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Abstract

Studies have shown that walking has a negative effect on input per-

formance on mobile devices. Runners often use their GPS-enabled smart-

phones to record their exercise, but the effect of running on touch screen

input performance has not yet been quantified. This study aims to fill

this gap by performing a Fitts’ law experiment on a smartphone. Pointing

tasks were performed in conditions where participants were either running

or stationary, and the device was either handheld in a running armband

or worn on the arm in a running armband. Compared to stationary condi-

tions, running conditions showed higher motion time and lower accuracy.

Overall input performance was approximately 47% lower in running con-

ditions, compared to stationary conditions. Furthermore, running speed

decreased by 26% when interacting with the device. Therefore, common

interactions while running should be foreseen by developers and designers

of mobile applications. And although easier targets contribute to higher

input performance, most importantly, the GUI should be forgiving of user

error in the typical context of the user.
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Introduction

Interacting with computers through graphical user-interfaces (GUIs) has become

part of daily life for many people. Computers have evolved from room-sized

machines to portable and even wearable devices. These mobile devices are

no longer mere tools, but companions in our daily lives. Consequently, these

devices are no longer operated exclusively in stable environments such as homes

and offices but in a wide array of contexts. These contexts cause an equally

wide array of possible limitations on the user’s ability to interact with a mobile

device. These limitations are known as situationally-induced impairments and

disabilities (SIIDs) and, as Lin, Goldman, Price, Sears and Jacko stressed, need

to be recognized and understood before a suitable GUI can be developed [1, 2].

An ill suited GUI often reflects the assumption of cognitive and motor resources

being available in the user, but these resources depend heavily on the context

of use [3].

Many mobile smartphone applications support or enrich an existing activity.

Knowing about that activity provides insights in the user’s context, and thus

their ability to interact with the mobile device. For instance, many runners

use specialized mobile applications on their smartphones to track their running

efforts. Therefore, it is to be expected that sports apps such as Runkeeper1 and

Endomondo2 will be used while running. As for the user’s ability to interact with

the device in such a context, unfortunately, the task of controlling the device

competes for motor resources and attention with the running task. Several

studies have shown that even walking at increased pace has a detrimental effect

on the user’s ability to provide input to a mobile device, which does not bode

well for runners [4, 5]. However, the effect of running on the interaction with,

e.g., a smartphone has not yet been quantified specifically. This study aims to

1http://www.runkeeper.com
2http://www.endomondo.com
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fill this gap by performing a Fitts’ law experiment.

To provide insight in the current state of research, the next section discusses

some key works on interacting with mobile devices in mobile settings.

Related Work

Interaction with a mobile device requires attention. Interplay between cognitive

and motor resources, mediated by attention, is well investigated and has become

apparent in several studies. A well-known case is the prediction of falls in

elderly, based on the ability of walking and talking simultaneously [6]. The

observation that an elderly stops walking when conversation started, proved

a useful predictor for falls. In addition, numerous studies have shown that

postural sway is impacted by the attentional demands of a cognitive load and is

specifically apparent in elderly and balance-impaired persons [7–10]. Pellecchia

states that, together with previous studies, the result speaks for a substantial

effect of attention on motor performance [11].

Brewster reports finding that walking hampered the user’s ability to give

input to a mobile device in an experiment using a Palm III handheld com-

puter [12]. Participants entered 5-digit strings into the device using either large

or smaller on-screen buttons. A comparison was made between a stationary

laboratory setting and an outdoor walking setting. In the latter, less data was

entered by participants and subjective workload was higher.

By contrast, Kjeldskov and Stage reported finding no difference in input

performance between between a stationary and walking laboratory setting ref-

erenced to walking in a pedestrian street [13]. Using a Compaq iPAQ PDA,

participants completed a set of tasks. The authors report finding that station-

ary participants, compared to walking participants, experienced less workload

while interacting with a mobile device. No difference in workload was reported
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between the laboratory walking settings and the pedestrian street setting.

Remarkably, the authors stated letting the walking serve as a distracting

factor to divide attention, and not being interested in measuring the user’s

performance on the walking task. However, performance on the walking task

might have been neglected by the participants to balance the combined workload

of the two tasks. Measurement of walking speed could have provided insight in

this potential performance trade-off.

By contrast, measurement of walking speed was not left out by Barnard, Yi,

Jacko and Sears [4]. The authors compared walking on a treadmill with walking

along a defined path in a controlled environment, under two lighting condi-

tions. Tasks were focussed on retrieving information from a PDA and required

some stylus-based input. Although the lower lighting level did cause a higher

workload, the authors reported finding only an effect of walking condition and

lighting level on the time taken to finish the task. Participants had decreased

their walking speed by a third, likely mitigating potential attentional effects on

input performance while walking in lower lighting conditions.

Whereas an attentional effect on input performance was not found in the

study by Barnard et al., likely due to a compensatory decrease in walking speed,

work by Lin et al. shows this needs not be the case [1]. The authors report

on a study comparing stylus-based target acquisition performance across sev-

eral experimental conditions. Participants were either seated, walking slowly on

a treadmill, walking fast on a treadmill, or walking along an obstacle course.

Slow and fast walking was defined as 80% and 120%, respectively, of individual

participants’ comfortable walking speed. As the authors reported, input per-

formance suffered as a function of walking speed. This was especially true when

walking along the obstacle course, even though participants had made use of

their freedom to reduce their walking speeds.
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Similarly, Schildbach and Rukzio report on an experiment comparing per-

formance on a target acquisition task and a reading task [14]. Different sizes

of targets and text were used. Participants were instructed to walk along a

predefined path. The authors reported participants needed forty percent more

time for target acquisition when walking, compared to being stationary. The

reported results also showed that error rates for the walking condition increased

by seven percent compared to the stationary condition. While walking, the

use of larger targets resulted in a twenty-five percent decrease in error rate,

but target selection times remained elevated. When given the liberty, parti-

cipants reduced their walking speeds by about twenty-five percent, regardless

of target size. In another target acquisition experiment, Bergstrom-Lehtovirta,

Oulasvirta and Brewster found that target acquisition times remained stable,

however, increased walking speed was paired with increased error rates [5].

These experiments used several metrics for the quantification of input per-

formance. Metrics such as error-rates, number of correct inputs, target selec-

tion times and total trial times were commonly used as quantifiers for input

performance. Surprisingly, a very suitable measure was used very little in the

discussed works. The Fitts’ law paradigm describes throughput as an index of

performance, quantified in bits per second [15]. This paradigm, based on target

acquisition tasks also known as pointing tasks, has been widely accepted among

HCI researchers and has been verified for a wide range of conditions [16, 17].

Lin et al. show that the throughput measure also facilitates comparison of input

performances to mobile devices. Using tasks from the Fitts’ law paradigm, the

present study aims to quantify the effect of running on input performance on a

mobile device. For further narrative on the Fitts’ law paradigm, and overview

on many years of its application, the reader is referred to the work of Soukoreff

and MacKenzie [17].
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Method

By far, the most common way of providing input to a mobile device is tapping

a finger-based touch screen. To quantify the effect of running on input perform-

ance on mobile devices, a pointing task experiment as familiar from the Fitts’

law paradigm was performed on a mobile device with such a screen.

Participants

Twenty-four participants (11 females; 13 males) with a mean age of 21.2 years

(SD = 1.98) were recruited among Dutch students from the Utrecht University,

mainly from the department of Computer Science. All participants had nor-

mal or corrected-to-normal vision. Three participants were left-handed. Parti-

cipants received information about the experiment location via e-mail, including

reminders the day before participation. Participants were offered a cookie for

their participation, or a credit point. Participants were given a brief description

of the experiment on arrival. The researcher indicated that all running of the

participant would be under direct supervision of the researcher. It was also

made clear that the researcher would always be directly available to repeat any

instructions given during the experiment. All participants signed an informed

consent form.

Tasks

Pointing tasks, known as Fitts’ tasks, were created in an Android smartphone

application [17]. Figure 1a shows the home screen of the application with three

buttons leading to the pointing tasks. During all pointing tasks, circular targets

were indicated on screen on-by-one for the participant to tap on. The next target

was indicated directly after the screen was touched by the participant, regardless

of the participant having hit or missed the target. The touch point was recorded
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as the approximate centroid of contact area between the finger and the screen,

at the moment the finger landed on the screen. At the end of each task, a screen

was shown stating that the end of that task was reached and that the researcher

would attend to the participant. This screen also included a button allowing

return to the home screen of the application.

Training task

A training block of Fitts’ tasks was used to let participants familiarize with

interacting with the device. The training task consisted of 24 trials of a two-

dimensional Fitts’ law pointing task (see Figure 1b). The circular array of

six targets consisted of grey circles, the target that should be tapped was filled

black. Only one configuration of targets, a combination of a target width W and

movement distance D, was presented. This choice was made as the intention

of the training was to familiarize the participant with using the device in a

specific condition, not necessarily to mitigate learning effects across all indices

of difficulty. W was 40 pixels and D was 500 pixels for all trials. Performance

of the participant was not logged during the training task.

Finger input calibration task

Based on recommendations made by Bi, Li and Zhai, a finger input calibration

task was created to determine a baseline of touch point distribution [18]. Single

targets were displayed as filled 40 pixel wide black circles in random positions

near the center of the screen. This target width was chosen subjectively as to

yield a target that is small, yet easily legible in the most challenging condition.

The task consisted of 20 trials (see Figure 1c). No feedback on deviation from

target, such as ‘hit’ or ‘miss’, was given because only the distribution of touch

points is of interest for the present study.
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Fitts’ law pointing task

The experimental task consisted of two-dimensional Fitts’ law pointing tasks

(see Figure 1d). The targets were shown in 18 configurations, as two versions of

nine different nominal indices of difficulty. The indices of difficulty and target

configurations were chosen as a large representative range of what may be en-

countered in practice, following recommendations by Soukoreff et al. [17]. The

dimensions of the screen, combined with the target sizes that were expected to

be legible, provided an upper limit to index of difficulty of 5.85 bits. Values

of index of difficulty, ID, were calculated using the Shannon formulation and

were rounded to two decimals3 (see Table 1). The order of the 18 target config-

urations in the Fitts’ task was randomized separately for each participant and

condition. For each configuration of targets, 12 trials were executed. The arrays

of targets were displayed in the same manner as in the training task.

Apparatus

Participants performed the tasks of the experiment on a smartphone. The

device was a Sony LT26i Xperia S smartphone, running on Android OS version

4.1.2. The capacitive LCD touch screen had a diagonal size of 4.3 inches and a

resolution of 1280 by 720 pixels4. Its brightness was set to maximum at all times.

As is common for runners, the device was kept in a generic running armband

which was worn on the non-dominant upper arm during the experiment (see

Figure 2).

The location of the participant was tracked using GPS with the Runkeeper

application for iOS on an Apple iPhone 5C. This device was kept in an identical,

separate generic running armband. The armband with the GPS tracker was

worn on the dominant upper arm.

3The 12 unrounded unique values were used during analysis.
41 cm on screen equals 135 pixels.
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D (pixels) W (pixels) ID (bits)

200 40.00 2.58

200 70.00 1.95

260 26.00 3.46

300 16.00 4.30

300 20.00 4.00

300 40.00 3.09

400 80.00 2.58

400 140.00 1.95

428 10.00 5.45

496 16.00 5.00

500 50.00 3.46

560 30.00 4.30

600 10.00 5.93

600 40.00 4.00

600 80.00 3.09

620 20.00 5.00

682 12.00 5.85

682 16.00 5.45

Table 1: The implemented configurations of targets for the Fitts’ law pointing task.

Design

Runners that use their smartphones during their exercise commonly carry the

device in a specialized armband. The armband allows for touch screen input

through transparent plastic. Comparing this usage to otherwise common mobile

phone use, two factors are clearly abnormal: the motion of the participant and

the placement of the device. Taking this into consideration, four conditions

were examined in a 2x2 within-subjects design. That is, participants were either

stationary with the device held in hand (C1), stationary with the device worn

on the non-dominant upper arm (C2), running with the device held in hand

(C3), or running with the device worn on the non-dominant upper arm (C4).

The device was carried in the running armband in all conditions. With 24

possible unique orders of four conditions, and an equal amount of participants,

the orders of the four conditions were counterbalanced. For each condition,
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(a) Home screen showing
the buttons that lead
to the tasks.

(b) The training block of
Fitts’ tasks.

(c) The finger input calib-
ration task.

(d) The experimental
Fitts’ task.

Figure 1: Screenshots of the experimental smartphone application. During the exper-
iment, the texts were in Dutch.

the training block was performed first, the finger input calibration task second,

and the experimental task third. Movement directions for the trials within the
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Figure 2: The smartphone worn on the left upper-arm in a running armband.

training task and experimental task were balanced as described by Soukoreff et

al. [17].

Procedure

The experiment took place in a natural setting, a cleared hockey field, based

on recommendations for comparison studies given by Barnard et al. [4]. This

setting allowed participants to naturally regulate their running speed, creating

higher ecological validity compared to the usage of treadmills. With field dimen-

sions of approximately 91.4 meters by 55 meters, plenty of safe and unobstructed

running space was available.

Participants were explicitly allowed to adjust the fit of the GPS tracker

armband at their own discretion, to avoid interference of the armband in the

execution of the pointing tasks. Participants were then instructed to run for

about one minute along the inside edge of the field, as to establish a comfort-

able baseline running speed. Participants were instructed to choose a speed at

which they expected to be able to perform constantly for the duration of the

experiment. In all cases, the researcher ran along with the running participant
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for observational and safety purposes. To avoid influencing the running speed

of the participant, the researcher never ran in direct sight of the participant.

After this measurement of baseline speed, the participant was introduced to

the device in the armband on which the tasks were to be executed, and to the

tasks themselves. It was also made clear that brief breaks were allowed during

the tasks. For the first handheld condition and for the first condition with the

armband worn on the non-dominant upper arm, the participant was allowed

to find preference for a specific way of holding and controlling the device dur-

ing the training task. These preferences were then noted by the researcher to

ensure consistency across the running and stationary conditions. In the con-

ditions where the pointing tasks were executed with the device worn on the

arm, the researcher assisted the participants in putting on the armband on

the non-dominant upper arm. After all tasks were completed in all conditions,

participants were thanked for their participation.

Dependent variables

Motion time on the experimental tasks was measured by the device as the time

between the current and previous touch point in milliseconds. For the finger

input calibration task and the experimental task, bivariate touch point devi-

ation in pixels (SDxy) was recorded by the device. This measure has shown

to provide a better model fit, compared to usage of a univariate deviation

(SDx) [19]. Positive values on these axes represent overshoot in the direction of

motion. Throughput, in bits per second, was measured by combining the index

of difficulty of the pointing tasks and motion time. Running speed, in meters

per second, was measured using GPS and was normalized against individual

baseline.
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Statistical analysis

Means of motion time, bivariate touch point distribution, and throughput were

first of all calculated within participants, secondly across participants. The

mean motion time, bivariate touch point deviation, and throughputs of par-

ticipants were subjected to two-way repeated measures analysis of variance.

Normalized mean running speed of participants was subjected to one-way re-

peated measures analysis of variance. All statistical analysis were performed

using IBM SPSS Statistics for Macintosh, Version 22.0.

Results

Each session took approximately 40 minutes. The mean total travelled distance

by the participants was 1.26 kilometers (SD = 0.28).

Adjustment of Data

Trials were marked as outliers, and removed from analysis, if distance from

the touch point to the center of the target (on x or y axis) deviated more

than three standard deviations from the mean for that specific participant,

condition, and target configuration. The bivariate touch point deviation (SDxy)

was used as standard deviation. From the finger input calibration task, 11

out of 2016 trials were marked as outliers. As Fitts’ law is intended for rapid

aimed movements, trials with motion time exceeding 2000 milliseconds were also

marked as outliers. Furthermore, trials with motion time deviating more than

three standard deviations from the mean for that specific participant, condition,

and target configuration were also marked as outliers. From the experimental

task, 408 out of 20736 trials were marked as outliers.

By experiment design, the SDxy in the finger calibration task would always
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be of lower value than in the experimental task. The SDxy from the finger input

calibration task is supposed to indicate maximum pointing precision. However,

this assumption was violated in 39 (out of 24x4) cases. The measure was re-

defined as the lowest SDxy occurring in either the finger input calibration task

or the experimental task, for that participant and condition. If the SDxy value

for maximum pointing precision was taken from a set of experimental task tri-

als, instead of the finger input calibration task trials, those trials were removed

from further analysis.

Fitts’ law

Table 2 shows the mean motion time for each target configuration and each

condition in the experimental task. To analyse potential difference in motion

time in the experimental tasks between the four conditions, a two-way ana-

lysis of variance with repeated measures was used (see Figure 3). Mauchly’s

test of sphericity indicated no violation. Motion time was significantly affected

by participant motion in the experiment, F (1, 23) = 17.97, p < .001. Motion

time in the running conditions (M = 616.33, 95% CI [600.49, 632.17]) was sig-

nificantly higher compared to the stationary conditions (M = 551.41, 95% CI

[535.57, 567.25]). Motion time was also significantly affected by device place-

ment, F (1, 23) = 20.97, p < .001. Motion time in the conditions with the device

worn on the arm (M = 628.11, 95% CI [608.13, 648.09]) was significantly higher

compared to the conditions with the device held in hand (M = 539.63, 95% CI

[519.65, 559.61]). The interaction between participant motion and device place-

ment was not significant, F (1, 23) = 3.85, p = .062. Linear regressions for the
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four conditions provided the following Fitts’ law models.

MTC1 = 312.184 + 53.319 · ID

MTC2 = 285.135 + 78.421 · ID

MTC3 = 314.261 + 63.456 · ID

MTC4 = 318.130 + 90.043 · ID

Figure 3: Mean motion time in the experimental tasks, for each condition. Error bars
represent 95% confidence interval.

Motion time increased approximately linearly with the index of difficulty of

the pointing task in all four conditions (R2
C1 = .872; R2

C2 = .851; R2
C3 = .862;

R2
C4 = .902), indicating that the data gathered in this experiment may be

evaluated using Fitts’ law as intended.

As the main purpose of this study is comparison of input performance

between several conditions, rather than prediction of motion time per se, the

constructed Fitts’ law models are of little further interest. As described, through-

put is the suitable measure in this case. For accurate quantification of through-
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put, however, measures of just motion time will not suffice. A speed-accuracy

trade-off may allow motion time to decrease at the cost of accuracy.

Dimensions (pixels) Mean Motion Time (ms)

D W C1 C2 C3 C4

200 40 464.60 474.82 482.38 557.80

200 70 457.05 476.11 456.01 540.58

260 26 479.04 504.37 486.56 605.02

300 16 499.02 534.31 530.02 646.01

300 20 474.04 519.62 532.92 624.73

300 40 459.02 489.46 487.76 547.00

400 80 443.16 493.43 478.51 542.42

400 140 441.21 476.86 463.17 517.62

428 10 573.66 663.48 653.36 788.43

496 16 515.08 578.00 601.28 774.49

500 50 468.39 543.96 531.53 605.46

560 30 531.40 597.39 540.71 680.53

600 10 626.87 756.41 699.73 834.98

600 40 517.88 588.67 542.26 691.66

600 80 502.52 587.42 539.58 611.70

620 20 552.60 656.87 621.15 795.50

682 12 676.11 794.47 740.45 887.82

682 16 637.03 710.01 673.63 809.26

Grand Mean (SD) 517.70
(70.11)

580.31
(99.49)

558.95
(86.14)

670.06
(117.25)

Table 2: Mean motion time for each target configuration in the experimental task, for
each condition.

Distribution of Touch points

The input performance of the participants is not only reflected by motion time,

actual touch point performance needs to be considered as well. For each con-

dition, Table 3 shows the touch point distribution, SDxy, of the finger input

calibration tasks and of each target configuration of the experimental task. Be-

fore complementing the calculations of throughput with the distribution of the

touch points, the touch point performance in each condition is subjected to
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analysis.

As was done for motion time, a two-way analysis of variance with repeated

measures was used to analyze potential difference in SDxy in the experimental

tasks between the four conditions (see Figure 4). Mauchly’s test of sphericity

indicated no violation. SDxy was significantly affected by participant motion

in the experiment, F (1, 23) = 55.50, p < .001. The SDxy in the running

conditions (M = 66.90, 95% CI [62.20, 71.60]) was significantly higher compared

to the stationary conditions (M = 33.05, 95% CI [28.34, 37.75]). SDxy was

also significantly affected by device placement, F (1, 23) = 30.95, p < .001.

SDxy in the conditions with the device worn on the arm (M = 56.27, 95%

CI [53.93, 58.61]) were significantly higher compared to the conditions with the

device held in hand (M = 43.68, 95% CI [41.34, 46.02]). These main effects

were qualified by a significant interaction, F (1, 23) = 18.33, p < .001. Analysis

of simple main effects revealed that device placement had an effect in both

stationary and running conditions F (1, 23) = 6.16, p = .021; F (1, 23) = 26.9,

p < .001.

Adjusted Index of Difficulty

As mentioned, input performance cannot be adequately quantified with only

measurement of motion time. To take the touch point performance into account,

Soukoreff et al. advise using an alternative to the Shannon formulation of ID,

IDe. This formulation calculates an effective target width using the distribution

of touch points, We =
√

2πeσ. Using We results in the following formulation of

index of difficulty:

IDe = log2

(
D√
2πeσ

+ 1

)
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Figure 4: Mean SDxy in the experimental tasks, for each condition. Error bars rep-
resent 95% confidence interval.

Bi et al. proposed an alternative to the generally accepted IDe formulation. The

authors describe a formulation specialized in modeling experimental data from

f inger-based human-computer interactions on touch screens, hence their choice

of model name for FFitts law and IDf . The proposed model is based on the

hypothesis that the distribution of touch points is the sum of two independent,

normally distributed, variables. The authors define the two components as (1)

a relative component reflecting the speed-accuracy trade-off and (2) an absolute

component reflecting the absolute precision of the motor system and the actual

medium (e.g. the finger). The authors arrive at the following formulation:

IDf = log2

(
D√

2πe(σ2 − σ2
a)

+ 1

)

In the IDf formulation, σ2 reflects the distribution of touch points SDxy in the

experimental task. The σ2
a reflects the maximum precision, or lowest SDxy, on

pointing tasks. The authors report finding that IDf shows a better model fit
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Dimensions (pixels) Touch point distribution SDxy (pixels)

D W C1 C2 C3 C4

random 40 15.18 17.05 31.59 41.52

200 40 25.79 27.84 47.44 67.13

200 70 27.25 29.19 51.09 71.84

260 26 29.13 29.71 46.91 61.62

300 16 25.42 30.68 51.97 72.61

300 20 26.12 32.64 54.54 72.43

300 40 31.48 31.38 51.29 70.43

400 80 30.42 33.01 57.50 72.75

400 140 30.59 34.02 53.13 75.58

428 10 30.32 34.24 58.73 87.13

496 16 31.13 33.92 57.86 73.19

500 50 33.01 35.09 55.94 81.44

560 30 33.36 36.77 50.55 74.89

600 10 33.57 36.20 57.85 100.89

600 40 32.70 39.41 58.09 84.07

600 80 34.97 37.43 61.34 79.26

620 20 35.88 38.69 54.89 75.00

682 12.00 36.13 44.77 63.34 93.61

682 16.00 37.22 40.10 75.35 90.14

Grand Mean (SD) 31.36
(3.62)

34.73
(4.34)

55.99
(6.59)

78.00
(9.90)

Table 3: Mean SDxy for each target configuration in the experimental task, for each
condition.

compared to both IDe and the uncorrected Shannon ID, which would make IDf

especially suitable for this study. The IDf implementation described by Bi et

al., however, pools the SDxy across the target configurations and participants.

Soukoreff et al. specifically advise against this approach as it fails to make use

of within-subject variability.

With this in mind, the IDf formulation was implemented using the SDxy

of individual conditions, participants, and target configurations. As each par-

ticipant, condition, and target configuration has a specific SDxy, many unique

values of σ2 − σ2
a arise. This results in as many values of IDf . For each cal-

culated value of IDf , the difference between the original ID and the calculated
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IDf is shown in Figure 5a. Figure 5b shows the IDf values in relation to motion

time, revealing a less strong linear relation to motion time than ID (R2
C1 = .127;

R2
C2 = .196; R2

C3 = .051; R2
C4 = .102).

(a) Difference between ID and IDf , for each value of ID.

(b) Motion time from the experimental task in relation to IDf , for each condition.

Figure 5: The relation between ID, IDf , and motion time.

Throughput

With the calculated IDf values, the index of difficulty is now adjusted based

on the actual touch point performance. Average throughput TP may then be

calculated for comparison of input performance between the four conditions
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using the following equation5:

TP =
IDf

MT

As was done for touch point distribution, a two-way analysis of variance with

repeated measures was used to analyze potential difference in throughput in the

experimental tasks between the four conditions (see Figure 6). Mauchly’s test

of sphericity indicated no violation. Throughput was significantly affected by

participant motion in the experiment, F (1, 23) = 99.88, p < .001. Through-

put in the running conditions (M = 3.02, 95% CI [2.87, 3.16]) was significantly

lower compared to the stationary conditions (M = 4.43, 95% CI [4.28, 4.58]).

Throughput was also significantly affected by device placement, F (1, 23) =

43.138, p < .001. Throughput in conditions with the device worn on the arm

(M = 3.31, 95% CI [3.18, 3.44]) was lower compared to conditions with the

device held in hand (M = 4.13, 95% CI [4.00, 4.27]). These main effects were

qualified by a significant interaction, F (1, 23) = 6.92, p = .015. Analysis of

simple main effects revealed that device placement had an effect in both sta-

tionary and running conditions F (1, 23) = 13.71, p = .001; F (1, 23) = 56.11,

p < .001. The running condition with the device worn on the non-dominant

upper arm, C4, showed the least throughput (M = 2.50, 95% CI [2.33, 2.66]).

Running speed

The baseline running speed of participants (M = 2.92, SD = 0.59) was used to

create relative values, in percentages, for both the running conditions. One-way

analysis of variance with repeated measures was used to analyze potential differ-

ence in running speed during the experimental tasks between the two running

5The equation was implemented using the mean-of-means approach, as described by
Soukoreff et al. [17].
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Figure 6: Mean throughput in the experimental tasks, for each condition.

conditions and the baseline. Mauchly’s test of sphericity indicated no viola-

tion. Running speed was significantly affected by interacting with the device,

F (1, 46) = 39.04, p < .001. Pairwise comparison with Bonferroni adjustment

showed that running speed (percentage relative to individual baseline) with the

device on the arm (M = 74.06, 95% CI [70.82, 77.30]) was lower compared to the

running speed with the device held in hand (M = 83.67, 95% CI [80.52, 86.83])

(p = .001).

Discussion and conclusions

The present study set out with the aim of quantifying the effect of running on

input performance on mobile devices. To find this effect, a Fitts’ law experiment

was performed in several conditions. Participants were either stationary or

running, and either held a mobile device in hand or wore it on the non-dominant

upper arm. Motion time, touch point distribution, throughput and running

speed were measured in all conditions.
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Motion time was approximately 12% higher in the running conditions, com-

pared to the stationary conditions. Schildbach et al. reported similar effects

of walking on motion time [14]. Interestingly, Lin et al. reported not finding

this effect [1]. Though Lin et al. did not find an effect of walking on motion

time, they did report finding an effect of walking on pointing accuracy which

is consistent with findings of Schildbach et al. and Bergstrom-Lehtovirta et al.

[5, 14]. As Lin et al. also noted, this may have been due to the nature of the

pointing tasks used in that study. The tasks that were used were not continuous

pointing tasks, but consisted of separate and brief moments of interaction. This

may have allowed for sufficient momentary focus of attention on the pointing

task, without increasing the motion time within that pointing task. The present

study found an effect on accuracy as well. Bivariate touch point distribution

in the running condition approximately doubled, compared to the stationary

conditions. These varying reports of either motion time or accuracy being af-

fected by walking, or both, is a reflection of speed-accuracy trade-off. That is,

motion times may increase in favor of accuracy. This underlines the import-

ance of using throughput as an encompassing measure for input performance.

The present study found that throughput had decreased by approximately 47%

in the running conditions compared to the stationary conditions. Throughput

was calculated by using the IDf formulation as proposed by Bi, Li and Zhai,

taking both motion time and touch point distribution into account [18]. As

motion time and touchpoint deviation were higher in running conditions, and

higher still in conditions with the device worn on the non-dominant upper arm,

condition four showed the lowest input performance.

The combination of running and interaction with a mobile device did not

only affect input performance. Interacting with the device worn on the arm,

while running, caused a 26% decrease in running speed compared to baseline.
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Running speed was maintained better in the condition with the device held in

hand, showing a 16% decrease compared to baseline. Such decreasing speeds,

albeit while walking, were also reported by Lin et al., Barnard et al., Schildbach

et al. and Bergstrom-Lehtovirta et al. [1, 4, 5, 14].

The results from the experiment indicated that Fitts’ law is suited for predic-

tion of motion time in the demanding conditions that were used, corroborating

and extending the findings of Lin et al. [1]. However, it must be noted that

the classic linear relation between motion time and index of difficulty was only

witnessed for the uncorrected values of ID, and Lin et al. did not specify which

formulation of ID was used in their analysis. Motion time increased as a func-

tion of target difficulty, but accuracy suffered as a function of target difficulty

too. This caused even greater downward corrections for higher values of ID,

resulting in a strong non-uniform compression towards lower values of ID. As a

result, contrary to the findings of Bi et al., the corrected values of IDf showed

poor correlation with motion time in all four conditions [18]. The non-uniform

compression appears to have taken away much of the predictive value of the

corrected index of difficulty, IDf . The large difference in correlation between

the work of Bi et al. and the present study may possibly be attributed to the

fairly limited range of target configurations and values of ID (1.92 to 3.75 bits)

that was used by Bi et al. The non-uniform compression witnessed in the present

study is fairly limited in that specific range of ID. As IDf has taken the ac-

tual touch point performance into account, the mean throughput is suitable for

comparison of conditions nonetheless. However, only the uncorrected values of

ID should be used for predictions of motion time.

Though it is the view of the researcher that the experiment design and

analysis were adequately robust, it is important to bear in mind that this study

did not control for experience with running, nor for experience with use of
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touch screens. Also, ambient lighting and temperature could not be controlled

in this natural set-up, potentially having caused more fatigue-effects in some

participants than in others.

Runners’ best choice for interaction style would likely depend on the com-

plexity of the interaction. Best input performance requires handheld control,

but this would either mean taking off and putting on the running armband or

removing the device from the armband and placing it back. Obviously, this

also takes time and attention, especially if being stationary is not an option.

For simple interactions, the device may well be left in the running armband.

Generally, common interactions while running should simply be foreseen by de-

velopers and designers of mobile applications. Though larger buttons obviously

contribute to higher input performance, this does not mean that all buttons

must be extremely large. A balance should be sought between the size of the

interaction elements and the number of elements to be shown, given the screen

dimensions. The GUI should always be forgiving of user error in the typical con-

text of the user. As long as the limitations on the user’s ability to interact with

the device are recognized and understood during development, the application

may become a pleasurable part of daily life for many people.
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