satisfying the Schröder functional equation
(18). Physically, the homogeneous part f is an internal mode of the domain, which
is not dependent on a due to the freedom of choice for P .
If a is linear, then the streamfunction constructed from this function a is purely
barotropic (see next section), which means that there are not internal waves (so
also no internal mode). In general a solution a to (24) is not purely barotropic,
meaning that it includes internal modes which are excited by the barotropic mode.
Superimposed onto the internal modes excited by the barotropic mode there can be
other internal modes. Due to the linearity of the problem there is no interaction
between the internal modes. For the study of tidal conversion the focus lies on the
internal modes generated by the barotropic mode, so in the following only Ψ(x, z) =
a(x + z/ω) − a(x − z/ω) with a linear on some suitable fundamental interval is
considered. In this context a suitable fundamental interval is an interval which
corresponds to a flat part of the bottom.

3.2 Tidal conversion in solution to Abel’s functional equation

Scale the time such that ω = 14 and let the domain of the fluid be horizontally
infinitely wide with the bottom z = −h(x) being flat in the limit: h(x) → 1 as
x → ±∞. The stratified fluid lacks tidal conversion if the baroclinic part Ψ′ =
Ψ(x, z)−Ψ̂(x, z) = a(x+z)−a(x−z)− z

h(x) vanishes for x→ ±∞, which is equivalent

to saying that the streamfunction becomes purely barotropic for x → ±∞. Since
lim

x→±∞
h(x) = 1 it follows that

lim
x→±∞

Ψ = lim
x→±∞

Ψ̂ = −z.

The solution a to Abel’s functional equation must satisfy a(x+z)−a(x−z) = −z in
the limits, which means that a(x) must approach the linear function x/2+c for arbi-
trary constant c. Things simplify if the irregularity is over an interval of finite length.

4Alternatively one can stretch the vertical or horizontal axis in order to get ω = 1.
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Finite support bottom irregularity

Lets assume that the irregularity in the bottom topography z = −h(x) is over a
finite interval I ⊂ R and h(x) = 1 for all x /∈ I. For all x > sup(I) − 1 and
x < inf(I)−1 it then follows that T (x) = x+ 2. See figure (11) for an illustration of
why x > sup(I)−1 and x < inf(I)−1 are the appropriate bounds for the rightward
map T for ω = 1. It’s inverse (leftward) map, T−1 takes the form T−1(x) = x − 2
for x /∈ [inf(I) + 1, sup(I) + 1]. The fluid lacks tidal conversion (for ω = 1) if

TN (x) = x+ 2N + c (25)

for all x ∈ (T−1(inf(I)), inf(I)] (a fundamental interval), c an arbitrary constant and
N ∈ N equal or larger than the minimum number of reflections of a characteristic at
the irregular part of the bottom. An upper bound N∗ for the number of reflections
of a characteristic at the irregular part of the bottom can be found by taking

N∗ =
(dsup(I)− inf(I)e)

min
x∈I

(h(x))
,

where d...e denotes the ceiling. If T (x) = x + 2, then a(x) = x/2 + c for arbitrary
constant c is a solution to a(T (x)) = a(x) + 1.

Conjecture: Let H be the space of all continuous bottom functions h : R→ R+

with the properties h(x) = 1 for all |x| > L > 0 for some constant L and such that
x ± h(x) are invertible. It is conjectured that the Lebesque measure of the subset
H0 ⊂ H of functions h which lead to a map T with property (25) is zero.

If this conjecture holds, then this means that it is unlikely (with probability zero)
to encounter a bottom topography which lacks tidal conversion, assuming that bot-
tom topographies that one can encounter in a two-dimensional ocean are arbitrarily
distributed and belong to H.

One can construct bottom functions h(x) such that the corresponding map T ful-
fils (25) for some N ∈ N. This is done in subsection (3.4). Alternatively one can
start with a function a which becomes linear with slope 1/2 in the limits x→ ±∞.
This leads to bottom topographies which are a priori not known. It is possible that
a(x+ h(x)) = a(x− h(x)) + 1 for given function a cannot be solved analytically. In
that case it is not possible to determine the bottom topography z = −h(x) which
lacks tidal conversion.
In order to end up with a finite support bottom topography lacking tidal conversion
one has to start with a function a(x) which becomes linear with slope 1/2 for all
values above and below some maximum and minimum x-value.
In the following section (3.3.1) a known exact solution a to a(x + h(x)) = a(x −
h(x)) + 1 for given h(x) is analysed and put into context with tidal conversion.

3.3 Tidal conversion in Law’s exact solution

In [8], Law presents an exact solution to the functional equation

R(x+ h(x)) = R(x− h(x)) + 2 (26)
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for

h(x) = L0 for x ≤ 0

h(x) = L0 +
L0

2π

(
sin−1

[
sin θ cos

2πx

L0

]
− θ
)

for x > 0.
(27)

Law’s continuous exact solution5

R(x) =
x

L0
for x ≤ L0 and for all n ∈ N

R(x) = − 1

π
tan−1

(
cot

(
π

L0
x

)
− 2n tan θ

)
+ 2n+

1

2
for x ∈ (2nL0 − L0, 2nL0]

R(x) = − 1

π
tan−1

(
cot

(
π

L0
x

)
− 2n tan θ

)
+ 2n+

3

2
for x ∈ (2nL0, 2nL0 + L0]

(28)

is not derived, but merely presented in [8]. A detailed derivation of the exact solution
to (26), presented in the following subsection, gives insight into possible adjustments
on h(x) for which exact solutions can be constructed as well. This allows the con-
struction of exact baroclinic (internal wave) streamfunctions Ψ′ due to barotropic
tidal forcing Ψ̂ = −z/h(x) for infinitely many different near-harmonic bottom to-
pographies z = −h(x) lacking tidal conversion (section (3.3.2)).

3.3.1 Construction of Law’s exact solution

Here a detailed derivation of the exact solution (28) is presented. Lets start with
the trivial relation

2
sin θ

cos θ
= 2 tan θ.

Multiplying the numerator and the denominator of the left hand side by cos θ cos 2πx
L0
−

cos
(

sin−1(sin θ cos 2πx
L0

)
)

gives

2
sin θ cos θ cos 2πx

L0
− sin θ cos

(
sin−1(sin θ cos 2πx

L0
)
)

cos2 θ cos 2πx
L0
− cos θ cos

(
sin−1(sin θ cos 2πx

L0
)
) = 2 tan θ.

Using cos2 θ = 1 − sin2 θ in the denominator, structuring the expression by intro-
ducing a := sin−1(sin θ cos 2πx

L0
) and applying sin θ cos 2πx

L0
= sin a twice gives

2
cos θ sin a− sin θ cos a

cos 2πx
L0
− cos θ cos a− sin θ sin a

= 2 tan θ.

The purpose of the restructuring is to make use of sin a cos θ−cos a sin θ = sin(a−θ)
and cos a cos θ + sin a sin θ = cos(a− θ) to get

−2 sin(θ − a)

cos 2πx
L0
− cos(θ − a)

= 2 tan θ. (29)

5Notice that the solution presented here differs from the solution presented in [8] by a constant factor
1 if x ∈ (2nL0, 2nL0 + L0]. This is to make the resulting solution R(x) continuous.
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A known trigonometric identity (see derivation in appendix E, section (5.5)) is

cot

(
α− β

2

)
− cot

(
α+ β

2

)
=

−2 sinβ

cosα− cosβ
. (30)

Applying this relation to (29) with α = 2πx
L0

and β = θ − a gives

cot

(
2πx
L0
− (θ − a)

2

)
− cot

(
2πx
L0

+ θ − a
2

)
= 2 tan θ. (31)

Notice that from (27) for x > 0 and the definition of a it follows that h(x) =

L0

(
1 + 1

2π (a− θ)
)

= L0

(
1− β

2π

)
and cot is π-periodic. Using this gives

cot

(
2πx
L0
± (θ − a)

2

)
= cot

(
π

L0
(x± (L0 − h(x)))

)
= cot

(
π

L0
(x∓ h(x))

)
.

So from (31) follows

cot

(
π

L0
(x+ h(x))

)
− cot

(
π

L0
(x− h(x))

)
= 2 tan θ. (32)

Adding cot
(
π
L0

(x− h(x))
)
− (2n+ 2) tan θ to (32) and taking tan−1 gives

tan−1

(
cot

(
π

L0
(x+ h(x))

)
− 2(n+ 1) tan θ

)
= tan−1

(
cot

(
π

L0
(x− h(x))

)
− 2n tan θ

)
.

(33)
In the following the equation (33) is used to derive R(x) for x > L0, given that
R(x) = x

L0
for x ≤ L0. This is done by induction on n.

Lets start with the induction basis. Take x∗ ∈ (0, 2L0] and notice that by definition
(27) h is strictly increasing and h(nL0) = L0 for all n ∈ N. So the function δ+(x∗) =
x∗ + h(x∗) maps the interval (0, 2L0] bijectively onto (L0, 3L0] while δ−(x∗) = x∗ −
h(x∗) maps it bijectively onto (−L0, L0], an interval for which R is prescribed. Here
the new variable x∗ is used only if δ± is involved. In the following it is related to x
either by x = δ+(x∗) or x = δ−(x∗), both of which are bijective transformation.
By (26) it must hold that R(δ+(x∗))− 2 = R(δ−(x∗)) for all x∗ ∈ R, so

R(δ+(x∗))− 2 = R(δ−(x∗)) =
x∗ − h(x∗)

L0
for x∗ ∈ (0, 2L0]. (34)

Upon multiplying (33) with − 1
π and then adding 1

2 it coincides with the right hand
side of (34). To see this be reminded that − tan−1(x) + π

2 = cot−1(x) for x > 0. So
for n = 0 and x∗ ∈ (0, 2L0] the left hand side of (34) times −π times must equal the
left hand side of (33) minus 1

2 :

−π(R(δ+(x∗))− 2) = tan−1

(
cot

(
π

L0
δ+(x∗)

)
− 2 tan θ

)
− π

2
for x∗ ∈ (0, 2L0].

Replacing δ+(x∗) for x∗ ∈ (0, 2L0] by x ∈ (L0, 3L0], dividing by −π and adding 2
gives
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R(x) = 2 +
1

2
+ c− 1

π
tan−1

(
cot

(
π

L0
x

)
− 2 tan θ

)
for x ∈ (L0, 3L0].

The undetermined constant term c ∈ R appears because the functional equation
R(δ+(x∗)) = R(δ−(x∗)) + 2 prescribes R(x) for x ∈ (L0, 3L0] only up to a constant.
Requiring R to be continuous (which gives a unique solution once prescribed on some
fundamental interval) gives c = 0 for x ∈ (L0, 2L0] and c = 1 for x ∈ (2L0, 3L0].

Lets now assume that R(x) is known for x ∈ (2nL0 − L0, 2nL0 + L0] as given in
(28) for arbitrary n ∈ N and derive R(x) for x ∈ (2(n+ 1)L0 −L0, 2(n+ 1)L0 +L0]
(induction step). For simplicity only the derivation of R on the first half of the
interval is worked out, as the second part is similar.
On (2nL0 − L0, 2nL0] the function R is given by

R(x) = 2n+
1

2
− 1

π
tan−1

(
cot

(
π

L0
x

)
− 2n tan θ

)
. (35)

Replacing x ∈ (2nL0 − L0, 2nL0] by δ−(x∗) for x∗ ∈ (2nL0, 2nL0 + L0] gives

R(δ−(x∗)) = 2n+
1

2
− 1

π
tan−1

(
cot

(
π

L0
δ−(x∗)

)
− 2n tan θ

)
.

By equation (33) (multiplying it with − 1
π and adding 2n+ 1

2 ) the right hand side is
equal to

R((δ−(x∗)) = 2n+
1

2
− 1

π
tan−1

(
cot

(
π

L0
δ+(x∗)

)
− 2(n+ 1) tan θ

)
and by the functional equation R(δ+(x∗)) = R(δ−(x∗)) + 2 it follows that

R(δ+(x∗)) = 2 + 2n+
1

2
− 1

π
tan−1

(
cot

(
π

L0
δ+(x∗)

)
− 2(n+ 1) tan θ

)
.

When substituting x ∈ (2nL0+L0, 2(n+1)L0] for δ+(x∗) with x∗ ∈ (2nL0, 2nL0+L0]
one gets

R(x) = 2(n+ 1) +
1

2
+ c− 1

π
tan−1

(
cot

(
π

L0
x

)
− 2(n+ 1) tan θ

)
(36)

where the arbitrary constant c must be zero to have continuity at x = 2L0 + L0.
This shows that R(x) as defined in (28) is the unique continuous solution satisfying
the functional equation (26) for h(x) as defined in (27).
In the following section (3.3.2) adjustments to h are suggested, such that one can
also solve for R easily by a similar iterative prescription. In order to understand the
solution procedure in the following section it is worth noticing the two differences
between R(x) and R(x + 2L0) for x ∈ (2nL0 − L0, 2nL0] and any n ∈ N. The first
difference is the constant term, which is a magnitude 2 larger in R(x+2L0), see (36),
compared to R(x), shown in (35). Secondly the factor of tan θ inside the tan−1-term
is increased by 2. These are the only two differences between R(x+ 2L0) and R(x).
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Figure 12: The upper plot shows the streamfunction Ψ(x, z) = 1
2(R(x − z) − R(x + z))

with R as given in (38), for S+ = {0, 2}, S− = {3, 4}, θ = 0.2 and L0 = 1. Its baroclinic
component Ψ′(x, z) = Ψ(x, z) − (−z/h(x)) is shown in the bottom plot. It is clear that
there are no internal waves (= baroclinic part is constant) outside the irregular part of
the bottom domain. Notice also that the baroclinic part is zero on the bottom z = −h(x)
(black line), with h(x) is defined by (37) for S+ = {0, 2}, S− = {3, 4} and θ = 0.2.
Values below the bottom are set to zero.

3.3.2 Solutions for different bottom topographies

The aim is to construct baroclinic streamfunction Ψ′(x, z) for infinitely many bottom
topographies which lack tidal conversion. The solution procedure from the previous
part is adapted to find solutions R to (26) for all bottom topographies

h(x) = L0 for x ≤ 0 and for x ∈ ((n+ 1)L0, (n+ 3)L0] if n ∈ S0

h(x) = L0 +
L0

2π

(
sin−1

[
sin θ cos

2πx

L0

]
− θ
)

for x ∈ ((n+ 1)L0, (n+ 3)L0] if n ∈ S+

h(x) = L0 −
L0

2π

(
sin−1

[
sin θ cos

2πx

L0

]
− θ
)

for x ∈ ((n+ 1)L0, (n+ 3)L0] if n ∈ S−

(37)

where the index sets S+, S− and S0 are disjunct subsets of N0 with S+∪S−∪S0 = N0,
e.g. every index n ∈ N0 is in precisely one of the three index sets. Topologically one
can interpret S+ as the collection of ridges (each integer corresponds to a pair of
ridges) and S− as the collection of troughs. See figure (12) for the topography with
S+ = {0, 2}, S− = {3, 4}.

For any h(x) as given in (37) one can construct R(x) satisfying the functional equa-
tion (26) iteratively, similar to the procedure followed in the previous part. This
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means that we assume R to be known on some interval ((2n − 2)L0, (2n − 1)L0]
for any n ∈ N and use this to calculate R on (2nL0, (2n + 1)L0] (induction step).
Again we do not consider the intermediate intervals ((2n − 1)L0, (2n)L0] because
the calculation is almost identical. The induction basis is left to the reader, as it
is the same as in the previous part when 1 ∈ S+, similar when 1 ∈ S− and trivial
when 1 ∈ S0.
Lets assume that

R(x) = − 1

π
tan−1

(
cot

(
π

L0
x

)
− 2k tan θ

)
+m+

1

2
for x ∈ ((2n−2)L0, (2n−1)L0],

(38)
for some m, k ∈ Z. At this point it is not clear that R has to be of this form for
some k and m. After the calculation of R on (2nL0, (2n + 1)L0] it will be justified
that R must be of the form (38).
There are three cases:
Case 1: if n ∈ S0, then R on (2nL0, (2n+ 1)L0] is identical (upon adding a constant
to guarantee continuity) to R on ((2n− 2)L0, (2n− 1)L0].
Case 2: if n ∈ S+, then R on (2nL0, (2n + 1)L0] is defined from R on ((2n −
2)L0, (2n− 1)L0] as described above in section (3.3.1). This means that m becomes
m+ 2 and 2k is replaces by 2k + 2.
Case 3: if n ∈ S− then one can use (33) to find that

R(x) = − 1

π
tan−1

(
cot

(
π

L0
x

)
− 2(k − 1) tan θ

)
+m+2+

1

2
for x ∈ (2nL0, (2n+1)L0].

To summarize the three cases: In all cases m becomes m + 2. This is to make the
resulting function R continuous. If n ∈ S0, corresponding to a flat bottom h(x) for
x ∈ ((2n − 1)L0, 2nL0], then k stays constant. A ridge, corresponding to n ∈ S+,
leads to an increase of k by 2 and a trough, n ∈ S−, transforms k to k − 2.

It remains to be shown that R is of the form (38). Starting out with R(x) = x
L0

for
x < L0 one gets

R(x) = − 1

π
tan−1

(
cot

(
π

L0
x

)
− 2n tan θ

)
+ 2 +

1

2
for x ∈ (2L0, 3L0].

In each iterative step for the prescription of R the constant 2 is added to the expres-
sion for R, meaning that m = n in (38). The factor of tan θ is increased by 2 during
each iterative step when n ∈ S+ and decreased by 2 when n ∈ S−. This means
that in (38) 2k takes any even integer value between −2n and 2n. This justifies the
assumption that R takes the form (38) on ((2n− 2)L0, (2n− 1)L0].
If the factor of tan θ is zero on some interval, then the expression for R becomes
R(x) = x

L0
on this interval. Be reminded that a topography lacks tidal conversion

if the solution to the Abel functional equation becomes linear for x → ±∞ (see
section (3.1)). Be also reminded that the Abel functional equation is derived from a
functional equation of the form (26), so the result from subsection (3.1) also applies
the solution R satisfying (26). It is easy to check that if

|S+| = |S−| <∞, (39)

then there exists some N (largest element in S+ ∪ S−) such that R(x) = x
L0

for all
x > (N + 1)L0. This means that if (39) is satisfied, then the topography generated
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by S+ and S− according to (37) lacks tidal conversion.
It is easy to see that there are countable infinite many sets S+, S− ⊂ N which lead to
a bottom topography z = −h(x) lacking tidal conversion. This means that the pre-
sented method allows to explicitly construct countably infinitly many exact velocity
fields for tides over near-harmonic bottom topographies which lack tidal conversion.
Baroclinic streamfunctions Ψ′(x, z) lacking tidal conversion due to barotropic forcing
Ψ̂(x, z) = −z/h(x) are given by Ψ′(x, z) = Ψ(x, z)− Ψ̂(x, z) = 1

2 (R(x− z)−R(x+
z)) + z/h(x). In figure (12) the streamfunction Ψ(x, z) = 1

2 (R(x − z) − R(x + z))
and its baroclinic part Ψ′(x, z) are shown for θ = 0.2 and L0 = 1.
The construction of the topographies lacking tidal conversion relies on the observa-
tion that the internal wave field generated by barotropic flow over a pair of ridges,
defined by (37) for n ∈ S+, is exactly opposed by the internal wave field generated
by barotropic flow over a pair of troughs, defined by (37) for n ∈ S− (provided their
distance is a multiple of 2L0). The linearity of the considered internal wave prob-
lem and the absence of diffusion make it possible that the cancellation of these two
internal wave fields works over arbitrary distances and independent of the present
of other non-trivial velocity fields.
The method for the construction of infinitely many topographies lacking tidal con-
version works for any two subcritical bottom topography features with finite support
(e.g. a ridge and a trough) such that the internal wave fields generated by these
two topographies cancel out. It is of course also possible to combine different types
of bottom topographies, provided each bottom topography has a counterpart which
cancels its internal wave velocity field.
Instead of taking pairs of ridges and troughs as done for the topographies in (37)
one could combined single ridges and troughs (rather than pairs) to generate to-
pographies lacking tidal conversion.
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3.4 A ridge which can lack tidal conversion

The ridge bottom topography hs introduced in the following section lacks tidal con-
version for a specific forcing frequency in the hydrostatic limit. This means that
the forcing frequency ω is assumed to be much smaller than the Brunt-Väisälä fre-
quency N . Time is scaled such that the specific forcing frequency for which no tidal
conversion takes place has the value 1. The parameter s is a scale height for the
irregular part of the bottom.
The goal is to determine the energy dissipation of the barotropic tide as a function
of forcing frequency ω and bottom scale height s (subsection (3.4.6)).
The bottom topography z = −hs, which lacks tidal conversion for ω = 1, is in-
troduced and constructed in the following subsection. For this bottom topography
the map T in Abel’s functional equation (24) is computed explicitly in subsection
(3.4.2). This makes it possible to solve Abel’s functional equation (24) explicitly
for general ω, including ω = 1. The resulting exact real-valued baroclinic stream-
function is used in subsection (3.4.6) to determine the energy dissipation of the
barotropic tide. To justify the steps made in subsection (3.4.6) it is necessary to
compute the full time-dependent streamfunction, which requires a complex-valued
streamfunction which propagates energy away from the irregular part of the bottom
topography. The complex extension of the streamfunction above the flat bottom
is presented in subsection (3.4.4) and for the entire two-dimensional domain this is
done numerically in subsection (3.4.5).

3.4.1 Construction of topography lacking tidal conversion

For |x| > Ls where Ls = 3−s
2 and 0 ≤ s < 0.5 the bottom function hs(x) = 1 is

assumed to be flat. For |x| < ls where ls = 1−s
2 the bottom is chosen to be flat

as well, but with a different constant: hs(x) = 1 − s. This leaves the two ranges
−Ls < x < −ls and ls < x < Ls unspecified. Assuming subcritical conditions and
ω = 1 means that the wave beam (characteristic) which reflects at the bottom in
x = −Ls (where z = −hs(−Ls) = −1) also reflects at the bottom at x = ls, where
z = −hs(ls) = 1− s. Due to symmetry it follows that there is also a characteristic
that reflects at both bottom points at x = −ls and x = Ls. So any wave beam
which reflects at the bottom for some x ∈ [−Ls,−ls] also reflects at the bottom for
some x ∈ [ls, Ls] (illustrated in figure (13)). To have no tidal conversion, focusing
(defocusing) of characteristics taking place upon one of these two reflections has
to be compensated by the other reflection. The goal is to find an easily invertible
function hs which is continuously differentiable everywhere when connected to the
hs as defined above for |x| < ls and |x| > Ls and which lacks tidal conversion.
The simplest function which satisfies the above criteria is a piecewise quadratic
function, denoted by ns(x) for x ∈ [(Ls+ls)/2, Ls] and ms(x) for x ∈ [ls, (Ls+ls)/2]
below. This leads to the bottom topography z = −hs(x) given by

hs(x) = 1 for |x| > Ls

hs(x) = ns(|x|) for Ls > |x| >
Ls + ls

2

hs(x) = ms(|x|) for
Ls + ls

2
> |x| > l

hs(x) = 1− s for ls > |x|

(40)
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where Ls = 3−s
2 and ls = 1−s

2 and

ns(x) = −2s(x− Ls)2 + 1 and

ms(x) = 2s(x− ls)2 + 1− s
(41)

Verify that n(L) = 1, n′(L) = 0, n(L+l
2 ) = 1−s/2 = m(L+l

2 ), m(l) = 1−s, m′(l) = 0

and m′(L+l
2 ) = n′(L+l

2 ), where the subscript s of n, m, l and L is dropped for no-
tational convenience. So the bottom topography function hs defined in (40) with n
and m as in (41) is continuously differentiable. If the bottom topography is only
continuous (but not continuously differentiable), then the corresponding stream-
function is only continuous, giving rise to discontinuities in the velocity vectors.
It is legitimate to have a discontinuous velocities because the fluid is assumed to
be inviscid. However a discontinuous velocity field cannot be a good representa-
tion of a weakly viscous fluid and it therefore desirable to start with continuously
differentiable bottom topographies.

Figure 13: This figure shows the bottom topography z = −hs(x) for s=0.3, (green, purple
and orange), the surface z = 0 (black) and some characteristics (thin blue lines) for
ω = 1. Characteristics that are reflected at the green upward slope, x ∈ [−Ls,−Ls+ls

2 ],

also reflect on the green downward sloping part, x ∈ [ls,
Ls+ls

2 ]. If one reflection at the

irregular part of the topography takes place on the orange part, x ∈ [−Ls+ls
2 ,−ls], then

the only other reflection is on the orange part x ∈ [Ls+ls2 , Ls]. Focusing upon one of these
two reflections on the irregular part of the bottom is exactly cancelled by defocusing upon
the other reflection. Characteristics that are reflected on the purple parts of the bottom
are nowhere focused or defocused, as they passed the irregular part of the bottom by only
one reflection on x ∈ [−ls, ls] (purple), where the bottom is flat.
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The function hs cannot be piecewise linear because this does not lead to a con-
tinuously differentiable streamfunction.
The bottom topography defined by this function hs is subcritical for ω = 1 if
0 ≤ s < 1

2 . The figure (13) shows the bottom topography z = −h0.3(x) and some
characteristics with ω = 1. Notice that for ω < 1 the bottom topography hs is
subcritical only if 0 < s < ω

2 <
1
2 .

3.4.2 Forward map T

The map Ts,ω = δ+s,ω ◦ δ−1
−s,ω and its inverse T−1

s,ω = δ−s,ω ◦ δ−1
+s,ω , where δ±s,ω =

x± hs(x)/ω, can now be constructed from the given bottom function hs defined in
(40). See section (3.1) for the purpose of why the construction of T is essential. Due
to its extend the expressions for the inverses of δ±s,ω are presented in the appendix
G, section (5.7). The forward map T is defined by

Ts,ω(x) = x+ 2/ω for |x+ 1/ω| > L

Ts,ω(x) = ns(|δ−1
−s,ω (x)|)/ω + δ−1

−s,ω (x)

for L− 1/ω ≥ x > (L+ l)/2− (1− s/2)/ω

and for − (L+ l)/2− (1− s/2)/ω ≥ x > −L− 1/ω

Ts,ω(x) = ms(|δ−1
−s,ω (x)|)/ω + δ−1

−s,ω (x)

for − l − (1− s)/ω > x ≥ −(L+ l)/2− (1− s/2)/ω

and for (L+ l)/2− (1− s/2)/ω ≥ x > l − (1− s)ω
Ts,ω(x) = x+ 2(1− s)/ω for − l − (1− s)/ω ≥ x ≥ l − (1− s)/ω.

(42)

Similarly the inverse T−1
s,ω is given by

T−1
s,ω(x) = x− 2/ω for |x− 1/ω| > L

T−1
s,ω(x) = ns(|δ−1

+s,ω (x)|)/ω + δ−1
+s,ω (x)

for L+ 1/ω ≥ x > (L+ l)/2 + (1− s/2)/

and for − (L+ l)/2 + (1− s/2)/ω ≥ x > −L+ 1/ω

T−1
s,ω(x) = ms(|δ−1

+s,ω (x)|)/ω + δ−1
+s,ω (x)

for − l + (1− s)/ω > x ≥ −(L+ l)/2 + (1− s/2)/ω

and for (L+ l)/2 + (1− s/2)/ω ≥ x > l + (1− s)ω
T−1
s,ω(x) = x− 2(1− s)/ω for − l + (1− s)/ω ≥ x ≥ l + (1− s)/ω.

(43)

3.4.3 Construction of solution to Abel’s functional equation

In this subsection a continuous solution to Abel’s functional equation (23) for Ts,ω
as given in (42) is constructed. The aim is to construct an odd solution as,ω such
that the streamfunction Ψs,ω(x, z) = as,ω(x − z/ω) − as,ω(x + z/ω) is even in x.
The streamfunction Ψs,ω(x, z) has to be even in x due to the symmetry of hs(x) in
x = 0.
Notice that if as,ω(x) is a solution to as,ω(x− hs(x)/ω)− as,ω(x+ hs(x)/ω) = 1 for
all x ∈ R, then −as,ω(−x) is a solution as well because hs(x) is an even function.
So once a solution as,ω to (24) is found (which is not odd), one can easily construct
an odd solution bs,ω(x) = 1

2 (as,ω(x)− as,ω(−x)).
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Solution to Abel’s functional equation for ω = 1

The function as,1(x) is assumed to be linear to the right of the irregular bottom
topography. So without loss of generality one can assume as,1(x) = (x + s)/2 for
x > L− 1 because Ts,1(x) = x+ 2 for all x > L− 1 = l (the constant s/2 is added
in order to make the resulting solution as,1 odd). Use is made of the algorithm
presented in theorem 6 of Beckebanze and Keady, (2014): the function Ts,1 takes
the interval [−l, l) onto [l, l+2), where as,1 is assumed to be linear. So for x ∈ [−l, l),
taking equation (23), one gets

as,1(x) + 1 = as,1(Ts,1(x)) = Ts,1(x)/2 + s/2

=

{
ns(δ

−1
−s,1(x))/2 + δ−1

− (x)/2 + s/2 for l ≥ x ≥ 0

ms(δ
−1
−s,1(x))/2 + δ−1

−s,1(x)/2 + s/2 for 0 ≥ x ≥ −l.

The interval [−l− 2,−l) is mapped onto [l, l+ 2) by T 2
s,1 = Ts,1 ◦ Ts,1. The bottom

function hs(x) is constructed such that for the specific forcing frequency ω = 1 it
holds that T 2

s,1(x) = x + 2(1 − s) for x ∈ [−l − 2, l). So for −2 − L ≤ x < −l the
solution as,1 to (24) is linear. It directly follows that then as,1(x) is linear for all
x < −l. Working out ns(δ

−1
−s,1(x))/2 + δ−1

−s,1(x)/2 − 1 + s/2 and ms(δ
−1
−s,1(x))/2 +

δ−1
−s,1(x)/2− 1 + s/2 gives

as,1(x) =


x/2 + s/2 for x > l
−1+2s−2sx+

√
1−4s+4s2+8sx

4s for l ≥ x ≥ 0
+1−2s−2sx−

√
1−4s+4s2−8sx

4s for 0 ≥ x ≥ −l
x/2− s/2 for x < −l.

(44)

From this solution as,1 (which is already odd) to Abel’s functional equation the
streamfunction Ψ1(x, z) = as,1(x − z) − as,1(x + z) is constructed. The bottom
plot in figure (15) shows this streamfunction for s = 0.2. Its baroclinic part
Ψ′s,1(x, z)=Ψs,1(x, z)− (−z/hs(x)) is shown in figure (16).

Solution to Abel’s function equation for general ω

Lets now assume that as,ω(x) = (ω/2)(x+ s) is linear for all x ≥ L− 1/ω, which is
the natural extension from as,1(x) = (x+s)/2 from the previous part. The function
Ts,ω takes the interval I1 = [T−1

s,ω(L− 1/ω), L− 1/ω) onto I0 = [L− 1/ω, L+ 1/ω),
so for x ∈ I1

as,ω(x) = as,ω(Ts,ω(x))− 1 = (ω/2)(Ts,ω(x) + s)− 1.

This is the first step of the algorithm presented in theorem 6 of Beckebanze and
Keady, (2014), which can be used to define the solution as,ω iteratively for all
x < L − 1/ω: for some x ∈ In = [T−n(L − 1/ω), T−(n−1)(L − 1/ω)) the solution
as,ω(x) is defined by

as,ω(x) = (ω/2)(Tns,ω(x) + s)− n. (45)

Be reminded that the function Ts,ω is linear with slope 1 for x < −L − 1/ω and
x > L − 1/ω. So one has to count the iterations N which are necessary to send
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Figure 14: The left plot shows a solution as,ω to Abel’s functional equation (23) for
s = 0.2, ω = 1.5 and where a(x) = (ω/2)(x + s) is prescribed for x ≥ L − 1/ω. Upon
subtracting the linear trend ω/2 this solution as,ω(x) is periodic with period 2/ω for all
x ≤ −L−1/ω. The right plot shows the solution as,1, as expressed in (44). The diagonal
black lines have slope ω/2 and 1/2 respectively.

L − 1/ω with T−1
s,ω to some value below −L − 1/ω. For ω < 1 this is N = 2. All

values of ω > 1 considered in the following subsections are such that N ≤ 4. On
the interval [T−Ns,ω (L− 1/ω), L− 1/ω) = IN

⋃
...
⋃
I1 the solution as,ω is defined as

in (45).
For x < T−Ns,ω (L− 1/ω) = min(IN ) the prescription of as,ω is simple:

as,ω(x) = as,ω(y)−m = (ω/2)(TNs,ω(y) + s)− n−m

where y = x− (2/ω)m for some m ∈ N such that y ∈ IN . For all x < T
−(N−1)
s,ω (L−

1/ω) the solution as,ω is periodic with period 2/ω upon subtracting the linear trend
ω/2. This can be seen in the left plot of figure (14). In this plot one can also see
that as,ω is clearly not odd for ω = 1.5. This means that one has to construct
an odd solution bs,ω(x) = 1

2 (as,ω(x) − as,ω(−x)) to (23) from as,ω as suggested in
the beginning of the section. With this odd solution bs,ω one can then compute the
streamfunction Ψs,ω(x, z) = bs,ω(x−z/ω)−bs,ω(x+z/ω). This streamfunction Ψs,ω

is shown in figure (15) for ω = 1.5, 1.1 and 1 and s = 0.2. Its baroclinic component
Ψ′s,ω = Ψs,ω − Ψ̄ for these parameter values is shown in figure (16). For |x| > L the
streamfunction Ψs,ω(x, z) as well as its baroclinic part Ψ′s,ω(x, z) are periodic in its
x-coordinate with period 2/ω.

3.4.4 Complex streamfunction above flat bottom topography

The goal is to construct a streamfunction Ψ̄s,ω such that its baroclinic part has an
energy flux propagating away from the irregular bottom topography. Here the bar
on Ψs,ω indicates that the streamfunction is complex-valued. This means that the
real-valued streamfunction Ψs,ω(x, z) = bs,ω(x + z/ω)− bs,ω(x− z/ω), constructed
as before, has to be extended with an imaginary part to facilitate propagation of
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the internal wave.
In order to study the dissipation of energy from the barotropic mode Ψ̂s,ω to the
baroclinic internal wave mode Ψ′s,ω it makes sense to require tidal conversion to be
the only energy source for internal waves. This means that there cannot be internal
waves (transporting kinetic energy) travelling towards the irregularity of the bottom.
So for x > L the baroclinic streamfunction Ψ must facilitate propagation towards
the right (away from the irregular part of the bottom), which can be expressed as

Ψ̄′s,ω(x, z) =

∞∑
n=1

ψn sin(πnz) exp(iπnωx) for x > L (46)

for complex coefficients ψn. For notational convenience the dependency of ψn on s
and ω is not expressed in a subscript. Notice that (46) satisfies the partial differen-
tial equation (22). Similarly for x < −L the radiation condition requires the energy
to propagate in opposite direction, so the sign of the argument of the x-dependent

Figure 15: This figure shows the analytical streamfunction solutions Ψs,ω(x, z) =
bs,ω(x + z/ω) − bs,ω(x − z/ω) where bs,ω(x) = 1

2(as,ω(x) − as,ω(−x)) and as,ω con-
structed in the previous subsection, satisfies the boundary conditions Ψs,ω(x, 0) = 0 and
Ψs,ω(x,−hs(x)) = 1. The top plot shows Ψs,ω for s = 0.2 and ω = 1.5 (with a0.2,1.5 also
shown in figure (14)), the middle plots presents Ψs,ω for s = 0.2 and ω = 1.1 and the
bottom plot shows the streamfunction Ψs,ω for s = 0.2 and the specific forcing frequency
ω = 1, which lacks tidal conversion.
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exponential changes. See [2] and [4] for a detailed discussion of why this condition
corresponds to energy transportation away from the irregular bottom topography.
Only the energy propagation for x > L is considered in the following.
Be reminded that above the flat bottom z = −1 the real-valued baroclinic stream-
function

Ψ′s,ω(x, z) = bs,ω(x+ z/ω)− bs,ω(x− z/ω)− z

hs(x)
(47)

vanishes at z = 0 and z = −1 for all x ∈ [L,∞) and has 2/ω-periodicity in the x-
coordinate. This means that for (x, z) ∈ [L,∞]× [−1, 0] one can project Ψ′s,ω(x, z)

Figure 16: This figure shows the baroclinic mode Ψ′0.2,ω(x, z) = Ψ0.2,ω(x, z) − z/hs(x)
where Ψ0.2,ω(x, z) = b0.2,ω(x + z/ω) − b0.2,ω(x − z/ω) and b0.2,ω(q) = (a0.2,ω(q) −
a0.2,ω(−q))/2 for ω = 1.5 (top), ω = 1.1 (middle) and ω = 1. The bottom z = −hs(x)
and the surface z = 0 are indicated by the black lines. Notice that for ω = 1 the baroclinic
mode is constant to the right and left of the irregular bottom topography, indicating that
there are no internal waves propagating away from the irregular part of the bottom (no
tidal conversion). Notice also that the color scale goes from -0.1 to 0.1 only. This shows
that the baroclinic part in the streamfunction Ψs,ω(x, z), which itself takes values between
0 and 1, is small.
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onto the modes sin(πnz) cos(πnxω) and sin(πnz) sin(πnxω):

Ψ′s,ω(x, z) =

∞∑
n=1

(ψ1,n sin(πnz) cos(πnx/ω) + ψ2,n sin(πnz) sin(πnx/ω)) .

The Fourier coefficients ψ1,n and ψ2,n for n ∈ N can be calculated by inverse Fourier
transformation from Ψ′s,ω(x, z) as given on [L,L+ 2/ω]× [−1, 0] according to (47).
Notice that this can be done exact as (47) is analytic6. Using the complex-valued
coefficients defined by

ψn := ψ1,n − iψ2,n for all n ∈ N
6In practice it turns out to be more efficient to calculate ψ1,n and ψ2,n numerically as the integrals for

the coefficients have to be split over many different subintervals, making the analytical work extremely
time-consuming.

Figure 17: This figure shows the same six snapshots as in figure (18), but focused on
the region to the left of the irregular bottom topography. One can see that over time the
internal waves propagate to the left, thereby transporting kinetic energy away from the
region of irregular part of the bottom topography. The color bar is the same as in figure
(16), which ranges from -0.1 to 0.1.
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in equations (46) makes Ψ̄′s,ω(x, z) a natural extension of Ψ′s,ω(x, z) because

<(Ψ̄′s,ω(x, z)) = <

( ∞∑
n=1

(ψ1,n − iψ2,n) sin(πnωz) exp(iπnx)

)
= Ψ′s,ω(x, z).

By construction the complex baroclinic streamfunction Ψ̄′s,ω(x, z) satisfies the ra-
diation condition. By changing the sign in the x-dependent argument in (46) the
real-valued baroclinic streamfunction Ψ′s,ω(x, z) can also be extended to (x, z) ∈
(−∞,−L]× [−1, 0].
A time-series of the real part of the time-dependent baroclinic streamfunction7

Ψ′s,ω(x, z, t) = Ψ̄′s,ω(x, z)e−iωt (48)

to the left of the irregular bottom (x < −L0.2 = −1.4) is show in figure (17). The
six snapshots over half a period π/ω show that the internal wave perturbation is
moving to the left, away from the irregular bottom, transporting kinetic energy with
it.
In subsection (3.4.6) the kinetic energy radiated away from the irregular bottom
part is calculated and its dependence on the forcing frequency ω and scale height s
is analysed.
Above the irregular bottom topography the extension of the real streamfunction to
the complex streamfunction as prescribed above does not work. The reason is that
the modes sin(πnz) cos(πnx) and sin(πnz) sin(πnx) for n ∈ N do not form a basis
of Ψ′(x, z) any more, as Ψ′(x,−1) 6= 0 for x in the range of the irregular bottom
topography.

It is desirable to have a time-dependent streamfunction on the entire spatial do-
main. To this end an unpublished method by Maas and Harlander, which gives
exact expressions for the streamfunction on a chosen grid, is implemented. This is
described in the following subsection.

3.4.5 Complex streamfunction above irregular bottom topogra-
phy

In order to extend the streamfunction to an imaginary part, such that its real part
after multiplication with e−iωt is time-dependent, a method by Maas and Harlander
([12], unpublished) is used. This method is described in the following.

The method by Maas and Harlander requires a topography which lacks tidal con-
version. Here this topography is given by hs0 for some s0 ∈ (0, 0.5) (which is not
known a priori) with hs0 given by (40). By construction hs0 lacks tidal conversion
for ω = 1 and all s0 ∈ (0, 0.5). The goal is the determine the complex-valued stream-
function Ψ̄s,ω(x, z, t) above the bottom topography hs for some chosen parameter
values ω 6= 1 and s ∈ (0, ω/2).
The crux of the method is to start with the exact streamfunction Ψs0,1(x, z) =
as0,1(x − z) − as0,1(x + z) for ω = 1 with topography z = −hs0(x), lacking tidal

7All time-dependent streamfunctions in this and the following section are complex-valued. The bar
on top of the streamfunction is therefore dropped if time-dependency is explicitly expressed
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conversion for ω = 1 and to find some residual streamfunction

Ψ̃s,ω = Ψ̄s,ω −Ψs0,1

such that <(Ψ̄s,ω(x, 0)) = 0 and <(Ψ̄s,ω(x,−hs(x))) = 1. Once complex-valued Ψ̃s,ω

is calculated, one can determine Ψ̄s,ω. The task is to find a suitable s0 ∈ (0, 0.5),

which depends on s and ω, such that Ψ̃s,ω can be calculated.

Notice that the residual streamfunction Ψ̃s,ω also satisfies the partial differential

equation (22) and from Ψ̃s,ω(x, 0) = Ψ̄s,ω(x, 0) − Ψs0,1(x, 0) = 0 − 0 = 0 for all
x ∈ R it follows that

Ψ̃s,ω(x, z) = f(x− z/ω)− f∗(x+ z/ω) (49)

Figure 18: This figure shows six snapshots of the real part of real part of the time-
dependent baroclinic streamfunction Ψ′s,ω(x, z, t) = Ψ̄′s,ω(x, z)e−iωt with s = 0.2 and ω =
1.1, calculated with the method described in section (3.4.5). The parameter values s0 used
in this numerical calculation, which guarantees that (51) is satisfied, is s0 = 0.20694432.
The numbers above the plots indicate the time, scaled with frequency ω. The number π
therefore represents the baroclinic streamfunction Ψ′s,ω(x, z, 0) after half a period. Notice
that <(Ψ′s,ω(x, z, 0)) = −<(Ψ′s,ω(x, z, ωπ)). The color bar is the same as in figure (16),
which ranges from -0.1 to 0.1.
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where ∗ denotes the complex conjugate and f : R→ C is arbitrary. For |x| > L, with
L = max (Ls, Ls0), the bottom z = −hs(x) = −hs0(x) = −1 is flat, which means
that <(Ψ̃s,ω(x,−hs(x))) = <

(
Ψ̄s,ω(x,−hs(x))−Ψs0,1(x,−hs(x))

)
= 1 − 1 = 0.

This means that

<(f(x+ 1)− f∗(x− 1)) = 0 for |x| > L.

For |x| ≤ L the real part of Ψ̃s,ω(x,−hs(x)) does not vanish as

<(Ψ̃s,ω(x,−hs(x))) = <(Ψ̄s,ω(x,−hs(x)))−Ψs0,1(x,−hs(x))

= 1− as0,1(x− hs(x)) + as0,1(x+ hs(x)) 6= 0.
(50)

Physically there cannot be any net flux (which radiates kinetic energy) through the
bottom z = −hs(x) because the barotropic tide with frequency ω 6= 1 is assumed to
be the only source of energy for the baroclinic internal wave modes. So one has to
assume that

<

 ∞∫
−∞

Ψ̃s,ω(x,−hs(x))dx

 =

L∫
−L

(1− as0,1(x− hs(x)) + as0,1(x+ hs(x)))dx = 0,

(51)
which expresses that there is no net flow through the boundary z = −hs(x). It is
this constraint which prescribes s0. It is possible to evaluate the integral in (51)
analytically, which is necessary to be able to solve for s0 as a function of s. However
the integral has to be subdivided into many integrals over different intervals due
to the piecewise description of as0,1, with s0 part of the integral bounds. For the
analysis in this report the value of s0 is determined numerically.
Condition (51) together with hs(x) being an even function means that one can write
the residual streamfunction at the boundary z = −hs(x) as a Fourier expansion:

Ψ̃s,ω(x,−hs(x)) =

∞∑
n=1

ψn cos(πnx/L) for |x| ≤ L. (52)

For given function as0,1, where s0 is determined by (51), one can solve for the real-
valued Fourier coefficients ψn by inverse Fourier transform. The constraint (50)
allows to add any imaginary part to Ψ̃s,ω(x,−hs(x)), so one can prescribe

Ψ̃s,ω(x,−hs(x)) = Γs,ω(x) for |x| ≤ L (53)

where

Γs,ω(x) =

∞∑
n=1

ψne
−iπnx/L.

The constraint for f is then

f(x+ hs(x))− f∗(x− hs(x)) = Γs,ω(x) for |x| ≤ L. (54)

By construction the residual streamfunction Ψ̃s,ω(x, z) = f(x− z/ω)− f∗(x+ z/ω)
satisfies the boundary condition (50).
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Numerical solution algorithm

Equation (54) is solved by a numerical algorithm. In the first step this algorithm,
which is implemented in MATLAB, determines the reflection points (x-coordinates)
at the irregular part of the bottom of four characteristics that start at some given
point (x, z) for given forcing frequency ω.
To illustrate this assume (x0, z0) to be given and consider the characteristic passing
through this point in the direction↙ (in (x, z)-coordinates). This characteristic↙ is
parametrized by x−z = c0 with constant c0 = x0−z0. It intersects with the bottom
z = −hs(x) at x↙1 which satisfies δ+(x↙1 ) = x↙1 + hs(x

↙
1 ) = c0. The point x↙1 can

be calculated analytically with the expression for δ−1
+ , presented in the appendix G

(5.7). Continuing along the characteristic (which reflects at the subcritical bottom

at x↙1 upward to the left) it next reflects at the surface at x = x↙1 − 1/ω. The next

reflection x↙2 at the bottom is then determined by evaluating δ−1
+ (x1 − 1/ω). This

procedure is repeated until the irregular part of the bottom has been passed (which

is the case if x↙i < Ls).
Doing the same also for the other three possible characteristics starting at (x0, z0)
results in at most four non-empty sets

S↙ = {x↙i |i = 1, ...N↙},

S↘ = {x↘i |i = 1, ...N↘},

S↖ = {x↖i |i = 1, ...N↖},

S↗ = {x↗i |i = 1, ...N↗}.

(55)

If |x0| > Ls, then exactly two of the four sets are non-empty.
The value of the residual streamfunction Ψ̃s,ω at the point (x0, z0) is then determined
by adding up Γs,ω(xi) for all xi ∈ S↙

⋃
S↘ and subtracting it for all xi ∈ S↖

⋃
S↗:

Ψ̃(x0, z0) =

N↙∑
n=1

Γs,ω(x↙i ) +

N↘∑
n=1

Γs,ω(x↘i )−
N↖∑
n=1

Γs,ω(x↖i )−
N↗∑
n=1

Γs,ω(x↗i ).

By construction the function Ψ̃(x, z) has the form (49) and satisfies (54).
The barotropic part Ψ̂s,ω(x, z) = −z/hs(x) can now be subtracted from the nu-

merically calculated streamfunction Ψ̄s,ω(x, z) = Ψ̃s,ω(x, z) + Ψs0,1(x, z) to get the
baroclinic time-dependent part

Ψ′s,ω(x, z, t) =
(

Ψ̃s,ω(x, z) + Ψs0,1(x, z) + z/hs(x)
)
e−iωt. (56)

This baroclinic time-dependent part is identical to the Ψ′s,ω(x, z, t) as calculated
by (48) above the flat bottom within reasonable numerical errors. For a grid of
∆x = ∆z = 0.01 the relative error was found to be less than 1% everywhere and
below 10−5 at most grid points.
The snapshots of the real part of the time-dependent baroclinic streamfunction in
figure (18) are produced with this numerical algorithm. It verifies that the time-
dependent baroclinic streamfunction as calculated in subsection (3.4.4) is correct.
The analytical expression for the baroclinic streamfunction, expression (47), is there-
fore used in the following part to determine the kinetic energy which is radiated away
from the irregular part of the bottom and to compare this with the trapped kinetic
energy.
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3.4.6 Radiated and trapped energy

The interest lies in the energy dissipation in the barotropic tide due to the generation
of internal waves. The kinetic energy is proportional to the square of the absolute
velocity u2 + w2 of the velocity field (u,w). As the proportionality can be scaled
it is assumed that the kinetic internal wave energy E in some domain Ω ⊂ R2 is

Figure 19: This figure shows the radiated energy E↔ = 2E← of the barotropic mode
integrated over one tidal period 2π/ω, as a function of forcing frequency ω (horizontal
axis) and scale height s (vertical axis). The lower bound for ω is chosen such that the
bottom topography z = −hs(x) is subcritical for all plotted values of s. The case of no
tidal conversion, ω = 1, is marked by the black line. The grid size in s is 0.01 and in ω
it is 0.05. The smallest value for s is 10−5. For each pair (s, ω) the radiated energy E←
is numerically determined from the exact baroclinic streamfunction (47), integrated over
[−Ls − 2/ω,−Ls]× [−1, 0].
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defined as

E(Ω, t) =

∫
Ω

u2(x, z, t)+w2(x, z, t) dxdz =

∫
Ω

(
∂Ψ′(x, z, t)

∂z

)2

+

(
∂Ψ′(x, z, t)

∂x

)2

dxdz.

The energy loss rate ∂tE of the barotropic mode can be determined by calculat-
ing the kinetic energy flux of the baroclinic (internal wave) mode along some path
from z = −1 to z = 0 to the right or left the irregular part of the bottom. The
entire barotropic energy dissipation rate is then twice this baroclinic energy flux, as
the baroclinic energy flux away from the irregular bottom part must be the same
in both directions due to symmetry. The energy loss rate ∂tE integrated over one
tidal period 2π/ω is referred to as the radiated kinetic energy and denoted by E←,
where the arrow indicates the direction of radiation. The radiated kinetic energy
E↔ = 2E← is shown in figure (19) as a function of ω and s.

One can determine E↔ by integrating Ψ′s,ω(x, z, t) over the domain [−Ls−2/ω,−Ls]×

Figure 20: This figure shows the trapped energy E0 as a function of forcing frequency ω
(horizontal axis) and scale height s (vertical axis). Notice that it is only weakly dependent
on the forcing frequency ω around ω = 1, but that it strongly increases in magnitude as
ω increases towards ω = 1.8.
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[−1, 0]. So the radiated energy E← is the kinetic energy of the baroclinic streamfunc-
tion integrated over the plotted domain in figure (17) (at any time t). Computation-
ally this is convenient because Ψ′s,ω(x, z, t) for t = 0 is given by the exact expression
(47). Due to time limitation of the project the radiated energy E← presented in
figure (19) is calculated by determining the baroclinic velocity field (u(x, z), w(x, z))
from the exact baroclinic streamfunction Ψ′s,ω(x, z) with central difference in space
numerical approximations and then numerically integrating the square of the com-
ponents on a grid with grid sizes ∆x = ∆z = 0.05. The smallest value for s is 10−5.
It is possible to calculate the kinetic energy analytically. It requires differentiation of
(47) with respect to x and z, taking the square of these derivatives and integrating
them over the domain [−Ls − 2/ω,−Ls] × [−1, 0]. The main difficulty lies in the
tracing of domains and ranges of bs,ω and hs, as these two functions are defined by
several functions on subsequent intervals.

Figure 21: This figure the ratio of the radiated energy E↔ with the trapped energy E0

s a function of forcing frequency ω (horizontal axis) and scale height s (vertical axis).
Notice that the colours on the color scale are periodic. A ratio above 5 (also red) can
only be found in the bottom left corner.
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It has been found that there are internal waves above the irregular bottom topog-
raphy, also in the case of no tidal conversion (see figure (16)). The kinetic energy
of these trapped internal waves is referred to as the trapped energy E0. For the
cases of no tidal conversion the trapped energy E0 is well-defined, as it is simply the
kinetic energy of the entire baroclinic velocity field (with baroclinic streamfunction
given by (47) for ω = 1). For the cases of tidal conversion one has to distinguish
between propagating and trapped (standing) waves. This is done by defining the
trapped energy E0 to be the kinetic energy of the baroclinic wave field given by
the streamfunction Ψ′(x, z, 0) = Ψ′(x, z) as given in equation (47) integrated from
x = −Ls to x = Ls and z ∈ [−hs(x), 0]. This is a natural extension of the trapped
energy definition from the case of no tidal conversion and is shown in figure (20).
The ratio of the radiated energy E↔ with the trapped energy E0 is shown in figure
(21).
Notice that the radiated energy E← depends strongly on both parameters s and ω
(see figure (19)). This shows that the height of the ridge as well as the barotropic
tidal frequency are important parameters in determining the barotropic energy dis-
sipation to internal waves.
In figure (21) one can see that the ratio E↔/E0 of the radiated and trapped kinetic
energies depends only weakly on the height of the ridge (parameter s). This is a
remarkable result, which is discussed in the following.

3.5 Discussion

The weak dependence of the ratio of the radiated and trapped kinetic energies on
the height of the ridge is interesting because it gives a connection between the in-
finitesimal small bottom topography and finite size bottom perturbation.
Many studies on tidal conversion consider an ocean if infinitely depth, see for exam-
ple [2] and references in [6]. Upon scaling the ocean to finite size this means that
the height of the irregular bottom topography, which can lead to tidal conversion,
is infinitesimal small. If the ratio of the radiated and trapped kinetic energies turns
out to be approximately independent of the scale height in general, then one can
easily relate results for infinitesimal small bottom topographies to finite size bottom
irregularities of the same shape.

An interesting question to ask is whether the method used here to construct two-
dimensional exact baroclinic streamfunctions by solving Abel’s functional equation
can be generalized to three-dimensional tidal conversion problems. One of the main
ingredients that made the construction of the exact internal wave solutions possible
is the fixed angle of the propagation direction of internal waves in a uniformly-
stratified fluid with respect to vertical direction and the abnormal “rule of reflection”
associated with it. The map T makes implicitly use of it.
In contrast to the two-dimensional case discussed in this thesis, the fixed angle with
respect to the vertical does not uniquely describe the propagation direction in three
dimensions upon reflection. The reflection in the horizontal plane is described by
the “normal” rule of reflection: the angle of the outgoing wave beam (projected into
the horizontal plane) is the same angle of the incident angle with respect to the
normal of the bottom topography (also projected into the horizontal place).
A generalization of the map T therefore requires to define a map T : R2 → R2 which
takes the two horizontal coordinates (x, y) onto T (x, y) = (T1(x, y), T2(x, y)) such
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that this extended rule of reflection of a characteristic in three dimension is satisfied.
Topographies lacking tidal conversion can be constructed from maps which become
linear upon (finite) composition of itself. No true three-dimensional topographies
lacking tidal conversion (which cannot be mapped into one horizontal dimension) for
barotropic modes oscillating in one (horizontal) direction is known. As barotropic
modes usually form elliptic orbits due to the rotation of the earth it is also interesting
to ask whether topographies lacking tidal conversion for such elliptic tidal forcing
exist.
We expect that it is much more unlikely to encounter three dimensional topographies
lacking tidal conversion in the space of topographies (for a given frequency and
uniform stratification) because a map T : R2 → R2 associated with such a three-
dimensional topography must become linear in both T1 and T2.
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4 Conclusions

In section 2 analytical solutions to small-amplitude standing internal wave in a uni-
formly stratified fluid confined to trapezoidal domains and exhibiting (1,1) attractors
are constructed. The exact streamfunctions are constructed by two different meth-
ods, of which one is new. The new method derives the streamfunction solution from
solutions to Abel’s functional equation, which turns out to be useful for a large
class of internal wave problems, including the tidal conversion problem in section 3
and other subcritical topographies treated in Beckebanze and Keady, 2014. It also
gives new insight into the fractal structure of the internal waves in a trapezoid: the
self-similarity of the velocity field is exact as one zooms in onto the attractor.
The baroclinic (internal wave) field in a uniformly stratified ocean caused by barotropic
flow over a ridge is constructed for different barotropic tidal frequencies and for a
variable relative height of the ridge. The parameter range for the barotropic tidal
frequency includes a frequency for which no internal wave propagate away from the
ridge. This makes it possible to study the energy dissipation of the barotropic tide
as a function of relative height of the ridge and forcing frequency. For all parameter
values internal waves are trapped to the region of the ridge. It is found that the
ratio of the kinetic energy of these trapped internal waves and the kinetic energy
radiated away from the ridge is only weakly dependent on the relative height of the
ridge, but strongly depends on the forcing frequency.
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5 Appendices

5.1 Appendix A: log5-periodicity of energy En for τ = 3
2

The kinetic energy of a wave field (u(x, z), w(x, z)) at some point (x, z) is propor-
tional to u(x, z)2 + v(x, z)2. It is interesting to analyse the kinetic energy of the
Fourier modes of the velocity field, as it gives insight on spatial scale and variance of
the kinetic energy distribution. In section (??) the streamfunction Ψ is determined
by deriving exact expressions of its Fourier coefficients an. The kinetic energy of the
nth Fourier mode of the velocity field (u(x, z), w(x, z)) = (∂zΨ(x, z),−∂xΨ(x, z))
integrated over the entire trapezoidal domain Dτ is proportional to n2a2

n.
In the following En := n2a2

n as a function of n ∈ N is analysed. In [11], where the
Fourier coefficients an are calculated exactly for τ = 3

2 , En is plotted as a function of
log5(n) in figure 1. This plot indicates that the values of En for n ∈ N sample along
some curve with period 1, suggesting that En as log5-periodicity. Here it shown that

lim
n→∞

E5n = En

for τ = 3
2 . For this parameter value the coefficients an are given by

an =
2n

π

∞∑
k=0

sin
( nπ

3 · 5k
)( 1

n2 − (3/2)2 · 52k
− 1

n2 − (3/2)2 · 52k+2

)
in equation (10) in [11]. This leads to

En = n2

(
2n

π

∞∑
k=0

sin
( nπ

3 · 5k
)( 1

n2 − (3/2)2 · 52k
− 1

n2 − (3/2)2 · 52k+2

))2

=
4n4

π2

( ∞∑
k=0

sin
( nπ

3 · 5k
)( (3/2)2(52k − 52k+2)

n4 − n2(3/2)2(52k + 52k+2) + (3/2)454k+2

))2

.

Similarly we can calculate E5n:

E5n = 54 4n4

π2

( ∞∑
k=0

sin
( nπ

3 · 5k−1

)( 52 · (3/2)2(52k−2 − 52k)

54 · (n4 − n2(3/2)2(52k−2 + 52k) + (3/2)454k−2)

))2

=
4n4

π2

( ∞∑
k=−1

sin
( nπ

3 · 5k
)( (3/2)2(52k − 52k+2)

n4 − n2(3/2)2(52k + 52k+2) + (3/2)454k+2

))2

=
4n4

π2

(
sin

(
5nπ

3

)(
(3/2)2(5−2 − 1)

n4 − n2(3/2)2(26/25) + (3/2)45−2

))2

+
4n4

π2
sin

(
5nπ

3

)(
(3/2)2(5−2 − 1)

n4 − n2(3/2)2(26/25) + (3/2)452

)
·

( ∞∑
k=0

sin
( nπ

3 · 5k
)( (3/2)2(52k − 52k+2)

n4 − n2(3/2)2(52k + 52k+2) + (3/2)454k+2

))

+
4n4

π2

( ∞∑
k=0

sin
( nπ

3 · 5k
)( (3/2)2(52k − 52k+2)

n4 − n2(3/2)2(52k + 52k+2) + (3/2)454k+2

))2

= sn(sn + n · an) + En
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where sn := 2n2

π

(
sin
(

5nπ
3

) ( (3/2)2(5−2−1)
n4−n2(3/2)2(26/25)+(3/2)45−2

))
.

Now it will be shown that sn(sn + nan) converges to zero for n → ∞. It is clear

that s2
n converges to zero because |s2

n| ≤ 4n4

π2 | (3/2)4(5−2−1)2

(n4−n2(3/2)2(26/25)+(3/2)452)2 | ≤
c
n4 for

some sufficiently large c ∈ R+.

Similarly we can observe that |sn · n · an| ≤ c′
∑∞
k=0

(3/2)2(52k−52k+2)
n4−n2(3/2)2(52k+52k+2)

for some

constant c′ > 0, so also sn · n · an converges to zero for n→∞. This concludes the
prove that En is log5-periodic for n→∞.
From section (2.3) it is known that for τ = 3

2 the analytical streamfunction so-
lution contracts with a factor p = τ+1

τ−1 = 5 towards the attractor, leading to an
exact log5 periodicity as the attractor is approached. This is an indication that
the approximate log5-periodicity in the Fourier energy terms En results from the
exact log5-periodicity in part of the streamfunction Ψ. The streamfunction Ψ is
not entirely log5-periodic because the self-similarity only holds as one zooms in onto
the attractor, but not zooming out. Analysis of numerical results suggests that for
general τ ∈ (1, 2) the energy En has logp-periodicity with p = τ+1

τ−1 as n→∞. It is
speculated that this can be proven as above for general τ .

5.2 Appendix B: Γ-equation reviewed

In [11] it is argued that the Fourier coefficients which prescribe the exact internal
wave streamfunction are a solution of a set of countable infinite linear equations.
The linear equations are prescribed by a countable infinite matrix, referred to as Γ,
and the Fourier coefficients of any function which guarantees the vanishing of the
streamfunction on the boundary of the domain.
Here it is shown that the countable infinite matrix Γ is not invertible. This implies
that it is not possible to generate unique Fourier coefficients of the streamfunction
solution if a function F , which guarantees the vanishing of the streamfunction on
the boundary of the domain, is prescribed. It turns out that the system of countable
infinite linear equations is in fact under-determined. This ill-posedness results from
the fact that the domain of the function F , which should guarantee the vanishing
of the streamfunction on the boundary, is not sufficiently large (shown in section
(2.1)).
Extending the domain of F leads to a well-posed set of constraints which result in
a streamfunction solution for a trapezoidal domain which does vanish on its bound-
aries.

The two following subsections show how the countable infinite matrix Γ is derived
and that it defines an operator on the Hilbert space of square-summable sequences.
In subsection (5.2.3) it is argued that Γ is under-determined.

5.2.1 Derivation of Γ

In [11] a countable infinite matrix Γ′ is introduced (in [11] it is denoted by Γ) which
satisfies

cos(kπ
ξ

3
) =

∞∑
n=0

(−1)kΓ′n,k cos(nπξ). (57)
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for ξ ∈ [−1, 1] and k ∈ N. It is stated that the countable infinite matrix which
satisfies (57) is given by

Γ′n,k ≡ −
3k

π
sin

(
kπ

3

)
(−1)nεn
k2 − 9n2

(58)

for n ∈ N
⋃
{0}, k ∈ N and εn = 2 if n 6= 0 and ε0 = 1.

Notice that it is unclear which values the countable infinite matrix takes if k = 3n
because one cannot divide by zero.
In the following a slightly different countable infinite matrix Γ is derived, namely
Γn,k which satisfies

cos(kπ
ξ

3
) =

∞∑
n=0

Γn,k cos(nπξ). (59)

It will turn out that Γn,k = −Γ′n,k for k 6= 3n and Γn,3n = 1.

Notice that the entry Γn,k of the countable infinity matrix Γ is the nth Fourier
coefficient of the function cos(kπx3 ) over the interval x ∈ [−1, 1] for some given
k ∈ N. So from (59) one can conclude that

Γn,k =
1

Ln

∫ 1

−1

cos(
kπx

3
) cos(nπx)dx.

where Ln :=
∫ 1

−1
cos(nπx)2dx. Lets make a case distinguishing in order to evaluate

this integral:

Case 1: n, k ∈ N, k 6= 3n
Evaluating the integral now gives

Γn,k =
(−1)n6k sin(kπ3 )

π(k2 − 9n2)
.

This expression corresponds exactly to −Γ′n,k as defined in (58).

Case 2: n = 0, k ∈ N
The second cosines term under the integral becomes 1 for n = 0 and L0 = 2, so

evaluating 1
L0

∫ 1

−1
cos(kπx3 )dx gives Γ0,k =

3 sin( kπ3 )

πk = −Γ′0,k.

Case 3: n ∈ N, k = 3n
If k = 3n, then both cosine terms under the integral are equal and the integral

becomes Γn,3n =
∫ 1

−1
cos(nπx)2dx = 1. Notice that this expression for k = 3n cor-

responds with the limit lim
k→3n

(
−Γ′n,k

)
= 1.

It can be concluded that Γ is the extension of −Γ′. In fact Γ′ can only be derived
from (57) if (−1)k is replaced by −1.

5.2.2 Γ is an operator on `2

The countable infinite matrix Γ works on countably infinite vectors, in other words:
on sequences. An interesting question is therefore whether Γ defines an operator on
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the Hilbert space `2 := {(an)n∈N :
∑∞
k=1 a

2
n < ∞} of square-summable sequences.

The space `2 is clearly a suitable domain for Γ, so one has to check whether Γ maps
`2 into itself. This is checked by showing that s ∈ `2 implies ‖Γ · s‖2 <∞.

Lets split Γ into three parts: Γ
(j)
n,k = Γn,3k−j for j = 0, 1, 2. If ‖Γ(j) · s‖2 < ∞ for

j = 0, 1 and 2 for any s ∈ `2, then also ‖Γ · s‖2 < ∞. By definition Γ(0) is the
countable infinite identity matrix, so clearly ‖Γ(0) · s‖2 = ‖s‖2 <∞.
By equation (59) we have that

cos(π

(
kξ +

2

3

)
) =

∞∑
n=0

Γ
(1)
n,k cos(nπξ). (60)

Define the function f(ξ) :=
∑∞
k=1 sk cos(π(kξ+ 2

3 )) for ξ ∈ [−π, π]. By definition f ∈
L2([−π, π]), the function space defined by the 2-norm because s ∈ `2. Substituting
(60) into the Fourier expansion of f gives

f(ξ) =

∞∑
k=1

sk

∞∑
n=0

Γ
(1)
n,k cos(nπξ) =

∞∑
n=0

( ∞∑
k=1

Γ
(1)
n,ksk

)
cos(nπξ).

Parseval’s Theorem states that

‖‖‖f‖‖‖2 :=

 π∫
−π

|f(x)|2dx

1/2

= ‖
∞∑
k=1

Γ
(1)
n,ksk‖2,

where ‖‖‖f‖‖‖2 denotes the 2-norm of f ∈ L2([−π, π]). Next it will be shown that

‖‖‖f‖‖‖2 <∞, which implies the desired result ‖
∑∞
k=1 Γ

(1)
n,ksk‖2 = ‖Γ(1) · s‖2 <∞.

Using cos (a+ b) = cos a cos b− sin a sin b with a = πkξ and b = 2π/3 gives

‖‖‖f‖‖‖2 = ‖‖‖
∞∑
k=1

sk cos(π

(
kξ +

2

3

)
)‖‖‖2 = ‖‖‖

∞∑
k=1

sk

(
cos(πkξ) cos

(
2π

3

)
− sin(πkξ) sin

(
2π

3

))
‖‖‖2.

This norm can be bounded by

‖‖‖ cos

(
2π

3

) ∞∑
k=1

sk(cos(πkξ)‖‖‖2 + ‖‖‖ sin

(
2π

3

) ∞∑
k=1

sk sin(πkξ)‖‖‖2.

Since cos( 2π
3 ) ≤ 1 and sin(2π

3 ) ≤ 1 we get

‖‖‖f‖‖‖2 ≤ ‖‖‖
∞∑
k=1

sk(cos(πkξ)‖‖‖2 + ‖‖‖
∞∑
k=1

sk sin(πkξ)‖‖‖2 = 2

∞∑
k=1

|sk|2 = 2‖s‖2 <∞

because s ∈ `2. This completes the proof that ‖Γ(1) · s‖2 < ∞. The proof for
‖Γ(2) · s‖2 <∞ is similar. Thereby it is verified that Γ is a well-defined operator on
`2.

5.2.3 Underdetermination of Γ

In the following it is shown that the linear system Γ · a = F for F ∈ `2, from now
on also referred to as Γ-equation, is under-determined. This implies that Γ is not
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invertible and that a solution a is not unique.
Be reminded that a function is invertible if and only if it is a bijection. A counterex-
ample will be provided to show that Γ is not injective and therefore not bijective.
Let us first study the structure of Γ as defined above in more detail. The first
components of Γ are

Γ =



3
√

3
2π

3
√

3
4π 0 − 3

√
3

8π − 3
√

3
10π 0 3

√
3

14π
3
√

3
16π 0 ...

3
√

3
8π

6
√

3
5π 1 12

√
3

7π
15
√

3
16π 0 − 21

√
3

40π − 24
√

3
55π 0 ...

− 3
√

3
35π − 3

√
3

16π 0 3
√

3
5π

15
√

3
11π 1 21

√
3

13π
6
√

3
7π 0 ...

3
√

3
80π

6
√

3
77π 0 − 12

√
3

65π − 15
√

3
56π 0 21

√
3

32π
24
√

3
17π 1 ...

− 3
√

3
143π − 3

√
3

70π 0 3
√

3
32π

15
√

3
119π 0 − 21

√
3

95π − 3
√

3
10π 0 ...

3
√

3
224π

6
√

3
221π 0 − 12

√
3

209π − 3
√

3
40π 0 21

√
3

176π
24
√

3
161π 0 ...

− 3
√

3
323π − 3

√
3

160π 0 3
√

3
77π

15
√

3
299π 0 − 21

√
3

275π − 6
√

3
65π 0 ...

...
...

...
...

...
...

...
...

...
. . .


The fact that Γn,3l = δn,l for all l ∈ N leads to the nice structure that every third
column represents a unit sequence.

Define a sequence β by:
β1 = 1
β2 = −2
β3n = −Γn,1 + 2Γn,2 for n ∈ N
βl = 0 else wise

This sequence β = {βn}n∈N is an element of `2. To see this notice that ‖β‖22 =
1 + 22 + c21 − 4 < c1, c2 > +4c22 where c1 = {Γ1,n}n∈N⋃

{0} and c2 = {Γ2,n}n∈N⋃
{0}.

Both c1 and c2 are elements of `2, so < c1, c2 > and c22 = | < c2, c2 > | are finite.
This means that ‖β‖22 is also finite, so β ∈ `2.
Now it will be shown that Γ ·β = 0. For the first element of Γ ·β it is clear that it is

zero because Γ0,1 · β1 + Γ0,2 · β2 =
√

3
π − 2 ·

√
3

2π = 0. The ith element of the sequence
Γ · β is the sum Γi,1 · 1 + Γi,2 · (−2) + Γi,3i · βi = 0 because all other components
Γi,3l · βl for l ∈ N,l 6= 3i vanish since Γn,3l = 0 for l 6= 3n. This shows that Γ is not
injective because β is a non-trivial element in the kernel of Γ. This completes the
proof that Γ cannot be inverted.

5.3 Appendix C: Constraints on F

5.3.1 Periodicity of Fτ (ξ)

In this section it is analysed for which values of τ the function F (ξ) is periodic.
The function F (ξ) satisfies the functional equation (12) which is equivalent to
Ψ(x, τ(x−1)) = 0. So F (ξ) is periodic if and only if the constraint Ψ(x, τ(x−1)) = 0
is periodic for x ∈ R because ξ is linearly related to x.
The Fourier series solution Ψ given in (15) is periodic in x and z coordinates with
period 2τ . This means that

Ψ(x, z) = Ψ(x+ 2τk, z + 2τ l)

for all k, l ∈ Z. So Ψ(x, τ(x− 1)) = 0 is periodically satisfied for x ∈ R with period
Tτ if Ψ(x, τ(x− 1)) = 0⇔ Ψ(x+ Tτ , τ(x+ Tτ − 1)) = 0. This means that Tτ = 2τk
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and τTτ = 2τ l⇔ Tτ = 2l for some k, l ∈ Z.

If τ ∈ Q
⋂

(1, 2), then τ = a
b for some a, b ∈ N, b ≥ 2, a ≥ 3. So Tτ = 2ab k = 2l

and we find the (smallest) period T = 2a (for k = b and l = a).

If τ ∈ I
⋂

(1, 2), then it is impossible to satisfy both T = 2τk and T = 2l because
if it was possible, then one could write τ = k

l which contradicts the assumption that
τ ∈ I := R−Q.

From a ≥ 3 (which is necessary to satisfy 1 < τ < 2) it follows that T 3
2

= 6 is

the smallest possible period for τ ∈ (1, 2), which is the case τ = 3
2 discussed in [11].

More on the specific case τ = 3
2 can be found in in the following subsection.

5.3.2 Domain of Fτ (ξ) for τ = 3
2

Here it is shown for τ = 3
2 that F (ξ) =

∑∞
n=1 an cos(nπ( 1

6ξ + 1
2 )) is in fact defined

for ξ ∈ R once F is defined for x ∈ [ 3
5 , 1] and assumed to be symmetric or antisym-

metric.
Notice that the streamfunction Ψ is periodic with period 2τ = 3 in x and z coor-
dinates. The coordinate transformation x = 1+ξ

2 therefore leads to a periodicity
with period 4τ = 6 in ξ. This means that any choice for the function F (ξ) must be
periodic with period 6.
It is clear that if F (ξ) is known for ξ ∈ ( 1

5 , 1] and ξ ∈ [−1,− 1
5 ), then one can itera-

tively specify F (ξ) for all ξ ∈ [− 1
5 ,

1
5 ] thanks to the relation F (ξ) = F (5ξ).

In [11] it is pointed out that if one uses the coordinate transformation ξ = 2s+3
5 ,

which identifies s ∈ [−1, 1] to ξ ∈ [ 1
5 , 1], one gets F (ξ) = F (5ξ) =

∑∞
n=1 an cos(nπ( 5

6ξ+
1
2 )) =

∑∞
n=1(−1)nan cos(nπ s3 ). It is argued that from this relation it can be con-

cluded that both the symmetric part F s(ξ) and antisymmetric part F a(ξ) of F (ξ)
must be symmetric around 3

5 on ξ ∈ [ 1
5 , 1]. However this argument is not correct

and the statement happens to be true for F s(ξ) only; the antisymmetric part F a(ξ)
must be antisymmetric around 3

5 on ξ ∈ [ 1
5 , 1]. This can be derived from the peri-

odicity with period 6 together with the condition that F (5ξ) = F (ξ). Lets discuss
the symmetric and antisymmetric cases separately.
If the symmetric part F s(ξ) is prescribed on ξ ∈ [ 1

5 , 1], then so is it on ξ ∈ [1, 5]
by F s(ξ) = F s(5ξ) and on ξ ∈ [−5,−1] by symmetry around ξ = 0. The func-
tion value F s(ξ) for ξ ∈ [−5,−1] must be equal to F s(ξ + 6) due to periodicity
with period 6. Using ξ = t + 3 for t ∈ [−2, 2] (equivalent to ξ ∈ [1, 5]) we get
F s(t+ 3) = F s(ξ) = F s(−ξ) = F s(−ξ + 6) = F s(−t+ 3), showing that F s(ξ) must
be symmetric around ξ = 3 on ξ ∈ [1, 5]. This is equivalent to saying that F s(ξ) is
symmetric around ξ = 3

5 on ξ ∈ [ 1
5 , 1].

For the antisymmetric part F a(ξ) it follows by the same arguments as for F s(ξ)
that once it is prescribed on ξ ∈ [ 1

5 , 1], then it is also prescribed on ξ ∈ [1, 5] and
ξ ∈ [−5,−1]. Using again ξ = t+3 for t ∈ [−2, 2] it follows that F a(t+3) = F a(ξ) =
−F a(−ξ) = F a(−ξ + 6) = −F a(−t + 3), so F a(ξ) must be antisymmetric around
ξ = 3 on [1, 5] or equivalently antisymmetric around ξ = 3

5 on [ 1
5 , 1].

It is trivial that due to periodicity the function F is defined on R once it is defined
on any connected interval of length 6. Notice also that on any connected interval
of lengths 6 the integral over the function must vanish because cos(nπ( 1

6ξ + 1
2 ))

vanishes integrated over an interval of length 6 for every n ∈ N, so also F (ξ) =
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Figure 22: This figure shows the function F (ξ) on the range ξ ∈ [−7, 5] for four differ-
ent choices on the fundamental intervals (part in red). The blue part is the extension
onto [0, 15 ], the green part the extension onto [1, 5] via F (ξ) = F (5ξ). The dashed part
corresponds to (anti)symmetric mirroring around ξ = 0 and everything in yellow results
from a shift of length 6 to the left (periodicity). On the top the function F is assumed
to be symmetric around ξ = 0 and chosen such that it is symmetric around ξ = 3 on
[1,5]. It can be seen that the function value is singular everywhere, meaning that it is
well defined. For F symmetric around ξ = 0, but antisymmetric around ξ = 3 on [1,5]
(second from top) this is clearly not the case because the function is not well defined on
[-5,-1].Choosing F (ξ) antisymmetric around ξ = 0 for all ξ and antisymmetric around
ξ = 3 on [1,5] (second from bottom) gives a consistent definition of F (ξ) while choosing
F a(ξ) symmetric around ξ = 3 on [1,5] (bottom) lead again to a contradiction.
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∑∞
n=1 an cos(nπ( τ−1

τ ξ + τ − 1)) vanishes over such an integral. This means that F s

cannot be a non-zero constant. The symmetric and antisymmetric prescriptions of
F s and F a are also illustrated in figure (22).

5.4 Appendix D: Weak streamfunction solution

In this subsection it is shown that any function f : I ⊂ R→ R which is continuous
and piecewise continuously differentiable leads to a weak streamfunction solution
Ψ(x, z) = f(x − z) − f(x + z) to (8) on some open domain D ⊂ R2. The interval
I must be sufficiently large such that (x, z) ∈ D implies (x ± z) ∈ I. In order to
satisfy the Dirichlet boundary condition Ψ = 0 on ∂D the function f must satisfy
f(x− z) = f(x+ z) for all (x, z) ∈ ∂D.

A function Ψ is a weak solution of the equation ∂2Ψ
∂x2 − ∂2Ψ

∂z2 = 0 on a closed domain
D̄ if it satisfies ∫

D

(
∂2Ψ

∂x2
− ∂2Ψ

∂z2

)
φ dxdz = 0 (61)

for every smooth function φ (with compact support, which is satisfied for any smooth
function on a bounded and closed domain D).
Notice that the finitely many points in I on which f is not continuously differentiable
lead to finitely many lines (characteristics) in D ⊂ R2 on which Ψ is not continuously
differentiable. This means that Ψ is continuously differentiable almost everywhere
on D in Lebesgue measure. Denote D′ the subset of D on which Ψ is continuously
differentiable. Notice that Lebesgue measures of D and D′ are equal because the
finite points in I on which f is not continuously differentiable lead only to finitely
many lines (characteristics) in D ⊂ R2 on which Ψ is not continuously differentiable.
So the integral in (61) can simply be restricted to D′. On D′ it is possible to apply
integration by parts on (61) because Ψ and φ are both continuously differentiable
and due to the compact support of φ it follows that (61) is equivalent to∫

D′

(
∂2(f(x− z)− f(x+ z))

∂x2
− ∂2(f(x− z)− f(x+ z))

∂z2

)
φdx = 0. (62)

Clearly we have that ∂2(f(x−z)−f(x+z))
∂x2 − ∂2(f(x−z)−f(x+z))

∂z2 = 0, so (62) is true for
any smooth function φ on D which concludes the prove that Ψ is a weak solution of
the (8).
Theorem 3 in Beckebanze and Keady, (2014) states that the only solution to Schröder’s
functional equation for some map T exhibiting a fixed point is a constant solution.
This leads to a constant streamfunction for the internal wave problem associated
with the map T , which is not particularly interesting. This means that one has to
work with weak solutions or exclude the attractor from the domain in order to study
frictionless internal waves.

5.5 Appendix E: Derivation of a trigonometric identity

Here the trigonometric relation

cot

(
α− β

2

)
− cot

(
α+ β

2

)
=

−2 sinβ

cosα− cosβ
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is derived. This relation is used in the derivation of the solution R to (26).
Write α+β

2 = a and α−β
2 = b, then

cot

(
α− β

2

)
− cot

(
α+ β

2

)
=

cos b

sin b
− cos a

sin a
=

cos b sin a− cos a sin b

sin a sin b
.

Using sin(a−b) = cos b sin a−cos a sin b and sin a sin b = ∓(cos (a± b)−cos a cos b)
gives

cos b cos a− cos a sin b

sin a sin b
=

sin (a− b)
1/2 sin a sin b+ 1/2 sin a sin b

=
sin (a− b)

1/2 cos (a− b)− 1/2 cos (a+ b)
.

Substituting a− b = β and a+ b = α gives

sin (a− b)
1/2 cos (a− b)− 1/2 cos (b+ a)

=
−2 sinβ

cosα− cosβ
,

which is the desired result.

5.6 Appendix F: Generality of method to construct Law’s
exact solutions

The aim in studying the construction of the exact solution presented in [8] is to get
an idea whether this general method can be recovered and whether it is suitable
to construct exact solutions R(x) for other functions h(x) that can be of inter-
est as bottom topography in the context of standing internal gravity waves. In
section (3.3.2) the use of relation (33) is modified to find exact streamfunctions
Ψ(x, z) = 1

2 (R(x−z)−R(x+z)) lacking tidal conversion for infinitely many bottom
topographies h.
Another crucial relation used in the construction of the exact solution R to (26) is
the relation (30). Here it is shown that this relation cannot be used to find funda-
mentally different bottom topography h as given in (27).
Taking

cot(x− h(x))− cot(x+ d(x)) =
−2 sin 2h(x)

cos 2x− cos 2h(x)
= c (63)

for any constant c one can solve for h(x) to get an idea of the diversity of the function
h(x) which solves (63).
Multiplying with cos 2x − cos 2h(x), replacing sin(2h(x)) by

√
1− cos2(2h(x)) and

taking the square on both sides of (63) gives

4(1− cos2(2h(x))) = c2
(
cos2(2x)− 2 cos(2x) cos(2h(x)) + cos2(2h(x))

)
Treat cos(2h(x)) as a variable y. The two solutions of the quadratic equation

(−4− c2)y2 + 2c2 cos(2x)y + 4− c2 cos(2x)2 = 0

are given by

y± =
c2 cos(2x)± 2

√
4 + c2(1− cos2(2x))

4 + c2
.
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Check that the solutions y± are real for all c, x ∈ R and that |y±| ≤ 1. The solutions
for h(x) are given by taking 1

2 cos−1 of y±:

h(x) =
1

2
cos−1

c2 cos(2x)± 2
√

4 + c2 sin2(2x)

4 + c2

 .

Numerically it has been shown that this solution corresponds to h(x) in (27) where
c is related to θ via c = 2 tan θ.
In [8] the author does not present the construction of the presented exact solu-
tion, but claims that it comes from a “general method which yields a class of near-
harmonic trajectories with exactly solvable R(x)”. This general method is not pub-
lished elsewhere [C. K. Law, personal communication]. C. K. Law says that the
exact solution R for near-harmonic function h(x) is derived in the following way:
For some harmonic h0(x) an approximate solution R0(x) is constructed. Then it is
examined for which h(x) this R0 is an exact solution. This general approach might
be useful to find exact intern wave solutions to other domains.

5.7 Appendix G: Analytical expressions of δ±

Calculating the inverse of δ−(x) = x−hs(x) where hs is the bottom function defined
in (40) gives

δ−1
−s,ω (x) = x+ 1/ω for x > L− 1/ω

δ−1
−s,ω (x) =

−ω + 6s− 2s2 +
√
ω2 + 8s− 12ωs+ 4ωs2 + 8ωsx

4s

for L− 1/ω ≥ x > L+ l

2
− (1− s/2)/ω

δ−1
−s,ω (x) =

−ω + 2s− 2s2 −
√
ω2 − 8s+ 4ωs+ 8s2 − 4ωs2 − 8ωsx

4s

for
L+ l

2
− (1− s/2)/ω ≥ x > l − (1− s)/ω

δ−1
−s,ω (x) = x− (1− s)/ω for l − (1− s)/ω ≥ x > −l − (1− s)/ω

δ−1
−s,ω (x) =

ω − 2s+ 2s2 −
√
ω2 − 8s− 4ωs+ 8s2 + 4ωs2 − 8ωsx

4s
for − l − (1− s)/ω ≥ x > −(L+ l)/2− (1− s/2)/ω

δ−1
−s,ω (x) =

−ω − 6s+ 2s2 +
√
ω2 + 8s+ 12ωs− 4ωs2 + 8ωsx

4s
for − (L+ l)/2− (1− s/2)/ω ≥ x > −L− 1/ω

δ−1
−s,ω (x) = x+ 1/ω for − L− 1 ≥ x.

(64)
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The inverse of δ+(x) = x+ hs(x) is given by

δ−1
+s,ω (x) = x− 1/ω for x > L+ 1/ω

δ−1
+s,ω (x) =

ω + 6s− 2s2 −
√
ω2 + 8s+ 12ωs− 4ωs2 − 8ωsx

4s

for L+ 1/ω ≥ x > L+ l

2
+ (1− s/2)/ω

δ−1
+s,ω (x) =

−ω + 2s− 2s2 +
√
ω2 − 8s− 4ωs+ 8s2 + 4ωs2 + 8ωsx

4s

for
L+ l

2
+ (1− s/2)/ω ≥ x > l + (1− s)/ω

δ−1
+s,ω (x) = x+ (1− s)/ω for l + (1− s)/ω ≥ x > −l + (1− s)/ω

δ−1
+s,ω (x) =

−ω − 2s+ 2s2 +
√
ω2 − 8s+ 4ωs+ 8s2 − 4ωs2 + 8ωsx

4s
for − l + (1− s)/ω ≥ x > −(L+ l)/2 + (1− s/2)/ω

δ−1
+s,ω (x) =

ω − 6s+ 2s2 −
√
ω2 + 8s− 12ωs+ 4ωs2 − 8ωsx

4s
for − (L+ l)/2 + (1− s/2)/ω ≥ x > −L+ 1/ω

δ−1
+s,ω (x) = x− 1/ω for − L+ 1 ≥ x.

(65)

These expressions for δ−1
± have to be substituted into the expression for the map

T presented in (42) and its inverse T−1 expressed (43). Thereby these expression
are part of the exact description of the streamfunction solutions presented in the
solution a, equation (45), to Abel’s functional equation.
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