
Utrecht University

Master Thesis (ICA-3227170)

Synchronizing transportation of people
with reduced mobility through airport

terminals

Author:
R.P. van Twist

Supervisors:
dr. J.A. Hoogeveen

dr. ir. J.M. van den Akker

April 30, 2015

Abstract

Navigating through an airport is easy enough for most passengers, but when you are reduced in
mobility it is a different story. In this paper we are looking at an airport that assists between 300
and 500 of those passengers daily. We want to find a schedule for the airport’s employees to support
as many of those passengers as possible while ensuring a smooth journey with little waiting time.
In addition we want to find a robust schedule to handle minor disturbances which we test using
a simulation at the end. We present a decomposition model in which we first determine feasible
start times for the tasks describing the journeys of the passengers using Simulated Annealing, after
which in each iteration we assign the tasks to the employees in the next phase using a matching
algorithm or heuristic. Experimental results show that our algorithm is able to ensure smooth
connections while supporting nearly every passenger in the given instances.

Contents

1 Introduction 1
1.1 The airport . 1
1.2 The journeys of the PRMs . 2
1.3 Objective . 5
1.4 Reinhard et al. 6

2 Analysis and approach 8
2.1 Sharing bus trips . 8
2.2 Robustness . 9
2.3 Unnecessary waiting time . 11
2.4 Segment groups . 13
2.5 NP-Hardness . 13
2.6 Decomposition model Local Search and Match Making 14

3 Algorithm 1: Fix times and then match. 16
3.1 Local search . 16
3.2 Matching . 17
3.3 Experiments . 20
3.4 Discussion . 21

4 Algorithm 2: Local Search and match 22
4.1 Local Search . 22
4.2 Sharing trips . 22
4.3 Mutations . 23
4.4 Generating the Schedule . 24

5 Computational experiments 34
5.1 no-shifts . 34
5.2 Looking closer to the solution . 37
5.3 Conclusion no shifts . 38
5.4 shift variant . 38

6 Simulation 44
6.1 Disturbances . 44
6.2 Rescheduling . 47
6.3 Simulation experiment . 48

1 INTRODUCTION

1 Introduction

Imagine a major airport where a lot of passengers go through daily. Some passengers arrive by plane,
some depart by plane and some need to catch a connecting flight after arriving by plane. A typical
journey of a passenger with a connection flight starts with arriving at one terminal by plane. After
arriving the passenger travels to the terminal where the connecting plane departs from, he waits there
for boarding to start and leaves the airport by plane. This process is simple for most passengers,
but when you are restricted in movement, visually impaired or have some other kind of disablement
that restricts your journey through the airport this is not so simple. That is why the airport offers
a service to assist those passengers with their journey through the airport and makes sure they are
supervised at all times. The largest airports have an average of 500 passengers daily who need such
assistance. We are looking for a schedule where we assign a start time and an employee for each part
of the journey of those passengers. The aim for the schedule is to provide the best service possible to
the passengers with reduced mobility.

However scheduling those passengers is not so straightforward since the passengers need to be su-
pervised at all times. This can be done either by the employee assisting the passenger or bringing
him to a special supervised lounge. Furthermore there are points in the journey where the passenger
needs to be handed over to a different employee. Because the terminals are not connected with each
other, PRMs are required to take a special bus to go to another terminal. Since employees are allowed
to work at their own terminal area only, PRMs are handed over at the bus station, and upon arrival
the PRMs are handed over to another employee, who assists them further. It is also possible that the
plane the passenger needs to catch is not directly located at the gate and hence the passenger needs
transport by platform bus to get there.

In this paper we research this scheduling problem for a graduation thesis done at Utrecht Univer-
sity. We call these passengers who require assistance with their journey: people with reduced mobility
or PRM for short, we use this term for the rest of the paper. This problem is presented by Reinhardt
et al (2012)[1]. We use the data of the airport layout and problem instances provided by them. Which
airport they used is unknown to us, we only know it is a major airport. We didn’t have contact with
the airport in question so the context of the airfield came from the paper and e-mail contact with the
authors of the paper, who kindly presented us with their instances.[1]

1.1 The airport

In the airport in question the company serving PRMs has about 120 employees, who transport be-
tween 300 and 500 PRMs everyday. The airport consists of 11 disjunct terminals where planes arrive
and depart from. Each terminal has its own staff, who can only serve the PRMs inside the terminal
he is assigned to. Besides the terminals we also have 2 bus sites, each with its own fleet of buses and
staff. One bus site is for inter terminal travel and the other for the platform busses who drive between
gates and remote plane locations. The inter terminal busses are the only way we can transport a
PRM from one terminal to another. Each terminal has a bus stop where busses pick up and deliver
their passengers. Just like the employees the busses have to stay within their designated area, plat-
form busses are not used for inter terminal travel and inter terminal busses are not used for traveling
between gates and planes. The busses used to transport PRMs are specially reserved for them and
are not to be used by passengers who didn’t request assistance by the service provider.

Some planes are not directly connected by a gate but stand at a remote location. Passengers are
then brought to the remote location by platform busses from the platform gate where they start the
boarding proces. Although every passenger on that plane needs to travel from the gate to the plane
by platform busses, PRMs are brought using special busses.

All employees in a terminal or a bus at a bus site are considered to be identical in terms of ca-
pacity and times it takes to travel between 2 locations. Each employee has a start time for his shift
and an end time of the shift, between which they can serve PRMs. Furthermore the staff members

1

1 INTRODUCTION

and buses also have a location where they start their shift and a location where they end their shift.
Although in the provided instance data all employees got identical shifts, the problem definition pre-
sented in the paper of Reinhardt et al[1] does not mention that.

Each terminal staff member is able to serve 1 or 2 PRMs at the same time depending on the disability
of the PRM. For instance an employee can only transport one wheelchair but can hold 2 PRMs who
can walk. Each bus is able to serve a number of PRMs, also depending on the disability of the PRM.
A wheel chair again for example takes up more room in the bus than a single person.

Every area, representing a terminal or a bus site, has a number of locations the PRMs and em-
ployees can visit. Each terminal has one special supervised lounge, one bus stop for inter-terminal
busses, a number of gates, a number of platform gates, a location for the staff to start and end their
shift and a number of locations where PRMs can be picked up and delivered to. The inter-terminal
bus site has one bus stop at each terminal and a depot for the buses. The platform bus site has a
number of platform gates at the terminals, a number of remote plane locations and a depot for the
buses. The locations of the bus stops and platform gates are shared between the terminal and bus
sites. These locations are used to define the journeys of the PRMswhich consists of a sequence of
locations that a PRM must visit and could possibly handed over to other employees to supervise and
assist them.

A lounge is a special location in each terminal. In the lounge the PRM is supervised and can wait
for the continuation of his journey. Whereas waiting at an unsupervised location causes discomfort to
the PRM, waiting in the lounge it does not. In the meanwhile the employee who assisted the PRM
could then do another job. For example if a PRM needs to board a plane then the employees can
leave the PRM in the lounge of the departing planes terminal where he could wait till the boarding
starts. Instead of uncomfortably waiting at the gate with an employee the PRM could wait more
comfortably at the lounge.

1.2 The journeys of the PRMs

PRMs, People with Reduced Mobility, request assistance at the service provider of the airport because
they have some kind of disability that makes their journey through the airport difficult. We call the
assisted journey through the airport with a PRM a route. A route follows a sequence of locations that
the PRM must visit though the terminals and bus sites. This route is predefined for each PRM and
depends only on the arrival location and destination of the journey, which gates are assigned to the
planes and whether or not a lounge needs to be visited. A remote stand for planes could be accessed
by multiple platform gates but per flight only one of those is assigned for boarding or disembarking.
When there is not enough time between the arrival of the PRM at the airport and deadline to visit a
lounge, we could skip the lounge visit.

If we see the route as a path in a graph then each edge in the journey of a PRM must be cov-
ered by one employee for a PRM to be fully assisted with his journey through the airport. We call an
edge of the PRM’s journey that can be served by an employee a segment. In order for an employee to
assist the PRM with a segment, both begin and end location of the edge the segment represents must
be in the same area, otherwise we violate the constraint that employees may not leave their terminal
or buses their buss site. For example a route visiting locations (l1, l2, l3, l4) then consists of segments
(l1, l2), (l2, l3) and (l3, l4). Each segment takes time for the assigned employee to serve, which is equal
to the travel time between those 2 locations.

A special segment is the one that represents the boarding process. When a PRM needs to catch
a plane, he needs to be at the gate when the boarding begins. The employee assisting the PRM
through the boarding process must then stay with the PRM till the gate closes, which is 20 minutes
after the boarding has begun. This is represented as a special segment in the journey both starting
and ending at the gate, which takes 20 minutes to complete and can’t start earlier than the gate opens.

2

1 INTRODUCTION

The route a PRM takes is predefined depending on the location at which he arrives and the lo-
cation where he needs to go to; we divide all those routes into 3 categories: Arrival, Departure and
Transfer. PRMs in the category Arrival, arrive at the airport by plane and need to be transported to
a certain location in the airport that isn’t a plane. PRMs in the category Departure, check in at a
location at the terminal of the departing plane and then need to be transported to a gate for embark-
ing. PRMs in the category Transfer, need to be transferred from an arriving airplane to a departing
airplane;l if the planes resides in different terminals the PRM needs to be transported between these
terminals. Examples of journeys are shown in Figure 1, 1 and 1. In those figures two terminals are
presented along with the platform bus site and inter terminal bus site.

You can start an arrival journey either at a gate or a remote plane and end at a deliver location,
see Figure 1 for an example. The segments for this journey will be (Remote plane, Gate), (Gate,
Deliver). If the plane is located directly at the gate we do not need the first segment from the remote
plane to the gate.

Platform buses

Terminal 1 Terminal 2

Inter terminal buses

Remote plane (S)

Lounge

Deliver (E)

Gate (S) Gate

Bus
stop

Bus
stop

Lounge

Pickup

Gate

Remote plane

Figure 1: This figure shows an example for the arrival journeys a PRM could take. We show two
terminals, the inter terminal bus site and the platform bus site. The rest of the nodes represents
locations and the edges represent segments. Locations ending with (S) act as a possible start location
and locations ending with (E) act as a possible end location.

You can start a depart journey at a pickup location and end either at a gate or a Remote plane, see
Figure 2 for an example. The segments for this journey will be (Pickup, Lounge), (Lounge, Gate),
(Boarding), (Gate, Remote plane) or if you skip the lounge visit (Pickup,Gate), (Boarding), (Gate,
Remote plane). If the plane is located directly at the gate we do not need the last segment from the
gate to the remote plane.

3

1 INTRODUCTION

Platform buses

Terminal 1 Terminal 2

Inter terminal buses

Remote plane

Lounge

Deliver

Gate Gate

Bus
stop

Bus
stop

Lounge

Pickup (S)

Gate (E)

Remote plane (E)

(Boarding)

Figure 2: This figure shows an example for the departure journeys a PRM could take. Dashed edges
are either optional segments or choices between 2 routes.

A transfer journey is basically an arrival and a departure journey in one, see Figure 3 for examples.
This journey got some variants depending on whether or not lounges are visited and on the location
of the connecting plane. If the connecting plane resides in the same terminal then after arriving and
passing through the gate the PRM is brought to the lounge. If the plane needs to be boarded at
another terminal the PRM is brought to the bus stop after traveling through the gate. It is possible
that before visiting the bus area the PRM is seated in the lounge. At the bus stop the PRM is handed
over to a bus driver who brings the PRM to the terminal he must board the connecting plane in.
After the PRM arrived at the terminal he can be seated in the lounge to await the boarding to start.

Platform buses

Terminal 1 Terminal 2

Inter terminal buses

Remote plane (S)

Lounge

Deliver (E)

Gate (S) Gate (E)

Bus
stop

Bus
stop

Lounge

Pickup

Gate (E)

Remote plane (E)

(Boarding) (Boarding)

Figure 3: This figure shows examples of all possible transfer journeys a PRM could take. Dashed
edges are either optional segments or choices between 2 routes.

PRMs can book assistance in advance and notify the company of their journeys at least a day before
their visit at the airport; we call these persons prebooked PRMs. However there are also PRMs who

4

1 INTRODUCTION

check-in during the day they visit the airport; we call these persons immediate PRMs. When an
immediate PRM requests at from a different airport and arrives here by plane later in the day we
know for some time in advance that this PRM is going to arrive. Although the PRM is known to us
some time in advance before he must be scheduled, if the request is done during the day the PRM
visits the airport, the PRM is still considered an immediate PRM. Once an immediate PRM checks in
he then needs to be inserted in the schedule, which might require rescheduling the other PRMs. The
company wants to prioritize service of booked PRMs over immediate PRMs, when having to decline
one of them.

Because of the rule that the employees may not leave their designated area, at some points of the
journey the PRM needs to be handed over to another employee. For example when the PRM arrives
at one terminal and is brought to an inter-terminal bus to catch a plane in another terminal, the
terminal employee then must hand over the PRM to the bus driver. Generally a handover could take
place between each subsequent segment, because the next segment could have been assigned to a
different employee than the previous one even though the current employee could serve both segments
if they are in the same terminal or bus site. Because the PRM needs to be supervised at all times the
employee currently serving the PRM needs to wait till the PRM is handed over before he can leave
to serve the next PRM. We want these connections to be smooth because if employees with PRMs
are waiting for the other employee to take over the PRM we do not only keep the current employee
occupied longer than needed, but it also causes some discomfort to the PRM himself.

1.3 Objective

The company’s main objective is to give the best service possible to the PRMs. The worst kind of
service the company can give is to decline a PRM from service. Unfortunately there could be situa-
tions where some PRMs couldn’t be scheduled and needs to take a later flight. If that is the case then
the company prefers to decline immediate PRMs above prebooked PRMs. Besides that the company
wants to improve service further by minimizing unnecessary travel time of the PRMs, which is the
extra traveling time it takes to get a PRM towards his destination. For instance you get unnecessary
travel time if an employee assisting a PRM takes a detour or is waiting for someone else to pick up
the PRM. The time that a PRM is seated in a lounge does not contribute to the unnecessary travel
time.

Ideally every PRM is served without any unnecessary waiting time in their journeys; therefore we
are minimizing the number of declined PRMs and the sum of unnecessary waiting time. Here we
weigh declining of service prebooked PRMs higher than to immediate PRMs. We want to find a
schedule for the PRMs where we minimize the amount of unnecessary traveling time over all journeys
where we only decline service to PRMs when there is no way to avoid it.

In the schedule we assign start times and employees to the segments of all planned PRMs. If a
PRM has at least one segment that is not served by an employee then that PRM is considered de-
clined. Of course some other constraints must be considered. For example an employee and a bus may
not exceed their capacity at any given time. Also we must respect the travel times between locations.
All other requirements listed in the sections above must also be respected. Below we summarize the
most important constraints for our scheduling problem.

Constraints:

1. Release and deadlines of PRMs must be respected otherwise decline the PRM from service.

2. Embarkment lasts 20 minutes; the gate closes 20 minutes after opening for embarkment.

3. PRMs who arrive need to be scheduled at their release time.

4. To be scheduled the PRM must have each segment served by an employee.

5

1 INTRODUCTION

5. A segment may not take more than 30 minutes of unnecessary travel time.

6. A PRM may not be left unsupervised, therefore an employee needs to wait till another employee
takes over the PRM before he can serve another PRM unless the PRM is dropped off at a lounge.

7. Employees and buses must respect the travel times towards locations to pickup and deliver
PRMs.

8. An employee or bus cannot help more PRMs at the same time than his capacity allows.

9. An employee can’t leave his designated area.

In addition the planning algorithm needs to work fast as in a dynamic real world disruptions of
the schedule can occur and require rescheduling. For instance a new immediate PRM arrives and
must be scheduled or a plane got a major delay and the PRMs on that plane must be boarded much
later. That is why a maximum computation time of 2 minutes is given to the algorithm, such that
when unexpected events occur, we have a new schedule fast.

In addition to the original problem presented by Reinhardt et al[1] we are also looking for a ro-
bust schedule. We hope that by using a robust schedule, real world disruptions could be caught more
easily and connections run smoother. A delay of one segment in the journey of the PRM could delay
the rest of the journey as well, delaying segments planned after those. If an employee serves a delayed
segment, the following segments he must serve might also be delayed, causing a cascade of delays.
Therefore we want to make those connections robust such that delays could happen without a major
effect on the schedule.

We score the robustness depending on the slack that is between two subsequent segments in the
schedule of an employee. The more time between 2 subsequent segments an employee must serve the
more robust the connection is. There is one exception on that however, when the employee is also
serving the previous segment of the given PRM. It would be inefficient if the employee has to wait for
an identical employee of the same area to take over the PRM, while he could serve the PRM himself.
Therefore it is more efficient and robust if the employee is able to handle both segments after each
other. When he handles both the previous and next segment we know that during the exchange, the
employee does not have to wait. These kind of connections must get a better robustness score than
normal handovers. It is nice that by using robustness we can favor those connections. The robustness
score is more effective when PRMs need to change terminal or board a platform bus, where possibly
delaying handovers must happen. More on robustness in a later section.

1.4 Reinhard et al.

The algorithm of Reinhardt et al [1] uses a Greedy Insertion heuristic which transforms an abstract
representation of a candidate solution to an actual schedule. Simulated Annealing is used to mutate
the abstract representation.

The abstract candidate representation consists of 2 lists; A list representing the pre-booked PRMs
and a list representing the immediate PRMs. The order of the lists is important since the Greedy
Insertion heuristic adds PRMs one by one into the schedule. All PRMs in the pre-booked list are
inserted before any PRM in the immediate PRM list. For the initial candidate solution they sort
both lists on release time in ascending order. Simulated Annealing is used to mutate those 2 lists
by shuffling the order of PRMs. Then the Greedy Insertion heuristic is used to generate an actual
schedule.

The Greedy Insertion heuristic inserts the pre-booked PRMs first to make sure they are prioritized
like the service provider wishes. When the Greedy insertion heuristic plans a PRM, it inserts all the

6

1 INTRODUCTION

PRM’s segments beginning with the earliest one. The insertion of a segment is done by investigating
the employees and buses that could serve that segment, where the algorithm is only allowed to push
other segments forward in the schedule as result of the insertion. Of the feasible insertions, the one
who causes the least increase of the objective function is used for the insertion. The calculation of the
increase in objective function per insertion is not easy. If you insert one segment on the route of a
bus or employee it might delay other segments on that route. Since PRMs could travel with different
employees or buses, a simple insertion could have a cascade of effects on the times of segments and
possibly increase the objective value. Therefore we couldn’t just use the increase of travel time of a
single segment to update the objective function. If the heuristic fails to find a feasible spot for the
segment the PRM is not included into the schedule and all his segments are removed from the schedule.

The simulated annealing does mutations on the 2 lists representing the abstract representation, after
which it calculates the actual schedule and objective score using the greedy insertion heuristic. Sim-
ulated annealing is used to decide to keep the new solution or not. The algorithm uses 2 mutations.
The first mutation takes a not assigned PRM and moves it a random number of places forward in the
PRM list it is in. That way the PRM gets a somewhat higher priority to be planned. The second
mutation swaps 2 random PRMs from the same list. With these the mutations it is impossible to end
up in a different list such that an immediate PRM could not end up as pre-booked and vice versa.

Computational experiments have shown that the algorithm could find good solutions in 2 minutes
and high quality ones in 10 minutes. Very few PRMs have been rejected by the Greedy insertion
heuristic, but there is still some unnecessary waiting time. Due to the low running time of 2 minutes
the algorithm can be run multiple times a day in a dynamic real world situation. However due to the
static formulation of the problem to truly work in a dynamic environment a different formulation will
be needed. Their solution work well with the short time constant and tests show that by increasing
the solution time could give significant improvements.[1]

7

2 ANALYSIS AND APPROACH

2 Analysis and approach

In this section we analyze the problem, trying to find out what makes the planning difficult and what
could be done to overcome that. We are looking into sharing bus trips and making robust schedules.
Also in the end of this section we present an NP-Hardness proof.

2.1 Sharing bus trips

The busses could transport multiple PRMs at the same time, as long their capacity allows it. Follow-
ing from the sample data the service provider has between 7 and 13 buses in the inter-terminal bus
area, where each bus has a capacity of 12. The capacity expresses how many people the bus could
transport. Passengers with a wheelchair require a capacity of 1.5 and passengers without require a
capacity of 1. Because the busses have such a large capacity you can transport easily multiple PRMs
at the same time.

Although there is a big capacity, during our e-mail contact with Reinhardt et al[1] they hinted there
might be a bottleneck in the inter terminal bus area. Hence either there aren’t enough busses or the
capacity of the busses isn’t used efficiently enough. It would be very efficient to carry multiple PRMs
per bus trip, reducing the number of bus trips and be able to transport more customers. The problem
is however that PRMs don’t arrive at the bus stop at the same time and letting them wait increases
the unnecessary waiting time and the objective function. Therefore we want to synchronize the arrival
of PRMs at the bus stop.

According to the paper of Reinhard et al[1] you can bring PRMs towards another location to pickup
another PRM and then drop him off later with the cost of having unnecessary travel time for that
PRM. The question is do we want to bring 2 passengers with 2 different locations in the same bus?
Suppose 2 passengers with both a different destination but the same source have been picked up by
the same buss. Then the bus needs to deliver one of those passengers first, lets say the first one
at the closest location. The travel time between terminals of the inter-terminal bus area is almost
always 5 minutes. When sharing a bus ride one passenger will have a travel time of 5 minutes and
the other has a travel time of 10 minutes, 5 minutes more than necessary. Moreover we might pick
up other passengers on that location and stepping in and out could take additional time depending
on the handicap or hand over. We think its more efficient to just send passengers directly to their
destination instead of having them bringing around locations where they don’t need to be.

We could let the buses drive in shifts, since we got plenty of buses and 11 terminals. The downside
of this is that buses are likely to make detours to bring PRMs to their destination, which increases
unnecessary waiting time. For instance to get from terminal 1 to 5, you don’t want to pass through
terminals 2, 3 and 4 while there is nobody there to enter the bus. Also the distance matrix be-
tween those terminals is a bit odd, the travel time between almost all terminals is 5 minutes, which
means that you have to drive like 20 minutes in case there are three terminals between your destina-
tion and source terminal for what might been a 5 minute drive. It would be more efficient to bring
PRMs directly towards their destination terminal. The distances between terminals may be explained
by that loading and unloading of PRMs are included in the distance matrix, which we are not sure of.

Another approach is to put as many PRMs as possible in a bus at the same terminal with the
same terminal as destination. To do that we must synchronize their journeys such that they meet
each other at the bus stop at the same time. These synchronized journeys must be planned together
to ensure the journeys align at the bus stops. If a mutation is made in a journey that shares a bus
ride with other PRMs, the other PRMs might require a mutation as well to ensure all PRMs who
want to share a bus arrive at the bus stop at the same time.

We can use this synchronization for all segments where a worker could service two or more PRMs
instead of solely the bus segments. If two PRMs need to catch the same plane and they got a light
disability such that a worker can help both at the same time, they could be picked up together at the

8

2 ANALYSIS AND APPROACH

lounge before departure and be brought through the boarding process with only 1 employee instead of
2. By planning passengers such that they can be transported together, we save employees for helping
other PRMs.

We allow segments r1 and r2 of two different PRMs to be synchronized when:

• Both segments r1 and r2 have the same start location and end location.

• An employee situated in the terminal or a buss in the buss area of r1 is able to service both
PRMs of segments r1 and r2 at the same time without violating the capacity constraint.

• There exists a start time that can be set for both segments r1 and r2 such that neither journey
ends up been infeasible.

We hope that synchronizing the segments as much as possible will relieve the stress on the employees
and enables us be able to plan PRMs more efficiently. It will at least free up some employee while
boarding PRMs on the same plane and will make better use of the bus capacity. We assumed that
if multiple PRMs get picked up by the same buss then the destination terminal has enough staff
available to bring them towards their next stop in their journey. If there are not enough employees
in a terminal to support all PRMs at the same time, the synchronization will lead to an infeasible
solution.

2.2 Robustness

In the real world many unexpected events could take place such that the schedule could be disrupted.
For example a plane could be delayed, gates could be switched or a new PRM appears and requests
to be scheduled. Or minor events like an inter-terminal bus gets delayed by traffic, a booked PRM
arrives late or it takes longer than expected to take a PRM from one location to another. Those
people we are transporting are reduced in mobility after all, and it could be possible that they walk
slower than anticipated and arrive later than expected at a location.

A delay can have a big effect on the schedule. If a segment of an PRM is delayed it could delay
the segments of both the PRM and the employee, who in turn could delay other employees and PRMs
causing a cascade of delays if there is no slack to catch it. We hope by making the schedule more
robust that small delays in the real execution of the planning will cause fewer passengers to be delayed.
To encourage robust solutions we add a robustness score as an extra objective in addition to providing
customer friendliness. A nice side effect is that if we manage to do this for all segments then there
will be no unnecessary waiting time between subsequent segments of a PRMs journey, if everything
goes allright and there are no bigger delays than the amount of idle time we build in.

When the employee has to pickup a PRM he travels towards the pickup location, and once the
employee is there he might have some slack time before the PRM arrives. We define the robustness
score by specifying a function based on the slack time. We want to maximize the robustness, since
the more slack the employee has the more robust the connection is. Since we do a minimization on
the main problem where we minimize the amount of declined PRMs and unnecessary waiting time,
we should also calculate robustness as a minimization problem. Therefore we calculate a robustness
penalty, where a robustness penalty of 0 is the best achievable score of a connection, and the higher
the robustness penalty the worse the connection. The function shouldn’t be a linear function in terms
of slack time because that will allow a long slack time and a very short slack time to have the same
weight as 2 average slack times. We would prefer solutions that avoid short slack times over a solution
that compensates short slack times with long slack times elsewhere.

Robustness has some connection to unnecessary waiting time since unnecessary waiting time by our
definition of robustness signals a situation hat isn’t robust. In case the PRM has unnecessary waiting
time, because he has to wait for an employee or bus to pick him up, this implies that the employee or

9

2 ANALYSIS AND APPROACH

bus in question couldn’t arrive earlier on the pickup spot because of the last segment he served or the
time he starts the shift. Therefore there is no slack between the 2 segments and hence the connection
is not robust. In the other case where the employee has to take a detour with a PRM to pick up
another PRM to travel along, there is no slack between picking up the first PRM and the second one
, and hence the connection of the second PRM isn’t robust. Therefore if there is any unnecessary
waiting time, there is also an connection that isn’t robust. We want to make an exception for the
robustness score when a PRM could do 2 subsequent segments with the same employee. It would be
silly to call for another employee to serve the PRMs next segment to optimize robustness and that
is why that connection should have a robustness penalty of 0. Remember because the employees and
buses are identical they could easily swap tasks.

In our project we use the formula rp(s) for calculating the robustness penalty between two subse-
quent segments where s is the slack time between those.

rp(s) =

{
0 if efficient next
(20−min(s, 20))2 otherwise

}
There are various ways of calculating robustness score, but we choose this one. For instance we
could have taken the arc tan of van Diepen at al[13], who did research on scheduling platform busses
at Schiphol airport. Since the problem instances are rounded on whole minutes and the objective
function only contains integer components, the objective is also integer. So let’s keep the robustness
penalty also integer and not linear by using a square function. Using this function we return a robust-
ness penalty of 0 for slack times of 20 minutes or more, since in our opinion after the 20 minute mark,
robustness doesn’t matter anymore. The worst robustness penalty is achieved by a slack of 0 with a
penalty of 400. This worst case penalty for a segment can be used to set the weight of robustness in
the objective function.

Now we have specified the robustness penalty we have to decide how to put it in the objective
function. This is now a multi-objective problem. Kevin Ian Smith[6] has researched techniques for
simulated annealing for multi-objective problems. Although we didn’t use one of his techniques it
gave us some insight.

A common way to deal with multi-objective problems is a matter of dominance. Hereby we as-
sume that all objective functions must be minimized, since any function that must be maximized
could easily be rewritten to a minimization problem. We denote that solution f dominates g as f ≺ g.
Solution f dominates g if in all values of the objective functions f is no more than the values of the
objective of g and at least one objective function is better. A solution is then a Pareto optimum
if there exists no other solution that dominates that solution. The set of solutions that are Pareto
optimum is then called the Pareto optimum front.[6]

The Pareto optimum solutions are tradeoffs between objective functions, and we need to choose among
those solutions which one we prefer. Some solutions will have a better score for the main objective
and others will have a better score for the robustness objective. The main objective of this problem is
providing good customer service like stated in Reinhardt et al[1], and the robustness penalty is added
by us to handle small disturbances in the schedule. Since the main goal is to offer service, offering
service should be weighted heavier than having a robust schedule.

But what would be a good solution and what kind of solutions do we prefer? Imagine there exists a
perfect solution with 0 penalty on the main objective and 0 penalty on the robustness. That solution
will by definition dominate all other solutions since it got the best score of both objectives. But if no
such answer exists we will have to make some tradeoffs. In worst case we could end up with a solution
with 0 penalty on the robustness but many unplanned PRMs because adding them would increase the
robustness penalty and the new solution would not dominate the older. Adding a new PRM in the
schedule is a major operation since it introduces new segments which all need to be planned simulta-
neously. There is a good chance that the PRM could be planned but that this increases the robustness

10

2 ANALYSIS AND APPROACH

penalty on some segments by the insertion. It could be possible that later after the insertion we could
shift some segments to make a more robust solution. The solution where no any more PRMs could be
inserted that has a 0 robustness score may be a Pareto optimum solution but not one we would prefer.

A possible way to handle the objective function is by adding a weight to both objective functions
and take the sum as score for a solution s. For example we have 2 objective functions, which we
denote by f1(s) and f2(s), where s is the current solution. We could weigh the objective functions,
lets say that w1 represents the weight of the first objective function f1(s) and w2 the weight of the
second objective function f2(s). To decide or a new solution s′ is better than s we could compare the
values of w1 ∗f1(s)+w2 ∗f2(s) and w1 ∗f1(s′)+w2 ∗f2(s′) just like we do when using a single objective
function. The weights w1 and w2 could be chosen such that decreases in the primary objective are
much more valuable than decreases of the robustness score. Then when everyone been planned the
robustness penalty starts to matter. This method be used to set some preference on what solutions
of the Pareto optimum front you prefer to have.

We could also use a variation of dominance called lexicographical optimization[2] to decide domi-
nance of a solution. Lexicographical optimization is used when one objective function is way more
important than the other. The idea is that the solution is found in two phases, where in phase one
the primary objective function is optimized disregarding the second objective function and in phase
2 the secondary objective function is optimized without worsening the primary objective. Lets say
solution f dominates solution g if it either has a better score in the primary objective or when the
value for the primary objective is the same and has a better robustness. This way any improvement
in the first objective function regardless of our secondary solution is taken, the secondary objective
function only matters between solutions with the same value for the first objective functions. We use
the lexicographical optimization for our program and experiments. The next subject we are going to
look at is whether or not including unnecessary waiting time can improve the quality of the schedule.

2.3 Unnecessary waiting time

The company that transports the PRMs through the airport wants to give good service towards their
customers. Besides trying to minimize the declination of service towards the customers they want
to minimize the unnecessary traveling time of the customers. When analyzing the situations where
unnecessary waiting could occur we see that a lot of those situations could be easily avoided without
decreasing the quality of the solution.

First we look at the unnecessary waiting time that occurs when a PRM must be handed over to
a different employee or bus. Here there are 2 scenarios. In the first scenario the PRM is handed over
to a similar employee in the same terminal. In the second scenario the PRM is handed over to an
employee of another terminal or a bus.

In the first scenario where the PRM is handed over to a similar employee in the same terminal any
unnecessary waiting could easily be avoided. Since all employees in the same terminal are identical
the current employee could do the same segments the employee he is waiting for could do. Therefore
to avoid unnecessary waiting the employee could serve the up following segment as well. If we look at
the possible journeys in Section 1.2, those handovers in the same terminal only occur when boarding
the plane. The journey from the lounge or pickup location and boarding could be easily be done by
the same employee, especially if all PRMs boarding the same plane are waiting at the special lounge
of the terminal. Bringing and taking someone from the lounge is no handover because the PRM could
be seated there safely at all times. Therefore handovers in the same terminal could be easily avoided.

In the second scenario where the PRM is handed over to an employee of another terminal or a
bus the waiting time can be avoided by good planning. If we look at the possible journeys in Sec-
tion 1.2, those handovers are always between a terminal employee and a bus or vice versa. To avoid

11

2 ANALYSIS AND APPROACH

unnecessary waiting time we must make sure the next method of transportation either a bus or an
employee is already at the spot when the PRM arrives. We have unnecessary waiting time if the bus
or employee arrives later than the PRM, we can avoid that by shifting the time the PRM visits the
bus if possible. Unfortunately we cannot shift the time of platform busses because planes depart and
arrive at certain times, therefore PRMs need to be transported by those busses at fixed times. But we
can shift the inter-terminal bus rides a bit if we allow a lounge visit before and after the bus ride. For
example the PRM arrives by plane in terminal 1 and is seated in the lounge; when the bus is about
to arrive the PRM is picked up from the lounge and brought to the bus stop where the bus awaits
the PRM. The bus then brings the PRM to the terminal of his departing plane, where an employee
awaits him to bring the PRM to the lounge. If there isn’t an employee or bus available this journey
can be shifted a bit in time till its possible to bring the PRM with a smooth connection. So in this
case the unnecessary waiting time could be avoided by allowing flexible pickup times for the busses.

Another observation if you look at the problem is that many times at which a segment must be
start are fixed due to the arrival and departure times of planes. For most segments like embarking
and disembarking the only choice is who is going to serve it. Allowing a lounge visits before and after
inter-terminal bus allows for more choices to be made, because otherwise the PRM must be brought
to the bus immediately after arriving by plane. And this allows us to shift the jobs of inter-terminal
bus rides to a more favorable time.

Now we look at unnecessary waiting time when taking detours. Again we looked at the possible
journeys in sections in Section 1.2. Between boarding and embarking the planes the employees are
not allowed to bring additional PRMs, so taking detours is prohibited there anyway. Since the PRM
is usually in the lounge before boarding, unless he got to hurry to catch the plane after arriving at
the terminal, all PRMs of the same plane start at the same location in most cases. A single employee
then could take up to 2 PRMs from the lounge and help them through the boarding process where
no detours are allowed.

The rest of the journeys in the terminal are relatively short compared to boarding; from a pickup
location to the lounge or gate and from the gate to a drop off location, bus stop or lounge. Since
an employee could only bring 1 or 2 PRMs what extra would making a detour do. Suppose we have
a PRM at the gate which is picked up by an employee first, followed by bringing him to a pick up
location to pickup another PRM and then bring both of them to the lounge. It might be a bit more
efficient but you have unnecessary waiting time on the first PRM, and the connection is not even
robust, whereas it is only a short walk to the lounge, seat the PRM there and then pickup the next
PRM or let some other employee do the work. We win a little time to make detours with these small
trips.

Making detours with inter-terminal busses makes more sense if the terminals are far away and you
could stop at a terminal in between to pick up someone that needs to go the same terminal as the
PRM you currently transport or to a further terminal. But when you look at the distance matrix we
see that the distances in minutes between bus stops are 5 minutes in almost every case. Maybe the
distances in minutes include the time it takes to load and unload passengers which overshadows the
time it actually takes to travel between terminals.

Like explained in section 2.1 we can make the time the PRM visits the bus variable by visiting a
lounge before and after the bus ride. We also allow multiple PRMs with the same segments to share
the same trip, which should free up some bus capacity. We could avoid doing detours for PRMs and
accumulate unnecessary waiting time, by either schedule the bus trip on a time with sufficient capacity
or to let as many PRMs as possible travel with the same bus, where all PRMs must travel to the same
terminal and get in the bus at the same bus stop.

We have seen in this section that unnecessary waiting time could be easily avoided in most cases.
It could be that by allowing a PRM to make a detour, some other PRM that otherwise had to be

12

2 ANALYSIS AND APPROACH

declined could be served although this only happens when employees have a very busy schedule around
the passengers time window. To make the problem easier to solve we could make the algorithm such
that the algorithm plans the PRMs in a way there is no unnecessary waiting. This is easier because
you don’t have to worry about cascading effects of delaying an already planned PRM when doing a
mutation or insertion of a PRM in the solution.

2.4 Segment groups

If an employee has finished serving a segment and the PRM needs to be handed over to another
employee or bus, we prefer to start the next segment as soon as the employee arrives at the location of
the handover. If it starts later then we gain unnecessary waiting time. The only time a segment could
start later than the previous segment is finished without gaining unnecessary waiting time is when
the previous segment ends in a lounge. After the PRM is seated in the lounge he could be picked up
at any time as long he is at his desired destination before his deadline. Hence if you know the start
time of a segment, unless it ends in a lounge you know when the next segment must start to avoid
penalty.

Using that property we could split the journey in smaller journeys of segments that need to start
right after the previous segment in that sub journey has ended. Suppose we have a transfer journey
with segments r1(gate, lounge 1), r2(lounge 1, bus stop 1), r3(bus stop 1, bus stop 2), r4(bus stop
2, lounge 2), r5(lounge 2, gate) and r6(boarding). Segment r1 stands alone and brings the PRM to
the lounge. Segments r2, r3 and r4 need to start right after each other due to the handovers and r4
ends in the lounge. Segments r5 and r6 must also be scheduled right after each other and after the
last segment the journey is finished. We now got the sub journeys {r1}, {r2, r3, r4} and {r5, r6}; we
call such a sub journey a segment group. If we set a start time for the first segment r2 in segment
group {r2, r3, r4} then we could set the start times of the other segments in the group such that
there is no unnecessary waiting. When you set the start time for segment group {r1} and {r5, r6},
the segments of segment group {r2, r3, r4} can be given a start time independently from the start
times of the other segment groups without gaining unnecessary waiting time. Of course segment r2
must still start after segment r1 has finished and segment r4 must be finished before segment r5 starts.

We can make segment groups for the departure journey and other variants of the transfer journey the
same way as demonstrated with the transfer journey. An arrival journey does not have a lounge visit
and therefore only consists out of one segment group.

This makes the problem a bit similar to the no-wait job shop problem[8], where if you know the
start time of the first segment you know the start time of the entire job. Although with our problem
you got the option to wait, which is penalized, making it more like a blocking job shop problem[8].
We have explained in section 2.3 that most unnecessary waiting can be avoided, so we will be aiming
for zero wait time everywhere. We could even enforce zero waiting time between segments in our
schedules.

We use these segment groups for our algorithm. If we want to avoid unnecessary waiting like ex-
plained in section 2.3, these segment groups are a useful tool for assigning the start times of all
segments of a segment group, we only have to decide when we are going to start this sequence of
segments. It also helps with synchronizing journeys when 2 or more PRMs share the same employee,
such that they both arrive at the start of their common segment at the same time. We don’t have to
synchronize the whole journey but only have to look at the segment group of the segment we want
them to join.

2.5 NP-Hardness

This Problem is NP-Hard in the strong sense. This can be proven by reducing this problem to the
3 Partition problem. The 3-Partition problem has been proven to be NP-Complete in the strong
sense by Garey and Johnson [7]

13

2 ANALYSIS AND APPROACH

In the 3-Partition problem we are given a set of 3m positive integers S = i1, i2, . . . , i3m with a
sum of m ∗B. The question is whether we can partition set S into disjoint groups of three such that
the integers in each group sums up exactly to B. If every integer in set S is strictly between B/4
and B/2 then each subset is forced to have exactly 3 elements. For our proof we assume the sets are
forced to contain exactly 3 elements by this property. Even with this property the problem remains
NP-Complete.

We can reduce our PRM scheduling problem into the 3 partition problem by splitting 3m PRMs
to m employees. We only need one terminal for this problem where all employees are located, the
busses are not needed in this case. For each integer i in the set S we make a PRM who wants to
depart on a plane and arrives at the airport at time 0. PRMs who only take a departing plane could
wait a bit for the appointed time to start their journey, while PRMs arriving per planed needs to
be picked up immediately. All PRMs are in wheelchairs to enforce that an employee could only give
service to no more then 1 PRM at a time. The route of the PRM consists of the following segments:
(Pickup, Lounge), (Lounge, Gate) and (boarding). The pickup locations are chosen such that the
time it takes for the employee to walk from the lounge to the pickup location and bringing the PRM
back to the lounge is exactly i minutes, representing the integer value of set S. For the trip to the
gate and boarding, all PRMs representing set S are identical. We choose the departure time of the
plane such that the PRM must be seated in the lounge at or before time B.

We want to have all 3m PRMs to be seated at the lounge at time B by m employees. An schedule
till time B of an employee will looks like followed:
- The employee starts at the lounge at time 0.
- The employee walks to the pickup point of PRM 1.
- The employee brings PRM 1 to the lounge, we are at time i1 now.
- The employee walks to the pickup point of PRM 2.
- The employee brings PRM 2 to the lounge, we are at time i1 + i2 now.
- The employee walks to the pickup point of PRM 3.
- The employee brings PRM 3 to the lounge, we are at time i1 + i2 + i3 now.
The total time it takes to do those 3 PRMs is i1 + i2 + i3 which should be equal or less than B
otherwise the PRMs won’t make it to the deadline of the flight. If all 3m PRMs could be planned
over m employees, every employee serving those PRMs should be occupied till time B.

However because every PRM needs to catch the plane at the same time, we require 3m employ-
ees to board them all simultaneously while we must have m employees to seat them before or at time
B. We assume here like in the data all employees in the same terminal are identical and have the
same shifts. Therefore we must occupy the other 2m employees with a task such that they are only
available after time B. We add 2m additional PRMs who arrive at the airport by plane to occupy
the 2m employees. The locations and arrival times are chosen such that the employee returns at the
lounge at time B and couldn’t possibly help the PRMs representing the integers from set S. Now we
only have m employees remaining to help the 3m PRMs representing the set S to get to the lounge
until time B, and 3m employees to board them in a plane. We know we got a 3 partition if every
PRM in the problem is planned, otherwise we couldn’t find a 3 partition.

If we got a polynomial time algorithm for our problem we could solve the 3-Partition problem where
the sets are forced to be triples in polynomial time too by using this transformation. But since the
3-Partition problem is NP-Complete even with this restriction our problem should be at least as hard.
Therefore our problem is NP-Hard.

2.6 Decomposition model Local Search and Match Making

Since this problem is NP-hard and got many constraints that make solving difficult, solving this prob-
lem to optimality within 2 minutes isn’t likely to be possible. That is why we have chosen to use a

14

2 ANALYSIS AND APPROACH

local search approach like Reinhard et al[1]. They have used a model where they do local search on
the order of the lists of booked and unbooked PRMs, they make a planning out of that by using an
insertion heuristic to insert the PRMs one by one by the order of the list.

We want to use a decomposition model. The layout of the airport, distance matrix between loca-
tions, employees, PRMs and which segments the PRMs have in their journeys are given as input.
We are looking for a feasible start time and employee assignment for each segment unless the PRM
is declined from service. The first step in the decomposition model is to mutate the start times of
the segments and then use an algorithm to find a feasible assignment of employees to the segments
given the start times; we refer the algorithm as a matching algorithm since it matches the segments
to workers. If there couldn’t be found a planning using the given start times then the solution in the
iteration of the decomposition model is considered unfeasible. The matching method could hopefully
give us some feedback on what could be good mutations on the model.

There are various ways local search and matching could be done. For local search we are using
Simulated Annealing along with mutations. For the matching problem we are going to test a few
possible algorithms. Some methods construct an entirely new schedule out of the input start times,
others just update the schedule using the changes given. The matching methods are described in the
sections of the respective algorithms they are used in.

The first algorithm we discuss is a product of miscommunication and is slightly flawed, but it still
worked quickly and gave us some insight and is therefore listed in this paper. The second algorithm
is based on the findings of the first one and the programming is more flexible allowing more kinds of
matching algorithms. We are going to discuss the first algorithm first and then discuss the second
one.

15

3 ALGORITHM 1: FIX TIMES AND THEN MATCH.

3 Algorithm 1: Fix times and then match.

In this section we describe our first attempt to make an algorithm to find a schedule for our problem.
For each PRM we plan in the schedule we must assign feasible start times and employees. We want
to solve our problem using a decomposition model where we first assign start times to every segment
using local search. Using these start times we then want to construct the schedule by assigning an
employee for every segment if there is sufficient capacity on the employees at the given time. If a
segment of a PRM fails to be scheduled then the PRM is declined of service. After assigning the
segments to employees the algorithm is done and don’t try to reschedule start times; this is one of the
flaws of this first attempt.

3.1 Local search

The goal of the local search is to assign start times to segments without having to worry about employee
assignment. We wanted to ignore some constraints for the local search to make solving more easily
and only those constraints are considered in the matching algorithm such that the solution is feasible.

We make from each terminal a resource / machine with a maximum capacity equal to the total
capacity of all transports in that terminal/area. In that resource segments could be planned at a
certain time where multiple segments may be overlapping each other as long as the total capacity
at every given time doesn’t exceed the area’s maximum capacity. The resources are used in the first
phase to assign start times, while making sure there is enough capacity.

Using the resources we get some idea wether or not there is enough capacity at a given time without
the need to make an actual schedule. If there isn’t enough capacity in this problem with relaxed
constraints for capacity and traveling between locations to start segments, then there is certainly not
enough capacity in the actual schedule with all constraints.

Because the employees can transport up to 1 or 2 PRMs depending on the PRMs disability, in
the schedule an employee could possibly only need to transport one PRM while he have some leftover
capacity. Also it takes some time for an employee to walk from the one job to another, which isn’t
covered by the resource.That is why we aim to distribute the workload by having some excess capacity
at every given time. This hopefully adds some robustness to the schedule.

This model will use a penalty for declining a PRM, where the penalty of prebooked PRMs are higher.
We wanted to add some robustness in the model so we also gave a penalty of serving many PRMs at
a certain time, where the penalty increases non linearly with the number of PRMs at the same time.
Using a linear penalty function would result in a constant that is only dependent on the number of
PRMs you plan. We used the formula c ∗ c ∗ t where c is the capacity of the time window and t is the
time length of the time window. We made sure that the declining penalty would exceed the penalty
for robustness such that solutions where all PRMs are scheduled are preferred, followed by a planning
where there is excess capacity left in the area’s in case a new unbooked PRM arrives.

We used simulated annealing as local search method using the following mutations: plan PRM, decline
PRM and plan segment group The mutations are focused onto giving each segment group a start time.
Once a segment group got a start time, it sets the start time of each segment in the segment group
such that there is no waiting time between each subsequent segment. If we didn’t do that we would
have to pay the penalty for letting the PRM wait. The mutation is infeasible if it violates the capacity
constraint. And since in this phase we only assign start times and not who is going to handle the
PRM, we assume that a transport is available at that time, if not that start time would be infeasible
and the PRM isn’t planned. In the 2nd phase, the matching phase, of the algorithm we assigning a
employee for each segment.

Mutations:

16

3 ALGORITHM 1: FIX TIMES AND THEN MATCH.

Name Description
Plan PRM Attempt to plan a random declined PRM into the planning at random start

times inside its time window for each segment group.
Decline PRM Attempt to decline a random served PRM and remove it from the planning.
Plan Segment Group Attempt to plan a random planned segment group with a random start time

inside its time window.

Table 1: Mutations

3.2 Matching

The goal of the matching algorithm is to assign employees to segments, given the start times of the
segments. There are multiple ways to do the matching; we explain here what methods to be used
for this algorithm and some ideas behind the matching. In our model at the moment we assumed
that each PRM doesn’t have to undergo unnecessary waiting time and can be taken over immediately
and doesn’t take any detours. The option to make detours and let PRMs wait was a feature to be
added in the future, but that this algorithm was flawed and we could better do a matching every
iteration instead of one time at the end. This is fixed in the second algorithm which does have a
better framework to work with.

3.2.1 Matching heuristic: First Available

This matching method is more like a greedy heuristic than an exact approach. First it sorts all the
segments to be planned in order of start time. Then it goes through each segment in that sorted list,
with the lowest start time first and finishing by the segment with latest start time. The algorithm
checks what area the segment is in and looks for available employees or buses in that area that can
service that segment. If multiple transports are available, then the one is picked who has the most
slack, which is defined as the time between finishing the previous segment and starting the to be
inserted segment minus the travel time to get to the location of the to be inserted segment. The
higher the slack the more likely in a dynamic world where time is uncertain he is going to make the
segment. In case there are no transports that can serve the segment, the algorithm then declines the
PRM of that segment.

There are however two exceptions on the rule of picking the one with the highest slack. In the
journey the segment to the gate and boarding at the gate are 2 separate segments in the same termi-
nal that can be easily done by the same transport because that is more robust like explained in section
2.2. The second exception is when segments two or more PRMs could share the same employee or bus,
like explained in section 2.1. In this algorithm we don’t have mutations that try to synchronize the
journeys such that a segment with similar start and end locations or 2 PRM could be joined together.
However since some PRMs have to catch the same plane and board on the same time, those segments
are forced to synchronize because of the boarding which happens at a specific time. It could also be
a coincidence that some other segments with the same start and end location start at the same time
and might be able to share one employee if the employee’s capacity allows it.

This method has some downsides. First it is not specified how to handle the case if there is not
a transport available but within a small time frame there is. (More on that later) Secondly the pre-
booked PRMs do not get preferred, however that can be fixed easily to try to delete a segment of an
unbooked PRM and plan the booked PRMs segment instead. And third the choice of who is going to
serve the segment may not be the best choice in some scenarios.

A case where this goes wrong is one where we need to plan 2 segments ri and rj (Figure 4). Both
employee k1 and k2 can service segment ri however while employee k2 haves a slack of 8 the 10 slack
of employee k1 is better and get chosen. Then segment rj is been looked at, employee k2 can’t make it
to the segment in time because he is far away from the location of rj and k1 can’t service rj because
he is already serving ri at the same time. So following from the algorithm we can’t serve both of those

17

3 ALGORITHM 1: FIX TIMES AND THEN MATCH.

segments and hence it will decline the PRM of rj . However if k1 didn’t serve ri he got plenty of slack
to serve rj . A better solution would be that ri get served by k2 and rj get served by k1, such that
both of them can be planned.

k1

k2

new segment ri

new segment rj

segment

segment

segment

segment

10

8

3

-1

-20

Figure 4: An example of how 2 segments could get in each others way while been planned. The values
on the dotted edges represent the slack of that connection where the higher slack is better. A negative
slack means that the employee can’t be on time for the inserted segment. If segment ri is planned
first it would prefer employee k1 but then segment rj could not be planned.

3.2.2 Matching heuristic: Reschedule moving window

This matching method tries to solve the problem that arises when some bad choices are be made
when assigning a transports to a to be inserted segment. This method uses the same insertion method
as the previous heuristic but when a conflict arises such that a segment couldn’t be planned, it uses
another heuristic to attempt to plan that segment. The heuristic uses a combination of rescheduling
segments which competes for a slot with the to be inserted segment and assignment of multiple PRMs
on an employee at the same time.

This method like the previous one first sorts all segments in order of start time and go through
them one by one. This method also keeps track of a list Rdec of PRMs that has recently been declined
because a segment couldn’t be scheduled. It first tries a simple insertion like the previous method
but when that fails instead of deleting the segment we try to reschedule the last inserted segments for
each employee in the terminal or bus site along with the new segment.

When the to be inserted segment ri couldn’t be planned, the algorithm first remove all last scheduled
segments from the transports of the area of ri and stores them in a set A. Then we look at recently
declined segments in that area or they could share a trip with the new segment. Its better to decline
one PRM who was already in the schedule, then two PRMs who could share a trip. After that we
go through the list of Rdec and look for a segment rj with the same start time, start location, end
location and end time and that the combined capacity doesn’t exceeds that of a transport in that
area. If there exists such a segment rj then the 2 of them could be planned together and we merge
those 2 segments into one and store it in A while removing rj from A. If the merged segment then
gets assigned to an employee, all segments of the same merged segment are planned on that employee.
If none such segment exists then segment ri is added to A.

The segments got a priority of been planned, we want to have prebooked PRMs to be prioritized
above unbooked. Also we want to prioritize merged segments that serve multiple PRMs, and extra
priority is given if one of them is prebooked. We define the function that gives out priority as prio(r)
where r is an segment and returns an value representing its priority.

What is left is a matching problem where we try to match each (merged) segment to a transport.
This is a know problem named Maximum bipartite matching[3]. In the Maximum matching problem

18

3 ALGORITHM 1: FIX TIMES AND THEN MATCH.

there is an edge between a segment and a transport if the transport could service the segment at
his in the local search set start time. If we give each edge towards a transport the weight represent-
ing the priority of the segment we get a minimum costs maximum matching problem. Also since the
graph is bipartite (the segments are matched to transports), there is a polynomial algorithm to solve it.

Lemma 3.1. If a to be inserted segment ri could be merged with a declined segment rj in Rdec, its
better to decline another segment and merge segments ri and rj such that they could be executed on
the same employee.

Proof.

1. We know that ri couldn’t be planned in the schedule using the matching algorithm: First
Available.

2. We know that rj in Rdec couldn’t be planned using the matching algorithm: Reschedule moving
window.

3. We know that ri and rj could be merged into a segment rm.

4. Following from rule 2 and the definition of the matching algorithm we know that all planned
segments in the current window W have a priority equal or higher than rj .
∀rl ∈W :: prio(rl) ≥ prio(rj)

5. Because segment rm is a merge between ri and rj , prio(rm) > prio(ri) and prio(rm) > prio(rj).

6. Following from rule 5 it could be possible that there exists a planned segment rl ∈W such that
prio(rl < prio(rm).

We translate our problem into a minimum costs matching problem where we match employees with
to be scheduled segments in set A, which contains all segments who are competing to be scheduled
at the time. There is an edge between the employee and segment if the employee could serve the
segment next. The costs of each edge between an employee and segment represents the priority of
the segment, higher priority are given to segments that are shared with multiple PRMs and when the
employee served was serving the previous segment of the PRM.

After solving the resulting problem we translate the found matching back into the planning. Each
pair of matched segment and transport is put back in the schedule while the unmatched segments are
returned to the set Rdec. Note that for each PRM only one segment is in the set Rdec namely the
latest that is attempted to assign, if a segment of a PRM needs to be scheduled and the previous one
is declined then the algorithm stops trying to insert that PRM into the schedule and declines service.
After all all segments with a lower start time are already scheduled or declined and the previous one
still couldn’t be planned or merged with another.

This is an improvement on the insertion Heuristic because it could plan segments that would otherwise
be declined due a poor choice of employee assignment of a previous segment like the example in Figure
4 in Section 3.2.1. The Aproach Reinhardt et al [1] are using is also a Greedy Insert Heuristic that
tries to insert a segment somewhere in the schedule within the time window with as less unnecessary
waiting time as possible, but as far as we know it doesn’t reschedule previous planned segments to
other employees. We hope this leads to an improvement over the original algorithm.

19

3 ALGORITHM 1: FIX TIMES AND THEN MATCH.

3.3 Experiments

We have run some experiments with this algorithm using a Windows 7 Ultimate Computer with a
Intel(R) Core(TM) i7 CPU 2.80 GHz quad core and 4 GB of RAM. The used instances are provided
from Line Blander Reinhardt one of the authors of the paper this thesis is based from. It looks like
they are the same instances they used for their paper but adjusted to not reveal sensitive data. We
view a certain airfield with 11 instances of PRMs requesting services and available workers of that
day. Unfortunately its not listed whether or not the PRMs have prebooked so we have to handle them
all the same. It doesn’t matter if they are prebooked or not if we manage to schedule them all which
is our goal.

We test both variants of the matching strategy while the local search stays the same. First we show
the results of executing the program with deleting the conflicting PRMs then we show the results
of the program with optimizing conflicting PRMs. Each instance is run 20 times and the averages,
minimum and maximum values for computation time, PRMs declined in the local search and PRMs
declined in the matching. Each run has 1000000 iterations and begins with an empty solution where
no PRM or segment is planned.

The results of the experimentation runs are displayed below. We tracked 3 statistics: the com-
puting time of the scheduling algorithm, the number of declined PRMs in the local search before
applying the matching heuristic and the total number of declined PRMs. Of each statistic we listed
the minimum value, maximum value and the average value of the statistic over 20 runs. Since we
did not know which PRMs are prebooked we couldn’t make distinction between declined prebooked
PRMs and those who reserved during the day like Reinhardt et al [1] did.

Results: Local search + Matching: First Available

time(ms) declined before total declined
matching

MIN MAX AVG MIN MAX AVG MIN MAX AVG
Instance 01 2855 3192 2947 0 0 0 0 1 0
Instance 02 3058 3338 3135 1 1 1 1 3 2
Instance 03 3083 3198 3198 0 0 0 1 3 1
Instance 04 3010 3089 3036 0 0 0 4 10 6
Instance 05 3151 3229 3187 0 0 0 8 10 9
Instance 06 3152 3276 3198 0 0 0 2 5 3
Instance 07 2995 3058 3020 0 0 0 0 2 0
Instance 08 2995 3074 3037 0 0 0 1 4 2
Instance 09 2995 3058 3027 0 0 0 1 3 1
Instance 10 3120 3214 3157 0 0 0 3 7 4
Instance 11 3213 3292 3245 0 0 0 2 8 5

Table 2:

Results: Local search + Matching: Reschedule moving window

20

3 ALGORITHM 1: FIX TIMES AND THEN MATCH.

instance time(ms) declined ls total declined
MIN MAX AVG MIN MAX AVG MIN MAX AVG

Instance 01 2823 3042 2886 0 0 0 0 1 0
Instance 02 3042 3276 3095 1 1 1 2 3 2
Instance 03 3042 3167 3096 0 0 0 1 3 1
Instance 04 2979 3198 3024 0 0 0 2 8 4
Instance 05 3151 3229 3190 0 0 0 8 10 9
Instance 06 3135 3214 3166 0 0 0 2 5 3
Instance 07 2948 3026 2988 0 0 0 0 1 0
Instance 08 2964 3057 3001 0 0 0 1 4 2
Instance 09 2949 3027 2993 0 0 0 0 2 1
Instance 10 3057 3214 3108 0 0 0 4 7 4
Instance 11 3167 3261 3212 0 0 0 3 6 4

Table 3:

3.4 Discussion

When looking at the total declined we see a minor improvement of total declined in the Local search
+ Mathcing : Reschedule moving window algorithm over Local search + Matcihng : First Available
algorithm. There are sill some declines, with only 2 instances where we could schedule every PRM.
However these results doesn’t beat the results of Reinhardt et al [1] where often everyone was planned
after 2 minutes. It beats the initial solution of them though, but that is not good enough. Our al-
gorithm is better in the sense that PRMs have no unnneccesary waiting time, which Reinhardt does.
But as long we got these declines, its not better.

Although this algorithm is fast and only takes around 3 seconds to compute such that there is a
lot of time we could improve the solution, the algorithm gets stuck at a local optimum. The problem
is the local search method finds a good solution for the constraints given to them where with all runs
except with one instance every PRM gets planned. But then using the planning heuristic, some PRMs
get declined in progress. The planning heuristic couldn’t give feedback to the local search to find a
better solution, therefore this algorithm is flawed.

We feel like we are in the right direction with sharing employees, avoiding unnecessary waiting time
and rescheduling already planned segments in the planning heuristic. We used that as base for our
next algorithm that constructs a schedule every iteration instead of at the end of the local search.

21

4 ALGORITHM 2: LOCAL SEARCH AND MATCH

4 Algorithm 2: Local Search and match

Our first algorithm had some flaws, it didn’t perform better than Reinhardt et al [1]. The biggest
issue was that the actual schedule got constructed using a heuristic after fixing start times and then
didn’t provide feedback to the local search to find a better schedule. While the local search had a
good solution for its subproblem, after using the matching heuristic it declined some PRMs and then
stops. After we used the matching heuristic we should give feedback to the local search to find better
solutions. The algorithm described in this section does that. After each iteration in the local search we
now apply a matching heuristic and score the mutation based on the result of the generated schedule.

4.1 Local Search

Like the previous algorithm this one uses local search as basic, in the local search we try to set the
start times for each PRM by mutation. The difference from the previous algorithm is that after each
mutation, an actual schedule get constructed using an matching algorithm. The matching algorithm
match up segments with available employees. Also the matching algorithm tries to assign employees
such that the schedule is as robust as possible. In this framework both mutations and matching
algorithm are changeable so some more experimenting with those can be done.

We also wanted to add the option that there could be some time between the end time of the segment
and the time the PRM could get picked up by the next employee, hence resulting in unnecessary
waiting time. But since that is inconvenient for the PRM and employee at the same time we decided
to put that in as a later option if it has proven to be necessary. Our first mutations and matching
algorithm are assuming that the PRM could be planned such that each subsequent segment if not
starting in a lounge could be started immediately without having to wait for an employee. Meaning
that if there isn’t directly an employee available at the time of handover, the segment couldn’t be
planned. In section 2.3 we have seen how we can avoid unnecessary waiting time. The mutations
and matching algorithm assume we can avoid unnecessary waiting time completely, so the planning
returned by this algorithm won’t have unnecessary waiting. Not allowing to take detours or waiting
for an employee to pick up the PRM makes matching more easily since a mutation then does not have
to delay some already planned segments resulting in a cascade of changes through the planning.

The framework supports restoring to a previous state. After accepting a mutation all affected objects
store their new values in their restoring space. Then when we decline a change we restore all affected
objects to their old stored values. Because the mutations could possibly create a complex shift in the
order of segments and assigned employees over a few areas it is really hard to predict the change in
objective score before executing the physical changes. For example when inserting a PRM you insert
several segments in the planning spread over possibly several area’s and affect a number of employees
in the area to change their route so the segment could be inserted robustly.

4.2 Sharing trips

Like our first algorithm we split the route of each PRM into segment groups like explained in section
2.4 and in section 2.1 we saw that synchronizing journeys to allow PRMs to share an employee or bus
in their journey is good for freeing up employees for other tasks. In this section we explain how we
generate pairs of segment groups (g1, g2) of different PRMs that could share an employee or bus on
at least one segment of g1 with a segment of g2. We then use the properties of the segment group to
synchronize their journeys such that both PRMs arrive at the location at the same time to continue
their journey together with the same employee or bus.

For our algorithm we construct a list M of possible pairs of segments that could share an employee
together. That list is used by mutations of the local search to synchronize the journeys of the PRMs
such the segments of the pair could share the same employee or bus. We say that 2 PRM’s p1 and p2
could travel together if there is at least one segment pair (r1, r2), segment r1 from p1 and segment r2
from p2, where the segments r1 and r2 have the same locations as source and destination and could be

22

4 ALGORITHM 2: LOCAL SEARCH AND MATCH

planned simultaneously without violating the release and deadline of neither PRM. Also the sum of
the capacity requirements of PRM p1 and PRM p2 must be no more than the capacity of an employee
or bus that must serve the combined segment. The segment pair (r1, r2) is then a member of list M .

We see segment-groups as individual journeys from a start location to an end location with a separate
release times and deadlines where all segments should be planned right after the previous segment in
the segment group has finished. That makes segment groups a great tool to synchronize journeys of
PRMs such that segments could share the same employee. We can synchronize the segment groups of
a pair (r1, r2) in M if we choose to use that combination in the schedule to share a trip. All segments
following and before segments r1 and r2 in the same same segment group as segment r1 or r2 are
bound to the feasible start times of the combined segment r1 and r2 if you wish to avoid unnecessary
waiting time. Therefore if we plan 2 segments (r1, r2) simultaneously on the same employee we must
also plan the rest of the segments in the segment groups relative to the merged segment of the pair
(r1, r2). We could say that the 2 segments groups when synchronizing their journeys are merged in
one entity with his own release and deadlines, a merged segment group. After assigning a start time
on one of the segments of such merged segment group all segments are dependent on those start times
if you wish to avoid unnecessary waiting time.

Because we are matching segment groups it could be possible that there are multiple pairs of seg-
ments (r1, r2) that could share a bus or employee between the same 2 segment groups of different
PRMs. For example when 2 PRMs go from the lounge to the same plane, they could share the trip to
gate, boarding and possible the platform bus together. If we merge the segment groups such that a
matching pair (r1, r2) share an employee or bus we also look wether the other segments could share an
employee or bus at the same time. In our example if we then want to use one of the pairs (ri, rj), the
boarding segments for example we also let the other segments share the same employee or bus when
possible. Therefor we only need one of those segments as combination in M , the others are redundant
since they result in the same merged group and shared trips.

4.3 Mutations

For this algorithm we have come up with several mutations for our local search. Some of them you
have already seen in the first Algorithm and some of them are new and focus on matching PRMs to
travel together with the same employee or bus.

Name Description
Plan PRM Attempt to plan a random declined PRM into the planning at random start

times inside its time window for each segment group.
Decline PRM Attempt to decline a random served PRM and remove it from the planning.
Move Segment Group Attempt to move a random planned segment group with a random start

time inside its time window. In case the segment group is merged move the
merged group.

Move Segment Group
+ Split Merged Group

Attempt to move a random planned segment group with a random start
time inside its time window. In case the target segment group is merged
with another segment group, remove the target segment group from the
merged group before moving.

Merge Segment Group Take a random possible match as described in section 4.2 and attempt to
merge them. If either PRM is unplanned it tries to add the PRM into
the schedule otherwise it tries to schedule the merged segment group on a
feasible time.

Table 4: Mutations Algorithm 2

23

4 ALGORITHM 2: LOCAL SEARCH AND MATCH

4.4 Generating the Schedule

After each mutation a schedule is generated for all currently accepted PRMs. For this subproblem the
start times of all planned segments are set so we only have to assign which segment is served by which
employee. The goal of the algorithm is to find a robust schedule with all planned segments assigned to
an employee. If the algorithm fails to find such schedule the mutation is considered infeasible and the
changes are reversed. The objective is to find a schedule with all segments planned and optimizing the
robustness score and give that as feedback to the local search who decides whether or not to accept
the solution.

Since we avoid having unnecessary waiting times by disallowing detours and enforcing availability
of employees for subsequent segments when they end, we don’t have to worry about that. This prob-
lem result to be a matching algorithm where we assign segments to employees and minimize edge
costs for robustness. The details of the matching algorithms are explained in their respective sections.
We tried both tried optimizing the entire schedule and insertion heuristics who updates the schedule
more locally but are faster.

Because in our sample data all employees and vehicles are homogeneous in terms of capacity, start
time of their shift and end time of their shift we design our algorithms around that. However in the
problem description its not mentioned that all employees should have the same start and end of the
shift. In an airport planes are arriving and leaving early in the morning and late night, so its likely
there are shifts employees takes. That is why in this section we also will consider extensions where
its possible to let employees have different shifts we call that the shifts variant.

Unfortunately while our subproblem with identical employees and busses represents a single depot
vehicle scheduling problem[9] which can be solved in polynomial time, the problem where employees
and busses could have different shifts represents a multi depot vehicle scheduling problem[10], which
is NP-Hard. Therefor the problem gets much harder. We first focus on the matching methods for
the variant without shifts, show some ILP models that can solve the different shift variant and then
propose a greedy heuristic to overcome this obstacle.

4.4.1 Matching Algorithm without shifts

For our subproblem we know the start times of every segment in our planning and got to find an
schedule such that every segment of a planned PRM is assigned to an employee. In this section we
talk about the variant of our subproblem where the shifts of every employee are the same. One of
the methods we used in our approaches is transforming the sub problem into a weighted maximum
matching problem in a bipartite graph. This problem can be solved using the Hungarian Algorithm in
O(V 3) time[11], where V is the number of vertices and E is the number of edges. If it wasn’t for the
robustness we could have transformed it into the maximum matching problem which is solved easily
in O(V E) time [3]. This section explains how to transform our sub problem into a bipartite graph
and get an route from it.

We make a directed graph G = (V,E) representing our solution, the nodes represents the tasks
and the edges represents what tasks follow can be planned after each other on the same employee
or bus. Edge (n1, n2) says that the segment of node n1 can be planned before node n2 on the same
employee. A path in the graph could then represent the route an employee takes during his shift.
Remember in this subproblem we know which segments are planned and the time they should be
served by the employee. Therefore there is a strict order in which nodes can be processed by the same
employee or buss.

A shift of an employee begins and ends at the depot and in between he serves the segments as-
signed to him. This creates a path from s to t where every node ni represents a location that the
employee must visit to serve the segments. In the path every node ni should have a successor and a
predecessor, except for s and t representing the start and end location. We also know the exact time

24

4 ALGORITHM 2: LOCAL SEARCH AND MATCH

for each node ni should be executed in the path, such that each node have a disjoint set of possible
predecessors and successors. This is also known as a single depot vehicle scheduling problem[9].

For each employee e we add segment nodes si representing the start of the shift and ti represent-
ing the end of the shift. Although all shifts of all employees in the same terminal are the same, they
still can’t serve PRMs that might fall outside their shifts. Those PRMs who got segments that must
be executed outside of the employees shifts are presumed to be errors in the data set. Edge (ni, nj)
says that segment i could be planned directly before segment j without violating constraints such
that j is a possible successor of i. The weight of the edge equals the robustness score which says how
efficient the connection is, where a smaller score is better than a higher.

To make this problem bipartite we have to split each node ni into 2 nodes ns
i representing the

arriving edge and nt
i representing the departing edge. We transform the edges such that nt

j gets all
arriving edges of nj transforming each edge (∗, nj) into (∗, nt

j) and ns
i gets all departing edges of ni

transforming each edge (ni, ∗) into (ns
i , ∗). The dummy nodes doesn’t need to be split up because

nodes representing the start of the shifts shouldn’t have predecessors and nodes representing the end
of shifts shouldn’t have successors. See Figure 5 for an example how a graph could be transformed in
a bipartite graph.

Normal graph Bipartite graph

employee 1
start shift

s1

employee 2
start shift

s2

segment 1 n1

segment 2 n2

segment 3 n3

employee 1
end shift

t1

employee 2
end shift

t2

s1

s2

ns
1

ns
2

ns
3

nt
1

nt
2

nt
3

t1

t2

Figure 5: An example of how a normal graph can be transformed into a bipartite graph by splitting
up the nodes. The segments are ordered in order of start time. An edge (ns

i , n
t
j) presents that ns

i

could be planned before nt
j by the same employee without violating any constraints.

The method only works because there are no cycles in the graph such that we could guarantee paths
starting and ending at the employees depot. Otherwise it would be very similar to the Hamiltonian
path problem which is NP-Hard[12]. Because the arcs has to preserve feasibility and cannot connect
to a node that is planned earlier in time the chain of segments can only progress forward in time and
never backwards, hence there are no cycles. Its another story if we have segments with length 0, which
is very unlikely. If we have those segments that can planned on the same moment and location it
creates a cycle in the graph because it doesn’t matter which segment gets served first. That case could
be caught by giving those segments a virtual order and don’t allow a successor of a same segment
with length of 0 and a distance of 0 with a lower ordering.

After solving this weighted maximum matching problem we get a set of Edges used for the match-
ing. We know there is a feasible matching for this subproblem if we find a perfect matching: every
node is member of exactly one matched edge. Otherwise there would be a segment who doesn’t have

25

4 ALGORITHM 2: LOCAL SEARCH AND MATCH

a successor or predecessor and wouldn’t be a member of a planning. If we got a perfect matching
we could translate the edges back to the original graph and get a solution where each path starts
with a start shift segment of an employee and ends with an end shift segment of an employee, those
start and end segment doesn’t necessary have to be from the same employee. Since there are no
cycles in the graph and every nodes excepts the start shift have a predecessor and every node except
the end shift have a successor the routes must start and stop using the start shift and end shift nodes.

This method is not fit for the problem where employees could have different shift starts and ends.
We can’t force that each route starts and ends with a segment from the same employee because every
employee’s end shift node that is a feasible connection from a segment could be matched even though
if the employee start segment earlier in the route should be matched with an shift end that is scheduled
at an earlier time than the selected end shift edge. Which could cause that employees get segments
matched that is outside of their shift time. This makes this method not fit for problems with shifts to
solve it to optimality. After all while the variant with identical shifts represents a single depot vehicle
scheduling problem[9], the variant with different shifts represents a multi depot vehicle scheduling
problem[10] which is NP-Hard.

If we wish to use this method for the different shift variant we propose a greedy heuristic to fix
routes that violate shift constraints which is explained later on. First we are going to explain which
Heuristics we used for our experiments, then we talk about why the shift variant is hard and show
the greedy heuristic.

4.4.2 Insert Heuristic: Free Spot

This is one of the most simple Insert heuristics. It might be simple but it got its uses, we can compare
this strategy with those of our more advanced heuristics or use this method if we may not change the
schedule too much. Since its an heuristic it doesn’t solve this subproblem to optimality and could
lead to false infeasible but have fast results. From the previous generated schedule it only plans the
segments who are added with the current mutation that calls this matching method. The algorithm
doesn’t touch the previous assignments of employees to segments.

The heuristic plans every segment that are added with the current mutation one by one. It just
goes through the list of available employees and check whether or not they could serve the to be
inserted segment. Among the available employees the one is taken with the least lost in robustness in
the schedule. The robustness value is calculated using the predefined formula for calculating robust-
ness score between the previous segment and the current one. Then the segment got planned with
the employee it gets the best robustness score from.

This method is even suitable for problems including shifts. Since it only inserts a segment in the
route it doesn’t change the employees end shift segment and the shift constraint is not violated.

The downside of this method is that it might be too simple. For example when solving the trav-
eling salesman problem, using insertion heuristics alone doesn’t necessary give good solutions in local
search because to swap an entire section which might be better than takes many mutation of deleting
and reinserting the node. A method to fix that is adding 2-opt or 2.5 opt to overcome this. We could
either add that as an additional mutation or integrate it in the scheduling heuristic which is done in
the next Insert Heuristic using the bipartite matching problem.

4.4.3 Insert Heuristic: Reschedule overlapping segments

This method is an improvement over the Insert Heuristic: Free Spot and allows more possible con-
nections to be made while only mutating the schedule partially. Like the previous heuristic the base
solution is the previous schedule and only the newly added segments are processed and included in
the schedule. It also inserts the to be inserted segments one by one and doesn’t necessary provide an
optimal answer.

26

4 ALGORITHM 2: LOCAL SEARCH AND MATCH

This method is based on the assumption that of the current solution all subpaths of all employ-
ees in a certain timeframe are locally optimal, just like every subpath of a shortest path is a shortest
path as well. We can assume that a path of segments till a certain node in the journey of a single
employee must serve also have these properties, otherwise we would be able to find a better path.
When we look for adding a new segment r to the schedule we can speed up the algorithm to only
optimize a subset of all nodes instead of the entire schedule. This might not result in an optimal
solution, but not a bad one either.

We are only going to reschedule the segments that can’t be planned either before or after segment
r without violating the constraints. We call such segment an overlapping segment. The problem is
then transformed to a weighted maximum matching problem like in section 4.4.1. This method will
make 3 sets of segments Rsource, Rsink and Roverlap. Instead of the shift start of an employee as
source node for an employee we use the last node that is already planned on the employee that can be
planned before segment r as source and to represent the employee and is put in set Rsource. Due the
shortest path properties, the schedule before that node should be already a good one. Instead of the
shift end as sink node for an employee we use the first node that is already planned on the employee
that can be planned after segment r as sink and is put in set Rsink. Again the path after the sink
node should be already a good one due the shortest path properties. The rest of the nodes between
the source and sink of an employee are rescheduled along with segment r and is put in set Roverlap.
Last we also put segment r in set Roverlap such it represents all segments that needs a new assignment.

We use the 3 sets Rsource, Rsink and Roverlap as input for the weighted maximum matching algo-
rithm to generate a schedule like in section 4.4.1. The conversion to a bipartite graph G = (V,E) is
the same as explained in that section. The segments represents the nodes, the edges possible connec-
tions and the robustness score is used as a weight for the edge. The only differences are that only a
subset of all nodes are been scheduled to optimality and different start and end nodes are used for
the employees.

We are basically cutting the routes of the segments on the spot where the to be inserted segment
r could be planned in 2 and disconnects every overlapping segment like illustrated in Figure 6. Then
we want to schedule all segments in Roverlap including r such we got routes for all employees again.
This allows us to rearrange the segments that are competing to be scheduled as well as allowing a
n-opt like operation. The head of the route of an employee doesn’t necessary have to be matched
to its tail. For example now it could decide to take a tail of employee e1 plan segment r and then
continue in the tail of e2 if that is more efficient.

27

4 ALGORITHM 2: LOCAL SEARCH AND MATCH

Employee 1:

Employee 2:

Employee 3:

Before (Rsource) Overlapping (Roverlap) After (Rsink)

new segment r

r1

r4

r7

r2

r5

r8

r3

r6

r9

Figure 6: An example of how the reschedule overlapping segments heuristic can find a better robust
answer using matching. We show the schedule of 3 employees and the path they take. The edges
represents the current path of the employee. Segment r is to be inserted, and below the paths of
employees 1, 2 and 3 are given, where segments s1, s2 and s3 are currently scheduled on employee 1,
segments s4, s5 and s6 on employee 2 and segments s7, s5 and s6 on employee 3.

Now we got a matching problem where we want to find which segments could be planned after
each other just like in section 4.4.1. We could use the same algorithm to solve this problem only
we try to match the segments in Roverlap while using the segments in Rsource replace the function
of the employee shift start segments and segment nodes in Rsink replaces the function of the shift
end segment nodes. We are basically cutting down the graph to make a more smaller problem and
therefore winning valuable computing time.

Figure 7 shows the edges considered in this subproblem for the example in Figure 6. We show
the schedule of 3 employees and the path they take. The dazed edges represents possible connections
while the closed arrows represents the current path. In this example the new segment r couldn’t
be planned using the insert heuristic. But if you plan r7 → r8 → r2 → r3 you get room to plan
r1 → r → r9 and leave r4 → r5 → r6 alone you get a feasible solution. It might be not the optimal
solution but we haven’t given the edge costs either in this example. We have done an n-opt and a
insert at the same time.

Employee 1:

Employee 2:

Employee 3:

Before (Rsource) Overlapping (Roverlap) After (Rsink)

new segment r

r1

r4

r7

r2

r5

r8

r3

r6

r9

Figure 7: An example of how the reschedule overlapping segments heuristic can find a better robust
answer using matching. Showing the exact same situation as in Figure 6 but then showing the possible
edges for the matching problem as dazed edges.

28

4 ALGORITHM 2: LOCAL SEARCH AND MATCH

We can solve this subproblem using the hungarian algorithm like in section 4.4.1, such the subset
of segments are planned to optimality. The solution might not be an optimal matching considering
all segments in the schedule, even though the path before the source segments and sink segments are
optimal in the previous solution. For example to make room for the new segment r, 2 nodes considered
to be sources in this problem might be more efficiently planned to a single employee to make room
for a segment ri not r in set Roverlap. That segment might not be able to be planed simultaneously
with a source node. While this heuristic might not be optimal it should result in good solutions with
little computation time allowing more iterations to be done.

4.4.4 Reschedule All: ILP

With this method we reschedule all segments in the problem for each mutation step. After the muta-
tion the changed segments are collected and this method makes the schedule. We could just use the
method described in 4.4.1 for that purpose but we decided to try ILP in addition. Exact algorithms
could outperform an ILP, but using ILP grands us some more flexibility. For example we could add
constraints such that employees could have different shifts.

For this problem we again use the same graph G = (V,E) as described in section 4.4.1 where ev-
ery node represents a segment and an edge (i, j) ∈ E . For the ILP don’t have to transform the graph
to a bi-partite graph as long every segment except for the segment representing the start of a shift get a
predecessor and every segment except for the segment representing the end of a shift gets a successor.

Again the objective function we want to optimize for robustness. The objectives of planning most
PRM’s and penalties let them possibly wait we have discarded, because otherwise we could have just
used the ILP to solve the whole problem taken care of by the local search. All segments are forcefully
planned using the constraints, so the objective function only have to focus on optimizing the robust-
ness. Meaning that if we find a feasible solution for the ILP we know for sure that all segments are
planned properly, otherwise the mutation is unfeasible. let w(e) be the function that calculates the
robustness of edge e.

We use one ILP model for the problem variant where all shifts of employees are identical. We can add
additional constraints to the ILP such that the problem variant where shifts are not identical could
be solved. The 3 ILP formulations we list below all have the same base but differ how they implement
the constraint for the variant where shifts are not identical.

ILP1:
The first ILP notation got 2 kinds of binary variables. Variable xi,j ∈ {0, 1} is used to represent the
edges of graph G and defines wether or not they are taken into the schedule. We make a variable xi,j

for each edge in (i, j) ∈ E. If the variable xi,j is set to 1 then segment 76i is planned directly before
segment j on the same employee, the variable is set to 0 otherwise.r

The second variable vti ∈ {0, 1} and represents whether or not segment i is served by employee
or bus t. We make a variable vti for every segment i and every employee or bus who can serve segment
i. If the variable is set to 1 then the segment i is served by the employee or bus t, the variable is set
to zero otherwise. The segment representing the start of the shift s and the segment representing the
end of the shift e of an employee or bus t, could only be served by t himself. In that case vts and vte
are given a fixed value of 1, making it a parameter. Each segment may only be assigned to a single
employee at the time.

The ILP will look as followed where R is the set of segments in the problem, Rstart is the set of
segments representing the shift start of an employee or bus, Rend is the set of segments representing
the shift end of an employee or bus, Ein

i is the set of all incoming edges of node i, Eout
i is the set of

all outgoing edges of node i and Ti is the set of employees or busses that can serve segment i.

29

4 ALGORITHM 2: LOCAL SEARCH AND MATCH

min:
∑

(i,j)∈E w((i, j)) · xi,j

1
(∑

(i,r)∈Ein
r

xi,r

)
= 1 ∀r ∈ R ∪Rend

2
(∑

(r,j)∈Eout
r

xr,j

)
= 1 ∀r ∈ R ∪Rstart

3 xi,j + vti − vtj ≤ 1 ∀(i, j) ∈ E,∀t ∈ Ti ∩ Tj

4 xi,j + vti ≤ 1 ∀(i, j) ∈ E,∀t ∈ Ti/Tj

5 xi,j + vtj ≤ 1 ∀(i, j) ∈ E,∀t ∈ Tj/Ti

6 xi,j ∈ {0, 1} ∀(i, j) ∈ E
7 vti ∈ {0, 1} ∀i ∈ R, t ∈ Ti

8 vti = 1 ∀i ∈ Rstart ∪Rend, {t} = Ti

The first 2 constraints makes sure that every segment get a predecessor and a follow up. The first
2 constraints are enough for the variant where all employees shifts are the same. We are only using
constraints 3 to 5 when shifts aren’t homogenous. The third constraint makes sure that the employee
assigned to the predecessor is equal to the employee assigned for the current segment if the current
segment could be handled by the employee. Constraint 4 and 5 makes sure that if there exists an
employee that couldn’t support the previous or next segment that then no such match in the bi-partite
graph may exists. Constraint 8 tells that the shift start and end segments can only be served by the
employee they represents. This works because the start segment of each employee can only be served
by the employee itself and the end segment of each employee could only be served by the employee
itself. For the no shift version we could only use the first and second constraint. Because the segments
already have a fixed start time and no cycles are in the graph finding a predecessor and successor for
each node is sufficient, like explained in section 4.4.1.

When implementing this ILP we struggled with an hardware limit of not having enough memory
to construct the ILP from java for the shifts variant. The variant without shifts wasn’t an issue,
the additional constraints and variables had greatly increased the matrix size. We could have used
an alternative ILP assignment that is actually more commonly used for this kind of problems where
multiple ’vehicles’ exists. we made the previous notation because we used the matching Algorithm as
base, and added employee assignment in them. We will list down below the alternative ILP formula
to add those extra vehicles. The ILP formulation is based on a multiple vehicle planning problem.

ILP 2: Instead of making variables for every segment which employee they are served with, we
bind that decision on the edges. Each variable xi,j in ILP 1 gets a copy for each employee or bus
t ∈ Ti ∩ Tj , creating the variable xt

i,j ∈ {0, 1} representing the edge supported by employee or bus
t. If the variable xt

i,j is set to 1 then segment i is planned directly before segment j on employee t.
Where otherwise the employee is deducted by tracing back the path to the source or keeping track of
an variable, the variable states which employee is used. When a segment j is assigned to employee
or bus t by variable xt

i,j = 1 then the edge selected for the successor k must also be of employee t,
and only edges like xt

j,k may be selected. Again the only viable employee or bus of a start and end
segment of an employee or bus, is that employee or bus himself. With this we greatly increase the
number of variables but greatly decrease the number of constraints.

min:
∑

(i,j)∈E
∑

t∈Ti∧t∈Tj
w((i, j)) · xt

i,j

1
(∑

t∈Tr

∑
(i,r)∈Ein

r ,t∈Ti
xt
i,r

)
= 1 ∀r ∈ R ∪Rend

2
(∑

t∈Tr

∑
(r,j)∈Eout

r ,t∈Tj
xt
r,j

)
= 1 ∀r ∈ R ∪Rstart

3
(∑

(i,r)∈Ein
r ,t∈Ti

xt
i,r

)
=
(∑

(r,j)∈Eout
r ,t∈Tj

xt
r,j

)
∀r ∈ R,∀t ∈ Tr

4 xt
i,j ∈ {0, 1} ∀i ∈ R∪Rstart∪Rend, ∀t ∈ Ti∩Tj

Again constraints 1 and 2 make sure every regular segment got a predecessor and a follow up and the

30

4 ALGORITHM 2: LOCAL SEARCH AND MATCH

start and end shift segments are been planned. Its slightly altered to include all variants of variable
xt
i,j . Constraint 3 says that every segment and employee combination must have as much incoming

edges as out going edges belonging to the same employee. For example if segment r1 is followed by
segment r2 with employee t1 by variable xt1

r1,r2 then the successor segment k must also be set through

a variable xt1
r2,k

enforcing the segment to be planned on the same employee.

Unfortunately this ILP after implementing also exceeds our memory limit using the interface from
java. Therefore we needed either more memory, skip this algorithm or design a new ILP. Fortunately
we found an alternative ILP notation.

ILP 3:
This notation is also based on the matching problem. The problem that arrises when we use the
formulation of the variant with identical shifts for the variant with diverse shifts is that segments
representing the start of a shift don’t meet up with a viable segment representing the end of a shift.
For example if we got 2 employees t1 and t2. Employee t1’s shift start at 3:00 represented by segment
it1start and ends at 11:00 represented by segment it1end. Employee t2’s shift start at 7:00 represented by
segment it2start and ends at 15:00 represented by segment it2end. When we use the graph and weighted
maximum matching algorithm as discussed in section 4.4.1, we can’t guarantee that the path starting
with segment it1start ends with segment it1end. Employee 1’s path might end up starting with segment
it1start at 3:00, assist some PRMs and end with segment it2end at 15:00. While employee 2’s path might
end up with starting with segment it2start at 7:00, assist some PRMs and end with segment it1end at
11:00. All these routes are viable connections in the graph, to prevent this we must enforce the
the first and last segment of a path of an employee are compatible with their shift times. Since
we we linked an employee or bus to the shift start segment, the rest of the path must be served by
that employee, we therefore only need to make sure that the last segment is compatible with the shift.

Instead of tracking which employee or vehicle serves each edge or segment we could use a single
continues variable per segment instead of a few binary variables. That variable yi represents the time
the employee serving segment i should end their shift. The values of yi from the start and end segment
of each employee have a static value that equals to the shift end. This makes sure that the value of
yj of all segments j in the path starting from yi representing the start segment on an employee, must
have a shift end time equal to yi, which is a set value.

Since every segment must have a successor except for the shift end segments, the last segment in
the path must be a shift end segment. And since all segments i in the path for an employee or bus
must have the same value for yi including the last segment and the value of yi for shift end segments
are fixed, the last segment must either belong to the employee or bus himself or an employee or bus
that has the same shift end time. In the later option we could easily rearrange the end nodes such that
each path starts and ends with a segment belonging to that employee. We could even relax the path
such that every segment j of a path must have an yj value equal or less than the previous segment
in the path. It doesn’t hurt when an employee is finished early but if you assign an earlier shift end
segment j like employee 2 in the earlier example of the 2 employees with different shifts, you must give
one shift end segment to an employee who should end earlier, which is a violation of the constraints.

Either way the values yj of all segments j in a path of an employee will have the same value.

min:
∑

(i,j)∈E w((i, j)) · xi,j

1
(∑

(i,r)∈Ein
r

xi,r

)
= 1 ∀r ∈ R ∪Rend

2
(∑

(r,j)∈Eout
r

xr,j

)
= 1 ∀r ∈ R ∪Rstart

3 yj − (1− xi,j)M ≤ yi ∀(i, j) ∈ E
4 xi,j ∈ 0, 1 ∀(i, j) ∈ E
5 yi ≥ 0 ∀i ∈ R
6 yi = shift end(i) ∀i ∈ Rstart ∪Rend

31

4 ALGORITHM 2: LOCAL SEARCH AND MATCH

Constraints 1 and 2 are basically the same constraints from ILP1 again. Constraint 3 basically
tells that if edge (i, j) is selected by setting xi,j to one then the shift end variable yj of segment j
should be equal or smaller than the shift end variable yi of segment i like explained above, it enforces
that the path of an employee ends with a compatible segment to represent the end of the shift. Rule
6 ensures that yi of the shift start segments and shift end segments of an employee equals the shift
end time of that employee. This approach uses a smaller ILP and memory usage than the other 2
approaches and was able to run.

We could also have numbered the employees using yj as employee 1, 2, 3, 4, 5, ... and used yj as an
element variable. Then we could have forced the end segments to be assigned belonging to the same
employee. But this was the original idea and fixing the shift end segments is really easy just ignore
the planning and add them at the end.

In the Experiments section we compare the performance of those 3 ILP’s. Because the first 2 didn’t
load we will use a subset of the PRM’s to compare these 3. But since ILP 3 only did load using the
sample problems, its the only one viable for computers with 4 GB of RAM.

4.4.5 Greedy shift fix

The subproblem for the variant where shifts are not identical is NP-Hard since it represents a multi
depot vehicle scheduling problem. By using the ILP we could solve instances but that will proba-
bly take much computation time. That is why we propose a greedy fix for this problem to use on
strategies that doesn’t take care of different shifts and correct them afterwards to enforce the shift
constraints. The input for this algorithm are routes for employees that doesn’t necessary obey their
shifts. We want this greedy fix to be performed fast so we just focus on finding a feasible solution
with connections that aren’t too bad.

First we assume that all employees start shift segments belongs to their employee and the sequence
of segments behind that the route the employee takes. Then the last segment of the path the em-
ployee takes which should be a shift end segment, since that is the only segment who may not have a
successor. If we use our heuristics for the variant with identical employees the path of the employee
might end with a shift end segment belonging to an employee who’s shift end earlier or later then the
employee who is assigned that path to. We can not have segments before the shift start segment and
therefore we do not have any issues with assigning segment earlier then the shift ends, but we do have
a problem at the shift end segments.

We can fix that by finding a second route with an acceptable shift end such that the shift con-
straints are satisfied. We cut those 2 routes in 2 and reconnects them such that the first route is
satisfying the shift constraints. Because we are searching for an robust solution the algorithm checks
all viable employees for the second route and all spots in the route for the cut with the best change
in robustness score. The cut is only feasible if the head of the first route could continue with the tail
of the second route and the head of the second route could be continue with the tail of the first route
such that no segments are lost. We then score the cut by adding the robustness costs of the new
formed edges minus the robustness cost of the old edges.

To avoid chaos of breaking good routes again by changing the second route which might be already
fixed we don’t allow to change fixed routes. For that reason we sort the employees by shift end time,
starting with the smallest ones first. We try to fix the routes in increasing order and only use routes
that are higher on the list as a second route to cut. This way we avoid possibly breaking an route
that is already declared feasible or fixed. The order for small to large is because the employees with a
smaller shift end are more constrained than the higher shift end. After all an employee with a higher
shift end could possibly do a tail route from a lower shift end employee and be done early while the
lower is less likely to be able to serve the tail of a higher shift end employee.

32

4 ALGORITHM 2: LOCAL SEARCH AND MATCH

With this method we could quickly fix the schedules of the heuristics to satisfy the shift constraints
for methods that couldn’t originally, it might be dirty but we need to find a solution quickly. We
could always do an exact algorithm like ILP at the end to optimize the schedule given the current
start times. Its possible that this algorithm doesn’t find a fix and then the mutation should be called
infeasible although when done with an exact algorithm there might be a feasible answer. In the ex-
periments section we try this approach to compare with the ILP version for the modified sample data
with shift variants.

33

5 COMPUTATIONAL EXPERIMENTS

5 Computational experiments

We have run some experiments with the second algorithm using a Windows 7 Ultimate Computer
with a Intel(R) Core(TM) i7 CPU 2.80 GHz quad core and 4 GB of RAM. Again the used instances
are provided from Line Blander Reinhardt one of the authors of the paper this thesis is based from
and we don’t know or PRMs are prebooked or not. We first experiment with the current situation
where the shifts of all employees are identical, then we show the results of comparing ILP formulations
and finally show experiments for the harder problem with generated shift.

5.1 no-shifts

For the no-shift experimentations we only add lounge visits to the instances and possibly fix some
minor inconsistencies like travel time from A to A be greater then 0. For the rest we leave the workers
and PRMs as if. For this problem we will only use one ILP variant because if all employees have
identical shifts all ILPs use the same constraints. We have used the following solver settings for this
problem:

Because for generating the schedule after each iteration the exact methods seems to take much longer
to calculate then the heuristic methods, we give them an other amount of max iterations such that
they are near done by the 2 minute maximum computing time. Otherwise for the exact methods with
an high number of iterations when the 2 minute limit has passed, the Temperature of the local search
is still very high at that point and need to cool down faster then while using a fast heuristic approach.

We list the decline penalty for unbooked and booked, but since we don’t know who is booked or
not we treat all PRMs as booked. The same temperature value is used for the second objective
value for robustness, but when evaluating the chance to accept an solution or not, we multiply the
robustness score by 3 for the input of the formula. The formula to calculate the chance to accept a
solution or not looks then like: e3∗(f−f

′)/T , where f is the old robustness score and f ′ the new one.
We decrease the temperature T with every I/Q iterations by a, such that multiplying T with a is
done Q times no matter how many iterations we do.

The experiments are run 30 times using the above settings for each instance and Matching method.
The result table contains averages of the computing time and actual iterations, best and worst solution
with the number of declined customers and robustness score. The Average column list the averages
of the number of declined customers and robustness with a double precision of 1.

solver settings:

Max Iterations I: 500.000 for heuristics.
3.000 for full matching.

Max time : 2 minutes
Temperature start T : 400.0 (Temperature of the simulated annealing at start.)
Number of Q steps: 100 (T is multiplied by a every I/Q iterations.)
Alpha a : 0.95 (The degree T is multiplied every I/Q iterations.)
Decline penalty unbooked: 400
Decline penalty booked: 1200

before the PRM arrive if he is at the location.)
Mutations: Plan PRM, Decline PRM, Merge SegmentGroup,

Move SegmentGroup, Move Split SegmentGroup

5.1.1 Results: Simple Matching

The table below shows the results of the experiment using the Insert Heuristic: Simple Matching as
described in 4.4.2. This is the simplest matching heuristic we did and also the one with the least
flexibility in answers. It just tries to insert each segment in an existing workers schedule.

34

5 COMPUTATIONAL EXPERIMENTS

instance time(ms) iterations Best Average Worst
declined robust declined robust declined robust

Instance 1 5119 485267 0 0 0,0 249,5 0 700
Instance 2 7423 500000 1 41 1,6 415,7 3 1383
Instance 3 7481 500000 0 608 1,2 652,9 2 1584
Instance 4 6043 500000 0 215 0,0 837,3 0 1313
Instance 5 6954 500000 0 32 0,1 722,3 1 627
Instance 6 7412 500000 0 262 0,0 829,4 0 1344
Instance 7 5778 500000 0 16 0,0 493,9 0 1069
Instance 8 6505 500000 0 800 0,1 1224,9 1 1306
Instance 9 5934 500000 0 218 0,0 775,0 0 1313
Instance 10 9337 500000 1 622 1,6 1051,0 2 1701
Instance 11 9294 500000 0 634 1,4 767,5 4 643

Table 5:

Although using a very simple insert heuristic it managed to find some pretty good answers really
fast. The average computation time for 500.000 iterations is below 10 seconds. Looking at instance
1 the best solution of the 30 runs got a score of 0 for robustness and no declines which is using our
objectives an optimum answer! Also except for Instance 2 and 10, the best solutions found have 0
declines, averages looking good too. However the worst solutions got up to 4 declines, for all instances
except for 2 the worst solution have improved in comparison to our first Algorithm, where at instance
5 there where 10 declined in the worst solution versus 1 using this algorithm.

Because we make a solution every iteration we come up with no unexpected surprises at the end
where PRM’s couldn’t be scheduled like our first algorithm. Also because this algorithm focuses on
letting PRM’s take tours together where possible, the buss area should be less of a bottleneck then in
Algorithm 1 and have more available employees. Looks like we are in the right direction even with a
simple heuristic for generating schedules.

5.1.2 Results: Reschedule overlapping segments

The table below shows the results of the experiment using the Insert Heuristic: Reschedule overlapping
segments as described in 4.4.3. This matching heuristic is more advanced then the previous one. It
reschedules segments that are competing with the to be inserted segment for a spot on an employee,
allowing 2-opt like operations on schedules.

instance time(ms) iterations Best Average Worst
declined robust declined robust declined robust

Instance 1 1831 11143 0 0 0,0 0,0 0 0
Instance 2 70752 500000 1 0 1,4 183,2 3 0
Instance 3 43403 289371 0 0 0,0 0,0 0 0
Instance 4 17698 115761 0 0 0,0 0,0 0 0
Instance 5 51850 243457 0 0 0,0 0,0 0 1
Instance 6 47073 160797 0 0 0,0 0,0 0 0
Instance 7 10415 69227 0 0 0,0 0,0 0 0
Instance 8 14503 82530 0 0 0,0 0,0 0 0
Instance 9 9546 58167 0 0 0,0 0,0 0 0
Instance 10 52418 257654 0 0 0,0 0,0 0 0
Instance 11 51225 174627 0 0 0,0 0,0 0 0

Table 6:

These results couldn’t almost be better using the described objective functions. All instances ex-
cept for instance 2 and instance 5, got 0 declined and 0 robustness penalty as their worst solutions

35

5 COMPUTATIONAL EXPERIMENTS

out of the 30, which means an optimum score. And the worst solution of instance 5 got a robustness
penalty of 1 which means that that solution got one connection where the employee got 19 minute
slack time instead of the preferred at least 20.

The only odd one out is instance 2 with a best declined 1 and worst declined 3, this instance seems
to be much harder then the others to plan everyone. The average is 1.4, so by the looks of it he
finds more answers with 1 and 2 declined. However if you look at table 3 in section 3.3 where we did
computational experiments with our first attempt for an algorithm, we see that only in instance 2, it
couldn’t schedule 1 PRM in the local search phase before assigning employees. In all other instances
in the local search phase all PRMs are given start times for their segments. Which means there is
not enough capacity in a terminal to serve one PRM, which the algorithm do check in that phase.
After more closely examining the instance and our best result we saw that one PRM had a segment in
terminal 11 who doesn’t got any assigned workers to it, actually its the only person traveling through
that terminal, so its pretty impossible. Since the experiments are already done, we let this person be.

Another observation could be made when looking at instance 2, the worst solution had 0 robust-
ness penalty, but 3 declined persons of which we know 1 is impossible to schedule. Maybe because
we are also optimizing robustness and prefer a lot of slack we push the solution in a certain direction.
When examining the solution it had an odd favor to have multiple employees start a job at the same
time in the buss area and employees have peak hours when many PRMs need to travel. It looks
like the downside of merging rides is that a lot of PRMs have to be brought to the bus stop at the
same time or PRMs coming from 2 different locations to a same bus stop are been walked together to
the lounge. We could discourage this behavior by removing those matches from been selected by the
mutation, but then we might need more trips from buses, which is inefficient as well.

5.1.3 Results: Optimise matching ILP

The table below shows the results of the experiment using a ILP as described in 4.4.4. Since we have
identical shifts we can use ILP1, without the variable and constraints for the variant with different
shifts. This method optimize the entire matching after every mutation.

instance time(ms) iterations Best Average Worst
declined robust declined robust declined robust

Instance 1 120698 270 165 444 187,6 170,0 210 73
Instance 2 120770 232 226 1353 240,7 1616,5 253 1500
Instance 3 120830 193 276 2401 290,7 1767,7 304 2905
Instance 4 120872 218 202 338 215,1 452,5 233 64
Instance 5 120911 169 295 1555 303,3 501,2 315 235
Instance 6 120930 169 301 122 311,1 544,5 321 980
Instance 7 120840 227 203 161 224,4 628,9 239 755
Instance 8 120745 213 232 210 247,2 207,8 264 375
Instance 9 120814 220 213 9 226,3 435,1 241 9
Instance 10 121092 177 275 45 287,3 684,5 299 164
Instance 11 121202 145 367 245 378,9 287,8 392 144

Table 7:

The results are disappointing, the number of iterations that could be done in 2 minutes are way to
few. Instance 1 has the highest number of average iterations of 270 and still got at best 165 declined
passengers, which isn’t odd considering the number of iterations. This algorithm just performs too
poorly, one ILP solve just takes too long to solve to be used every iteration. Next up is the Hungarian
algorithm for matching that also matches the full matching problem, hopefully it performs faster.

36

5 COMPUTATIONAL EXPERIMENTS

5.1.4 Results: Optimise matching Hungarian

The table below shows the results of the experiment using the Insert Heuristic: Reschedule overlapping
segments as described in 4.4.1. This method optimizes the whole matching after each iteration like
the ILP but then using the hungarian algorithm.

instance time(ms) iterations Best Average Worst
declined robust declined robust declined robust

Instance 1 62852 2938 0 0 0,0 333,7 0 968
Instance 2 114121 2993 1 2844 4,3 3672,6 7 3334
Instance 3 120186 1936 0 6018 1,2 7817,9 5 8070
Instance 4 86868 3000 0 606 0,0 1375,5 0 2316
Instance 5 120184 1769 0 1559 0,0 4066,7 0 7369
Instance 6 120230 1816 0 1346 0,0 2928,7 0 6218
Instance 7 80059 3000 0 219 0,0 1087,8 0 3004
Instance 8 115554 2794 0 265 0,6 1080,1 2 1382
Instance 9 87762 3000 0 263 0,0 1088,5 0 1852
Instance 10 120161 1951 0 3446 0,0 5772,3 1 8123
Instance 11 120231 859 76 3735 96,8 3756,9 116 3576

Table 8:

Although the results are better then the ILP variant, its still kinda disappointing. The most runs
didn’t even reach the 3000 iterations limit, which also means that too much time is used on optimizing
each iteration. Results are way better though then ILP, but still worse then the perfect solutions the
heuristic found. There is a lot of everyone been planned, although not very robust and at worst 7
declines. Again the algorithm could do too few iterations because of the optimizing step after each
iteration.

We can the processing time of the heuristic by using the dynamic Hungarian algorithm[14]. We
currently generate the input and execute the whole Hungarian algorithm every mutation, but this
could be done smarter. With the dynamic Hungarian algorithm we can dynamically add segments in
the matching problem or change the costs of the matchings when segments are given different start
times. The paper doesn’t explain how to remove nodes (segments in our case) from the matching but
that should also be possible. The dynamic Hungarian algorithm described by Mills-Tettey et al[14]
require both the dual variables and the previous matching as input, when we do backtracking we
should restore those values as well. We discovered this too late and experiments are already run, but
might be worth to look at this in futhure.

5.2 Looking closer to the solution

We made a program that could visualize the generated results as a gantt chart for each worker and
by doing so we found out something quite interesting.

First of all, employees at terminals surprisingly have loads of time, many slack times are way
over the 20 minutes. And then suddenly everyone has to work because several gates are boarding
roughly at the time. The problem is that there is such a high need of personal because of these
peak hours. If planes do depart with people needing assistance more spread over the day, you will
properly need less personal. Scheduling a lunch break can be done with ease, they have loads of time.
After all if we managed to have a 20 minutes slack everywhere, there should be some room for a break.

The inter-terminal traveling by buss however got busier schedules but nevertheless got some time
for a break. Its workload is better spread over the day but that might also because we park PRMs
at a lounge before a buss transfer and after a buss transfer for that reason. Also there are a lot of
merged rides with 2 or more PRMs joining a ride and then still the bus drivers have enough work.

37

5 COMPUTATIONAL EXPERIMENTS

Another interesting observation is that our algorithm apparently have a preference to put every em-
ployee at work roughly at the same time, especially early in the schedule. This was to be expected
when planes arrive and depart around the same time, but even the inter-terminal buses travel around
the same time. Even though the time windows allows the segment for traveling by bus to be planned
earlier or later. This is properly due the merging of segments, such that 2 or more PRMs are served
by the same employee on a segment. The bus area is used efficiently by letting multiple PRM joining
the rides, but they also need to be brought to the bus stop and from the bus stop to the lounge. The
segment towards the lounge is also sharable even though buses are coming from 2 different locations
such that buses arrive at the same time. This was discovered after the experiments are ran. A way
to discourage these kind of solutions is to filter and disable matches that are purely based on walking
from and to the bus stops. But currently these algorithm gives good solutions in score so there is
currently no need for alteration.

5.3 Conclusion no shifts

It looks like we where on the right track to join PRMs together on segments to increase the efficiency of
the bus area. This algorithm provides better answers than our previous one in section 3 like expected.
The heuristics for the matching sub-problem at the end of nearly every iteration performs way better
than solving the matching problem to optimality.

Of the optimizing matching strategies the ILP performed very poorly only capable of performing
a few hundred iterations within the 2 minute limit. The exact method using the Hungarian Algorithm
performed better but also only managed a couple of thousand iterations. The Hungarian method
managed to plan nearly everyone within those iterations but have a high robustness penalty. It looks
like that the optimizing methods are way too time consuming to be used efficient in this problem,
after all its a subproblem with a big dense graph.

Of the heuristic strategies the rescheduling of overlapping segments performed better than the simple
inserting heuristic. The simple inserting wins in computation speed, most instances are solved within
10 seconds doing 500.000 iterations against 10 till 71 seconds of the rescheduling overlapping segments
algorithm. The score of Simple inserting is pretty decent most of the time everyone is planned or have
a few unplanned, but have some robustness penalty. The score of rescheduling overlapping segments
is near perfect for those instances, nearly always everyone planned and 0 robustness penalty, which
was unexpected. The odd one out proved to have a PRM who could be impossibly planned since there
are no employees in an area he must travel through for some reason.

If we compare our results to those of Reinhardt et al [1] see appendix A, where this research is
based on, we have found an improvement. For half of the instances Reinhardt et all always found
a solution where every PRM is planned, but for those who doesn’t we have a better average in our
best algorithm. Also they always had some unnecessary waiting time, while our algorithm guarantees
smooth connections. Therefore our best algorithm is an improvement to the previous work.

Rescheduling overlapping segments seems to be a good strategy to use to plan in new PRMs without
resolving the whole matching problem that generates the planning. ILP seems way too slow, but
nevertheless we go continue testing those in the shift variant, where it is the only exact optimization
method we tried. We have to result to heuristics if we want to make the 2 minute maximum com-
putation time for this problem. By using simplifications, making some soft constraints like allowing
waiting and taking detours hard constraints we made this problem easier and could provide good
answers well within the 2 minute time constraint.

5.4 shift variant

For the shift experimentations in addition of the previous settings we generate shifts. Exactly how we
generate those shifts we are going to explain in the next part. The only exact algorithm we got that
solves the assignment problem after each iteration is using the ILP. Considering only one ILP variant

38

5 COMPUTATIONAL EXPERIMENTS

is feasible and it didn’t run so well for the variant where all shifts are identical we don’t expect much
from it. Nevertheless we are going to compare those ILP notations with each other for completeness.
After that we show some results of the better algorithms for the shift variants. Since the shift variant
is harder we don’t expect better solutions or been able to do more iterations within the 2 minute limit.

Unfortunately our example data experiences some problems to convert it to a shift variant. We
don’t know for sure how in the real world situation they distributed the shifts and when they do
change over. We don’t want the change of shifts to occur when many people are trying to board
a plane. Another problem that was discovered too late is that the instances that had been said to
represent a day could have a PRM that has to be served outside the days window. If you look at the
data most PRM’s are within the day’s 24 hour time window but a few defy that for some odd reason.
Maybe its a PRM that couldn’t get a plane that day and is postponed to the next day or something.

5.4.1 Generating shifts

Before we go jump to results we have to explain how the shifts are inserted in the problem. Our
program are added 2 ways to generate shifts. The first one generates some shifts with some overlap,
the second one generate more realists 8 hour shifts.

The first way takes the employees as input data and slice their shifts inside 3 parts. Then new
employees are been generated each serving 1 or 2 neighboring parts such employee shifts are over-
lapping each other. The first kind of employees only serve part 1, the second kind serves part 1 and
2, the third kind serves part 2 and 3, and the last kind serves part 3. During generation its made
sure that during every moment of the day the same number of employees are active as in the original
problem. The downside of this method is that its not realistic in hours, but since we don’t have the
actual shifts all we can do is guessing.

The second one is based on 8 hour shifts starting at 3:45, which is seemly the start of the shifts
of the current employees. There are generated 3 sets of employees starting at 3:45, 11:45 and 19:45.
But these generation actually causes some problems namely during the shift changes its possible that
planes need to be boarded. Its better if the flight boarding times and shift changes are coordinated
such that isn’t a problem. To give some room for serving PRMs we allow each worker to work 30
minutes overtime. Since we aim to minimize slack even for going towards the workers end location,
working overtime more than 10 minutes is not very likely. 30 minutes is chosen to allow boarding
someone because that already takes about 20 minutes, higher overtime times risks more violations.
The problem with this approach are the faults inside the example data, namely the PRM’s that needs
to be served outside the 24 hour day time window.

5.4.2 Results: Comparing ILP for shift variant

We have 3 ILP notations that solves the assignment problem that needs to be solved after each itera-
tion. In this section we show the results of experimenting with those 3 notations. Unfortunately only
one of the instances will load on the computer and is feasible for a computer with 4 GB RAM. There-
for we reduces the instances such that the computer could load them. We only do this experiment
to check whether or not the only ILP that loads is the best ILP formulation we have for this problem.

To make sure the ILPs load we are trowing away PRMs at random such that the instance is roughly
40% of its original size. To compare those ILPs we test who can do 1000 iterations the fastest, or runs
out of the 2 minute computation time. Each Algorithm is run 30 times using a set of 30 seeds, such
that the algorithms makes the same decisions each iteration and only calculated the ILP differently.
We generate the shifts by splitting the day in 3 parts like explained in section 5.4.1.

39

5 COMPUTATIONAL EXPERIMENTS

Algorithm time(ms) iterations Best Average Worst
declined robust declined robust declined robust

ILP1 126028 33 134 0 141,0 0,0 149 0
ILP 2 123706 37 130 0 138,0 0,0 145 0
ILP 3 127514 55 121 0 126,2 10,4 138 0

Table 9:

Judging from the results all ILP’s do poor even on this reduced instance. ILP 2 performs slightly
better than ILP 1 doing 37 iterations versus 33. ILP 3 managed to have the most iterations during
the 2 minutes: 55. Well it was be expected since the ILP also performed poor on the no-shifts variant,
besides that this variant turns out to be harder to solve to optimality since its NP hard.

The ILP performed not so good, lets try how well the Hungarian method does with the shift variant.
Because this algorithm could not guarantee that shifts are been planned correctly we use a greedy
algorithm that fixes violations of the constraint that segments must be planned within the employees
shift. The results of this quick experiment is listed below:

Algorithm time(ms) iterations Best Average Worst
declined robust declined robust declined robust

Hungarian +
Shift Fix

18476 1000 47 0 75,7 2,8 117 4

Table 10:

This variant did manage to do the full 1000 iterations for this experiment, where the ILP did only
about 55 Iterations on the fastest ILP. The algorithm couldn’t plan everyone even though its a re-
duced instance. However 1000 iterations is too few to explore the search space. We could have allowed
the algorithm to do more iterations but since this one already takes about 18.4 seconds to do 1000
iterations we couldn’t do more than around 8000 iterations in 2 minutes on the decreased instance.
Because the instance is decreased to roughly 40% of the instance size, the matching algorithm with
an O(n3) running time should take longer to solve using the full instance. So we can’t expect that
when doing to full iterations on the full instance, the algorithm would give outstanding results.

Also since the ILPs are our only really exact matching algorithms that respect the shift constraints
and the Hungarian algorithm is too slow for the no-shift variant, we better use the heuristics again
on this variant swell. We are going to take a look at the heuristic algorithms next.

5.4.3 Results: Simple matching

For this set of test runs we used the same settings for the Local search as with the no-shift variant,
where shifts are identical. We run 2 sets of experiments using the Simple matching algorithm, each
with a different method of generating shifts. The first shift generations uses the method that split
the day into 3 parts. The second shift generation method is run using 8 hour shifts with 30 minutes
overtime Both methods are explained in section 5.4.1.

Results Simple matching using shift generation method 1: splitting day in 3 parts.

40

5 COMPUTATIONAL EXPERIMENTS

instance time(ms) iterations Best Average Worst
declined robust declined robust declined robust

Instance 1 6009 486201 0 0 0,1 375,5 2 149
Instance 2 9034 500000 1 151 2,6 473,7 5 365
Instance 3 8652 500000 0 1213 1,3 726,9 2 1662
Instance 4 6839 500000 0 473 0,0 960,0 0 1421
Instance 5 9184 500000 0 847 0,6 1274,4 3 871
Instance 6 8998 500000 0 258 0,0 919,9 0 1736
Instance 7 6641 500000 0 85 0,0 475,8 0 997
Instance 8 7580 500000 0 617 0,2 1282,3 1 1225
Instance 9 7334 500000 0 784 0,1 1462,5 1 1938
Instance 10 11028 500000 1 769 1,7 1052,9 3 1239
Instance 11 10810 500000 0 859 1,1 1526,8 3 2292

Table 11:

Results Simple matching using shift generation method 2: 8 hour shifts + 30 minutes overtime.

instance time(ms) iterations Best Average Worst
declined robust declined robust declined robust

Instance 1 9949 500000 3 1126 3,0 1398,0 3 1996
Instance 2 11159 500000 7 1674 7,6 2290,9 9 2228
Instance 3 11665 500000 6 1125 7,4 1203,9 8 1584
Instance 4 12201 500000 2 1777 2,0 2240,0 2 2806
Instance 5 15516 500000 6 1166 6,1 1939,2 7 2472
Instance 6 13037 500000 4 2228 4,0 2912,0 4 3718
Instance 7 11851 500000 6 1241 6,0 1566,2 6 1924
Instance 8 11462 500000 9 826 9,3 1645,9 11 1323
Instance 9 13065 500000 2 1416 2,0 2128,4 2 2763
Instance 10 14900 500000 6 1618 6,9 1966,6 8 2374
Instance 11 15505 500000 4 1427 5,0 1817,6 7 2051

Table 12:

The results of the first shift generating method actually doesn’t differ that much with the original
problem. Some worst answers are slightly worse or better but in overall it looks similar. That is
probably because using this simple insertion problem you don’t need any modifications to enforce the
shift constraint. The amount of overlapping between shifts is enough to allow almost everyone to be
planned.

That is unlike using shift generation method 2, where quite a few PRMs are declined of service.
That is properly mainly because of the shift changes and departing airplanes are colliding. Its also
possible that this algorithm just have trouble finding a good solution if the shifts doesn’t overlap
much. Maybe our best algorithm for the no-shift variant could do a better job.

5.4.4 Results: Reschedule overlapping segments + fixing shifts

Like the previous experiment for this set of test runs we used the same settings for the Local search
as with the no-shift variant, where shifts are identical. We run 2 sets of experiments using the Simple
matching algorithm, each with a different method of generating shifts. The first set is run using
shift that overlap each other. The second set is run using 8 hour shifts with 30 minutes overtime.
Both methods are explained in section 5.4.1. Because the Reschedule overlapping segments algorithm
doesn’t ensure shift constraints we use the greedy fix algorithm to correct that

41

5 COMPUTATIONAL EXPERIMENTS

Results Results: Reschedule overlapping segments using shift generation method 1: splitting day
in 3 parts.

instance time(ms) iterations Best Average Worst
declined robust declined robust declined robust

Instance 1 2762 7996 0 0 0,0 0,0 0 0
Instance 2 120026 418887 1 0 1,5 348,0 3 307
Instance 3 80280 270502 0 0 0,0 0,0 0 0
Instance 4 29871 95774 0 0 0,0 0,0 0 0
Instance 5 106371 235641 0 0 0,0 0,6 0 10
Instance 6 80400 151739 0 0 0,0 0,5 0 14
Instance 7 18528 63811 0 0 0,0 0,1 0 4
Instance 8 34726 92349 0 0 0,0 0,0 0 1
Instance 9 32381 109791 0 0 0,0 0,0 0 0
Instance 10 94603 223557 0 0 0,0 0,0 0 1
Instance 11 95809 157717 0 0 0,0 2,3 0 16

Table 13:

Results Results: Reschedule overlapping segments using shift generation method 2: 8 hour shifts +
30 minutes overtime.

instance time(ms) iterations Best Average Worst
declined robust declined robust declined robust

Instance 1 120029 259265 3 964 3,0 1045,1 3 1061
Instance 2 120027 172974 7 1311 7,3 1595,6 9 1504
Instance 3 120027 90492 6 534 6,0 868,2 6 1184
Instance 4 120027 224307 2 1187 2,0 1238,1 2 1405
Instance 5 120027 75785 6 1207 6,0 1781,7 6 2482
Instance 6 120031 76089 4 1535 4,0 1909,7 4 2436
Instance 7 120027 128135 6 883 6,0 993,4 6 1207
Instance 8 120028 212875 9 513 9,0 566,2 9 633
Instance 9 120027 184501 2 949 2,0 962,0 2 999
Instance 10 120027 111807 5 784 5,0 995,3 5 1393
Instance 11 120030 104679 4 796 4,0 987,6 4 1191

Table 14:

Again like with the simple matching, shift generation 1 doesn’t differ that much with the no shift
variant. The algorithm mange to plan everyone within the time limit. The algorithm is a bit slower
though because of the shift fix, but still manage to find perfect score solutions within the time limit.

Again like the simple matching algorithm the solutions of the second shift generation are worse,
with quite a few declines. The results are consistent though in the number of PRM’s that are de-
clined, apparently they can’t be planned using this shift variant. It would have been better if we had
the actual shifts of the personal so this could be avoided, but the sample data didn’t deliver that.
And maybe the problem is actually better solvable when not considering shifts.

5.4.5 Conclusion: shift variant

The problem gets harder to solve when introducing the shift variant, not only you have more employ-
ees with smaller shifts, you also need to make sure that the shift constraint is enforced. Our only
optimization algorithm for the no-shift variant using ILPs is way too slow to solve the problem within

42

5 COMPUTATIONAL EXPERIMENTS

the 2 minutes limit. The heuristics using the greedy shift fix when needed performed way better,
similar even compared with the normal variant but then a bit slower.

Unlike the no-shift variant, when we generated 8 hour shifts with an half an hour overlap we where
unable to plan in all PRMs. This is most likely due planes are leaving around that time and we have
some fixed segment groups. We could have better tested the 8 hour shifts by analyzing the departures
but we needed to look at all instances. Also it doesn’t help that some PRMs must be planned outside
the 24 hours of an instance representing a day.

Maybe the example data only consisted out of shift that long because that makes the problem much
easier and then if we got a schedule we decide when shifts end. We actually we don’t have a clue
how airports divide these shifts or what are the rules of a shift. Remember this problem is based on
a paper, which is based on an actual world problem. But unfortunately we don’t have any contact
with the airport in question to check how the shifts are regulated. If we cooperated with an airfield
we might have been able to test this variant better.

But by the looks of this especially when there is some overlap such that the fixed flight depart-
ments aren’t much of an issue, our algorithm also could find good solutions for the shift variant.
Greedy heuristics also in this case makes the problem more easily to solve, the more exact methods
just takes too long to solve.

43

6 SIMULATION

6 Simulation

We now have an algorithm that makes robust schedules but will the schedule perform well in the real
world where events could disturb the schedule? Would it be easier to add additional PRMs into the
schedule without having to disrupt the schedule too much? Or is robustness not so effective because
most pickup and delivery times are fixed by the time the planes arrives and departs. To answer these
questions we made a simulation, comparing the solution of our algorithm that uses the robustness score
against the same algorithm but with the robustness score disabled. We couldn’t use the algorithm
used by Reinhardt et al[1] because we only got the pseudo code in their paper. Also they stated that
to make their algorithm truly work in a dynamic environment some changes had to be made to the
problem formulation. First we talk about the possible disturbances in the schedule, followed by the
rescheduling strategy and finally the experiments themselves.

6.1 Disturbances

For our simulation we want to simulate disturbances in our schedule, which our scheduling algorithm
must solve. Disturbances involve the arrival of unbooked PRMs asking for assistance, plane delays
and trips between 2 locations in a journey taking longer than expected. We explain these below.

6.1.1 Unbooked PRMs

Our problem description states that there could be unbooked PRMs who arrive during the day. It
is impossible to know beforehand who is requesting additional aid during the day, so it would be
pointless to include them in the initial schedule. They must be added during the simulation, when
they contact the service provider.

The unbooked PRMs are excluded from the instance till an event occurs where they check in and
request for aid. Otherwise we are planning them in advance using knowledge that we are not sup-
posed to possess. In case the PRM arrives by plane at the airport and requires assistance to get out of
the plane, he could have better made the request in advance if he wants an employee to be available
at the gate when the plane arrives. For this situation we assume the request was sent before the plane
lands on our simulated airport, for instance before the unbooked PRM boards the plane at the airport
the plane came from. After all if they need assistance with disembarking they likely need assistance
with embarking as well. For the other cases where an unbooked PRM arrives and requests assistance
at the airport we assume they want service immediately, so we make the release time of those PRMs
the time of request.

Since we do not know which PRMs in the instance data are booked and who are not, we gener-
ate 100 additional PRMs who check in during the day. This makes it harder for the algorithm and
employees to handle all PRMs than in the original problem instances where we presume to contain
both prebooked and unbooked PRMs where between 300 and 500 PRMs request aid.

We used the instance data to make a template for generating new PRMs, where we extracted the
possible pickup points, gates, drop off points and plane schedules from the journeys of the PRMs
in those instances. Flights are not directly listed in the instance data, but from the journey of the
PRMs we could see by which plane they arrive or depart in if any. In addition to simulating the plane
schedule on a given day using the extracted plane schedule we generate some additional planes.

Unbooked PRMs are generated by first deciding whether he is an arriving passenger, departing pas-
senger or a transfer passenger. For each generated PRM a start and end location is chosen at random.
If the PRM is arriving by plane we choose a random arriving plane as start location, otherwise a
random pickup point in the terminal at which he departs from. If the PRM is departing by plane we
choose a random departing plane as end location, otherwise a random drop off point in the terminal
at which he arrived. Then between the start and end location the required route through the airport
for the given PRM is generated as stated by the problem definition and added to the simulation. We

44

6 SIMULATION

generate these PRMs before executing the simulation but only notify the simulation of their existence
at the time that the PRMs make themselves known.

6.1.2 Plane delays

For the plane delays we used the work of Diepen et al[13] for the data. Diepen et al[13], did research
on robust scheduling of platform buses, which transport passengers between gates and airplanes of
Schiphol airport. The compute a schedule using a column generation algorithm and ran a discreet
event simulation to study whether their robust algorithm performed better than the currently used
algorithm when disturbances in departure and arrival times occurred. To find realistic values for the
disturbance they analyzed the delay statistics of both arrival and departure times of Schiphol airport.
As the same disturbances affect our schedule we plan on doing the same.

In their simulation they simulated plane delays, each time a plane sent a last update of their schedule
they update the schedule of their platform busses. When such an update happens they update the
times for the corresponding platform busses. In case the update causes jobs of the updated bus to
overlap or change order of execution they have a conflict and create a new schedule for the day. They
measure the amount of conflicts in the execution of the simulation where the less conflicts are better.

For the statistics of arriving planes they found a normal distribution with a mean of 4 minutes
and a variance of 30 minutes, which is a standard deviation of 5 minutes and 28.6 seconds. Although
seldomly planes depart early, this happens to 2% of the cases and the amount of time that the plane
leaves early follows an exponential distribution with a mean of 2 minutes. In the other 98% of the cases
the plane departs later and this time follows an exponential distribution with a mean of 15 minutes. In
our simulation we leave out the possibility that planes depart early. We use the distributions to assign
new gate opening and closing times; a gate opening a few minutes earlier should have a minor im-
pact on the schedule because the gate is opened for 20 minutes in which the PRMs are helped through.

In reality planes give status updates to the airport from time to time, which might adjust the expected
arrival or departure time. Diepen et al[13] assumed that rescheduling is only required when the plane
has reported its last update and the time it arrives or departs is known. Otherwise they must do
serval reschedules for the same flight while only the last update matters. They have also studied that
behavior and found that the last updates are given following an exponential distribution with a mean
of 15 minutes before the actual flight time of the plane.

We are also going to use events for the last update for rescheduling but with an addition. In our
simulation besides the planes we are also simulating the employees and PRMs and not just the sched-
ule for platform busses like in Diepen et al[13] . If in our case a plane delay is major the last update
might come too late.

Consider a departing plane where boarding is scheduled to start at 15:00 and the plane departs
at 15:20. PRM p1 needs to catch that flight where employee e1 helps him through boarding. Follow-
ing the schedule employee e1 brings PRM p1 to the gate when boarding is supposed to start at 15:00
like schedule. However the plane gets a major delay and departs at 16:20 instead of 15:20 and send its
last status update at 16:05. We have known some time in advance that the plane is going to depart
late but decided to wait for the last update to change our schedule. At the time we get the last status
update we reschedule the employees. Between 15:00 and 16:05 PRM p1 was uncomfortably waiting at
the gate while occupying employee e1 who could not serve his next segment on time because he could
not hand over the PRM he is currently assisting.

In the example above, we let both PRM and employee unnecessary wait till a reschedule is done.
Therefore before boarding starts it should be known that the plane is going to be late. We should
then update the schedule to make sure the PRM waits for the delayed plane comfortably at the lounge.
At that time we could postpone the boarding progress till we know when we actually have to board

45

6 SIMULATION

the plane using the last update.

If an arriving plane arrives early there is no problem, the employees who should pick up the PRMs
in the plane are not waiting at the pickup point jet. The last update should then be early enough to
schedule the employees to pick up the PRMs when the plane arrives. But if there is a major delay we
got the same problem as with the departing plane, although we are not gaining unnecessary waiting
time in this case. The employees who must pick up the PRMs from the delayed plane patiently wait
till the plane arrives or their schedule tells them to help other PRMs. If the delay takes too long the
employees could be late for the PRMs they need to assist next. To prevent that when we know that a
plane is going to arrive late we could remove the segments of the PRMs that are in the delayed plane
from the schedule. For minor delays this isn’t necessary because if the schedules of the employees are
robust they could handle small delays without affecting the rest of the schedule.

We assume that at least 10 minutes before the actual arrival time it is known whether or not
the plane has a delay or is early, but to add some randomness, we also use the same distribution
for the last update to make the warning a bit earlier and more random. We also do not want
the first update to occur after the last update, making the formula for the first notify for delay:
min(last update time, expected arrive− 10− exp(1/15)).

For departing planes we assume that the plane is already at the airport in advance due the in between
flights maintenance like cleaning, refueling and unloading the luggage. When the plane arrives from
its previous flight we should know how long the maintenance is going to take and when boarding could
start. We assume that we know at least 45 minutes in advance how long that is going to take, we also
assume that the plane notifies the airport in advance when they arrive using the same last update
distribution as arriving planes making the formula for the last update: actual depart−45−exp(1/15).
We should know at least 45 minutes in advance of the expected depart time whether or not the plane
will be late.

We only do a reschedule at the last update because then we know for sure in our simulation when
the plane is going to arrive or depart. But at the first update we first check whether or not its a long
delay. For arriving planes if its a long delay, we remove the PRM from the schedule till we know when
he is going to arrive and then reintroduce him at the last update event of that plane. We first tried
to postpone only the first few segments, removing them from the schedule to be reintroduced later,
but that caused some trouble when the segments that follow are scheduled before the actual arrival,
while we know the actual arrival only at the last update. For the departing planes we do postpone the
segments in the last segment group which represents the boarding process. We remove those segments
from the schedule since we don’t know when they should be planned till the last update. When the
last update event of the plane occurs the postponed segments get reintroduced in the schedule.

6.1.3 Traveling times

Traveling times between locations are not always exact, there is some randomness in it. The PRMs
from the probability distribution we are traveling with might delay the employees on their journeys.
For example if the PRM isn’t in a wheelchair and walks a bit slower than expected or because of the
crowd at the airport it could take more time to travel between locations. We don’t have data for these
kind of delays so we just took uniform distributions to tackle them. For wheelchair PRMs we take
a uniform distribution of [0.9, 1.1] times the expected traveling time and for other PRMs a uniform
distribution of [0.9, 1.3] times the expected traveling time.

If the employee is carrying multiple PRMs then we generate the traveling time of all PRMs the
employee is assisting and take the largest as traveling time. The slowest PRM then sets the pace
of the journey. We don’t draw a delay for boarding since we feel that the 20 minutes the employee
needs to spend there is already generous. Delays for busses are the same, although the most delay
will properly be caused by either traffic or the time it takes to load and unload the PRM in the bus.

46

6 SIMULATION

6.2 Rescheduling

We have discussed the possible disturbances, now in this section we are going to talk about how those
disturbances are death with. In general we want to try to avoid full rescheduling as much as possible
just like Diepen at al[13] in their simulation for the platform busses. When a disturbance is minor
then we do not generate a new schedule but deal with that disturbance on the spot. We only want
to reschedule for major disturbances like adding a new PRM to the schedule or a major plane delay.
We also want to avoid making major changes to the schedule by a full reschedule, such that the jobs
the employees have to do do not change dramatically every time something happens.

We consider a delay for a plane major if the delay differs more than 10 minutes from the expected
arrival or departure time. For departure it could be easily be taken care of by the boarding time
which takes 20 minutes, so 10 minutes later wouldn’t matter much. Also for the arriving planes, we
assume there is some slack in the schedule of the employee that must take the PRM from the plane
to catch up with early arrivals and the employee waits till the plane arrives for late arrivals.

For the simulation we have 3 kinds of adjustments we have to consider when rescheduling: intro-
ducing a PRM, moving invalid segments and reintroducing postponed segments. When rescheduling
we try to first fix those by applying minor changes in an update before doing a full reschedule. If
there is still at least one unplanned new PRM, invalid segment or unplanned postponed segment after
applying the update then we will do a full reschedule. We keep track of how many times we need to
do an update and how many times we need a full reschedule.

When we require to reschedule we first try to add new PRMs to the schedule if any. This is first
done by executing the add PRM mutation and Merge segment groups for a number of times using
the Insert heuristic: Free spot explained in section 4.4.2. Move segment groups tries to merge a seg-
ment group of the to be inserted PRM with another for a more efficient schedule. We use that insert
heuristic because that heuristic doesn’t dramatically change the schedule of the employees. Here we
accept any change that introduces an PRM to the schedule, which is an improvement in the objective
function anyways. If solely executing the insert heuristic isn’t enough, a full reschedule is needed that
hopefully frees up the room for the new PRM.

When making changes to the schedule some already planned segments might become invalid due
to disturbances. For example when a delay occurs that pushes some segments of the journey for-
wards, the later segments then could be planned on an invalid time that starts before the previous
segment has been finished. These segments need to be fixed in the schedule during rescheduling. The
simulation automatically detects such segments and puts them in a set to be solved while rescheduling.
Like the previous disruption of adding a new PRM, we first try to fix this by executing a mutation that
moves those invalid segments in the schedule by moving the segment groups they are part of. In case
the segment is merged, planned along with a segment of another PRM to share a single employee or
bus, we separate those 2 journeys to allow the segment to be planned individually. We also execute a
mutation that tries to merge the segment group with another segment group. Again we use the insert
heuristic: Free spot and if at the end there are invalid segments left, we need to do a full reschedule.

During plane delays segments could be postponed and removed from the schedule till its clear when
they are needed to be planned. Again while rescheduling we first try to fix those by using mutations
that reintroduce these segments using the insert heuristic: Free spot matching. Both planning in the
schedule and merging the segment groups are attempted again. Just like the previous changes if at
the end there are unplanned postponed, a full reschedule is required.

When in the simulation we have to do a reschedule, the simulation is already at a certain point
in time. PRMs are already at certain locations or traveling towards them with employees and employ-
ees have finished a certain part of their schedule and are on their way for their next task. Everything
that has happened before that time, should remain fixed because the past is unchangeable. Which
implies that the planning algorithm may not make changes in what is already happened or what is

47

6 SIMULATION

current happening. We just can’t ask an employee to drop the current PRM to help another. Also
when the employee receives a new task he needs time to adjust, finish what he is currently doing and
walk towards the location of the next task.
— Besides we don’t allow changes in the past we make a threshold in time where major disruptions
may not occur to allow employee time to adjust and finish with what they are doing. We only allow
insertions between the current time and the threshold and don’t allow segments who started before
that threshold to move to a different time or employee in the schedule. We set that threshold on 20
minutes after the current time at which the reschedule happens. We also don’t allow to move future
or new segments before the current time. For the Insert heuristic we use the less disrupting Free spot
on the segments that start before the threshold and the better Reschedule overlapping segments on
those who start after the threshold. Using this strategy we allow major changes after the threshold
but try to conserve the schedule near the current time as much as possible.

For rescheduling we do not want to decline PRMs who has already planned. They are PRMs who
have either prebooked or came earlier this day which we accepted. Once we give a yes to a customer,
it would be bad to say no later in order to schedule someone else. Also removing a PRM increases the
penalty with no guarantee of being able to reinsert the PRM. Worse would be if the PRM is assisted
by an employee at the time of rescheduling, if the PRM gets temporary declined in the scheduling
algorithm and must be put back in the schedule it should be scheduled on the exact same employee to
continue his journey. We could decline PRMs during rescheduling as long the get reintroduced, but
it saves a lot of trouble if we just do not allow that.

We also change the stop condition a bit. Because we fix the past in the schedule, any unneces-
sary waiting time accumulated there will never improve. We sum up the fixed unnecessary waiting
time in the past and use that as lower bound for the robustness function. When we reached that lower
bound we know we are robust in the future and could stop solving.

6.3 Simulation experiment

We ran some simulation experiments to test whether adding robustness would result in a better
schedule than if we neglect robustness. We simulate the instance using both algorithms, one where
robustness is considered like explained in this paper and one where robustness score is neglected by
giving everything a robustness score of 0. We then compare the performance of both algorithms using
a students t-test, to see who performs better in the simulation.

For each instance we generate 10 seeds which we use as input for both the version with robust-
ness and the version without. The seed mainly determines the immediate PRMs and by how much
the planes are delayed. Because we use the same seeds for both sets, the major events of both runs
will be the same, while the execution and rescheduling of the schedule will be different. Then we
could compare the results of the instances in a paired t-test. For the start solution we use a generated
schedule for all 10 runs of the same instance. Since we have found optimum schedules for our scores
earlier in the computation experiments of our second algorithm we select one optimum solution at
random for each instance. For the variant where robustness is disabled we generated new solutions,
using the best algorithm but with robustness disabled.

For rescheduling we use the method described as above, and allow 50.000 iterations to be done by the
algorithm, which is 10 times less then in our computational experiments of our best algorithm. Most
of the PRMs are already planned when we need to reschedule, and even if something big like a plane
delay disrupts the schedule it only affects those PRMs who travel by that plane. Most of the time the
rescheduling algorithm gets stuck in a local optimum anyway. This is done such that the simulation
runs faster, and it is also its nice if the staff could get a reschedule fast.

In the simulation we are going to track a few statistics. We are tracking how many PRMs are
not included in the schedule, where we separate the statistics for prebooked PRMs and immediate

48

6 SIMULATION

PRMs. Every PRM who is scheduled in the start solution at the beginning of the day is considered
prebooked and the rest who arrive later in the simulation immediate. We are also tracking the cu-
mulated unnecessary waiting time in minutes of the PRMs in the actual execution of the schedule.
Every minute a PRM has to wait for a connection is considered unnecessary waiting time. Because
we do not allow taking detours in our schedule we don’t have to worry about tracking that. We are
also tacking how many times the simulation executes a full reschedule and how many times it executes
just an update while calling the rescheduling protocol like explained in the previous section. We hope
that by making a robust schedule, less full reschedules would be required.

After we executed the simulation experiments we did a two tailed paired t-test on each statistic
named above to compare the two algorithms. The t-test assumes that the values our simulation out-
put for the statistics follow a normal distribution. The null hypothesis states that the distributions
of the statistic of both algorithms we are comparing are equal. Using the t-test we calculate a value
p which indicates the chance the distributions of the statistic are equal, where a value of 1 is a 100%
chance. We reject the null hypothesis if the p is less then the acceptance threshold. We use a com-
monly used value of 0.05 as acceptance threshold, if the probability that the 2 distributions of the
tracked statistic is below that value we will reject the null hypotheses.

For example if we look at the statistic declined booked PRMs, we take the data set of that statistic
of the simulations using the algorithm with robustness, and the data set of the simulations using the
algorithm that ignores robustness. Because we used the same instances and seeds for both algorithms
we got paired results. If we look at the mean the variant without robustness scored better, to be
sure whether or not the variant without robustness is better we preform the test and get a value p.
If p is less then 0.05 then we reject that the distributions of both data sets are equal and prefer the
algorithm who ignores the robustness for that statistic. If the null hypothesis hold, there is a pos-
sibility that the results are identical and the mean of one algorithm is slightly better due randomness.

Below we show the results of the experiments. For each statistic we show the mean and variance
of both instances and the p value denoting the change the 2 distributions are considered identical
by the two tailed paired t-test. The annotation ’(robust)’ indicates the results for the variant where
we consider robustness and the annotation ’(no robust)’ indicates the results for the variant where
robustness is ignored. The t-test is calculated by loading the output in numbers (similar to excel but
for Mac users) which got a function to calculate a two tailed paired t-test from 2 data sets.

statistic mean variance mean variance p score
(robust) (robust) (no robust) (no robust)

declined booked 1, 15 1, 49 1, 08 1, 49 0, 52
declined immediate 2, 4 3, 89 2, 37 3, 88 0, 56
wait time 87, 35 2024, 87 170, 6 8212, 02 1, 10× 10−15

reschedule updates 145, 05 49, 48 144, 31 53, 67 0, 03
full reschedules 11, 4 20, 50 11, 15 21, 12 0, 37

At first sight it looks like the variant where robustness is ignored is able to plan slightly more pre-
booked PRMs then the robust variant, with an average of 1,08 of declined prebooked for the no-robust
and an average of 1,15 for the robust variant. However after doing the student t-test the p score is 0,52
which is way higher then the threshold and we can’t reject the null hypothesis that both distributions
for that statistic are equal. Apparently the slightly higher average isn’t something to worry about.

The wait time however shows a major improvement in the case we consider robustness over the
variant where we neglect the robustness. An average of 87,35 minutes of additional wait time over all
PRMs versus an average of 170,6 minutes. The p value for that statistic is way under the threshold,
therefore we reject the null hypotheses and conclude that in this statistic the robust variant scores
better. This isn’t a big surprise because the whole goal of the robustness was to catch up with minor
delays.

49

6 SIMULATION

The number of updates done differs between the robust variant and the variant where robustness
is neglected. This is surprising because both algorithms had the same new PRMs and plane delays.
While the full reschedules doesn’t differ too much to conclude that those 2 distributions are not equal,
the p value for reschedule updates falls under the acceptance threshold, probably due the difference
in variance. This could be explained by the algorithms might decline different PRMs, or the one
algorithm perform better at one instance but worse for another resulting in a different number of
reschedules but a similar number of declined PRMs. Also for the robust variant the mean is slightly
higher but got a smaller variance. Although the distributions for that statistic are apparently not
equal it is also not clear which we would prefer. We had hoped to see a difference in the full reschedule,
but there seems to be a very minor difference between the 2 variants, not enough to say one is better.
Therefore the difference in updates doesn’t say much.

Its seems like the 2 variants provide quite similar results on the statistics except for the accumu-
lated wait time over the PRMs where the robust variant is clearly better. There is no surprise that
the robust variant would increase robustness, but it seems like that it solely increases robustness of
the schedule. Because our goal is to provide the best service as possible to the PRMs we would prefer
using the robustness as an additional objective, since it reduces the chances a PRM has to wait for
a connection while being able to serve a similar amount of PRMs. There are still some declines, but
since we have added many new PRMs we made the instances harder then the instances given to us by
Reinhardt et al[1], which are based on a day at a real world airport containing both prebooked and
immediate PRMs. Even with more PRMs our algorithm is able to schedule most of them, which is a
nice result.

50

REFERENCES

References

[1] Reinhardt, L.B. Clausen, T. Pisinger, D. Synchronized dial-a-ride transportation of
disabled passengers at airports, European Journal of Operational Research (2012), doi:
http://dx.doi.org/10.1016/ j.ejor.2012.09.008

[2] Han Hoogeveen. Multicriteria scheduling. European Journal Of Operation Research 167, 2005,
Pages 592-623.

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. In-
troduction to Algorithms, second edition. The MIT Press. Cambridge, Massachusetts London,
England.

[4] James Munkres. Algorithms for the Assignment and Transportation Problems. Journal
of the Society for Industrial and Applied Mathematics , Vol. 5, No. 1 (Mar., 1957), pp.
32-38. Published by: Society for Industrial and Applied Mathematics. Article Stable URL:
http://www.jstor.org/stable/2098689.

[5] C. H. Papadimitriou, P. C. Kanellakis. Flowshop scheduling with limited temporary storage.
Journal of the ACM 27(3) (1980), pp. 533549.

[6] Kevin Ian Smith. A Study of Simulated Annealing Techniques for Multi-Objective Optimisation
University of Exeter, October 2006.

[7] Garey, Michael R. and David S. Johnson (1979), Computers and Intractability; A Guide
to the Theory of NP-Completeness.

[8] Mascis, A. and D. Pacciarelli (2002). Job-shop scheduling with blocking and no-wait con-
straints. European Journal of Operational Research 143 (3), Pages 498-517.

[9] Richard Freling, Albert P.M. Wagelmans and José M. Pinto Paixão Models and
Algorithms for Single-Depot Vehicle Scheduling. Econometric Institute, Erasmus University, Rot-
terdam, The Netherlands, DEIO Universidade de Lisboa, Lisbon, Portugal.

[10] Guy Desaulniers and June Lavigne and François Soumis. Multi-depot vehicle scheduling
problems with time windows and waiting costs. European Journal of Operational Research 111 (3),
Pages 479494.

[11] R.E. Burkard, M. Dell’Amico, S. Martello. Assignment Problems (Revised reprint).
SIAM, Philadelphia (PA.), 2012.

[12] Richard M. Karp (1972). Reducibility Among Combinatorial Problems. Complexity of Com-
puter Computations. New York: Plenum. pp. 85103.

[13] G. Diepen, B.F.I. Pieters, J.M. van den Akker, J.A. Hoogeveen. Robust planning of
airport platform buses. Computers & Operations Research 40 (2013). pp. 747-757.

[14] G. Ayorkor Mills-Tettey, Anthony Stentz, M. Bernardine Dias (2007). The Dy-
namic Hungarian Algorithm for the Assignment Problem with Changing Costs. Robotics Institute
Carnegie Mellon University Pittsburgh, Pennsylvania 15213.

51

