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A B S T R A C T

In this thesis we consider a generalised Einstein-Cartan theory, and
the effects of including space-time torsion in the description of grav-
ity. We add the most general covariant dimension four operators to
general relativity coupling torsion with fermionic fields, with arbi-
trary strength. If the gravitational action is taken to be he Einstein-
Hilbert action, torsion is local and non dynamical and can be inte-
grated out to yield to an effective four-fermion interaction. In this
theory we study the dynamics of a collapsing universe that begins in
a thermal state and find that – instead of a big crunch singularity –
the Universe with torsion undergoes a bounce. We solve the dynami-
cal equations (a) classically (without particle production); (b) includ-
ing the production of fermions in a fixed background in the Hartree-
Fock approximation and (c) including the quantum backreaction of
fermions onto the background space-time. In the first and last cases
the Universe undergoes a bounce. The production of fermions due
to the coupling to a contracting homogeneous background speeds up
the bounce, implying that the quantum contributions from fermions
is negative. When compared with former works on the subject, our
treatment is fully microscopic (namely, we treat fermions by solving
the corresponding Dirac equations), and quantum (in the sense that
we include fermionic loop contributions).
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1
I N T R O D U C T I O N

Einstein’s theory of general relativity was published nearly 100 years
ago. In all this time, we can claim we have understood gravity on
macroscopic scales extremely well. We tested the dynamical and ge-
ometrical properties of space-time in our solar system, we observed
gravitational lensing near galaxies, and indirectly detected black holes.

Such picture of the gravitational interaction, however, is still far
from being complete. A first evidence of this is found in cosmolog-
ical data: nearly 95% of the universe visible through gravitational
interaction, is made of dark matter and dark energy. If we trust the stan-
dard model of particle physics to be complete, then gravity must be
modified on large scales, and the dark components of the universe be
the result of geometrical corrections to the Einstein’s equations. On
the other hand, if we assume that gravity is the complete theory, then
we need extra particles and exotic fields to be added to the standard
model’s catalogue.

The second main source of sleepless nights for theoreticians, are
the complications arising when the microscopic behaviour of gravity
is explored. Near black holes singularities, gravity obeys quantum
mechanics, and should be described by an unified theory of quantum
gravity. Constructing such a theory, however, has proven to be quite
a difficult task, and we are still far from a concrete answer.

To improve our understanding, we must search for modifications
of gravity that leave unaltered its predictions on solar system’s scales,
but bring it closer to the concepts at play in the quantum world. Ele-
mentary particles, in the standard model, are modelled by irreducible
representations of the Poincaré group. Each representation is classi-
fied by mass and spin: mass is connected to the translational part of
the group, and spin with the rotational part [13]. Since general rel-
ativity couples the energy-momentum tensor, which characterise a
macroscopic distribution of mass, to the geometrical quantity repre-
senting the curvature, it is natural to ask whether also spin could be
coupled to the geometry of space-time. The geometrical quantity of
interest is, in this case, the torsion tensor, which is the antisymmetric
part of the connection, Sλµν = Γλ[µν]. Varying the matter action with
respect to torsion, leads to the spin density of matter,

Πλ[µν] =
2√
−g

δLm

δSλ[µν]
,

which, analogously to the energy-momentum tensor, describes a macro-
scopic distribution of particles with spin. The resulting theory was
proposed for the first time by E. Cartan [5, 6] and in subsequent
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2 introduction

works [17, 34], and goes by the name of Einstein-Cartan-Kibble-Sciama
(ECKS) gravity.

A caveat here is that one can think of spin in two ways: classically
or according to quantum mechanics. For example, if planets with spin
would couple to torsion we should have observed its consequences on
solar system’s scales. Since it has not been the case, we should think
about torsion more like an operator which couples to the intrinsic
spinorial structure of quantum theories. In a sense that will become
clearer later, torsion can be seen as a local and topological modifica-
tion of space-time, that modifies the behaviour of gravity in particular
at high energy densities.

Inclusion of torsion in gravitational theories can be understood as
follows: Einstein’s General Relativity, in first order formalism, has
two dynamical variables, the metric gµν and the connection Γλµν.
These are sufficient to fully describe the space-time manifold, once
dimension and metric signature are specified. Postulating that the
gravitational action is proportional to the Ricci scalar, leads to the
equations of motion, 10 for the metric and 64 for the connection.

Assuming that the connection is symmetric, and neglecting the 24

torsion components, leads to the equations of motion for the connec-
tion whose solutions are the Christoffel symbols. However, without
this assumption, Einstein’s theory will contain torsion which must
then be treated as an independent variable. Cartan went as far as
arguing that a twisted coordinate transformation can produce non
vanishing torsion [5, 12].

Acknowledging these arguments, leads to considering torsion as a
dynamical variable. One must therefore identify its sources and con-
struct the corresponding torsion-matter interaction terms. This can
be done in two ways: by including translational symmetry in the the-
ory, next to diffeomorphisms invariance, or by considering only the
coordinate transformation symmetry. In this paper we consider the
torsion’s source to be fermionic matter, which yields to two possibile
interactions operators of energy dimension 4

1

√
−gSλµνε

λµνσ
(
ξψ̄γ5γσψ+ ξ ′ψ̄γσψ

)
, (1)

that respect Lorentz invariance. The particular choice ξ = 1, ξ ′ = 0

corresponds to the Einstein-Cartan gravity, and can be deduced from
the above by imposing translational invariance [12]. However we do
not know whether translational symmetry is a fundamental compo-
nent of nature, and we therefore choose to study the most general
case (1). Furthermore an interaction term such as (1) might follow
from the UV completion of gravity2 and is of interest because it might
lead to a classical theory of gravity devoid of singularities.

1 Here Sλµν = Γλ[µν]: note the positions and ordering of indices.
2 In Quantum Loop Gravity, for instance, such an interaction does arise with ξ ′ = 0,

but ξ 6= 1.
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We also would like to point out that in neither of the interaction
terms (1) torsion couples to the fermions spin, since spin, according
to the classification in [25], is given by the spatial part of the tensor
matrices of the Clifford basis Σi = i

4εijkγ
[jγk] = − i2γ

5~γγ0. Con-
structing a covariant version of spin-torsion coupling leads to opera-
tors of dimension five, which couple torsion to the tensorial bilinear

ηSλµν∇λψ̄γ[µγν]ψ+ η ′ψ̄γ[µγν]ψ∇λSλµν · · · .

Such interactions would be more complicated to deal with, and we
will not analyse them here. In our theory, torsion couples to the
fermionic vector and pseudo-vector bilinears, according to Eq. (1).

Since torsion couples to vector currents, its contribution vanishes
when averaged on a spatially isotropic distribution of matter, and
therefore the effects of its interactions are important on small scales.
For this reason, ECKS gravity is essentially indistinguishable from
general relativity on all scales where the latter has been tested, and
significantly differs from it only at high energies and at small scales.
Prominent examples where one can probe high energies and/or small
scales are cosmology and black holes, the former being the subject of
the current study. One should keep in mind that, because Cartan the-
ory reduces to general relativity at large scales, no experiment so far
has been able to disprove Cartan theory [2, 20, 21, 22], which there-
fore remains a viable microscopic theory of gravity. It is unlikely that
torsion can change the divergence structure of gravity, thereby gravity
with torsion remains non-renormalizable and the question of the ul-
traviolet completion of gravity remains open. This is because torsion,
as it turns out, is not a dynamical field, but a Lagrange multiplier,
and therefore cannot be quantised.

The literature contains several efforts of making predictions us-
ing Einstein-Cartan theory, however what all those references have
in common is their use of classical spin fluid as a source of tor-
sion [28, 29, 35].

Classical spin fluid of Weyssenhoof and Raabe induces a canonical
spin tensor density, sρµν = sµνu

ρ, where sµν is the spin density and
sµνu

ν = 0. Hehl et al [13] point out that "unfortunately, there seems
to be no satisfactory Lagrangian for this distribution, and therefore
no unambiguous road to a minimally coupled theory".

This classical description is not satisfactory from a field theoretical
perspective: in [3, 4] the torsion tensor in the fluid rest frame is given
by Sλµν = 8πGsµνu

λ = 2πGδλ0εijkψ̄γ
5γkψ. This form of the torsion

tensor neglects the zeroth component of the axial current, which is,
as it will become clearer later, the most important contribution to the
stress-energy tensor.

The main purpose of this thesis is to extend the existing classical
analysis starting from a microscopic theory, in which no assumptions
on the spin fluid are made. We consider the interaction terms (1) set-
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ting ξ ′ = 0, which is effectively a generalisation of ECKS theory3. We
then apply this theory to an homogeneous and isotropic universe, ini-
tially in a thermal state, undergoing a gravitational collapse and we
show that the contribution induced by torsion coupling prevent the
formation of singularities. Instead, the collapsing universe undergoes
a bounce. This conclusion holds both when fermions are treated clas-
sically –i.e. when fermion production due to coupling to gravity is ne-
glected – and quantum field theoretically, when particle creation due
to the fermion coupling to a contracting gravitational background is
accounted for.

3 The converse case is described in the Appendix E



2
N O TAT I O N S A N D C O N V E N T I O N S

• Unless specified otherwise, we work in units  h = c = 1

• Indices: greek indices denote space-time coordinates µ,ν, · · · ;
the first half of the latin alphabet, a,b, · · · labels indices in the
tangent space; the second half of the latin alphabet, i, j, · · · la-
bels spatial components of vectors and tensor; when the fields
spinorial indices are required, we us the first half of the greek
alphabet, i. e.ψ ≡ ψα, α,β, · · · .

• Index summation notation: when we write indices up and down
we mean

Tab···Q
ac··· =

∑
a

Tab···Q
ac··· ,

• Indices raising and lowering, relations between tensors in flat
space and in curved space:

ηab = diag(+1,−1,−1,−1),

Uaa1··· = ηabU
b
a1···,

Uµµ1··· = gµνU
ν
µ1···,

Tν1ν2···µ1µ2··· = ea1µ1e
a2
µ2
· · · eν1b1e

ν2
b2
· · · Tb1b2···a1a2··· ,

∇µTaa1···bb1··· = ∂µT
aa1···
bb1··· +ω

a
cµT

ca1···
bb1··· +ω

a1
cµT

ac···
bb1··· + · · ·

−ωcbµT
aa1···
cb1··· −ω

c
b1µT

aa1···
bc··· − · · · ,

∇σTµµ1···νν1··· = ∂µT
µµ1···
νν1··· + Γ

µ
λσT

λµ1···
νν1··· + Γ

µ1
λσT

µλ···
νν1··· + · · ·

−ΓλνσT
µµ1···
λν1··· − Γ

λ
ν1σT

µµ1···
νλ··· − · · · .

• Determinants

Det(eaµ) ≡e
Det(gµν) ≡g√

−g =e

• Symmetrisation and anti symmetrisation:

T(ab) =
Tab + Tba

2
,

T[ab] =
Tab − Tba

2
.

• Gauge symmetry:

DaT
b
µ = ∂aT

b
µ + eσaω

b
cσT

c
µ.

5



6 notations and conventions

Also we have not written it explicitly, but

fab = fg1g2·ab ,

where gi are internal group indices, summed with the represen-
tation ϕg1g2··· they act upon.

• Torsion trace and torsion dual

Sµ = Sλµλ

S?µ = εµσλνS
σλν

Spin density trace and dual

Πµ = Πλµλ

Π?
µ = εµσλνΠ

σλν

• The ◦ above any quantity indicates that it is calculated accord-
ing to the prescription

Γλµν = {λµν},

where the Christoffel symbols are

{λµν} =
gλσ

2
(gσµ,ν + gσν,µ − gµν,σ) ,

That is:
◦
X indicates X as it is in General Relativity.

• Given two operators Â and B̂ we define the commutator and
the anti commutator [

Â, B̂
]

= ÂB̂− B̂Â ,{
Â, B̂
}

= ÂB̂+ B̂Â .

• Clifford algebra basis

1

γµ = eµaγ
a

γ5 = −
i

4!
εµνσλγ

µγνγσγλ

Sµν =
i

2
[γµ,γν]

• Friedmann-Lemaître-Roberson-Walker geometry. We define the
Hubble paramenter

H =
ȧ

a
=
a ′

a2
,

where ḟ = df
dt , f ′ = df

dη .
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• Short hand integral notation∫
~x
=

∫
d~x =

∫
d3x
(2π)3

=

∫
r2 sin θ

drdθdϕ
(2π)3

,

and in D space-time dimensions we write the angular integra-
tion

dΩD−1 =
2π

D
2

Γ
(
D
2

) .

• A confusion might arise since k means both the momentum
coordinate and |~k|. To avoid this confusion

F(x,k) or F(k) ,

mean a function of the four momenta in Wigner representation
and in ordinary Fourier representation. While

F(η,k) or F(t,k) ,

means we are talking about k = |~k|. In most situations, it will be
clear from the context which one is which.

• Since we are talking about both real and complex masses, we
write the labels explicitly only when required and define

m =
√
m2R +m

2
I .

• Particular functions

Γ(z) =

∫∞
0

dt tz−1e−t ,

Γ(n+ 1) =n! ,

ψ(n)(z) =
d(n+1)

dz(n+1)
log Γ(z) ,

ζ(z) =

∞∑
k=1

(
1

k

)z
.





Part I

R E V I E W O F T H E T H E O RY





3
G E O M E T R I C A L I N T R O D U C T I O N

3.1 the geometrical interpretation of torsion

A geometrical manifold M is characterised by its local similarity to
flat space: at each point on it we can construct the tangent space,
which is flat and homeomorphic to the Minkowski space-time. Be-
cause we want to deal with fermions in next sections, we define the
vierbein field:

eaµe
b
νηab ≡ gµν , (2)

as a linear map between the tangent space and the space-time mani-
fold. We use latin indices, a,b, c · · · , to refer to the tangent space, and
greek indices µ,ν, λ · · · for the space-time manifold M. As in general
relativity, we want to be able to take covariant derivatives. For tensors
and vector defined on M we use the connection Γλµν. For objects de-
fined on the tangent space, we define the spinor connectionωabµ. As
an example on how to use the two, consider the covariant derivative
of the flat tangent metric.

∇µηab = ∂µηab −ω
c
aµηcb −ω

c
bµηac = −2ω(ab)µ = 0.

We imposed the last equality as a consistency condition: the flat space-
time metric should be always parallel transported. As a result, we
have obtained that the spinor connection is antisymmetric in the first
two indices.

A further consistency condition is that the vierbein field is covari-
antly conserved, a condition that implies the metric compatibility.
With such an assumption, we can relate the spinor connection and
the connection living on M

ωabν =eaλ
(
∂νe

λ
b + Γ

λ
νµe

µ
b

)
,

=⇒ Γλνµ =eλa
(
∂νe

a
µ +ωabνe

b
µ

)
.

(3)

The assumption we just introduced, namely that the metric ηab and
the manifold metric gµν are covariantly conserved, is a physical one.
ηab describes the way a local observer perceives its surroundings,
namely how he measures distances. It should not change under in-
finitesimal displacement. Analogously, the global metric gµν should
be invariant under parallel transport. These two consistency condi-
tions then imply that the vierbein field is conserved too. So far, we
have not yet specified how the connection Γλµν is structured, or if
we can still express parts of it via the Christoffel symbols, as done in

11



12 geometrical introduction

Figure 1: Two dimensional illustration of curvature: vectors parallel trans-
ported around a closed loop end up rotated, from U to U‖. The
Riemann tensor measures the difference U‖ −U.

General Relativity. To this purpose, we use the metric compatibility
condition to rewrite 0 in the fancy way

0 = ∇νgµλ +∇µgνλ −∇λgµν =

= 2{λµν}− 2Γλ(µν) + 4S(µν)λ ,

where {λµν} is our notation for the Christoffel symbols. Such that we
can express the most general connection respecting metric compati-
bility as

Γλµν = {λµν}+ 2S(µν)
λ + Sλµν. (4)

This procedure will allow us to separate the General Relativity con-
tributions from whatever is coming from torsion.

We are going to refer to a space-time with torsion as U4 and a
curved, but torsion free as V4. In V4, curvature is characterised by the
Riemann tensor. In a U4 space-time, the same holds, except that the
Riemann tensor is now a function of the metric and torsion. Since we
are also dealing with the tangent space, our definition contains latin
indices

Rabµν =∂νω
a
bµ − ∂µω

a
bν +ω

a
cνω

c
bµ −ωacµω

c
bν =

=eaλe
σ
bR
λ
σµν ,

(5)

where the last equality is a non trivial identity that connects the vier-
bein formulation with the metric one. As a matter of fact, because of
this identity, one can choose to work with the full connection Γλµν,
the spinor connection ωabµ, or the torsion tensor Sλµν as dynamical
variables.
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Proof. First note that
R
µ
νσλ = Rabσλe

µ
ae
b
ν,

where the Riemann tensor in the tetraed formalism is given by Eq. (5).
We rewrite the previous inserting Eq. (3) to get

Rabσλ = Γabλ,σ − Γ
a
bσ,λ + Γ

a
cσΓ

c
bλ − Γ

a
cλΓ

c
bσ

+eaνe
ν
c,σΓ

c
bλ + e

c
νe
ν
b,λΓ

a
cσ − e

a
νe
ν
c,λΓ

c
bσ − e

c
νe
ν
b,σΓ

a
cλ.

Now consider contraction with eµaebν

R
µ
νσλ = Γabλ,σe

µ
ae
b
ν − Γ

a
bσ,λe

µ
ae
b
ν + Γ

µ
κσΓ

κ
νλ − Γ

µ
κλΓ

κ
νσ

+eaκ,λe
µ
aΓ
κ
νσ − e

a
κ,σe

µ
aΓ
κ
νλ + e

κ
b,λe

b
νΓ
µ
κσ − e

κ
b,σe

b
νΓ
µ
κλ.

(first line) : Γµνλ,σ − Γ
a
bλe

µ
a,σe

b
ν − Γ

a
bλe

µ
ae
b
ν,σ

−Γµνσ,λ + Γ
a
bσe

µ
a,λe

b
ν + Γ

a
bσe

µ
ae
b
ν,λ

+ΓµκσΓ
κ
νλ − Γ

µ
κλΓ

κ
νσ.

Now we shall use that δµν,λ = 0 = (eaνe
µ
a),λ to simplify

R
µ
νσλ = R̃

µ
νσλ

+���
��Γaνσe
µ
a,λ −

XXXXXΓaνλe
µ
a,σ +���

���:Γµbσe
b
ν,λ −���

��XXXXXΓµbλe
b
ν,σ

+
��

���
�

eaκ,λe
µ
aΓ
κ
νσ −

XXXXXX
eaκ,σe

µ
aΓ
κ
νλ +���

���
�:

eκb,λe
b
νΓ
µ
κσ −���

���XXXXXXe
µ
b,σe

b
νΓ
µ
κλ

= R̃
µ
νσλ.

(6)

Where the tilde denotes the Riemann tensor calculated from the space-
time connection.
�

In V4 a vector parallel transported around a loop, changes accord-
ingly to (

[∇µ,∇ν]Vλ
)

dxµdyν = RλσµνV
σdxµdyν, (7)

as we can see in Figure 1, for a 2 dimensional space-time.
If we do the same sort of circuit, in U4, we do get extra terms in

equation (7)(
[∇µ,∇ν]Vλ

)
dxµdyν =

(
RλσµνV

σ + 2Sρµν∇ρVλ
)

dxµdyν. (8)

Which also implies that in a flat space-time with torsion parallel trans-
ported vector still rotate.

The additional terms in Eq. (8) already show that a U4 space-time
is quite different from a V4. Namely, in U4 the Riemann tensor is
not a complete description of the geometrical properties, since tor-
sion affects parallel transport in a different way than curvature. To
characterise more precisely what this “different way” might be, we
look at half the circuit shown in Figure 1. Instead of considering a
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Figure 2: Geometrical interpretation of torsion tensor: parallelograms con-
structed by parallel transporting vectors do not close.

close, only consider parallel transporting two vectors along each oth-
ers. This construction generates a parallelogram which, in U4, does
not close. More precisely, if Uµ is transported along Vµ, then the gap
in the parallelogram will be

U
µ
‖ − V

µ
‖ = SλµνU

µVν (9)

Figure 2 shows this concept graphically.
To conclude this chapter let’s discuss some issues about the space-

time U4. In a space-time without torsion, the curvature can be locally
set to zero by a coordinates transformation, which in practice means
finding a coordinate frame where the Christoffel symbols vanish. In
U4, however, this seems to be not possible: since Sλµν is a tensor1, it
cannot be set to zero by a coordinate transformation. In [11], however,
it is argued that a frame constructed in terms of auto parallels will
have the defining property that, in that frame, the covariant deriva-
tive reduces to an ordinary derivative. Locally, observers might not
perceive curvature, nor torsion.

The reason for this property is that, in the vierbein formulation
there are additional degrees of freedom which disappear from the
metric theory we are used to. Consider for example a space-time
where gµν = ηµν. According to Eq. (3), we could still generate tor-
sion2

Γλ[µν] = e
λ
a∂[µe

a
ν] ≡ S

λ
µν . (10)

It is important to note that relation (10) preserves, at linear order, the
structure gµν = ηµν, but still gives non vanishing torsion. This hap-
pens because the vierbein formalism introduces new degrees of free-
dom that remain concealed in the metric [24, 32], “[· · · ]independent
rotations not specified by the metric structure” [13]. The vierbein
reference frame satisfying Eq. (10), can be understood as a frame
twisting as it moves along auto parallels trajectories. In other words,

1 As the difference of two connections always transforms as a tensor.
2 We are doing this locally, so all expressions will contain positions dependence and,

since we work infinitesimally, we stop at linear order in all expansions.
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vectors transported along their own direction do not feel torsion,
but when moved along any other direction they will precess. This
consequence of torsion was compared by Cartan “to a [mechanical]
medium having constant pressure and constant internal torque” [5].
A consequence of this is that the equivalence principle holds in U4,
since torsion effects can be nullified by a rotation of the vierbein field,
that of Eq. (10).

3.2 physical interpretations of torsion

Figure 3: The so-called Cartan staircase: vectors parallel transported along
their own direction do not change, but they precess if the direction
of parallel transport has a component in their orthogonal space.
This precession selects a direction (either left-handed or right-
handed) which consequently breaks the parity symmetry(Image
credit [12]).

The concepts we built in the last section can be developed further,
and be interpreted from a field theoretical perspective. Fermions on
curved space-times are described in the vierbein formalism (γµ =

e
µ
aγ
a), so they couple to the vierbein field, rather than the metric.

Accepting this subtlety leads to consider Eq. (10) rather seriously: the
dynamics of fermions can generate torsion, by modifying the vierbein
structure, which motivates the study of torsion from a field theoret-
ical perspective. Since torsion selects a rotation direction (see Figure
3), it breaks parity and chirality symmetries. There is a clear evidence
that microscopic violations of CP symmetry are allowed in Nature:
for example, weak interaction violates parity, by preferring left han-
dyness. The rotations of the vierbein mentioned in the last section
might produce a similar effect. In U4 space-times with torsion (but
no curvature) vectors that are parallel transported rotate in the plane
perpendicular to the motion. The direction of such a rotation can pro-
ceed either in the right hand direction or in the left one. This can be
seen clearly from the Cartan staircase construction, Figure 3, a way
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of constructing a flat and Euclidean space-time with the torsion field
given by Eq. (10).

Figure 4: Mapping a graphene sample without structural defects into the
same material with some local imperfections (a pentagon and a
heptagon in place of hexagons). The undefected material is made
of infinitesimal vectors, defined through the lattice points. In the
continuum limit this corresponds to a flat space with no curvature
nor torsion. To effectively describe the imperfection in the right
figure, one can model this space as a flat Euclidean space with
torsion.

An interesting analogy to point out is that effects described by the
Cartan staircase construction are also found in another completely
different area of physics: that of continuous material with structural
defects. In Figure 4 we can see a representation of such a analogy.
The geometrical properties of the imperfect material can be modelled
effectively via a continuum geometrical description in a U2 Euclidean
space3. An extensive treatment can be found in [18].

In this description, built on Cosserat theory of continuum materi-
als [31], a 3 dimensional body is pictured as a collection of oriented
points. To model defects one introduces a translational (εa) and a
rotational (Ωab = −Ωba) displacements. These quantities describe
internal stresses and pressures, which modify the structure of the
original lattice. To embed such discrete defects’ in a continuum me-
chanics description, one can consider a flat Euclidean space, and ap-
ply an infinitesimal deformation of both connection and metric. Such

3 A 2 dimensional space with torsion and Euclidean signature.
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deformations will be built of translations and rotations deformations
of the vierbein and spinor connection [12]

∆eaµ =
0

∇µεa − ebµΩab ,

∆ωabµ =
0

∇µΩab ,
(11)

where ∆ indicates taking the difference between deformed and reg-
ular material and 0 indicates that the quantity is calculated in the
latter. From Eq. (11) we can see how defects in continuum materials
can be interpreted: they produce curvature and torsion as a result of
translational and rotational displacements.

A possible interpretation of the former analogy is that, if space-
time is ultimately a discrete entity, made of points and lines, it might
develop defects which, in the continuum limit of General Relativ-
ity, will be described by non vanishing torsion and curvature. Such
gravitational defects could arise from a UV complete theory of quan-
tum gravity, and are going to give a substantial contribution when
the gravitational stresses that cause them become of the order of the
Planck mass. In this sense, as anticipated in the introduction, a theory
of gravity with torsion can be regarded as an effective theory of quan-
tum gravity, where a particular microscopic structure of space-time is
investigated.

Eqs. (11) can be regarded also from a different perspective: includ-
ing torsion and curvature in the undeformed space, and applying the
deformations εa and Ωab is analogous to performing an infinitesi-
mal Poincaré gauge transformation. In a general U4 space-time the
Poincaré group generators4,

Da, for translations,

fab = f[ab], for rotations,

satisfy the generalised commutation relations [13, 14][
fab, fcd

]
= gc[afb]d − gd[afb]c , (12a)[

fab,Dc
]

= gc[aDb] , (12b)[
Da,Db

]
= eµae

ν
b

(
Rcdµνfcd + 2S

λ
µνe

c
λDc

)
. (12c)

Where the covariant derivative is defined

Da = eµa(∂µ +ωcdµfcd) ≡ eµaDµ , (13)

and fab is specified by the representation the derivative acts on (for
fermions, it would be i2γ[aγb]). From Eq. (12c), we can therefore iden-
tify the curvature and torsion as the gauge fields corresponding to
rotations and translations. Torsion connects with translations, and
the vierbein is the associated field, according to Eq. (10), while the

4 Where Da is intended to act on tangent spaces indices only.



18 geometrical introduction

Riemann tensor is the field strength for the connection. Such a de-
scription is known as Poincarè gauge theory of gravity. However this
formulation is not completely understood yet, namely since the grav-
itational geometry enters in the group structure equations, the global
structure of the group cannot be determined by the local. Because a
coordinate patch can cover only a part of the manifold, the Lie algebra
generated in it will be restricted to such a domain.

Let us consider a arbitrary representation of the Poincaré group,
ϕ. Under an infinitesimal translation, the variation of the covariant
derivative is [26]

Dµϕ = eaµDaϕ→
(
eaµ + δeaµ

)
Daϕ+ δωabµfabϕ+Dµδϕ . (14)

For all the variations to reciprocally cancel, we have to require min-
imal coupling. To see how, let us extend Eq. (10) to a curved space-
time, in non minimal coupling prescription. We would write

ωabµf
b
a = ωa(bµ)f

b
a + ξω

a
[bµ]f

b
a , (15)

since the first part gives curvature and the second torsion (again, see
Eq. (10)). When plugging Eq. (15) into Eq. (14), and imposing the
gauge derivative to transform as a 1-form, forces ξ = 1 (and obviously
other couplings are not allowed by gauge symmetry neither).

Proof. Indeed, we have, under the infinitesimal transformation xa →
xa − η(x)a

δeaµ = ebµDbη(x)
a + 2ηλeaσS

σ
µλ, (16a)

δωabµ = ηλRabλµ, (16b)

δϕ = ηaDaϕ, (16c)

where we get the terms in Eq. (16a) as a consequence of Eq. (10). We
then get, for the covariant derivative using Eqs. (12c - 16a - 16b)

Daϕ→Daϕ+ ηb [Db,Da]ϕ+ ηbDaDbϕ+ (ξ− 1)eµaω
a
[bµ]f

b
a =

=(1 + ηbDb)Daϕ.

Obviously, the last equality only holds for ξ = 1, in which case the ex-
tra term on the left hand side cancels. This is due to the commutation
between covariant derivatives: the geometry determines Eq. (8), from
where the commutations relations are deduced. Minimal coupling is
therefore required to retain the interpretation of torsion as the gauge
field of translations. Non minimal coupling can be introduced, by los-
ing such interpretation.
�

Now let us discuss the results obtained in this section. We learned
that torsion has a natural interpretation as description of defects in
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continuum materials, and that such an analogy can be extended to
the case in which space-time is quantised5. Even if one rejects this
argument, it is possible to show that Einstein’s theory of gravity leads
to torsion as long as one considers all the 64 degrees of freedom of
the connection. Torsion can also be a field, dynamically generated,
and whose ultimate origin is a UV complete theory of gravity. In this
case, as we will see in the next chapters, one can introduce the most
general operator coupling torsion to fermions, with two unknown
coupling constants.

If one wants to preserve the interpretation of torsion as the Gauge
field for translations, then he must choose one specific operator, and
the extra coupling constants will be automatically specified. We stress,
however, that without non minimal coupling it is difficult to obtain
substantial deviations from Einstein’s theory at energies below the
Planck scale. As we will demonstrate later on, the curvature scale
at which torsion becomes significant reaches the Planck scale unless
ξ� 1.

3.3 the field equations

The decision on whether or not introduce non minimal coupling, we
postpone to next sections, for now we focus on the gravitational sector
and leave unspecified the matter action. It is possible that a UV finite
gravitational Lagrangian differs from the low energy limit that Ein-
stein’s theory describes. However, we are going to assume that until
the curvature scale remains lower than the Planck scale, the Einstein-
Hilbert action describes the theory. The difference being that we are
going to consider two dynamical objects:

• gµν, the metric;

• Γλµν, the affine connection.

Considering the action to be the Einstein-Hilbert action, then we write
(Palatini formalism)

S =

∫
d4x
√
−g

(
−
gµνRµν(Γ)

16πG
+Lm

)
, (17)

where G is the gravitational coupling constant, and Γ is a general
affine connection. It is pretty straightforward to show that variation
with respect to the metric leads to the Einstein’s equations

Rµν(Γ) −
gµν

2
R(Γ) =

8πG

3
Tµν . (18)

More interestingly variation with respect to the connection leads to

Γλµν = {λµν}+ 2S(µν)
λ + Sλ[µν] ,

5 As a further support to this claim, we cite the well known result that Loop Quantum
Gravity leads to torsion like interactions.



20 geometrical introduction

where the position of the indices plays a key role. It is interesting to
note how the same expression for the connection was found in Eq. (4)
as following from the metric compatibility condition.

Proof. Clearly we can consider separate variations with respect to sym-
metric and antisymmetric parts by writing

δΓλµν = δΓλ(µν) + δΓ
λ
[µν],

we then get

√
−ggσνδRλσλν = δΓα(βγ)

[
1

2
gβγgλσ∇αgλσ −∇αgβγ +

+δγα

(
∇λgβλ −

1

2
gβκgλσ∇kgλσ

)
+ 2S(γβ)α

]
+

+2δΓα[βγ]

(
S[γβ]α + 2(δγαS

β − δβαS
γ)
)

.

Which must then be set equal to δLm. This set of equations has the
solution

∇αgβγ = 0 , (19)

4gλ[µSν] + Sλ[µν] − 2S[µν]λ = 8πGΠλ[µν] , (20)

where Πλ[µν] = 2√
−g

δLm
δSλµν

, as it can be seen from the solution to
the metric compatibility condition Eq. (4), and rewriting δΓλµν =

2δS(µν)
λ + δSλ[µν].

�

The result contained in Eqs. (19 - 20) is not the most general solution
to the equations in Palatini formalism. Indeed a geometry where the
metric is not covariantly conserved is possible, which will provide ad-
ditional equations for the non metricity tensor (i. e.Qαβγ = ∇αgβγ).
However, as physics goes, there seem to be no really meaningful in-
terpretation of non metric theories.

Consider this: the metric is used by an observer to measure dis-
tances and angles. Imposing covariance forces different observer to
agree on what they measure, however non metricity implies that dis-
tances’ measure depends on the path. A free falling observer will
change the way he observes distances as he moves, and for two differ-
ent observer to decide if they agree on a measurement will be neces-
sary to know the local history of the trajectory. It is perhaps possible
to conceive situations in which such an effect will be dynamically
generated, but for the following we are disregard such example as
unphysical and consider only the solution (19 - 20).

Now, let us examine the equation of motion for torsion in greater
detail. We can invert Eq. (20) to obtain

Sµνλ = 8πG

(
Π[λν]µ −

1

2
gµ[λΠν]

)
. (21)
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Proof. Eq. (20) can be solved by finding Sµ in terms of Π, and solving
for the symmetric and antisymmetric parts. First note that the left
hand side can be written as

Sλ[µν] − 2S[µν]λ+ 4gλ[µSν] = 4gλ[µSν] − Sµνλ− 2S(νλ)µ = 8πGΠλµν.

Now consider the contraction with gνλ to find

Sµ = −2πGΠµ.

And substitute back to get

2S(νλ)µ + Sµνλ = −8πG
(
Πλµν + gλ[µΠν]

)
.

Just anti symmetrisation in [νλ] gives

Sµνλ = 8πG

(
Π[λν]µ −

1

2
gµ[λΠν]

)
. (22)

This result can be checked for consistency with the equation obtained
by varying the action with respect to the spin connection, as com-
monly done in the the literature.
�

If the solution from Eqs. (19 - 20) is plugged into Eq. (18), the contri-
butions coming from torsion will modify geometrically the left hand
side, accordingly to

R =
◦
R− 4

◦
∇κSκ − 4SκSκ − (2S(κρ)µ + Sµκρ)(2S

(ρµ)κ + Sκρµ). (23)

However, since the solution in Eq. (21) allows us to completely ex-
press torsion in terms of its sources, we would rather derive an effec-
tive theory with the source Πλµν in place of Sλµν. Such a procedure
will produce an effective field theory, where the torsion is replaced
by interaction terms for its matter sources. Note that, since Eq. (21)
does not contain any derivatives, such an effective field theory will
be exact. In Heisenberg picture, Eq. (21) is to be intended as an exact
operator identity, a linear relation between the torsion operator and
the fields operators sourcing it. In a General Relativity sense, this pro-
cedure is equivalent to go to a reference frame where torsion is zero
(for example by making use of Eq. (4)), but where the fields still per-
ceive its influence, by effective covariant interactions. Finally, in the
context of interpreting torsion from the quantum gravity perspective
as in Section 3.2, from Eq. (21) torsion can be seen as a local operator
describing in matter contributions from a UV complete theory. Inside
matter, it is plausible that the quantum gravitational field equations
change (as, for example, the Maxwell equations inside matter do).
Such corrections will be linear in first approximation, and respect the
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low energy limit defined by the Einstein-Hilbert action. An argument
can be formulated to explain why Eq. (21) does not contain prop-
agating parts: corrections from quantum gravity should change the
action (17) at order 1

κ2
= M4

p. Since the lower order in the gravita-
tional coupling is already captured in the Einstein-Hilbert action, we
can consider non dynamical torsion as a valid formulation until the
Planck energy scale is reached.

If Eq. (22) is substituted into the action (17), the effective field the-
ory action can be found in general

S =

∫
d4x
√
−g

−

◦
R

16πG
+
◦
Lm −

1

2

(
◦
∇κΠκ − 2πGΠκΠκ − 8πGΠρµκΠµκρ

) .

(24)
Note the interaction terms have energy dimension [Π2] = [E6] this
restricts the possible interactions terms.

Varying the action (24) leads to the modified Einstein’s equations.
The only surviving gravitational degree of freedom is now the metric
gµν

◦
Gµν =

◦
Rµν −

gµν

2

◦
R = 8πG

[
Tµν +

◦
∇κΠ(µν)

κ −
◦
∇(µΠν)+

+
gµν

2

(
◦
∇κΠκ − (2πG)ΠλΠ

λ − (8πG)ΠρλκΠ
λκρ

)]
+ (8πG)2

[
ΠλκµΠκλν −

1

2
ΠκΠ(µν)κ +

1

2
ΠµΠν

]
.

(25)

Note that the Einstein’s equations (25) contain only symmetric con-
traction of the torsion source. It is not that the anti symmetric part
of Eq. (25) does not contribute, but is is satisfied thanks to Lorentz
invariance of the matter action (see Appendix A).

To make any further steps from Eq. (25) we would have to make
assumptions on the fields in Lm and on the metric. The next chapter
is dedicated to analysing the interactions that torsion produces, in
case of fermionic matter.
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F E R M I O N S O N C U RV E D S PA C E - T I M E S

4.1 the interaction terms

We know [25] that the generator of lorentz transformations for spinors
is provided by

fab = −
1

8
[γa,γb] ,

where γa are elements of the Clifford algebra, satisfying

{γa,γb} = 2ηab1 .

According to the prescription from Eq. (13), we can define the covari-
ant derivative

Daψ = eµa

(
∂µ −

1

8
ωabµ [γa,γb]

)
ψ , (26a)

Daψ̄ = eµaψ̄

(
←
∂µ +

1

8
ωabµ [γa,γb]

)
. (26b)

We can therefore construct the minimally coupled Lagrangian by the
prescription ∂a → Da, we then would get the free Dirac action

Sψ =

∫
d4x e

(
i

2

(
ψ̄γaeµaDµψ− (Dµψ̄)e

µ
aγ
aψ
)
− ψ̄M̂ψ

)
,

where we wrote the mass as a matrix M̂ = mR + imIγ
5 to allow for

possible mass mixing or CP violating mass1. Naturally we can define
γµ = eµaγ

a, such that the commutations relations get generalised to

{γµ,γν} = 2gµν1 ,

and we can rewrite the action in the form

Sψ =

∫
d4x
√
−g

(
i

2

(
ψ̄γµ∂µψ− (∂µψ̄)γ

µψ+ ψ̄ {γµ, Γµ}ψ
)
− ψ̄M̂ψ

)
,

(27)
where we defined

Γµ = −
1

8
ωabµ [γa,γb] .

Now, we note that we can write

{γµ, Γµ} = −
1

8
ωabµ{γ

µ, [γa,γb]} = −
1

2
ωabµγ

[aγbγµ], (28)

1 Note that mR,I specify the most general mass that we can add: because of Lorentz
invariance, M̂ can only be function of the scalar elements of the Clifford algebra,
namely 1,γ5.

25
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that is, the spinor connection times a totally antisymmetric product
of γ’s.

Proof. We need to prove the following identity

{γa, [γb,γc]} = 4γ[aγbγc].

Let us consider at first (a↔ b) exchanges, to show that the left hand
side is antisymmetric under it

{γa, [γb,γc]} =
1

3
(γa[γb,γc] + γb[γc,γa] + γc[γa,γb])

+
1

3
([γb,γc]γa + [γc,γa]γb + [γa,γb]γc) ,

which is manifestly anti symmetric in (a ↔ b). The last step consist
in noticing that

γ[aγbγc] =
1

6
(γa[γb,γc] + γb[γc,γa] + γc[γa,γb]).

Equating the last two equations proves Eq. (28).
�

Armed with the identity Eq. (28) we can come back to the term

{γµ, Γµ} =−
1

8
ωabµ{γ

µ, [γa,γb]} = −
1

2
ωabµγ

[µγaγb] =

=−
1

2

◦
ωabµγ

[µγaγb] −
ξ

2
Sλµνγ

[λγµγν],

where we have introduced a dimensionless coupling constant ξ, repre-
senting a non minimal coupling between fermions and torsion. From
what we derived in Chapter 3, such a choice breaks translation invari-
ance of the action. However, we want to keep this discussion general,
as we do not know whether translational invariance is a fundamen-
tal feature of nature. To this end, we want to write the most general
Lagrangian coupling torsion to the matter fields, without dynami-
cal torsion and respecting Lorenz covariance. Before taking this step,
however, let us rewrite the totally anti symmetric element of the Clif-
ford algebra in Eq. (28) in a more convenient form

γ[µγνγσ] = −iεµνσλγ5γλ ,

where εµνσλ is the totally anti symmetric tensor in four dimensions.
Now we can write the most general coupling that does not contain
derivatives as

Lint = −Sλµνε
µνσλ

(
ξψ̄γ5γλψ+ ξ ′ψ̄γλψ

)
. (29)
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Figure 5: The interaction vertices in the complete theory (left) and in the
effective field theory (right). Integrating out torsion leads to sub-
stitute its propagator by a point. Note that the spinor indices struc-
ture of the diagram on the right is non trivial, as we shall see later
on in more details.

Before making further progress, note that Eq. (29) selects the most
general dimension four operator coupling to the torsion tensor. One
might ask: what about higher dimensions operators? Indeed it is pos-
sible to write interactions such as

Lint = −Sλµν

(
ξ(2)

↔
∇λψ̄γ[µγν]ψ

)
. (30)

For higher dimensions operators, such the ones appearing in Eq. (30),
the interactions terms are not restricted that much by the symmetries
as it happens for operators of dimension four. Also, the presence of
the covariant derivative in Eq. (30) selects such interactions as higher
energy exchange channels, so that we can neglect them in first ap-
proximation, and postulate that, if they exist, their contribution only
matters at very high energies scale, when the full structure of a UV
complete theory of gravity has to be applied.

From Eq. (29) it is clear what Πλµν is going to be

Πµνλ = −
1

4
εµνλσ

(
ξψ̄γ5γσψ+ ξ ′ψ̄γσψ

)
. (31)

Which leads, using Eq. (24) to the effective matter action [15]

S
eff
ψ =

∫
d4x
√
−g

[
i

2

(
ψ̄γµ∂µψ− (∂µψ̄)γ

µψ+ ψ̄ {γµ, Γµ}ψ
)
− ψ̄M̂ψ

+
3πG

2

(
ξψ̄γ5γσψ+ ξ ′ψ̄γσψ

)2 ]
.

(32)

We have now integrated out torsion, but its influence on the matter
fields has not been lost: the spin-12 fields feel the presence of torsion
through an effective four fermions interaction.

Let us conclude this section by clarifying a common misconception.
It is often claimed that torsion couples to elementary particles spin:
as we can see from Eq. (90), rewritten in terms of the Poincaré group
gauge derivative [13]

Dλ
(√

−gΠ[µν]
λ
)
− T[µν] = 0 . (33)
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Since the energy momentum tensor is symmetric

Tµν =
2√
−g

δLm

δgµν
=

2√
−g

δLm

δgνµ
,

Eq. (33) is a conservation law that identifies Π as a classical Noether
current coming from rotational invariance. However, the elementary
spin of fermions can be constructed from the Lorentz generator for
spatial rotations, i. e. fij. According to [25] the fermionic spin operator
is2

Σi =
i

8
εijk

[
γj,γk

]
,

and has therefore connections with the tensor part of the Clifford
algebra, and not the axial vector (which appears in Eq. (29) when
ξ = 1, ξ ′ = 0). Coupling torsion to the particles elementary spin
would yield to interactions between operators of higher dimension,
such as Eq. (30).

4.2 dirac equation on friedmann-lemaître-roberson-walker

space-time

From the Lagrangian (32), to derive the Dirac equation, we just have
to vary with respect to ψ̄. For notation reasons we will eventually set
ξ ′ = 0, since the essence of the interaction is captured by the axial
current interaction alone. The main differences will be highlighted in
Appendix E. We then find

δψ̄
√
−g

[
i (γµDµψ+ Γµγ

µψ) − M̂ψ+

+ 3πG
(
ξψ̄γ5γσψ+ ξ ′ψ̄γσψ

) (
ξγ5γσ + ξ

′γσ
)
ψ

+
i

2
∂µ(
√
−gγµψ) +

√
−g (Γµγ

µ − γµΓ
µ)

]
.

The last line will vanish, so that we find the Dirac equation to be(
iγµDµ − M̂

)
ψ = −3πG

(
ξψ̄γ5γσψ+ ξ ′ψ̄γσψ

) (
ξγ5γσ + ξ ′γσ

)
ψ .
(34)

Proof. We can write

∂µ(
√
−gγµ) +

√
−g (Γµγ

µ − γµΓµ) =

=
√
−g
(
∂µγ

µ + γµ{µ
σ
σ}+ [Γµ,γµ]

)
.

(35)

Now let’s look at

[γν, Γµ] = −
1

4
ω[ab]µ[γ

ν,γaγb] = −
1

4
ω[ab]µ

(
γa[γν,γb] + [γν,γa]γb

)
=

=−
1

4
ωabµ

(
γa{γν,γb}+ 2γaγbγν + {γν,γa}γb + 2γaγνγb

)
=

=ωbaµγ
aeνb .

2 Here i, j,k are spatial indices, see Section 2.
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Such that Eq. (35) can now be written as

∇µγµ = γa∇µeµa = 0 .

�

Now that we know how to deal with the Dirac theory in curved space-
times, let us consider the specific example of Friedmann-Lemaître-
Roberson-Walker (FLRW) metric

ds2 = dt2 − a(t)2d~x2 ,

where d~x is the 3 dimensional space metric and a(t) is the scale factor.
The coordinate transformation dt = a(η)dη, where η is the conformal
time, makes the metric proportional to the Minkowski’s one,

gµν = a(η)2ηµν .

In this coordinate system, we can prove the identity [19]

iγµDµψ = a(η)−
5
2 iγa∂a

(
a(η)

3
2ψ
)

. (36)

Proof. A simple exercise is to derive that the Christoffel symbols are
in the form

{000} = −{0i0} = −{00i} = {0ij} = H =
1

a2
d

dη
a =

a ′

a2
,

then we can write, using Eq. (3)

Γµ = −
1

8
eνa
(
∂µeνb − Γ

σ
µνeσb

)
[γa,γb] =

H2 γiγ0, If µ = i ,

0, If µ = 0 ,
.

Finally, writing

γµDµψ =
1

a2

(
γ0∂η − ~γ ·~∂− γiΓi

)
ψ =

=
1

a2

(
γ0∂η − ~γ ·~∂− 3

2
Hγ0

)
ψ =

1

a
5
2

γa∂a

(
a
3
2ψ
)

.

�

Eq. (36) invites us to define the conformally rescaled fields

χ = a
3
2ψ .

Other than this, we are going to expand the fermionic fields in their
momentum representation, which, to fix conventions, reads

χ(η,~x) =
∫

d3k
(2π)3

e−i
~k·~xχ(η,~k) .
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Figure 6: Graphical representation, in ~σ-~k plane of the helicity operator. Dif-
ferent helicity values exchange under ~x → −~x, the parity symme-
try.

Since FLRW space-time is spatially homogeneous and isotropic, we
can make the ansatz that ψ(η,~k) = ψ(η,k), that is, the fields are only
functions of the absolute value of the momentum. Because of this
reason, we will find that the helicity operator commutes with the
Dirac hamiltonian. Therefore we can split the fermionic fields in their
helicity eigenstates, by means of the helicity projector Ph

χ =
∑
h

(
χL

χR

)
⊗ ξh =

∑
h

Phχ =
∑
h

χh ,

where ξh is the helicity eigenvector, i. e. Ĥξh = hξh. The Dirac equa-
tion then will transform to(

iγ0∂η − hkγ
0γ5 − a(η)M̂

)
χh(η,k) =

=−
3πGξ2

a(η)2

(∑
h ′

∫
d3q
(2π)3

χ̄h ′(η,
∣∣∣~q−~k/2

∣∣∣)γ5γσχh ′(η,
∣∣∣~q+~k/2

∣∣∣))
× γ5γσχh(η,k) ,

(37)

where k = |~k|.

Proof. First let us derive the helicity operator. From Figure 6 we notice
that

Ĥ =
~Σ ·~k
k

=
~ki

8k
iεijkγ

jγk = k̂ · γ0~γγ5 .

Now we can act on Eq. (34) from the left. The only non trivial terms
are

~k · ~γ = hkγ0γ5Ĥ ,

obviously commutes with Ĥ and gives the second term in Eq. (37).
The second non trivial term is[

Ĥ,γ5γσ
]
= k̂iγ

0
[
γi,γj

]
δσj ,
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which means that the non commuting part in Eq. (37) is given by(∫
d3q
(2π)3

χ̄h ′(η,~q−~k/2)γ5γjχh ′(η,~q+~k/2)

)
k̂iγ

0
[
γi,γj

]
χh(η,k) .

The operator γ5γj in the brackets produce terms∝ ~kj, and terms∝ ~qj.
The mixed products vanishing upon integration as a consequence of
the problem’s symmetries. Then all we are left with things such as

k̂jk̂iγ
0
[
γi,γj

]
χh(η,k) = q̂jq̂iγ0

[
γi,γj

]
χh(η,q) = 0 .

�

Note in Eq. (37) the η dependence in the mass and in the interaction
strength, consequences of doing calculations on the dynamical FLRW
space-time. Also, note that the interactions terms are integrated over
the centre of mass momentum. This is a consequence of locality of
torsion interaction: from solution (22) we know that the torsion prop-
agator is linearly related to the fermionic fields propagator, and will
be function to the centre of mass position of ψ̄ψ system. The fact
that the interaction happens at the centre of mass position, because
of Heisenberg uncertainty principle, makes the centre of mass mo-
mentum of the interaction completely undetermined (Figure 5).

We conclude this section with a remark: helicity is not a Lorentz
invariant quantity, as boosts change ~k and h. Therefore one usually
requires particles to be massless, such that we cannot change h by
a simple boost. However, here we are stating only that helicity is a
conserved quantum number, because the helicity operator commutes
with the Dirac Hamiltonian in Eq. (37). In Heisemberg picture, this is
evident by considering the evolution equation of an operator

∂ηÔ = i
[
Ô, Ĥ

]
,

where Ĥ is the Hamiltonian evolution operator.

4.3 energy momentum tensor renormalization

In next chapter we are going to analyse the Dirac equation and the tor-
sion interactions in greater detail, and rely on some approximations
to solve it. Before turning to that, however, let us discuss renormali-
sation of quantum divergences, and how they can be removed from
the energy momentum tensor. From the Lagrangian (32) we find [27]

Tψµν =
i

2

(
ψ̄γµDνψ−Dµψ̄γνψ

)
+
3πGξ2

2
gµν

(
ψ̄γ5γσψψ̄γ

5γσψ
)

,

which in FLRW space-times and in term of the fields χ becomes

Tψµν = δaµδ
b
ν

[
i

2a(η)4
(χ̄γa∂bχ− ∂bχ̄γaχ) +

3πGξ2

2a(η)6
ηab

(
χ̄γ5γcχχ̄γ

5γcχ
)]

.

(38)
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Figure 7: Closed time path in the propagator definition in the Schwinger-
Kedysh formalism. The closed time contour implies that, when
propagating from t to t ′, there are four possible choices for propa-
gating. The propagators in the Feynman diagrams acquire a direc-
tion and for a given diagram containing non equal times propaga-
tor has to be summed over all propagators in Eqs. (39a - 39d) [16].

In solving the Dirac equation we are going to consider an initial ther-
mal state for the field χ and evolve it accordingly to the Schwinger-
Keldysh [7, 16, 33] formalism. The problem which such a procedure is
that the initial thermal state contains quantum divergences that have
to be removed. We will employ the scheme of dimensional regulari-
sation, which means calculating divergent integrals in D dimensions,
for the values of D in which the integrals are defined, and then ana-
lytically extend the result to D = 4. The useful aspect of dimensional
regularisation is that it produces Lorentz invariant counter terms, as
we will see.

The energy momentum tensor in Eq. (38) has to be averaged on the
thermal state that we are considering,

〈Tµν〉β ,

where β = 1
kBT

is the inverse temperature. Looking at Eq. (38) it is
clear that we are going to need the thermal propagators, evaluated at
coincidence, since the fields in the energy-momentum tensor are. To
this end we define the 2-points Wightman functions [1, 30]

iS++
αβ (x; x ′) = 〈T

[
ψα(x)ψ̄β(x

′)
]
〉β , (39a)

iS−+
αβ (x; x ′) = 〈ψα(x)ψ̄β(x ′)〉β , (39b)

iS+−
αβ (x; x ′) = −〈ψ̄α(x)ψβ(x ′)〉β , (39c)

iS−−
αβ (x; x ′) = 〈T̄

[
ψα(x)ψ̄β(x

′)
]
〉β , (39d)

where T(T̄) denote the (anti)time ordering operator.
In Schwinger-Kedysh formalism one considers a closed time path,

in the complex plane, going from initial time t0 to a finite time t(Figure
7). The 2-point functions in Eqs. (39a - 39d) can be connected with the
propagator in this formalism, namely

Sαβ(x; x ′) = 〈TC

[
ψα(x)ψ̄β(x

′)
]
〉β ,

where C is the complex contour in Figure 7. Then points taken on
the upper or lower branch of the contour (t±, t ′±) will be ordered ac-
cording to the standard time or anti time ordering, while points lying
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on different branches will be automatically ordered. From this we de-
duce the “−” sign in Eq. (39c), due to anti commutation relations for
fermions.

The Schwinger-Keldysh formalism is particularly useful in describ-
ing non equilibrium situations: the analogue of the Boltzmann distri-
bution function in classical mechanics can be constructed from S+−,
by means of a Wigner transformation(see Chapter 5 for more details).
The different directions(+−, −+) on the contour describe particles en-
tering or leaving a definite state. For a system out of equilibrium, not
satisfying detailed balance, this possibility plays a crucial role and in
fact it is used to construct the analogue of the Boltzmann collision
term.

To describe the fermionic system at thermal equilibrium, which
will be our initial state, the whole machinery described above, how-
ever, is not necessary. The equilibrium distribution functions are given
by the Fermi-Dirac and Bose-Einstein functions. To describe this ini-
tial situation, we follow the steps described in [1], and impose the
Kubo-Martin-Schwinger (KMS) condition

S+−(k) = −e−βk0S−+(k) , (40)

where k is the Fourier transform in the coordinate r = x− x ′. Impos-
ing the KMS relation corresponds to requiring detailed balance to be
satisfied. From [1] we find that the KMS relation implies

S+−(k) =−
(
�k− M̂

)
δ
(
k2 − |m|2

)
2πsign(k0)f(k0) =

=
(
�k− M̂

)
(θ(k0) − f(|k0|)) 2πδ(k

2 −m2) ,

f(k0) =
1

eβk0 + 1
.

(41)

The term proportional to θ(k0) = 1
2
(1+ signk0) in Eq. (41) is the

quantum divergence that we want to remove. Before calculating what
the counter term might be, we notice that the opposite polarity of
the propagator, −+, leads to the same expression in Eq. (41). There-
fore their expressions in position representation at coincidence are
the same.

The first term we calculate is the kinetic part of the energy momen-
tum tensor, that is the one loop contribution. This leads to

〈T div,1L
µν 〉 =

∫
dDk
(2π)D

k(µTr
(
γν)S

+−(k)
)
=

=−
gµν

D− 1

π1−
D
2 (D+ 1)

2D
µ
D−4
2 m4

[
−

1

D− 4
−
1

2
log
(
m2

µ2

)
+

(
3

2
− γE

)]
≡gµν∆Λ ,

(42)

where the counter term in the Lagrangian to balance the divergences
is given by a renormalisation of the cosmological constant. Note also
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that such a counter term does not change3 when the proper scal-
ing in the physical mass mPhy = a(η)m and 1

a(η)4
, coming from

the conformal rescaling, are inserted. Possible corrections of order
m ′Phy = HmPhy might have to be included to complete the procedure
highlighted here.

Proof. Starting from the first Eq. (38) and using Eq. (41) we find

T div,1L
00 =

∫
dD−1k

(2π)D−1

√
k2 +m2

2
,

T div,1L
0i = 0 ,

T div,1L
ij =−

∫
dD−1k

(2π)D−1

kikj

2
√
k2 +m2

.

Let’s consider the vacuum energy density first:

T div,1L
00 =

2π
D−1
2

(2π)D−1Γ
(
D−1
2

) ∞∫
0

dk kD−2
√
k2 +m2 =

=
2π

D−1
2

(2π)D−1Γ
(
D−1
2

)
µ∫
0

+

∞∫
µ

dk kD−2
√
k2 +m2 .

Where we split the integral because the integrand is not convergent
in any dimensions on [0,+∞], but it is in [0,+µ] and [µ,+∞], respec-
tively for D > −1 and D < −1. Then we integrate by parts to getµ∫

0

+

∞∫
µ

dk kD−2
√
k2 +m2 =

=
kD−1

D− 1

√
k2 +m2

∣∣∣∣µ
0

+
kD−1

D− 1

√
k2 +m2

∣∣∣∣∞
µ

−

µ∫
0

+

∞∫
µ

dk
kD

(D− 1)
√
k2 +m2

=

=−

∞∫
0

dk
kD

(D− 1)
√
k2 +m2

=
(
|m|2

)D
2

D+ 1

4
√
π(D− 1)

Γ

(
D− 1

2

)
Γ

(
−
D

2

)
'

'−
D+ 1

2
√
π(D− 1)

Γ

(
D− 1

2

)
m4µ

D−4
2

(
1+ log

(
m2

µ2

)
D− 4

2

)
×
(
−

1

D− 4
+

(
3

4
−
γE
2

)
+O (D− 4)

)
.

Then we consider T div,1L
ij , and note that

−

∫
dD−1k

(2π)D−1

kikj

2
√
k2 +m2

=
2π

D−1
2

(2π)D−1Γ
(
D−1
2

) gij

D− 1

∫∞
0

dk
kD√
k2 +m2

.

�
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Figure 8: Two loop diagrams contributing to the energy-momentum tensor.
As in Figure 5, the dashed line representing torsion is represented
by a point in the effective theory.

Next we proceed to calculate the two loops corrections, that we can
see in figure 8. To this purpose, we need to evaluate the fermionic
four point function

〈ψ̄αψβψ̄γψδ〉 = 〈ψ̄αψβ〉〈ψ̄γψδ〉− 〈ψ̄αψδ〉〈ψ̄γψβ〉 , (43)

where we used the Wick theorem. Such a simplification, which is
only possible for a gaussian initial state, corresponds to selecting the
2-loops contributions from Figure 8 as the only contributions to the
energy momentum tensor (and later to the Dirac equation).

We refer to the first contribution in Figure 8 as Hartree term, and
to the second as Fock term4. They correspond to the 2-loops contribu-
tions to the energy momentum tensor, and will be given by

T2Lµν = 3πGξ2gµν
(
ψ̄γ5γσψψ̄γ

5γσψ
)
=

=3πGξ2gµν

[
Tr
(
γ5γσS

+−(q)
)

Tr
(
γ5γσS+−(k)

)
−

− Tr
(
γ5γσS

+−(q)γ5γσS+−(k)
) ]

.

(44)

The first term in Eq. (44) does not contribute, since Tr
(
γ5γµ

)
=

Tr
(
γ5γµγν

)
= 0. Therefore, we only have to consider the second

term. We would find

T2L,div
µν =− 24πGξ2gµν

∫
dDk
(2π)D

dDq
(2π)D

(
kσq

σ + 2m2
)

(θ(k0) − f(|k0|)) 2πδ(k
2 −m2)× (θ(q0) − f(|q0|)) 2πδ(q

2 −m2) ,
(45)

3 Up to logarithmic corrections.
4 As we will see in next chapter, the reason for such a name is that what we are doing

is in some sense analogous to the Hartree-Fock approximation for the interaction
terms.
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which yields to

T2L,div
µν =− 24πGξ2gµν

m6

(4π)D
(
µ2
)D−4×

×
[

4

(D− 4)2
+

4

D− 4

(
log
(
m2

µ2

)
+ (γE − 4)

)
+

+ 4 (γE − 1) log
(
m2

µ2

)
+

(
π2

6
+ 2γ2E − 4γE + 3

)]
≡ gµνδΛ2L .

(46)

Again, notice that the mass scaling and the scaling coming from con-
formally rescaling the fields simplify up to logarithmic corrections.
Then this term becomes a constant and renormalises the cosmologi-
cal constant.

The careful reader might have noticed that Eq. (45) contains a term
of the form∫

dDk
(2π)D

dDq
(2π)D

θ(k0)f(|q0|)
(
kσq

σ + 2m2
)
2πδ(k2−m2)2πδ(q2−m2) ,

which contains temperature dependence when evaluated at thermal
equilibrium. Such contribution is problematic when we try to renor-
malise it, since it has an explicit dependence on the fermionic fluid
we later want to evolve. However, taking a look at the original theory,
rather the effective without torsion, it becomes clear that there is no
need for such a counter term. In fact, even Eq. (46) is superfluous: in
the original theory, the energy momentum tensor will contain terms
in the form

〈S?µψ̄γ5γµψ〉 ∝ S?µTr
(
γ5γµS+−

)
,

which vanish for the same reason as the Hartree term, because trac-
ing γ5γµS+− gives zero. The fact that the regularisation procedure
produces temperature dependent counter terms, is a consequence of
trying to renormalise the operator in the effective theory, rather than
in the initial one. In the effective theory, the four fermion operator
appearing in the energy momentum tensor, is a composite operator.
In the original theory the coupling constant between torsion and the
fermionic fields is dimensionless, which means the theory is renor-
malisable. However, this feature is lost in the effective theory, and
the coupling constant carries a energy dimension (that of the Planck
mass).

For the temperature dependent term we find

T2L,div(2)
µν =72πGξ2gµνm

3(kBT)
3µ

D−4
2

[
2

D− 4
+ log

(
m2

µ2

)
+
1

12

(
π2 + 6γ2E − 12γE − 12

) ]
×
∫

dσ
1

ecoshσ + 1︸ ︷︷ ︸
'0.333474

≡ gµν∆Λ2L,(2)(kBT) .

(47)
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However, removing divergences first in the original theory and then
integrating out torsion, both terms in Eq. (46) and in Eq. (47) should
be disregarded as unphysical, and be replaced by 0. Here they are in-
tended as counter terms which regularise the initial state, but do not
evolve further. In contrast with this, Eq. (42) is a physical result from
which we can deduce the running of the renormalised cosmological
constant with the energy scale µ.
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S E M I - C L A S S I C A L A P P R O X I M AT I O N A N D S E L F
C O N S I S T E N T B A C K - R E A C T I O N

5.1 two loops effective action and equations of motion

In this chapter we will turn our attention to the Dirac equation (37).
However, we are going to derive it again, starting from the one loop
effective action for the propagator. The reason for this procedural dis-
cordance stands in the complicated momentum dependence one finds
in the interaction terms in Eq. (37). Such a complication arises from
locality of torsion interactions: since the interaction happens locally
at a single point, it spreads all through momentum space. This makes
it harder to get the propagator equation from Eq. (37), so instead we
are going to derive it from the principle of least action.

To this end we start from the action in Eq. (32) in terms of the confor-
mally rescaled fields

Sχ =

∫
d4x

[
i

2
∂a
(
χ̄(x)γaχ(x) − χ̄(x)γaχ(x)

)
−χ̄(x)a(η)(mR + imIγ

5)χ(x) +
3πGξ2

2a(η)2
(χ̄(x)γ5γaχ(x))2

]
,

Our purpose is to make the interaction non local in x space, by rewrit-
ing

Sχ =

∫
d4xd4x ′δ(4)(x− x ′)

[
i

2
∂a
(
χ̄(x ′)γaχ(x) − χ̄(x)γaχ(x ′)

)
−χ̄(x ′)a(η)(mR + imIγ

5)χ(x) +
3πGξ2

2a(η)2
(χ̄(x ′)γ5γaχ(x))2

]
,

(48)

where ∂a = ∂
∂xa and we rewrote M̂ = mR + iγ5mI. Then we define

the propagator
S+−
αβ (x, x ′) = i〈χ̄(x)χ(x ′)〉 .

Since in the propagator equation all one loop contribution appear at
coincidence, we do not have to write equations for all the propagators
in Eqs. (39a - 39d), because their expression at coincidence coincide.
We therefore chose only one to work with, S+−.

After partial integration of the kinetic term, and taking expectation
value the action becomes:

Sχ =− i

∫
x,x ′

Tr
[
i

2

(
γaS+−(x, x ′) − γaS+−(x ′, x)

)
∂a − a(η)M̂ S+−(x, x ′)

+
3πGξ2

2a(η)2
〈χ̄(x)γ5γaχ(x ′)χ̄(x)γ5γaχ(x ′)〉

]
δ(4)(x− x ′) .

41
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Now, note that the interaction term can be rewritten, using Wick the-
orem ∫

x,x ′
Tr〈χ̄(x)γ5γaχ(x ′)χ̄(x)γ5γaχ(x ′)〉 =

=

∫
d4xd4x ′(γ5γa)αβ(γ5γa)γδ

(
S+−
αβ (x, x ′)S+−

γδ (x, x ′)

− S+−
αδ (x, x ′)S+−

γβ (x, x ′)
)
δ(4)(x− x ′) .

(49)

From the spinorial structure in Eq. (49), the diagrammatic interpre-
tation of our approximation is clear: we are considering the Hartree
and the Fock terms from Figure 8, and evaluating them at coinci-
dence. This is analogous to glue the diagrams along the dashed line
in Figure 8.

Having simplified the fermions four point function, we can rewrite
the two loops effective action

iSχ =

∫
x,x ′

Tr
[
iγaS+−(x, x ′)∂a − a(η)(mR + imIγ5)S+−(x, x ′)

+
3πGξ2

2a(η)2
(
Tr(γ5γaS+−(x, x ′))Tr(γ5γaS+−(x, x ′))−

−Tr(γ5γaS+−(x, x ′)γ5γaS+−(x, x ′))
)]
δ(4)(x− x ′) .

(50)

Varying the action (50) with respect to the propagator, multiplying by
S+−(x ′, x ′′) and integrating over the intermediate variable x ′ we get(

iγa∂a − a(η)(mR + imIγ
5)

)
S+−(x, x ′′) =

=−

(
3πGξ2

a(η)2
(
Tr(γ5γaS+−(x, x ′′))γ5γa − γ5γaS+−(x, x ′′)γ5γa

)
× S+−(x, x ′′) .

(51)

We now wish to use Eq. (51) to evolve an initial thermal state during a
collapsing phase, and prove that it does not lead to a singularity, but
rather through a bounce. We therefore want to evolve the fermions
interacting system through an evolving background and study the
effect of the interaction terms in Eq. (51). In classical mechanics, we
would use the Boltzmann equation(

∂

∂t
+

~k

m
· ~∇+~F · ∂

∂~k

)
f(~x,~p, t) = Coll(f) , (52)

where Coll(f) denotes the collision term and ~F some external force
field. Then the out of equilibrium dynamics will be described by the
Coll(f), and the phase space evolution of f by the left hand side of
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Eq. (52). The Boltzmann equation contains derivatives with respect to
both positions and momentum, and simultaneous evaluation of their
eigenvalues. In quantum mechanics such a description is not possible,
since the position and momentum operator do not commute. A clever
trick around this problem was suggested by Wigner [36], who wrote
the Wightman functions in a mixed representation (Wigner represen-
tation)

S+−(x,k) ≡
∫

d4reik·rS+−
(
x−

r

2
, x+

r

2

)
=

=i

∫
d4reik·r〈χ̄

(
x−

r

2

)
χ
(
x+

r

2

)
〉 .

(53)

In practice, the Wigner transform is a function of the “centre of mass”,
x, of the system χ̄χ, and of k, the momentum associated with the
“distance” between χ̄ and χ. The utility of S+−(x,k) is that, when
integrated over x, it gives the correct quantum probabilities to find
the system in the state p and vice versa [36]. In formulas∣∣∣∣ ∫ d4xχ (x) e−ip·x

∣∣∣∣2 = Tr
(
−iγ0

∫
d4xS+−(x,k)

)
, (54a)∣∣∣∣χ (x) ∣∣∣∣2 = Tr

(
−iγ0

∫
d4kS+−(x,k)

)
. (54b)

Now we can construct the Boltzmann kinetic equation, by rewriting
the Dirac equation in this mixed representation. We would then find
the equation of motion [30](

i

2
�∂+�k− (mR + imI)e

− i
2

←
∂·∂k

)
S+−(x,k) = Coll

(
S+−(x,k)

)
.

Proof. From Eq. (51) it is clear that, when taking the Wigner transform,
we evaluate a general mass function of the coordinates as

mR,I

(
x−

r

2

)
→mR,I

(
x− i

∂k
2

)
=

∞∑
p=0

m
(p)
R,I

p!

(
x− i

∂k
2

)p
=

=

∞∑
q=0

∞∑
p=q

m
(p)
R,I

q!(p− q)!
xp−q ·

(
−
i

2
∂k

)q
=

=

∞∑
q=0

∞∑
p=0

m
(p)
R,I

q!p!
xp
(
−
i

2
∂x · ∂k

)q
.

Which gives the last term in our Wigner representation of the Dirac
equation. The other therms are trivial, and Coll (S+−(x,k)) just de-
notes whatever comes from interactions.
�

We now managed to rewrite the momentum and position operator
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in a mixed representation needed to derive the quantum analogue of
the Boltzmann kinetic equation.

Indeed, we can now generalise Eq. (41) to a system out of thermal
equilibrium [7]

iS+−(x,k) = −
(
�k− M̂

)
f̃(x,k)2πδ(k2 −m2) , (55)

where f̃(x,k) is the non equilibrium, non homogeneous distribution
function in the Wigner representation. The defining property of Boltz-
mann probability distribution, f(t,~x,~p) in Eq. (52), is that the integral
of f over the phase space gives the total number of particles. In a
similar fashion, one can define the statistical particle number

Nstat =

∫
d4xd4k f̃(x,k) . (56)

Nstat indeed gives the statistical particle number, because of Eqs. (54a
- 54b). The situation is, however, more complicated when examined
more closely: one can define several quantities1 that reduce to the to-
tal particle number at thermal equilibrium, each of which provides
different information. The reason for this is that in a system out of
equilibrium, particles are constantly produced and annihilated by the
microscopic processes. Because we study average functions, we can-
not keep track of each single particle and tell exactly what the total
number is.

We now wish to make the connection with this general framework
and our cosmological field of fermions, in a space-time with torsion.
Our starting point will be Eq. (51), evaluated at coincidence since we
are primarily interested in the energy-momentum tensor: because of
the symmetries of FLRW space-time, we can infer that

S+−(η,~x;η,~x ′′) = S+−(η,
∣∣~x−~x ′′

∣∣) ,

such that equal times analogue of S+− in Wigner representation will
only be a function of k =

∣∣∣~k∣∣∣. This statement means that the propa-
gator does not depend on the specific point it is evaluated, but only
on the average spatial distance, ~r, which we then transform into its
Fourier counterpart ~k. Also, because all propagators in the 2-loops
energy momentum tensor (38) are evaluated at equal times, we do
not need the information about the full propagator, but only require
its projection on shell evaluated at coincidence.

1 Other than Nstat, and with reference to Eq. (60a - 60d), we can have Nkin =√
f21h + f22h + f23h.
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We then end up with the equation(
iγ0∂η − hkγ

0γ5 − a(η)(mR + imIγ
5)

)
S+−
h (η,k) =

=−
3πGξ2

a(η)2

∫
d3k ′

(2π)3

(∑
h ′

Tr(γ5γaS+−
h ′ (η,k ′))γ5γa − γ5γaS+−

h (η,k ′)γ5γa
)

× S+−
h (η,k) ,

(57)

where we have projected onto the helicity basis, in the same way as in
section 4.2. The difference with section 4.2 is that now the momentum
integral on the right hand side of Eq. (57) factorises, while in the
analogous Eq. (37) it was not possible to obtain such a splitting.

To end this section, we remark that the Wigner representation is
of particular interest on cosmological backgrounds, because of the
symmetries of the system. Spatial isotropy and homogeneity imply
that the ~x coordinate in Eq. (53) is superfluous. Furthermore, we only
require the on shell projection of the propagator, since to write down
the Friedmann equations this is all that we need, which implies also
that we can neglect the k0 dependence in Eq. (53).

5.2 fermionic currents and semi-classical approxima-
tion

Let us consider again the propagator equation (57): we want to con-
struct a ansatz for Sh(η,k), which exploit the helicity conservation
properties derived in section 4.2. To this end, we note that

Shh ′(η,k) =i〈χ̄h,α(η,k)χh ′,β(η,k)〉 = iδhh ′〈χ̄h,αχh,β〉 ⊗ ξ†h,αξh,β

≡δhh ′Sh(η,k) ,
(58)

as we decomposed the field χ in the helicity basis. In Eq. (58) we have
dropped the superscript +−, since in the time coincidence limit it is
not required to distinguish between different polarities. Note that the
propagator is diagonal in helicity representation of the fields, which
is what we needed to construct our ansatz.

The helicity eigenvector ξh are given by [19]

ξ± =
1√

2(1∓ k̂z)

(±(k̂x − ik̂y)
1∓ k̂z

)
,

such that

ξh,αξh,β =
1

2

(
1+ hk̂z h(k̂x + ik̂y)

h(k̂x − ik̂y) 1+ hk̂z

)
=

1 + hk̂ · ~σ
2

.
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While for the remaining degrees of freedom, we choose to split in the
chirality basis, in such a way that

〈χ†h,αχh,β〉 =

(
〈χ†h,Lχh,L〉 〈χ†h,Lχh,R〉
〈χh,Rχ

†
h,L〉 〈χ†h,Rχh,R〉

)
,

since χh is a two component spinor. Here the subscript L, R refer to
left-handed and right-handed chiralities. The chirality projectors are
given by PL,R = 1±γ5

2 .

We are now ready to write the ansatz for the propagator [9]

− iγ0Sh(η,k) ≡ 1
4
(fahρ

a)⊗
(
1 + hk̂ · ~σ

)
. (59)

Where we defined the fah as the expectation value of the fermionic
currents

f0h(η,k) = −iTr
(
γ0Sh(η,k)

)
= Tr〈χ†hχh〉 , (60a)

f1h(η,k) = iTr
(
Sh(η,k)

)
= Tr〈χ†hγ

0χh〉 , (60b)

f2h(η,k) = Tr
(
γ5Sh(η,k)

)
= −iTr〈χ†hγ

0γ5χh〉 , (60c)

f3h(η,k) = iTr
(
γ5γ0Sh(η,k)

)
= Tr〈χ†hγ

5χh〉 . (60d)

And ρa are Pauli matrices, with ρ0 = 1. We write the γ matrices in
Weyl basis

γ0 =

(
0 1

1 0

)
= ρ1 ⊗ 1 ,

γi =

(
0 σi

−σi 0

)
= −iρ2 ⊗ σi ,

γ5 =

(
−1 0

0 1

)
= −ρ3 ⊗ 1 .

(61)

Such that the propagator written in Eq. (58) coincides with the one
written in the right hand side of Eq. (59).

We can now consider the Dirac equation Eq. (57), and take the
combinations given in Eqs. (60a - 60d), to get the following set of
equations

∂ηf0h(k) = 0 , (62a)

∂ηf1h(k) + 2hkf2h(k) − 2amIf3h(k) = (62b)

=
6πGξ2

a2

∫
d~p

(∑
h ′

f3h ′(p)f2h(k) −
1

4

(
f3h(p)f2h(k) + f3h(k)f2h(p)

))
,

∂ηf2h(k) − 2hkf1h(k) + 2amRf3h(k) = (62c)

= −
6πGξ2

a2

∫
d~p

(∑
h ′

f3h ′(p)f1h(k) −
1

4

(
f3h(p)f1h(k) + f3h(k)f1h(p)

))
,

∂ηf3h − 2amRf2h + 2amIf1h = 0 , (62d)
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where we mean f(k) = f(η,k).
We have therefore arrived to the semi-classical approximation we

were looking for: we have switched from a full quantum mechani-
cal formalism, to a set of four equations, for the variables fah. The
attribute semi-classical here is intended in the following sense: the
quantities fah are not quantum mechanical wave functions, but ex-
pectation values of them. One can therefore regard the set of Eqs.
(62a - 62d) as a classical system, since fah are real commuting vari-
ables. However the underlying quantum structure is still captured by
the set of Eqs. (62a - 62d), since we derived them starting from the
microscopic Dirac theory and the number of degrees of freedom stays
the same. We have lost information about the phase dependence of
the fields χ and the off shell propagator.

Finally, a comment on Eqs. (62a - 62d): as derived in Appendix
B, the interactions terms induced by torsion generate pseudo-vector
fields, given in terms of the fermionic fields themselves. Such inter-
actions produce an effective shift on the momentum and mass terms
in Eqs. (62b - 62c), as we can see by comparing the momentum and
mass term on the left hand side with the interactions on the right
hand side2. Since this terms leads to a time dependent change in
the mass, they can lead to particle production when the temperature
reaches the shifted mass scale.

5.3 solution in the massless regime

The structure of Eqs. (62a - 62d) invites to formulate a system of
equations for integral quantities of the f’s. This way the momentum
integrals that come from the interaction terms will disappear, and we
would have an ordinary system of first order differential equations.
We define the momenta

n
(m)
ah =

∫
d3k
(2π)3

kmfah(k) , (63)

and define

fh =f1h + if2h ,

n
(m)
h =n

(m)
1h + in

(m)
2h ,

m =mR + imI ,

α5 =3πGξ
2/2 .

2 The reason why such effect does not appear in Eq. (62d) is explained in Appendix
B.
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Then Eqs. (62a - 62d) will transform to

∂ηn
(m)
h − 2hi n

(m+1)
h +

2iα5
a2

(∑
h ′

n
(0)
3h ′ −

n
(0)
3h

4

)
n
(m)
h (64a)

+i

(
am−

α5n
(0)
h

2a2

)
n
(m)
3h = 0 ,

∂ηn
(m)
3h + iam n

∗(m)
h − iam∗n

(m)
h = 0 . (64b)

Plus the complex conjugate of Eq. (64a), which we do not write be-
cause it is not an independent equation: the real degrees of freedom,
f1h, f2h are here replaced by a complex one.

We notice that in the system (64a - 64b) all equations are coupled
to each others, by the terms n(m+1). In other words, the system can
be rewritten as[(

∂η+
2iα5
a2

(∑
h ′

n
(0)
3h ′ −

n
(0)
3h

4

))
1 − hkP(1)

]
· ~nh ≡ Λ · ~nh

= −i

(
am−

α5n
(0)
h

2a2

)
1 ~n3h ,

∂η ~n3h = −i(am ~n∗h − am∗ ~nh) .

Where P(1) is a permutation of the identity matrix. This means that3

Λ =


(∂η + iΓ(η)) −2hi 0 0 · · ·

0 (∂η + iΓ(η)) −2hi 0

0 0 (∂η + iΓ(η)) −2hi
...

. . .

 , (65)

is a matrix where each line is obtained from the previous line by a con-
stant permutation. This type of matrices can always be diagonalised,
even when they are infinitely dimensional, if they satisfy convergence
properties. In Section C.1, we explicitly show how to construct such a
diagonalisation in general, and how to switch to the continuous limit.
Because the matrix for the basis change is unitary and constant, this
procedure is exact.

We now use such a framework to simplify our system. First, let us
notice that Eq. (100) gives, inserting Eq. (63)4

νah(θ) =

∞∑
n=0

∫
d3k
(2π)3

(βk)n e−inθfah(η,k) , (66)

3 Meaning Γ(η) = 2α5

a2

(∑
h′ n

(0)
3h′ −

n
(0)
3h
4

)
.

4 Note that we inserted a factor of β = 1
kBTin

for dimensional reasons. Tin here denotes
the temperature of the initial thermal state we want to evolve.
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which does not converge in general, and most notably it does not
converge for the thermal distributions fah,th(see Section C.2 for more
details on this). Thus we need to modify our definitions, and the di-
agonalisation procedure defined in Section C.1. We apply Borel sum-
mation and redefine (100) as

n
(n)
ah =

n!
βn

∫
dθ
2π
einθνah(θ) , (67a)

νah(θ) =

∞∑
n=0

e−inθ

n!
βnn

(n)
ah . (67b)

Which is well defined as long as fah(η,k) goes to zero faster than any
power of k. This, however, modifies the diagonal form of Λ, in Eq.
(65). To see how, consider, in Eqs. (64a - 64b) the term

n
(n+1)
ah =

n!
βn+1

∫
dθ
2π

(n+ 1)ei(n+1)θνah(θ)
P. I.
=

=
n!
βn

∫
dθ
2π
einθ

(
ieiθ

β
∂θνah(θ)

)
.

Now it is clear that Eqs. (64a - 64b) will transform, under (67a - 67b)
as

∂ηνh +
2heiθ

β
∂θνh + 2iamν3h = (68a)

= −
2iα5
a2

∫
dθ ′

2πi

(∑
h ′

ν3h ′(θ
′) −

ν3h(θ
′)

4
νh −

∫
dθ ′

2πi
νh(θ

′)
ν3h
4

)
,

∂ην3h − 2amRν2h + 2amIν1h = 0 . (68b)

We have not done much: we switched from an integral equation in
the variables (η,k) into an integral equation in the variables (η, θ).
However, the system (68a - 68b) can be further simplified by defining
the new coordinate

ρ =e−iθ ,

eiθ∂θ =− i∂ρ ,∫
dθ
2π

=

∮
dρ
2πi

1

ρ
.

Then we find

∂ηνh −
2hi

β
∂ρνh + 2ia(η)mν3h = (69a)

= −
2iα5
a(η)2

(∑
h ′

ν3h ′(ρ)

∣∣∣∣
ρ=0

νh −
1

4
ν3h(ρ)

∣∣∣∣
ρ=0

νh −
1

4
νh(ρ)

∣∣∣∣
ρ=0

ν3h

)
,

∂ην3h − 2a(η)mRν2h + 2a(η)mIν1h = 0 . (69b)

We now can appreciate the advantage of this technique: the inter-
action terms, originally integrals of the distributions fah, now are
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expressed by boundary terms in the ρ space. The rest of the informa-
tion can be reconstructed by analytically continuation, if one allows
ρ to be a complex variable. There is of course a price to pay: our sys-
tem is now differential in two variables. However, such a additional
dependence is not too difficult to deal with, because it comes linearly
and at first order.

It is now time to find a solution to Eqs. (69a - 69b). We claim that,
in the limit a(η)mR,I → 0, describing the late phase of the collapse,
the solution is given by

νh(ρ,η) =exp

(
iα5ν3h(0)

2

η∫
η0

dη ′a(η ′)−2
)

×

[
F

(
η+

βρ

2hi

)
−
iα5
2

βρ
2hi∫
0

ds ′a
(
−s ′+η+

βρ

2hi

)−2

F

(
−s ′+η+

βρ

2hi

)
ν3h

(
2hi

β
s ′
)]

,

ν3h(η, ρ) =H(ρ) ,
(70)

where F(ρ) and H(ρ) are analytical functions determined by the initial
conditions. This massless limit is useful in particular in the situation
of a collapsing universe, or the bulk of a star collapsing into a singu-
larity. In these situations, the conformal factor a(η) → 0 in the late
phase of the collapse.

Proof. Let us start by rewriting Eqs. (69a - 69b), in the limit mR,I → 0[(
∂η +

∑
h ′

2iα5
a(η)2

ν3h ′(0,η) −
iα5
2a(η)2

ν3h(0,η)

)
−
2hi

β
∂ρ

]
νh(ρ,η) =

=
iα5
2a(η)2

νh(0,η)ν3h(ρ,η) ,

∂ην3h(ρ,η) = 0 .

At thermal equilibrium, the term
∑
h ′
ν3h ′(0,η) simplifies(Section C.2),

so we can make the ansatz5

νh(ρ,η) = Exp

 iα5ν3h(0)
2

η∫
η0

dη ′
1

a2(η ′)

Vh(ρ,η) .

We thus get the following equation to solve[
∂η −

2hi

β
∂ρ

]
Vh(ρ,η) =

iα5
2a(η)2

Vh(0,η)ν3h(ρ) . (71)

5 Note that this simplification is not necessary if we want to apply this method in a
more general situation, but it simplifies the notation.
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To solve this equation, we are going to make the ansatz

Vh(ρ,η) = F
(
η+

βρ

2hi

)
+G(ρ,η) such that G(ρ = 0,η) = 0 (72)

Then the equation we have to solve is[
∂η −

2hi

β
∂ρ

]
G(ρ,η) =

iα5
2a(η)2

F(η)ν3h(ρ) .

This equation can be solved with the method of characteristic curves [8].
This means looking for solutions of the system of ordinary equations

dη(s, r)
ds

= 1 , (73a)

dρ(s, r)
ds

= −
2hi

β
, (73b)

dG(s, r)
ds

=
iα5

2a(η(s, r))2
F(η(s, r))ν3h(ρ(s, r)) , (73c)

G(0, r) = 0 . (73d)

A solution with the boundary condition G(ρ = 0,η) = 0 is

η =s+ r ,

ρ =−
2hi

β
s ,

G(s, r) =

s∫
0

ds ′(s ′ + r)2F(s ′ + r)ν3h(s ′) .

(74)

Note that (74) is always a solution of the set of equations (73a - 73d).
However, we are eventually interested in the inverse curves r(η, ρ),
s(η, ρ). These can only be found if the determinant of the Jacobian of
the transformation (74) is non zero. Luckily this is our case, and we
find:

r =η+
βρ

2hi
,

s =−
βρ

2hi
,

G(η, ρ) =
iα5
2

− βρ
2hi∫
0

ds ′a
(
s ′ + η+

βρ

2hi

)−2

F

(
s ′ + η+

βρ

2hi

)
ν3h

(
−
2hi

β
s ′
)

.

(75)

Eq. (75) leads to the solution (70). Note that we have not specified F,
which must therefore be deduced from initial conditions, nor ν3h(ρ,η) =
H(ρ).
�
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At this point we should impose initial conditions, our initial thermal
state of fermions, and derive a relation which will allow us to cal-
culate F, and specify the solution. With reference to Section C.2, we
need to impose

F

(
η0 +

βρ

2hi

)
−
iα5
2

βρ
2hi∫
0

ds ′
F
(
−s ′ + η0 +

βρ
2hi

)
a
(
−s ′ + η0 +

βρ
2hi

)2ν3h(2hiβ s ′
)

=

=
m(kBT)

2

2π2

(
ψ ′(1− ρ) −

1

2
ψ ′(1− ρ/2)

)
,

ν3h(ρ) =
(kBT)

3

2π2

(
ψ ′′(1− ρ) −

1

2
ψ ′′(1− ρ/2)

)
.

(76)

Which can be rewritten purely in terms of the time coordinate η, by
identifying η ≡ η0 + βρ

2hi . Then Eq. (76) can be rewritten as

F(η) −
iα5
2

η−η0∫
0

ds
F(η− s)

a(η− s)2
ν3h

(
2hi

β
s

)
=

=
m(kBT)

2

2π2

(
ψ ′(1−

2hi

β
(η− η0)) −

1

2
ψ ′(1−

hi

β
(η− η0))

)
.

(77)

Eq. (77) started as an equation for the auxiliary variable ρ, but even-
tually became an equation for the physical time η. What the solution
to Eq. (77) physically represent is

Fh(η) = exp

(
−
iα5ν3h(0)

2

η∫
η0

dη ′a(η ′)−2
) ∫

d~k (f1h(η,k) + if2h(η,k)) .

Where f1h and f2h are the distribution functions of the fermionic
fields, given in Eqs. (60b - 60c). In deriving the former equation, we
have to use the relation n(m)

ah = 1
βm

∂(m)

∂ρ(m)νah(ρ)
∣∣
ρ=0

.
Note that the method we have used does not require any assump-

tions on the scale factor a(η), as long as it can be analytically extended
to the whole complex plane6. Because of this feature, we can actually
study the space-time back reaction, since the gravitational field equa-
tions, the Friedmann equations, will be given purely in terms of a(η).
Naturally the analytical character of our solution will stop here, and
we will use numerical tools to solve the Friedmann equations.

6 Required to define a
(
−s ′+η0+

βρ
2hi

)
.
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Figure 9: The energy density of the conformally rescaled fields. The epsilon
parameter, ε =

(
1
H

) ′
, has been set to 2, its value during radia-

tion domination. The parameters are ξ ' 103, |m|
kBT0

' 10−2 and
kBT0 ' 0.01Mp. Note that the tail diverges towards −∞, when
a(η) becomes small, only if particle production is included.

5.4 approximations and self consistent back reaction

Eq. (77) always has a solution that can be written as the series [10, 37]

F(η) =

∞∑
n=0

(
iα5
2

)n
Fn(η) ,

F0(η) =
m(kBT)

2

2π2

(
ψ ′
(
1−

2hi

β
(η− η0)

)
−
1

2
ψ ′
(
1−

hi

β
(η− η0)

))
,

Fn(η) =
h(kBT)

3

2π2

η−η0∫
0

ds
Fn−1(η− s)

a(η− s)2

(
ψ ′′
(
1−

2hi

β
s

)
−
1

2
ψ ′′
(
1−

hi

β
s

))
,

(78)

which converges in any finite interval of the real line, as long as all the
involved functions are continuous there7. Eq. (78) therefore represents
a solution for F, which can be used to construct the energy density
evolution in a fixed background. In Figure 9 we report the evolution,
in a fixed background, of the rescaled energy density 8,

a6(η)Tψ00.

7 The poles of the ψ functions are avoided here, because they occur at imaginary
values of η(see Figure 12).

8 We choose to rescale the zeroth component of the energy-momentum tensor with
the highest power of the scale factor found in it, the torsion contributions scaling
∝ a−6(η).
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Note that the contribution of torsion makes Tψ00 negative, and particle
production acts to enhance this effect at late time. Since this evolution
is obtained by keeping ε constant, it does not reproduce a physical
behaviour: in reality, Tψ00 appears on the right hand side of the Fried-
mann equations, in such a way that the sum of the fermionic contri-
bution and the other fluids composing the universe remains positive.
In the realistic situation, the total energy density will never become
negative, but ε will adjust itself accordingly.

We construct our approximation by looking at the structure of (77),
and acknowledging that α5 is a rather small parameter, O(10−39GeV−2).
Then it is clear that torsion contributions are only going to matter at
late stages of the gravitational collapse. This means that F(η) is going
to evolve approximately free until a(η) becomes small. The asymp-
totic expansion we are talking about, η → 0, describes the late phase
of the collapse. In this regime (77) can be expanded as(after changing
integration variable to s ′ = η− s)

F(η) −
iα5
2

η∫
η0

ds
F(s)

a(s)2
ν3h

(
−
2hi

β
s

)
'

'm(kBT0)
2

2π2

(
ψ ′
(
1+
2hi

β
η0

)
−
1

2
ψ ′
(
1+
hi

β
η0

))
,

(79)

which can be solved exactly with

F(η) = F0exp

 iα5
2

η∫
η0

ds (a(s))−2 ν3h

(
−
2hi

β
s

) , (80)

F0 =
m(kBT0)

2

2π2

(
ψ ′
(
1+

2hi

β
η0

)
−
1

2
ψ ′
(
1+

hi

β
η0

))
,

as it can be easily confirmed by differentiating (79). We can express
the energy-momentum tensor in terms of F starting from the energy-
momentum tensor (38). Some algebra, using the Dirac equation to
get rid of the time derivatives, and our ansatz for the propagator (59)
lead to

T00 =
∑
h

∫
d~p

(2π)3

(
1

a4
h|~p|f3h +

1

a3
(mRf1h +mIf2h)

)
−

−
α5
a6

∫
d~p

(2π)3
d~p ′

(2π)3

(∑
hh ′

f3hf3h ′ +
∑
h

2(f23h + f20h) +
5

2
(f21h + f22h)

)
,

(81)

Tij = δij

{∑
h

∫
d~p

(2π)3
1

3

(
1

a4
h|~p|f3h

)
−

−
α5
a6

∑
hh ′

∫
d~p

(2π)3
d~p ′

(2π)3

(∑
hh ′

f3hf3h ′ +
∑
h

2(f23h + f20h) +
5

2
(f21h + f22h)

)}
,

(82)
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Figure 10: Scale factor evolution as a function of conformal time η, for
ξ ' 103, |m|

kBT0
' 10−2 and kBT0 ' 0.01Mp. The evolution starts

in a Radiation dominated background, i.e. a(η) =
(
η
η0

)
, in the

upper figure, and in matter domination, i.e. a(η) = 1
2

(
η
η0

)2
, in

the lower. We notice that the scale factor does not become sin-
gular, but it reaches a minimum value amin. The effect of par-
ticle production is to enhance the bounce, making amin slightly
bigger. Moreover, introduction of particle production makes the
hubble parameter after the bounce bigger: the universe collapses
and starts expanding slightly faster than it was collapsing.
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which in our approximation (m → 0) and written in terms of the
generating functions νah becomes

T00 =
∑
h

(
1

a4
h
1

β

∂ν3h
∂ρ

) ∣∣∣∣
ρ=0

−
α5
a6

(∑
h

2(ν23h +
5

2
ν∗hνh)

)∣∣∣∣
ρ=0

,

(83)

Tij = δij

{∑
h

1

3

(
1

a4
h
1

β

∂ν3h
∂ρ

)∣∣∣∣
ρ=0

−
α5
a6

(∑
h

2(ν23h +
5

2
ν∗hνh)

)∣∣∣∣
ρ=0

}
.

(84)

Equations (83 - 84) can be substituted in the second Friedmann
equation, which in conformal time reads

a ′′

a3
=
4πG

3
(ρ− 3p),

which yields to

a ′′

a3
=
4πG

3
(ρb − 3pb) +

4πG

3

2α5
a6

∑
h

(
2ν23h|ρ=0 +

5

2

∣∣Fh(η)∣∣2) . (85)

where Fh(η) is given by (80) and ρb, pb are the energy density and
pressure of the fluid driving the collapse. Once the background evo-
lution is given (i. e. wb(η) = pb/ρb is known), Eq. (85) becomes the
equation for the scale factor a(η) alone and can be solved self con-
sistently. Given initial conditions a0, H0 and kBT0 we can evolve in
the background until the second term in (85) becomes significant and
then write a numerical code that construct the remainder of the solu-
tion. Again, since the torsion contributions are going to be important
at late times, we can use the expansion (80) around kBT0η ' 0.

The results of this numerical analysis are shown in Figure 10 and
Figure 11. The effect of including particle production, is that the
bounce gets enhanced and happens sooner. The magnitude of this
effect depends on the initial conditions, but the rest of our conclu-
sions are general. These examples illustrate the importance of taking
the backreaction self-consistenly into account for the comparison of a
classical evolution with a quantum evolution where perturbative loop
effects are self-consistently accounted for. Before proceeding to the
conclusion, let us verify that the energy scale reached in the bounce
scenario is enough away from the Planck scale. From Figure 10, it is
clear that the classical solution is enough for this purpose. The torsion
contribution to the Friedmann equation is

H2 =
1

m2P

(
ρ−

ξ2

m2P
n2
)

bounce
= 0,
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Figure 11: Rescaled energy density evolution through the bounce(for radi-
ation domination). Compared to what happens in Figure 9, the
energy density does not diverge here. The difference is that in
the plot in Figure 9 the back reaction of the fields with gravity is
turned off. In this case, the fermionic fields gain more and more
energy, without a bound. When the back reaction is turned on,
however, the fermions energy stops the collapse once it becomes
comparable with the background energy density, therefore pre-
venting the singularities in both T00 and a(η).

where ρ ' ρ0 (kBT)
4

(kBT0)4
is the (relativistic) density driving the collapse

and n ' n0 (kBT)
3

(kBT0)3
is the fermions number density. Solving the Fried-

mann equation yields to

kBTbounce =

√
mP
√
ρ0

|ξ|n0
kBT0 , (86)

Rbounce =
mPρ

3/4
0

|ξ|n0
. (87)

From these relations we can deduce that

• The temperature at the bounce remains in general lower than
the Planck scale. It can be small even in the minimally coupled
case (ξ = 1) if the initial number density n0 � ρ0, a situation
analogous to that found in neutron stars. The same applies to
the curvature scale.

• The coefficient that multiplies kBT0, in (86), can be made smaller
by a large ξ � 1. In case of a single fermionic fluid which
couple to torsion and initially drives the collapse, we find that
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the only way for the curvature scale to be physically accept-
able is to have a large ξ. This, however, does not apply to the
temperature, which in this situation can still be small, since

kbTbounce =
√
mPkBT0
ξ .

From this we can conclude that the Planck scale is not reached if
n0 � ρ0, or ξ� 1.



6
C O N C L U S I O N S

In this thesis we have analysed the effect of torsion of Einstein-Cartan
theory on the evolution of the Universe. In particular, we have studied
the torsion contribution on a matter and radiation dominated collaps-
ing universe and find that – instead of ending in a big crunch sin-
gularity – the universe undergoes a bounce. We have evidence that
this behaviour is generic, and is not affected by the nature of the col-
lapse (see Appendix D). In contrast to older works [28, 29, 35], we
did not assume a classical form of the spin fluid sourcing torsion,
but instead we derived our description from a full microscopic treat-
ment of fermions. We did both: (a) a classical treatment (in which
the fermionic fluid is described by an initial thermal state and par-
ticle production due to Universe’s contraction is switched off) and
(b) perturbative quantum treatment (in which particle production is
accounted for at the one-loop level in the fermionic dynamical equa-
tions and at the two-loops level in the Friedmann equation). Our
analysis shows that the bounce is not largely affected by the quan-
tum particle production. We found that, when fermion production is
taken account of, then the bounce occurs somewhat earlier, indicat-
ing that fermion production induces a negative backreaction on the
Universe’s evolution.

The reason why we chose a matter dominated collapse is that the re-
sulting bounce might present a viable alternative to inflation. Namely,
it is well known that the (Bunch-Davies) vacuum state in matter era
yields a flat spectrum of perturbations. 1 Therefore, it would be of
particular interest to derive the power spectrum of cosmological per-
turbations and investigate whether it can be used to seed the large
scale structure and fluctuations in cosmic microwave background that
match the data.

A second situation in our study can be of use is that of a collapsing
star turning into a black hole. In this case the interior of the star can
be modelled by a FLRW metric [23], as long as the collapse respect
spherical symmetry. Therefore, at least in the bulk of the star, the
analysis of this paper applies, and can be used to infer black holes
formation. As it happens with the singularity at the beginning of our

1 This is so because the equation of motion for a conformally rescaled massless scalar,
φc = aφ) in momentum space and in conformal time, (∂2η + k2 − a′′/a)(aφ(η,k)) =
0, is identical to that in de Sitter space. This follows immediately from the form of the
scale factors, which is in de Sitter space, a ∝ −1/η, and in matter era, a ∝ η2, such
that in both cases a′′/a = 2/η2. Since the spectrum of a massless scalar in a Bunch-
Davies vacuum in de Sitter space is scale invariant, so must be the corresponding
spectrum of a massless scalar in matter era.
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universe, it is probable that also formation of black holes singularities
is prevented by the introduction of torsion.
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A P P E N D I X A

In this appendix we discuss Lorentz invariance of the matter lagrangian
and see what it implies. The transformation law for the tetraed and
the spin connection are as follows [13, 26]

e ′
µ
a =Λbae

µ
b ,

ω ′
ab
µ =ωcdµΛ

a
cΛ

b
d −Λ

db∂µΛ
a
d .

(88)

We consider an infinitesimal transformation, i.e.Λba = δba+Ω
b
a, where

Ωab = −Ωba is the infinitesimal parametrization. We require the
matter lagrangian to be invariant under lorentz transformations, which
means

δLm =
δLm

δωabλ
δωabλ +

δLm

δe
µ
a
δeµa ≡

1

2

(
eΣλabδω

ab
λ + eT

a
µδe

µ
a

)
,

By using the infinitesimal form of Λ as we wrote it above, we find

δωabλ =ωadλΩ
b
d +ω

cb
λΩ

a
c − ∂λΩ

ab ,

δeµa =eµbΩ
b
a .

Which will give us a conservation equation as a consequence of im-
posing δLm = 0. We find

2δLm =eΣλab
(
ωadλΩ

b
d +ω

cb
λΩ

a
c − ∂λΩ

ab
)
+ T[ab]Ω

ab

=e

(
Σλcbω

c
aλ + Σ

λ
acω

c
bλ +

1

e
∂λ
(
eΣλba

)
− T[ab]

)
Ωba,

(89)

where we renamed indices, integrated one term by parts and used
the fact that Ωab is antisymmetric. Using the well known identity

1√
−g
∂λ
√
−g =

1

e
∂λe = {σλσ} ,

we can rewrite the conservation law as

∇λΣλ[ab] − SλΣλ[ab] − T[ab] = 0 .

To make the connection with the formulation in terms of the torsion
tensor note

Σλ[µν] =
2

e

δLm

δωabλ
=
2

e

δLm

δSαβγ
δSαβγ

δωabλ
= Π[µν]

λ ,

and use the solution (21) to finally get

∇λΠ[µν]
λ − 2πGΠλΠ[µν]

λ − T[µν] = 0 . (90)

Which is precisely the anti symmetric part of Eq. (25), as one can
calculate it starting from Eq. (23).
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A P P E N D I X B

In this appendix we discuss a different way of looking at Eqs. (62a -
62d). Namely, we will derive that torsion interactions are analogous
to interactions between torsion and pseudo-vector fields. Indeed, let
us consider the Lagrangian

L =
i

2
(ψ̄γµ∂µψ−∂µψ̄γ

µψ)− ψ̄M̂ψ−eZµψ̄γ
5γµψ−

iη

2
eBµνψ̄γ

[µγν]ψ ,
(91)

where η, e are dimensionless coupling constants, one gets the equa-
tions of motion, for spinorial the currents in Eqs. (60a - 60d)

f ′0h = 0 , (92a)

f ′1h + 2hkf2h − 2mIf3h = (92b)

= (2eZ0)f2h + 2ηh(B0ik̂
i)f3h ,

f ′2h − 2hkf1h + 2mRf3h = (92c)

= −(2eZ0)f1h + 2ηh(Bijε
ijkk̂k)f3h ,

f ′3h − 2mRf2h + 2mIf1h = (92d)

= −2ηh
(
B0ik̂

if1h +Bijε
ijkk̂kf2h

)
.

While the equations of motion one gets from integrating out torsion,
namely Eqs. (62a - 62d) are:

f ′0h = 0 ,

f ′1h + 2hkf2h − 2mIf3h =

= 2α5

(∫
d3p
∑
h ′

f3h ′(p) −
f3h(p)

4

)
f2h − 2α5

(∫
d3pf2h(p)

)
f3h ,

f ′2h − 2hkf1h + 2mRf3h =

= −2α5

(∫
d3p
∑
h ′

f3h ′(p) −
f3h(p)

4

)
f1h + 2α5

(∫
d3pf1h(p)

)
f3h ,

f ′3h − 2mRf2h + 2mIf1h = 0 .

Meaning fah = fah(k) = fah(η,k). Now, we see that, under the iden-
tifications:

(2eZ0) = 2α5

(∫
d3p
∑
h ′

f3h ′(p) −
f3h(p)

4

)
, (93a)

2ηh(B0ik̂
i) = −2α5

(∫
d3pf2h(p)

)
, (93b)

2ηh(Bijε
ijkk̂k) = 2α5

(∫
d3pf1h(p)

)
. (93c)
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Equations (92a - 92c) become identical to (62a - 62d).

Proof. The difference in the two sets of equations comes into play in
equation (92d), which would become:

f ′3h − 2mRf2h + 2mIf1h = −2ηh
(
B0ik̂

if1h +Bijε
ijkk̂kf2h

)
=

= −2α5

(∫
d3pf2h(p)f1h(k) −

∫
d3pf1h(p)f2h(k)

)
,

(94)

The caveat here is that Bµν actually depends on ψ̄ψ, so we have to
include its variation in the equations. We get the corrected equations

(iγµ∂µ −m)ψ = e

(
Zµγ

µψ+ ψ̄γµψ
δZµ

δψ̄

)
(95a)

+
iη

2

(
Bµνσ

µνψ+ ψ̄σµνψ
δBµν

δψ̄

)
,

ψ̄

(
i
←
∂µγ

µ +m

)
= −e

(
ψ̄γµZµ + ψ̄γµψ

δZµ

δψ

)
(95b)

−
iη

2

(
ψ̄σµνBµν + ψ̄σ

µνψ
δBµν

δψ

)
,

where σµν = [γµ,γν]. To get the equation of motion for f3h (in po-
sition space), we will consider the linear combination ψ†γ5γ0× (95a)
+ (95b) ×γ5ψ, but worry only about the right hand side of the equa-
tion, since we know the left hand side will combine the correct way.
We get:

iη

2

(
Bµνψ

†γ5γ0σµνψ+ ψ̄σµνψψ†γ5γ0
δBµν

δψ̄

)
−

iη

2

(
Bµνψ

†γ0σµνγ5ψ+ ψ̄σµνψ
δBµν

δψ
γ5ψ

)
=

= 2ηh(B0ik̂
if1h +Bijε

ijkk̂kf2h)

+ iηhk̂if2h

(
−
δB0i
δψ

γ5ψ+ψ†γ5γ0
δB0i

δψ̄

)
+ iηhk̂kε

ijkf1h

(
−
δBij

δψ
γ5ψ+ψ†γ5γ0

δBij

δψ̄

)
. (96)

Now, consider the definitions (93b - 93c), and plug it in (96):

− 2α5

∫
~p
f2h(p)f1h(k) + 2α5

∫
~p
f1h(p)f2h(k)

−2α5

∫
~p
f1h(p)f2h(k) + 2α5

∫
~p
f2h(p)f1h(k)

= 0 .

(97)
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A P P E N D I X C

c.1 diagonalization of circulant matrices

Let us consider a matrix that can be written as

C =


c0 c1 · · · cN−1

cN−1 c0 · · · cN−2
...

. . .

c1 · · · c0

 . (98)

That is, each line is obtained in the previous by permuting each ele-
ment one place to the right. Clearly, such a matrix is of a special kind,
because it can be expressed entirely in terms of the vector

~c = (c0, c1, · · · , cN−1) ,

and as a matter of fact this will allow us to diagonalise any matrix in
the form (98). We find the eigenvectors

~νk =
1√
N
(1,ωk,ω2k, · · · ,ωN−1

k ), k = 0, 1, · · · ,N− 1 ,

where
ωk = e2πi

k
N , k = 0, 1, · · · ,N− 1 .

Proof. We get, with the notational understanding that c−1 = cN−1 , c−2 =
cN−2 , · · · , c−N+1 = c1

C · ~νk =
1√
N

(
N−1∑
n=0

cnω
n
k ,
N−1∑
n=0

cn−1ω
n
k , · · · ,

N−1∑
n=0

cn−N+1ω
n
k

)
=

=

N−1∑
n=0

cnω
n
k

1√
N

(
1, ωk, · · · , ωN−1

k

)
=

(
N−1∑
n=0

cnω
n
k

)
~νk .

So the system is diagonal in ~νk basis, as long as

N−1∑
n=0

cn

(
e2πi

k
N

)n
<∞ ,

which later, when we switch to the continuous limit, will be the con-
vergence condition.
�
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The next thing to notice is that the eigenvector are orthonormal:

~ν†k · ~νl =
1

N

N−1∑
a=0

e2πia(l−k)/N = δl,k .

Since the basis vector are orthonormal, the basis change matrix is
unitary.

We can find the basis change matrix easily: let ~el denotes the canon-
ical basis1 in CN, then

Ukl = (~νk ·~el) =
1√
N
e2πi(kl)/N ,

which implies that

U
†
klUlk ′ =

1

N

N−1∑
l=0

e2πi(l (k−k
′))/N = δk,k ′ .

We can then write the vector components

n(n)~en =
1

N

N−1∑
k=0

(
e2πink/N

)
ν(k)~νk . (99)

Now, since our original problem is infinite dimensional, we should
carefully study the limit in which N → ∞. Clearly, in this limit, the
roots of identity (ωk) are going to be parametrised by a continuous
angle. In the sense that:

ωk → ω(θ) = eiθ, θ ∈ [0, 2π]

In this limit, we can make replacements

1

N

N−1∑
k=0

→
∫

dθ
2π

,

λk → λ(θ) ,

ν(k) → ν(θ) .

Then the vectorial component become the Fourier transformation of
one another

n(n) =

∫
dθ
2π
einθν(θ) ,

ν(θ) =

∞∑
n=0

e−inθn(n) .
(100)

1 i. e.the vectors (1, 0, · · · , 0), (0, 1, · · · , 0), · · ·
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While the eigenvalues will be given by

λ(θ) =

( ∞∑
n=0

cne
inθ

)
. (101)

c.2 calculation of the generating function νh for a

thermal distribution

In the following we are going to derive the expressions for νh and
ν3h at thermal equilibrium. Going back to Eq. (41), and removing the
divergent part θ(k0), we find the initial conditions

f0h = 0 , (102a)

f1h =
2mR√
k2 +m2

1

eβ
√
k2+m2

+ 1
, (102b)

f2h =
2mI√
k2 +m2

1

eβ
√
k2+m2

+ 1
, (102c)

f3h =
2hk√
k2 +m2

1

eβ
√
k2+m2

+ 1
, (102d)

as it can be easily verified by plugging the propagator (41) into the
definitions (60a - 60d). Removing the divergent part from this initial
state as shown in Section 4.3, assures us that Eqs. (102a - 102b) are
the physical part of the thermal fluid we are considering.

We now want to find an expression for the generating functions νh =

ν1h + iν2h and ν3h at thermal equilibrium. To be able to do this
calculation analytically, we are going to expand in powers of m. First,
consider the definitions of the generating functionals, from Eq. (67b)
we get

νah(ρ) =

∞∑
n=0

n
(n)
ah

n !
(βρ)n =

∫
d~keβk ρfah(η , k) . (103)

Note that Eq. (103) can be always evaluated numerically, which will
give the functions νah(ρ). Now, however, we exploit the ultra rela-
tivistic limit, to get

n
(n)
h = m

2π2

∫
dk kn+1

eβk+1
= m
2π2

(
1 − 1

2n+1

) (n+1) !ζ(n+2)
βn+2 (104a)

+O(m3)

n
(n)
3h = h

2π2

∫
dk kn+2

eβk+1
= h
2π2

(
1 − 1

2n+2

) (n+2) !ζ(n+3)
βn+3 (104b)

+O(m2) .
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Plugging (102b - 102c) into the definition (67b) we find:

νh(ρ) =
m(kBT )

2

2π2

( ∞∑
n=0

(n + 1)ρnζ(n + 2)

−
1

2

∞∑
n=0

(n + 1)ρnζ(n + 2)/2n
)

=

=
m(kBT )

2

2π2ρ2

( ∞∑
n=0

∞∑
k=1

(n + 1)
( ρ
k

)n+2

− 2

∞∑
n=0

∞∑
k=1

(n + 1)
( ρ
2k

)n+2
)

.

We wrote everything in the variable ρ, rather than the original θ, be-
cause for ρ = e−iθ the sums in Eq. (105) do not converge. However,
we can calculate what Eq. (105) yields to where the sum is conver-
gent(i. e. |ρ| < 1), and then analytically extend the result to the whole
complex plane, where it is non singular. This procedure does not af-
fect the solution we found in Section 5.3, because all we need is the
form of νah(ρ) around ρ = 0. This is clear from Eqs. (69a) and (77):
to reconstruct the data about the physical functions fah, we need to
evaluate νah and their derivatives at ρ = 0. So it suffice that (105)
converges in a set including a neighbourhood of ρ = 0.

With this caveat in our mind, we can use the result

∞∑
n=0

∞∑
k=1

(n+ 1)
(x
k

)n+2
=
∂

∂x

∞∑
k=1

x2

k2

∞∑
n=0

(x
k

)n
=

=
∂

∂x

∞∑
k=1

x2

k(k− x)
= x2ψ ′(1− x) ,

where ψ ′(x) = d2
dx2 log Γ(x) is the polygamma function, and Γ(x) the

gamma function that generalises the factorial. Then we find

νh(ρ) =
m(kBT)

2

2π2

(
ψ ′(1− ρ) − 1

2ψ
′(1− ρ

2 )
)

, (105a)

ν3h(ρ) = −
h(kBT)

3

2π2

(
ψ ′′(1− ρ) − 1

2ψ
′′(1− ρ

2 )
)

. (105b)

From Eqs. (105a - 105b) we can tell that νah are regular functions
near the origin. In Figure 12 we can see the pole structure of νah: all
poles come at integers values of ρ, and are double poles. We can also
infer that the integral in Eq. (77) does not encounter any poles, since
it is evaluated on a vertical trajectory in the complex plane, i. e.2hiβ η.

Now, to clarify how the inverse transformation works, namely how
to switch back from νah(ρ) to n(m)

ah =
∫
~k k
mfah.
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Figure 12: Poles structure for the function ψ ′(1− x) − 1
2ψ
′(1− x/2). In the

plot the vertical axe is the absolute value of the function, the hori-
zontal plane is the complex plane and the colour coding contains
information about the phase of the function. All the poles are
double poles and they occur for ρ = 1, 2, · · · .

Consider Eq. (67a), plugging in the variable ρ = e−iθ

n
(n)
h = n!

m(kBT)
2+n

2π2

∫
dθ
2π
einθ

(
ψ ′(1− e−iθ) −

1

2
ψ ′(1−

1

2
e−iθ)

)
=

= n!
m(kBT)

2+n

2π2

∮
dρ
2πi

ρ−(n+1)

(
ψ ′(1− ρ) −

1

2
ψ ′(1− ρ/2)

)
,

where the integration is on a counterclockwise circuit surrounding
the origin, and not enclosing any of the integer ρ poles. Using the
complex analysis residue theorem we can easily evaluate this integral,
by rewriting ∮

γ

dρ
2πi

ρ−n−1
(
ψ ′(1− ρ) −

1

2
ψ ′(1− ρ/2)

)
=

=

(
1−

1

2n+1

)
Res

(
ρ−n−1ψ ′(1− ρ)|ρ=0

)
=

=

(
1−

1

2n+1

)
1

n!
lim
ρ→0

d(n)

dρ(n)
ψ ′(1− ρ) =

=

(
1−

1

2n+1

)
(−1)n

n!
ψ(n+1)(1) =

=

(
1−

1

2n+1

)
(n+ 1)ζ(n+ 2)

Where we used that ψ(n)(1) = (−1)n+1n!ζ(n+ 1).
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A P P E N D I X D

In this appendix, we use the results from Section 5.4 to derive the
general behaviour of the fields energy density in the energy momen-
tum tensor. We are going to calculate the asymptotic behaviour of the
function F(η) given by Eq. (80).

In a general background where the parameter ε =
(
1
H

) ′
= −H

′

H2
is

constant, we can write, by making use of Eq. (80)

a(τ) = |H0(ε− 1)η|
1/(ε−1) ≡ |τ|1/(ε−1) ; ε > 1 , τ ∈ [−1, 0] ,

F(τ) =F0Exp

 iα5
2H0(ε− 1)

h(kBT)
3

2π2

∫τ
−1

ds
Z
(
−2hi s

βH0(ε−1)

)
|s|δ

 ;

δ =
2

ε− 1
,

(106)

where
Z(ρ) = ψ ′′(1− ρ) −

1

2
ψ ′′(1− ρ/2) ,

is the ρ dependent part of ν3h(ρ), as seen in Eq. (105b).

• For ε > 3 we can write

|F(τ)| =

∣∣∣∣∣∣F0
∞∑
n=0

 iα5
2H0(ε− 1)

h(kBT)
3

2π2

∫τ
−1

ds
Z
(
−2hi s

βH0(ε−1)

)
|s|δ

n /n!

∣∣∣∣∣∣
6 |F0|

∞∑
n=0

[
α5

2H0(ε− 1)

(kBT)
3

2π2
|Z(0)|

∫0
−1

ds
1

|s|δ

]n
/n! =

= |F0|

∞∑
n=0

[
α5

2H0(ε− 1)

(kBT)
3

2π2
|Z(0)| /δ

]n
/n! =

= |F0|Exp
(

α5
2H0(ε− 1)

(kBT)
3

2π2
|Z(0)|

δ

)
.

Such that |F(τ)| 6 C, for a constant C = |F0|Exp
(

α5
2H0(ε−1)

(kBT)
3

2π2
|Z(0)|
δ

)
.

Furthermore, if ε > 3, the collapse is driven by a matter whose den-
sity scales as

ρ(τ) =
ρ0

a3(1+w)
=
ρ0
a2ε

,

which will be always dominant with respect to torsion corrections in
the energy density, which scales ∝ 1

a6
as a → 0. This implies that

there is no bounce for ε > 3.
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• The case ε = 3 is of interest, and in this case we can write, after
countably many partial integrations

∫τ
−1

ds
Z
(
−2hi s

βH0(ε−1)

)
s

=

= log(|τ|)Z
(
−2hi

τ

βH0(ε− 1)

)
+

∞∑
n=1

(
−2hi τ

βH0(ε−1)

)
)n(log(τ) −Hn)

n!
×

×Z(n)

(
−2hi

τ

βH0(ε− 1)

)
τ→0
∼ log(|τ|)Z

(
−2hi

τ

βH0(ε− 1)

)
,

(107)

where Hn are the harmonic numbers (i. e.Hn =
n∑
k=0

1
k ). The part that

we have neglected in (107) is an analytical function that goes to zero
as τ→ 0. Thus the asymptotic behaviour for ε = 3 is

F(τ) = F0|τ|
iα5

2H0(ε−1)

h(kBT)
3

2π2
Z
(
−2hi τ

βH0(ε−1)

)
→ F̃, τ→ 0

Where F̃ would some constant which can in principle be determined
by calculating all the terms in (107).

• The case 2 < ε < 3 is also interesting: also in this case we can
partial integrate to get

∫τ
−1

ds
Z
(
−2hi s

βH0(ε−1)

)
|s|δ

=
Z
(
−2hi τ

βH0(ε−1)

)
|τ|δ−1(1− δ)

+

+

∞∑
n=1

(
2hi

βH0(ε−1)

)n
|τ|n−δ

(n− δ)(n− δ− 1) · · · (1− δ)
Z(n)

(
−2hi

τ

βH0(ε− 1)

)
−

−
[
τ→ −1

] τ→0' Z
(
−2hi τ

βH0(ε−1)

)
|τ|δ−1(1− δ)

+ const ,

(108)

which gives, for F

F(τ) =F0Exp

 iα5
2H0(ε− 1)

h(kBT)
3

2π2

Z
(
−2hi τ

βH0(ε−1)

)
τδ−1(1− δ)


=⇒ |F(τ)|→ F̃, τ→ 0 ,

which oscillates infinitely many times, but remain finite in absolute
value. It is noteworthy that, since |F| does not diverge at τ = 0 for
ε > 2, it means that the particle production in this regime remains
finite: only a finite number of fermions are produced during the col-
lapse before a singularity is formed. Still, since the torsion part of
the energy density becomes dominant at some stage during the col-
lapse, a bounce will always happen in this regime, even if the particle
density only increases to a finite value.
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• The case ε = 2 is when the above behaviour in the particle
production changes. Proceeding in the way we derived Eqs. (107

- 108) we would find

|F(τ)| =
|F0|

τγ1
,

γ1 =
9α5(kBT)

3ζ(4)

4H0(ε− 1)π2
=

α5(kBT)
3

40H0(ε− 1)
,

(109)

where we expanded Z
(
−2hi τ

βH0(ε−1)

)
up to second order in

τ.

• The case ε < 2 is the regime when a similar behaviour as during
radiation happens. In this case the particle number diverges in
a exponential way,

|F(τ)| ∼ Exp(A/τΓ ); A > 0, Γ > 0

In this case we have a bounce, plus the particle production is signif-
icantly more intense that what it was during a radiation domination
collapse. Lowering ε but keeping it bigger than 1 has therefore the
only effect of making the particle number diverge faster and faster.

To recap:

• ε > 3: there is no bounce, the particle number is finite and F(τ)
is analytical in τ = 0.

• ε = 3: there is a bounce only if the initial densities are fine tuned
in a particular way, since F(τ) will grow but to a finite amount
during the collapse. F(τ) will not be analytical in τ = 0, but its
absolute value will.

• 2 < ε < 3: there is a bounce, the particle number remains finite
all the way through the collapse. F(τ) will not be analytical in
τ = 0, but its absolute value will.

• ε 6 2: there is a bounce, and the particle number diverges be-
fore a singularity is formed. For ε < 2 the particle number goes
to infinity exponentially.

The case ε 6 1 is harder to solve, because in this case the singu-
larity happens at τ = ∞. Therefore there is no easy way to derive
the asymptotic behaviour as we did in this section. However, since
we found that, when ε 6 2, the particle production diverges, an edu-
cated guess is that it does so even when ε < 1.

From the results of this Appendix, we conclude that the particle
production induced by torsion can be quite intense at very late time,
when ε < 2. Studying the back reaction of the fermionic fields on the
space-time is therefore necessary, to inquire whether such behaviour
is indeed realised or not.
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A P P E N D I X E

Here we will derive the equations of motion for the fermionic currents
and the energy momentum tensor in the case ξ = 0 and ξ ′ 6= 0. The
Dirac equation, in this case reads(

iγµDµ −mR − imIγ
5
)
ψ = −(3πGξ ′

2
)(ψ̄γσψ)γσψ . (110)

Which in semi-classical approximation, for the currents fah becomes

∂ηf0h(~k) = 0, (111a)

∂ηf1h(~k) + 2h|~k|f2h(~k) − 2amIf3h(~k) = (111b)

= −
18πGξ ′2

a2

∫
d~p

(2π)3

((
f3h(~p)f2h(~k) + f3h(~k)f2h(~p)

))
,

∂ηf2h(~k) − 2h|~k|f1h(~k) + 2amRf3h(~k) = (111c)

=
18πGξ ′2

a2

∫
d~p

(2π)3

((
f3h(~p)f1h(~k) + f3h(~k)f1h(~p)

))
,

∂ηf3h − 2amRf2h + 2amIf1h = 0. (111d)

Note the absence of terms containing
∑
h

, which in the first part of

this paper was mainly due to the presence of the γ5 matrix in the
interaction term, and the consequent violation of parity symmetry.
Aside from this and a factor of 3 difference in the torsional coupling
constant, the structure of these equations is precisely the same of Eq.
(62a - 62d). In both cases the torsion interactions induce a shift in the
mass and in the momenta of the fermionic fields. This effect in case
ξ = 0 is due to the Fock contraction, while in case ξ ′ = 0 to both
Hartree and Fock. This suggests that both interaction terms can be
treated in the same way. Some interest could come from the mixed
situation, in which ξ , ξ ′ 6= 0, in which case we would find Eq. (62a -
62d) again, but now the Hartree and Fock terms will have a different
coupling strength (respectively, ξ2 and ξ2 + 3ξ ′2).

The energy momentum tensor for ξ = 0 is

T00 =
∑
h

∫
d~p

(2π)3

(
1

a4
h|~p|f3h +

1

a3
(mRf1h +mIf2h)

)
− (112)

−
α5
a6

∫
d~p

(2π)3
d ~p ′

(2π)3

(∑
hh ′

f0hf0h ′ +
∑
h

(f21h + f22h) −
1

2
(f23h + f20h)

)
,

Tij = δij

{∑
h

∫
d~p

(2π)3
1

3

(
1

a4
h|~p|f3h

)
− (113)

−
α5
a6

∑
hh ′

∫
d~p

(2π)3
d ~p ′

(2π)3

(∑
hh ′

f0hf0h ′ +
∑
h

(f21h + f22h) −
1

2
(f23h + f20h)

)}
,

77



78 appendix e

where now α5 = 9πGξ ′2

2 . Again there is a structural difference be-
tween the vector interaction and the pseudo-vector interaction. Most
notably, in the vector case, the term ∝

∑
h

f23h comes with the opposite

sign, when compared to the pseudo-vector case. This will have the ef-
fect of delaying the bounce, or eliminating it completely. In this case
the classical solution will only lead to a bounce if |m| > kBT . How-
ever particle production might prevent the singularity formation in
the case |m| < kBT too, since it causes f1h and f2h to scale faster than
f3h, which remains constant in the massless regime.

To answer this question, one should calculate the scaling behaviour
of fah in a fixed background with ε = 3. What we found for the
function F in Appendix D is:

F

(
η

β

)
=F0exp

(
iα5
2

h(kBT)
2

2π2
log
∣∣∣∣ηβ
∣∣∣∣Z(−2hi ηβ

))
→ F̃,

η

β
→ 0 .

(114)

Where F̃ is a constant. Whether or not this case leads to a bounce de-
pends on the initial conditions, and on the energy density dominating
the phase before the time ε → 3. Quantum corrections and particle
production, therefore, are expected to lead to a bounce for |m| . kBT ,
and |m| > kBT but not when the masses are negligible with respect
to the temperature.
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