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Chapter 1

Introduction

Nobody realizes that some people expend tremendous energy merely to be normal.

Albert Camus (1913 - 1960)

Deterministic continuous-time models in the sciences often take the form of an ordinary

differential equation. When the system under scrutiny is assumed to be free of external

forcing, this equation will be autonomous and can be written as

ẋ(t) ≡ dx

dt
(t) = f(x(t), α) (ODE)

with solutions x depending on time t and taking values in Rn. Here f : Rn ×Rm → Rn is a

smooth vector field depending on an m-dimensional parameter α = (α1, . . . , αm).

A bifurcation analysis of (ODE) typically starts by locating its equilibria and then pro-

ceeds by analysing how their number and stability depend on the value of a certain one-

dimensional control parameter, say α1 ∈ R1, the identification of which often requires good

modelling insight. At certain values of α1 bifurcations may occur. For example, equilibria

may collide in a fold-bifurcation or may spawn periodic solutions in a Hopf-bifurcation. These

are the canonical examples of local codimension-one bifurcations: Their occurence depends on

the fulfillment of a one-dimensional condition, the ‘tuning’ of a one-dimensional parameter.

The character of a codimension one bifurcation may depend on a secondary parameter. An

investigation of this dependence requires a two-dimensional parameter space, (α1, α2) ∈ R2.

For instance, at α1 = α1,c an equilibrium may exhibit a Hopf bifurcation which, in turn,

changes from supercritical to subcritical at (α1, α2) = (α1,c, α2,c). This is an example of a

codimension-two bifurcation. (We will actually encounter this type of bifurcation in §4.2 in

Chapter 4.)
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Software such as CONTENT [20] and its successor MATCONT [4] is currently used to great

advantage in the continuation of equilibria of ODE and their codimension-one bifurcations, as

well as in normal form analysis at codimension-one/two critical points. We refer to Chapter

10 of [19] for an introduction to numerical continuation techniques for equilibria of ODE,

to [17] for an up-to-date survey of numerical pathfollowing and its applications in various

contexts, and to [19] for an introduction to applied finite-dimensional bifurcation analysis in

general.

ODE models assume an instantaneous effect of the dependent variable x on its rate of

change ẋ. Depending on the modelling context this assumption may not be justified. The

mathematical theory of structured biological populations has been one of the driving forces

behind a systematic functional-analytic investigation of equations of the form

x(t) = f(xt, α) (RE)

or

ẋ(t) = f(xt, α) (DDE)

where f is a parameter-dependent map from some infinite-dimensional function space X to

Rn that depends on the history xt ∈ X at time t of the unknown x,

xt : [−h, 0]→ Rn, xt(θ) ≡ x(t+ θ)

Here h > 0 is the delay parameter. We make a few remarks to fix our terminology. Note that

(RE) is a purely functional equation, not involving differentiation. We will call it a renewal

equation, also known as a Volterra functional equation. Its counterpart (DDE) shall be

called a delay differential equation. Both classes form a subset of the larger class DE of

delay equations. Finally, one often encounters mixed systems of the type (RE) + (DDE).

It is natural to regard such systems as instances of DE as well. It has recently been shown in

[5] that the functional analytic framework presented in [8] for the analysis of DDE is equally

well-suited for dealing with RE and mixed systems. Indeed, on the abstract (semigroup)

level, the perturbation theory of dual semigroups (so-called sun-star calculus) truely serves

as a unifying device.

In this thesis we restrict our attention to ordinary DDE with finite delay parameter, i.e.

• we assume that 0 < h <∞,

• we work in X = C([−h, 0], Y ) with Y = Rn.

Relaxing the first restriction leads to non-compactness of the history interval [−h, 0] which

slightly complicates the spectral analysis of linear equations. Admission of more general

choices of the space Y enabled the treatment partial delay differential equations or structured



CHAPTER 1. INTRODUCTION 3

population models with an infinite number of feedback variables or states-at-birth. We men-

tion the paper [6] which discusses into some detail how the framework introduced in [8] and

[5] can be adapted to apply to these situations.

Also, the restriction to DDE deserves an explaination.

• Although DDE and RE (as well as mixed systems) are very similar on an abstract

semigroup level, we are interested in numerical algorithms and issues of implementation.

We feel that this interest is served best by treating DDE and RE separately. We do

plan a follow-up paper in which we discuss normalization for the case of RE and mixed

RE-DDE systems.

• In contemporary applied mathematics DDE seem to be more prominent than RE and

mixed systems. The recent book [11] by Erneux provides an up-to-date overview of the

various application areas of time-invariant DDE. These range from biological to optical

and mechanical systems in which feedback plays an important role.

• In line with this, software for the continuation of equilibria and periodic orbits of DDE is

nowadays publicly available. We mention the MATLAB package DDE-BIFTOOL developed

at the University of Leuven [10]. Also available is the C++ software Knut (formerly

PDDE-CONT) developed at the University of Bristol [25], [26], but this software is written

specifically for the continuation of periodic orbits. At the moment DDE-BITFOOL is not

capable of detecting local bifurcations and performing normal form analysis, not even

for codimension-one singularities. It is here that we hope the methods presented in this

manuscript may be of use.

This purpose of this thesis is to ‘lift’ the normalization method for local bifurcations of

ODE presented in [18] and reprinted in Chapter 8 of [19] to the infinite-dimensional setting

of DDE. We work out in detail how to compute the critical normal form coefficients for all

five generic codimension-two bifurcations of equilibria,

• Cusp

• Bautin (Generalized Hopf)

• Bogdanov-Takens

• Fold-Hopf

• Double Hopf

and illustrate our results by means of examples. The formulas we derive are explicit and rather

compact. They depend only on first and higher-order (Fréchet-)derivatives of the right-hand

side of (DDE), as well as on eigenfunctions pertaining to the critical equilibrium. As we

will see, these eigenfunctions can always be represented as finite-dimensional objects without

requiring any intermediate discretization or truncation steps.



4 1.1. STRUCTURE OF THIS THESIS

1.1 Structure of this thesis

Whenever we like to stress a particular phrase, we use italic. Definitions are printed in bold-

face. We have chosen to employ a ‘theorem-proof’ style of writing, but we have interspersed

the text with (hopefully illuminating) comments of a less formal nature.

Chapter 2 is both introductory as well as preparatory. We collect and (where neces-

sary) augment and adapt, in a fashion as concise and self-contained as reasonably possible,

those elements of the theory of DDE that are required to understand the lifting procedure of

the normalization technique mentioned in the introduction from the finite-dimensional ODE

setting to the infinite-dimensional setting of DDE. Key elements in this regard are:

• A computational spectral theory, by which we mean an explicit procedure to obtain the

eigenvalues and corresponding (generalized) eigenvectors associated with the lineariza-

tion around an equilibrium of a nonlinear DDE. The task of finding such a procedure is

more demanding than its ODE-analogue, but fortunately we shall require only a small

part of the characteristic matrix formalism involved.

• An invariant (center) manifold theory for non-hyperbolic equilibria.

Chapters 3 and 4 form the core of the manuscript. In Chapter 3 we carry out the program

of deriving explicit expressions for the critical normal form coefficients of the five codimension-

two bifurcations mentioned in the introduction. At various points computational lemmas are

presented and proven. The structure of this Chapter is similar in purposes to [18].

In Chapter 4 we illustrate our results by means of two examples that together cover all

the bifurcations that were met in Chapter 3: A relatively simple, analytically tractable Van

der Pol oscillator equation and a more elaborate system appearing in neurodynamics. In

contrast to the first example, an analysis of the second example requires numerical aids. By

providing an analytically as well as a numerically spirited example we hope to convince the

reader that our expressions are equally well suited for paper-and-pencil computations and

computer implementation. Together with a brief example on the cusp bifurcation in §3.3 the

examples in Chapter 4 cover all five generically occuring local codimension-two bifurcations

in DDE.

Finally, in Chapter 5 we briefly look ahead.

1.2 Existing literature

Two standard references for the theory of DDE are found most prominently in the literature.

There is the book of Hale and Verduyn Lunel [15] (a revised edition of the 1977 original by

Hale) and the book by Diekmann, Van Gils, Verduyn Lunel and Walther [8].

Whenever one wants to set up a dynamical theory for DDE, one inevitably encounters

the functional analytic difficulty that the ‘natural’ phase space C([−h, 0],Rn) of continuous
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functions is too ‘small’ for a successful linear or nonlinear (perturbation) theory. This is an

important theoretical issue to which we devote §2.1 in Chapter 2. There are two ways to

address the problem: In [15] it is essentially ignored by taking a ‘formal adjoint’ approach.

This ‘solution’ lacks mathematical rigor and therefore it does not form a good basis for a

method of normal form computation that we would like to extend (at a later stage) to RE

and mixed DDE-RE systems.

It is primarily for this reason that we have chosen to adopt [8] as our main reference for

the theory of DDE. In this work the ‘state space problem’ is tackled using sun-star calculus.

As we noted above, this approach leads to a framework that is well suited for the analysis of

RE and DDE-RE systems. Futhermore, expressions for critical normal form coefficients have

an appearance that is strikingly similar to their finite-dimensional analogues.

A formula for the direction of bifurcation (the first Lyapunov coefficient) for Hopf singu-

larities in the sun-star context was first derived and applied to DDE by Van Gils, see Chapter

X of [8] and the literature comments in §X.4. We will encounter this formula again in §3.5.3

as a ‘by-product’ of our treatment of the Bautin (generalized Hopf) bifurcation. Although

§IX.10 of [8] contains an example of a DDE exhibiting a Bogdanov-Takens bifurcation, the

corresponding normal form calculation is performed by first computing the center manifold

and then analysing the restricted system. This traditional two-stage approach is computa-

tionally involved and essentially obsolete. We do not know of other examples of systematic

analysis of codimension-two points of DDE using the sun-star method.

For an introduction to the work of Faria and Magelhães on normal forms for DDE from

the mid-1990s we refer to the review article [12] and the references therein. The work of these

authors is based on the formal adjoint approach taken in [15]. Its purpose is to provide a

method for the calculation of normal form coefficients (possibly depending on parameters)

that avoids preliminary computation of the center manifold by employing a normalization

that also linearizes the center manifold. This goal is shared by the approach proposed in the

present manuscript. However, we find our method to be preferable for three reasons.

• From a theoretical viewpoint, the method in this manuscript is based on sun-star cal-

culus. In contrast to an approach based on formal adjoint theory, it is therefore entirely

rigorous and is expected to extend to RE and mixed DDE-RE systems with relatively

little effort.

• It leads to explicit and ready-to-implement expressions for the critical normal form

coefficients. These are compact, easy to evaluate and valid under weaker conditions

than those imposed in the work of Faria and Magelhães. (For instance, in order to

evaluate the formulas presented in this manuscript for a particular DDE, there is no

need to solve functional equations or boundary value problems.) The example in §4.1

illustrates this point by comparing results using our method to results from the literature

[16] that were derived by means of the Faria - Magelhães approach.
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• It has been completely implemented, in the sense that formulas for the critical normal

forms of all five codimension-two bifurcations of equilibria are available. (We do not limit

ourselves to a discussion of the Hopf and Bogdanov-Takens bifurcations.) Moreover, as

will be illustrated in §4.2, these formulas are also readily evaluated when only numerical

(as opposed to symbolic) data is available.

The basic idea of the normalization approach used in this thesis goes back to the work of Coul-

let and Spiegel [2]. The introduction to Chapter 3 contains more references to applications

of the method to ODEs and maps.

1.3 Retrospective and acknowledgements

The process of writing this thesis bore, at times, close similarities to some sort of quest. In

fact, not so much the writing itself but rather the complications arising from a variety of

factors introduced an unnecessarily large and regrettable delay [sic] in its completion.

The first version of the thesis was ready by September 2007 as the result of a coordinated

effort between the Mathematical Institute of the University of Utrecht and the Department

of Theoretical Physics of the Free University of Amsterdam. Unfortunately, what the math-

ematician may appreciate as useful formalism is sometimes mistaken by a physicist for un-

necessary abstraction. By its very nature, normal form computation is a subtle matter that

requires a bit of theoretical preparation, particularly when one deals with infinite-dimensional

systems such as delay equations.

Ultimately, it was decided that the thesis would be completed independently of the De-

partment of Theoretical Physics in Amsterdam. This warranted a rather thorough rewriting

of parts of the material as well as the introduction of the second example in Chapter 4 that

took the space of a foreseen but never completed example from laser physics.

However, it would be unjust to blame the classical mathematics - physics tension for the

entire time gap from the Autumn of 2007 to the Autumn of 2010. In the years in between I

have been plagued by problems of the mind that sometimes made it hard to work. This fact,

combined with the start of my PhD track in Autumn 2007 that brought other tasks to the

forefront, did not promote a swift completion of this manuscript. The quote at the top of the

present chapter should be read in this light.

It is therefore a pleasure to report that, despite the above difficulties, every time I resumed

the work on this thesis, I did so with pleasure. In particular, it was very stimulating to write

§4.2, seeing the methods of Chapter 3 come to life. I would like to thank Stephan van Gils,

Hil Meijer and Sid Visser from the Department of Mathematics of the University of Twente

for suggesting their neural mass model [30] as a test case. I appreciate the opportunity I had

in April 2010 to meet and speak with Dirk Roose from the Department of Computer Science

of the University of Leuven during his visit to Utrecht. Furthermore, thanks are due to Odo
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Diekmann for a careful reading of Chapter 2 and the first paragraph of Chapter 3. I am

grateful to him and Stephan van Gils for giving me the time to come to peace with myself

and calmly finish incomplete work. My thesis advisor Yuri Kuznetsov is to be thanked for

his lasting patience and his stimulating work [19] without which this manuscript would not

have been written.

On a personal level, I am much indebted to my parents, Simone and Jos, and my girlfriend

Alina for their love and support. I would not be without the three of you.

Zeist, September 2007 - September 2010



Chapter 2

Stationary states of delay

differential equations

This chapter introduces the theory of delay differential equations in so far as needed to

understand the material in the subsequent chapter. Proofs that can be found in the literature

are omitted. Instead, we provide detailed references.

For h > 0 let C([−h, 0],Rn) be the Banach-space of continuous functions φ : [−h, 0]→ Rn,

endowed with the supremum-norm

‖φ‖ ≡ sup{|φ(x)| : −h ≤ x ≤ 0}

By C([−h, 0],Rn)∗ we shall denote its dual space. A representation theorem by F. Riesz

enables us to identify this dual space with the Banach space NBV([0, h],Rn) of functions

η : [0, h] → Rn of bounded variation on [0, h], normalized by requiring that η(0) = 0 and η

be continuous from the right on the open interval (0, h).

Let f : C([−h, 0],Rn)×Rm → Rn be of class Ck, where k ≥ 1 is assumed to be as large

as necessary. We consider the parameter-dependent DDE

ẋ(t) = f(xt, α) (t ≥ 0) (DDE)

with initial condition φ ∈ C([−h, 0],Rn) specified as

x0 = φ. (IC)

Recall from the introduction that for every fixed t ≥ 0 the history function xt : [−h, 0]→ Rn

is defined by

xt(θ) ≡ x(t+ θ) (−h ≤ θ ≤ 0).

Sometimes we will want to regard the delay h itself as a parameter. This situation is slightly

8
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delicate from the point of view of smoothness, but in the case of a single discrete delay the

subtleties can be circumvented, see the first example in Chapter 4.

By a solution of (DDE) with initial condition (IC) we shall mean a function x(·, α, φ) :

[−h, t+) → Rn which satisfies (IC), is differentiable on (0, t+) and satisfies (DDE) there.

In this paper we shall always assume that solutions are in fact global, in the sense that we

can take t+ = ∞. For linear equations this holds generally, while for nonlinear equations it

requires ad-hoc verification by deriving a-priori bounds on the solutions, just as in the case

of ordinary differential equations, but often this step is omitted in applications.

In the case that f is linear in the state variable, (DDE) may be written as

ẋ(t) =

∫ h

0
dη(θ, α)xt(−θ) (t ≥ 0) (LDDE)

where η(·, α) ∈ NBV([0, h],Rn) is uniquely and explicitly determined by f and the integral

is a Riemann-Stieltjes integral, see Chapter I.1 of [8].

In this chapter we are interested in collecting a number of tools and results vital to an

analysis of (DDE) near a constant solution.

In §2.1 we show how (LDDE) and its nonlinear perturbations generate a semiflow in the

function space C([−h, 0],Rn). Although we will not get into technical questions of existence

and uniqueness (these have been taken care of in [8]), in this paper we shall need parts of the

formalism involved.

In §2.2 we explain how the asymptotics of the linearization near an equilibrium of the

nonlinear semiflow corresponding to (DDE) may be analyzed by means of the so-called char-

acteristic matrix.

In §2.3 we discuss parameter-dependence and loss of hyperbolicity. As the parameter α

is varied, certain eigenvalues of an equilibrium of (DDE) may move across the imaginary

axis in the complex plane. When these eigenvalues hit the imaginary axis, the equilibrium

becomes non-hyperbolic and it may undergo local bifurcations. Near a non-hyperbolic equi-

librium the semiflow dynamics are essentially finite-dimensional by virtue of the existence of

a smooth center manifold. On this invariant manifold the semiflow enjoys particularly good

differentiability properties that facilitate our approach to normal form calculations in Chapter

3.

2.1 Semiflows generated by delay differential equations

As it turns out, the space C([−h, 0],Rn) by itself is not readily suitable for a semigroup

approach to (DDE) as the function η encoding the particulars of the linear equation (LDDE)

appears explicitly in the domain of the generator of the semigroup one would like to study.

This complicates the development of a perturbation theory for dealing with nonlinear prob-
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lems. (See the remarks on the problem on p. 39 of [8] and in the introductory section of

[5].)

One way to resolve this difficulty is to make use of a general functional analytic perturba-

tion framework known as sun-star calculus or dual perturbation theory. This approach allows

us to treat DDE as bounded (in fact: finite rank) perturbations with values in a ’bigger’ space,

the so-called sun-star dual X�? of the original state space X. As we will explain below, these

perturbations enter additively in the action of a certain weak∗-generator A�? on X�?, leaving

its domain untouched. The price one has to pay for thus enlarging one’s state space vocabu-

lary is a loss of strong continuity of the corresponding sun-star semigroup (T�?(t))t≥0, which

we can however recover by taking a suitable restriction. We will now present the basic ideas

and results in an abstract setting. For proofs of all the statements in this section we refer to

Chapters II, III and VII and Appendix II.3 of [8]. For linear semigroup theory in general we

refer to [9].

Let X be a Banach space, let L(X) be the space of bounded linear operators on X and

let (T (t))t≥0 ⊂ L(X) be a strongly continuous (C0) one-parameter semigroup with generator

A having domain D(A), which we denote by (A,D(A)). If X is non-reflexive, for instance

when X = C([−h, 0],Rn), the adjoint semigroup (T ∗(t))t≥0 ≡ (T (t)∗)t≥0 is in general only

weak∗-continuous on X∗ and (A∗, D(A∗)) generates (T ∗(t))t≥0 merely in the weak∗-sense.

However, the set

X� ≡ {x∗ ∈ X∗ : t 7→ T ∗(t)x∗ is norm-continuous }

is a norm-closed T ∗(t)-invariant subspace of X∗. In fact, one can prove that

X� = D(A∗) (2.1)

where the closure in the right-hand side is with respect to the norm of X∗. By construction

the restriction (T�(t))t≥0 of (T ∗(t))t≥0 to X� is strongly continuous. Moreover, one may

prove that this restriction is exactly generated by the part of A∗ in X� which we denote by

A�, i.e.

D(A�) ≡ {x� ∈ D(A∗) : A∗x� ∈ X�}, A�x� ≡ A∗x�.

At this stage we have a C0 semigroup (T�(t))t≥0 on a Banach space X� which is norm-

generated by (A�, D(A�)). Therefore, we may play the same game once more. We obtain an

adjoint semigroup (T�?(t))t≥0 on the dual space X�? with weak∗-generator (A�?, D(A�?)).

The set

X�� ≡ {x�? ∈ X�? : t 7→ T�?(t)x�? is norm-continuous }
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is a norm-closed T�?(t)-invariant subspace of X�?. One can prove that

X�� = D(A�?). (2.2)

where the closure is with respect to the norm in X�?. The restricted semigroup (T��(t))t≥0

is by construction strongly continuous and its generator is given by the part A�� of A�? in

X��, i.e.

D(A��) ≡ {x�� ∈ D(A�?) : A�?x�� ∈ X��}, A��x�� ≡ A�?x��.

In this paper we will be concerned with the situation in which the spaces X and X�� can be

identified with each other via the canonical embedding j : X → X�? given by

〈j(x), x�〉 ≡ 〈x�, x〉 ∀x ∈ X,∀x� ∈ X�. (2.3)

When such an identification is possible (i.e. when j is onto X��) we shall say that X is

sun-reflexive with respect to the semigroup (T (t))t≥0.

Remark 2.1. In this paper we will omit the embedding j in our notation. For example,

we shall write X ⊂ X�? instead of X�� ⊂ X�? and X = j−1(X��). The advantage of

this choice is that our bifurcation formulas in Chapter 3 will look much cleaner, but the

disadvantage is that the reader has to do his own bookkeeping-of-spaces. ♦

One can show that there exists a unique C0 semigroup (T (t))t≥0 on X = C([−h, 0],Rn)

which is in one-to-one correspondence with the solutions of (LDDE). In fact, suppose that

α is a fixed parameter value so that we can suppress it in our notation. Let us assume that

x(·, φ) : [−h,∞) → Rn is a solution of (LDDE) with initial value x0 = φ ∈ C([−h, 0],Rn),

then

T (t)φ = xt(·, φ) (t ≥ 0) (2.4)

Conversely, for any initial value φ ∈ C([−h, 0],Rn) the function x(·, φ) : [−h,∞) → Rn

defined by

x0 ≡ φ, x(t, φ) ≡ (T (t)φ)(0) ∀ t ≥ 0 (2.5)

is the unique solution of (DDE) with initial condition φ. The sun-star construction outlined

above behaves particularly well with respect to perturbations in B(X,X�?) of the weak∗-

generator A�? of the adjoint semigroup (T�?(t))t≥0 on the ‘big’ space X�?. Indeed, the

domains D(A∗) and D(A�?) are the same for all linear equations (i.e. for all choices of η in

(LDDE) and for all parameter values α ∈ Rm) and by (2.1) and (2.2) the same then holds for

the spaces X� and X��. In particular, C([−h, 0],Rn) is sun-reflexive with respect to every

linear DDE. In Table 2.1 we list explicit representations for the spaces X,X∗, X� and X�? as

well as the dual pairings between them, for the case that X = C([−h, 0],Rn) and (T (t))t≥0 is
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the semigroup associated with (LDDE). We will frequently use these pairings in Chapter 3.

space representation pairing

X φ ∈ C([−h, 0],Rn)
〈f, φ〉 =

∫ h
0 df(θ)φ(−θ)

X∗ f ∈ NBV([0, h],Rn)

X� (c, g) ∈ Rn × L1([0, h],Rn)
〈(α, φ), (c, g)〉 = cα+

∫ h
0 g(θ)φ(−θ) dθ

X�? (α, φ) ∈ Rn × L∞([−h, 0],Rn)

X φ ∈ C([−h, 0],Rn)
〈(c, g), φ〉 = cφ(0) +

∫ h
0 g(θ)φ(−θ) dθ

X� (c, g) ∈ Rn × L1([0, h],Rn)

Table 2.1: Representations for the abstract spaces X,X∗, X� and X�? for the case of the
semigroup (T (t))t≥0 associated with the linear equation (LDDE). The space Rn is just Rn, but
in Chapter 3 it shall turn out to be convenient to regard its elements as row vectors instead of
column vectors. Also indicated are the dual pairings that we will encounter in this manuscript.

For the remainder of this chapter, let the spaces X,X� etc. be as in Table 2.1. Using

results from sun-star calculus one can also deal efficiently with perturbations of (LDDE) of

the form

ẋ(t) =

∫ h

0
dη(θ, α)xt(−θ) + g(xt, α) (t ≥ 0) (2.6)

Such perturbations arise when studying stability of equilibria of (DDE) as in the next section.

Here g : X ×Rm → Rn is assumed to be of class Ck for sufficiently high k and is supposed

to satisfy

g(0, α0) = 0, D1g(0, α0) = 0 (2.7)

for some fixed α0 ∈ Rm. Furthermore, for j = 1, . . . , n let us denote by ej the standard basis

vectors of Rn. Introduce the vectors r�?j ∈ X�? by putting

r�?j ≡ (ej , 0) (j = 1, . . . , n)

Using this notation let us define a Ck-smooth mapping R : X ×Rm → X�? by

R(φ, α) ≡
n∑
j=1

{
g(φ, α) +

∫ h

0
[dη(θ, α)− dη(θ, α0)]φ(−θ)

}
j

r�?j (2.8)

(Note that the finite-dimensional range of R is contained in the linear span of the Rn-

component of X�?. This is a special feature of DDE and DE.) The subscript j attached

to the curley brackets denotes the j-th component of the quantity they enclose. Finally, also

note that it follows from our assumptions (2.7) on g that

R(0, α0) = 0, D1R(0, α0) = 0 (2.9)

The kernel η(·, α0) ∈ NBV([0, h],Rn) defines a linear DDE. Let (T (t))t≥0 be the corresponding

semigroup of solution operators. Now consider the parameter-dependent nonlinear abstract
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integral equation

u(t) = T (t)φ+

∫ t

0
T�?(t− τ)R(u(τ), α) dτ (AIE)

where φ ∈ X is given and the integral must be interpreted as a weak∗-integral (with values

in X), see Lemma III.2.1 and Interlude 3.13 of Appendix II in [8]. Solutions of (AIE) are by

definition continuous functions u : [0, t+) → X. We recall our running assumption that it is

always possible to take t+ = ∞. Analogous to the purely linear case, it can be shown that

these solutions constitute a strongly continuous nonlinear semiflow on X (see Chapter VII of

[8]) and that there is a one-to-one correspondence between solutions of (2.6) and solutions of

(AIE). Namely, if x(·, α, φ) : [−h,∞)→ Rn solves (2.6) with initial condition x0 = φ, then

u(t, α, φ) = xt(·, α, φ) (t ≥ 0) (2.10)

uniquely solves (AIE). Conversely, if u(·, α, φ) is a solution of (AIE) then the function

x(·, α, φ) : [−h,∞)→ Rn defined by

x0 ≡ φ, x(t, α, φ) ≡ u(t, α, φ)(0) ∀ t ≥ 0 (2.11)

uniquely solves (2.6) with initial condition φ.

2.2 Linearization and analysis near an equilibrium

Let φ ∈ X be a constant function. Suppose that for the parameter value α0 ∈ Rm the

function x : [−h,∞)→ Rn defined by

x(t, α0) ≡ φ(0) ∀ t ≥ 0

is a stationary solution of (DDE), i.e. f(φ, α0) = 0. By a change of coordinates it can always

be arranged that φ = 0. We can then write (DDE) in the form (2.6) satisfying conditions

(2.7). Namely,

ẋ(t) = D1f(0, α)xt + (f(xt, α)−D1f(0, α)xt)

=

∫ h

0
dη(θ, α)xt(−θ) + (f(xt, α)−D1f(0, α)xt)

(2.12)

where D1f(0, α) ∈ L(X,Rn) denotes the partial (Fréchet) derivative of F with respect to its

first argument evaluated at the point (0, α) ∈ X×Rm and η(·, α) denotes its NBV([0, h],Rn)

representation.

We would like to have an instrument to decide about stability of the origin as an equi-

librium of the nonlinear semiflow associated with (2.12, α = α0). Recall from the previous

section that this semiflow corresponds to the solution of (AIE, α = α0) with (T (t))t≥0 the

strongly continuous solution of the linear DDE defined by η(·, α0). Note that for α = α0 the
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nonlinearity R from (2.8) simply becomes

R(φ, α0) =
n∑
j=1

{f(φ, α0)−D1f(0, α0)φ}j r
�?
j (2.13)

Let (A,D(A)) be the generator of the semigroup (T (t))t≥0. If its spectrum σ(A) does not

contain any purely imaginary points, then the question of stability of the equilibrium at the

origin at the parameter value α0 is answered by the location of σ(A) in the complex plane.

This is formalized in the Principle of Linearized Stability for DDE, see Theorem VII.6.8 of

[8].

Remark 2.2. As soon as spectral theory is applied to the analysis of a real-valued problem,

one should complexify all spaces involved, as well as the operators acting on them. For the

sun-star framework introduced in the previous section this is not a trivial task. It has however

been carried out in detail in Section III.7 of [8] and that is why we refrain from discussing

the issue here. We do not expect this omission to cause the reader major difficulties. ♦

In order to find σ(A) it is not necessary to work with the generator (A,D(A)) directly.

Indeed, there exists a holomorphic matrix-valued function, called the characteristic matrix,

from which all spectral information can be obtained. The following theorem summarizes what

we will need. The proofs of the statements given can be found in Chapter IV of [8]. One

can exploit the fact that, although A itself is unbounded, for finite delays h > 0 its resolvent

(zI −A)−1 is a compact operator on X, for which the non-zero spectrum consists of isolated

eigenvalues only. For an introduction to the spectral theory of closed linear operators see

Chapter V of [29] and Chapter IV.1 of [9].

A point λ ∈ σ(A) is called an eigenvalue of finite type if it is an isolated point of σ(A)

and its algebraic multiplicity is finite, see the definitions on p. 96 of [8].

Theorem 2.3. Let (A,D(A)) be the generator of the semigroup (T (t))t≥0 corresponding to

the linear part of (2.12, α = α0).

i σ(A) = σ(A∗) = σ(A�) = σ(A�?). These spectra consist solely of eigenvalues of finite

type.

ii The matrix-valued function ∆ : C→ Cn×n defined by

∆(z) ≡ zI −
∫ h

0
e−zθdη(θ) (2.14)

is holomorphic, and λ ∈ σ(A) if and only if det ∆(λ) = 0. In that case the order of λ as

a root of det ∆ equals the algebraic multiplicity of λ as an eigenvalue and the dimension

of the nullspace N [∆(λ)] is equal to the geometric multiplicity of λ as an eigenvalue.
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Finally, the (generalized) eigenspaces corresponding to λ are given by the nullspaces

N [(λI −A)kλ ] = N [(λI −A�?)kλ ] and N [(λI −A∗)kλ ] = N [(λI −A�)kλ ]

where kλ is the order of λ as a pole of z 7→ ∆(z)−1.

The transcendental equation det ∆(z) = 0 is known as the characteristic equation. In

all but the simplest cases, finding eigenvalues by locating its roots requires numerical analysis.

In addition to knowledge about the eigenvalues we will also require the corresponding

eigenvectors. These, too, can be obtained from the characteristic matrix. We do not need a

systematic result, but merely expressions for special cases when λ ∈ σ(A) is simple (i.e. of

algebraic multiplicity one, for cusp, Bautin, fold-Hopf and double Hopf points) or when λ is

a double eigenvalue (for Bogdanov-Takens points).

First we consider the ‘simple’ case.

Lemma 2.4. Let λ be a simple eigenvalue of A. If the non-zero column vector q is a right

null vector of ∆(λ) (i.e. ∆(λ)q = 0) then

φ = (θ 7→ eλθq) (2.15)

is an eigenvector of A corresponding to λ. Furthermore, if the non-zero row vector p is a left

null vector of ∆(λ) (i.e. p∆(λ) = 0) then

φ� = (0, θ 7→ p

(
I +

∫ θ

0

∫ h

σ
eλ(σ−s) dη(s) dσ

)
) (2.16)

is an eigenvector of A∗ corresponding to λ. Finally,

〈φ�, φ〉 = p∆′(λ)q 6= 0 (2.17)

where ∆′(λ) denotes the derivative of z 7→ ∆(z) at z = λ.

Proof. The statements are identical to or follow directly from Theorems IV.5.5 and IV.5.9

(eigenvector for A and A∗, respectively) and Corollary 5.12 (the identity (2.17) for their

pairing) in [8].

The expression (2.17) will be used frequently in Chapter 3 to achieve a mutual normal-

ization of (adjoint) eigenvectors. Note that for φ� ∈ X� we employed the representation for

elements in X� given in Table 2.1.

When bifurcations involve different simple eigenvalues (such is the case for e.g. the fold-

Hopf and the double Hopf bifurcation), we are required to calculate pairings of the sort (2.17)

with φ� and φ pertaining to different eigenvalues. The following lemma shows by means of

an explicit (and hopefully illuminating) computation that such pairings always vanish.
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Lemma 2.5. Let λ and µ be simple eigenvalues of A, with λ 6= µ. Let φλ be an eigenvector

corresponding to λ and let φ�µ be an eigenvector of A∗ corresponding to µ. Then 〈φ�µ , φλ〉 = 0.

Proof. Since λ and µ are simple, by Lemma 2.4 φλ is as in (2.15) and φ�µ is as in (2.16) with

λ replaced by µ, for some non-zero column vector q satisfying ∆(λ)q = 0 and some non-zero

row vector p satisfying p∆(µ) = 0. We calculate

〈φ�µ , φλ〉 = pq + p

∫ h

0

(∫ h

θ
eµ(θ−s) dη(s)

)
e−λθ dθq

= pq + p

∫ h

0

∫ h

θ
e−µs dη(s)e(µ−λ)θ dθq

= pq + p

∫ h

0

∫ s

0
e(µ−λ)θ dθe−µs dη(s)q

= pq + p

∫ h

0

e−µs − e−λs

λ− µ
dη(s)q

=

{
1

2
pq − p

µ− λ

∫ h

0
e−µs dη(s)q

}
+

{
1

2
pq − p

λ− µ

∫ h

0
e−λs dη(s)q

}
(2.18)

Now, the first term in braces can be written as

1

2
pq − p

µ− λ

∫ h

0
e−µs dη(s)q =

p

µ− λ

{
µ− λ

2
I −

∫ h

0
e−µs dη(s)

}
q

=
p

µ− λ

{
µI −

∫ h

0
e−µs dη(s)

}
q − 1

2

µ+ λ

µ− λ
pq

=
p

µ− λ
∆(µ)q − 1

2

µ+ λ

µ− λ
pq

The second term in (2.18) is equal to the first term with µ and λ permuted. It follows that

〈φ�µ , φλ〉 =
p

µ− λ
∆(µ)q − 1

2

µ+ λ

µ− λ
pq − p

µ− λ
∆(λ)q +

1

2

µ+ λ

µ− λ
pq

=
1

µ− λ
p[∆(µ)−∆(λ)]q = 0

since p∆(µ) = 0 and ∆(λ)q = 0.

Next, we turn to the case of a double eigenvalue.

Definition 2.6. A sequence of column vectors q0, q1, . . . , qk−1 in Rn is called a right Jordan

chain for ∆(z) at z = λ if q0 6= 0 and

∆(z)(q0 + (z − λ)q1 + . . .+ (z − λ)k−1qk−1) = O((z − λ)k) as z → λ

The number k is called the rank of the chain. Similarly, a sequence of row vectors p0, . . . , pk−1
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in Rn is called a left Jordan chain for ∆(z) at z = λ if p0 6= 0 and

(pk−1 + (z − λ)pk−2 + . . .+ (z − λ)k−1p0)∆(z) = O((z − λ)k) as z → λ

Althought the above definition is quite usable for hand calculations, we remark that

Exercise IV.5.11 in [8] presents a way to calculate Jordan chains from the zero-eigenvectors

of a matrix whose entries involve powers of ∆(z) at z = λ. This method may be preferable

for computer implementations.

Suppose that λ is a double eigenvalue of A of geometric multiplicity one. It is straight-

forward to verify that there exists an eigenvector φ0 ∈ D(A) and a generalized eigenvector

φ1 ∈ D(A) such that

Aφ0 = λφ0, Aφ1 = λφ1 + φ0

Also, there exists an eigenvector φ�1 ∈ D(A∗) and a generalized eigenvector φ�0 ∈ D(A∗) such

that

A∗φ�1 = λφ�1 , A∗φ�0 = λφ�0 + φ�1 .

Lemma 2.7. Let λ be an eigenvalue of A with geometric multiplicity one and algebraic

multiplicity two. Let

{q0, q1} ∈ Rn, {p1, p0} ∈ Rn

be rank-two right and left Jordan chains of ∆(z) at z = λ. Then the column vector valued

functions

φ0 = (θ 7→ eλθq0), φ1 = (θ 7→ eλθ(θq0 + q1))

are an eigenvector and a generalized eigenvector for A corresponding to λ and the row vector

valued functions

φ�1 = (0, p1

(
I +

∫ θ

0

∫ h

σ
eλ(σ−s) dη(s) dσ

)
)

φ�0 = (0, p0

(
I +

∫ θ

0

∫ h

σ
eλ(σ−s) dη(s) dσ

)
+ p1

(∫ θ

0

∫ h

σ
eλ(σ−s)(σ − s) dη(s) dσ

)
)

are an eigenvector and a generalized eigenvector for A∗ corresponding to λ. Moreover, the

following identities hold:

〈φ�0 , φ0〉 = p0∆
′(λ)q0 +

1

2!
p1∆

′′(λ)q0 (2.19a)

〈φ�1 , φ1〉 = p1∆
′(λ)q1 +

1

2!
p1∆

′′(λ)q0 (2.19b)

〈φ�1 , φ0〉 = p1∆
′(λ)q0 (2.19c)

〈φ�0 , φ1〉 = p0∆
′(λ)q1 +

1

2!
p0∆

′′(λ)q0 +
1

2!
p1∆

′′(λ)q1 +
1

3!
p1∆

′′′(λ)q0. (2.19d)
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Here ∆′(λ),∆′′(λ) and ∆′′′(λ) are derivatives of orders one to three of ∆(z) at z = λ.

Proof. The formulas for the (generalized) eigenvectors can be found from Theorems IV.5.5

and IV.5.9 in [8]. The expressions for the pairings in (2.19) cannot be found there (except

for (2.19c) which is just the same as (2.17)), but they are derived in a fashion completely

analogous to the derivation of (2.17) and the proof of Lemma 2.5. Namely, one compares the

pairing between X� and X given in Table 2.1 with the definition (2.14) of ∆(z). We omit

the details.

By induction one verifies that identities such as those in (2.19) hold more generally, i.e.

pairings may be expressed as appropriately truncated series involving derivates of z 7→ ∆(z)

as well as right and left Jordan chains for ∆(z) at z = λ. Since we do not have any need for

such results in this paper, we refrain from stating them explicitly.

We conclude this section by noting that Theorem 2.3 provides a simple criterion for

calculating algebraic and geometric multiplities of a given eigenvalue. Therefore, it is easy to

check which of the two foregoing lemmas should be applied in a concrete case.

2.3 The center manifold

We suppose that for α0 the zero-function is a stationary solution of (DDE) with right-hand

side depending on state and parameter in a Ck-fashion, and we return to the splitting (2.12,

α = α0),

ẋ(t) =

∫ h

0
dη(θ, α0)xt(−θ) + (f(xt, α0)−D1f(0, α0)xt) (2.20)

In this section we will be concerned with the case of a non-hyperbolic equilibrium, i.e.

σ(A) ∩ iR 6= ∅. (2.21)

Here iR denotes the imaginary axis in the complex plane and A is the generator of the

semigroup (T (t))t≥0 solving the linear DDE defined by η(·, α0). Until considering parameter-

dependence at the end of this section, we shall once more suppress dependence on α0 in our

notation, for it will stay fixed.

The proof of existence of a smooth center manifold for DDE is more subtle than the

corresponding proof for the ODE case, but the essential ideas are the same. Let the center

subspace X0 ⊂ X be defined as the direct sum

X0 =
⊕
{Mλ : λ ∈ σ(A) ∩ iR}

HereMλ is the generalized eigenspace corresponding to λ. By the first statement of Theorem

2.3 the sum contains only a finite number of finite-dimensional terms. Consequently X0 is
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finite-dimensional. Let P0 ∈ L(X) be the spectral projection of X onto X0 and denote its

extension to X�? with range X0 by P�?0 ∈ L(X�?, X).

Remark 2.8. The subspace X0 is spanned by a basis consisting of (generalized) eigenvectors

of A corresponding to eigenvalues on the imaginary axis. It is this basis, available explicitly

for the cases of our interest from Lemmas 2.4 and 2.7 above, that we shall use in Chapter

3 as a coordinate system with respect to which we express the dynamics of y generated by

(2.24) below. ♦

Now let ξ : R+ → R be a C∞-smooth cut-off function with the properties

ξ(s) ∈


{1} (0 ≤ s ≤ 1)

[0, 1] (1 ≤ s ≤ 2)

{0} (2 ≤ s)

(2.22)

Define, for any δ > 0, the modified nonlinearity Rδ : X → X�? by

Rδ(φ) ≡ R(φ, α0) ξ

(
‖P0φ‖
δ

)
ξ

(
‖(I − P0)φ‖

δ

)
(2.23)

where R(φ, α0) is given by (2.13). For any φ ∈ X denote by uδ(·, φ) the solution of (AIE,

R = Rδ, α = α0). (The modification of the nonlinearity is necessary to overcome certain

technical difficulties related to non-invariance of spaces of continuous functions with limited

exponential growth under the so-called substitution (or: Nemytskii) operator associated with

R. For a detailed explaination we refer to Chapter IX of [8].)

Theorem 2.9. For δ > 0 sufficiently small there exists a Ck-smooth injection Cδ : X0 → X

such that its image Cδ(X0), called the global center manifold or center manifold for

short and denoted by Wc
δ , has the following properties:

i Wc
δ is conditionally locally forward-invariant, in the following sense. If φ ∈ X0 and

sup{‖uδ(t, Cδ(φ))‖ : t ∈ [0, T ]} ≤ δ then uδ(t, Cδ(φ)) = Cδ(P0uδ(t, Cδ(φ))) for all t ∈
[0, T ].

ii Wc
δ contains all solutions of (AIE, R = Rδ, α = α0) that are defined for all time and

satisfy sup{‖uδ(t, ψ)‖ : t ∈ R} ≤ δ.

iii Wc
δ contains the origin since Cδ(0) = 0 and it is tangent to X0 there, i.e. DCδ(0)φ = φ

for all φ ∈ X0.

iv If ψ ∈ Wc
δ and uδ(·, ψ) exists for all time, then y(t) ≡ P0uδ(t, ψ) ∈ X0 satisfies the

ordinary differential equation

ẏδ(t) = Ayδ(t) + P�?0 Rδ(Cδ(yδ(t))) (t ∈ R) (2.24)
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Proof. The construction of the center manifold is carried out by the Perron-Frobenius method,

exploiting the variation-of-constants formula (AIE, R = Rδ, α = α0) to define an appropriate

fixed-point operator. Statement one to three are Theorem IX.5.3 and (regarding the tangency)

Corollary IX.7.10 in [8]. Establishing Ck-smoothness of C requires work: See Section IX.7.

As pointed out in [8], one may alternatively exploit the fact that for DDE the nonlinearity

takes values in a finite-dimensional subspace of X�? to arrive at a smooth (as opposed to

merely Lipschitz) modified nonlinearity. As far as the last statement is concerned, projection

of (AIE, R = Rδ, α = α0) onto X0 readily leads to (2.24), see Section IX.8.

Remark 2.10. The following two remarks will be of relevance in Chapter 3.

(i) It is important to realize that Wc
δ is a global center manifold for the solution of (AIE,

R = Rδ, α = α0) which involves the modified nonlinearity. When calculating local

normal forms in Chapter 3, we will be interested in the dynamics of this solution in a

small neighbourhood of zero in X. From item (i) of the previous theorem we see that

solutions that start on the center manifold will remain on it in forward time as long

as they stay in the ball Bδ(0) of radius δ centered at the origin. Item (ii) tells us that

the center manifold captures all solutions that exist and remain in Bδ(0) for all time,

such as small periodic and homo- or heteroclinic orbits. As long as a solution stays in

Bδ(0) one sees from (2.22) and (2.23) that the modification of the nonlinearity becomes

immaterial. Furthermore, for such solutions (2.24) reduces to

ẏ(t) = Ay(t) + P�?0 R(Cδ(y(t))) (t ∈ R) (2.25)

with a right-hand side that is Ck-smooth in y. When it is clear from the context that

we are only interested in the local dynamics of solutions (i.e. the dynamics in Bδ(0)),

we will write Wc and C instead of Wc
δ and Cδ.

(ii) If σ(A) does not contain points in the open right half-plane, then Wc
δ is conditionally

locally exponentially stable. This implies that if a solution of (2.25) that lies in Bδ(0)

for all time is locally exponentially stable within Wc, then it is locally exponentially

stable in X.

It are these properties that make the center manifold a very useful tool for the analysis of

equilibria of DDE. ♦

We need the following counterpart to (2.24) on the center manifold.

Proposition 2.11. Let ψ ∈ Wc and suppose that the solution t 7→ u(t, ψ) of (AIE, α = α0)

exists as a map from R to X and lies in Bδ(0) for all t ∈ R. Then u(t, ψ) ∈ Wc for all t ∈ R

and u(t, ψ) is differentiable with respect to t and satisfies

du(t, ψ)

dt
= A�?u(t, ψ) +R(u(t, ψ)) ∀ t ∈ R (2.26)
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Proof. Note that in the formulation of the above proposition we employ the convention put

forward in the last sentence of item (i) of Remark 2.10. The first part repeats item (ii) of

Theorem 2.9. The differential equation (2.26) on the center manifold follows directly from

the differential equation (2.24) on the center subspace and the fact that the center manifold

consists of smooth functions, i.e. functions that are at least continuously differentiable.

Note that we cannot replace A�? by A in (2.26), since although we know that the left-hand

side must be in X, the same cannot be said of R(u(t, ψ)).

In conclusion of this section we comment on parameter-dependence. Although these re-

sults will not be used explicitly, they are relevant when one would like to extend the methods

of this thesis to computation of normal forms depending on parameters. Until now we have

been concerned with the existence and properties of a center manifold for a non-hyperbolic

equilibrium at α = α0. Without loss of generality we may assume that α0 = 0. As we

allow α to vary in a small ball around the origin in Rm, the equilibrium need no longer be

non-hyperbolic or may even cease to exist. However, if we augment (2.12) with the trivial

equation α̇ = 0 to obtain the extended system ẋ(t) =

∫ h

0
dη(θ, α)xt(−θ) + (f(xt, α)−D1f(0, α)xt)

α̇(t) = 0

(2.27)

then (2.27) constitutes a DDE-ODE system on the extended phase space X ×Rm to which

the center manifold theorem applies, see Section IX.9 of [8] and also Section 5.2 of [19] for the

analogous finite-dimensional case. Because the second equation of (2.27) always contributes

a zero eigenvalue of algebraic multiplicity m, one has

dimWc
δ = dimWc

δ +m

where Wc
δ is a center manifold of the non-hyperbolic equilibrium (0, 0) ∈ X ×Rm of (2.27)

and Wc
δ is the usual center manifold of the equilibrium 0 ∈ X of (2.20). In fact, the center

subspace of the extended system is given by X0 ×Rm and Wc
δ equals the range of a smooth

mapping Cδ : X0×Rm → X×Rm of the form Cδ(φ, α) = (C1,δ(φ, α), α), satisfying statements

analogous to those in Theorem 2.9. Moreover, since α̇ = 0 the sections

Wc
δ (α) ≡ Wc

δ ∩ {(x, α) : x ∈ X}

are invariant under the flow generated by the modified nonlinearity corresponding to (2.27),

of dimension dimWc
δ and together they foliate Wc

δ. We shall call Wc
δ (α) a global center

manifold for 0 ∈ X at parameter α.

We conclude with parameter-dependent versions of (2.24) and Proposition 2.11. The
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former becomes

ẏδ(t) = Ayδ(t) + P�?0 Rδ(C1,δ(yδ(t), α), α) (t ∈ R) (2.28)

while the latter reads

du(t, ψ, α)

dt
= A�?u(t, ψ, α) +R(u(t, ψ, α), α) ∀ t ∈ R (2.29)



Chapter 3

Codimension-two critical normal

forms

The primary advantage of the existence of a center manifold for a non-hyperbolic equilibrium

of a DDE is that it enables ‘lifting’ of local bifurcation theory from the finite-dimensional

ODE-setting to the infinite-dimensional setting of DDE. Indeed, solutions of a DDE that

remain in the vicinity of such an equilibrium for all (positive and negative) time satisfy a

finite-dimensional differential equation, as we saw in §2.3. Examples of application of this

principle are the proof of the Hopf bifurcation theorem for DDE in Chapter X of [8] and its

analogue for DE in Theorem 2.21 of [5].

In this chapter we discuss an approach which goes back to Coullet and Spiegel [2] and

was applied by Kuznetsov in [18] to obtain explicit expressions for the critical normal form

coefficients for all generically occuring codimension-one and codimension-two bifurcations of

equilibria in ODE, also see §8.7 of [19].

The difference between this and other approaches is essentially twofold. Firstly, the

method does not require a preliminary reduction to the center manifold but rather solves

for the critical normal form and center manifold coefficients simultaneously. Secondly, as we

shall see in this chapter, the expressions obtained for the normal form coefficients involve

numerically accessible data, rendering them suitable for symbolic as well as numerical eval-

uation. Indeed, their ODE counterparts are implemented in the packages CONTENT [20] and

MATCONT [4] for continuation and bifurcation analysis of ODE. As part of his thesis [22] Meijer

applied the method to iterated maps and implemented the results in the package CL_MATCONT

for maps.

In §3.1 we start with a worked-out example to illustrate the method in the context of

DDE. We shall discuss normalization for the Cusp bifurcation, which is the simplest of

all codimension-two cases. However, it includes the essential steps involved in the general

method. During the discussion it will become clear which mathematical ingredients are needed

in order to proceed with our derivations and arrive at our goal: An expression for the cubic

23
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normal form coefficient at criticality.

In §3.2 we provide these ingredients by formulating a few results on solvability of linear op-

erator equations and the bordered operator matrix approach to dealing with under-determined

systems. The basic concepts are well-known and not difficult, but when specific DDE-related

results are presented, we give detailed proofs.

In §3.3 we briefly return to our initial example. Our discussion that started in §3.1 can

now be concluded with the help of the results derived in §3.2.

In §3.4 we list expressions for the relevant critical normal form coefficients for the Bogdanov-

Takens, Bautin, fold-Hopf and double-Hopf bifurcations.

In the remainder of this chapter all the spaces X,X� etc. are as in Table 2.1.

3.1 The method by example: Cusp bifurcation

In this section we shall assume that our parameter space is two-dimensional: m = 2.

We recall the setting of Section 2.3. Suppose that for the critical parameter value α0 = 0

the zero-function is a stationary solution of (DDE) and write this equation as (2.20),

ẋ(t) =

∫ h

0
dη(θ, 0)xt(−θ) + g(xt, 0) (3.1)

where g : X ×R2 → Rn is a Ck-smooth function defined by g(xt, α) ≡ f(xt, α)−D1f(0, α)xt

and satisfying

g(0, 0) = 0, D1g(0, 0) = 0. (3.2)

In the remainder of this section we shall suppress the dependence of g and η on the parameter,

since it will stay fixed at its critical value. Hence we write, with abuse of notation,

η(θ) ≡ η(θ, 0) ∀ θ ∈ [0, h] and g(φ) ≡ g(φ, 0) ∀φ ∈ X. (3.3)

Let (A,D(A)) be the generator of the semigroup (T (t))t≥0 solving the linear DDE associated

with η and suppose that λ = 0 is a simple eigenvalue of A, giving rise to a center manifold

Wc
δ of the origin, linearly approximated by the center eigenspace X0. We assume that there

are no other eigenvalues on the imaginary axis. Let φ and φ� be eigenvectors of A and A∗

corresponding to λ. It is always possible to scale these vectors such that the normalization

〈φ�, φ〉 = 1 (3.4)

holds. Since X0 is the linear span of φ it follows that any point y in X0 can be expressed as

a multiple of φ. Indeed,

y = 〈φ�, y〉φ
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see Theorem IV.2.5.vi of [8].

Let ψ ∈ Wc. Recalling the discussion in Remark 2.10, in this section we shall consider

solutions u = u(·, ψ) of (AIE, α = α0 = 0) that exist for all time and lie in the ball Bδ(0) of

radius δ centered at zero. Such solutions lie on Wc and satisfy

ẏ(t) = Ay(t) +G(y(t)) ∀ t ∈ R

where y(t) is the projection of u(t) onto X0 and G : X0 → X0 is a Ck-smooth function defined

by G(φ) ≡ P�?0 R(C(φ)). If we let z(t) ≡ 〈φ�, y(t)〉 then, by the chain rule and the fact that

φ� is a zero-eigenvector,

ż = 〈φ�, G(zφ)〉

The right-hand side of this ODE is Ck-smooth in y. Therefore, by (3.2) it has a Taylor

expansion starting with quadratic terms, say

ż = bz2 + cz3 +O(|z|4) (3.5)

We shall regard the above equation with b = 0 and without the O(|z|4) term as a normal form

at criticality of the cusp bifurcation, discussed in detail in Chapter 8.2 of [19]. It is the goal of

this example to explain a way to find an expression for the yet unknown cubic coefficent c in

terms of φ, φ� and derivatives of the function f appearing in the right-hand side of (DDE).

The cusp bifurcation is degenerate, in the sense that it is a fold bifurcation with vanishing

quadratic coefficient: b = 0. Therefore, calculation of the third-order coefficient c becomes

necessary, but inclusion of still higher order terms in (3.5) is not required. Generically (i.e.

in systems without special symmetries) one needs to tune two parameters to enforce such a

degeneracy: One parameter to hit a fold point and a second parameter to kill the quadratic

coefficient in the fold normal form. Therefore, the cusp is an example of a local codimension-

two bifurcation.

On the center manifold itself u satisfies the differential equation (2.26) which we succinctly

write as
du(t)

dt
= A�?u(t) +R(u(t)) ∀ t ∈ R. (3.6)

We recall from (2.13) with α0 = 0 that the map R : X → X�? is given by

R(φ) =

n∑
j=1

gj(φ)r�?j with r�?j = (ej , 0) ∈ X�? (3.7)

where gj is the j-th component of g and ej is the j-th vector in the standard basis of Rn.

By the smoothness of g and (3.2) we may expand R in a power series around the origin in X
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starting with quadratic terms,

R(u) =
1

2
B(u, u) +

1

6
C(u, u, u) +O(‖u‖4) (3.8)

The terms B and C are symmetric bounded multilinear forms fromX toX�?. These represent

the derivatives of order two and three of R at the origin. The k-th derivative of R at the

origin henceforth is a mapping from Xk to X�?. (See e.g. Chapter 1 of [1] for differential

calculus in abstract spaces.) In the case of DDE it follows from (3.7) and the definition of

the function g that for arbitrary vectors ξ1 and ξ2 in X,

B(ξ1, ξ2) =
n∑
j=1

[D2g(0)(ξ1, ξ2)]jr
�?
j

=

n∑
j=1

[D2f(0)(ξ1, ξ2)]jr
�?
j

= D2f(0)(ξ1, ξ2)r
�?

Here f is the function appearing in the right-hand side of (DDE). The last line is an ‘inner-like’

product of D2f(0)(ξ1, ξ2) in Rn with r�? ≡ (r�?1 , . . . , r�?n ), used for notational convenience.

Analogously, C(ξ1, ξ2, ξ3) = D3f(0)(ξ1, ξ2, ξ3)r
�? and so forth.

In addition to the expansions in (3.5) and (3.8) we also expand the Ck-smooth center

manifold mapping C : U ⊂ X0 → X introduced in Theorem 2.9, as follows. We recall that

U is some open ball around the origin and that Wc
loc is tangent to X0 there. Now let ξ be

a point in X0 with coordinate z = 〈φ�, ξ〉 in R1. Since the coordinate mapping ξ 7→ z(ξ) is

a Ck-smooth injection onto some neighbourhood V of the origin in R1, we may introduce a

coordinate-version of C, defined by

H : V ⊂ R1 7→ X, H(z) ≡ C(ξ(z))

and expand it as

H(z) = zφ+
1

2
h2z

2 +
1

6
h3z

3 +O(|z|4). (3.9)

with unknown coefficients hν in X.

Remark 3.1. We have already used the letter h to indicate the delay, following a literature

convention. Hence there is the risk of confusion when using the same character for the

coefficients in the expansion of H. We expect that it will be clear from the context which of

the two denotations is meant. ♦

Now we are ready to state the so-called homological equation (3.10) below.1 The key

to it is the invariance of the center manifold. More precisely, if y(t) is the projection of the

1Quoting Sanders in Section 2 of [23]: ‘Why this is called a homological equation is seldomly explained and
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small solution u(t) onto X0 and z(t) is its coordinate with respect to φ, then

u(t) = H(z(t)) ∀ t ∈ R

Differentiating both sides of this relation with respect to time and using (3.6) we obtain

A�?H(z) +R(H(z)) = DH(z)ż (3.10)

Using (3.8) and (3.5) we can substitute for R and ż their power series and order terms in

powers of z. After some straightforward calculations one arrives at

1

2
z2[A�?h2 +D2f(0)(φ, φ)r�?] +

1

6
z3[A�?h3 + 3D2f(0)(φ, h2)r

�? +D3f(0)(φ, φ, φ)r�?] =

bz2φ+ (cφ+ bh2)z
3 +O(|z|4) (3.11)

Calculating the normal form coefficients b and c now simply amounts to recursively solving

the above equation by equating coefficients of like powers and solving the corresponding linear

systems. In order to do this we need some results which are explained in the next section.

We shall return to the calculation of the normal form coefficients in Section 3.3.

3.2 Solvability and bordered operators

We consider the operator A�? appearing in (3.11). When solving the homological equation

we shall encounter operator equations of the form

(λI −A�?)(v0, v) = (w0, w) (3.12)

Here λ is a real or complex number, (wo, w) is a given vector in X�? and (v0, v) in D(A�?) is

unknown. Recall that we shall use the representations in Table 2.1 for the spaces X,X∗, X�

and X�?. For example, (w0, w) and (v0, v) are elements in Rn × L∞([−h, 0],Rn).

There are two possible cases: If λ is not an eigenvalue of A we call λ a regular point.

Then by Theorem 2.3 the closed operator

(λI −A�?) : D(A�?) ⊂ X�? → X�? (3.13)

has a bounded inverse (the resolvent at λ) and

(v0, v) = (λI −A�?)−1(w0, w) (3.14)

this paper is written to provide an explanation of this terminology and to define the so-called unique normal
form in terms of spectral sequences.’
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is the unique solution in D(A�?) of (3.12). However, if λ is an eigenvalue of A, then (3.12)

need not have a solution. Moreover, any solution that does exist is not unique, since we may

add to it an arbitrary linear combination of eigenvectors of A�? corresponding to λ.

We shall use the following lemma as a solvability condition on the right-hand side of

(3.12). (In fact, since decompositions analogous to (3.15) below hold for λI −A, λI −A∗ and

λI − A�, it follows from the lemma that all these operators are of Fredholm type for any

choice of λ, but the adjoints among them are in general not norm-densely defined.)

Lemma 3.2 (Fredholm Alternative). Let λ be arbitrary. Then (3.12) has a solution (v0, v) ∈
D(A�?) if and only if (w0, w) annihilates N(λI −A∗).

Proof. Recall from item (ii) of Theorem 2.3 that N(λI − A∗) = N(λI − A�). Hence by the

Closed Range Theorem (see e.g. Section IV.10 of [29]) the assertion of the lemma is equivalent

to (3.13) having closed range, so we only need to consider the case that λ is an eigenvalue.

Suppose that the order of λ as a pole of z 7→ ∆(z)−1 is equal to kλ ∈ N. Then X�? has the

direct sum decomposition

X�? = N [(λI −A�?)kλ ]⊕R[(λI −A�?)kλ ] (3.15)

where the first component is finite-dimensional and the second component is closed, see

Theorem IV.2.5 of [8]. Because R(λI − A�?) contains R[(λI − A�?)kλ ] it too is closed by

Lemma 5.6 of [24].

Let us now assume that at least one solution of (3.12) exists, for which we would like

to obtain a representation formula. From Corollary III.2.12 of [8] we know that the adjoint

generator A�? on X�? is given by

D(A�?) = {(α,ψ) ∈ X�? : ψ ∈ Lip(α)}, A�?(α,ψ) =

[∫ h
0 dη(θ)ψ(−θ)

ψ̇

]

Here Lip(α) is the subspace of all (classes of) functions in L∞([−h, 0],Rn) that have a

Lipschitz-continuous representative with value α in zero. Therefore a vector (v0, v) is a solu-

tion of (3.12) if and only if v is Lipschitz-continuous with v(0) = v0 and satisfies
λv − v̇ = w

λv0 −
∫ h

0
dη(θ)v(−θ) = w0

(3.16)

If λ is not an eigenvalue, then this problem has a unique solution. It can be found by

variation-of-constants:



CHAPTER 3. CODIMENSION-TWO CRITICAL NORMAL FORMS 29

Lemma 3.3. Suppose λ is not an eigenvalue. Then the unique solution (v0, v) ∈ D(A�?) of

(3.12) is given by

v(θ) = eλθv0 +

∫ 0

θ
eλ(θ−σ)w(σ) dσ (θ ∈ [−h, 0]) (3.17)

with

v0 = ∆(λ)−1
{
w0 +

∫ h

0
dη(τ)

∫ τ

0
e−λσw(σ − τ) dσ

}
(3.18)

where ∆(λ) is the characteristic matrix from (2.14).

Corollary 3.4. The following two special cases will appear frequently in our calculations.

• Let (w0, w) = (w0, 0). Then the solution (v0, v) of (3.12) is given by

(v0, v) =

(
∆(λ)−1w0

θ 7→ eλθ∆(λ)−1w0

)

• Let (w0, w) = (0, θ 7→ eλθ∆(λ)−1ζ) for some fixed vector ζ in Rn. Then

(v0, v) =

(
∆(λ)−1[∆′(λ)− I]∆(λ)−1ζ

θ 7→ ∆(λ)−1[∆′(λ)− I − θ∆(λ)]w(θ)

)

Proof. The first representation follows immediately by substitution into (3.17) and (3.18).

For the second representation, we first calculate v0 from (3.18) as

v0 = ∆(λ)−1
∫ h

0
dη(τ)

∫ τ

0
e−λσeλ(σ−τ) dσ∆(λ)−1ζ

= ∆(λ)−1
∫ h

0

∫ τ

0
e−λτ dσ dη(τ)∆(λ)−1ζ

= ∆(λ)−1
∫ h

0
τe−λτ dη(τ)∆(λ)−1ζ

= ∆(λ)−1∆′(λ)∆(λ)−1ζ −∆(λ)−2ζ

= ∆(λ)−1[∆′(λ)− I]∆(λ)−1ζ
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Substituting this into (3.17) we obtain, for θ ∈ [−h, 0],

v(θ) = eλθv0 +

∫ 0

θ
eλ(θ−σ)eλσ dσ∆(λ)−1ζ

= eλθv0 − θeλθ∆(λ)−1ζ

= eλθ∆(λ)−1[∆′(λ)− I]∆(λ)−1ζ − θeλθ∆(λ)−1ζ

= ∆(λ)−1[∆′(λ)− I − θ∆(λ)]eλθ∆(λ)−1ζ

= ∆(λ)−1[∆′(λ)− I − θ∆(λ)]w(θ)

If λ is an eigenvalue, a solution of (3.12) is not unique, if it exists. In a sense the following

simple lemma makes an arbitrary but (as we shall see) convenient choice among all solutions

available: It singles out the solution ‘orthogonal’ to the eigenspace of λ. (Quotes are used

because we work in Banach spaces that are not inner product spaces.)

Lemma 3.5. Let L : D(L) ⊂ E → E be a closed, densely defined operator on a Banach space

E. Suppose that zero is a simple eigenvalue of L and L∗ with corresponding eigenvectors ψ

and ψ∗. Let P be the spectral projection operator of E onto the zero-eigenspace. Assume that

for given y∗ ∈ E∗ there exists a particular solution x∗0 in D(L∗) of the equation

L∗x∗ = y∗ (3.19)

Then the augmented system {
L∗x∗ + sψ∗ = y∗

〈x∗, ψ〉 = 0
(3.20)

has a unique solution x∗ = (I−P ∗)x∗0 and s = 0, and x∗ is the unique solution of (3.19) that

annihilates ψ.

Hence, if λ is a simple eigenvalue of A and (3.12) is consistent, then we can apply Lemma

3.5 to the (closed and densely defined) operator L = λI −A� on X� with domain D(A�) to

obtain the unique solution of (3.12) that vanishes on the eigenspace corresponding to λ.

Proof of Lemma 3.5. The adjoint P ∗ is exactly the spectral projection of E∗ onto the kernel

of L∗. It can be represented as

P ∗ =
〈·, ψ〉
〈ψ∗, ψ〉

ψ∗

This shows that x∗ is in D(L∗) and satisfies (3.20). Suppose (x∗1, s1) is another solution. Then

L∗(x∗ − x∗1) + (s− s1)ψ∗ = 0 (3.21)
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and by pairing with ψ,

〈x∗ − x∗1, Lψ〉 + (s− s1)〈ψ∗, ψ〉 = 0

The first term vanishes because ψ is an eigenvector. Since 〈ψ∗, ψ〉 6= 0 it follows that s1 = s

and from (3.21) we see that x∗ − x∗1 = γψ∗ for some scalar γ. Pairing with ψ leads to γ = 0

and thus x∗1 = x∗.

One may note that (3.20) at least formally looks like the operator matrix equation[
L∗ ψ∗

ψ 0

][
x∗

s

]
=

[
y∗

0

]

Such systems containing auxiliary equations and unknowns are called bordered systems.

The unique solution x∗ mentioned in the lemma shall be denoted by x∗ = [L∗]INV y∗. Those

familiar with [18] may notice that the above lemma is nothing more than an adaptation

of equation 4.6 in this reference to the present operator setting of delay equations. For a

discussion of bordered systems in Rn and their numerical analysis, see Chapter 3 of [13] and

the references therein.

The only thing still lacking is a representation for (λI − A�?)INV when λ is a simple

eigenvalue, analogous to Lemma 3.3 which applies to the non-singular case.

Proposition 3.6. Suppose λ is a simple eigenvalue of A and assume that (3.12) is consistent

for a given (w0, w) ∈ X�? with bordered inverse (v0, v) = (λI −A�?)INV (w0, w) in X�?. Let

q ∈ Rn, φ ∈ X, p ∈ Rn and φ� ∈ X� be as in Lemma 2.4, normalized to 〈φ�, φ〉 = 1. Then

v(θ) = eλθv0 +

∫ 0

θ
eλ(θ−σ)w(σ) dσ (θ ∈ [−h, 0]) (3.22)

with

v0 = ξ + γq, ξ ≡ ∆(λ)INV
[
w0 +

∫ h

0
dη(τ)

∫ τ

0
e−λσw(σ − τ) dσ

]
(3.23)

The constant γ is given by

γ = −p∆′(λ)ξ − p
∫ h

0

∫ h

τ
e−λs dη(s)

∫ 0

−τ
e−λσw(σ) dσ dτ (3.24)

Proof. By assumption we know that the system (3.16) has a solution (v0, v) in X�?. By

variation-of-constants every such solution is of the form (3.22) for some constant v0 in Rn.

The second condition in (3.16) can then be rewritten as

∆(λ)v0 = w0 +

∫ h

0
dη(τ)

∫ τ

0
e−λσw(σ − τ) dσ

Since system (3.16) is consistent, there must exist at least one constant v0 in Rn for which the
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above equality holds. Consequently the bordered inverse ∆(λ)INV appearing in the definition

of ξ in (3.23) is well-defined. Since the nullspace of ∆(λ) is spanned by q, the expression for

v0 follows for some scalar γ.

Next, we derive the value for γ given in (3.24). In order to single out the bordered inverse

(λI−A�?)INV (w0, w) we see that γ must be chosen in such a way that 〈(v0, v), (φ�(0+), φ�)〉 =

0. Recall from (2.3) in Section 2.1 that

〈j(x), x�〉 = 〈x�, x〉 ∀x ∈ X, x� ∈ X�.

Since v ∈ X and (v0, v) = j(v) we may evaluate

〈(v0, v), (φ�(0+), φ�)〉 = 〈φ�, v〉

= 〈φ�, eλθξ + γeλθq +

∫ 0

θ
eλ(θ−σ)w(σ) dσ〉

= γ + 〈φ�, eλθξ +

∫ 0

θ
eλ(θ−σ)w(σ) dσ〉

Hence we fix γ at

γ = −〈φ�, eλθξ +

∫ 0

θ
eλ(θ−σ)w(σ) dσ〉 (3.25)

Using the short-hand notation

ψ(θ) ≡ eλθξ +

∫ 0

θ
eλ(θ−σ)w(σ) dσ (θ ∈ [−h, 0])

we evaluate the dual pairing appearing in the right-hand side of (3.25) as

〈φ�, ψ〉 = pξ +

∫ h

0
[φ�]′(τ)ψ(−τ) dτ

= pξ + p

∫ h

0

∫ h

τ
eλ(τ−s) dη(s)ψ(−τ) dτ

= pξ + p

∫ h

0

∫ h

τ
eλ(τ−s) dη(s)e−λτξ dτ + p

∫ h

0

∫ h

τ
eλ(τ−s) dη(s)

∫ 0

−τ
e−λ(τ+σ)w(σ) dσ dτ

= pξ + p

∫ h

0

∫ s

0
e−λs dτ dη(s)ξ + p

∫ h

0

∫ h

τ
e−λs dη(s)

∫ 0

−τ
e−λσw(σ) dσ dτ

= p∆′(λ)ξ + p

∫ h

0

∫ h

τ
e−λs dη(s)

∫ 0

−τ
e−λσw(σ) dσ dτ

In the first line we used the fact that the NBV-function φ� is continuously differentiable on

(0, h] but has a jump equal to φ�(0+) = p at zero. In the fourth line we used Fubini’s theorem

to interchange the order of integration in the first iterated integral. Substitution of this result

into (3.25) yields (3.24).
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We shall frequently encounter the following special case.

Corollary 3.7. Suppose in addition that (w0, w) = (ζ, 0) + κ(q, φ) where ζ in Rn is an

arbitrary vector and κ is a scalar. Then

v0 = ξ + γq, v(θ) = eλθ(ξ + γq − κθq) (θ ∈ [−h, 0]) (3.26)

with

ξ = ∆(λ)INV (ζ + κ∆′(λ)q) and γ = −p∆′(λ)ξ +
1

2
κp∆′′(λ)q (3.27)

In this case we shall employ the notation v = BINV
λ (ζ, κ) to succinctly denote the bor-

dering inverse.

3.3 The cusp bifurcation revisited

We now continue the discussion that we left in Section 3.1 after the derivation of (3.11). From

this point on all the computations are completely analogous to those carried out for the cusp

bifurcation in ODE in Section 5 of [18]. Indeed, the resulting formulas will formally (that is,

in appearance) be almost identical. This is the virtue of the center manifold reduction and

the relatively simple spectral theory of delay equations.

Equating coefficients of z2 in the left and right-hand sides of (3.11) leads to the linear

system

A�?h2 = −D2f(0)(φ, φ)r�? + 2bφ (3.28)

This equation is singular, since λ = 0 is assumed to be a simple eigenvalue of A. By the

Fredholm Alternative (Lemma 3.2) and the chosen normalization (3.4) it has a solution if and

only if

−〈D2f(0)(φ, φ)r�?, φ�〉 + 2b = 0

which happens if and only if

b =
1

2
〈D2f(0)(φ, φ)r�?, φ�〉 (3.29)

We thus found the quadratic coefficient in the critical normal form (3.5) and recall that at

the cusp bifurcation b = 0. Had we been interested in the fold bifurcation for which it is part

of the genericity requirements that b 6= 0, then we could have stopped here. We note that

(3.28) may now be assumed consistent, and using Lemma 3.5 we can write

h2 = −[A�?]INVD2f(0)(φ, φ)r�? (3.30)

for the unique solution h2 in X�? satisfying 〈h2, φ�〉 = 0.
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Proceeding with the coefficients of z3 terms we find the linear equation

A�?h3 = cφ− 1

6
[3D2f(0)(φ, h2)r

�? +D3f(0)(φ, φ, φ)r�?]

which is singular as well. The Fredholm Alternative implies that

c =
1

6
〈3D2f(0)(φ, h2)r

�? +D3f(0)(φ, φ, φ)r�?, φ�〉 (3.31)

This equation gives an expression for the cubic coefficient in the critical normal form, but we

are not done yet: We still need to evaluate the ‘abstract’ pairings in (3.29) and (3.31).

Firstly, using Table 2.1 and Lemma 2.4 we observe that (3.29) becomes

b =
1

2
p ·D2f(0)(φ, φ) (3.32)

which cannot be made any more concrete since f clearly depends on the specific system under

investigation. Note, however, that the right-hand side of (3.32) is now an ordinary inner

product in Rn which can be evaluated straightforwardly, e.g. on a computer. Analogously,

(3.31) becomes

c =
1

6
p · [3D2f(0)(φ, h2) +D3f(0)(φ, φ, φ)] (3.33)

where h2 is calculated from (3.30) using Corollary 3.7 with ζ = −D2f(0)(φ, φ) and κ = 0.

Plugging this in and using that λ = 0 yields

h2 = −∆(0)INVD2f(0)(φ, φ) + [p∆′(0)∆(0)INVD2f(0)(φ, φ)]q (3.34)

which we interpret as a constant function in X = C([−h, 0],Rn).

We conclude our discussion of the cusp bifurcation with a rather trivial example that serves

to illustrate the application of the formulas just derived in the simplest possible setting. For

more elaborate examples the reader is referred to Chapter 4.

Example 3.8. Consider the scalar DDE

ẋ(t) = α1x(t) + g(x(t− 1))

≡ f(xt)
(3.35)

with g : R → R a function of class C3 satisfying g(0) = 0 and α1 a real scalar parameter.

Expansion around the zero-equilibrium yields

ẋ(t) = α1x(t) + g′(0)x(t− 1) +
1

2
g′′(0)[x(t− 1)]2 +

1

6
g′′′(0)[x(t− 1)]3 +O([x(t− 1)]4) (3.36)

Theorem 2.3 justifies substitution of eλt into the linearized equation to obtain the character-
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istic ‘matrix’

∆(λ) = α1 − λ+ g′(0)e−λ

= α1 + g′(0)− (1 + g′(0))λ+
1

2
g′(0)λ2 +O(λ3)

We see that λ = 0 is a simple eigenvalue provided α1 = −g′(0) 6= 1. This indicates the

occurence of a fold bifurcation. When α1 = −g′(0) = 1 we observe that λ has multiplicity

two, in which case generically a Bogdanov-Takens bifurcation takes place. The latter was

analyzed in Section IX.10 of [8] using the standard two-step approach of center manifold

reduction and subsequent normalization. Here we shall concentrate on the former case and

henceforth we assume that

α1 = −g′(0) 6= 1. (3.37)

We start by regarding α1 as our parameter, leaving all other quantities fixed. We choose

q = 1, p =
1

g′(0)− 1

By Lemma 2.4 for this choice the corresponding eigenvectors φ and φ� are properly normalized

to satisfy 〈φ�, φ〉 = 1. The second derivative of f equals

D2f(0)(ξ1, ξ2) = g′′(0)ξ1(t− 1)ξ2(t− 1) (ξ1, ξ2 ∈ X)

Note that this is indeed a symmetric bilinear R-valued form on X. Substitution into (3.32)

then yields the quadratic critical normal form coefficient

b =
1

2

g′′(0)

g′(0)− 1

Therefore we may conclude that if (3.37) holds and the parameter α1 enters the system (3.35)

generically, then the trivial equilibrium of (3.35) is a fold point, provided g′′(0) 6= 0. This is

not very surprising, since g′′(0) is proportional to the quadratic term in the expansion (3.36).

Next we free α2 ≡ g′′(0) as a second parameter. Suppose that α2 = 0, leading to a

vanishing quadratic coefficient b. (Such may also occur in the one-pameter situation when

(3.35) has a Z2-symmetry, i.e. is invariant under the substitution x→ −x. This illustrates the

general phenomenon that symmetries lower the codimension of a bifurcation, i.e. the number

of defining bifurcation conditions.) A simple calculation shows that all bordered inverses in

(3.34) vanish, leaving us with h2 = 0 identically. The third derivative of f equals

D3f(0)(ξ1, ξ2, ξ3) = g′′′(0)ξ1(t− 1)ξ2(t− 1)ξ3(t− 1) (ξ1, ξ2, ξ3 ∈ X)
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Consequently we see from (3.33) that the cubic critical normal form coefficient is given by

c =
1

6

g′′′(0)

g′(0)− 1

Hence if (3.37) holds and there is generic dependence on the two-dimensional parameter

α = (α1, α2), then the zero-equilibrium of (3.35) exhibits a non-degenerate cusp singularity,

provided g′′′(0) 6= 0. At such a point two fold branches meet tangentially in the (α1, α2)

parameter plane. This causes a hysteresis effect. (See Section 8.2 of [19].) ♦

3.4 Computation of critical normal form coefficients

In the three foregoing sections we explained in detail how the normalization method works

in the case of the simplest local codimension-two bifurcation, the cusp. To this end some

auxiliary techniques were introduced in Section 3.2. In this section we first summarize the

method in generality for the computation of critical normal form coefficients. Next, it is

applied to derive expressions for the critical normal form coefficients of the remaining four

out of five generically possible codimension-two bifurcations of equilibria in DDE.

3.4.1 The method

Suppose once more that at the parameter value α = α0 = 0 the zero-function is a stationary

solution of (DDE),

f(0, 0) = 0

Let (A,D(A)) be the generator of the semigroup (T (t))t≥0 solving the linear DDE associated

with the linearized equation

ẋ(t) = D1f(0, α0)xt (3.38)

and suppose that one of the bifurcation conditions in Table 3.1 is satisfied and A has no other

eigenvalues on the imaginary axis.

This implies the existence of a non-trivial center subspace X0 of finite dimension nc and

spanned by some basis Φ consisting of eigenvectors and, in the case of Bogdanov-Takens

bifurcation, generalized eigenvectors corresponding to the eigenvalues of A that lie on the

imaginary axis. Tangent to X0 there exists a local center manifoldWc
loc. We consider solutions

u of (AIE, α0) that are defined and lie on Wc
loc for all (positive and negative) time. Let y(t)

be the projection of u(t) onto X0. Then y(t) can be expressed uniquely relatively to Φ. The

corresponding coordinate vector z(t) of y(t) satisfies some ODE admitting an expansion of

the form

ż(t) =

N∑
|ν|=1

1

ν!
gνz

ν(t) +O(‖z(t)‖N+1) ∀t ∈ R (3.39)
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Name Bifurcation Condition

Cusp λ1 = 0, b = 0

Bogdanov-Takens λ1 = λ2 = 0

Bautin (generalized Hopf) λ1,2 = ±iω0, ω0 > 0, l1(0) = 0

Fold-Hopf λ1 = 0, λ2,3 = ±iω0, ω0 > 0

Double Hopf λ1,4 = ±iω1, λ2,3 = ±iω2, ω1,2 > 0

Table 3.1: All generically possible two-parameter bifurcations of equilibria in DDE. The bi-
furcation condition lists the eigenvalues of the generator (A,D(A)) of the semigroup (T (t))t≥0

corresponding to the solution of (3.38). The coefficient b is the quadratic coefficient in the fold
normal form, which vanishes in the cusp case. The first Lyapunov coefficient l1(0) is the cubic
coefficient in the complex Hopf normal form, evaluated at criticality. It vanishes in the case of a
Bautin bifurcation.

with unknown critical normal form coefficients gν ∈ Rnc . Here ν denotes a multi-index of

length nc and the series is supposed to be truncated after some sufficiently high order N .

Clearly we shall always tacitly assume that k ≥ N . (One may compare this expansion with

(3.5). In the cusp case nc = 1 and the series was truncated after third order, hence N = 3

there.)

On Wc
loc itself u satisfies the differential equation

u̇(t) = A�?u(t) +R(u(t)) ∀t ∈ R

The nonlinearity R : X → X�? is Ck-smooth and can be expanded as

R(u) =

N∑
j>1

1

j!
Djf(0)(

j times︷ ︸︸ ︷
u, . . . , u)r�? +O(‖u‖N+1) (3.40)

where Djf(0)(·)r�? is a continuous j-linear form from X to X�? representing the jth deriva-

tive of f at the origin in X.

Let H : V ⊂ Rnc → X be a Ck-smooth mapping, defined on a neighbourhood V of the

origin in the coordinate space Rnc with image H(V ) =Wc
loc. Then H admits an expansion

H(z) =

N∑
|ν|=1

1

ν!
hνz

ν +O(‖z‖N+1) (3.41)

where ν is a multi-index of length nc and hν ∈ X is an unknown coefficient.

Substituting the expansions (3.39), (3.40) and (3.41) into the homological equation

A�?H(z) +R(H(z)) = DH(z)ż (3.42)

and equating coefficients of like powers of z, one may solve recursively for the unknown
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coefficients gν and hν by applying the Fredholm alternative and taking bordered inverses as

discussed in Section 3.2.

3.4.2 List of codimension-two normal forms

We list the critical as well as parameter-dependent normal forms that we will use in this paper

for the five bifurcations in Table 3.1. For a detailed derivation and bifurcation analysis of the

normal forms presented here, we refer to Chapter 8 of [19].

1. Cusp (λ1 = 0, b = 0)

The cusp bifurcation has already been treated in Sections 3.1 and 3.3. Suppose that the real

coefficient c appearing in (3.5) and (3.33) does not vanish. Then the projection onto the

center subspace of the restriction to the local center manifold of the flow corresponding to

(AIE, α) is locally topologically equivalent to the normal form

ż = β1(α) + β2(α)z + cz3 (z ∈ R) (3.43)

where center subspace, local center manifold and flow now all depend on the parameter α.

Here β1 and β2 are smooth real functions of α that satisfy β1(0) = 0 = β2(0). Note that

the above normal form is exact in the sense that higher-order terms have been dropped with

impunity.

Remark 3.9.

(i) We deliberately treat β1 and β2 as functions of the original parameter α = (α1, α2).

This allows us to make the statement leading to (3.43) without the need to mention

any transversality conditions.

(ii) However, if such transversality conditions happen to be met, then the map (α1, α2) 7→
(β1, β2) is in fact a local diffeomorphism of parameter spaces and consequently β1 and

β2 may be regarded as new parameters. It is in terms of these new parameters that

the bifurcation diagram of (3.43) is analysed in §8.3.2 of [19]. In this case we will say

that the system under investigation depends generically on its parameters at the

bifurcation point.

(iii) The same terminology will be used for the other codimension-two bifurcations that

follow. The precise transversality conditions for these bifurcations can be found in the

corresponding sections of Chapter 8 of [19]. In the present work we do not address the

problem of their verification. ♦

As was already noted at the end of Example 3.8, if there is generic dependence on the

parameter α, then the system (3.43) predicts a hysteresis phenomenon.
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2. Bogdanov-Takens (λ1 = λ2 = 0)

Suppose that a2 and b2 are real coefficients such that a2b2 6= 0. Then the projection onto the

center subspace of the restriction to the local center manifold of the flow corresponding to

(AIE, α) is locally topologically equivalent to the normal form{
ż0 = z1

ż1 = β1(α) + β2(α)z0 + a2z
2
0 + b2z0z1

(z ∈ R2) (3.44)

where β1,2 are smooth real functions of α satisfying β1(0) = 0 = β2. Again, the above normal

form does not contain any higher-order terms. If the system depends generically on the

parameters, then (3.44) predicts curves of generic fold and Hopf bifurcations emanating from

the origin in the (α1, α2) parameter plane, as well as a unique curve of saddle-homoclinic

bifurcations. At this latter curve the unique periodic solution born in the Hopf bifurcation

becomes a homoclinic orbit as its period tends to infinity.

The Bogdanov-Takens bifurcation has become a popular object of analysis in concrete

systems. By computing normal form expansions only to quadratic order, one is already

rewarded with the existence of a curve of global bifurcations.

In fact, in addition to quadratic formulas we shall also provide expressions for critical

coefficients a3 and b3 of order three in (3.44). This is done for the purpose of discussing

degeneracies due to symmetry in our first example in Chapter 4. We refrain from stating

possible unfoldings, also see Remark 4.2.

3. Bautin (generalized Hopf) (λ1,2 = ±iω0, l1(0) = 0)

Normal forms of Hopf-related bifurcations are conveniently cast in complex coordinates, due

to the periodic nature of the underlying bifurcation. Let l2(0) 6= 0 be a real constant called the

second Lyapunov coefficient. Then the projection onto the center subspace of the restriction

to the local center manifold of the flow corresponding to (AIE, α) is locally topologically

equivalent to the normal form

ż = (β1(α) + iω0)z + β2(α)z|z|2 + l2(0)z|z|4 (z ∈ C) (3.45)

where β1,2 are smooth real functions that satisfy β1(0) = 0 = β2. Again, higher order terms

need not be incorporated. At a Bautin point a Hopf bifurcation changes its criticality. The

first Lyapunov coefficient l1(0) switches sign from negative (supercritical Hopf) to positive

(subcritical Hopf). If there is generic dependence on parameters, then (3.45) predicts the

presence of a curve in the (α1, α2) parameter plane emanating from the origin and corre-

sponding to a generic fold bifurcation of a stable and an unstable periodic orbit, born in the

respective super- and subcritical Hopf bifurcations.
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One needs to take care of a small subtlety. The normal form (3.45) is derived with the

help of a time-reparametrization and therefore cannot be used directly in conjunction with

the homological equation, since in the latter equation all time-derivatives are supposed to be

with respect to the same unit of time. Therefore, instead one uses the truncated Poincaré

smooth normal form for the Bautin bifurcation, at criticality (α = 0) given by

ż = iω0z + c1(0)z2z + c2(0)z3z2 (3.46)

where c1(0) and c2(0) are complex constants. The derivation of (3.46) does not involve any

reparametrization of time, see Lemmas 8.3 and 8.4 of [19]. Once c1(0) and c2(0) are computed,

the two Lyapunov coefficients can be recovered from the relations

l1(0) =
1

ω0
Re c1(0), l2(0) =

1

ω0
Re c2(0)

4. Fold-Hopf (λ1 = 0, λ2,3 = ±iω0)

Suppose that b(0) and c(0) are real constants and b(0)c(0) 6= 0. Then the projection onto the

center subspace of the restriction to the local center manifold of the flow corresponding to

(AIE, α) is locally smoothly orbitally equivalent to{
ż0 = δ(α) + b(α)z20 + c(α)|z1|2 +O(‖(z0, z1, z1‖4)

ż1 = σ(α)z1 + d(α)z0z1 + e(α)z20z1 +O(‖(z0, z1, z1‖4)
(z0 ∈ R, z1 ∈ C) (3.47)

Here δ, b, c and e are smooth real-valued functions of α, while σ and d are smooth complex-

valued functions of α, and

δ(0) = 0, σ(0) = iω0 (3.48)

The system (3.47) is known a the Gavrilov normal form for the fold-Hopf bifurcation, see

Lemma 8.10 of [19]. This is the first time we encounter a normal form that includes higher-

order terms that cannot be truncated, since they may influence the qualitative dynamics one

may find in (3.47). Therefore, a complete analysis of a fold-Hopf point in a concrete system,

if at all possible, is much more complicated than in the cusp, Bogdanov-Takens or Bautin

case. Assuming generic dependence on parameters, depending on the values of the critical

coefficients one may encounter invariant tori, chaotic dynamics, Neimark-Sacker bifurcations

of cycles and Shilnikov homoclinic bifurcations.

For the same reason as in the Bautin-case, (3.47) cannot be used directly for our computa-

tions. Rather, we need to use the Poincaré smooth normal form for the fold-Hopf bifurcation

(see Lemma 8.9 of [19]) which at criticality reads{
ż0 = g200z

2
0 + g011|z1|2 + g300z

3
0 + g111z0|z1|2 +O(‖(z0, z1, z1)‖4)

ż1 = iω0z1 + g110z0z1 + g210z
2
0z1 + g021z1|z1|2 +O(‖(z0, z1, z1)‖4)

(3.49)
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where the coefficients gjkl are real in the first and complex in the second equation. At

criticality and under the condition that g200g011 6= 0 the coefficients in the Gavrilov normal

form can be recovered from those in the Poincaré normal form through the relations (3.48)

and

b(0) = g200, c(0) = g011 (3.50)

and

e(0) = Re

[
g210 + g110

(
Re g021
g011

− 3g300
2g200

+
g111
2g011

)
− g021g200

g011

]
(3.51)

for the real coefficients and

d(0) = g110 − iω0
g300
g200

(3.52)

for the complex coefficients.

5. Double Hopf (λ1,4 = ±iω1, λ2,3 = ±iω2)

In addition to the bifurcation conditions, we assume the non-resonance conditions

kω1 6= lω2 for all k, l ∈ N with k + l ≤ 5 (3.53)

and we assume that pij(0) are complex constants for 1 ≤ i, j ≤ 2 such that

(Re p11(0))(Re p12(0))(Re p21(0))(Re p22(0)) 6= 0 (3.54)

Then the projection onto the center subspace of the restriction to the local center manifold

of the flow corresponding to (AIE, α) is locally smoothly orbitally equivalent to

ż1 = λ1(α)z1 + p11(α)z1|z1|2 + p12(α)z1|z2|2 + ir1(α)z1|z1|4 + s1(α)z1|z2|4

+O(‖(z1, z1, z2, z2)‖6)

ż2 = λ2(α)z2 + p21(α)z2|z1|2 + p22(α)z2|z2|2 + s2(α)z2|z1|4 + ir2(α)z2|z2|4

+O(‖(z1, z1, z2, z2)‖6)

(3.55)

Here λ1,2, pij and si are smooth complex functions of α such that λ1(0) = iω1 and λ2(0) = iω2

and ri is a smooth real function of α, for 1 ≤ i, j ≤ 2. Again, (3.55) is not suitable for our

computations, because it is derived using a time rescaling. So instead we use the Poincaré

smooth normal form for the double Hopf bifurcation, at criticality given by

ż1 = iω1z1 + g2100z1|z1|2 + g1011z1|z2|2 + g3200z1|z1|4 + g2111z1|z1|2|z2|2

+ g1022z1|z2|4 +O(‖(z1, z1, z2, z2‖6)

ż2 = iω2z2 + g1110z2|z1|2 + g0021z2|z2|2 + g2210z2|z1|4 + g1121z2|z1|2|z2|2

+ g0032z2|z2|4 +O(‖(z1, z1, z2, z2‖6)

(3.56)
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where the constants gjklm are all complex. The critical coefficients in (3.55) can be recovered

from those in (3.56) through the relations

Re

[
p11(0) p12(0)

p21(0) p22(0)

]
= Re

[
g2100 g1011

g1110 g0021

]
(3.57)

The real parts of si(0) are given by

Re s1(0) = Re g1022 + Re g1011 ×
[

Re g1121
Re g1110

− 2
Re g0032
Re g0021

− (Re g3200)(Re g0021)

(Re g2100)(Re g1110)

]
and

Re s2(0) = Re g2210 + Re g1110 ×
[

Re g2111
Re g1011

− 2
Re g3200
Re g2100

− (Re g2100)(Re g0032)

(Re g1011)(Re g0021)

]
The real constants ri(0) are of secondary importance in the bifurcation analysis of (3.55) and

so we omit expressions for these. They can be extracted from the proof of Lemma 8.14 in

[19].

The double Hopf bifurcation is the most complicated bifurcation, both from a computa-

tional as well as a conceptual viewpoint. System (3.55) is best analyzed by rewriting it in

polar coordinates. As in the fold-Hopf case, the sixth-order terms may not be truncated,

since they may affect the qualitative dynamics. Depending on the sign of

(Re p11(0))(Re p22(0)) = (Re g2100)(Re g0021) (3.58)

this bifurcation exhibits either ‘simple’ or ‘difficult’ dynamics, see §8.6.2 of [19]. Assum-

ing generic dependence on parameters, one may encounter invariant tori, chaotic dynamics,

Neimark-Sacker bifurcations of cycles and Shilnikov homoclinic orbits. Note that, although

computations up to and including fifth order are required to determine all critical coeffi-

cients, computations up to and including third order suffice to distinguish between ‘simple’

and ’difficult’ cases.

3.4.3 A remark on generality and presentation

Before we present our formulas for the various critical normal form coefficients, we pause to

comment on our presentation of the various bifurcation formulas that will follow. For those

readers familiar with finite-dimensional applications of the normalization method, e.g. to

ODEs in Chapter 8.7 of [19] or to maps in Chapter 3 of [22], it will by now have become

quite clear that all the formulas found in these references carry over, formally, to the case

of DDE. Put simplistically, one merely need add a � here and a ∗ there and one is done.

This is entirely due to the existence of a local center manifold for DDE. Clearly then, it is to
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be expected that any infinite-dimensional dynamical system admitting reduction to a finite-

dimensional center manifold near an equilibrium is amenable to the normalization method

discussed here, provided the generators of its linearizations are sufficiently well-behaved to

allow for application of the Fredholm Alternative, i.e. they should have closed range, see the

proof of Lemma 3.2.

With these considerations in mind, one could present the bifurcation formulas below in

a rather general form, leaving expressions involving dual pairings as well as bordered inverse

unevaluated. By proceeding in this way, one achieves results that are applicable to any

evolution equation fitting in the general sun-star framework of Section 2.1, and not only to

DDE. For instance, the formulas found would be equally well applicable to Volterra renewal

equations (RE) and hybrid DDE-RE systems, see [5]. Moreover, these results would be

formally almost identical to those found in the finite-dimensional case.

However, as I already expressed in the introductory Chapter 1, it is my opinion that one

should not only strive for generality but also for what one might call call evaluability. In order

to actually use the formulas found below in applications, one should be able to evaluate the

dual pairings and (bordered) inverses appearing in them, ideally as ordinary inner products

and matrix-vector multiplications. At this lower level of abstraction the characteristic matrix

plays a prominent role, see e.g. Lemma 3.3, Proposition 3.6 and their respective corollaries.

In essence it allows us to replace an operator (A,A∗, . . .) on an infinite-dimensional space

by a matrix without any additional discretization or limit procedure. I want to stress the

far-reaching consequences of this result by exploiting it to make the bifurcation formulas as

explicit as possible, and this is what has been done below. I hope that the reader will see

the general applicability of these formulas even though I have chosen not to present them in

their most general form.

3.5 Critical normal form coefficients

Here we shall derive the critical coefficients for the remaining four bifurcations mentioned in

Table 3.1, but we will be slightly more brief than in the cusp case.

3.5.1 Cusp (λ1 = 0, b = 0)

The cubic normal form coefficient c appearing in the cusp normal form has been derived in

Section 3.3, see (3.33).

3.5.2 Bogdanov-Takens (λ1 = λ2 = 0)

At this bifurcation σ(A) contains a zero-eigenvalue of geometric (algebraic) multiplicity one

(two) and there are no other eigenvalues on the imaginary axis. Therefore, there exist eigen-
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vectors φ0 and φ�1 and generalized eigenvectors φ1 and φ�0 of A and A∗,

Aφ0 = 0, Aφ1 = φ0, A∗φ�1 = 0, A∗φ�0 = φ�1

and these span the respective generalized eigenspaces. Let q0, q1 be the column vectors and

p1, p0 be the row vectors mentioned in Lemma 2.7. By an application of the Fredholm

Alternative (Lemma 3.2) to the decomposition of X into the direct sum of the closed range

and finite-dimensional kernel of the spectral projection associated with the zero-eigenvalue,

it is easy to see that it is always possible to achieve a scaling such that the following ‘bi-

orthogonality’ relation is satisfied:

〈φ�i , φj〉 = δij (i, j = 0, 1) (3.59)

In practise this scaling can be achieved by an application of formulas (2.19). If we let z ∈ R2

represent a coordinate vector with respect to {φ0, φ1}, then the homological equation (3.42)

becomes

A�?H(z) +R(H(z)) = Dz0H(z)ż0 +Dz1H(z)ż1 (3.60)

with H in (3.41) taking the form

H(z) = z0φ0 + z1φ1 +
1

2
h20z

2
0 + h11z0z1 +

1

2
h02z

2
1

+
1

6
h30z

3
0 +

1

2
h21z

2
0z1 +

1

2
h12z0z

2
1 +

1

6
h03z

3
1 +O(‖z‖4)

and ż given by (3.44). Note that N = 3 because both quadratic and cubic coefficients are

sought. Collecting the z20-terms and the z0z1-terms in (3.60) yields two singular linear systems:

A�?h20 = 2a2φ1 −D2f(0)(φ0, φ0)r
�?

A�?h11 = h20 + b2φ1 −D2f(0)(φ0, φ1)r
�?

(3.61)

By the Fredholm Alternative the first of these has a solution if and only if

a2 =
1

2
p1 ·D2f(0)(φ0, φ0) (3.62)

which determines the first quadratic coefficient. Now that we know there exists a solution

h20 in D(A�?) wee see by virtue of (3.59) that

〈φ�1 , h20〉 = 〈A�φ�0 , h20〉 = 〈A�?h20, φ�0 〉 = −p0 ·D2f(0)(φ0, φ0)

Demanding solvability of the second equation in (3.61) then yields

b2 = p0 ·D2
1f(0)(φ0, φ0) + p1 ·D2

1f(0)(φ0, φ1) (3.63)
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We observe that for the quadratic coefficients a2 and b2 no (bordered) inverses need to be

evaluated.

We give expressions for the cubic coefficients a3 and b3 without proof. For hints in an

ODE-context, see [21], where issues of simplification and computation for coefficients of orders

up to and including four are discussed. We find:

a3 =
1

2
p1 ·D2f(0)(h20, φ0)−

1

2
a2p1 ·D2f(0)(φ1, φ1) +

1

6
p1 ·D3f(0)(φ0, φ0, φ0) (3.64)

and

b3 =
1

2
p1 ·

{
D2f(0)(h20, φ1) + 2D2f(0)(h11, φ0) +D3

1f(0)(φ0, φ0, φ1)
}

+
1

2
p0 ·

{
3D2f(0)(h20, φ0) +D3f(0)(φ0, φ0, φ0)

}
+ a2p0 ·D2f(0)(φ1, φ1)− 5a2〈φ�0 , h11〉 −

1

2
b2p1 ·D2f(0)(φ1, φ1)

(3.65)

where h20 and h11 are found by applying the bordered inverse ∆(0)INV to the respective right-

hand sides of (3.61). Explicit expressions for the solutions require a non-simple counterpart

to Proposition 3.6, but since our examples in Chapter 4 do not require these, we refrain from

stating such a result.

3.5.3 Bautin (generalized Hopf) (λ1,2 = ±iω0, l1(0) = 0)

In this case σ(A) contains a simple purely imaginary pair λ1,2 = ±iω0 with ω0 > 0 and

no other purely imaginary eigenvalues. Let φ and φ� be complex eigenvectors of A and A∗

corresponding to λ1 = +iω0 and let q and p be as in Lemma 2.4. It is always possible to

achieve the normalization

〈φ�, φ〉 = 1 (3.66)

Any point y in the real two-dimensional center subspace X0 corresponding to λ1,2 may be

uniquely expressed with respect to the set {φ, φ} by means of the smooth complex coordinate

mapping

y 7→ (z, z), z ≡ 〈φ�, y〉

The homological equation presently becomes

A�?H(z, z) +R(H(z, z)) = DzH(z, z)ż +DzH(z, z)ż.

with center manifold expansion

H(z, z) = zφ+ zφ+
∑

2≤j+k≤5

1

j!k!
hjkz

jzk +O(|z|6)
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Note that since the image of H lies in the real space X, it follows that its coefficients satisfy

hkj = hjk. The derivates ż and ż are given by (3.46) and its complex conjugate. Since

fifth-order terms will be computed, we set N = 5 in the expansion (3.40) of the non-linearity

R.

Comparing coefficients of the quadratic terms z2 and zz leads to two non-singular linear

systems. Using Corollary 3.4 their solutions can be found explicitly:

h20 = e2iω0θ∆(2iω0)
−1D2f(0)(φ, φ)

h11 = ∆(0)−1D2f(0)(φ, φ)
(3.67)

There are two systems corresponding to the cubic terms z3 and z2z, the first of which is

non-singular and may be solved by ordinary inversion to yield

h30 = e3iω0θ∆(3iω0)
−1[3D2f(0)(φ, h20) +D3f(0)(φ, φ, φ)] (3.68)

while the second system equals

(iω0I−A�?)h21 =
[
D3f(0)(φ, φ, φ) +D2f(0)(φ, h20) + 2D2f(0)(φ, h11)

]
r�?−2c1(0)φ (3.69)

By application of the Fredholm Alternative one obtains

c1(0) =
1

2
p ·
[
D2f(0)(φ, e2iω0θ∆(2iω0)

−1D2f(0)(φ, φ))

+ 2D2f(0)(φ,∆(0)−1D2f(0)(φ, φ)) +D3f(0)(φ, φ, φ)
] (3.70)

This expression should be compared to the expression found for the constant c in Theorem

X.3.9 of [8] on the direction of Hopf bifurcation for DDE. Note that h21 is obtained by

applying the bordered inverse (iω0I −A�?h21)INV to the right-hand side of (3.69) and that,

consequently, 〈φ�, h21〉 = 0. One gets:

h21 = BINV
iω0

[D3f(0)(φ, φ, φ) +D2f(0)(φ, h20) + 2D2f(0)(φ, h11),−2c1(0)] (3.71)

where we employed the notation for the bordered inverse introduced after Corollary 3.7. Also,

from now on we assume that

l1(0) =
1

2ω0
(c1(0) + c1(0)) =

1

ω0
Re c1(0) = 0 (3.72)

since otherwise the Hopf bifurcation would not be degenerate and there would be no reason

to proceed with our calculations. This simplifies certain bifurcation formulas below.

Comparing coefficients of the fourth-order terms z4, z3z and z2z2 leads to three non-

singular linear systems. Only two of them will appear in the expression for c2(0) below.
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Using the linearity of (2iω0I −A�?)−1 and both parts of Corollary 3.4 we find their solutions

to be:

h31 = e2iω0θ∆(2iω0)
−1[D2f(0)(φ, h30) + 3D2f(0)(h20, h11) + 3D2f(0)(φ, h21)

+ 3D3f(0)(φ, φ, h20) + 3D3f(0)(φ, φ, h11) +D4f(0)(φ, φ, φ, φ)]

− 6c1(0)∆(2iω0)
−1[∆′(2iω0)− I − θ∆(2iω0)]h20

h22 = ∆(0)−1[2D2f(0)(φ, h21) + 2D2f(0)(h11, h11) + 2D2f(0)(φ, h21)

+D2f(0)(h20, h20) +D3f(0)(φ, φ, h20) +D3f(0)(φ, φ, h20)

+ 4D3f(0)(φ, φ, h11) +D4f(0)(φ, φ, φ, φ)]

(3.73)

As far as the fifth-order terms are concerned, only the system corresponding to the coeffi-

cient of the z3z2-term involves c2(0). Because this system is singular, we apply the Fredholm

Alternative. This leads to

c2 =
1

12
p ·
[
6D2f(0)(h11, h21) + 3D2f(0)(h21, h20) +D2f(0)(h20, h30)

+ 3D2f(0)(φ, h22) + 2D2f(0)(φ, h31) + 6D3f(0)(φ, h20, h11)

+ 6D3f(0)(φ, h11, h11) + 3D3f(0)(φ, h20, h20) + 6D3f(0)(φ, φ, h21)

+ 3D3f(0)(φ, φ, h21) +D3f(0)(φ, φ, h30) + 6D4f(0)(φ, φ, φ, h11)

+ 3D4f(0)(φ, φ, φ, h20) +D4f(0)(φ, φ, φ, h20) +D5f(0)(φ, φ, φ, φ, φ)
]

(3.74)

with all the appearing coefficients hjk derived above. From c2(0) we may calculate the second

Lyapunov coefficient as

l2(0) =
1

ω0
Re c2(0) (3.75)

3.5.4 Fold-Hopf (λ1 = 0, λ2,3 = ±iω0)

At this bifurcation the spectrum σ(A) contains a simple zero-eigenvalue λ1, a simple purely

imaginary pair λ2,3 = ±iω0 with ω0 > 0, and there are no other purely imaginary eigenvalues.

Let φ0, φ1, φ
�
0 and φ�1 be such that

Aφ0 = 0, Aφ1 = iω0φ1, A∗φ�0 = 0, A∗φ�1 = iω0φ
�
1

Akin to (3.59) it is always possible to choose these vectors such that the ‘bi-orthogonality’

relation

〈φ�i , φj〉 = δij (i, j = 0, 1) (3.76)

is satisfied. Furthermore, let q0, q1, p0 and p1 be corresponding column- and row vectors, as in

Lemma 2.4. Any point y in the real three-dimensional center subspace X0 corresponding to

λ1,2,3 can be uniquely expressed with respect to the set {φ0, φ1, φ1} by means of the smooth
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real-complex coordinate mapping2

y 7→ (z0, z1, z1), z0 = 〈φ�0 , y〉 and z1 = 〈φ�1 , y〉 (3.77)

with z = (z0, z1) ∈ R×C. The homological equation then becomes

A�?H(z, z) +R(H(z, z)) = Dz0H(z, z)ż0 +Dz1H(z, z)ż1 +Dz1H(z, z)ż1

with center manifold expansion given by

H(z0, z1, z1) = z0φ0 + z1φ1 + z1φ1 +
∑

2≤j+k+l≤3

1

j!k!l!
hjklz

j
0z
k
1z

l
1 +O(‖(z0, z1, z1)‖4)

and with ż according to (3.49). In the expansion (3.40) of the non-linearity R we set N = 3

since we will be calculating up to and including third-order coefficients. Note that, for the

same reason as in the Bautin-case, one has hjlk = hjkl.

There are seven critical coefficients to be determined. The first three of them are found

by looking at terms zj0z
k
1z

l
1 with j + k+ l = 2 in the homological equation. This leads to four

relevant systems, two of which are singular and correspond to resonant terms in the normal

form. Their solutions are:

h200 = BINV
0 [D2f(0)(φ0, φ0)− [p0 ·D2f(0)(φ0, φ0)]φ0]

h020 = e2iω0∆(2iω0)
−1D2f(0)(φ1, φ1)

h110 = BINV
iω0

[D2f(0)(φ0, φ1)− [p1 ·D2f(0)(φ0, φ1)]φ1]

h011 = BINV
0 [D2f(0)(φ1, φ1)− [p0 ·D2f(0)(φ1, φ1)]φ0]

(3.78)

By the Fredholm Alternative the appearing bordered inverses exist, provided

g200 =
1

2
p0 ·D2f(0)(φ0, φ0) g110 = p1 ·D2f(0)(φ0, φ1)

g011 = p0 ·D2f(0)(φ1, φ1)
(3.79)

which fixes the quadratic normal form coefficients.

For the four remaining coefficients we once more apply the Fredholm Alternative to the

2Clearly, our notation is a bit sloppy, in the sense that the second pairing in the r.h.s. of (3.77) really is
the complexified counterpart of the first pairing. See Remark 2.2.
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resonant zj0z
k
1z

l
1 terms with j + k + l = 3. This leads to the expressions

g300 =
1

6
p0 · [3D2f(0)(φ0, h200) +D3f(0)(φ0, φ0, φ0)]

g111 = p0 · [D2f(0)(φ0, h011) +D2f(0)(φ1, h110) +D2f(0)(φ1, h110)

+D3f(0)(φ0, φ1, φ1)]

g210 =
1

2
p1 · [D2f(0)(φ1, h200) + 2D2f(0)(φ0, h110) +D3f(0)(φ0, φ0, φ1)]

g021 =
1

2
p1 · [D2f(0)(φ1, h020) + 2D2f(0)(φ1, h011) +D3f(0)(φ1, φ1, φ1)]

(3.80)

for the cubic normal form coefficients, with the appearing hjkl derived above.

3.5.5 Double Hopf (λ1,4 = ±iω1, λ2,3 = ±iω2)

At this bifurcation the spectrum σ(A) contains two pairs λ1,4 = ±iω1 and λ2,3 = ±iω2 of

purely imaginary eigenvalues. We assume that ω1 > ω2 > 0 and there are no other eigenvalues

on the imaginary axis. Additionally, we suppose that the non-resonance condition (3.53) is

satisfied. Let φ1,2 and φ�1,2 be eigenvectors of A and A∗,

Aφ1 = +iω1φ1, Aφ2 = +iω2φ2, A∗φ�1 = +iω1φ
�
1 , A∗φ�2 = +iω2φ

�
2

and let q1,2 and p1,2 be corresponding column- and row vectors, as in Lemma 2.4. It is always

possible to scale these vectors such that the ‘bi-orthogonality’ relation

〈φ�i , φj〉 = δij (1 ≤ i, j ≤ 2) (3.81)

is satisfied. Moreover, any point y in the real four-dimensional center subspace X0 can be

expressed uniquely with respect to the set {φ1, φ1, φ2, φ2} by means of the smooth complex

coordinate mapping

y 7→ (z1, z2, z1, z2), z1 = 〈φ�1 , y〉 and z2 = 〈φ�2 , y〉

where z = (z1, z2) is in C2. The homological equation presently reads

A�?H(z, z) +R(H(z, z)) = Dz1H(z, z)ż1 +Dz1H(z, z)ż1 +Dz2H(z, z)ż2 +Dz2H(z, z)ż2

with ż given by (3.56) and a center manifold expansion of the form

H(z1, z1, z2, z2) = z1φ1 + z1φ1 + z2φ2 + z2φ2

+
∑

2≤j+k+l+m≤5

1

j!k!l!m!
hjklmz

j
1z
k
1z
l
2z
m
2 +O(‖(z1, z1, z2, z2)‖6)
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satisying hkjml = hjklm, and with N = 5 in expansion (3.40) of the non-linearity R.

A total of ten critical coefficients needs to be determined. We start by collecting zj1z
k
1z
l
2z
m
2 -

terms with j+k+l+m = 2 in the homological equation. All relevant systems are non-singular

and their solutions are:

h1100 = ∆(0)−1D2f(0)(φ1, φ1)

h2000 = e2iω1∆(2iω1)
−1D2f(0)(φ1, φ1)

h1010 = ei(ω1+ω2)∆(i(ω1 + ω2))
−1D2f(0)(φ1, φ2)

h1001 = ei(ω1−ω2)∆(i(ω1 − ω2))
−1D2f(0)(φ1, φ2)

h0020 = e2iω2∆(2iω2)
−1D2f(0)(φ2, φ2)

h0011 = ∆(0)−1D2f(0)(φ2, φ2)

(3.82)

Note how the non-resonance condition is used to guarantee invertibility in the ordinary sense.

Proceeding with cubic coefficients, we encounter a total of ten relevant systems. Six of

these can be solved by ordinary inversion:

h3000 = e3iω1∆(3iω1)
−1[3D2f(0)(h2000, φ1) +D3f(0)(φ1, φ1, φ1)]

h2010 = ei(2ω1+ω2)∆(i(2ω1 + ω2))
−1[2D2f(0)(h1010, φ1) +D2f(0)(h2000, φ2) +D3f(0)(φ1, φ1, φ2)]

h2001 = ei(2ω1−ω2)∆(i(2ω1 − ω2))
−1[2D2f(0)(h1001, φ1) +D2f(0)(h2000, φ2) +D3f(0)(φ1, φ1, φ2)]

h1020 = ei(ω1+2ω2)∆(i(ω1 + 2ω2))
−1[2D2f(0)(h1010, φ2) +D2f(0)(h0020, φ1) +D3f(0)(φ1, φ2, φ2)]

h1002 = ei(ω1−2ω2)∆(i(ω1 − 2ω2))
−1[2D2f(0)(h1001, φ2) +D2f(0)(h0020, φ1) +D3f(0)(φ1, φ2, φ2)]

h0030 = e3iω2∆(3iω2)
−1[3D2f(0)(h0020, φ2) +D3f(0)(φ2, φ2, φ2)]

The remaining four systems correspond to resonant terms in the normal form. Using the

Fredholm Alternative to ensure their solvability leads to the following expressions for the four

cubic critical normal form coefficients:

g2100 =
1

2
p1 · [2D2f(0)(h1100, φ1) +D2f(0)(h2000, φ1) +D3f(0)(φ1, φ1, φ1)]

g1011 = p1 · [D2f(0)(h0011, φ1) +D2f(0)(h1001, φ2) +D2f(0)(h1010, φ2)

+D3f(0)(φ1, φ2, φ2)]

g1110 = p2 · [D2f(0)(h1001, φ1) +D2f(0)(h1010, φ1) +D2f(0)(h1100, φ2)

+D3f(0)(φ1, φ1, φ2)]

g0021 =
1

2
p2 · [2D2f(0)(h0011, φ2) +D2f(0)(h0020, φ2) +D3f(0)(φ2, φ2, φ2)]

(3.83)

We refrain from listing the fourth and fifth order coefficients here, since the expressions are

rather lengthy and, as remarked in §3.4.2, the cubic coefficients suffice to distinguish between

‘simple’ and ’difficult’ double Hopf points. In case higher order coefficients are desired, we



CHAPTER 3. CODIMENSION-TWO CRITICAL NORMAL FORMS 51

are confident that the reader will by now be able to ‘translate’ the coefficients given for the

ODE case in [18] to the present setting.



Chapter 4

Examples

In this chapter we work out two examples that illustrate the application of the formulas

derived in §3.5. By contrasting a relatively simple and analytically accessible DDE with a

more involved and numerically challenging example, we hope to convince the reader that

our results can be applied to normalization problems of a varying degree of computational

complexity. Together with the simple Example 3.8 on the cusp bifurcation, the examples in

this chapter exhaust the list of all but one of the codimension-two bifurcations treated in this

manuscript.

In §4.1 we obtain symbolic critical normal form coefficients for a Bogdanov-Takens bifur-

cation in a Van der Pol equation subject to delayed feedback. We explain how a Z2-symmetry

in the system forces us to calculate not only quadratic but also cubic coefficients and compare

our findings with literature results.

In §4.2 we investigate codimension-two points on the stability boundary of the rest state

of a neural mass model. We encounter double Hopf, fold-Hopf and Bautin (generalized Hopf)

points and compute their critical normal forms. Our findings are presented largely in the

form of a commented Maple worksheet. We hope that this example will serve as a sort

of computational prototype for the numerical normal form analysis of other systems. The

computations in this section are new.

Both examples feature a DDE of so-called point type, i.e. at a certain fixed time t ∈ R+

the history xt is evaluated at a finite number of points in the interval [−h, 0], see §4.2.3 below

for a precise definition. This subclass of DDE appears most often in applications and it is the

only subclass that can be analysed by software tools such as DDE-BIFTOOL or Knut. (Note that,

perhaps contrary to suggestion, discrete DDE are still infinite-dimensional systems.) On the

other hand, DDE that are not of point type (in this case one sometimes speaks of distributed

delay) do occur naturally in e.g. the theory of physiologically structured populations. Such

warrants the development of new computational tools to deal with this broader class of DDE.

Indeed, population theorists have recently taken up this challenge, see [3].

52
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4.1 Bogdanov-Takens bifurcation in a Van der Pol oscillator

Our first example is of a mechanical nature. Consider the equation

ẍ(t) + ε(x2(t)− 1)ẋ(t) + x(t) = εk(x(t− τ)) (4.1)

where ε > 0 is a parameter, τ > 0 is a delay and k is a smooth function on R with k(0) = 0.

In the most direct interpretation, this equation models a unit point mass subject to nonlinear

damping and delayed feedback.

• If k ≡ 0 then system (4.1) is the well-known Van der Pol equation (without forcing),

see for example Section 2.1 of [14]. The Van der Pol equation is representative for a

broader class of ordinary differential equations, known as Liénard systems, exhibiting

nonlinear oscillations.

• There seems to be a recent interest in the delayed case, i.e. k in (4.1) does not vanish

identically. A one-parameter study of (4.1) with linear delayed feedback k(x(t− τ)) ∝
x(t−τ) was done in [31]. The authors identified a sequence of delays {τj} for which their

system exhibits Hopf-bifurcations and calculated their directions. In the subsequent

article [16] a normal form analysis of a Bogdanov-Takens (BT) bifurcation in (4.1) with

nonlinear delayed feedback was performed. This analysis allowed for the occurence of

degeneracies for certain choices of k in (4.1).

In this first example we test the methods from Chapter 3 by performing a normal form

coefficient calculation of a BT-bifurcation occuring in (4.1) for general (smooth) k. We are

interested in comparing our results with those found in [16], both in the non-degenerate and

the degenerate case. We have refrained from including Maple worksheets in this example,

since all calculations are relatively simple and can be carried out by hand. However, for those

interested the author’s worksheets are available upon request by email.

We start by rewriting (4.1) as{
ẋ1(t) = τx2(t)

ẋ2(t) = τ
{
−x1(t)− ε(x21(t)− 1)x2(t) + εk(x1(t− 1))

} (4.2)

where we have rescaled time as t→ t
τ . The advantage of this is that the delay τ can now be

treated as an ordinary parameter and the history is convenienty defined on the unit interval,

i.e. the phase space for (4.2) is C([−1, 0],R2).
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4.1.1 Linearization around the trivial equilibrium

Clearly, the origin is a trivial equilibrium of (4.2). Linearizing around it yields{
ẋ1(t) = τx2(t)

ẋ2(t) = −τx1(t) + ετx2(t) + εταx1(t− 1)

where α ≡ k′(0). With x ≡ (x0, x1) this can be written as

ẋ(t) = τ

[
0 1

−1 ε

]
x(t) + ετα

[
0 0

1 0

]
x(t− 1) (4.3)

We regard α and τ as control parameters and assume that ε is fixed. Corresponding to (4.3)

there exists a unique kernel ηα,τ ∈ NBV([0, 1],R2) such that

ẋ(t) =

∫ 1

0
dηα,τ (θ)xt(−θ)

From (4.3) we infer that it is given by

ηα,τ (θ) = τ

[
0 1

−1 ε

]
1(0,∞)(θ) + ετα

[
0 0

1 0

]
1[1,∞)(θ) (θ ∈ R) (4.4)

where 1D : R→ R denotes the indicator function on D ⊆ R,

1D(θ) =

1 (θ ∈ D)

0 (θ 6∈ D)

Using (4.4) we calculate the characteristic equation. From (2.14) we observe that the char-

acteristic matrix is

∆α,τ (λ) = λI −
∫ 1

0
e−λθ dηα,τ (θ) =

[
λ −τ

τ(1− εαe−λ) λ− τε

]

and thus we see that

det ∆α,τ (λ) = λ2 − ετλ+ τ2 − ετ2αe−λ (4.5)

The roots of this equation determine the local stability and possible bifurcation of the trivial

equilibrium x = (0, 0) under variation of α and τ . Since we assume that the delay τ is positive,

we can write (4.5) set equal to zero as(
λ

τ

)2

− ε
(
λ

τ

)
+ 1− εαe−

λ
τ
τ = 0
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and in terms of z ≡ λ
τ this becomes

z2 − εz + 1− εαe−zτ = 0 (4.6)

There is a one-to-one correspondence between the roots of (4.5) and the solutions of (4.6).

Indeed, let α and τ be given. Then z is a solution of (4.6) in the left half plane (right half

plane, imaginary axis) if and only if λ = τz is a root of (4.5) in the left half plane (right half

plane, imaginary axis). The multiplicities of z and λ are clearly the same.

Remark 4.1. The characteristic equation (4.6) would be the one we had found if we had

not done the rescaling t→ t
τ which is necessary if one regards the delay as a parameter. So,

although we do perform this rescaling, as far as the characteristic equation is concerned it is

more convenient to work with the equivalent (4.6) instead of (4.5) because the parameter τ

appears only in the exponent. One just has to be careful to correct nonzero eigenvalues with

a factor τ or τ−1 when passing from one equation to the other. ♦

One checks that for α = ε−1 equation (4.6) has a zero root for all values of τ > 0 and no

other roots on the imaginary axis. Expand (4.6) in a Taylor series around z = 0 as

z2 − εz + 1− εαe−zτ = 1− εα+ ε(ατ − 1)z +
1

2
(2− εατ2)z2 +

1

6
εατ3z3 +O(z4)

Upon inspection of the coefficients of the powers in this expansion, we infer that zero is

• a simple eigenvalue if α = ε−1 and τ 6= ε,

• a double eigenvalue if α = ε−1 and τ = ε with ε 6=
√

2,

• a triple eigenvalue if α = ε−1 and τ = ε with ε =
√

2.

In this example we are interested in the second case, so let us assume that

0 < ε <
√

2 (4.7)

It is known from [31] that under this condition all roots of (4.5) and (4.6) except the zero

root are strictly in the left half-plane. Therefore the center manifold is locally attracting. We

introduce new parameters µ = (µ1, µ2) defined by

α =
1

ε
+ µ1, τ = ε+ µ2. (4.8)

For µ = (0, 0) the origin undergoes a Bogdanov-Takens (BT) bifurcation with critical normal

form given by (3.44) including only quadratic terms,

ż0 = z1

ż1 = a2z
2
0 + b2z0z1

(4.9)
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provided that a2 6= 0 and b2 6= 0. If, for example, both a2 = 0 and b2 = 0 due to Z2 symmetry,

then the BT-bifurcation is degenerate and an unfolding (4.9) must be augmented with cubic

terms,

ż0 = z1

ż1 = β1y0 + β2z1 + a3z
3
0 + b3z

2
0z1

(4.10)

where (β1, β2) are new parameters. So, in order to investigate a possible degeneracy we need

to calculate a2 and b2.

Remark 4.2. The third-order unfolding (4.10), required in case of degeneracy, was first

studied in [27], available in reprint as [28] and re-presented in [14]. We also refer to the

discussion of equation 8 in [21]. ♦

4.1.2 Calculation of Jordan chains

At criticality (i.e. µ = 0) we suppress parameter dependence in our notation and write

ηµ=0 ≡ η, ∆µ=0(λ) ≡ ∆(λ)

From (3.62) and (3.63) we see that we need (generalized) eigenvectors φ0,1 of the generator

A corresponding to η, but we only require a left Jordan chain

{p1, p0}

of ∆(λ) at λ = 0 and not the full (generalized) eigenvectors φ�2,1 of Lemma 2.7.

Lemma 4.3. Let

q0 =

[
1

0

]
, q1 =

[
0

ε−1

]
be column-vectors in R2 and let

p1 =
[
−ε 1

]
, p0 =

[
ε−1 0

]
be row-vectors in R2. Then {q0, q1} constitutes a right Jordan chain of rank two for ∆(0).

Similarly, {p1, p0} is a left Jordan chain of rank two for ∆(0).

Proof. According to Definition 2.6 we have to choose c, d ∈ R such that

∆(λ)(q0 + λq1) =

[
(1− dε)λ+ cλ2

ε(1− λ
2 )λ+ εcλ2 − d(ε2 − λ)λ

]
= O(λ2) as λ→ 0

Taking into account (4.7) we see that c = 0 and d = ε−1 does the job.
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Likewise, observe that pT1 = (−ε, 1) spans the nullspace of ∆(0)T . Writing pT0 = (c, d) for

scalars c, d to be determined, we see that

(p1 + λp0)∆(λ) =
[
(c− 1

2ε+ εd)λ2 (1− εc− ε2d)λ+ dλ2
]

up to and including O(λ2). Picking d = 0 and c = ε−1 assures that this expression is

O(λ2).

From Lemma 2.7 it now follows that

φ0(θ) ≡ q0, φ1(θ) ≡ θq0 + q1 (−1 ≤ θ ≤ 0) (4.11)

are (generalized) eigenvectors of A at λ = 0 satisfying Aφ0 = 0 and Aφ1 = φ0.

Before we can compute the normal form coefficients it remains to make sure that the

normalization condition (3.59) is satisfied. For this we can use the identities (2.19). Note

that we have a freedom in q1: If q1 is a right Jordan vector such that φ1(θ) = θq0 + q1 is a

generalized eigenvector of A corresponding to λ = 0 then the same is true for q1 + δq0 where

δ ∈ R is any constant. So we substitute q0 and p1,0 and a re-labeled

q1 =

[
0

ε−1

]
+ δq0

into (2.19) and choose δ appropriately. Namely, the following normalized vectors are such

that (3.59) holds:

q0 =

[
1

0

]
, q1 =

1

3

[
ε2(2 + ε2)−1

3ε−1

]
(4.12)

and

p1 =
2ε

2 + ε2

[
−ε 1

]
, p0 =

2

2 + ε2

[
1 0

]
(4.13)

4.1.3 Quadratic critical normal form coefficients

Now it remains to substitute the previously computed ingredients into (3.62) and (3.63). We

write (4.2) at criticality as

ẋ(t) = f(xt)

where the right-hand side f : C([−1, 0],R2)→ R2 is defined by

f(ϕ) ≡ ε2
[

ε−1ϕ2(0)

−ε−1ϕ1(0)− (ϕ2
1(0)− 1)ϕ2(0) + k(ϕ1(−1))

]

Here we denote by ϕ = (ϕ1, ϕ2) the two-component function ϕ ∈ C([−1, 0],R2).
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Remark 4.4. Note that we use the symbol ϕ as opposed to the symbol φ employed for the

eigenvectors in e.g. (4.11). We hope that this will help the reader to make the distinction

between the two different uses of the same Greek character. ♦

We compute the second derivative of f at zero and recall that this is a continuous bilinear

form from C([−1, 0],R2) × C([−1, 0],R2) to R2. For ϕ = (ϕ1, ϕ2) and ψ = (ψ1, ψ2) in

C([−1, 0],R2) we find

D2f(0)(ϕ,ψ) = ε2

[
0

k′′(0)ϕ1(−1)ψ1(−1)

]
(4.14)

Remark 4.5. In §4.2.3 below we discuss a method to compute such derivatives systematically.

We have deliberately postponed this discussion to the second example in order not to obscure

the present discussion of an easy case in which hand calculations are feasible. ♦

Using (4.14) together with (4.11), (4.12) and (4.13) we evaluate a2 and b2 from (3.62) and

(3.63) to obtain

a2 =
ε3k′′(0)

2− ε2
, b2 = −4ε3(3− ε2)k′′(0)

3(2− ε2)2
(4.15)

and we conclude that these expressions are identical to those found in [16] using a more

elaborate method.

There are some things worth noting:

1. Suppose that k is an odd function: k(−y) = −k(y). Then system (4.2) is Z2-equivariant:

It is invariant under the substitution x → −x. Because a smooth odd function has a

vanishing second derivative at the origin it follows that k′′(0) = 0 and a2 and b2 in (4.15)

vanish and the BT-bifurcation is degenerate. The unfolding (4.9) is no longer valid, but

instead we must calculate the third-order coefficients a3 and b3 and use (4.10). This

will be done below.

2. If ε =
√

2 condition (4.7) is violated and a2 and b2 either diverge (if k′′(0) 6= 0) or are

indeterminate (if k′′(0) = 0). Recall that for the parameter values

ε =
√

2, α =
1√
2
, τ =

√
2

λ = 0 is a triple root of the characteristic equation. This is another kind of degeneracy

due to the extra zero eigenvalue. We will not deal with it here, although there are no

fundamental reasons for this: The normalization method described in Chapter 3 still

works, but the amount of computation increases considerably. (This is mainly due to the

fact that our Jordan chains will have length three instead of two because the generalized

eigenspace corresponding to λ = 0 will be three-dimensional. We henceforth also require

an extended version of Lemma 2.7.)
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3. If ε =
√

3 we see that b2 vanishes while a2 may or may not vanish depending on whether

or not k′′(0) vanishes. As in Item 1 this forces us to compute the cubic coefficients a3

and b3 and use the higher-order unfolding (4.10).

4.1.4 Degeneracy due to symmetry. Cubic critical normal form coefficients

Let us assume that (4.7) holds and that

k′′(0) = 0. (4.16)

Then, as we saw above, the BT bifurcation is degenerate,

a2 = b2 = 0 (4.17)

and calculation of a3 and b3 from formulas (3.64) and (3.65) is required. These identities

are formulated in terms of a2 and b2 and they simplify considerably under (4.16) and (4.17).

Namely, using (4.14) together with (4.16) we observe that

a3 =
1

6
p1 ·D3f(0)(φ0, φ0, φ0). (4.18)

The third-order derivative appearing here is computed to be

[D3f(0)(ϕ,ψ, χ)]1 = 0,

[D3f(0)(ϕ,ψ, χ)]2 = −2ε2{ϕ2(0)ψ1(0)χ1(0)− ϕ1(0)ψ2(0)χ1(0)

− ϕ1(0)ψ1(0)χ2(0)− 1

2
k(3)(0)ϕ1(−1)ψ1(−1)χ1(−1)}

(4.19)

for ϕ,ψ, χ ∈ C([−1, 0],R2). Substituting (4.11) with (4.12) and (4.13) into (4.19) we evaluate

(4.18) to obtain

a3 =
ε3k(3)(0)

3(2− ε2)
(4.20)

By (4.16) and (4.17) formula (3.65) for b3 reduces to

b3 =
1

2
p1 ·D3f(0)(φ0, φ0, φ1) +

1

2
p0 ·D3f(0)(φ0, φ0, φ0)

which is readily evaluated using (4.19) to

b3 = − 2ε2

2− ε2

(
1 +

ε(3− ε2)k(3)(0)

3(2− ε2)

)
(4.21)

Summarizing, under conditions (4.7) and (4.16) the BT-bifurcation of the trivial equilibrium

at the critical parameter values α = ε−1, τ = ε unfolds on the locally attracting (parameter-
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dependent) center manifold according to (4.10) with a3 and b3 as in (4.20) and (4.21). (For

this we also have to assume that the system (4.2) depends generically on its parameters. In

other words, we require that certain transversality conditions are met. Verification of this

assumption is not difficult, but outside of the scope of this work.) The expressions for a3 and

b3 are identical to those found in [16] using a more elaborate technique.

4.2 Codimension-two Hopf bifurcations in a neural mass model

The calculations in the previous section were of an symbolic nature and could be carried out by

hand without too much difficulty. In contrast, in this section we will discuss an example that

requires a numerical approach. All calculations were performed in Maple 13 using standard

double precision. Self-contained parts of the Maple worksheet have been reproduced below.

Since the code is quite elementary, we hope that it is clear how to adapt it to other platforms.

The worksheet used to perform all computations in the following subsections can be obtained

by email from the author.

4.2.1 Model introduction

In [30] the following non-dimensionalized model of two interacting layers of neurons was

considered: {
ẋ1(t) = −x1(t)− ag(bx1(t− τ1)) + cg(dx2(t− τ2))

ẋ2(t) = −x2(t)− ag(bx2(t− τ1)) + cg(dx1(t− τ2))
(4.22)

We will not address modelling questions here, but only give a brief summary. The variables

x1(t) and x2(t) represent the population-averaged neural activity at time t in layers one and

two, respectively. The parameter a > 0 is a measure of the strength of inhibitory feedback,

while c > 0 measures the strength of the excitatory effect of one layer on the other. The

parameters b > 0 and d > 0 are saturation rates and the delays τ1,2 > 0 represent time lags

in the inhibitory feedback loop and excitatory inter-layer connection. Finally, the function

g : R→ R is of the sigmoidal form

g(z) ≡ [tanh(z − 1) + tanh(1)] cosh2(1) (z ∈ R) (4.23)

In fact, the detailed form of g is not relevant to the subsequent calculations. Only the values

of g and its first five derivatives at zero enter the calculations. In accordance with [30] we fix

the numerical values

b = 2.0, d = 1.2, τ1 = 12.7, τ2 = 20.2 (4.24)

We consider the feedback strengths a and c as free control parameters.
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Analysis of (4.22) by the authors of [30] is still in progress. I am happy that they nonethe-

less allowed me to use their model as a test case for the normalization techniques decribed in

this manuscript.

4.2.2 Linearization and the characteristic equation

It is apparent from (4.22) and (4.23) that the origin (x1, x2) = (0, 0) is an equilibrium for

all possible parameter values. Since the system is symmetric with respect to the interchange

of the labels of layers one and two, equilibria are always of the form (x1, x2) = (x∗, x∗) for

some x∗ ∈ R. Clearly, only the case x∗ ≥ 0 is physically relevant. In total, the number of

simultaneously present equilibria lies between one and three and they are found as solutions

of the transcendental equation

x∗ + ag(bx∗)− cg(dx∗) = 0 (4.25)

Note that this equation (and henceforth the location of equilibria) does not depend on the

values of the delays τ1 and τ2. In Figure ?? a specific one-parameter bifurcation diagram is

presented. Obviously this diagram is not exhaustive, but it serves to give an impression of

the behaviour of solutions of (4.25).

Linearizing (4.22) around an equilibrium (x∗, x∗) yields the system{
ẋ1(t) = −x1(t)− k1x1(t− τ1) + k2x2(t− τ2)

ẋ2(t) = −x2(t)− k1x2(t− τ1) + k2x1(t− τ2)
(4.26)

where

k1 ≡ abg′(bx∗), k2 ≡ cdg′(dx∗) (4.27)

Introducing x ≡ (x0, x1) we can write (4.26) in the form

ẋ(t) = −

[
1 0

0 1

]
x(t)− k1

[
1 0

0 1

]
x(t− τ1) + k2

[
0 1

1 0

]
x(t− τ2) (4.28)

From here on we will focus exclusively on the trivial equilibrium (x∗, x∗) = (0, 0). This

equilibrium corresponds to a quiescent state in which both neural layers are at rest. Following

[30] we will analyse the linearisation in terms of k1 and k2, noting from (4.27) that

a =
k1

bg′(0)
, c =

k2
dg′(0)

(4.29)

so there is a one-to-one correspondence between critical values of the control parameters a

and c on the one hand and k1,2 on the other hand. Since we have no desire to treat one of

the delays τ1,2 as a bifurcation parameter, there is no need to perform a scaling by the delay
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(a) c = 15
29

(b) c = 18
29

(c) c = 20
29

(d) c = 40
29

Figure 4.1: The graph of the left-hand side of (4.25) as a function of x∗ for a = 2
29 , b and d as

in (4.24) and values of the parameter c as indicated. The origin is always an equilibrium. In (a)
it is the only equilibrium present, but in (b) it coexists with two non-zero equilibria that were
born in a saddle-node bifurcation occuring for some c ∈ ( 15

29 ,
18
29 ). In (c) this situation persists

qualitatively, but in (d) a transcritical bifurcation has lead to an exchange of stability between
the trivial equilibrium and the left-most member of the saddle-node pair.
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time as in §4.1. Setting h ≡ max(τ1, τ2) > 0 we observe that corresponding to (4.28) there

exists a unique kernel ηk1,k2 ∈ NBV([0, h],R2) such that

ẋ(t) =

∫ h

0
dηk1,k2(θ)xt(−θ)

From (4.28) we see that ηk1,k2 is given by

ηk1,k2(θ) = −

[
1 0

0 1

]
1(0,∞)(θ)− k1

[
1 0

0 1

]
1[τ1,∞)(θ) + k2

[
0 1

1 0

]
1[τ2,∞)(θ) (4.30)

for θ ∈ R. Hence the characteristic matrix is

∆k1,k2(λ) =

[
λ+ 1 + k1e

−λτ1 −k2e−λτ2

−k2e−λτ2 λ+ 1 + k1e
−λτ1

]
(4.31)

the determinant of which leads to the characteristic equation

∆+
k1,k2

(λ)∆−k1,k2(λ) = 0 (4.32)

with

∆±k1,k2 ≡ 1 + λ+ k1e
−λτ1 ± k2e−λτ2

As was shown in [30] and can easily be checked by the reader, fold bifurcations occur on the

curves in the (k1, k2)-plane defined by the equations

1 + k1 + k2 = 0, 1 + k1 − k2 = 0 (4.33)

while Hopf bifurcations from an eigenvalue iω occur on the curves parametrized by ω as[
k1

k2

]
=

1

sin (ω(τ2 − τ1))

[
sinωτ2 − cosωτ2

− sinωτ1 cosωτ1

][
−1

ω

]
(ω > 0) (4.34)

and [
k1

k2

]
=

1

sin (ω(τ2 − τ1))

[
sinωτ2 − cosωτ2

sinωτ1 − cosωτ1

][
−1

ω

]
(ω > 0) (4.35)

with singularities for

ω =
mπ

τ2 − τ1
≡ ωs(m) (m ∈ N) (4.36)

It will come as no surprise that analytical results are difficult to obtain for the characteristic

equation (4.32). Some observations can however be made. In [30] it was shown that the origin

is a locally stable equilibrium of (4.22) for (k1, k2) strictly contained in the circle of radius
1
2

√
2 centered at the origin in the (k1, k2) parameter plane.
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In Figure 4.2 we depict and discuss the structure of the fold and Hopf bifurcation curves

in the (k1, k2)-plane near the origin. It is seen that the quiescent (zero) equilibrium typically

looses its stability in an Andronov-Hopf bifurcation, but additionally various codimension-two

points exist. In §4.2.5 we will compute the direction of Hopf bifurcation and give a precise

account of all the relevant codimension-two points that exist in Figure 4.2.

k1

k2

Figure 4.2: The (k1, k2)-parameter plane near the origin for parameter values as in (4.24). Shown
in black and red are curves of Hopf bifurcation, parametrized by (4.34) and (4.35), respectively.
The straight blue lines correspond to the fold curves (4.33). The curve parameter ω was varied in
the interval [0, ωs(1)] with ωs(1) as in (4.36). For values ω > ωs(1) the plane becomes gradually
filled with Hopf curves, but the stable region surrounding the origin remains unaltered. As can
be seen from the curve parametrizations, the fold curves do not depend on any fixed system
parameters (excluding the free parameters k1 and k2) while the Hopf curves depend only on τ1
and τ2. We note a symmetry between the upper and lower half-plane and remark that only the
positive quadrant is physically relevant, although in general bifurcation points sufficiently close
to the quadrant’s boundary may still be ‘felt’ in the quadrant’s interior. However, such points do
not exist in the above figure. For example, the Bogdanov-Takens point at the crossing of the two
blue lines lies too far in the negative half-plane to warrant analysis.

In order to do this, we need some preparations. In the following subsection we take a

break and divert from the main course of argument by explaining how the bookkeeping of

higher-order derivatives of the system (4.22) may be done in a clear, efficient manner.
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4.2.3 Intermezzo. Symbolic calculation of higher-order derivatives

Consider a DDE of the form

ẋ(t) = f(xt) (4.37)

where f : C([−h, 0],Rn)→ Rn is at least five times continuously differentiable. Suppose that

the delay in (4.37) is of point-type, i.e. there is r ∈ N, there are

0 = τ0 < τ1 < τ2 < . . . < τr = h (4.38)

and there exists a function G ∈ C5(Rn×(r+1),Rn) such that

f(ϕ) = G(Φ) (4.39)

where Φ =
{
ϕkj

}n,r
j=1
k=0

is the n× (r + 1) matrix

{
ϕkj

}n,r
j=1
k=0

≡


ϕ1(−τ0) . . . ϕ1(−τr)
ϕ2(−τ0) . . . ϕ2(−τr)

...

ϕn(−τ0) . . . ϕn(−τr)

 (ϕ ∈ C([−h, 0],Rn)) (4.40)

Here we again use ϕ instead of φ to avoid confusion with our notation for eigenvectors, see

Remark 4.4.

In this subsection we show how to compute derivatives of f in terms of derivatives of

G. (All derivatives are implicitly understood to be Fréchet-derivatives, as usual.) This is

not difficult, but one has to be a bit careful with notation. We recall that for ` ∈ N the

`th-order derivative D`f(0) of f at zero is a bounded `-linear form from C([−h, 0],Rn) to

Rn. We denote the derivative at zero of the ith component of G with respect to its (j, k)th

variable as Dk
jGi(0) ∈ R. Likewise, the second derivative at zero of the ith component of G

with respect to its (j1, k1)th and (j2, k2)th variables is denoted by Dk1k2
j1j2

Gi(0) ∈ R and so on

for higher-order derivatives of G. When ` = 1 we recover the ordinary first-order derivative

Df(0) = D1f(0), the ith component of which is given by

D1fi(0)ϕ =

n∑
j1=1

r∑
k1=0

Dk1
j1
Gi(0)ϕk1j1 (ϕ ∈ C([−h, 0]) (4.41)

The second derivative D2f(0) takes two functions in C([−h, 0],Rn) as input and produces



66 4.2. CODIMENSION-TWO HOPF BIFURCATIONS IN A NEURAL MASS MODEL

from these a vector in Rn. Thus the ith component is given by

D2fi(0)(ϕ,ψ) =
n∑

j1,j2=1

r∑
k1,k2=0

Dk1k2
j1j2

Gi(0)ϕk1j1ψ
k2
j2

≡ Dk1k2
j1j2

Gi(0)ϕk1j1ψ
k2
j2

(ϕ,ψ ∈ C([−h, 0],Rn) (4.42)

where in the second line we used the convention that repeated lower (or upper) indices imply

summation. This is convenient for typographical reasons when higher order derivatives are

involved, but we will not use it except in (4.42) and (4.43) below. By now it is probably clear

how to compute these higher order derivatives. We have, up to order five (since this is what

is required for the normal forms in §3.5),

D3fi(0)(ϕ,ψ, χ) = Dk1k2k3
j1j2j3

Gi(0)ϕk1j1ψ
k2
j2
χk3j3

D4fi(0)(ϕ,ψ, χ, ζ) = Dk1k2k3k4
j1j2j3j4

Gi(0)ϕk1j1ψ
k2
j2
χk3j3 ζ

k4
j4

D5fi(0)(ϕ,ψ, χ, ζ, η) = Dk1k2k3k4k5
j1j2j3j4j5

Gi(0)ϕk1j1ψ
k2
j2
χk3j3 ζ

k4
j4
ηk5j5

(4.43)

for ϕ,ψ, χ, ζ, η ∈ C([−h, 0],Rn) and i = 1, . . . , n.

The following simple Maple code computes the second and third order derivatives D2f(0)

and D3f(0) pertaining to the system (4.22) but is set up to be easily adaptable to other

systems. The first derivative is computed as well, so it can be compared to the linearization

(4.26). We start by defining the function G from (4.39) and (4.37). Using y ≡ {y}n,rj=1,k=0 as

a placeholder variable, we enter

> restart;

> n:=2; r:=2;

> G:=<-y[1,0]-a*g(b*y[1,1])+c*g(d*y[2,2]),-y[2,0]-a*g(b*y[2,1])+c*g(d*y[1,2])>;

We set up three, five and seven dimensional arrays A, B and C to store the first, second and

third order derivatives of G:

> A:=Array(1..n,1..n,0..r);

> B:=Array(1..n,1..n,0..r,1..n,0..r);

> C:=Array(1..n,1..n,0..r,1..n,0..r,1..n,0..r);

The first index runs over the components of G, the second and third indicate differentiation

with respect to the (j1, k1)th variable, the fourth and fifth correspond to differentiation with

respect to the (j2, k2)th variable, and so on. Hence, the arrays are filled as follows.

> for i from 1 to n do

> for j from 1 to n do

> for k from 0 to r do

> A[i,j,k]:=eval(diff(G[i],y[j,k]),y=0);
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> end do:

> end do:

> end do:

for A,

> for i from 1 to n do

> for j1 from 1 to n do

> for k1 from 0 to r do

> for j2 from 1 to n do

> for k2 from 0 to r do

> B[i,j1,k1,j2,k2]:=eval(diff(G[i],y[j1,k1],y[j2,k2]),y=0);

> end do:

> end do:

> end do:

> end do:

> end do:

for B, and

> for i from 1 to n do

> for j1 from 1 to n do

> for k1 from 0 to r do

> for j2 from 1 to n do

> for k2 from 0 to r do

> for j3 from 1 to n do

> for k3 from 0 to r do

> C[i,j1,k1,j2,k2,j3,k3]:=

> eval(diff(G[i],y[j1,k1],y[j2,k2],y[j3,k3]),y=0);

> end do:

> end do:

> end do:

> end do:

> end do:

> end do:

> end do:

for C. Next, we define three n-vectors to store the derivatives of f ,

> DF:=Array(1..n);

> D2F:=Array(1..n);

> D3F:=Array(1..n);
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and we fill these with products of elements of A, B and C and arbitrary n× (r+ 1) arrays PHI,

PSI and CHI, as in (4.41), (4.42) and (4.43).

> for i from 1 to n do

> DF[i]:=add(add(A[i,j,k]*PHI[j,k],j=1..n),k=0..r);

> end do:

> for i from 1 to n do

> D2F[i]:=add(add(add(add(

> B[i,j1,k1,j2,k2]*PHI[j1,k1]*PSI[j2,k2],

> j1=1..n),k1=0..r),j2=1..n),k2=0..r);

> end do:

and

> for i from 1 to n do

> D3F[i]:=add(add(add(add(add(add(

> C[i,j1,k1,j2,k2,j3,k3]*PHI[j1,k1]*PSI[j2,k2]*CHI[j3,k3],

> j1=1..n),k1=0..r),j2=1..n),k2=0..r),j3=1..n),k3=0..r);

> end do:

which yields

> DF[1];

> DF[2];

− Φ1,0 − abg′(0)Φ1,1 + cdg′(0)Φ2,2

− Φ2,0 − abg′(0)Φ2,1 + cdg′(0)Φ1,2

(4.44)

for the first derivative Df(0)ϕ. We note that the resulting expression agrees with the lineari-

sation obtained earlier in (4.26). Likewise, we find

> D2F[1];

> D2F[2];

− ab2g(2)(0)Φ1,1Ψ1,1 + cd2g(2)(0)Φ2,2Ψ2,2

− ab2g(2)(0)Φ2,1Ψ2,1 + cd2g(2)(0)Φ1,2Ψ1,2

(4.45)

and

> D3F[1];

> D3F[2];

− ab3g(3)(0)Φ1,1Ψ1,1X1,1 + cd3g(3)(0)Φ2,2Ψ2,2X2,2

− ab3g(3)(0)Φ2,1Ψ2,1X2,1 + cd3g(3)(0)Φ1,2Ψ1,2X1,2

(4.46)
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So, if one wants to evaluate Df(0), D2f(0) or D3f(0) at concrete choices for ϕ, ψ and χ, one

forms the corresponding arrays PHI, PSI and CHI and evaluates the above expressions DF, D2F

or D3F.

A drawback of expressions such as (4.44), (4.45) and (4.46) is that the ‘user’ is required

to convert each function (such as ϕ) to an array (such as Φ) before the derivatives may be

evaluated. In §4.2.4 we will therefore replace the expressions DF, D2F and D3F by Maple

procedures. These procedures will handle the function → array conversion themselves.

4.2.4 System specification in Maple

The computations that follow are convenienty performed in a computer algebra system such

as Maple, capable of both symbolic as well as numerical calculations. To present our results,

we proceed as follows. In the present subsection we propose an ‘initialization’ of the system

(4.22), its fixed parameters and derivatives. The reader who is interested in checking our

computations should enter this code into an empty Maple worksheet. In the later subsections

we will add bits of code to this worksheet to perform various normal form computations.

From here on, we adopt the convention that variables writting in verbatim font corre-

spond to Maple variables. So, if we write q or lambda we refer to Maple variables and these

correspond to the ‘ordinary’ variables q and λ in the main text. We start with

> restart;

> with(LinearAlgebra):

> Digits:=15;

> interface(showassumed=0);

> assume(theta,’real’);

Then we define system parameters. The parameters n and r are the dimension of the system

(4.37) and the number of delays. The other parameters are as in (4.24). Note that tau[0] is

the ‘zero-delay’ appearing in (4.38).

> n:=2; r:=2; (*)

> b:=2; d:=1.2; tau[0]:=0.0; tau[1]:=12.7; tau[2]:=20.2;

These parameters are global in the worksheet. They are read (but not altered) by the various

procedures that follow. Next, we code the function g from (4.23) and its derivatives (up to

and including order three for double Hopf and fold-Hopf points and up to and including order

five for Bautin points) at zero.

> g:=z->(tanh(z-1.0)+tanh(1.0))*cosh(1.0)^2;

> dg:=D(g)(0);

> d2g:=(D@@2)(g)(0);

> d3g:=(D@@3)(g)(0);
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> d4g:=(D@@4)(g)(0);

> d5g:=(D@@5)(g)(0);

We also provide the characteristic matrix as a function of λ, as well as its first two derivatives.

(The second derivative is not needed in the present subsection, but it will be required in §4.2.7

below.)

> Delta:=lambda->

> Matrix([[lambda+1+k1*exp(-lambda*tau[1]),-k2*exp(-lambda*tau[2])],

> [-k2*exp(-lambda*tau[2]),lambda+1+k1*exp(-lambda*tau[1])]]);

> DDelta:=lambda->eval(map(diff,Delta(z),z),z=lambda);

> D2Delta:=lambda->eval(map(diff,DDelta(z),z),z=lambda);

Moreover, we provide procedures D2F3 and D3F that take as input two or three expressions

(not functions) in Rn depending on a variable theta and output the second or third Fréchet-

derivative of the right-hand side of (4.22) at zero, evaluated at the input expression(s). For

these procedures we use the results (4.45) and (4.46) found in the previous subsection. The

conversion of input expressions into arrays (see the remark at the end of §4.2.3) is done

internally. For D2F we have

> D2F:=proc(phi,psi)

> local PHI,PSI,i,j;

> global a,b,c,d,n,r,g,tau;

>

> PHI:=Array(1..n,0..r);

> PSI:=Array(1..n,0..r);

>

> for i from 1 to n do

> for j from 0 to r do

> PHI[i,j]:=eval(phi[i],theta=-tau[j]);

> PSI[i,j]:=eval(psi[i],theta=-tau[j]);

> end do;

> end do;

>

> return(<-a*d2g*b^2*PHI[1,1]*PSI[1,1]+c*d2g*d^2*PHI[2,2]*PSI[2,2],

> -a*d2g*b^2*PHI[2,1]*PSI[2,1]+c*d2g*d^2*PHI[1,2]*PSI[1,2]>)

>

> end:

while for D3F we have

> D3F:=proc(phi,psi,chi)
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> local PHI,PSI,CHI,i,j;

> global a,b,c,d,n,r,g,tau;

>

> PHI:=Array(1..n,0..r);

> PSI:=Array(1..n,0..r);

> CHI:=Array(1..n,0..r);

>

> for i from 1 to n do

> for j from 0 to r do

> PHI[i,j]:=eval(phi[i],theta=-tau[j]);

> PSI[i,j]:=eval(psi[i],theta=-tau[j]);

> CHI[i,j]:=eval(chi[i],theta=-tau[j]);

> end do;

> end do;

>

> return(<-a*d3g*b^3*PHI[1,1]*PSI[1,1]*CHI[1,1]

> +c*d3g*d^3*PHI[2,2]*PSI[2,2]*CHI[2,2],

> -a*d3g*b^3*PHI[2,1]*PSI[2,1]*CHI[2,1]

> +c*d3g*d^3*PHI[1,2]*PSI[1,2]*CHI[1,2]>)

>

> end:

This suffices for double Hopf and fold-Hopf points. In §4.2.8 we will compute the second

Lyapunov coefficient (a fifth order coefficient) for a Bautin point that we shall encounter in

§4.2.5. For this we also need to provide Maple procedures for fourth and fifth order Fréchet-

derivatives of the right-hand side of (4.22). These were not computed in §4.2.3 to avoid tedious

repetitions, but we believe that their form is easily deducibe from the pattern provided by

(4.45) and (4.46). For D4F we define

> D4F:=proc(phi,psi,chi,zeta)

> local PHI,PSI,CHI,ZETA,i,j;

> global a,b,c,d,n,r,g,tau;

>

> PHI:=Array(1..n,0..r);

> PSI:=Array(1..n,0..r);

> CHI:=Array(1..n,0..r);

> ZETA:=Array(1..n,0..r);

>

> for i from 1 to n do

> for j from 0 to r do
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> PHI[i,j]:=eval(phi[i],theta=-tau[j]);

> PSI[i,j]:=eval(psi[i],theta=-tau[j]);

> CHI[i,j]:=eval(chi[i],theta=-tau[j]);

> ZETA[i,j]:=eval(zeta[i],theta=-tau[j]);

> end do;

> end do;

>

> return(<-a*d4g*b^4*PHI[1,1]*PSI[1,1]*CHI[1,1]*ZETA[1,1]

> +c*d4g*d^4*PHI[2,2]*PSI[2,2]*CHI[2,2]*ZETA[2,2],

> -a*d4g*b^4*PHI[2,1]*PSI[2,1]*CHI[2,1]*ZETA[2,1]

> +c*d4g*d^4*PHI[1,2]*PSI[1,2]*CHI[1,2]*ZETA[1,2]>)

>

> end:

and, finally, for D5F we have

> D5F:=proc(phi,psi,chi,zeta,eta)

> local PHI,PSI,CHI,ZETA,ETA,i,j;

> global a,b,c,d,n,r,g,tau;

>

> PHI:=Array(1..n,0..r);

> PSI:=Array(1..n,0..r);

> CHI:=Array(1..n,0..r);

> ZETA:=Array(1..n,0..r);

> ETA:=Array(1..n,0..r);

>

> for i from 1 to n do

> for j from 0 to r do

> PHI[i,j]:=eval(phi[i],theta=-tau[j]);

> PSI[i,j]:=eval(psi[i],theta=-tau[j]);

> CHI[i,j]:=eval(chi[i],theta=-tau[j]);

> ZETA[i,j]:=eval(zeta[i],theta=-tau[j]);

> ETA[i,j]:=eval(eta[i],theta=-tau[j]);

> end do;

> end do;

>

> return(<-a*d5g*b^5*PHI[1,1]*PSI[1,1]*CHI[1,1]*ZETA[1,1]*ETA[1,1]

> +c*d5g*d^5*PHI[2,2]*PSI[2,2]*CHI[2,2]*ZETA[2,2]*ETA[2,2],

> -a*d5g*b^5*PHI[2,1]*PSI[2,1]*CHI[2,1]*ZETA[2,1]*ETA[2,1]

> +c*d5g*d^5*PHI[1,2]*PSI[1,2]*CHI[1,2]*ZETA[1,2]*ETA[1,2]>)
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>

> end:

This concludes the initialization part of the worksheet. In all our subsequent Maple compu-

tations we will assume that these definitions have been executed in the active Maple session.

4.2.5 Identification of codimension-two points

We now return to Figure 4.2. Various codimension-two points reveal their presence as points

of intersection of the black, red and blue lines. Furthermore, the direction of bifurcation along

the Hopf curves may change at a Bautin bifurcation.

It is natural to start our computations by calculating this direction of bifurcation, i.e. cal-

culating the first Lyapunov coefficient along the black and red curves in the positive quadrant

of the (k1, k2)-plane. Using the Maple definitions provided in §4.2.4 this is not very difficult.

Suppose that L is a vector that parametrize the black curve in Figure 4.2. Let omega0 be

an admissible frequency. We are interested in computing the direction of bifurcation at the

point

> k1:=eval(L[1],omega=omega0);

> k2:=eval(L[2],omega=omega0);

in the (k1, k2)-plane. Using (4.29) we set the system control parameters and the critical

eigenvalue accordingly:

> a:=k1/(b*dg); c:=k2/(d*dg);

> lambda0:=I*omega0;

It is easily checked that the vectors q ≡ (1,−1) and p ≡ (1,−1)T satisfy ∆(λ0)q = 0 and

p∆(λ0) = 0, independently of omega0. Using Lemma 2.4 to satisfy the ‘bi-orthogonality’

condition (3.66) we normalize these vectors as

> q:=<1,-1>; p:=Transpose(<1,-1>);

> alpha:=1/sqrt(p.DDelta(lambda0).q);

> q:=alpha*q; p:=alpha*p;

Next, we define the eigenfunction φ corresponding to the eigenvector q, as well as its complex

conjugate.

> phi:=exp(lambda0*theta)*q;

> phibar:=map(conjugate,phi);

Everything is ready to compute the quantity in (3.70) and, from that and (3.72), the first

Lyapunov coefficient l1.
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> h:=Array(0..2,0..2);

> h[2,0]:=exp(2*lambda*theta)*MatrixInverse(Delta(2*lambda)).D2F(phi,phi);

> h[1,1]:=MatrixInverse(Delta(0)).D2F(phi,phibar);

> c1:=(1/2)*p.(D2F(phibar,h[2,0])+2*D2F(phi,h[1,1])+D3F(phi,phi,phibar));

> l1:=(1/omega0)*Re(c1);

This is all there is to calculating the direction of Hopf bifurcation along the black curve in

Figure 4.2. A similar procedure can be followed to compute the direction along the red curve.

We have wrapped the above code in a Maple procedure (not reproduced here, but available

by email) to graph the plot in Figure 4.3.

`1

ω0

Figure 4.3: The first Lyapunov coefficient computed along the portions of the black and red
curves that lie in right-half plane in Figure 4.2. Fixed parameter values are as in (4.24). Both
graphs cross the horizontal axis, each once. Thus there exist two Bautin-points, one on each curve.
In fact, the Lyapunov coefficient along the black curve diverges near the start of the ω0-interval
and becomes negative left of the singularity. (This is not visible in the plot.) Likewise, l1 diverges
along the red curve near the end of this interval and becomes negative right of the singularity.
The points of divergence coincide with points of fold-Hopf bifurcation, as explained in the main
text.

We are now in a position to identify the codimension-two points in the positive quadrant

in Figure 4.2, also see Figure 4.4. Solving numerically for the two Bautin (generalized Hopf)
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k1

k2

GH1

GH2

1 : 1

ZH1

ZH2

HH

(a)

k2

k1

ZH1

ZH2

(b)

Figure 4.4: In 4.4(a) we see the positive quadrant of Figure 4.2 to which we added the data
computed in §4.2.5. Fixed parameter values are as in (4.24). A dashed line corresponds to a
subcritical Andronov-Hopf bifurcation, while a solid line indicates a supercritical direction. The
labels for the codimension-two points are chosen for consistency with standard MATCONT notation.
ZH = zero-Hopf (fold-Hopf) HH = Hopf-Hopf (double Hopf) GH = generalized Hopf. 4.4(b) is
a magnification of the upper left portion of 4.4(a). Note that at the fold-Hopf points ZH1 and
ZH2 the direction of Hopf bifurcation changes. At these points the first Lyapunov coefficient does
not vanish, but rather it diverges, as was already noted in the caption of Figure 4.3.

points yields

(kc1, k
c
2) = (0.503730243249497, 0.697442362012240)

ω0 = 0.275909434388554
(GH1)

for the point on the red curve, and

(kc1, k
c
2) = (0.513230584432908, 0.745286219214126)

ω0 = 0.172217243841191
(GH2)

for the point on the black curve.

The 1 : 1-resonance occurs at

(kc1, k
c
2) = (1.02601931196937, 0.0)

(ω1, ω2) = (0.229598842623607, 0.229598842623607)
(1:1)

and the charateristic matrix ∆k1,k2(λ) from (4.31) reduces to the zero-matrix at λ = iω1 = iω2.

Therefore the resonance is semisimple in the sense that the characteristic matrix possesses

two independent null-vectors. This situation requires special treatment for which §3.5 lacks
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results. (Compare this to the remark made at the bottom of p.424 in [19] in conjunction with

a 1 : 1 resonance for maps.)

Instead, we choose to focus on the more ‘standard’ fold-Hopf and double Hopf points in

Figure 4.2. The double Hopf point occurs at

(kc1, k
c
2) = (0.180751807497717, 0.927849704599635)

(ω1, ω2) = (0.289979003927627, 0.156040086681052)
(HH)

The non-resonance condition (3.53) is satisfied,

n1ω1 6= n2ω2 for all n1, n2 ∈ N with n1 + n2 ≤ 5 (4.47)

For (n1, n2) = (1, 2) we have

n1ω1 − n2ω2 = 0.022101169434477

and this (n1, n2)-pair minimizes the absolute value of the difference of the left-hand and

right-hand sides of (4.47) over all relevant combinations of n1 and n2.

The third codimension-two point present in the positive quadrant is the fold-Hopf point.

Its coordinates are

(kc1, k
c
2) = (0.00760034373723105, 1.00760034373723)

ω0 = 0.148557497656540
(ZH1)

In this example we will compute the critical normal forms of the points DH, FH1 and GH1,

since these are the codimension-two points that lie on the stability boundary of the origin in

the positive quadrant of the (k1, k2)-plane. The points labeled FH2 and GH2 do no lie on this

boundary and therefore we will not compute their critical normal forms. (We are however

confident that the interested reader can do this himself after learning about the computations

below.)

4.2.6 The double Hopf point

In this subsection we will show that for the critical parameter values

ac =
kc1

bg′(0)
= 0.0903759037488591, cc =

kc2
dg′(0)

= 0.773208087166367 (4.48)

with (kc1, k
c
2) as in (HH) and all other parameters as in (4.24), the equilibrium (0, 0) of (4.22)

exhibits a ‘simple’ non-degenerate double Hopf bifurcation. (Here ‘simple’ refers to the posi-

tive sign of the product appearing in (3.58). We will return to this point below.) Using the

definitions and procedures from §4.2.4 we process data specific to the double Hopf point to
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calculate the third-order critical normal form coefficients.

First we set the critical parameters and eigenvalues.

> k1:=0.180751807497717; k2:=0.927849704599635; (**)

> a:=k1/(b*dg); c:=k2/(d*dg);

> omega1:=0.289979003927627; omega2:=0.156040086681052;

> lambda1:=I*omega1; lambda2:=I*omega2;

We proceed by computing the critical eigenvectors. Let ∆(λ1,2) be the characteristic matrices

from (4.31) evaluated at the critical eigenvalues λ1,2 = iω1,2. The column- and row vectors

q1 =

[
1

1

]
, p1 =

[
1 1

]
, q2 =

[
1

−1

]
, p2 =

[
1 −1

]
are such that

∆(λ1)q1 = 0, p1∆(λ1) = 0, ∆(λ2)q2 = 0, p2∆(λ2) = 0

(Compare this with the introduction in §3.5.5.) We have to scale q1, p1 and q2, p2 with

constants α1, β1 ∈ C and α2, β2 ∈ C in such a way that the ‘bi-orthogonality’ relationship

(3.81) is satisfied. For this we use (2.17) from Lemma 2.4 and Lemma 2.5.

> q1:=<1,1>;> p1:=Transpose(<1,1>);

> q2:=<1,-1>; p2:=Transpose(<1,-1>);

> alpha1:=1/sqrt(p1.DDelta(lambda1).q1); beta1:=alpha1;

> alpha2:=1/sqrt(p2.DDelta(lambda2).q2); beta2:=alpha2;

> q1:=alpha1*q1; p1:=beta1*p1;

> q2:=alpha2*q2; p2:=beta2*p2;

(We have chosen the scaling constants in such a way that, in addition to satisfying (3.81),

the vectors are of comparable numerical magnitude.) Using Lemma 2.4 we define the corre-

sponding critical eigenfunctions and their complex conjugates. (Here we use the assumption

that theta is real.) Note that these are expressions, rather than Maple functions.

> phi1:=exp(lambda1*theta)*q1;

> phi1bar:=map(conjugate,phi1);

> phi2:=exp(lambda2*theta)*q2;

> phi2bar:=map(conjugate,phi2);

Now it is easy to compute the quadratic critical center manifold coefficients from (3.82).

> h:=Array(0..2,0..2,0..2,0..2);

> h[1,1,0,0]:=MatrixInverse(Delta(0)).D2F(phi1,phi1bar);
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> h[2,0,0,0]:=exp(2*lambda1)*MatrixInverse(Delta(2*lambda1)).D2F(phi1,phi1);

> h[1,0,1,0]:=exp(lambda1+lambda2)*

> MatrixInverse(Delta(lambda1+lambda2)).D2F(phi1,phi2);

> h[1,0,0,1]:=exp(lambda1-lambda2)*

> MatrixInverse(Delta(lambda1-lambda2)).D2F(phi1,phi2bar);

> h[0,0,2,0]:=exp(2*lambda2)*

> MatrixInverse(Delta(2*lambda2)).D2F(phi2,phi2);

> h[0,0,1,1]:=MatrixInverse(Delta(0)).D2F(phi2,phi2bar);

We also require their complex conjugates.

> hbar[1,1,0,0]:=map(conjugate,h[1,1,0,0]);

> hbar[2,0,0,0]:=map(conjugate,h[2,0,0,0]);

> hbar[1,0,1,0]:=map(conjugate,h[1,0,1,0]);

> hbar[1,0,0,1]:=map(conjugate,h[1,0,0,1]);

> hbar[0,0,2,0]:=map(conjugate,h[0,0,2,0]);

> hbar[0,0,1,1]:=map(conjugate,h[0,0,1,1]);

At last we are able to compute the cubic critical normal form coefficients as in (3.83).

> gg[2,1,0,0]:=(1/2)*p1.(2*D2F(h[1,1,0,0],phi1)+D2F(h[2,0,0,0],phi1bar)

> +D3F(phi1,phi1,phi1bar));

> gg[1,0,1,1]:=p1.(D2F(h[0,0,1,1],phi1)+D2F(h[1,0,0,1],phi2)

> +D2F(h[1,0,1,0],phi2bar)+D3F(phi1,phi2,phi2bar));

> gg[1,1,1,0]:=p2.(D2F(hbar[1,0,0,1],phi1)+D2F(h[1,0,1,0],phi1bar)

> +D2F(h[1,1,0,0],phi2)+D3F(phi1,phi1bar,phi2));

> gg[0,0,2,1]:=(1/2)*p2.(2*D2F(h[0,0,1,1],phi2)+D2F(h[0,0,2,0],phi2bar)

> +D3F(phi2,phi2,phi2bar));

(We use gg instead of g since the latter symbol has already been defined.) They evaluate to

g2100 = 0.0113599727138386 + 0.0025880313644929 i

g1011 = 0.0065770995240054− 0.0112835232180977 i

g1110 = 0.0072326241332179 + 0.0129547559869050 i

g0021 = 0.0099439410875781− 0.0028471712578469 i

These are the critical normal form coefficients that we are looking for. Under the additional

hypothesis that the eigenvalues λ1,2 cross the imaginary axis transversally as the control

parameters a and c are varied (this can be verified numerically), we conclude from our discus-

sion of the double Hopf normal form in §3.4.2 (and in particular the condition (3.54)) that a

non-degenerate double Hopf bifurcation occurs at the critical parameter values (HH) with all
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other parameters set at their values in (4.24). Moreover, this bifurcation is of ‘simple’ type,

since

(Re g2100)(Re g0021) = 0.000112962899422905 > 0

For an analysis of the bifurcation diagram of the corresponding truncated normal form, we

refer to the discussion of the ‘simple’ case on p. 359 of [19]. (Note that since Re g2100 > 0

and Re g0021 > 0 it is necessary to reverse time!) In fact, since the quantities

θ(0) ≡ Re g1011
Re g0021

= 0.661417788589018, δ(0) ≡ Re g1110
Re g2100

= 0.636676188879151

are such that 0 < δ(0) ≤ θ(0) and θ(0)δ(0) < 1, it follows from p. 360 of [19] that we

are in subcase II of the ‘simple’ double Hopf bifurcation. Hence the bifurcation diagram

displayed in subfigure II of Figure 8.25 in [19] applies, with time reversal. It predicts the

presence of two-dimensional invariant tori, but these are repelling and cannot be visualized

by direct integration of the DDE (4.22). We will return to this point in §4.2.9. Moreover, this

bifurcation diagram predicts two curves of subcritical Hopf bifurcation emanating from the

codimension-two point in the parameter plane. Such is consistent with Figure 4.4(a) in which

we see that the double Hopf point lies at the intersection of two subcritical Hopf branches.

Questions about the effect of higher-order terms and persistence of ‘truncated’ dynamics

are addressed in §8.6.3 of [19]. Since the determinant of the matrix (3.57),∣∣∣∣∣ Re g2100 Re g1011

Re g1110 Re g0021

∣∣∣∣∣ = 0.0000653932106790078

is non-zero, Lemma 8.16 of [19] implies the presence of invariant two-dimensional tori near the

bifurcation point. (However, by the remark made earlier, such tori are unstable.) These come

into existence via Neimark-Sacker bifurcations of cycles that were in turn born in subcritical

Hopf bifurcations. Curves of Neimark-Sacker and subcritical Hopf bifurcation emanate from

the critical point in the parameter plane. In summary, the features of bifurcation diagram

8.25.II of [19] (with time reversed) persist under the addition of higher-order terms, but the

motion on the unstable torus may no longer be quasi-periodic due to phase locking.

It is interesting to note that there are no attractors other than the origin present in

bifurcation diagram 8.25.II of [19] (with time reversed). The origin is an attractor for certain

parameter values that correspond to points in the interior of the stability region in Figure

4.4(a). On the other hand, for ‘unstable’ parameter values we expect that small initial

conditions will ‘fly off’ to a remote attractor that is not present in the local bifurcation

diagram. This is illustrated in Figure 4.5.

We refrain from computing the higher-order critical normal form coefficients, since their

added value is small: We do not require them to guarantee non-degeneracy of the double Hopf

bifurcation and, as we have just seen, dynamical features of the bifurcation are determined
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Figure 4.5: Time evolution of the variables x1 and x2 according to (4.22) starting from a constant
history function (x1(θ), x2(θ)) ≡ (0.01, 0.0175) for θ ∈ [−h, 0] with h ≡ max(τ1, τ2). Note that
this history function may be considered ‘small’ in the usual supremum norm. Fixed parameter
values are as in (4.24), while the control variables were set to a = 0.0905, c = 0.774, i.e. just above
the critical values (4.48). After a long transcient, during which the system spends time close to
the stable manifolds of the saddles predicted by the bifurcation’s normal form, the dynamics seem
to ‘fly off’ and converge to a stable steady state far away from the origin. This behaviour is not
due to numerical instability, as can be checked by starting the integration from the distant steady
state.

predominantly by the third order coefficients.

4.2.7 The fold-Hopf point

In this subsection we show that for the critical parameter values

ac =
kc1

bg′(0)
= 0.00380017186861556, cc =

kc2
dg′(0)

= 0.839666953114366

with (kc1, k
c
2) as in (ZH1) and all other parameter values as in (4.24), the equilibrium (0, 0)

of (4.22) exhibits a non-degenerate fold-Hopf bifurcation. As in §4.2.6 we will present the

computations in the form of a commented Maple worksheet, thus enabling easy verification

of our results.

We assume that all commands in the initialization part of the worksheet as presented

in §4.2.6 have been executed in the Maple shell and we continue the worksheet from there

by providing point-specific data. First we enter the coordinates of the point, as well as the

critical eigenvalues.

> k1 := 0.00760034373723105; k2 := 1.00760034373723;

> a:=k1/(b*dg); c:=k2/(d*dg);

> omega0:=0.148557497656540;



CHAPTER 4. EXAMPLES 81

> lambda0:=0; lambda1:=I*omega0;

Next, we compute the critical eigenvectors. Let ∆(λ0) and ∆(λ1) be the characteristic matri-

ces corresponding to the eigenvalues λ0 = 0 and λ1 = iω0. As can easily be verified by direct

substitution, the vectors

q0 =

[
1

1

]
, p0 =

[
1 1

]
, q1 =

[
1

−1

]
, p1 =

[
1 −1

]
are such that

∆(λ0)q0 = 0, p0∆(λ0) = 0, ∆(λ1)q1 = 0, p1∆(λ1) = 0

Again, we need to scale q0, p0 and q1, p1 with constants α0, β0 ∈ R and α1, β1 ∈ C in such

a way that the ‘bi-orthogonality’ relationship (3.76) is satisfied. For this we use once more

(2.17) from Lemma 2.4 and Lemma 2.5.

> q0:=<1,1>; p0:=Transpose(<1,1>);

> q1:=<1,-1>; p1:=Tranpose(<1,-1>);

> alpha0:=1/sqrt(p0.DDelta(lambda0).q0); beta0:=alpha0;

> alpha1:=1/sqrt(p1.DDelta(lambda1).q1); beta1:=alpha1;

> q0:=alpha0*q0; p0:=beta0*p0

> q1:=alpha1*q1; p1:=beta1*p1;

Using Lemma 2.4 we define the corresponding critical eigenfunctions and their complex con-

jugates.

> phi0:=exp(lambda0*theta)*q0;

> phi0bar:=map(conjugate,phi0);

> phi1:=exp(lambda1*theta)*q1;

> phi1bar:=map(conjugate,phi1);

The quadratic normal form coefficients are now easily computed from (3.79).

> gg:=Array(0..3,0..3,0..3);

> gg[2,0,0]:=(1/2)*p0.D2F(phi0,phi0);

> gg[1,1,0]:=p1.D2F(phi0,phi1);

> gg[0,1,1]:=p0.D2F(phi1,phi1bar);

This yields the following output.

g200 = 0.00656040565870122470

g110 = 0.0132803410870657 + 0.000182334796002904 i

g011 = 0.0130415057497976
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In order the calculate the cubic coefficients, we need to solve for the quadratic center man-

ifold coefficients using (3.78). Since these expressions involve bordered inverses of the type

addressed in Corollary 3.7, we first write a small procedure that implements (3.26) and (3.27).

> BINV:=proc(lambda,zeta,kappa)

> global q0,p0,q1,p1,lambda0,lambda1;

> local q,p,xi,gam,A,B,X;

>

> if lambda=lambda0 then

> q:=q0; p:=p0;

> elif lambda=lambda1 then

> q:=q1: p:=p1;

> else

> error "input is not an eigenvalue";

> end if;

>

> A:=Matrix([[Delta(lambda),q],[p,0]]);

> B:=<zeta+kappa*DDelta(lambda).q,0>;

> X:=LinearSolve(A,B);

> xi:=<X[1,1],X[2,1]>;

> gam:=-p.DDelta(lambda).xi+(1/2)*kappa*p.D2Delta(lambda).q;

>

> return(exp(lambda*theta)*(xi+gam*q-kappa*theta*q));

> end:

Now it is easy to evaluate the formulas in (3.78).

> h:=Array(0..2,0..2,0..2);

> h[2,0,0]:=BINV(lambda0,D2F(phi0,phi0),-p0.D2F(phi0,phi0));

> h[0,2,0]:=exp(2*lambda1)*MatrixInverse(Delta(2*lambda1)).D2F(phi1,phi1);

> h[1,1,0]:=BINV(lambda1,D2F(phi0,phi1),-p1.D2F(phi0,phi1));

> h[0,1,1]:=BINV(lambda0,D2F(phi1,phi1bar),-p0.D2F(phi1,phi1bar));

As usual, we also require the complex conjugates.

> hbar:=Array(0..2,0..2,0..2);

> hbar[2,0,0]:=map(conjugate,h[2,0,0]);

> hbar[0,2,0]:=map(conjugate,h[0,2,0]);

> hbar[1,1,0]:=map(conjugate,h[1,1,0]);

> hbar[0,1,1]:=map(conjugate,h[0,1,1]);

At last we are able to evaluate the formulas (3.80) for the cubic critical normal form coeffi-

cients.
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> gg[3,0,0]:=(1/6)*p0.(3*D2F(phi0,h[2,0,0])+D3F(phi0,phi0,phi0));

> gg[1,1,1]:=p0.(D2F(phi0,h[0,1,1])+D2F(phi1bar,h[1,1,0])

> +D2F(phi1,hbar[1,1,0])+D3F(phi0,phi1,phi1bar));

> gg[2,1,0]:=(1/2)*p1.(D2F(phi1,h[2,0,0])+2*D2F(phi0,h[1,1,0])

> +D3F(phi0,phi0,phi1));

> gg[0,2,1]:=(1/2)*p1.(D2F(phi1bar,h[0,2,0])+2*D2F(phi1,h[0,1,1])

> +D3F(phi1,phi1,phi1bar));

This yields

g300 = −0.000529267105230375018

g111 = −0.00320689049366882

g210 = −0.00158236276273148− 0.00000754921632836517 i

g021 = 0.0501035490853393− 0.0226017769063655 i

All critical normal form coefficients have been computed. Using (3.50), (3.51) and (3.52) and

the values for gjkl found above, we can compute the critical coefficients in the Gavrilov normal

form (3.47). These are:

b(0) = 0.00656040565870122470

c(0) = 0.0130415057497976

e(0) = 0.0242089386247185

σ(0) = 0.148557497656540 i

d(0) = 0.0132803410870657 + 0.0121673553626291 i

Thus it follows by Theorem 8.6 of [19] that the fold-Hopf bifurcation is non-degenerate. (Of

course, this statement is true provided we also verify that the critical eigenvalues cross the

imaginary axis transversally at the bifurcation point.)

We can extract more information from the critical coefficients by calculating the quantities

s ≡ sign[b(0)c(0)] = +1, θ ≡ Re g110
g200

= 2.02431705872512 > 0

Indeed, since s = +1 and θ is positive, we may apply Theorem 8.7 of [19] to conclude that

the fold-Hopf bifurcation is of the ’simple’ type: It can locally be described by a quadratic

normal form and no higher order terms of any sort need to be incorporated. (Hence the

cubic coefficients were calculated in vain, but we have included their computation anyway, for

the purpose of illustrating the implementation of the bordered inverse.) Only fold and Hopf

curves emanate from the codimension-two point. No global bifurcation curves or invariant

tori are present. For proofs of these statements we refer the reader to the detailed analysis
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performed in §§8.5.2 and 8.5.3 of [19].

4.2.8 The Bautin (generalized Hopf) point

The third and last codimension-two bifurcation point for which we calculate the critical normal

form is the Bautin point, given by the values (GH1) in the (k1, k2)-plane. These correspond

to the values

ac =
kc1

bg′(0)
= 0.251865121624750, cc =

kc2
dg′(0)

= 0.581201968343537

of the control parameters, with all other parameters fixed at their values given in (4.24). The

method is probably clear by now. Again, we assume that the worksheet presented in §4.2.4

has been executed in the active Maple session. We fix the critical parameter values and the

critical eigenvalues.

> k1:=0.503730243249497; k2:=0.697442362012240;

> a:=k1/(b*dg); c:=k2/(d*dg);

> omega0:=0.275909434388554; lambda0:=I*omega0;

Next, we compute the critical eigenvectors. Let ∆(λ0) be the characteristic matrix corre-

sponding to the critical eigenvalue λ0 = iω0. It is easily verified that

q =

[
1

1

]
, p =

[
1 1

]
are such that

∆(λ0)q = 0, p∆(λ0) = 0

The following code uses (2.17) from Lemma 2.4 to scale the vectors q and p in such a way

that the ‘bi-orthogonality’ relation (3.66) is satisfied.

> alpha:=1/sqrt(p.DDelta(lambda0).q); beta:=alpha;

> q:=alpha*q; p:=beta*p;

> p.DDelta(lambda0).q;

Next, we use Lemma 2.4 to define the corresponding eigenfunction.

> phi:=exp(lambda0*theta)*q;

> phibar:=map(conjugate,phi);

Everything is ready to evaluate the formulas from §3.5.3. We start with (3.67) and (3.68).

> h:=Array(0..3,0..3);

> h[2,0]:=exp(2*lambda0*theta)*MatrixInverse(Delta(2*lambda0)).D2F(phi,phi);



CHAPTER 4. EXAMPLES 85

> h[1,1]:=MatrixInverse(Delta(0)).D2F(phi,phibar);

> h[3,0]:=exp(3*lambda0*theta)*

> MatrixInverse(Delta(3*lambda0)).(3*D2F(phi,h[2,0])+D3F(phi,phi,phi));

The reader can check that the real part of (3.70) vanishes, in accordance with the fact that

we find ourselves at a point where the first Lyapunov coefficient is zero.

> c1:=(1/2)*p.(D2F(phibar,h[2,0])+2*D2F(phi,h[1,1])+D3F(phi,phi,phibar));

For (3.71) we need to evaluate a bordered inverse. We could write a procedure for this (as

in §4.2.7), but in fact a simple calculation shows that ζ + κ∆′(λ0)q = 0, in the notation of

Corollary 3.7. It follows that

> h[2,1]:=exp(lambda0*theta)*kappa*((1/2)*p.D2Delta(lambda0).q-theta)*q;

We also make the complex conjugates of the center manifold coefficients available.

> hbar:=Array(0..3,0..3);

> hbar[2,0]:=map(conjugate,h[2,0]);

> hbar[3,0]:=map(conjugate,h[3,0]);

> hbar[2,1]:=map(conjugate,h[2,1]);

We continue with (3.73) and obtain

> h[3,1]:=exp(2*lambda0*theta)*

> MatrixInverse(Delta(2*lambda0)).(D2F(phibar,h[3,0])+3*D2F(h[2,0],h[1,1])

> +3*D2F(phi,h[2,1])+3*D3F(phi,phibar,h[2,0])+3*D3F(phi,phi,h[1,1])

> +D4F(phi,phi,phi,phibar))-6*c1*MatrixInverse(Delta(2*lambda0)).

> (DDelta(2*lambda0)-IdentityMatrix(2)-theta*Delta(2*lambda0)).h[2,0];

and

> h[2,2]:=MatrixInverse(Delta(0)).(2*D2F(phibar,h[2,1])+2*D2F(h[1,1],h[1,1])

> +2*D2F(phi,hbar[2,1])+D2F(h[2,0],hbar[2,0])+D3F(phibar,phibar,h[2,0])

> +D3F(phi,phi,hbar[2,0])+4*D3F(phi,phibar,h[1,1])

> +D4F(phi,phi,phibar,phibar));

All cards are on the table to compute the second Lyapunov coefficient from (3.74) and (3.75).

> c2:=(1/12)*p.(6*D2F(h[1,1],h[2,1])+3*D2F(hbar[2,1],h[2,0])

> +D2F(hbar[2,0],h[3,0])+3*D2F(phi,h[2,2])+2*D2F(phibar,h[3,1])

> +6*D3F(phibar,h[2,0],h[1,1])+6*D3F(phi,h[1,1],h[1,1])

> +3*D3F(phi,h[2,0],hbar[2,0])+6*D3F(phi,phibar,h[2,1])

> +3*D3F(phi,phi,hbar[2,1])+D3F(phibar,phibar,h[3,0])

> +6*D4F(phi,phi,phibar,h[1,1])+3*D4F(phi,phibar,phibar,h[2,0])

> +D4F(phi,phi,phi,hbar[2,0])+D5F(phi,phi,phi,phibar,phibar));
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Taking the real part we find

l2:=(1/omega0)*Re(c2);

with output

l2(0) = 0.00110327860627586

Let us in addition we assume that the map (a, c) 7→ `1(a, c) is regular at (a, c) = (ac, cc), where

`1(a, c) is the first Lyapunov coefficient. Then the zero equilibrium of (4.22) exhibits a non-

degenerate Bautin bifurcation at the critical point (GH1). Since l2(0) > 0 we find ourselves

in the reverse of the situation discussed in §8.3.2 of [19]. In particular, by calculating l2(0) we

have proved the existence of a curve of fold bifurcations of limit cycles emanating from the

Bautin point in the (k1, k2)-plane. At this curve two cycles annihilate and we are left with

an unstable equilibrium. (This is why the case l2(0) > 0 is sometimes considered ‘hard’ or

‘dangerous’, in the spirit of the terminology used to describe a subcritical (non-degenerate)

Hopf bifurcation.)

4.2.9 In pursuit of a stable invariant torus

In conclusion of this example we return to the double Hopf point analysed in §4.2.6. There

we concluded that this point is of ‘simple’ type. Moreover, we saw that the values of the

critical normal form coefficients predicted the existence of two-dimensional invariant tori near

the bifurcation point. However, these tori were repelling and therefore they could not be

expected to appear in simulations.

In this section we re-run the computations performed in §4.2.6 but we set our ‘fixed’

parameters at the values

b = 2.0, d = 1.2, τ1 = 12.99, τ2 = 20.15 (4.49)

instead of the values given in (4.24). We note that b and d remain unaltered while the delays

τ1 and τ2 are changed slightly, since only these latter parameters affect the position of the

codimension-one curves in the (k1, k2)-plane. The effect of this change is that the double Hopf

point labeled HH in Figure 4.4(a) now occurs at the intersection of two supercritical Hopf

branches. More specifically, its coordinates are

(kc
′

1 , k
c′
2 ) = (0.559667089973705, 0.688875991374739)

(ω′1, ω
′
2) = (0.272554827172345, 0.174659443775867)

(HH’)

In order to compute the critical normal form coefficients for these new fixed parameter values,

we are required to change the scripts presented in §§4.2.4 and 4.2.6 at two places. Firstly, the

Maple code block labeled (*) in §4.2.4 must be updated to use the values (4.49). Secondly,

the Maple code block labeled (**) in §4.2.6 should be replaced by
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> k1:=0.559667089973705; k2:=0.688875991374739;

> a:=k1/(b*dg); c:=k2/(d*dg);

> omega1:=0.272554827172345; omega2:=0.174659443775867;

> lambda1:=I*omega1; lambda2:=I*omega2;

reflecting the new coordinates of the double Hopf point in the (k1, k2)-plane and the new

values for the corresponding frequencies ω1,2 given by (HH’). The non-resonance condition

(4.47) since for (n1, n2) = (2, 3) we have

n1ω1− n2ω2 = 0.021131323017089

and this value of (n1, n2) minimizes the absolute value of the difference of the left- and right

hand sides of (4.47) over all admissible pairs (n1, n2). The remainder of the script in §4.2.6

remains unaltered. Upon execution we now find the following values for the critical normal

form coefficients:

g2100 = −0.00158423502629251 + 0.00128155174197111 i

g1011 = −0.00076572821118787− 0.00382491890256949 i

g1110 = −0.00044023276677625 + 0.00371800958543468 i

g0021 = −0.00176942031197673− 0.00141734227810451 i

Again, as in §4.2.6, the bifurcation is of ‘simple’ type, since

(Re g2100)(Re g0021) = 0.00000280317763446696 > 0

We also note that ∣∣∣∣∣ Re g2100 Re g1011

Re g1110 Re g0021

∣∣∣∣∣ = 0.00000246607898545709

is non-zero. We compute the quantities

θ(0) ≡ Re g1011
Re g0021

= 0.432756539531544, δ(0) ≡ Re g1110
Re g2100

= 0.277883495485201

and observe that 0 < δ(0) ≤ θ(0) and θ(0)δ(0) < 1. It follows from p. 360 of [19] that we find

ourselves again in subcase II of the ‘simple’ double Hopf bifurcation. However, in contrast to

the situation of §4.2.6 we presently have Re g2100 < 0 and Re g0021 < 0, so bifurcation diagram

8.25.II of [19] applies now without time reversal. In particular, we expect the existence of two

Neimark-Sacker curves emanating from the codimension-two point in the (k1, k2)-plane. At

these curves a stable two-dimensional invariant torus is born and this torus should persist for

parameter values sufficiently close to the Neimark-Sacker curves. The dynamics on the torus
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are generically not quasi-periodic but rather phase-locked due to the effect of higher-order

terms. This is illustrated in Figure 4.6. Note that the increased accuracy used in the time

integration is required because we restrict ourselves to a very small neighbourhood of the

bifurcation point. Such a restriction is necessary due to the nearby presence of the Bautin

point and the breakdown of the invariant torus only slightly away from the Neimark-Sacker

curves.
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Figure 4.6: The result of an integration over 30.000 time units of the system (4.22) for
(k1, k2) = (0.5598, 0.6890) close to the critical values (kc

′

1 , k
c′

2 ) given by (HH’). The other pa-
rameters are fixed at their values (4.49). As an initial condition we chose the constant history
function (x1(t), x2(t)) ≡ (0.050, 0.075). To produce the time series 4.6(a) and 4.6(b) the MATLAB

routine dde23 was used with an absolute tolerance of 10−8 and a relative tolerance of 10−6. Only
the last 1000 time steps were reproduced for clarity of presentation. In 4.6(c) we represent the
dynamics during the last 2500 time steps in the ‘physical’ phase space consisting of the (x1, x2)-
plane. The torus structure is clearly visible. Finally, 4.6(d) and 4.6(e) display the outcome of
a fast Fourier analysis of the last 20.000 time steps. As expected, two frequency peaks reveal
themselves very closely to the values

ω1,2

2π with ω1,2 as in (HH’).



Chapter 5

Final remarks and future work

In this thesis we have generalized (or rather: lifted) the techniques used in [18] and [22] for

the calculation of critical normal form coefficients for finite dimensional ODEs and mappings

to the infinite-dimensional setting of delay differential equations. We argued that these tech-

niques fit naturally in the abstract functional-analytic framework used in [8] for the treatment

of DDE using semigroup methods. For an overview of the contents of this thesis and its goals,

we refer the reader to the introductory Chapter 1. In the remainder of this short chapter we

like to point out some directions for future work.

From the abstract viewpoint of dual perturbation theory (sun-star calculus) there is no

principal difference between delay differential equations such as (DDE) and renewal equations

such as (RE). Differences are however predominant at a lower, more computational level.

Therefore, we have chosen to restrict ourselves to a discussion of critical normalization for

DDE. This immediately suggests one natural direction for future work: An extension of the

normalization formulas to allow for DDE-RE systems, thereby making them potentially useful

for the local analysis of structured population models such as [7], [3]. We plan to take this

task at hand in the near future.

Another obvious direction of future activity is in the realm of software development.

The continuation package DDE-BIFTOOL mentioned in the introductory Chapter 1 is currently

incapable of bifurcation detection or normal form computations at critical points. The results

from Chapter 3 of this thesis may readily be implemented to take care of the latter part of

this task (i.e. the calculation of critical normal forms). In §4.2 Maple examples were provided

to stimulate work in this direction. Clearly, the code presented these was not optimal. For

instance, explicit matrix inversion was used liberally instead of e.g. LU decomposition to solve

linear systems because the appearance of the resulting Maple code is closer to the appearance

of the formulas derived in §3.5. For large problems such an approach is clearly not advisable.

Elaborating on the previous point, I would like to add that I do believe strongly that nu-

merical methods can only flourish when they are available in a usable form. The local analysis

of real-world DDE is, apart from a small class of very simple systems, beyond the reach of
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pencil-and-paper methods. Since the characteristic equation is intrinsically transcendental

(due to the infinite-dimensionality of DDE), there is little hope for symbolic formulas for the

location of the critical points of a system. Ideally, I envision a software package for DDE

capable of the same sort of analysis as CONTENT or MatCont.

This brings me to my final point. Normal form theorems for local bifurcations always

hold under the assumption of certain genericity conditions. These typically divide into so-

called nondegeneracy conditions and transversality conditions. If both are fulfilled, then a

parameter-dependent normal form provides detailed insight into the qualitative unfolding of

the dynamics near a critical point, see e.g. Chapter 8 of [19]. Calculating critical normal form

coefficients amounts to verifying nondegeneracy: If certain critical coefficients vanish, then a

normal form description requires computations at (even) higher order. However, in this thesis

we almost completely neglected the issue of transversality, which is intimately related to the

existence of a smooth and smoothly invertible function K,

(β1, β2) = K(α1, α2)

relating the original model parameters (α1, α2) to the unfolding parameters (β1, β2) that ap-

pear in the parameter-dependent normal form of the bifurcation under scrutiny. As demon-

strated in §3.3 of [22] in the context of maps, the normalization method discussed in this the-

sis is easily adaptable to apply to parameter-dependent normalization, in which case branch

switching capabilities for continuation software for DDE are within reach. It is merely neces-

sary to replace the homological equation intoduced in Chapter 3 by a parameter-dependent

counterpart.

Critical normalization tells us what to expect, parameter-dependent normalization shows

where to expect it. Both are necessary for a fruitful bifurcation analysis of dynamical systems.

There is interesting work ahead.
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