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Abstract

In this Master’s thesis, I investigate the possibility to build a Dirac superconductor under
supervision of Prof. Dr. Cristiane Morais Smith and Dr. Vladimir Juričić. By arranging
nanocrystals that are known to be superconducting in honeycomb superlattices, we combine
the physics of graphene with that of superconductivity. In this research, the focus is on CdSe
nanocrystals in a honeycomb configuration. It is assumed there is one effective phonon per
site that couples to on-site and nearest-neighbor electrons. Using a path-integral approach, the
phonons are integrated out such that effective Hubbard U and V terms are derived. Order
parameters for the on-site Cooper pairs and Cooper pairs of nearest-neighbor electrons were
defined. For the latter, the competition between the hidden order, which renormalizes Fermi
velocity instead of opening a gap, and the Kekule order, which opens a gap, is considered.
Using the order parameters, the electron densities in the Hubbard terms are decoupled via
mean-field theory. BCS theory is used to recover the gap equations and critical temperature. I
find that the Kekule order is preferred over the hidden order provided nearest-neighbor coupling
is favored over on-site coupling.
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Chapter 1

Introduction

Since its isolation, graphene has enjoyed much attention from the scientific world [1]. The
monolayer of carbon atoms arranged in a honeycomb configuration is light, transparent, flexible,
strong and conductive. This combination of properties is extraordinary and has attracted much
interest from both within and outside the scientific community. However, besides the numerous
industrial applications that are envisioned for this wondrous material, it also possesses some
features that are of interest purely from a scientific point of view. The low-energy excitations in
the system are massless Dirac fermions, which were believed to only be realizable in accelerators.
The existence of these particles in a condensed matter system is of fundamental importance
because phenomena that were predicted to occur in high-energy systems, such as the Klein
paradox and Zitterbewegung [2], can now be measured.

Superconductivity is not a property that occurs naturally in graphene. This is unfortunate
because the relativistic quantum mechanics that govern the system have interesting conse-
quences for the physics of superconductivity that are worthwhile investigating. A clear exam-
ple in this regard is how Andreev reflection1 is manifested in graphene as compared to normal
metals: instead of the expected retroreflection, graphene exhibits specular reflection [3]. This
shows that exploring the interplay between superconductivity and relativistic quantum dynam-
ics leads to novel insights. To that end, the superconducting properties of graphene have been
studied on a theoretical basis. This resulted in researching the possibilities of plasmon-mediated
superconductivity [4], the Kekule superconductor [5], the effect of a repulsive Hubbard model on
an anisotropic honeycomb lattice [6], chiral superconductivity due to repulsive interactions [7],
d+ id superconductivity near the Van Hove singularity due to the competition between many-
body instabilities [8], chiral d-wave superconductivity [9], quantum critical behavior at the
semimetal superconductor quantum phase transition [10], and the effect of straining, which re-
sults in a superconductor with a time-reversal symmetry breaking f + is order parameter [11].
Superconductivity in Dirac-like systems was also investigated in ultracold atoms with a stag-
gered flux in square lattices [12,13].

Not only theorists are interested in studying superconductivity in graphene. Experimen-
talists have devised set-ups in which they can probe a superconducting state in the material.
Their endeavors have proved to be fruitful and superconductivity was induced via the proximity
effect as well as via doping. It was shown that building a Josephson junction [14], which is

1Andreev reflection is a scattering process that occurs at interfaces between a superconducting and a normal
metal, and facilitates the conversion from an electron into a hole induced by the superconducting pair potential.
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based on the proximity effect, out of graphene led to the observation of a supercurrent [15],
which shows that Cooper pairs can propagate through the material coherently [4]. In another,
more recent experiment based on the proximity effect, graphene was grown on rhenium and
superconductivity was successfully induced [16]. Another way of inducing superconductivity
is by doping the surface with atoms. Phonon-mediated superconductivity was observed for
graphene sheets doped with calcium and lithium [17].

The fact that superconductivity is not an intrinsic property of graphene has led to the
idea to look for the Dirac superconductor in materials with graphene-like properties. This has
inspired the investigation of superconductivity in artificial graphene samples. These samples
are made of nanocrystals with a truncated cubic shape that self-assemble into a honeycomb
superlattice. The motivation to build these materials was to study the electronic bandstruc-
tures that emerge when gapped, semi-conducting systems are combined with the physics of
graphene, which is strictly a gapless system, by arranging the nanocrystals in a honeycomb
structure. These materials have been experimentally realized for lead selenide (PbSe) and
cadmium selenide (CdSe) nanocrystals [18]. The electronic band structure has been described
theoretically for PbSe, CdSe, and mercury telluride (HgTe) semiconducting nanocrystals in a
honeycomb superlattice [19, 20]. It has been predicted that they exhibit properties from both
the gapped system and graphene: at high energy there are Dirac cones in the energy spectrum
but at zero energy the spectrum is gapped [19].

In this Master’s thesis, I have investigated superconductivity in artificial graphene samples
made of CdSe nanocrystals. The same model can be used for studying superconductivity in
materials composed of PbSe nanocrystals. The system is described through an effective model
where one nanocrystal is modeled as a superatom. The effective phonon of a single CdSe
nanocrystal is the longitudinal optical one [21], and therefore, it is assumed that there is one
Einstein phonon per superatom site. Only the effective s-like electrons close to the lowest Dirac
point are considered and they are described by a tight-binding Hamiltonian, which includes the
chemical potential, nearest-neighbor hopping, and Hubbard terms for electron-pairing on-site
and between nearest neighbors. A path-integral approach is used to integrate out the phonons
to obtain the effective interaction. An estimate for this effective interaction was obtained based
on the numerical analysis performed in the group of Prof. C. Delerue (Lille, France). Order
parameters for the on-site Cooper pairs and Cooper pairs between nearest-neighbor sites were
defined. For the latter, the competition between the hidden order [4], which renormalizes the
Fermi velocity instead of opening a gap, and the Kekule order [5], which opens a gap, was
considered. Then, by employing a mean-field approximation, the ground-state energy, gap
equations at zero and finite temperature, and the critical temperature were obtained. As a
result from this analysis, the phase diagrams were compiled. It is found that the Kekule order
is preferred over the hidden order, provided that nearest-neighbor coupling is favored over
on-site coupling.

This thesis is organized as follows. To give a brief survey of the phenomenon of supercon-
ductivity, Chapter 2 is devoted to BCS theory, which is named after its discoverers Bardeen,
Cooper and Schrieffer. The theory describes conventional superconductivity in which the pair
formation is driven by electron-phonon interaction. Some techniques introduced in this Chap-
ter will be used later when considering superconductivity in artificial graphene samples. In the
following Chapter, graphene is discussed. Among other subjects, the lattice structure, tight-
binding model and effective Dirac Hamiltonian are addressed. In Chapter 4, superconductivity
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in artificial graphene is analyzed. The effective electron-electron interaction is derived and the
aforementioned competition between the Kekule and hidden order is studied extensively. This
will be followed by the conclusion in Chapter 5.
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Chapter 2

BCS Theory

Superconductivity was discovered in 1911 by the Dutch physicist Kamerlingh Onnes. He found
that some metals have the peculiar feature of a complete absence of electric resistance when
the material is cooled below a certain temperature, the so-called critical temperature Tc. Such
materials are called superconductors. More research into superconducting materials revealed
that they are also perfectly diamagnetic, which means that any magnetic field is expelled from
the superconductor when the material is in the superconducting state. This phenomenon is
known as the Meissner effect, and was discovered by Meissner and Ochsenfeld in 1933. The
way in which superconductors behave when they are subjected to an external magnetic field
can be divided into two categories. When the magnetic field increases, there is a point at
which the superconductor is no longer able to produce a counteracting magnetic field and the
external field will penetrate the superconductor. A type I superconductor experiences an abrupt
penetration of the external magnetic field. In type II superconductors, on the other hand, there
is an intermediary state in which the external field penetrates the superconductor in the shape
of vortices, which form a lattice. Inside the vortex there is no superconducting state, whereas
outside the vortex there is. Upon increasing the external magnetic field even more, the vortex
lattice melts and the material becomes normal.

Theoretically, superconductivity is understood to result from electron pair creation. As the
critical temperature is reached, it is energetically favorable for the superconductor to support
attractive phonon-mediated electron-electron interaction leading to the creation of pairs. The
idea is then that the electron pairs do not experience any resistivity from other electrons when
they travel through the superconductor, and thus form a supercurrent without any decay in
strength. These electron pairs are called Cooper pairs, named after their discoverer.

In 1957, Bardeen, Cooper and Schrieffer (BCS) proposed a theory, afterwards called BCS
theory, that describes conventional superconductivity [22]. Due to their important work,
Bardeen, Cooper and Schrieffer got awarded the Nobel Prize in Physics in 1972. BCS theory
was revolutionary in its time because it uses a microscopic approach to describe supercon-
ductivity unlike all other theories proposed before that revolved around superfluidity. In the
theory, a superconducting state is treated as a condensate of electron pairs. The existence of
such pairs was discovered by Cooper a year earlier in 1956 [23]. A Cooper pair exists out of two
electrons that are connected via time-reversal symmetry, which means that they have opposite
momentum and opposite spin. The phase transition of a Fermi liquid to the superconducting
phase can be interpreted as a condensation due to weak attraction between electrons. This phe-
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nomenon can be seen in metals when the motion of the ions around their equilibrium positions
is taken into account. The transition of the Fermi liquid to the superconducting states carries
similarities with Bose-Einstein condensation. For an ideal Bose gas, it is energetically favorable
for all bosons to occupy the lowest quantum state when the temperature is lowered below the
transition temperature Tc. The transition of the Fermi liquid to the superconducting state
undergoes a similar process. However, there is a fundamental difference between how bosons
and fermions condense. Bosons obey Bose-Einstein statistics whereas fermions satisfy the more
restrictive Fermi-Dirac statistics. The latter impose the Pauli exclusion principle on fermions,
which dictates that two fermions identical to each other cannot occupy the same quantum state.
This has a fundamental impact on how the electrons condense into the superconducting phase.
BCS theory shows that for this process to take place, pair formation is crucial. It turns out that
below a critical temperature Tc, it is energetically favorable for such Cooper pairs to exist. The
formation of these pairs gives rise to a new ground state when many electrons are considered.
One of the most important features of BCS theory is that it allows for the determination of
the energy gap that characterizes a superconductor. The energy gap equation can be found by
evaluating the thermodynamic properties of the system.

The discovery of superconductors and the Meissner effect are discussed in Section 2.1.
Section 2.2 provides a physical picture of attractive electron-electron interaction, and it is
shown with the help of the effective action that the interaction can indeed be attractive. The
Cooper problem is discussed in Section 2.3, and the BCS wavefunction in Section 2.4. Lastly,
in Section 2.5 the gap equation is derived.

2.1 The Phenomenon of Superconductivity
Kamerlingh Onnes was led to the discovery of superconductivity by the observation that some
metals, such as Hg and Pb, have a completely vanishing electrical resistance below a critical
temperature Tc. Experiments have shown that currents running through such materials below
Tc do not decrease in strength. In fact, a change in the field or current is not expected to be seen
for at least 101010 years [24]. Therefore, one of the fundamental properties of a superconducting
material is the absence of electrical resistivity.

In 1933, Meissner and Ochsenfeld found that superconducting materials are also perfectly
diamagnetic [25]; when an external magnetic field is present, the superconductor will produce
a magnetic field counteracting this external field. Effectively this means that a magnetic field
cannot enter a superconductor and that any magnetic field present in the original sample is
expelled when the sample is cooled below Tc. This is known as the Meissner effect. Physically,
this effect can be explained by realizing that in the presence of a magnetic field the Cooper
pair1 amplitude becomes an incoherent phase-dependent object such that in the absence of any
disturbance, the Cooper pair amplitude at position r looks like

〈r, r|k ↑,−k ↓〉 ∼ e−ik·re+ik·r = constant,

as opposed to the shape of the amplitude in the presence of a magnetic field

〈r, r|k ↑,−k ↓〉 ∼ e−i
∫

dr(k−eA)e−i
∫

dr(−k−eA) ∼ e2ieA·r,

1As mentioned before, the Cooper pair exists of two electrons with opposite momentum and opposite spin,
i.e. (k, ↑) and (−k, ↓). This configuration is explained elaborately in Section 2.3.
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where A is the vector potential which is related to the magnetic field B = rot(A) and is
assumed to vary slowly [14]. The magnetic field creates an instability in the amplitude which
makes its presence undesirable, and the superconductor will attempt to expel it. However,
if the magnetic field is strong enough, it will be able to penetrate the superconductor. This
works as follows. When there is a magnetic field present, there is a competition between
superconductive ordering and the magnetic field energy. This can be explained by considering
the phenomenological Ginzburg-Landau action

SGL
[
∆, ∆̄

]
∼
∫

ddr
[r

2
|∆|2 +

c

2
|(∇− 2iA) ∆|2 + g |∆|4

]
, (2.1)

where A is the aforementioned vector potential, r ∼ (T − Tc), c ∼ (vF/T )2 with the Fermi
velocity vF and ∆ is the superconducting order parameter, which is non-zero when the system
is in the superconducting phase (see Section 2.5) [26]. Minimizing this action with respect to
∆∗ yields [

r + c (−i∇− 2A)2 + 4g |∆|2
]

∆ = 0. (2.2)

It is assumed that the temperature is below Tc such that r is smaller than zero and ∆ is
a constant. The last term in Eq. (2.2) is positive, which means that in order to solve this
equation, the first two terms must add up to a net negative contribution [14]. Due to these
requirements, a finite pairing amplitude can only be found if

B < B2 ≡
|r|
2c
. (2.3)

If the magnetic field exceeds this value, the energy that is needed to expel the magnetic field
is larger than the energy gained by condensating into a superconducting state and the latter
state will break down [14]. Superconductors that exhibit diamagnetic behavior for B < B2 and
that are penetrated for values of the magnetic field greater than this critical field are called
type I superconductors.

However, not all superconductors behave in this manner. There exist superconductors that
show an intermediate state between complete expulsion of, and penetration by the magnetic
field. They are called type II superconductors. In this case, ∆ is assumed to be spatially
dependent. What happens is that when B1 < B < B2 where B1 is the critical field strength,
the magnetic field penetrates the superconducting state in the form of vortex tubes of quantized
flux [14]. These vortices are named after Abrikosov, who discovered them in 1957. Inside a
vortex the superconducting state no longer exists, whereas outside the vortex it does.

The difference between the type I and type II superconductors can be described in terms of
the so-called Ginzburg-Landau parameter

κ =
λ

ξ
, (2.4)

named after Ginzburg and Landau who realized that the value of this parameter determines the
type of superconductor.2 In this relation, ξ is the correlation length characterizing the distance
over which the wavefunction of the condensate can vary without increasing the energy, and λ
is the magnetic penetration depth. For type I superconductors, λ � ξ such that κ � 1 and

2This paragraph is based on Ref. [24].
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the magnetic field is expelled as long as B < B2. For type II superconductors, ξ � λ, implying
that κ is large and the magnetic field penetrates the superconductor in the form of vortices,
when B1 < B < B2. When B exceeds the critical field B2, the magnetic field will penetrate
the type II material completely.

2.2 Electron-Electron Attraction
The mechanism behind superconductivity is electron pair formation. Below Tc, it is ener-
getically favorable for electrons to condense into so-called Cooper pairs that are related via
time-reversal symmetry. Electrons are usually repulsive so it is interesting to understand how
an attractive interaction between two electrons can arise in a many electron system. Such an ef-
fective interaction is a consequence of phonon exchange. To yield an attractive net interaction,
the phonon-mediated interaction should be stronger than the Coulomb interaction [27]. The
latter can be calculated. The assumption is made that the N -electron system has a two-body
potential V (q)

V (q) = V (k− k′) =
1

Ω̂

∫
d3r eiq·r V (r),

where V (r) is the Coulomb interaction e2/|r|, and Ω̂ is the volume taken to be unity [24].
Computing the integral yields

V (q) =
4πe2

Ω̂q2
=

4πe2

q2
.

One can see immediately that V (q) is always positive and as such yields repulsive behavior.
The motion of ions plays an important role in generating an attractive potential. The phys-

ical picture which considers the interaction between the electrons and the lattice is as follows:
when an electron moves through a metal, it yields a dynamical distortion in the ionic crys-
tal.3 An electron needs a time ∼ E−1

F to navigate close to a lattice ion and disturb this ion’s
equilibrium position into a new state which is energetically favorable for both the particles.
By doing this, the electron polarizes the medium [24]. The excited ion lives on another time
scale. It needs a time of order (~ωD)−1 � E−1

F to decay back to its equilibrium, where ωD is
the Debye frequency, which characterizes phonon excitations. This time difference allows for
another electron to be attracted by the excited ion before it decays. Therefore, there is a net
attractive interaction between the two electrons and pair creation occurs [24]. When the attrac-
tive potential between electrons is stronger than the repulsive Coulomb interaction, the Fermi
liquid will experience a phase transition to the superconducting state. This physical picture
is confirmed by the existence of the isotope effect, which says that the critical temperature Tc
and the critical field Hc are proportional to A−1/2 where A is the atomic number, i.e. the ionic
mass [27]. This means that in the presence of different isotopes in the same superconductor, the
energy scales of the superconducting system described by the critical temperature Tc and the
critical field Hc vary with the isotope mass in the same fashion as phonon frequencies [27]. The
maximum energy scale of ionic excitation is of the range ~ωD. Therefore, for the interaction
between two electrons to be attractive, the energy difference may not exceed this value; if the
difference is larger, the interaction becomes repulsive [24]. This can be shown explicitly.

3The description in this paragraph is based on p. 266 in Ref. [14] unless indicated otherwise.
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Consider the phonon Hamiltonian

Hph =
∑
q,j

~ωqc†q,jcq,j + const.,

where ωq is the phonon dispersion, c†q,j (cq,j) the boson creation (annihilation) operators of a
phonon with momentum q on site j, and the index j = 1, 2, 3 accounts for the three dimensions
in space in which the phonon can oscillate. The electron-phonon Hamiltonian is derived in
App. 6.1.1 and reads

Hel−ph = ~γ
∑
q,j

iqj

(2Mωq)
1/2
n̂q

(
c†−c,j + cq,j

)
,

where n̂q =
∑

k a
†
k+qak is the electron density with a†k (ak) the fermion creation (annihilation)

operator of an electron with momentum k, and spin is neglected for simplicity. To be able to
show that there is an attractive electron-electron interaction, one should derive the effective
action of this system. To find the corresponding actions, the operators need to be replaced by
fields

aq → ψq(τ) =
1√
~β
∑
ω̂n

ψq,ne−iωnτ ,

cq,j → φq,j(τ) =
1√
~β
∑
ωn

φq,j,ne−iω̂nτ ,

where ωn = (2n + 1)π/(~β) and ω̂n = 2nπ/(~β) for n ∈ Z are the Matsubara frequen-
cies for fermions and bosons, respectively, and φ† (ψ†) and φ (ψ) obey the boson (fermion)
(anti)commutation relations. In App. 6.1.2, it is shown how this leads to the actions Sph and
Sel−ph. The result reads

Sph

[
φ†, φ

]
=
∑
q,j

φ†q,j (−iω̂n + ωq)φq,j,

Sel−ph

[
ψ†, ψ, φ†, φ

]
=

γ√
~β
∑
k,q,j

∑
n,n′

iqj

(2Mωq)
1/2
ψ†k+q,nψk,n′

(
φ†−q,j,n′−n + φq,j,n−n′

)
.

Using the partition function

Z =

∫
D
[
ψ†, ψ

] ∫
D
[
φ†, φ

]
e−(Sel[ψ†,ψ]+Sph[φ†,φ]+Sel−ph[ψ†,ψ,φ†,φ])/~,

the effective action Seff can be obtained by integrating out the phonon fields. This derivation
can be found in App. 6.1.3 and the result reads

Seff

[
ψ†, ψ

]
= Sel

[
ψ†, ψ

]
− γ2

2M

∑
q

q2

ω̂2
n + ω2

q

ρqρ−q, (2.5)

where q = (n,q) and ρq = ρq,n = (1/
√
~β)

∑
k,m ψ

†
k+q,mψk,m+n. For there to be an attractive

interaction, the relative sign between the first and second term should be a minus. As all terms
in the second term are positive, this is indeed the case and there is an attractive electron-electron
interaction.
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2.3 The Cooper Problem
Cooper showed in 1956 how attractive interaction between electrons can give rise to electron
pair formation using the Pauli exclusion principle [23]. He proved that in the presence of this
interaction between two electrons, it is energetically favorable for the Fermi liquid that these
two electrons form a pair, the so-called Cooper pair. He even alluded to how this can be related
to the emerging superconducting properties of metals at low temperatures. To see how this
works, an interacting pair of electrons that occupy the states above the Fermi level, or in other
words above a filled Fermi sea, will be considered. These electrons can form a bound pair if there
is a net attraction. Cooper simplified the problem of describing such an interaction by realizing
that the superconducting transition is comparable in different metals and that it is therefore
reasonable to assume that the structure of these metals does not affect the superconducting
state. The band and lattice structure of the metals is thus neglected. Instead, an electron is
considered as moving freely in a box of volume Ω̂. It is assumed that the electrons are only
subjected to Coulomb repulsions or lattice vibrations (phonons) [23].

The first step is to write down a two-particle wavefunction. The lowest-energy state has
zero total momentum which means that the two electrons must have opposite momenta [24].
Furthermore, the electron pair is assumed to be in a spin-singlet state yielding a rotationally
symmetric wavefunction. Considering the Pauli exclusion principle, the wavefunction will be
constructed from the states above the Fermi level [27]. The wavefuntion has the following form

|ψ (r1, r2)〉 = (|↑〉1 |↓〉2 − |↓〉1 |↑〉2)
∑
|k|>kF

gkeik·(r1−r2), (2.6)

where the index on the arrows refers to either electron 1 or 2 and, gk can be determined by
requiring that this wavefunction is a solution to the Schrödinger equation [27], such that

H |ψ〉 = E |ψ〉 ,

where E is the energy of the pair and H is the Hamiltonian

H = 2
∑
|k|>kF

εk +
∑
16=2

V (r1 − r2) ,

with the electron dispersion εk = ~2k2/2m and where the factor of two for the electron dispersion
relation comes from the fact that there are two electrons. The Schrödinger equation reads∑

|k|>kF

gkeik·(r1−r2)V (r1 − r2) =
∑
|k|>kF

(E − 2εk) gkeik·(r1−r2).

The following operator will be applied to both sides of the Schrödinger equation

1

Ω̂

∫
dd (r1 − r2) e−iq·(r1−r2),

which leads to
1

Ω̂

∑
|k|>kF

gkVk−q = (E − 2εq) gq,
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where Ω̂ is the volume of the system [27]. The potential is assumed to be constant and attractive
in the phonon-energy range in accordance with what was found in the previous Section,

V (q) =

{
−V for |ξk| ≤ ~ωD,
0 otherwise,

with ξk = εk − µ where εk = ~2k2/2m, such that

V

Ω̂

∑
|k|>kF

gk = (2εq − E) gq,

where the sum on the left hand side is restricted to states only within the interval of energy
equal to ~ωD around the Fermi level, which is a consequence of plugging in the approximation
for the potential V (q) [27]. Rewriting the solution

1

Ω̂

ε=EF+~ωD∑
ε=EF

1

2ε− E
=

1

V
,

and replacing the sum with an integral, results in∫ EF+~ωD

EF

dε
ρ

2ε− E
=
ρ

2
ln

[
2 (EF + ~ωD)− E

2EF − E

]
=

1

V
,

with ρ the density of states [27]. The weak-coupling approximation, valid for ρ V � 1, can be
used to find a solution for E at the Fermi level [24]. This method is justified because for most
classical superconductors ρ V < 0.3 [24]. The binding energy E ′ is

E ′ = 2EF − E ≈ 2~ωDe−2/ρV . (2.7)

This solution shows that there exists a bound state with negative energy with respect to the
Fermi surface which consists solely of two electrons with k > kF meaning that there is an excess
of kinetic energy with respect to the Fermi energy [24]. However, the energy of the attractive
potential contributes more than the surplus of kinetic energy, such that binding occurs for
any strength of V , or similarly, regardless of how weak the interaction is [24]. Note that the
solution cannot be expanded in powers of V meaning that it could not have been found using
perturbation theory.

2.4 The BCS Wavefunction
In the previous Sections, it was discussed that the formation of a Cooper pair creates instability
in the Fermi liquid and that it is favorable for the formed pairs to condense into a new ground
state, which represents the superconducting state. This process will take place until it reaches
an equilibrium point. At this point, the system has changed so much from the initial Fermi
sea that the binding energy for additional pairs has gone to zero [24]. The complexity of this
system makes it difficult to work with were it not for the introduction of the BCS wavefunction.

Upon constructing this wavefunction, it is important to realize that when one wants to write
down a wavefunction for more than two electrons, it is troublesome to write it in the form of
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Eq. (2.6) due to the difficulty that is involved when one wants to include the anti-symmetry in
a similar fashion [24]. Instead, it is more convenient to use the N × N Slater determinants.4
In the language of second quantization, the Slater determinants can be written in terms of
creation operators a†k↑ which create an electron of momentum k and spin up. The annihilation
operators ak↑ annihilate the corresponding electron. The spin-singlet wavefunction is

|ψ0〉 =
∑
k>kF

fka
†
k↑a
†
−k↓ |F〉

where |F〉 is the Fermi sea with all states filled up to kF [24]. From this equation, it is
immediatly clear that pairs of time-reversed states are always occupied simultaneously because
when time is reversed, i.e. t → −t, the sign of the momentum changes k → −k and the spin
flips. Electrons must obey Fermi-Dirac statistics, so the creation and annihilation operators
must satisfy the following anti-commutation relations{

akσ, a
†
k′σ′

}
= δkk′δσσ′ , {akσ, ak′σ′} =

{
a†kσ, a

†
k′σ′

}
= 0,

where σ is the spin index.
A general expression for the BCS wavefunction for an N -electron system is

|ψN〉 =
∑

f (ki, . . . ,kl) a
†
ki↑a

†
−ki↓ . . . a

†
kl↑a

†
−kl↓ |0〉 ,

where |0〉 is the vacuum state, ki and kl are the first and last of the k values in the band,
which are occupied in a given term in the sum, and f is the weight with which the product
of the N/2 pairs of creation operators appears [24]. The sum runs over all k values in the
band leading to an incredibly large number of possibilities to choose the N/2 states for pair
occupancy. Therefore, Bardeen, Cooper and Schrieffer decided to use a Hartree self-consistent
field or mean-field approach, where the occupancy of each state k is taken to depend only on
the average occupancy of other states [24]. This relieves the constraint on the total number of
particles being N because now the occupancies are treated only statistically. This is analogous
to statistical mechanics when going from the canonical to the grand canonical distributions [27].

Taking all of the previous into consideration, the BCS wavefunction acquirs the following
form

|ψBCS〉 =
∏
k

(
uk + vka

†
k↑a
†
−k↓

)
|0〉 , (2.8)

where |uk|2 + |vk|2 = 1 and the probability of the pair (k ↑,−k ↓) being occupied is |vk|2 such
that the probability that it is not occupied is |uk|2 = 1− |vk|2 [24].

Depending on the choice of vk, a variety of states can be described by a wavefunction of
the form of Eq. (2.8). For a filled Fermi sea, vk = 1 for k inside the Fermi surface and vk = 0
outside. In a state with many Cooper pairs, it is expected that vk varies smoothly between 1
and 0 across the range of ~ωD around the Fermi energy [27]. vk can be found using a variational
approach or a mean-field treatment of the Hamiltonian.

4Slater determinants describe the wavefunction of a multi-fermionic system and are particularly useful be-
cause they satisfy the Pauli exclusion principle by including anti-symmetry requirements.
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2.5 The Gap Equation
So far it was assumed that the attractive interaction between two electrons leads to the creation
of a pair. However, the interaction is not strong enough for the formation of a true local pair.
In fact, the distance between two electrons that are coupled is larger than the average distance
between pairs. This means that a theory describing such interactions should take both pairing
and condensation into account. Moreover, the electron pairs also interact with all other pairs,
which makes mean-field theory suitable for treating this problem.

BCS theory uses a microscopic approach by considering a system of N electrons. This
N-electron system has a two-body interaction described by the following Hamiltonian

H = − ~2

2m

N∑
j=1

∇2
j +

1

2

N∑
i 6=j

V (ri − rj) .

The first term is the kinetic term and the second is the present Coulomb repulsion between two
electrons. k is the wave vector and σ = ±1

2
are the spin states.

From the previous sections, it has become clear that BCS based their theory on two as-
sumptions. Firstly, there are only single-particle states arranged in pairs, namely (k, ↑) and
(−k, ↓), which are simultaneously occupied or empty such that they form a spin singlet. As
the phenomenon of superconductivity originates from the interaction between electrons medi-
ated by phonons, the energy is restricted to |ξk| ≤ ~ωD, where ωD is the maximal frequency
of a phonon.5 The second assumption is that the electron-phonon interaction is constant in
this energy range, i.e. V (q) = −V , and zero otherwise as defined in Section 2.3. Using these
assumptions, second quantization can be used to rewrite the Hamiltonian

H − µN =
∑
kσ

ξka
†
kσakσ −

V

L3

∑
kk′

a†k↑a
†
−k↓a−k′↓ak′↑, (2.9)

with ξk = εk − µ where εk = ~2k2/2m [28]. The parameter µ is called the chemical potential
and can be found through minimizing the free energy. For a Fermi liquid at zero temperature,
the chemical potential is equal to the Fermi energy EF . In fact, if the kinetic energy of
a superconducting state is small enough, the chemical potential can be approximated to be
equal to the Fermi energy. Therefore, in the first approximation µ is equal to EF [28]. This
Hamiltonian explains the physics of a thin shell of states of width of the order ~ωD around the
Fermi surface shown in Fig. 2.1.

To find the gap equation, the thermodynamic properties should be evaluated.6 The free
energy is defined as

Ω = − 1

~β
log(Z),

with β = 1/kBT and the partition function

Z = Tr
[
e−~β(H−µN)

]
.

5This can be recognized as the quantized energy of the electron that goes with n ~ωD. This energy is restricted
to the limit where n = −1, 0, 1 because if the energy were higher, the system can no longer be considered as a
lattice.

6This entire derivation is based on Ref. [28] unless indicated otherwise.
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Figure 2.1: A thin shell of width ∼ ωD around the Fermi surface. Figure from Ref. [14].

Unfortunately, the Hamiltonian is not exactly solvable, which necessitates the use of the Bo-
goliubov inequality, which introduces the molecular field Hamiltonian Hm and its free energy
Ωm

Ω ≤ Ωm + 〈H −Hm〉m ≡ Ω̃. (2.10)

The new quantity Ω̃ can be calculated exactly. To determine Hm, it is convenient to use a
mean-field approximation

a−k,↓ak,↑ = 〈a−k,↓ak,↑〉+ δ (a−k,↓ak,↑) = ∆ + δ (a−k,↓ak,↑) .

This transformation makes the Hamiltonian bilinear in the electron operators by eliminating
the interacting term and in return introduces a new auxiliary field, ∆ = 〈a−k,↓ak,↑〉. ∆ is chosen
to be real, i.e. ∆∗ = ∆. The excitation spectrum is the part of interest such that the term
quadratic in ∆ is neglected here because it only contributes to the energy of the condensate.
Applying the mean-field approximation to Eq. (2.9) yields

Hm − µN =
∑
k

[
ξk

(
a†k↑ak↑ + 1− a−k↓a†−k↓

)
−∆

(
a†k↑a

†
−k↓ + a−k↓ak↑

)]
. (2.11)

The first term is diagonal, but the second term is not. It is diagonalized using the canonical
Bogoliubov transformation

ak↑ = cos(θk)αk↑ + sin(θk)α†−k↓, a†−k↓ = −sin(θk)αk↑ + cos(θk)α†−k↓.

Using the anti-commutation relations for fermions defined in the previous Section leads to{
αkσ, α

†
k′σ′

}
= δkk′δσσ′ , {αkσ, αk′σ′} =

{
α†kσ, α

†
k′σ′

}
= 0.
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Plugging in this transformation, the Hamiltonian reads

Hm − µN =
∑
k

{
ξk + [ξkcos(2θk) + ∆sin(2θk)]

(
a†k↑ak↑ − a−k↓a

†
−k↓

)
+ [ξksin(2θk)−∆cos(2θk)]

(
a†k↑a

†
−k↓ + a−k↓ak↑

)}
.

By choosing

tan2θk =
∆

ξk
,

the last term in the Hamiltonian vanishes and the entire expression is rendered diagonal. The
tangent is π/2-periodic, so θk has the range −π/4 ≤ θk ≤ π/4. This leads to

cos2θk =
1√

1 + tan22θk
=

|ξk|√
ξ2
k + ∆2

,

sin2θk = tan2θkcos2θk = sgn (ξk)
∆√

ξ2
k + ∆2

.

Using these relations, the Hamiltonian can be written more compactly

Hm − µN =
∑
k

[
(ξk − Ek) +

∑
σ

Ekα
†
kσαkσ

]
, (2.12)

where
Ek = sgn (ξk)

√
ξ2
k + ∆2. (2.13)

Here, ∆ represents the superconducting gap and describes the energy gap between the lowest
and first excited energy states. The gap is Eg = 2|∆|. This gap prevents elementary excitations
at low temperature making the ground state rigid [14]. Using these equations, the partition
partition function Zm and the free energy Ωm can be computed. 〈H −Hm〉m needs to be
determined to obtain Ω̃. Substituting all results in Eq. (2.10) yields

Ω̃ =
∑
k

[
ξk − Ek −

2

β
log
(
1 + e−βEk

)
+

∆2

Ek
tanh

βEk
2

]
− V

L3

[
1

2

∑
k

∆

Ek
tanh

βEk
2

]2

.

(2.14)

Minimizing this equation with respect to ∆ leads to

dΩ̃

d∆
=

[
∆− V

2L3
∆f(∆)

]
[f(∆) + ∆f ′(∆)] = 0,

with
f(∆) ≡

∑
k

tanh(βEk/2)

Ek
,

such that the gap equation reads

∆ =
V

2L3

∑
k

∆

Ek
tanh

βEk
2
, (2.15)
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where ∆ is assumed to be constant. This non-linear equation can be solved numerically. A
solution is ∆ = 0 which corresponds to normal metal. For ∆ 6= 0 the solutions can be found
by dividing out ∆ on both sides of Eq. (2.15) such that one finds

1 =
V

2

∫
d3k

(2π)3

1

Ek
tanh

βEk
2
. (2.16)

Substituting the solution for Ek in Eq. (2.13) and rewriting the integral in terms of the density
of states leads to

2 ≈ V ρ

∫ ~ωD

0

dξ
1√

ξ2 + ∆2
tanh

(
β

2

√
ξ2 + ∆2

)
, (2.17)

where the density of states is taken to be constant in the energy range ξ ≤ ~ωD

ρ =
1

2π2
k2 dk

dξ

∣∣∣∣
ξ=0

. (2.18)

The term on the right hand side of Eq. (2.17) decreases in function of the temperature and the
superconducting gap such that the gap becomes smaller for increasing temperature until the
critical temperature is reached at which the superconducting gap vanishes as shown in Fig. 2.2.
This property of ∆ makes its value a defining measure for the phase of the material. Therefore,
∆ is called the order parameter of the superconducting transition.

Figure 2.2: The relation between temperature and the energy gap in BCS theory. Figure from Ref. [24].

Sending β to infinity in Eq. (2.17), allows one to consider the superconducting gap at zero
temperature. This yields

2 ≈ V ρ

∫ ~ωD

0

dξ
1√

ξ2 + ∆2
,

such that a solution for ∆(0) can be found upon solving the integral

∆(0) =
~ωD

sinh [2/V ρ]
.
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In the weak-coupling limit, V ρ� 1, the zero-temperature gap reads

∆(0) = 2~ωDe−2/V ρ, (2.19)

which coincides with the binding energy in Eq. (2.7).
The superconducting gap vanishes at the critical temperature. This yields the following for

Eq. (2.17)

2 = V ρ

∫ ~ωD

0

dξ
tanh (βcξ/2)

ξ
.

This integral can be solved using integration by parts

2

V ρ
= log(y) tanh(y)|z0 −

∫ ∞
0

dy log(y) sech2(y),

with z = ~ωDβc/2. Taking the limit z →∞ results in

2

V ρ
= log

(
βc

~ωD
2

)
+ log

(
4

eγ

π

)
,

where γ = 0.577 is the Euler constant. Rearranging the right hand side leads to the following
result

kBTc ≈ 2
eγ

π
~ωDe−2/V ρ, (2.20)

which can be rewritten in terms of the earlier result for zero-temperature superconducting gap
∆(0) as

kBTc ≈ ∆(0)
eγ

π
. (2.21)

Plugging in the values for γ and π leads to the universal result

2∆(0)

kBTc
= 3.53, (2.22)

which agrees with experiment.
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Chapter 3

Graphene

Ever since its isolation in 2004, graphene and graphene-related topics have been the main object
of research for many scientists. Being only one-atom thick, it is considered to be the thinnest
material ever produced. It is light, transparent, flexible, strong, conducts electricity, and it is
made out of the main ingredient of life itself, carbon. This collection of characteristics has not
only spurred the interest of the scientific world, but also of the industry where applications are
envisioned, such as for instance using graphene to make smartphones [30]. The existence of
graphene was postulated in the late 1800s when it was realized to be the fundamental building
block of graphite. Graphite is made of stacked layers of graphene and has been a well-known
material since the 1500s because it makes up the core of a pencil. The theory of graphene was
first written down by Wallace in 1947 [31], the results of which are still quoted today. Even
though the existence of graphene was known for a long time, futile attempts to isolate it led to
the believe that it could not exist as a free state. However, in 2003, Andre Geim and Kostya
Novoselov developed a method to isolate the material by the use of Scotch tape. Sticking a
piece of tape on graphite and pealing it off leaves a residue on the tape, which consists of some
layers of graphene. Upon repeating this procedure, more and more layers of graphene will
be peeled off, until one layer is left. This is exactly what Geim and Novoselov did and they
published their results in 2004 [1]. For this simple and yet groundbreaking discovery, they won
the Noble Prize for Physics in 2010.

Graphene consists of carbon atoms arranged in a honeycomb structure, which can be in-
terpreted as a configuration of benzene rings without hydrogen atoms connected in a lattice.
Graphene is one-atom thick, and as such is treated as a two-dimensional object. The honey-
comb lattice is not translationally invariant because it consists of two inequivalent atom sites.
Its structure is described as two interpenetrating triangular lattices, hence the basis of a unit
cell is formed by two atoms.

Carbon contains four valence electrons described by s, px, py, and pz orbital functions. One
carbon atom is connected with three other carbon atoms in the honeycomb-lattice structure
forming a two-dimensional object in the x and y direction.1 The s, px and py orbitals are invari-
ant under reflection over the z-axis. Together they hybridize to form an sp2 bond, also called σ
bond, that binds the carbon atoms together. σ bonds are the strongest type of covalent bonds
because they are formed by direct overlap between the orbitals. These bonds are responsible
for the robustness of the lattice [32]. The remaining pz orbital is perpendicular to the plane

1The plane can be chosen in any direction without changing the physics.
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and antisymmetric under reflection over the z-axis. It can form π-bonds through covalent bind-
ing with neighboring atoms. The overlap between the pz orbitals facilitates electron hopping
between carbon sites.

The hopping of electrons between carbon atoms is described using a tight-binding model. In
this chapter, only nearest-neighbor and next-nearest-neighbor hopping is included. Hopping to
more remote sites is not considered because the overlap between the orbitals is negligible. Upon
calculating the energy bands of the model, a linear dispersion relation is found at zero energy
near the K and K ′ points of the Brillouin zone. This means that there are Dirac cones located
at these points and the conductance of electricity is possible. Moreover, from the linearity of
the dispersion it can be concluded that the low-energy excitations in the system are massless
Dirac fermions described by the two-dimensional Dirac equation. This means that phenomena
such as the Klein paradox2 and Zitterbewegung3 that only occur for Dirac fermions and were
only known to exist in high-energy systems, can now be measured.

This chapter is set up as follows. In the first Section, the lattice structure of graphene
will be discussed. The next Section will briefly recapture orbitals and explain their relevance
to graphene. This will be followed by a description of the tight-binding model used to study
graphene and a derivation of the linear-dispersion relation around the K (K ′) points in Sec-
tion 3.3. In Section 3.4, the cyclotron mass will be introduced, which is a measurable quantity
that can be used to derive other quantities. The density of states is derived in Section 3.5, and
Section 3.6 contains a discussion about the effective Dirac Hamiltonian.

3.1 Lattice Structure
Graphene is build up from carbon atoms arranged in a honeycomb lattice, as shown in Fig. 3.1(a),
where the carbon sites are represented by blue and yellow dots. The color difference indicates
the geometrical inequivalence between sites A (blue) and sites B (yellow); all A sites have a
bond north-west, south-west and east, whereas all B sites have a bond north-east, south-east
and west. This inequivalence between neighboring sites means that the honeycomb lattice is
not a Bravais lattice. A reciprocal lattice vector (indicated in Fig. 3.1(b) by bi) can connect
all sites A and all sites B together forming two triangular Bravais lattices with a basis formed
by two atoms, sites A and B.

The lattice vectors ai, indicated in Fig. 3.1(a), span the triangular Bravais lattice. They
are

a1 =
a

2

(
3,
√

3
)
, a2 =

a

2

(
3,−
√

3
)
, (3.1)

with the spacing between the atoms A and B in the unit cell, called lattice spacing, a ≈ 1.42 Å.
The spacing between the atoms in the triangular lattice is equal to the modulus of the lattice
vectors |a1| = |a2| =

√
3a ≈ 2.4 Å. The area of the unit cell is A = 3

√
3a2/2 = 0.051 nm2 [35].

There are two atoms in the unit cell, hence the density of carbon atoms is nC = 2/A =
39 nm−2 = 3.9× 1015 cm−2. Per carbon atom, there is one π electron, therefore, the density of
valence electrons equals the density of carbon atoms nπ = nC = 3.9 × 1015 cm−2. The three

2The Klein paradox is the phenomenon where regardless of the height of the potential barrier, this barrier
will always be transparent for Dirac fermions coming in with normal incidence.

3When confining Dirac fermions, these fermions exhibit jittery motion, also called Zitterbewegung.
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Figure 3.1: Graphene honeycomb lattice and its Brillouin zone. (a) Lattice of graphene with a1 and a2 denoting
lattice vectors, and δ1, δ2 and δ3 the nearest-neighbor vectors. (b) Brillouin zone of graphene, with the
reciprocal-lattice vectors b1 and b2 and the high-symmetry points K and K ′ where the dispersion is Dirac-like.
Figure from Ref. [32].

nearest-neighbor vectors are

δ1 =
a

2

(
1,
√

3
)
, δ2 =

a

2

(
1,−
√

3
)
, δ3 = −a (1, 0) , (3.2)

and the next-nearest neighbors are

δ′1 = ±a1, δ′2 = ±a2, δ′3 = ± (a2 − a1) . (3.3)

Performing a Fourier transform allows one to define reciprocal-lattice vectors that span
the reciprocal space. The primitive cell in this space is called the Brillouin zone, shown in
Fig. 3.1(b). The reciprocal-lattice vectors bi are related to the lattice vectors ai via ai · bj =
2πδij. They are given by

b1 =
2π

3a

(
1,
√

3
)
, b2 =

2π

3a

(
1,−
√

3
)
. (3.4)

The K and K ′ points in Fig. 3.1(b) are the corners of the Brillouin zone, called Dirac points.4
In momentum space, they are located at

K =

(
2π

3a
,

2π

3
√

3a

)
, K′ =

(
2π

3a
,− 2π

3
√

3a

)
. (3.5)

All K and K ′ points can be connected via the reciprocal-lattice vectors. The low-energy
excitations in graphene are located around these two points, as will be discussed in Section 3.3.
It is important to realize at this point that the inequivalence between the K and K ′ points
is unrelated to the inequivalence between the A and B lattice sites [35]. The Bravais lattice
determines the form of the Brillouin zone, irrespective of whether there is more than one atom
present in the unit cell.

3.2 Orbitals
In the introduction, it was mentioned that the four valence electrons in carbon correspond to s,
px, py and pz orbital functions. In this Section, this nomenclature will be made more explicit.

4The reason for this name will be explained soon.
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Figure 3.2: s, px, py and pz orbitals. Figure from Ref. [34].

Electrons in an atom are bound to shells denoted by n, where n = 1 is the first shell around
the nucleus, n = 2 the second, and so on. With a higher shell number n, the electron is further
away from the nucleus. The number of electrons in a shell is dictated by the Pauli principle.
The degrees of freedom increase upon increasing shell-number, so that the number of electrons
increases with increasing shell-number. Away from the nucleus, the wavefunctions describing
these electrons look like plane waves [33]. However, upon closer inspection, they are described
by atomic orbitals. The shape of the orbital of an electron depends on the angular momentum
quantum number l according to 0 ≤ l ≤ n− 1, where l is an integer. These orbitals are called
s, p, d and so on, corresponding to l = 0, 1, 2..., respectively. The number l corresponds to
the number of nodes of the orbital. The magnetic quantum number determines the number
of orbitals according to −l ≤ m ≤ l with m an integer. For example, the p orbital has three
different magnetic moment quantum numbers, m = −1, 0, 1. The three orbitals, p−1, p0, and
p+1 can be combined to px, py and pz. The s and p orbitals are shown in Fig. 3.2.

Figure 3.3: Configurations of electrons in a carbon atom. (a) Electrons in the ground state. (b) One electron
excited from the 2s orbital to the available 2p orbitals. Figure from Ref. [35].

Carbon contains six electrons; two are in the first orbit (n = 1) around the nucleus and four
are in the second (n = 2). These four are the valence electrons which means that one carbon
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atom can form four bands with other atoms. The core electrons are so close to the nucleus
of the atom that they are deemed irrelevant for the chemical reactions and they are neglected
when developing the theory of graphene [35]. In carbon, the groundstate configuration of the
electrons is 1s2 2s2 2p2. This configuration is energetically most favorable because the 2p orbitals
are 4 eV higher in energy than the 2s orbitals [35]. However, in graphene this configuration of
electrons is not the preferred state. In the presence of other carbon atoms, it is energetically
most favorable to excite one electron from the 2s orbital into the third available 2p orbital, as
shown in Fig. 3.3, so that covalent bonds between carbon atoms can be formed [35]. Now, the
electron configuration is 1s2 2s1 2p3.

Graphene is two dimensional in the x and y direction. The plane is invariant under reflection
over the z-axis, a symmetry also exhibited by the s, px and py orbitals. A superposition of these
states |2s〉, |2px〉 and |2py〉 is called sp2 hybridization [35]. The three sp2 orbitals are oriented
in the x and y direction with an angle 2π/3 between them, as shown in Fig. 3.4. The sp2

bond, also called σ bond, binds the carbon atoms together in the honeycomb lattice. σ bonds
are formed by direct overlap of the orbitals, which makes them the strongest among different
types of covalent bonds. Therefore, they are responsible for making the lattice robust [32].
The remaining orbital pz is perpendicular to the plane and can form π-bonds through covalent
binding with neighboring atoms. It is this orbital that is responsible for the electronic properties
of graphene.

Figure 3.4: sp2 hybridized orbitals at an angle 2π/3 apart. Figure from Ref. [35].

3.3 Tight-Binding Model
The energy bands of a crystal contain information about the electrons in the system. In the
case of graphene, the linear behavior of the dispersion reveals that the electronic excitations
are Dirac fermions. A convenient way to retrieve the energy bands is by using a tight-binding
model. In this Section, the model will be briefly sketched and it will be justified why this
approximation can be used to find the energy bands of graphene. After a short introduction,
the model will be applied to graphene.

3.3.1 A Brief Introduction

By assuming that atoms in a solid are far apart from each other, the solid can be described by
treating these atoms as if they are isolated. Upon decreasing the spacing, the atoms will be
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brought closer to each other and the orbital functions of the electrons of the different atoms
will start to overlap. The tight-binding model is capable of describing the corrections provided
by this overlap to the picture of isolated orbitals.

In this model, it is assumed that near the lattice point the Hamiltonian can be approximated
by the Hamiltonian Hat of the single atom at that lattice point [36]. It is also assumed that the
bound levels of the Hamiltonian are well localized, which means that if ψn is a bound level of
H, then ψn (r) is very small when r exceeds a distance of the order of the lattice spacing [36].
Such a bound level satisfies the atomic Schrödinger equation

Hatψn = Enψn.

The Hamiltonian of the entire crystal H can be written as

H = Hat + ∆U (r) ,

where ∆U (r) is a correction to the atomic potential that matches the periodic potential of
the crystal [36]. ψn (r) then also satisfies the crystal Schrödinger equation as long as ∆U (r)
vanishes where ψn (r) does not. If this condition holds, then for each of the N sites R in the
lattice, each atomic level ψn (r) yields N levels in the periodic potential with wavefunctions
ψn (r−R) [36]. One may now write a wavefunction that is a linear combination of these N
atomic orbitals

ψnk
(r) =

1√
N

∑
l

eik·lψn (r− l) , (3.6)

where k ranges through the N values of the first Brillouin zone and ψn are the atomic orbital
functions [36]. This wavefunction satisfies Bloch’s theorem5 and contains the atomic character
of the levels. The energy bands in this description correspond to the energy of the atomic level
En regardless of the value of k [36]. Therefore, the wavefunction in Eq. (3.6) does not contain
any specific information about the system in combination with the initial assumptions.

One way to fix this problem is by modifying the initial assumption. It is more realistic to
assume that ψn (r) becomes very small but non-zero when ∆U (r) comes into play [36]. One
wants to find a solution to the full crystal Schrödinger equation in the form of Eq. (3.6). Now
the Bloch function is

ψnk
(r) =

∑
l

eik·lφn (r− l) , (3.7)

where φn (r− l) is not an orbital function but a Wannier function [36]. Wannier functions
describe the motion of the electrons as a function of position and they are independent of
k [33]. For each electron band, there is a different Wannier function [33]. As ψnk

(r) describe
a basis, φn (r− l) also describe a basis. The orthogonality of the Bloch functions ψnk

and
ψn′k (where n and n′ belong to different bands) means that the Wannier functions should also
form an orthogonal basis. Moreover, Wannier functions on different sites should always be
orthogonal to each other, even when they belong to the same energy band [33]. This means the
following: if WR is a Wannier function, the orthogonality condition states that 〈WR|W ′

R〉 = 0
should hold, i.e. ∫ ∞

−∞
drW ∗

R(r)WR′(r) = δ (R−R′) . (3.8)

5Remember that Bloch’s theorem states that one can always write a wavefunction as ψk (r) = exp(ik·r)uk (r),
where uk (r) is periodic under lattice translation, i.e. ψk (r + R) = exp(ik ·R)ψk (r) should hold.
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This equation imposes a condition on when one can safely use the tight-binding approximation,
namely for the integral to yield zero, the functions must have nodes. When the Wannier
functions overlap with each other, electrons can hop. It is important to note at this point that
Wannier functions are not eigenfunctions of the Hamiltonian and do not form an eigenbasis for
the system. However, because the functions are so localized, they form a good basis to work
with.

As discussed previously, three of the four valence electrons of carbon form σ bonds that
bind the carbon atoms together in the honeycomb lattice. They do not play a role in the
electronic properties exhibited by graphene. The π electrons are responsible for the low-energy
excitations, whereas the σ electrons form bonds far away from the Fermi energy. This is why
only the π electrons are included in the calculation to find the energy bands of graphene,
following the example of Wallace. As explained before, pz orbitals can be described perfectly
using the tight-binding approximation. Therefore, tight-binding is a suitable model for finding
the energy bands in graphene.

3.3.2 Tight-Binding Applied to Graphene in Second Quantized Lan-
guage

In the tight-binding model described in this Section, it is assumed that electrons can hop to
their nearest neighbor (between different sublattices) and next-nearest neighbor (within the
same sublattice). The hopping is facilitated by overlapping orbital functions. Possible hopping
to sites further away is not taken into account because the overlap between the orbitals is
negligible. The Hamiltonian (with ~ = 1) reads

H = −t
∑
〈i,j〉,σ

(
a†σ,ibσ,j + h.c.

)
− t′

∑
〈〈i,j〉〉,σ

(
a†σ,iaσ,j + b†σ,ibσ,j + h.c.

)
(3.9)

where ai,σ (bi,σ) annihilates an electron with spin projection σ = ↑, ↓, and a†i,σ (b†i,σ) creates
the corresponding electron on site Ri on sublattice A (B) [32]. The sum in the first term
runs over all nearest-neighbor sites 〈i, j〉, whereas the sum in the second term is over all next-
nearest-neighbor sites 〈〈i, j〉〉. The corresponding hopping parameters are t ≈ 2.8 eV and t′,
respectively. The value of t′ is not well-known. Calculations have shown it to be between
0.02t and 0.2t [32]. However, the sign of t′ relative to t is debated. This issue is addressed in
App. 6.2.1.

The energy bands describing the electron state in the system can be derived from this
Hamiltonian. To find the bands, it is easier to treat the nearest-neighbor and next-nearest-
neighbor terms in the Hamiltonian separately. First, the operators are Fourier transformed
according to

an =
1√
N

∑
k

e−ik·Rn a(k), bn =
1√
N

∑
k

e−ik·Rn b(k), (3.10)

where N is the number of atoms in each sublattice. Diagonalizing the Fourier transformed
Hamiltonian and solving the Schrödinger equation then allows one to find the energy bands.
They are

E±(k) = ±t
√

3 + f(k)− t′f(k), (3.11)
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with

f(k) = 2 cos
(
ky
√

3a
)

+ 4 cos

(
kx

3a

2

)
cos

(
ky

√
3a

2

)
. (3.12)

The derivation of these bands can be found in App. 6.2.2. The plus corresponds to the upper (π)
band, the electron band, and the minus to the lower (π∗) band, the hole band [32]. Eq. (3.12)
is symmetric such that, if t′ = 0, the energy in Eq. (3.11) is symmetric around zero. However,
if t′ is finite, the electron-hole symmetry is broken and as a result the π and π∗ bands will
become asymmetric.

Figure 3.5: The energy-band structure of graphene with E in units of t, for t′ = −0.2t and the lattice spacing
a = 1.

In Fig. 3.5, the full band structure of graphene with t and t′ is shown.6 The bands touch
at the K and K ′ points forming Dirac cones, hence the name Dirac points. There are six
Dirac cones, but only two of them are inequivalent, because vectors of the reciprocal lattice can
connect the others. One Dirac cone is divided over three Brillouin zones, so there are exactly
two inequivalent Dirac cones in one Brillouin zone.

The dispersion at the Dirac point can be found by expanding the band structure close to
the K (or K′) vector as k = K + q with |q| � |K|. Putting t′ = 0 yields

E±(K + q) = ±vF |q|+O
[
(q/K)2

]
. (3.13)

The dispersion is derived in App. 6.2.3. The momentum q is measured relatively to the Dirac
points and vF is the Fermi velocity, vF = 3at/2 ≈ 1× 106 m/s. This is a remarkable outcome.
Normally, one finds ε(q) = q2/2m where m is the mass of the electron such that the velocity
is v = k/m =

√
E/m [32]. However, in the result obtained in Eq. (3.13) the Fermi velocity

depends on neither the energy nor the momentum. Expanding the spectrum up to second order
in (q/K) and including t′ yields

E±(K + q) = 3t′ ± vF |q| −
[

9t′a2

4
± 3ta2

8
sin(3θq)

]
|q|2 +O

[
(q/K)3

]
(3.14)

6Note here the discrepancy with the statement made before where t′ was attributed a positive sign with
respect to t, whereas now t′ has a negative sign in terms of t to find the energy bands.
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with
θq = arctan

(
qx
qy

)
(3.15)

the angle in momentum space. The derivation of this dispersion relation can be found in
App. 6.2.4. The dispersion in Eq. (3.14) depends on the direction of the momentum and is
threefold symmetric [32].

The energy dispersion in Eq. (3.13) has the form of the energy of ultrarelativistic particles,
E = c p. Quantum-mechanically such particles are described by the massless Dirac equation.
Therefore, it can be concluded from Eq. (3.13) that the low-energy excitations in graphene are
massless Dirac fermions.

3.4 Cyclotron Mass
In the previous Section, it was derived from theory that the dispersion relation of graphene
is linear, which means that the excitations in the system are massless Dirac fermions. In this
Section, support for this conclusion will be given by studying the cyclotron mass. This quantity
can be measured experimentally and used to calculate other physical quantities, such as the
Fermi velocity. The specific shape of the dispersion relation found in Eq. (3.13) should lead
to a cyclotron mass which depends on the square root of the electronic density [32]. In the
semiclassical approximation, the cyclotron mass is defined as

m∗ =
1

2π

[
∂A(E)

∂E

]
E=EF

,

where A(E) is the area in k space given by A(E) = πq(E)2. q(E) can be found by rewriting
Eq. (3.13), so that the area is

A(E) = π
E2

v2
F

.

The cyclotron mass is then

m∗ =
EF
v2
F

=
kF
vF
.

This can be expressed in terms of the electronic density n using that k2
F/π = n

m∗ =

√
nπ

vF
. (3.16)

Hence, the cyclotron mass indeed depends on the square root of the electronic density. Eq. (3.16)
can be fitted to experimental data to find an approximation of the Fermi velocity vF ≈ 106 m/s
and the hopping energy t ≈ 3 eV [32]. The experimental confirmation of the dependence of the
cyclotron mass on

√
n can be seen as evidence for the existence of massless Dirac quasiparticles

in graphene, as opposed to the common parabolic Schrödinger dispersion which produces a
constant cyclotron mass.
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Figure 3.6: The density of states of graphene per unit cell given as function of energy in units of t. (a) and (b)
t′ = 0.2 t. (c) and (d) t′ = 0. (b) and (d) show a zoom-in on the density of states near the neutrality point of
one electron per site. At t′ = 0, the electron-hole symmetry is clearly visible. Figure from Ref. [32].

3.5 Density of States
The density of states is derived from the Hamiltonian in Eq. (3.9) and shown in Fig. 3.6. In
both cases, for t′ = 0 and for t′ 6= 0, the density of states shows semimetallic behavior [32].
Considering only nearest-neighbor hopping, i.e. t′ = 0, allows for the derivation of an analytical
expression of the density of states per unit cell [32]. Using the energy dispersion in Eq. (3.11),
one can compute the retarded Green’s function, Gret = E − Ĥ(k) + iδ (with δ > 0 to make
sure the Green’s function is retarded), and use this to find the density of states according to

ρ(E) = − 1

π
Im Tr (Gret)

−1 .

Computing the trace leads to the following result

ρ(E) =
4

π2

|E|
t2

1√
Z0

F

(
π

2
,

√
Z1

Z0

)
(3.17)

with

Z0 =

{ (
1 +

∣∣E
t

∣∣)2 − [(E/t)2−1]2

4
, |E| ≤ t,

4
∣∣E
t

∣∣ , t ≤ |E| ≤ 3t,

and

Z1 =

{
4
∣∣E
t

∣∣ , |E| ≤ t,(
1 +

∣∣E
t

∣∣)2 − [(E/t)2−1]2

4
, t ≤ |E| ≤ 3t,

where

F
(π

2
, k
)

=

∫ π/2

0

dθ√
1− k2sin2θ

(3.18)
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is the complete elliptical integral of the first kind. The density of states per unit cell near
the Dirac point can be found using the dispersion in Eq. (3.13) and leads to a much simpler
expression

ρ(E) =
2A
π

|E|
v2
F

(3.19)

where A is the area of the unit cell A = 3
√

3a2/2. The derivation for both, the density of states
in the system and the density of states near the Dirac points can be found in App. 6.2.5.

3.6 Effective Dirac Hamiltonian
Considering only nearest-neighbor hopping (t′ = 0), the Hamiltonian for graphene can be
written as an effective Hamiltonian resembling the massless Dirac-like Hamiltonian. Rewriting
the Hamiltonian in Eq. (3.9) in terms of the Fourier transform of the operators as in Eq. (3.10),
and expanding around the K and K ′ points as before, i.e. k = K + q, leads to the following
effective Hamiltonian

H ≈

− t
4

∫
dxdy

{
ψ†1

[(
0 3a

(
1− i

√
3
)

−3a
(
1 + i

√
3
)

0

)
∂x +

(
0 3a

(
−
√

3− i
)

−3a
(
−
√

3 + i
)

0

)
∂y

]
ψ1

+ψ†2

[(
0 3a

(
1 + i

√
3
)

−3a
(
1− i

√
3
)

0

)
∂x +

(
0 3a

(
−
√

3 + i
)

−3a
(
−
√

3− i
)

0

)
∂y

]
ψ2

}
= −ivF

∫
dxdy

[
ψ̂†1(r)σ · ∇ψ̂1(r) + ψ̂†2(r)σ∗ · ∇ψ̂2(r)

]
, (3.20)

with the Pauli matrices σ = (σx, σy), σ∗ = (σx,−σy), and ψ̂†i = (a†i , b
†
i ) with i = 1, 2 where

i = 1 (i = 2) refers to the K (K ′) point. The first (second) part of Eq. (3.20) represents the
massless Dirac Hamiltonian around theK (K ′) point. Close to theK point, the two-component
electron wavefunction ψ(r) obeys the two-dimensional Dirac equation

−ivFσ · ∇ψ(r) = E ψ(r).

This wavefunction in momentum representation around K is

ψ±,K(k) =
1√
2

(
e−iθk/2

±eiθk/2

)
for HK = vFσ · k, where the ± correspond to the eigenenergies E = ±vFk, and θk given by
Eq. (3.15) [32]. Similarly, around the K ′ point the wavefunction is

ψ±,K′(k) =
1√
2

(
eiθk/2

±e−iθk/2

)
for HK′ = vFσ

∗ · k. These two wavefunctions are connected through time-reversal symmetry.
Taking point M in Fig. 3.1 as the origin of coordinates in momentum space, this symmetry is
realized as a reflection over the x-axis, i.e. (kx, ky) → (kx,−ky). Rotating the phase θ by 2π
changes the sign of the wavefunction. This means there is a phase of π which is called a Berry’s
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phase. This phase is topologically protected.7 The sign change under rotation by π is typical
for spinors.

The wavefunctions are the eigenfunctions of the helicity operator, which by definition is the
projection of the momentum operator in the (pseudo)spin direction. The helicity operator is

ĥ =
1

2
σ · p

|p|
. (3.21)

ψK and ψK′ are eigenstates of ĥ,

ĥψK(r) = ±1

2
ψK(r), (3.22)

and the same for ψK′(r) with reversed sign. The plus sign corresponds to electrons and the
minus sign to holes. The eigenvalue equation also shows that the eigenvalues of σ are either
in the direction of the momentum (↑) or in the opposite direction (↓). This means that the
states of the system have a well-defined chirality or helicity. The values of the helicity are
good quantum numbers as long as Eq. (3.20) holds [32]. Consequently, the helicity is a good
quantum number near the K and K ′ points. It loses this status when one moves away from
these points or when t′ becomes finite.

7The topological protection is a consequence of the specific shape of the Hamiltonian near the Dirac point.
The Hamiltonian near K can be written as HK = σ · k and describes a vortex. The wavefunction picks up a
phase π when going around the vortex once.
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Chapter 4

Superconductivity in Artificial Graphene

Superconductivity does not occur naturally in graphene. This is unfortunate because the
relativistic quantum mechanics that govern the carbon system have interesting consequences for
the physics of superconductivity that are worthwhile investigating, such as Andreev reflection
[3]. Experiments using the proximity effect [15, 16] or doping [17] have shown that graphene
is well-suited to support a supercurrent. Due to the ease with which the electronic properties
of graphene can be altered, there is hope that the material may be tailored in such a way
that it can be made intrinsically superconducting. However, such a discovery has not yet
been made. Therefore, the realization of a Dirac superconductor has to come about using
a different material with similar properties to graphene. This has led to the idea to study
superconductivity in artificial graphene samples. The type of samples studied here are systems
where nanocrystals with a truncated cubic shape are synthesized in honeycomb superlattices
via self-assembly, as shown in Fig. 4.1 [18]. Boneschanscher et al. have experimentally realized
these systems for rock-salt PbSe nanocrystals, which form honeycomb superlattices via the
attachment of the {100} facet of the nanocrystal as shown in Fig. 4.2 with a lattice parameter
of 6 nm [18]. This honeycomb superlattice has an octahedral symmetry that is buckled, which
means that the nanocrystals occupy two parallel planes. Therefore, the superlattice resembles
proposed atomic silicene honeycomb structures. Via cation exchange, the PbSe honeycomb
superlattice was successfully transformed into a honeycomb superlattice composed of zinc-
blende CdSe nanocrystals with a lattice parameter of 6 nm. This preservation of the lattice
structure during this transformation is a sign of the robustness of the honeycomb geometry. The
sheets produced have a size of over a hundred unit cells, which suggests that the nanocrystals
attach from a preordered state. What drives the attachment into this specific geometry is
not known, especially because more often than not the nanocrsytals self-assemble into square
superlattices [37]. The energy spectrum of PbSe and CdSe honeycomb superlattices as well as of
HgTe nanocrystals assembled in a honeycomb superlattice has been described theoretically and
the presence of Dirac cones therein reflects the graphene-like nature of these materials [19,20].
In this Chapter, the possibility of phonon-mediated superconductivity in a system of CdSe
nanocrystals posited in a graphene-like structure is investigated.

To be able to find the energy bands of this specific system, Kalesaki et al. used an atomistic
tight-binding method, where each atom in the lattice is described by a double set of sp3d5s∗

atomic orbitals including the spin degree of freedom [19]. The system was made of up to 6×104

atoms and 1.2× 106 atomic orbitals. They used these results to compute the energy bands for
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Figure 4.1: HAAFD-
STEM image of a
honeycomb superlattice
of nanocrystals. The scale
bar is 50 nm. Figure from
Ref [18].

Figure 4.2: Nanocrystals
with a truncated cubic
shape attached via the
{100} facet to form a hon-
eycomb superlattice. Fig-
ure from Ref [18].

Figure 4.3: Conduction bands
for CdSe nanocrystals arranged
in a honeycomb superlattice. A
Dirac cone appears at the s
and p-like bands. Figure from
Ref [20].

the graphene-like system. Just as in graphene, they find that there are Dirac cones at the K
and K ′ points shown in Fig. 4.3. In the Figure, there are two well-separated sets of two and six
bands. The lowest two bands correspond to the π and π∗ bands in actual graphene and they
are s-wave like [19]. The second set of bands are p-wave like and the Dirac cone is in fact made
up of a superposition of px and py-bands. Each band is spin degenerate, hence actually there
are 4 and 12 bands.

In Section 4.1, it will be explained that the system is described through an effective model
where one nanocrystal is modeled as a superatom. The effective phonon of a single CdSe
nanocrystal is the longitudinal optical one [21]. Optical phonons are gapped and for simplicity,
it is assumed that there is one Einstein phonon per superatom site. Only the effective s-
like electrons close to the lowest Dirac point shown in Fig. 4.3 are considered. It is assumed
that a phonon can couple to electrons on-site and at nearest-neighbor sites. The system is
described by a tight-binding Hamiltonian, which includes the chemical potential, electron-
phonon coupling, nearest-neighbor hopping, and Hubbard terms for electron-pairing on-site
and between nearest neighbors. In Section 4.2, a path-integral approach will be employed to
integrate out the phonons to obtain the effective interaction. In case of a negative value for
this interaction, the electrons will repell each other and the system is not superconducting.
If this interaction is positive, the electrons will attract each other. A numerical analysis by
the group of Prof. C. Delerue (Lille, France) allows for the determination of a value for this
effective interaction. Order parameters for the on-site Cooper pairs and Cooper pairs between
nearest-neighbor sites will be defined in Section 4.3 to be able to decouple the electron fields.
For the nearest-neighbor interaction, the competition between the hidden order [4] and the
Kekule order [5] will be studied extensively. Next, in Section 4.4, the Hamiltonians will be
expanded around the Dirac points and written in Dirac-Nambu representation. To ensure that
the Dirac description is valid, the Fermi level cannot move away too far from the Dirac points.
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Then, by employing a mean-field approximation, the ground-state energy, gap equations at zero
and finite temperature, and the critical temperatures will be obtained in Section 4.5.

4.1 Model
To describe superconductivity in this system, a model is used in which one nanocrystal is
described as one superatom. Only the effective s-like electrons are considered such that there
is no orbital degree of freedom. This results in a system that can be described using the same
tight-binding approach as in graphene. It is known from the literature that in CdSe quantum
dots the longitudinal optical phonon is dominant and it is assumed that this is also the case for
its nanocrystals [21]. Therefore, only this phonon is considered and treated as local. Moreover,
an optical phonon has a constant frequency, and it can thus be described by an Einstein mode
ωE. The phonon couples to the effective s-like electrons on the nanocrystals, which is justified
by Schluter et al. [38]. Within BCS theory, phonons only couple to electrons at the Fermi level.
Therefore, to build a Dirac superconductor, the Fermi level should remain sufficiently close to
the Dirac points to ensure the validity of the linear description of the fermions. This means
that the chemical potential, which raises and lowers the Fermi level in the system, cannot be
larger than half of the nearest-neighbor hopping parameter t according to µ ≤ 0.5t, where
t ≈ −11 meV in the CdSe honeycomb superlattice [19]. The complete system can now be
referred to as a graphene superstructure build up of superatoms with one phonon living on
each site coupling to effective s-like electrons.

The system is described using a tight-binding Hamiltonian, which consists of a Hubbard
Hamiltonian including nearest-neighbor hopping and on-site and nearest-neighbor site electron-
electron interactions, a Hamiltonian for the chemical potential and an electron-phonon Hamil-
tonian, which couples the phonons to on-site and nearest-neighbor site electrons. The following
Hubbard Hamiltonian HHub is considered

HHub = −t
∑
〈i,j〉,σ

(
a†i,σbj,σ + b†j,σai,σ

)
+ U

∑
i

(
a†i,↑a

†
i,↓ai,↓ai,↑ + b†i,↑b

†
i,↓bi,↓bi,↑

)
+V

∑
〈i,j〉;σ,σ′

a†i,σai,σb
†
j,σ′bj,σ′ , (4.1)

where
∑
〈i,j〉 indicates that the sum in the first and last term runs over nearest-neighbor sites,

a†i,σ (ai,σ) is a creation (annihilation) operator of an electron on sublattice A at site i with
spin σ, t ≈ −11 meV is the nearest-neighbor hopping parameter, and U and V are the on-site
and the nearest-neighbor Coulomb interactions, respectively. The Hamiltonian for the chemical
potential Hµ reads

Hµ = −µ
∑
i,σ

(
a†i,σai,σ + b†i,σbi,σ

)
. (4.2)

The electron-phonon Hamiltonian Hel−ph is defined using that the phonon couples to electrons
on-site and between nearest-neighbor sites. This means that a phonon on sublattice A couples
to electrons on sublattices A and B, and likewise for a phonon on sublattice B. The phonon
frequency for phonons on sublattices A and B is equal and given by the einstein mode ωE. This
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yields the following for the electron-phonon Hamiltonian Hel−ph

Hel−ph = ~ωE
∑
i

c†A,icA,i +
∑
i,j;σ

[
V (ri − rj) a

†
ri,σ
ari,σ + Ṽ (ri − rj) b

†
ri,σ
bri,σ

] (
c†A,rj + cA,rj

)
+A↔ B, (4.3)

where c†A,i (cA,i) creates (annihilates) a phonon on sublattice A at site i and where

V (ri − rj) = V0 δri,rj , and Ṽ (ri − rj) = Ṽ0

∑
α

δri,rj−δα ,

with V0 and Ṽ0 some constants.

4.2 Effective Electron-Electron Interaction
To be able to determine whether the system can enter a superconducting phase, the effective
interaction between electrons needs to be calculated. If this effective interaction is attractive,
Cooper pairs can form and the system is superconducting. If the interaction is repulsive,
superconductivity is not possible. To determine this effective interaction, the phonons need to
be integrated out from Eq. (4.3) after which the Coulomb terms U and V in Eq. (4.1) can be
renormalized. To integrate out the phonons, one uses a path-integral formalism

Z =

∫
D
[
ψ†, ψ

] ∫
D
[
φ†, φ

]
e−

1
~βS[ψ†,ψ;φ†,φ], (4.4)

where ψ is an electron field and φ a boson field and the action S
[
ψ†, ψ;φ†, φ

]
is defined as

S
[
ψ†, ψ;φ†, φ

]
=

∫ ~β

0

dτ
[
ψ†(τ)∂τψ(τ) + φ†(τ)∂τφ(τ) +H

(
ψ†, ψ;φ†, φ

)]
. (4.5)

To be able to rewrite a Hamiltonian into an action, the operators need to be replaced by fields.
The following transformations are used

ak,σ → ψA,k,σ(τ) =
1√
~β
∑
n

ψA,k,σ,ne−iωnτ ,

cA,q → φA,q(τ) =
1√
~β

∑
n

φA,q,ne−iω̂nτ ,

where ωn = (2n + 1)π/(~β) and ω̂n = 2nπ/(~β) for n ∈ Z are the Matsubara frequencies
for fermions and bosons, respectively, and φ (ψ) obey the boson (fermion) (anti)commutation
relations.

To use this procedure, the electron-phonon Hamiltonian Hel−ph first has to be written in
reciprocal space. The following transformation is used

ai,σ =
1√
N

∑
k

ak,σeik·ri , bi,σ =
1√
N

∑
k

bk,σeik·ri ,

cA,i =
1√
N

∑
q

cA,qeiq·ri , cB,i =
1√
N

∑
q

cB,qeiq·ri ,
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where a†k,σ (ak,σ) creates (annihilates) an electron on sublattice A with momentum k and spin
σ, c†A,q (cA,q) creates (annihilates) a phonon with momentum q on sublattice A, ri is the real
space vector connecting sites and it is assumed that there are 2N atoms in the system. This
yields the following

Hel−ph = ~ωE
∑
q

c†A,qcA,q +
∑
k,q,σ

[
u0 a

†
k+q,σak,σ + v(q) b†k+q,σbk,σ

] (
c†A,−q + cA,q

)
+A↔ B, (4.6)

where

u0 ≡
V0√
N
, v(q) ≡ Ṽ0√

N
γq, (4.7)

with
γk ≡

∑
α=1,2,3

eik·δα , (4.8)

where δα is the real-space vector connecting nearest-neighbor sites. Eq. (4.7) shows that the
on-site coupling u0 is independent of the phonon momentum q, whereas the coupling between
nearest-neighbor sites v(q) is dependent on the momentum. Replacing the operators in Eq. (4.6)
with fields leads to the electron-phonon Hamiltonian

Hel−ph

(
ψ†, ψ;φ†, φ

)
= ~ωE

∑
q

φ†A,q(τ)φA,q(τ)

+
∑
k,q,σ

[
u0 ψ

†
A,k+q,σ(τ)ψA,k,σ(τ) + v(q)ψ†B,k+q,σ(τ)ψB,k,σ(τ)

] [
φ†A,−q(τ) + φA,q(τ)

]
+A↔ B. (4.9)

Plugging this into Eq. (4.5), expanding in terms of the Matsubara frequencies and solving the
integral over τ leads to the electron-phonon action

Sel−ph

[
ψ†, ψ;φ†, φ

]
=
∑
q,n

φ†A,q,n (−iω̂n + ~ωE)φA,q,n

+
1√
~β
∑
q,σ,n

[
(u0 ρA,q,σ,n + v(q) ρB,q,σ,n)φ†A,−q,−n + (u0 ρA,q,σ,n + v(q) ρB,q,σ,n)φA,q,n

]
+A↔ B, (4.10)

where the following definition for the density of electrons on sublattice A is used

ρA,q,σ,n ≡
∑
k,m

ψ†A,k+q,σ,m+nψA,k,σ,m. (4.11)

The explicit derivation of the electron-phonon action can be found in App. 6.3.1. To be able
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to integrate out the phonons, the square needs to be completed. This yields

S
[
ψ†, ψ;φ†, φ

]
=
∑
q,n

(−iω̂n + ~ωE)

[
φ†A,q,n +

1√
~β

1

−iω̂n + ~ωE

∑
σ

(u0 ρA,q,σ,n + v(q) ρB,q,σ,n)

]

×

[
φA,q,n +

1√
~β

1

−iω̂n + ~ωE

∑
σ′

(u0 ρA,−q,σ′,−n + v(−q) ρB,−q,σ′,−n)

]
− 1

~β
∑

q,σ,σ′,n

1

−iω̂n + ~ωE
(u0 ρA,q,σ,n + v(q) ρB,q,σ,n) (u0 ρA,−q,σ′,−n + v(−q) ρB,−q,σ′,−n)

+A↔ B. (4.12)

Now, the phonons can be eliminated by integrating them out. The result reads

Z =

∫
D
[
ψ†, ψ

] ∫
D
[
φ†, φ

]
e−

1
~β (Sel[ψ†,ψ]+Sel−ph[ψ†,ψ;φ†,φ]) =

∫
D
[
ψ†, ψ

]
e−

1
~βSeff [ψ†,ψ],

where

Seff

[
ψ†, ψ

]
= Sel

[
ψ†, ψ

]
− 1

~β
∑

q,σ,σ′,n

1

−iω̂n + ~ωE
(
Seff,A

[
ψ†, ψ

]
+ A↔ B

)
,

with
Seff,A

[
ψ†, ψ

]
= (u0 ρA,q,σ,n + v(q) ρB,q,σ,n) (u0 ρA,−q,σ′,−n + v(−q) ρB,−q,σ′,−n) .

The elimination of the phonons is done explicitly in App. 6.3.1. Rewriting according to∑
n

1

−iω̂n + ~ωE
iω̂n + ~ωE
iω̂n + ~ωE

=
∑
n

iω̂n + ~ωE
ω̂2
n + (~ωE)2

=
∑
n

~ωE
ω̂2
n + (~ωE)2

,

where iω̂n disappears in the numerator because the function is symmetric in n, leads to the
final result

Seff

[
ψ†, ψ

]
= Sel

[
ψ†, ψ

]
− 1

~β
∑

q,σ,σ′,n

~ωE
ω̂2
n + (~ωE)2

(
Seff,A

[
ψ†, ψ

]
+ A↔ B

)
, (4.13)

with

Seff,A

[
ψ†, ψ

]
= (u0 ρA,q,σ,n + v(q) ρB,q,σ,n) (u0 ρA,−q,σ′,−n + v(−q) ρB,−q,σ′,−n) . (4.14)

To be able to renormalize the Coulomb interactions U and V , their respective Hamiltonians
need to be written into an action. Transforming the U and V terms in Eq. (4.1) to reciprocal
space leads to

HHub,U,V =
U

N

∑
k,k′,q

(
a†k−q,↑a

†
k′+q,↓ak′,↓ak,↑ + b†k−q,↑b

†
k′+q,↓bk′,↓bk,↑

)
+
V

N

∑
k,k′,q

∑
σ,σ′

γqa
†
k+q,σak,σb

†
k′−q,σ′bk′,σ′ , (4.15)

36



where γk is given by Eq. (4.8). Replacing the operators by fields then yields the following action
for the Hubbard U term

SHub,U

[
ψ†A, ψA, ψ

†
B, ψB

]
=

U

N

∫ ~β

0

dτ
∑
k,k′,q

ψ†A,k−q,↑ (τ)ψ†A,k′+q,↓ (τ)ψA,k′,↓ (τ)ψA,k,↑ (τ) + A→ B

=
1

~β
U

N

∑
q,n

(ρA,q,↓,nρA,−q,↑,−n + ρB,q,↓,nρB,−q,↑,−n) , (4.16)

and for the Hubbard V term one finds

SHub,V

[
ψ†A, ψA, ψ

†
B, ψB

]
=

V

N

∫ ~β

0

dτ
∑
k,k′,q

∑
σ,σ′

γqψ
†
A,k+q,σ (τ)ψA,k,σ (τ)ψ†B,k′−q,σ′ (τ)ψ†B,k′,σ′ (τ)

=
1

~β
V

N

∑
q,σ,σ′,n

γqρA,q,σ,nρB,−q,σ′,−n. (4.17)

The details of this derivation can be found in App. 6.3.2.
Upon realizing that the electron dependence of Eqs. (4.13) and (4.14) corresponds to that

of Eqs. (4.16) and (4.17), an effective electron-electron interaction term can be derived,

Seff,U,V

[
ψ†, ψ

]
= −

∑
q,n

Ũ(q) (ρA,q,↓,nρA,−q,↑,−n + ρB,q,↓,nρB,−q,↑,−n)

−
∑

q;σ,σ′;n

Ṽ (q)ρA,q,σ,nρB,−q,σ′,−n, (4.18)

where

Ũ(q) = − 1

~β

{
U

N
− 2

~ωE
ω̂2
n + (~ωE)2

[
u2

0 + v(q)v(−q)
]}

, (4.19)

Ṽ (q) = − 1

~β

{
V

N
γq − 2

~ωE
ω̂2
n + (~ωE)2

[u0v(−q) + u0v(q)]

}
. (4.20)

The effective interactions Ũ(q) and Ṽ (q) are defined with a minus sign, which means that for
the electron interaction to be attractive these interactions must acquire a positive value.

The values for ~ωE, U , V , V0 and Ṽ0 have been calculated by Prof. C. Delerue (Lille,
France), a collaborator of Prof. C. Morais Smith, using a static model. The following values
were obtained

~ωE = 26 meV, U = 469 meV, V = 262 meV,

V0 = 31 meV, Ṽ0 = 8.5 meV.

Writing Eq. (4.19) in terms of these parameters and plugging in their values yields

Ũ(q) = − 1

~β
1

N

[
U − 2

~ωE

(
V 2

0 + 9Ṽ 2
0

)]
≈ − 1

~β
1

N
345 meV, (4.21)

where it was assumed that at finite temperature the zero mode of the Matsubara frequency is
dominant and that

eiq·δα ≈ 1, such that γq =
∑
α

eiq·δα ≈ 3.
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For Eq. (4.20) the following is found

Ṽ (q) = − 1

~β
1

N

(
3V − 8

~ωE
V0Ṽ0

)
≈ − 1

~β
1

N
664 meV, (4.22)

where the same approximation was used. Unfortunately, both values for Ũ(q) and Ṽ (q) are neg-
ative, which means that the effective electron interaction for both on-site pairing and nearest-
neighbor pairing is repulsive and no superconducting state in either can exist. However, the
model introduced in this Chapter could also be used for other materials where the effective
interaction could be positive. A good candidate is PbSe for which nanocrystals have also been
synthesized in honeycomb superlattices and also there Dirac cones were discovered in the energy
spectrum [19]. Moreover, the effective phonon here also is most like the longitudinal optical
phonon. A numerical analysis by the group of Prof. C. Delerue will show whether a system
PbSe nanocrystals in a honeycomb superstructure can indeed be superconducting.

4.3 Order Parameters and Mean Field Approximation
In this Section, order parameters are defined such that a mean-field approximation can be
performed to decouple the electron-electron interaction in the effective action in Eq. (4.18).
To be able to perform this procedure, the action will first be written back to a real-space
Hamiltonian. Moreover, from now on it will be assumed that Ũ(q) and Ṽ (q) have positive
values such that they generate an attractive interaction between the electrons. Transforming
back to real space, they are constants such that Ũ(q) ≡ Ũ and Ṽ (q) ≡ Ṽ . This yields

Heff,Hub = −Ũ
∑
i

(
a†i,↓ai,↓a

†
i,↑ai,↑ + b†i,↓bi,↓b

†
i,↑bi,↑

)
− Ṽ

∑
〈i,j〉

∑
σ,σ′

a†i,σb
†
j,σ′bj,σ′ai,σ. (4.23)

The following order parameters are defined for on-site pairing and nearest-neighbor pairing,
respectively,

∆0 = 〈ai,↓ai,↑〉 = 〈bi,↓bi,↑〉 , (4.24)
∆σ′,σ (ri, rj) = 〈bj,σ′ai,σ〉 , (4.25)

where a very general form for the nearest-neighbor order parameter ∆σ′,σ (ri, rj) is assumed,
which allows for different values of this order parameter depending on the spin of the electrons
that are coupled.

To decouple the electron densities in the Ũ term in Eq. (4.23) the following mean-field
approximation is used

ai,↓ai,↑ = 〈ai,↓ai,↑〉+ δ (ai,↓ai,↑) = ∆0 + δ (ai,↓ai,↑) , (4.26)

and the same for the b-operators. Plugging this into the first part of Eq. (4.23) and neglecting
the term quadratic in fluctuations O (δ2) leads to

Heff,Hub,U = −Ũ
∑
i

[
−2 |∆0|2 + ∆†0 (ai,↓ai,↑ + bi,↓bi,↑) + ∆0

(
a†i,↑a

†
i,↓ + b†i,↑b

†
i,↓

)]
. (4.27)
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For the Ṽ term in Eq. (4.23), the mean-field approximation reads

bj,σ′ai,σ = 〈bj,σ′ai,σ〉+ δ (bj,σ′ai,σ) = ∆σ′,σ (rj, ri) + δ (bj,σ′ai,σ) . (4.28)

Plugging this into the second part of Eq. (4.23) and again neglecting the term quadratic in
fluctuations O (δ2) yields

Heff,Hub,V = −Ṽ
∑
〈i,j〉

(
− |∆σ′,σ (rj, ri)|2 + ∆†σ,σ′ (ri, rj) bj,σ′ai,σ + ∆σ′,σ (rj, ri) a

†
i,σb
†
j,σ′

)
. (4.29)

Therefore, after successfully decoupling the electron operators, the total real-space Hamil-
tonian describing the system reads

Htot = −t
∑
〈i,j〉,σ

(
a†i,σbj,σ + b†j,σai,σ

)
− µ

∑
i,σ

(
a†i,σai,σ + b†i,σbi,σ

)
−Ũ

∑
k

[
−2 |∆0|2 + ∆†0 (ak,↓a−k,↑ + bk,↓b−k,↑) + ∆0

(
a†−k,↑a

†
k,↓ + b†−k,↑b

†
k,↓

)]
−Ṽ

∑
〈i,j〉

(
− |∆σ′,σ (rj, ri)|2 + ∆†σ,σ′ (ri, rj) bj,σ′ai,σ + ∆σ′,σ (rj, ri) a

†
i,σb
†
j,σ′

)
.

(4.30)

4.4 Dirac-Nambu Representation
Now, the Hamiltonian in Eq. (4.30) will be transformed to reciprocal space, expanded around
the Dirac points K and K′, where K′ = −K, and then, following the example of Ref. [5],
compactified using

H =
1

2

∑
q

ψ† (q)Mψ (q) + E0, (4.31)

where E0 is the energy of the condensate, the 16-component Dirac-Nambu spinors Ψ† =(
Ψ†p,Ψ

†
h

)
, with Ψ†p =

(
Ψ†p↑,Ψ

†
p↓

)
and Ψ†h =

(
Ψ†h↓,−Ψ†h↑

)
are given by

Ψ†p,σ (q) =
(
a†K+q,σ b†K+q,σ a†−K+q,σ b†−K+q,σ

)
, (4.32)

Ψ†h,σ (q) =
(
bK−q,σ aK−q,σ b−K−q,σ a−K−q,σ

)
, (4.33)

and the matrix M is written in the following form

Γijk = τi ⊗ σj ⊗ γk, (4.34)

where i, j = 1, 2, 3, k = 0, 1, 2, 3, 5, τi and σj are Pauli matrices

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
,

which act in the particle-hole space and spin space, respectively, and γk are the Dirac matrices
given by

γ0 = σ0 ⊗ σ3, γ1 = σ3 ⊗ σ2, γ2 = σ0 ⊗ σ1,

γ3 = σ1 ⊗ σ2, γ5 = σ2 ⊗ σ2,

acting in the sublattice ⊗ valley space.
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4.4.1 Dirac Hamiltonian

Transforming the Hamiltonian for the hopping parameter t to reciprocal space yields

Ht = −t
∑
k,σ

(
γka

†
k,σbk,σ + γ∗kb

†
k,σak,σ

)
,

where γk is given by Eq. (4.8). Expanding around the Dirac point using k = ±K + q, where
q is small and making the particle and hole explicit leads to the following

Ht = −t
∑
q,σ

(
γK+qa

†
K+q,σbK+q,σ + γ∗K+qb

†
K+q,σaK+q,σ + γ−K+qa

†
−K+q,σb−K+q,σ

+γ∗−K+qb
†
−K+q,σa−K+q,σ

)
= −vF

2

∑
q

(
iq a†K+q,↑bK+q,↑ − iq∗ b†K+q,↑aK+q,↑ + iq∗ a†−K+q,↑b−K+q,↑ − iq b†−K+q,↑a−K+q,↑

+iq a†K+q,↓bK+q,↓ − iq∗ b†K+q,↓aK+q,↓ + iq∗ a†−K+q,↓b−K+q,↓ − iq b†−K+q,↓a−K+q,↓

)
+
vF
2

∑
q

(
iq a†K−q,↑bK−q,↑ − iq

∗ b†K−q,↑aK−q,↑ + iq∗ a†−K−q,↑b−K−q,↑ − iq b
†
−K−q,↑a−K−q,↑

+iq a†K−q,↓bK−q,↓ − iq
∗ b†K−q,↓aK−q,↓ + iq∗ a†−K−q,↓b−K−q,↓ − iq b

†
−K−q,↓a−K−q,↓

)
,

where vF = 3at/2 and it is used that
∑

α eiK·δα = 0,
∑

α eiq·δα ∼ 1, and

∑
α

ei(K+q)·δα =
3ai

4
q
(

1 + i
√

3
)

=
3ai

2
q

(
1 + i

√
3

2

)
=

3ai

2
q eiπ/3 → 3ai

2
q,

where q is rotated such that q eiπ/3 → q and q = qx + iqy. This also implies that∑
α

ei(−K+q)·δα =
3ai

2
q∗,

∑
α

e−i(K+q)·δα = −3ai

2
q∗,

∑
α

e−i(−K+q)·δα = −i3ai
2
q.

Writing Ht in Dirac-Nambu representation neatly compactifies the expression

Ht =
1

2

∑
q

Ψ†MtΨ, where Mt = vF τ0 ⊗ σ0 ⊗ (iγ0γ1qy − iγ0γ2qx) . (4.35)

This Hamiltonian is linear in momentum q and is referred to as the Dirac Hamiltonian.

4.4.2 Chemical Potential Hamiltonian

The Hamiltonian for chemical potential Hµ in reciprocal space reads

Hµ = −µ
∑
k,σ

(
a†k,σak,σ + b†k,σbk,σ

)
.
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Expanding around the Dirac points yields

Hµ = −µ
2

(
a†K+q,↑aK+q,↑ + b†K+q,↑bK+q,↑ + a†−K+q,↑a−K+q,↑ + b†−K+q,↑b−K+q,↑

+a†K+q,↓aK+q,↓ + b†K+q,↓bK+q,↓ + a†−K+q,↓a−K+q,↓ + b†−K+q,↓b−K+q,↓

+a†K−q,↑aK−q,↑ + b†K−q,↑bK−q,↑ + a†−K−q,↑a−K−q,↑ + b†−K−q,↑b−K−q,↑

+a†K−q,↓aK−q,↓ + b†K−q,↓bK−q,↓ + a†−K−q,↓a−K−q,↓ + b†−K−q,↓b−K−q,↓

)
,

such that in Dirac-Nambu representation this Hamiltonian reads

Hµ =
1

2

∑
q

Ψ†MµΨ, where Mµ = −µτ3 ⊗ σ0 ⊗ I4×4. (4.36)

4.4.3 On-Site Pairing Hamiltonian

Transforming the term with the on-site order parameter ∆0 to reciprocal space leads to

H∆0 = −Ũ
∑
k

[
−2 |∆0|2 + ∆†0 (ak,↓a−k,↑ + bk,↓b−k,↑) + ∆0

(
a†−k,↑a

†
k,↓ + b†−k,↑b

†
k,↓

)]
. (4.37)

Next, the momentum k is expanded around the Dirac point such that

H∆0 = − Ũ
2

∑
q

[
−4 |∆0|2 + ∆†0aK+q↓a−K−q↑ + ∆†0a−K+q↓aK−q↑ + ∆0a

†
K+q↑a

†
−K−q↓

+∆0a
†
−K+q↑a

†
K−q↓ + ∆†0aK−q↓a−K+q↑ + ∆†0a−K−q↓aK+q↑ + ∆0a

†
K−q↑a

†
−K+q↓

+∆0a
†
−K−q↑a

†
K+q↓ + a→ b

]
.

Writing this in Dirac-Nambu representation leads to

H∆0 = 4NŨ |∆0|2 +
1

2

∑
q

Ψ†M∆0Ψ, where

M∆0 = −Ũ [Re(∆0)τ1 − Im(∆0)τ2]⊗ σ0 ⊗ iγ0γ3, (4.38)

and it was used in the first term that
∑

q = 2N and ∆0 = Re(∆0) + i Im(∆0). From this
expression, it can be seen that ∆0 indeed pairs on-site particles in opposite valleys and with
opposite spin, as it should per definition.

4.4.4 Nearest-Neighbor Pairing Hamiltonian

For the nearest-neighbor pairing ∆σ′,σ (rj, ri), a slightly different route is taken. For the order
parameter, the Kekule ansatz, as defined in Ref. [5], is applied. This ansatz transforms the
real-space order parameter ∆σ′,σ (rj, ri) into a reciprocal-space order parameter close to the
Dirac points. The ansatz is defined as

∆σ,σ;α (ri, rj) = ∆σ cos (K · (ri + rj) + γ) , (4.39)
1

2
(∆↓,↑;α (ri, rj) + ∆↑,↓;α (ri, rj)) = ∆ cos (K · (ri + rj) + γ) , (4.40)

1

2
(∆↓,↑;α (ri, rj)−∆↑,↓;α (ri, rj)) = ∆′, (4.41)

41



where γ is a parameterization angle, which contains information about the spatial patterns
of the order parameter. Eqs. (4.39) and (4.40) form a spin triplet and are the Kekule order,
whereas Eq. (4.41) represents a spin singlet and is called the hidden order. This nomenclature
will become clearer later. The unit cell of the Kekule latice is shown in Fig. 4.4. It can be seen
that the Kekule unit cell looks like benzene, the electronic structure of which was discovered
by the German chemist Kekule, hence the name of the ansatz.

Figure 4.4: The unit cell of the Kekule lattice. ∆σ and ∆ are related to each other via an angle θ. By setting
this angle such that ∆σ = 0 and subsequently mapping the superconducting problem onto the hopping problem,
the unit cell looks like this. The hopping parameter is renormalized on the bold lines by ∆ cos (γ + 2π/3), on
the thin lines by ∆ cos (γ − 2π/3) and on the red lines by ∆ cos (γ). Figure from Ref. [5].

Making the sum over spin explicit and then plugging in the Kekule ansatz leads to the
following for H∆σ′,σ

H∆σ′,σ
= −Ṽ

∑
〈i,j〉

[
− |∆↑,↑ (rj, ri)|2 − |∆↑,↓ (rj, ri)|2 − |∆↓,↑ (rj, ri)|2 − |∆↓,↓ (rj, ri)|2

+∆↑↑ (rj, ri) a
†
i,↑b
†
j,↑ + ∆↓↓ (rj, ri) a

†
i,↓b
†
j,↓ + ∆↑↓ (rj, ri) a

†
i,↓b
†
j,↑ + ∆↓↑ (rj, ri) a

†
i,↑b
†
j,↓

]
= −Ṽ

∑
〈i,j〉

[
−
(
|∆↑|2 + |∆↓|2 + 2 |∆|2

)
cos2 (K · (ri + rj) + γ)− 2 |∆′|2

+
(

∆↑a
†
i,↑b
†
j,↑ + ∆↓a

†
i,↓b
†
j,↓ + ∆a†i,↓b

†
j,↑ + ∆a†i,↑b

†
j,↓

)
cos (K · (ri + rj) + γ)

+∆′
(
a†i,↑b

†
j,↓ − a

†
i,↓b
†
j,↑

)]
. (4.42)

Focusing first on the term proportional to ∆′ and transforming to reciprocal space yields

H∆′ = 6Ṽ
∑
q

|∆′|2 − Ṽ
∑
k,α

∆′
(
a†k,↑b

†
−k,↓ − a

†
k,↓b

†
−k,↑

)
eik·δα ,

where the factor of 6 in front of the first term comes from
∑
〈i,j〉 = 3. Expanding around the
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Dirac points leads to

H∆′ = 12NṼ |∆′|2

− Ṽ
2

∑
q

[
3ai

2
∆′
(
q a†K+q,↑b

†
−K−q,↓ − q a

†
K+q,↓b

†
−K−q,↑ + q∗ a†−K+q,↑b

†
K−q,↓ − q

∗ a†−K+q,↓b
†
K−q,↑

)
−3ai

2
∆′† (q∗ b−K−q,↓aK+q,↑ − q∗b−K−q,↑aK+q,↓ + q bK−q,↓a−K+q,↑ − q bK−q,↑a−K+q,↓)

−3ai

2
∆′
(
q a†K−q,↑b

†
−K+q,↓ − q a

†
K−q,↓b

†
−K+q,↑ + q∗ a†−K−q,↑b

†
K+q,↓ − q

∗ a†−K−q,↓b
†
K+q,↑

)
+

3ai

2
∆′† (q∗ b−K+q,↓aK−q,↑ − q∗b−K+q,↑aK−q,↓ + q bK+q,↓a−K−q,↑ − q bK+q,↑a−K−q,↓)

]
.

Compactifying then yields the following

H∆′ = 12NṼ |∆′|2 +
1

2

∑
q

ψ†M∆′ψ, where

M∆′ =
3ai

2
Ṽ [Re (∆′) τ2 + Im (∆′) τ1]⊗ σ0 ⊗ iγ0γ3 (iγ0γ1qy − iγ0γ2qx) .

Comparing this result to the Dirac Hamiltonian in Eq. (4.35), one can see that it is proportional
to the latter and one can write

M∆′ =
2i

t
Ṽ [Re (∆′) τ2 + Im (∆′) τ1]⊗ σ0 ⊗ iγ0γ3Mt. (4.43)

This dependence is an indication that instead of opening a superconducting gap the order
parameter ∆′ renormalizes the Fermi velocity vF . Therefore, this order parameter is referred
to as the hidden-order parameter, a term first coined by Ref. [4]. From this equation, it can be
seen that ∆′ is indeed a spin-singlet state.

Next, the remaining terms in Eq. (4.42) are considered. Transforming the operators to
reciprocal space and writing the cosine in terms of exponentials yields

H∆,∆↑,∆↓ =
1

4
Ṽ
∑
〈i,j〉

∑
q

(
|∆↑|2 + |∆↓|2 + 2 |∆|2

) (
e2iK·(ri+rj)e2iγ + e−2iK·(ri+rj)e−2iγ + 2

)
− Ṽ
N

∑
i,α

∑
k,k′

[
1

2

(
∆↑a

†
k,↑b

†
k′,↑ + ∆↓a

†
k,↓b

†
k′,↓ + ∆a†k,↓b

†
k′,↑ + ∆a†k,↑b

†
k′,↓

)
e−i(k+k′−2K)·rie−i(k

′−K)·δαeiγ

+
1

2

(
∆↑a

†
k,↑b

†
k′,↑ + ∆↓a

†
k,↓b

†
k′,↓ + ∆a†k,↓b

†
k′,↑ + ∆a†k,↑b

†
k′,↓

)
e−i(k+k′+2K)·rie−i(k

′+K)·δαe−iγ + h.c.

]
= 6NṼ

[
1

2

(
|∆↑|2 + |∆↓|2

)
+ |∆|2

]
− Ṽ

2

∑
q

[(
∆↑a

†
K+q,↑b

†
K−q,↑ + ∆↓a

†
K+q,↓b

†
K−q,↓ + ∆a†K+q,↓b

†
K−q,↑ + ∆a†K+q,↑b

†
K−q,↓

)
eiγ

+
(

∆↑a
†
K−q,↑b

†
K+q,↑ + ∆↓a

†
K−q,↓b

†
K+q,↓ + ∆a†K−q,↓b

†
K+q,↑ + ∆a†K−q,↑b

†
K+q,↓

)
eiγ

+
(

∆↑a
†
−K+q,↑b

†
−K−q,↑ + ∆↓a

†
−K+q,↓b

†
−K−q,↓ + ∆a†−K+q,↓b

†
−K−q,↑ + ∆a†−K+q,↑b

†
−K−q,↓

)
e−iγ

+
(

∆↑a
†
−K−q,↑b

†
−K+q,↑ + ∆↓a

†
−K−q,↓b

†
−K+q,↓ + ∆a†−K−q,↓b

†
−K+q,↑ + ∆a†−K−q,↑b

†
−K+q,↓

)
e−iγ + h.c.

]
.
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Two values for the parameterization angle γ are considered: γ = 0, π/2. The first is referred to
as the s-Kekule order and the second as the p-Kekule order, following Ref. [5]. This nomencla-
ture will become clear later on. For γ = 0, the following result is found

H∆,∆↑,∆↓,γ=0 = 6NṼ m2 +
1

2

∑
q

ψ†M∆,∆↑,∆↓,γ=0ψ, where

M∆,∆↑,∆↓,γ=0 = −Ṽ [(Xτ1 − Y τ2)⊗ σ3 + (I−τ2 −R−τ1)⊗ σ1 + (I+τ1 +R+τ2)⊗ σ2]⊗ γ0,

(4.44)

with

m2 = X2 + Y 2 +R2
+ + I2

+ +R2
− + I2

−, X = Re (∆) , Y = Im (∆) ,

R± =
1

2
[Re (∆↑)± Re (∆↓)] , I± =

1

2
[Im (∆↑)± Im (∆↓)] .

From now on, m will be referred to as the Kekule order. Later on, it will be shown that it opens
a superconducting gap. In accordance with the definition of ∆ and ∆σ, it can be seen from
the Hamiltonian that the order parameter ∆ facilitates nearest-neighbor pairing of particles
coming from the same valley and with opposite spin and that the order parameters ∆↑ and
∆↓ also pair particles that are on nearest-neighbor sites with no valley mixing and equal spin.
For γ = π/2 a similar expression is found, however, the dependence on the Dirac matrices is
different

H∆,∆↑,∆↓,γ=π/2 = 6NṼ m2 +
1

2

∑
q

ψ†M∆,∆↑,∆↓,γ=0ψ, where

M∆,∆↑,∆↓,γ=π/2 = −Ṽ [− (Y τ1 +Xτ2)⊗ σ3 + (I−τ1 +R−τ2)⊗ σ1 + (R+τ1 − I+τ2)⊗ σ2]⊗ iγ1γ2.

(4.45)

4.4.5 Total Hamiltonian

Changing the basis to absorb the particle-hole doubling according to

1

2

∑
q

Ψ†MΨ→
∑
q

Ψ†MΨ.

leads to the following total Hamiltonian

Htot,γ = E0,tot +
∑
q

ψ†Mtot,γψ, (4.46)

where the energy of the condensate is

E0,tot = 4NŨ |∆0|2 + 6NṼ
(
m2 + 2 |∆′|2

)
. (4.47)
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For γ = 0, Mtot,γ reads

Mtot,γ=0 = vF τ0 ⊗ σ0 ⊗ (iγ0γ1qy − iγ0γ2qx)− µτ3 ⊗ σ0 ⊗ I4×4

−Ũ [Re(∆0)τ1 − Im(∆0)τ2]⊗ σ0 ⊗ iγ0γ3

+
2i

t
Ṽ [Re (∆′) τ2 + Im (∆′) τ1]⊗ σ0 ⊗ iγ0γ3Mt

−Ṽ [(Xτ1 − Y τ2)⊗ σ3 + (I−τ2 −R−τ1)⊗ σ1 + (I+τ1 +R+τ2)⊗ σ2]⊗ γ0,

(4.48)

and for γ = π/2

Mtot,γ=π/2 = vF τ0 ⊗ σ0 ⊗ (iγ0γ1qy − iγ0γ2qx)− µτ3 ⊗ σ0 ⊗ I4×4

−Ũ [Re(∆0)τ1 − Im(∆0)τ2]⊗ σ0 ⊗ iγ0γ3

+
2i

t
Ṽ [Re (∆′) τ2 + Im (∆′) τ1]⊗ σ0 ⊗ iγ0γ3Mt

−Ṽ [− (Y τ1 +Xτ2)⊗ σ3 + (I−τ1 +R−τ2)⊗ σ1 + (R+τ1 − I+τ2)⊗ σ2]⊗ iγ1γ2.

(4.49)

4.4.6 Symmetries

In this representation, some generators can be defined such that the symmetries of the Hamil-
tonians can be determined. The number operator N̂ is equal to plus the identity in the upper
quadrant and minus the identity in the lower quadrant, such that there is a plus sign for the
particles and a minus sign for the holes. Therefore,

N̂ = τ3 ⊗ σ0 ⊗ I.

The generator for translations P̂ equals

P̂ = τ3 ⊗ σ0 ⊗ iγ3γ5.

The generator that exchanges the two Dirac points ÎK reads

ÎK = τ0 ⊗ σ0 ⊗ iγ1γ5.

Upon writing it out in full, one can check that it exchanges the Dirac points when the axis is
inversed according to qy → −qy. The generator for sublattice exchange Îab is

Îab = τ0 ⊗ σ0 ⊗ γ2.

Upon writing this generator out in full, one finds that it exchanges sublattices when the axis
is inversed according to qx → −qx. Lastly, the three generators of rotations of electron spin Ŝ
reads

Ŝ = τ0 ⊗ σ ⊗ I.

All these generators are defined in Ref. [5].
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It is reviewed whether the Dirac HamiltonianMt commutes with the generators, as it should.
It clearly commutes with the number operator, i.e.

[
N̂ ,Mt

]
= 0. Next, for Mt to commute

with P̂ , the following must hold

[iγ3γ5, iγ0γ1qy − iγ0γ2qx] = 0,

indeed γ3γ5γ0γ1 = γ0γ1γ3γ5 and γ3γ5γ0γ2 = γ0γ2γ3γ5, such that
[
P̂ ,Mt

]
= 0. Then, for Mt to

commute with ÎK , the following must hold

[iγ1γ5, iγ0γ1qy − iγ0γ2qx] = 0.

Using the requirement qy → −qy and that γ1γ5γ0γ1 = −γ0γ1γ1γ5 and γ1γ5γ0γ2 = γ0γ2γ1γ5, one
finds that

[
ÎK ,Mt

]
= 0. Next, Mt commutes with Îab if

[γ2, iγ0γ1qy − iγ0γ2qx] = 0

holds when accompanied by qx → −qx. This holds because γ2γ0γ1 = γ0γ1γ2 and γ2γ0γ2 =

−γ0γ2γ2, such that
[
Îab,Mt

]
= 0. Lastly, one can immediately see that

[
Ŝ,Mt

]
= 0. There-

fore, Mt commutes with all generators, and it preserves particle-number, translation and spin-
rotational symmetry. Moreover, Mt is even under exchange of the Dirac points as well as under
sublattice exchange.

One can clearly see that Mµ commutes with all these generators, such that all symmetries
are preserved, as is expected.

Next, using the same technique, it can easily be seen that MU does not commute with N̂
and P̂ , which means that MU breaks particle-number and translation symmetry. The matrix,
however, does commute with ÎK , Îab and Î, which means thatMU is even under Dirac point and
sublattice exchange, and that it preserves spin-rotational symmetry. Therefore, MU represents
a spatially uniform s-wave singlet superconducting state.

Then, MV,∆′ equals a factor times Mt, where this factor by itself would actually be a singlet
s-wave order parameter. This factor anticommutes with Mt, which means that M †

V,∆′ = MV,∆′ .
MV,∆′ represents the superconducting hidden order [4]. Roy and Herbut explain that the
opening of the order parameter ∆′ to lower the energy of the Dirac-Fermi sea is energetically
not favorable because MV,∆′ vanishes at the Dirac points [5]. It will be seen in the next Section
that the Kekule order is indeed preferred over this order.

Lastly,MV,∆,∆↑,∆↓,γ=0 does not commute with N̂ , P̂ , and Îab and breaks two generators of Ŝ.
It does, however, commute with ÎK . Therefore, MV,∆,∆↑,∆↓,γ=0 is a spatially non-uniform super-
conductor, which is odd under sublattice exchange, but even under the exchange of Dirac points.
It is called the s-Kekule superconducting state. As it violates the spin-rotational symmetry,
MV,∆,∆↑,∆↓,γ=0 represents a triplet superconducting state. On the other hand, MV,∆,∆↑,∆↓,γ=π/2

does not commute with any of the generators, such that this state is called the p-Kekule su-
perconducting state [5].

4.5 Competition Between Kekule and Hidden Order
In this Section, the competition between the Kekule order m and the hidden order ∆′ will be
investigated for both γ = 0 and γ = π/2. It is more interesting to study the competition between
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the Kekule and hidden order because when all order parameters are non-zero, the s-wave order
parameter wins. To show this, the s-wave superconductor is reviewed in Appendix 6.3.8.
Therefore, the s-wave order parameter ∆0 is set to zero in this Section, i.e. ∆0 = 0. When the
on-site attraction is turned off and only nearest-neighbor attraction is taken into account, it is
not a priori clear which superconducting order is preferred. In Ref. [5], Roy and Herbut use a
similar model to the one used in this Chapter to show that the Kekule order dominates over
the hidden order when considering graphene. They determine the ground-state energy, gap
equation at zero temperature and critical couplings in the absence of chemical potential. In
this Chapter, their research is expanded by including chemical potential and calculating gaps
at zero temperature, gap equations at finite temperature and critical temperatures. The work
in Ref. [5] was preceded by work done by Uchoa and Castro Neto [4], where they investigate
the competition between on-site and nearest-neighbor coupling. For nearest-neighbor coupling
they only consider the hidden order.

In the following Subsections, the ground-state energy, gap equations at zero and finite tem-
perature, critical couplings, zero-temperature gaps and critical temperature will be calculated
first for the s-Kekule order and then for the p-Kekule order. It will become clear that in the
approximation used in this Chapter, the results will be the same for both cases. Only upon
inclusion of higher-energy particles, it can be determined that the p-Kekule order is preferred
over the s-Kekule order [5]. However, such calculations are outside the scope of this Thesis
and the reader is referred to Ref. [5] for details. Lastly, in Subsection 4.5.3, the competition
between the Kekule and hidden order is reviewed.

4.5.1 s-Kekule Order

In this Subsection, the ground-state energy is calculated for the s-Kekule order, for which γ = 0.
This is followed by the computation of the gap equation at zero temperature and the critical
couplings. The gap equation will be solved analytically in the strong- and weak-coupling limit
to find the zero-temperature gap. Next, the gap equations at finite temperature are computed,
which is then followed by the determination of the critical temperatures.

Ground-State Energy

The ground-state energy will first be calculated by diagonalizing Eqs. (4.46)-(4.48) for ∆′ = 0.
Initially, the hidden order is turned off because by minimizing the resulting ground-state energy,
a condition on the components of the Kekule order can be derived, which simplifies the ground-
state energy. This will be followed by including the hidden order in the ground-state energy.

Ground-State Energy for ∆′ = 0
To find the energy, the following expression is used∑

q

(E0,m +Mt +Mµ +Mm,γ=0) Ψ = Em,γ=0Ψ.

This yields

E0,m = 6NṼ m2.
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Mt +Mµ +Mm,γ=0 is first squared and then diagonalized,

(Mt +Mµ +Mm,γ=0)2 =
(
Mt +Mµ +M∆,γ=0 +M+

∆↑,∆↓,γ=0 +M−
∆↑,∆↓,γ=0

)2

= M2
t +M2

µ +M2
∆,γ=0 +

(
M+

∆↑,∆↓,γ=0

)2

+
(
M−

∆↑,∆↓,γ=0

)2

+
{
Mt , Mµ +M∆,γ=0 +M+

∆↑,∆↓,γ=0 +M−
∆↑,∆↓,γ=0

}
+
{
Mµ , M∆,γ=0 +M+

∆↑,∆↓,γ=0 +M−
∆↑,∆↓,γ=0

}
+
{
M∆,γ=0 , M

+
∆↑,∆↓,γ=0 +M−

∆↑,∆↓,γ=0

}
+
{
M+

∆↑,∆↓,γ=0 , M
−
∆↑,∆↓,γ=0

}
,

where Mt and Mµ are given by Eqs.(4.35) and (4.36), respectively, and

M∆,γ=0 = −Ṽ (Xτ1 − Y τ2)⊗ σ3 ⊗ γ0, M+
∆↑,∆↓,γ=0 = −Ṽ (I+τ1 +R+τ2)⊗ σ2 ⊗ γ0,

M−
∆↑,∆↓,γ=0 = −Ṽ (I−τ2 −R−τ1)⊗ σ1 ⊗ γ0.

Before computing (Mt +Mµ +Mm,γ=0)2, the anticommutation relations will be reviewed. Using
the anticommutation rules for the Pauli and Dirac matrices

{τi, τj} = 2δi,j, τiτj = i εijkτk, {γi, γj} = 2δi,j,

where the same anticommutation relations hold for the σ-matrices as for the τ -matrices and
εijk is the Levi-Civita symbol with ε123 = 1, one can observe that

{Mt , Mµ} = 2MtMµ,
{
Mt , M∆,γ=0 +M+

∆↑,∆↓,γ=0 +M−
∆↑,∆↓,γ=0

}
= 0,{

Mµ , M∆,γ=0 +M+
∆↑,∆↓,γ=0 +M−

∆↑,∆↓,γ=0

}
= 0,{

M∆,γ=0 , M
+
∆↑,∆↓,γ=0 +M−

∆↑,∆↓,γ=0

}
6= 0,

{
M+

∆↑,∆↓,γ=0 , M
−
∆↑,∆↓,γ=0

}
6= 0.

Therefore, one needs to compute

(Mt +Mµ +Mm,γ=0)2 = M2
t +M2

µ +M2
∆,γ=0 +

(
M+

∆↑,∆↓,γ=0

)2

+
(
M−

∆↑,∆↓,γ=0

)2

+2MtMµ +
{
M∆,γ=0 , M

+
∆↑,∆↓,γ=0

}
+
{
M∆,γ=0 , M

−
∆↑,∆↓,γ=0

}
+
{
M+

∆↑,∆↓,γ=0 , M
−
∆↑,∆↓,γ=0

}
.

For the first six terms this yields

M2
t = v2

F |q|2 (τ0 ⊗ σ0 ⊗ I) , M2
µ = µ2 (τ0 ⊗ σ0 ⊗ I) , M2

∆,γ=0 = Ṽ 2
(
X2 + Y 2

)
(τ0 ⊗ σ0 ⊗ I) ,(

M+
∆↑,∆↓,γ=0

)2

= Ṽ 2(R2
+ + I2

+) (τ0 ⊗ σ0 ⊗ I) ,
(
M−

∆↑,∆↓,γ=0

)2

= Ṽ 2(R2
− + I2

−) (τ0 ⊗ σ0 ⊗ I) ,

2MtMµ = −2µ vF τ3 ⊗ σ0 ⊗ (iγ0γ1qy − iγ0γ2qx) ,

where τ0 and σ0 are 2× 2 identity matrices. The first anticomutation relation leads to{
M∆,γ=0 , M

+
∆↑,∆↓,γ=0

}
= Ṽ 2 [(XR+ + Y I+) τ3 − i (XI+ − Y R+) τ0]⊗ σ1 ⊗ I

+Ṽ 2 [(XR+ + Y I+) τ3 + i (XI+ − Y R+) τ0]⊗ σ1 ⊗ I
= 2Ṽ 2 (XR+ + Y I+) τ3 ⊗ σ1 ⊗ I,
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where it is used that {τ1, τ1} = {τ2, τ2} = τ0, {τ1, τ2} = i τ3 = −{τ2, τ1} and {σ3, σ2} = −i σ1 =
−{σ3, σ2}. In a similar fashion, the other two anticommutation relations can be computed{

M∆,γ=0 , M
−
∆↑,∆↓,γ=0

}
= 2Ṽ 2 (Y R− −XI−) τ3 ⊗ σ2 ⊗ I,{

M+
∆↑,∆↓,γ=0 , M

−
∆↑,∆↓,γ=0

}
= 2Ṽ 2 (R+R− + I+I−) τ3 ⊗ σ3 ⊗ I.

Therefore, the result is

(Mt +Mµ +Mm,γ=0)2 =
(
v2
F |q|2 + µ2 + Ṽ 2m2

)
(τ0 ⊗ σ0 ⊗ I) + 2Ṽ 2 τ3 ⊗ (n · σ)⊗ I

−2µ vF τ3 ⊗ σ0 ⊗ (iγ0γ1qy − iγ0γ2qx) , (4.50)

where
n ≡ (XR+ + Y I+ , Y R− −XI− , R+R− + I+I−) . (4.51)

Diagonalizing this term leads to the dispersion

(ωm,γ=0;s,s′)
2 = (vF |q|+ sµ)2 + Ṽ 2m2 + 2s′ |n| ,

where s, s′ = ±. Now the energy is given by

Em,γ=0 = E0,m +
∑

q;s,s′=±

√
(ωm,γ=0;s,s′)2 = E0,m ±

∑
q;s,s′=±

ωm,γ=0;s,s′ ,

such that the ground-state energy reads

Eg.s.,m,γ=0 = E0,m −
∑

q;s,s′=±

ωm,γ=0;s,s′

= 6NṼ m2 − 2N
∑
s,s′=±

∫
dq

(2π)2

√
(vF |q|+ sµ)2 + Ṽ 2m2 + 2s′ |n|,

where
∑

q → 2N
∫

dq/(2π)2 and s and s′ represent the particle-hole and spin degree of freedom,
respectively. This leads to the final result for the ground state per honeycomb lattice site

Eg.s.,m,γ=0

4N
=

3Ṽ m2

2
− 1

2

∑
s,s′=±

∫
dq

(2π)2

√
(vF |q|+ sµ)2 + Ṽ 2m2 + 2s′ |n|, (4.52)

which, in the limit µ = 0, corresponds to the result found in Ref. [5].

Minimum of the Ground-State Energy
Differentiating Eq. (4.52) with respect to |n| to find the minimum of the ground-state energy
leads to a condition for |n|. Minimizing this yields

0 =
d

d |n|
Eg.s.,m,γ=0

4N
=

d

d |n|

{
3Ṽ m2

2
− 1

2

∑
s,s′=±

∫
dq

(2π)2

√
(vF |q|+ sµ)2 + Ṽ 2m2 + 2s′ |n|

}

= −1

2

∑
s,s′=±

∫
dq

(2π)2

s′√
(vF |q|+ sµ)2 + Ṽ 2m2 + 2s′ |n|

= −1

2

∑
s=±

∫
dq

(2π)2

 1√
(vF |q|+ sµ)2 + Ṽ 2m2 + 2 |n|

− 1√
(vF |q|+ sµ)2 + Ṽ 2m2 − 2 |n|

 ,
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which is only zero if |n| = 0 for any m. Using
∑

s′=± = 2, the ground-state energy now reads

Eg.s.,m,γ=0

4N
=

3Ṽ m2

2
−
∑
s=±

∫
dq

(2π)2

√
(vF |q|+ sµ)2 + Ṽ 2m2, (4.53)

The condition |n| = 0 implies n1 = n2 = n3 = 0. However, the conditions n1 = 0 and
n2 = 0 in fact imply the condition n3 = 0, i.e.

n1 = 0⇒ XR+ + Y+ = 0⇒ X = −Y I+

R+

n2 = 0⇒ Y R− −XI− = 0

Y R−
Y I+

R+

I− = 0⇒ R+R− + I+I− = 0 = n3.

Therefore, the condition |n| = 0 yields only two independent equations and not three. The
condition n3 = 0 implies

|∆↑|2 − |∆↓|2 = 0, such that |∆↑| = |∆↓| .

Using that ∆σ = |∆σ| eiφσ and ∆ = |∆| eiφ, the condition n1 = 0 implies

1

2
|∆| |∆↑| [cos(φ) (cos(φ↑) + cos(φ↓)) + sin(φ) (sin(φ↑) + sin(φ↓))] = 0.

This leads to the following two conditions

0 = cos(φ) (cos(φ↑) + cos(φ↓)) , 0 = sin(φ) (sin(φ↑) + sin(φ↓)) .

Evaluating the first yields

0 =
1

2
[cos (φ↑ − φ) + cos (φ↑ + φ) + cos (φ↓ − φ) + cos (φ↓ + φ)] ,

such that

cos (φ↑ − φ) = 0⇒ φ↑ − φ = nπ,

cos (φ↓ − φ) = 0⇒ φ↓ − φ = nπ,

φ↑ + φ↓ − 2φ = nπ ⇒ φ↑ + φ↓ = 2φ+ nπ,

where n ∈ Z. Therefore, the condition |n| = 0 yields two instead of three independent equations,
and leads to two constraints

|∆↑| = |∆↓| , and φ↑ + φ↓ = 2φ+ nπ, (4.54)

which corresponds to what is found in Ref. [5].
Using the condition |n| = 0 together with ∆σ = |∆σ| eiφσ and ∆ = |∆| eiφ and the conditions

in Eq. (4.54) leads to the following simplification for M∆,γ=0, M+
∆↑,∆↓,γ=0 and M−

∆↑,∆↓,γ=0(
M∆,γ=0 +M+

∆↑,∆↓,γ=0 +M−
∆↑,∆↓,γ=0

)∣∣∣
|n|=0

= −Ṽ [cos(φ)τ1 − sin(φ)τ2]⊗ [σ3 |∆|+ σ1 |∆↑| cos (φ↓ − φ) + σ2 |∆↑| sin (φ↓ − φ)]⊗ γ0.
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Writing |∆| = m0 cos (θ) and |∆↑| = m0 sin (θ), where m = m0 at the minimum of the energy,
leads to(

M∆,γ=0 +M+
∆↑,∆↓,γ=0 +M−

∆↑,∆↓,γ=0

)∣∣∣
|n|=0

= −Ṽ m0 [cos(φ)τ1 − sin(φ)τ2]⊗ [cos(θ)σ3 + sin(θ) (σ1 cos (φ↓ − φ) + σ2 sin (φ↓ − φ))]⊗ γ0.

(4.55)

Ground-State Energy for ∆′ 6= 0
Now, the ground-state energy can be calculated including both the Kekule and hidden order
using the condition |n| = 0. The same relation as before is used to determine the energy∑

q

(E0,m,∆′ +Mt +Mµ +Mm,γ=0 +M∆′) Ψ = Em,∆′γ=0Ψ.

This yields
E0,m,∆′ = 6NṼ

(
m2 + 2 |∆′|2

)
.

Squaring Mt +Mµ +Mm,γ=0 +M∆′ leads to

(Mt +Mµ +Mm,γ=0 +M∆′)
2 = (Mt +Mµ +Mm,γ=0)2 +M2

∆′

+
{
Mt +Mµ +M∆,γ=0 +M+

∆↑,∆↓,γ=0 +M−
∆↑,∆↓,γ=0 , M∆′

}
.

One can compute that
{Mt , M∆′} = 0, {Mµ , M∆′} = 0.

The following is imposed{
M∆,γ=0 +M+

∆↑,∆↓,γ=0 +M−
∆↑,∆↓,γ=0 , M∆′,

}
= 0.

For this to hold, a condition needs to be derived for the relative phase between the Kekule
and hidden order. To do this, one looks at Eq. (4.55), which describes the Kekule order at
minimal energy. One can see immediately that the terms for the spin and sublattice-valley
space anticommute. Therefore, this condition is computed in the particle-hole space. For all
the components of the Kekule order, the dependence in the particle-hole space is the same.
This yields the following

{cos(φ) τ1 − sin(φ) τ2 , Re(∆′)τ2 + Im(∆′)τ1} = 2 cos(φ) Im(∆′)− 2 sin(φ) Re(∆′)

= 2 |∆′| [cos(φ) sin(ϕ)− sin(φ) cos(ϕ)] = 2 |∆′| sin (φ− ϕ) ,

where ∆′ = |∆′| eiϕ. Therefore, for the anticommutation relation to be zero the relative phase
between the Kekule and hidden-order parameters should be zero. This leads to the following

(Mt +Mµ +Mm,γ=0 +M∆′)
2 = (Mt +Mµ +Mm,γ=0)2 +M2

∆′ .

The first part was already calculated before and the last term leads to

M2
∆′ =

v2
F

t2
|q|2Ṽ 2 |∆′|2 (τ0 ⊗ σ0 ⊗ I) .
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Therefore, the result is

(Mt +Mµ +Mm,γ=0 +M∆′)
2 =

(
v2
F |q|2 + µ2 + Ṽ 2m2 +

v2
F

t2
|q|2Ṽ 2 |∆′|2

)
(τ0 ⊗ σ0 ⊗ I)

−2µ vF [τ3 ⊗ σ0 ⊗ (iγ0γ1qy − iγ0γ2qx)] ,

where the condition |n| = 0 was applied. Diagonalizing this term leads to the dispersion

(ωm,∆′,γ=0;s)
2 = (vF |q|+ sµ)2 + Ṽ 2m2 +

v2
F

t2
|q|2Ṽ 2 |∆′|2 ,

where s = ±. Now the energy is given by

Em,∆′,γ=0 = E0,m,∆′ ±
∑
q;s=±

ωm,∆′,γ=0;s,

such that the ground-state energy reads

Eg.s.,m,∆′,γ=0 = E0,m,∆′ −
∑
q;s=±

ωm,∆′,γ=0;s

= 6NṼ
(
m2 + 2 |∆′|2

)
− 4N

∑
s=±

∫
dq

(2π)2

√
(vF |q|+ sµ)2 + Ṽ 2m2 +

v2
F

t2
|q|2Ṽ 2 |∆′|2,

where
∑

q → 4N
∫

dq/(2π)2 with the extra factor of 2 coming from the spin degree of freedom
and s representing the particle-hole degree of freedom, respectively. This leads to the final
result for the ground state per honeycomb lattice site

Eg.s.,m,∆′,γ=0

4N
=

3Ṽ
(
m2 + 2 |∆′|2

)
2

−
∑
s=±

∫
dq

(2π)2

√
(vF |q|+ sµ)2 + Ṽ 2m2 +

v2
F

t2
|q|2Ṽ 2 |∆′|2,

(4.56)
which in the limit µ = 0 corresponds to the result found in Ref. [5]. One can clearly see how
the Kekule order m acts as a mass term opening up a gap in the energy spectrum, as shown in
Fig. 4.5. The hidden order, on the other hand, is linear in q and upon sending µ to zero it can
be seen that it renormalizes the Fermi velocity vF as shown in Fig. 4.6.
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Figure 4.5: Schematic plot of how the Kekule
order m opens a gap in the energy spectrum
according to E =

√
k2 +m2.

Figure 4.6: Schematic plot of how, at
zero chemical potential, the hidden order
∆′ renormalizes vF according to ṽF /t =√

1 + |∆′|2 /t2, where ṽF is the renormalized
Ferm velocity.

Zero Temperature

Now, the zero-temperature gap equation, critical couplings and zero-temperature gaps will be
computed.

Zero-Temperature Gap Equation
To find the zero-temperature gap equations for the Kekule and hidden order, one needs to min-
imize the ground-state energy in Eq. (4.56) with respect to the corresponding order parameter.
For the Kekule order, this yields

0 =
3Ṽ

2
− Ṽ 2

2

∑
s=±

∫
dq

(2π)2

1√
(vF |q|+ sµ)2 + Ṽ 2m2(0) +

v2
F

t2
|q|2Ṽ 2 |∆′(0)|2

,

such that the zero-temperature gap equation for the Kekule order reads

1 =
Ṽ

3

∑
s=±

∫
dq

(2π)2

1√
(vF |q|+ sµ)2 + Ṽ 2m2(0) +

v2
F

t2
|q|2Ṽ 2 |∆′(0)|2

. (4.57)

In Fig. 4.7 one can find the solution for this equation. Performing the same procedure for the
hidden order leads to the zero-temperature gap equation for the hidden order

1 =
Ṽ

6

v2
F

t2

∑
s=±

∫
dq

(2π)2

|q|2√
(vF |q|+ sµ)2 + Ṽ 2m2(0) +

v2
F

t2
|q|2Ṽ 2 |∆′(0)|2

. (4.58)

In Fig. 4.8, the solution to this equation is shown.

Critical Couplings
At half-filling, i.e. µ = 0, the Fermi energy is exactly at the Dirac points, at which the density
of states ρ is zero, as was shown in Fig. 3.6. This means that the system is in a quantum
critical regime. In this regime, there is a critical interaction at which the superconducting
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Figure 4.7: Solutions of the zero-temperature
gap equation for the Kekule order with vF /t =
Λ = 1, ∆′ = 0 and µ/t = 0.25.

Figure 4.8: Solutions of the zero-temperature
gap equation for the hidden order with vF /t =
Λ = 1, m = 0 and µ/t = 0.25.

order appears. The value of the critical couplings can be calculated for both orders using
Eqs. (4.57) and (4.58) and using that the gap is closed at the critical coupling. For the Kekule
order this leads to

1 =
2Ṽc
3

∫
dq

(2π)2

1

vF |q|
=

2Ṽc
3

∫ 2π

0

dθ

∫ Λ

0

dq

(2π)2

q

vF |q|
=

Ṽc
3πvF

Λ,

where Λ is the high-energy cut-off that goes with 1/a. Therefore, the critical coupling Ṽc for
the Kekule order reads

Ṽc =
3πvF

Λ
. (4.59)

Similarly, for the hidden order one finds

1 =
Ṽ ′c
3

v2
F

t2

∫
dq

(2π)2

|q|2

vF |q|
=
Ṽ ′c
3

vF
t2

∫ 2π

0

dθ

∫ Λ

0

dq

(2π)2 q
2 =

Ṽ ′c
6π

vF
t2
· 1

3
Λ3 =

Ṽ ′c vFΛ3

18πt2
,

such that critical coupling Ṽ ′c for the hidden order reads

Ṽ ′c =
18πt2

vFΛ3
. (4.60)

Setting vF/t = Λ = 1 yields Ṽc/t = 3π and Ṽ ′c/t = 18π for the critical couplings for the
Kekule and hidden order, respectively. Clearly, in this limit Ṽc/t < Ṽ ′c/t, which means that a
much smaller interaction strength is needed to enter the Kekule order than the hidden order.
This is the first evidence that the Kekule order is preferred over the hidden order.1

Zero-Temperature Gap for Kekule Order
As mentioned before, Eqs. (4.57) and (4.58) can be solved analytically in the strong- and weak-
coupling limit with |Ṽ | > |Ṽc| and |Ṽ | < |Ṽc|, respectively. The zero-temperature gap will be
calculated at zero and finite chemical potential. First the Kekule gap and then the hidden
order gap is determined.

1Roy and Herbut rightfully point out that this conclusion might become invalid upon including particles
further away from the Fermi energy.
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To find the zero-temperature gap m(0), Eq. (4.57) is solved for finite µ and ∆′ = 0. This
yields

1 =
Ṽ

3

∑
s=±

∫
dq

(2π)2

1√
(vF |q|+ sµ)2 + Ṽ 2m2(0)

=
Ṽ

3

∑
s=±

∫ 2π

0

dθ

∫ Λ

0

dq

(2π)2

q√
(vF |q|+ sµ)2 + Ṽ 2m2(0)

=
Ṽ

6πv2
F

2

(
vFΛ−

√
µ2 + Ṽ 2m2(0)

)
+ µ ln

 µ+
√
µ2 + Ṽ 2m2(0)

−µ+
√
µ2 + Ṽ 2m2(0)

 . (4.61)

The integral is solved explicitly in Appendix 6.3.3.
First, this equation is solved for the zero-temperature gap at µ = 0, m(0, µ = 0). This leads

to

1 =
Ṽ

3πv2
F

[
vFΛ− Ṽ m(0, µ = 0)

]
,

such that

m(0, µ = 0) =
3πvF

ṼcṼ

(
1− Ṽc

Ṽ

)
. (4.62)

Next, Eq. (4.61) is solved for the zero-temperature gap m(0) in the strong-coupling limit,
|Ṽ | > |Ṽc| and m(0)/µ� 1. Note that the last condition implies that µ� 1, which means that
the Fermi energy is very close to the Dirac points and the density of states ρ is nearly negligible.
Therefore, in this limit the system is far away from the BCS limit, which requires a finite ρ,
and the resulting zero-temperature gap is expected to have power-law behavior. Rewriting
Eq. (4.61) yields

1 =
Ṽ

6πv2
F

2vFΛ− 2µ

√
1 + Ṽ 2

m2(0)

µ2
+ µ ln


√

1 + Ṽ 2m
2(0)
µ2 + 1√

1 + Ṽ 2m
2(0)
µ2 − 1

 . (4.63)

Now, the limit m(0)/µ→∞ is taken. This leads to

1 =
Ṽ

6πv2
F

2vFΛ− 2µṼ
m(0)

µ
+ µ ln


√

1 + Ṽ 2m
2(0)
µ2 + 1√

1 + Ṽ 2m
2(0)
µ2 − 1

∣∣∣∣∣∣
m(0)/µ→∞


=

Ṽ

3πv2
F

[
vFΛ− Ṽ m(0) +

µ2

Ṽ m(0)

]
,

where the derivation of the limit of the natural logarithm can be found in Appendix 6.3.4. This
leads to the following quadratic equation

Ṽ 2m2(0)− Ṽ 2m(0, µ = 0)m(0)− µ2 = 0.
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Using the limit |Ṽ | > |Ṽc| leads to the final answer

m(0)→ m (0, µ = 0)

2

[
1 +

√
1 +

4µ2

Ṽ 2m2 (0, µ = 0)

]
. (4.64)

Indeed, as predicted, there is power-law behavior.
Lastly, Eq. (4.61) is evaluated the weak-coupling limit, |Ṽ | < |Ṽc| and m(0)/µ � 1. Note

that in this case the last condition implies that µ � 1, which means that the Fermi energy is
far away from the Dirac points and the density of states ρ is large. Therefore, in this limit the
system is in the BCS limit and BCS-like behavior is expected for the resulting zero-temperature
gap. In the weak-coupling limit, Eq. (4.63) can be written as

1 =
Ṽ

6πv2
F

2vFΛ− 2µ+ µ ln


√

1 + Ṽ 2m
2(0)
µ2 + 1√

1 + Ṽ 2m
2(0)
µ2 − 1

∣∣∣∣∣∣
m(0)/µ→0

 .
The limit in the natural logarithm is straightforwardly solved using

ln

(√
1 + x2 + 1√
1 + x2 − 1

)
≈ ln

( √
1 + x2 + 1

1 + x2

2
+O (x4)− 1

)
x→0−−→ ln

(
2
x2

2

)
= ln

(
4

x2

)
= 2 ln

(
2

x

)
.

This yields

1 =
Ṽ

6πv2
F

[
2vFΛ− 2µ+ 2µ ln

(
2µ

Ṽ m(0)

)]
.

Solving for m(0) leads to

m(0)→ 2µ

Ṽ
e
Ṽ
µ
m(0,µ=0)−1. (4.65)

Therefore, the final result is

m(0, µ = 0) =
3πvF

ṼcṼ

(
1− Ṽc

Ṽ

)
,

and

m (0, µ)→


m(0,µ=0)

2

[
1 +

√
1 + 4µ2

Ṽ 2
0 m(0,µ=0)2

]
, |Ṽ | > |Ṽc|, m(0)/µ� 1,

2µ

Ṽ
e
Ṽ
µ
m(0,µ=0)−1, |Ṽ | < |Ṽc|, m(0)/µ� 1,

where now it is written explicitly that m(0) ≡ m (0, µ) depends on a finite chemical potential.
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Zero-Temperature Gap for Hidden Order
Next, the zero-temperature gap equation for the hidden order in Eq. (4.58) is evaluated in the
strong- and weak-coupling limit for finite µ and m = 0. This yields

1 =
Ṽ

6

v2
F

t2

∑
s=±

∫
dq

(2π)2

|q|2√
(vF |q|+ sµ)2 + Ṽ 2m2(0) +

v2
F

t2
|q|2Ṽ 2 |∆′(0)|2

=
Ṽ

6

v2
F

t2

∑
s=±

∫ 2π

0

dθ

∫ Λ

0

dq

(2π)2

|q|3√
(vF |q|+ sµ)2 + Ṽ 2m2(0) +

v2
F

t2
|q|2Ṽ 2 |∆′(0)|2

=
Ṽ

6

vF
t2

1

2π

{
2Λ

[
Λ2

3
√

1 + α2
+
µ2

v2
F

(
3− α2

(1 + α2)5/2

)]

+
µ3

v3
F

[
4α2 − 11

9 (1 + α2)3 + ln

(√
1 + α2 + 1

α

)(
2− 3α2

(1 + α2)7/2

)]}
, (4.66)

where α ≡ Ṽ |∆′(0)|
t

. This integral is explicitly derived in Appendix 6.3.5.
In the limit µ→ 0, the following is found

1 =
Ṽ

18

vF
πt2

Λ3√
1 + α(µ = 0)2√

1 + α(µ = 0)2 =
Ṽ

18

vF
πt2

Λ3

1 + α(µ = 0)2 =
Ṽ 2

324

v2
F

π2t4
Λ6

α(µ = 0) =

√
Ṽ 2

324

v2
F

π2t4
Λ6 − 1

|∆′(0, µ = 0)| =
t

Ṽ

√
Ṽ 2

324

v2
F

π2t4
Λ6 − 1,

such that the gap |∆′(0, µ = 0)| is

|∆′(0, µ = 0)| = t

Ṽ ′c

√√√√1−

(
Ṽ ′c
Ṽ

)2

. (4.67)

Next, Eq. (4.66) is solved for the zero-temperature gap ∆′(0) in the strong-coupling limit,
|Ṽ | > |Ṽ ′c | and |∆′(0)|/t� 1. This yields

1 ≈ Ṽ

6

vF
t2

1

2π

{
2Λ

[
Λ2

3α
+
µ2

v2
F

(
−α2

α5

)]
+
µ3

v3
F

[
4α2

9α6
+ ln

(α
α

)(−3α2

α7

)]}
≈ Ṽ

18

vF
πt2

Λ3

α

α ≈ Ṽ

18

vF
πt2

Λ3,
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such that |∆′(0)| reads
|∆′(0)| → t

Ṽ ′c
. (4.68)

Lastly, Eq. (4.66) is evaluated in the weak-coupling limit, |Ṽ | < |Ṽ ′c | and |∆′(0)|/t � 1.
This leads to

1 ≈ Ṽ

6

vF
t2

1

2π

{
2Λ

(
Λ2

3
+ 3

µ2

v2
F

)
+
µ3

v3
F

[
2 ln

(
2

α

)
− 11

3

]}
,

where the second term can be neglected because Λ� µ/vF , such that

1 ≈ Ṽ

6

vF
t2

1

2π

{
2Λ3

3
+
µ3

v3
F

[
2 ln

(
2

α

)
− 11

9

]}
2 ln

(
2

α

)
≈ 11

9
+

12πt2v2
F

Ṽ µ3
− 2Λ3v3

F

3µ3

α ≈ 2 exp

(
Λ3v3

F

3µ3
− 6πt2v2

F

Ṽ µ3
− 11

18

)
,

which leads to the following solution for |∆′(0)|:

|∆′(0)| → 2t

Ṽ
exp

[
6πt2v2

F

Ṽ ′cµ
3

(
1− Ṽ ′c

Ṽ

)
− 11

18

]
. (4.69)

Therefore, the final result is

|∆′(0, µ = 0)| = t

Ṽ ′c

√√√√1−

(
Ṽ ′c
Ṽ

)2

,

and

|∆′| (0, µ)→


t
Ṽ ′c
, |Ṽ | > |Ṽc|, |∆′(0)|/t� 1,

2t
Ṽ

e
6πt2v2

F
Ṽ ′cµ3

(
1− Ṽ

′
c
Ṽ

)
− 11

18 , |Ṽ | < |Ṽc|, |∆′(0)|/t� 1,

where now it is written explicitly that |∆′(0)| ≡ |∆′ (0, µ)| depends on a finite chemical poten-
tial.

Finite-Temperature Gap Equations

Next, the gap equations for m and ∆′ are computed at finite temperature. These equations
can be found by minimizing the thermodynamical potential Ωm,∆′ . Therefore, first the thermo-
dynamical potential will be derived followed by the computation of the finite-temperature gap
equations for the Kekule and hidden order. Lastly, it is evaluated how the critical couplings in
Eqs. (4.59) and (4.60) behave when the temperature is non-zero.

Thermodynamical Potential
To find a general expression for the thermodynamical potential Ω, one needs to start from the
partition function

Z = e−βΩ = Tr
(
e−βH

)
,
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where β = 1/(kBT ). Plugging in a general form of the Hamiltonian H = E0 +
∑

q Ψ†qωΨq leads
to

Z = Tr
(
e−βH

)
= Tr

[
e−β(E0+

∑
q Ψ†qωΨq)

]
= e−βE0Tr

[
e−β

∑
q Ψ†qωΨq

]
.

The dispersion relation can be written as∑
q

Ψ†qωΨq =
∑
q

ω̂Ψ†qΨq =
∑
q

ω̃n̂q,

where ω̃ are the eigenvalues of the equation, and n̂q = Ψ†qΨq is the number operator. This
yields the following for the partition function

Z = e−βE0Tr
[
e−β

∑
q ω̃n̂q

]
= e−βE0

∏
q

∑
q

〈nq| e−βω̃n̂q |nq〉 .

n̂q is the number operator for fermions, and can therefore only have the values zero or one.
This leads to

Z = e−βE0

∏
q

(
〈0| e0 |0〉+ 〈1| e−βω̃ |1〉

)
= e−βE0

∏
q

(
1 + e−βω̃

)
= e−βE0

∏
q

eln(1+e−βω̃) = e−βE0e
∑

q ln(1+e−βω̃) = e−βΩ,

such that the thermodynamic potential reads

Ω = E0 −
1

β

∑
q

ln
(
1 + e−βω̃

)
. (4.70)

Plugging in the energy for the condensate E0,m,∆′ and the dispersion relation ωm,∆′;s,s′ for the
Kekule and hidden order yields the following for the thermodynamical potential Ωm,∆′

Ωm,∆′ = 6NṼ 2
(
m2 + 2 |∆′|2

)
− 1

β

∑
q;s,s′=±

ln

[
1 + exp

(
−βs

√
(vF |q|+ s′µ)2 + Ṽ 2m2 +

v2
F

t2
|q|2Ṽ 2 |∆′|2

)]
.

(4.71)

In Figs. 4.9 and 4.10, it is shown how the thermodynamical potential behaves with increasing
order parameter. When the system enters the superconducting phase, a second-order phase
transition takes place, which is clearly visible in the Figures.
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Figure 4.9: The evolution of the thermodynam-
ical potential for the Kekule order with vF /t =
Λ = 1, µ/t = 0 and ∆′/t = 0 for different cou-
plings: Ṽ /t = 2π (solid), Ṽ /t = 3π (green),
Ṽ /t = 5π (large dashed), Ṽ /t = 10π (small
dashed) and Ṽ /t = 25π (dotted).

Figure 4.10: The evolution of the thermodynam-
ical potential for the hidden order with vF /t =
Λ = 1, µ/t = 0 and m/t = 0 for different cou-
plings: Ṽ /t = 15π (solid), Ṽ /t = 18π (green),
Ṽ /t = 21π (large dashed), Ṽ /t = 30π (small
dashed) and Ṽ /t = 50π (dotted).

Kekule Order
Minimizing Eq. (4.71) with respect to the Kekule gap m leads to

0 = 12NṼ m− 1

β

∑
q;s,s′=±

1

1 + e−βωm,∆′;s,s′

(
d

dm
e−βωm,∆′;s,s′

)
, (4.72)

where

ωm,∆′;s,s′ = s

√
(vF |q|+ s′µ)2 + Ṽ 2m2 +

v2
F

t2
|q|2Ṽ 2 |∆′|2.

The derivative in the second term yields

d

dm
e−βωm,∆′;s,s′ = −β

(
d

dm
s

√
(vF |q|+ s′µ)2 + Ṽ 2m2 +

v2
F

t2
|q|2Ṽ 2 |∆′|2

)
e−βωm,∆′;s,s′

=
−βsṼ 2m√

(vF |q|+ s′µ)2 + Ṽ 2m2 +
v2
F

t2
|q|2Ṽ 2 |∆′|2

e−βωm,∆′;s,s′ = − βṼ 2m

ωm,∆′;s,s′
e−βωm,∆′;s,s′ .

Plugging this result back into Eq. (4.72) leads to

12NṼ m = −Ṽ 2m
∑

q;s,s′=±

NFD (ωm,∆′;s,s′)

ωm,∆′;s,s′
,

where NFD (ωm,∆′;s,s′) is the Fermi-Dirac distribution NFD (ωm,∆′;s,s′) =
(
eβωm,∆′;s,s′ + 1

)−1.
Making the sum over s explicit in the last term leads to∑

s=±

1

eβsωm,∆′;s′ + 1

1

sωm,∆′;s′
=

1

ωm,∆′;s′

(
1

eβωm,∆′;s′ + 1
− 1

e−βωm,∆′;s′ + 1

)

=
1

ωm,∆′;s′

(
e−

β
2
ωm,∆′;s′

e
β
2
ωm,∆′;s′ + e−

β
2
ωm,∆′;s′

− e
β
2
ωm,∆′;s′

e−
β
2
ωm,∆′;s′ + e

β
2
ωm,∆′;s′

)
= − 1

ωm,∆′;s′
tanh

(
βωm,∆′;s′

2

)
,
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such that

12NṼ m = Ṽ 2m
∑
q;s=±

1

ωm,∆′;s
tanh

(
βωm,∆′;s

2

)

1 =
Ṽ

12N

∑
q;s=±

1

ωm,∆′;s
tanh

(
βωm,∆′;s

2

)
.

Writing the sum over q as an integral according to
∑

q → 4N
∫

dq/(2π)2 leads to the gap
equation for the Kekule order

1 =
Ṽ

3

∑
s=±

∫
dq

(2π)2

1

ωm,∆′;s
tanh

(
βωm,∆′;s

2

)
, (4.73)

where

ωm,∆′;s =

√
(vF |q|+ sµ)2 + Ṽ 2m2 +

v2
F

t2
|q|2Ṽ 2 |∆′|2. (4.74)

In the limit T → 0, the tangent hyperbolic goes to one and this gap equation corresponds to
the zero-temperature gap equation in Eq. (4.57), as it should.

Hidden Order
Minimizing Eq. (4.71) with respect to the hidden gap |∆′| leads to

0 = 24NṼ |∆′| − 1

β

∑
q;s,s′=±

1

1 + e−βωm,∆′;s,s′

(
d

d |∆′|
e−βωm,∆′;s,s′

)
, (4.75)

where ωm,∆′;s,s′ = s ωm,∆′;s′ , with ωm,∆′;s′ given by Eq. (4.74). Solving the derivative in the
second term in the same manner as before leads to

d

d∆′†
e−βωm,∆′;s,s′ = −β

(
d

d∆′†
s

√
(vF |q|+ s′µ)2 + Ṽ 2m2 +

v2
F

t2
|q|2Ṽ 2 |∆′|2

)
e−βωm,∆′;s,s′

=
−βsv

2
F

t2
|q|2Ṽ 2∆′√

(vF |q|+ s′µ)2 + Ṽ 2m2 +
v2
F

t2
|q|2Ṽ 2 |∆′|2

e−βωm,∆′;s,s′ = −β v
2
F |q|2

t2
Ṽ 2∆′

ωm,∆′;s,s′
e−βωm,∆′;s,s′ .

Plugging this result back into Eq. (4.75) leads to

24NṼ |∆′| = −v
2
F |q|2

t2
Ṽ 2∆′

∑
q;s,s′=±

NFD (ωm,∆′;s,s′)

ωm,∆′;s,s′
=
v2
F |q|2

t2
Ṽ 2∆′

∑
q;s=±

1

ωm,∆′;s
tanh

(
βωm,∆′;s

2

)
,

where the sum over s was made explicit to obtain the last term in a similar fashion as before.
Writing the sum over q as an integral leads to the following gap equation for the hidden order

1 =
Ṽ

6

v2
F

t2

∑
s=±

∫
dq

(2π)2

|q|2

ωm,∆′;s
tanh

(
βωm,∆′;s

2

)
, (4.76)
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where ωm,∆′;s is given by Eq. (4.74). In the limit T → 0, this gap equation corresponds to the
zero-temperature gap equation in Eq. (4.58), as desired.

Critical Couplings for Finite Temperature
In Subsection 4.5.1, the critical couplings Ṽc for the Kekule in Eq. (4.59) and Ṽ ′C for the hidden
order in Eq. (4.60) were calculated for zero temperature. With the gap equations in Eqs. (4.73)
and (4.76), it is now possible to evaluate these critical couplings for non-zero temperature by
requiring that the chemical potential is zero and the gaps are closed. In Fig. 4.11 it is shown
that the critical couplings in fact increase with increasing temperature. From this figure it can
be concluded that indeed the Kekule order is preferred over the hidden order.

Figure 4.11: Solutions of the finite-temperature gap equation for the Kekule order (blue) and hidden order (red)
with vF /t = Λ = 1, µ/t = 0 and m/t = ∆′/t = 0. The critical coupling increases with increasing temperature.

Critical Temperature

The next step is the determination of the critical temperatures for the Kekule and hidden order.
When a superconductor is cooled and the critical temperature is reached, it enters the super-
conducting phase and a superconducting gap opens. Therefore, this critical temperature can
be found by requiring that the gap is zero at this temperature. First, the critical temperature
for the Kekule order will be calculated followed by that of the hidden order. The critical tem-
perature can be found analytically in the strong- and weak-coupling limit. Lastly, the critical
temperatures for both superconducting states is reviewed to see how it behaves with increasing
chemical potential and coupling.
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Kekule Order
To find the critical temperature for the Kekule order, Eq. (4.73) is solved imposing thatm(Tc) =
0 and ∆′ = 0. This yields

1 =
Ṽ

3

∑
s=±

∫
dq

(2π)2

1

vF |q|+ sµ
tanh

(
β (vF |q|+ sµ)

2

)

=
Ṽ

6πvF

{
4

βcvF
ln

[
cosh(βc

2
vFΛ)

cosh(βc
2
µ)

]
+

2µ

vF

∫ βc
2
µ

0

du
tanh(u)

u

}
. (4.77)

The integral is solved explicitly in Appendix. 6.3.6. In Fig. 4.12 the behavior of the gap with
increasing temperature that follows from this equation is shown. It can clearly be seen there
that with increasing temperature the gap decreases. The gap closes at the critical temperature.
It can also be seen that with increasing chemical potential the gap is larger and the critical
temperature is also larger. An explicit expression for the critical temperature can be derived
in the strong- and weak-coupling limit.

Figure 4.12: Solutions of the finite-temperature gap equation for the Kekule order with vF /t = Λ = 1, ∆′ = 0
and Ṽ /t = 4π for different values of the chemical potential: µ/t = 0 (solid), µ/t = 0.1 (large dashed), µ/t = 0.25
(small dashed) and µ/t = 0.5 (dotted).

In the strong-coupling limit, the critical temperature is much larger than the chemical
potential, i.e. βcµ� 1. This leads to the following for Eq. (4.77)

cosh

(
βc
2
µ

)
=

e
βc
2
µ + e−

βc
4
µ

2

βcµ�1−−−−→ 1 + 1

2
+O (βcµ) = 1 +O (βcµ) ,

such that

ln

[
cosh(

βc
2
vFΛ)

]
= ln

(
e
βc
2
vFΛ + e−

βc
2
vFΛ

2

)
Λ�1−−→ ln

(
e
βc
2
vFΛ

2

)
=
βc
2
vFΛ− ln(2).
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The integral leads to ∫ βc
2
µ

0

du
tanh(u)

u

βcµ�1−−−−→ tanh

(
βc
2
µ

)
2

βcµ
≈ 1,

where it is used that tanh(x)/x ≈ 1−x2/3+O(x4). Therefore, in the limit βcµ� 1, Eq. (4.77)
yields

1 =
Ṽ

6πvF

{
4

βcvF

[
βc
2
vFΛ− ln(2)

]
+

2µ

vF

}
=

Ṽ

6πvF

[
2Λ− 4ln(2)

βcvF
+

2µ

vF

]
.

Using that βc = (kBTc)
−1 and rewriting leads to the following expression for Tc in the limit

βcµ� 1

Tc →
vF

2 ln(2)kB

[
3πvF

Ṽc

(
1− Ṽc

Ṽ

)
+

µ

vF

]
.

Plugging in Eq. (4.62), then yields the final result

Tc →
1

2 ln(2)kB
[m (0, µ = 0) + µ] =

1

2 ln(2)kB

[
Ṽ 2m(0, µ)2

µ+ Ṽ 2m(0, µ)
+ µ

]
, (4.78)

where Eq. (4.64) was used in the last expression. As mentioned before, in the strong-coupling
limit the system is not in the BCS-like regime and indeed the resulting critical temperature
shows power law behavior in µ.

In the weak-coupling limit, the critical temperature is much smaller than the chemical
potential, i.e. βcµ� 1. This leads to the following for Eq. (4.77)

cosh

(
βc
2
µ

)
=

e
βc
2
µ + e−

βc
2
µ

2

βcµ�1−−−−→ 1

2
e
βc
2
µ,

and secondly, ∫ βc
2
µ

0

du
tanh(u)

u

βcµ�1−−−−→ ln

(
4eγ

π

βcµ

2

)
= ln

(
2βc
π
µeγ
)
.

where γ = 0.577 is Euler’s constant. Noticing that Λ is taken to be extremely large, such that

cosh

(
βc
2
vFΛ

)
→ 1

2
e
βc
2
vFΛ,

leads to

1 =
Ṽ

6πvF

{
4

βcvF

[
ln

(
1

2
e
βc
2
vFΛ

)
− ln

(
1

2
e
βc
2
µ

)]
+

2µ

vF
ln

(
2βc
π
µeγ
)}

=
Ṽ µ

3πv2
F

[
vFΛ

µ
− 1 + ln

(
2βc
π
µeγ
)]

.

Such that the critical temperature in the limit βcµ� 1 reads

Tc →
2µeγ

kBπ
e
Ṽ m(0,µ=0)

µ
−1 =

eγ

kBπ
Ṽ m(0, µ), (4.79)
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where Eq. (4.65) was used. As mentioned before, in the weak-coupling limit the system is in
the BCS regime and indeed the critical temperature behaves like in the BCS model.

Therefore, the final result is

Tc →

{
1

2 ln(2)kB

[
Ṽ 2m(0,µ)2

µ+Ṽ 2m(0,µ)
+ µ
]
, |Ṽ | > |Ṽc|, βcµ� 1,

eγ

kBπ
Ṽ m(0, µ), |Ṽ | < |Ṽc|, βcµ� 1.

Hidden Order
To find the critical temperature for the hidden order, Eq. (4.76) is solved imposing that ∆′(Tc) =
0 and m = 0. This yields the following

1 =
Ṽ

6

v2
F

t2

∑
s=±

∫
dq

(2π)2

|q|2

vF |q|+ sµ
tanh

(
β (vF |q|+ sµ)

2

)

=
Ṽ

6

1

t2v2
F

1

π

1

β3
c

[
2

∫ βc
2
vFΛ

βc
2
µ

dv
(
4v2 + 3β2

cµ
2
)

tanh (v) + βcµ

∫ βc
2
µ

0

dv

v

(
12v2 + β2

cµ
2
)

tanh (v)

]
.

(4.80)

The integral is solved explicitly in Appendix 6.3.7. In Fig. 4.13 the behavior of the gap with
increasing temperature that follows from this equation is shown. It can clearly be seen there
that with increasing temperature the gap decreases. As is the case for the Kekule order, the
gap closes at critical temperature. It can also be seen that with increasing chemical potential
the gap is larger and the critical temperature is also larger. One cannot see from this figure
that the hidden order is not actually a superconducting gap but instead renormalizes the Fermi
velocity vF . An explicit expression for the critical temperature can be derived in the strong
and weak coupling limit.

In the strong-coupling limit, βcµ� 1, the following is found for the first integral in Eq. (4.80)

2

∫ βc
2
vFΛ

βc
2
µ

dv
(
4v2 + 3β2

cµ
2
)

tanh (v) = 8
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2
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2
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+
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1

2
Li3(−1)

]
+ 6 (βcµ)2 ln
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− (βcµ)3

3
− 2 (βcµ)2 ln|2| − 3π2βcµ− 3ζ(3) + 3 (βcµ)2 βcvFΛ− 6 ln(2) (βcµ)2 .

The second integral in Eq. (4.80) yields
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[
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.
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Figure 4.13: Solutions of the finite-temperature gap equation for the hidden order with vF /t = Λ = 1, ∆′ = 0
and Ṽ /t = 4π for different values of the chemical potential: µ/t = 0 (solid), µ/t = 0.1 (large dashed), µ/t = 0.25
(small dashed) and µ/t = 0.5 (dotted).

Using tanh(x) ≈ x− x3/3 +O(x5) leads to the following

[
6 (βcµ)2 + 2 (βcµ)2] tanh

(
βcµ

2

)
= 8 (βcµ)2 βcµ

2
= 4 (βcµ)3 .

This yields the following for Eq. (4.80)
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such that the critical temperature in the limit βcµ� 1 reads
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[
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t
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, (4.81)

where Eq. (4.68) was used.
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In the weak-coupling limit, βcµ� 1, the first integral in Eq. (4.80) leads to
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dv v2 tanh (v) + 6 (βcµ)2
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The second integral in Eq. (4.80) yields
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Eq. (4.80) can then be rewritten as
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such that the critical temperature in the limit βcµ� 1 reads
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Ṽ |∆′(0, µ)|
t

, (4.82)
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where Eq. (4.69) was used.
Therefore, the final result is

T ′c →

 1
kB

[
2πt2v2

F

ζ(3)Ṽ

(
Ṽ |∆′(0,µ)|

t
− 1
)]1/3

, |Ṽ | > |Ṽc|, βcµ� 1,

µeγ−
11
9

kBπ
Ṽ |∆′(0,µ)|

t
, |Ṽ | < |Ṽc|, βcµ� 1.

4.5.2 p-Kekule Order

In this Subsection, the p-Kekule order will be reviewed for which γ = π/2. It will be shown that
the ground-state energy and the thermodynamical potential are equal to that of the s-Kekule
order, such that the gap equations and critical temperatures are also equal.

Ground-State Energy

The ground-state energy will be calculated by diagonalizing Eqs. (4.46)-(4.49) for ∆′ = 0.
As in the previous Subsection, the hidden order is turned off initially because by minimizing
the resulting ground-state energy, a condition on the components of the Kekule order can be
derived, which simplifies the ground-state energy. This will be followed by including the hidden
order in the ground-state energy. It will be shown that the ground-state energy found here is
equal to Eq. (4.52).

Ground-State Energy for ∆′ = 0
To find the energy, the following is used∑

q

(
E0,m +Mt +Mµ +Mm,γ=π/2

)
ψ = Em,γ=π/2ψ,

where
E0,m = 6NṼ m2.

Squaring Mt +Mµ +Mm,γ=π/2 leads to(
Mt +Mµ +Mm,γ=π/2

)2
=
(
Mt +Mµ +M∆,γ=π/2 +M+

∆↑,∆↓,γ=π/2 +M−
∆↑,∆↓,γ=π/2

)2

= M2
t +M2

µ +M2
∆,γ=π/2 +

(
M+

∆↑,∆↓,γ=π/2

)2

+
(
M−

∆↑,∆↓,γ=π/2

)2

+ 2MtMµ

+
{
Mt , M∆,γ=π/2 +M+

∆↑,∆↓,γ=π/2 +M−
∆↑,∆↓,γ=π/2

}
+
{
Mµ , M∆,γ=π/2 +M+

∆↑,∆↓,γ=π/2 +M−
∆↑,∆↓,γ=π/2

}
+
{
M∆,γ=π/2 , M

+
∆↑,∆↓,γ=π/2 +M−

∆↑,∆↓,γ=π/2

}
+
{
M+

∆↑,∆↓,γ=π/2 , M
−
∆↑,∆↓,γ=π/2

}
,

where Mt and Mµ are given by Eqs.(4.35) and (4.36), respectively, and it was used that
{Mt,Mµ} = 2MtMµ. Moreover,

M∆,γ=π/2 = Ṽ (Y τ1 +Xτ2)⊗ σ3 ⊗ iγ1γ2,

M+
∆↑,∆↓,γ=π/2 = −Ṽ (R+τ1 − I+τ2)⊗ σ2 ⊗ iγ1γ2

M−
∆↑,∆↓,γ=π/2 = −Ṽ (I−τ1 +R−τ2)⊗ σ1 ⊗ iγ1γ2.
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One can compute that{
Mµ , M∆,γ=π/2 +M+

∆↑,∆↓,γ=π/2 +M−
∆↑,∆↓,γ=π/2

}
= 0.

Therefore, the following needs to be computed(
Mt +Mµ +Mm,γ=π/2

)2
= M2

t +M2
µ +M2

∆,γ=π/2 +
(
M+

∆↑,∆↓,γ=π/2

)2

+
(
M−

∆↑,∆↓,γ=π/2

)2

+2MtMµ +
{
M∆,γ=π/2 , M

+
∆↑,∆↓,γ=π/2

}
+
{
M∆,γ=π/2 , M

−
∆↑,∆↓,γ=π/2

}
+
{
M+

∆↑,∆↓,γ=π/2 , M
−
∆↑,∆↓,γ=π/2

}
.

M2
t ,Mµ and 2MtMµ where computed before. Moreover, it can be seen thatM2

∆,γ=π/2 = M2
∆,γ=0

because the τ and σ-dependence is the same and (iγ1γ2) = I = γ2
0 . The same holds for squaring

M+
∆↑,∆↓,γ=π/2 and M−

∆↑,∆↓,γ=π/2. Therefore, only the anticommutation relations need to be
computed here. This leads to{

M∆,γ=π/2 , M
+
∆↑,∆↓,γ=π/2

}
= Ṽ 2 [i (Y R+ −XI+) τ0 + (XR+ + Y I+) τ3]⊗ σ1 ⊗ I

+Ṽ 2 [−i (Y R+ −XI+) τ0 + (XR+ + Y I+) τ3]⊗ σ1 ⊗ I
= 2Ṽ 2 (XR+ + Y I+) (τ3 ⊗ σ1 ⊗ I)

=
{
M∆,γ=0 , M

+
∆↑,∆↓,γ=0

}
.

Likewise,{
M∆,γ=π/2 , M

−
∆↑,∆↓,γ=π/2

}
= 2Ṽ 2 (Y R− −XI−) τ3 ⊗ σ2 ⊗ I =

{
M∆,γ=0 , M

−
∆↑,∆↓,γ=0

}
{
M+

∆↑,∆↓,γ=π/2 , M
−
∆↑,∆↓,γ=π/2

}
= 2Ṽ 2 (R+R− + I+I−) τ3 ⊗ σ3 ⊗ I =

{
M+

∆↑,∆↓,γ=0 , M
−
∆↑,∆↓,γ=0

}
.

Therefore, (
Mt +Mµ +Mm,γ=π/2

)2
= (Mt +Mµ +Mm,γ=0)2 ,

which means that the ground-state energy Eg.s.,m,γ=π/2 is equal to Eg.s.,m,γ=0 in Eq. (4.52).

Minimum of the Ground-State Energy
Minimizing the ground-state energy yields the same conditions as were obtained in the previous
Subsection, i.e.

|n| = 0, such that |∆↑| = |∆↓| , and φ↑ + φ↓ = 2φ+ nπ.

Using these conditions together with ∆σ = |∆σ| eiφσ and ∆ = |∆| eiφ leads to the following
simplification for M∆,γ=π/2, M+

∆↑,∆↓,γ=π/2 and M−
∆↑,∆↓,γ=π/2:(

M∆,γ=π/2 +M+
∆↑,∆↓,γ=π/2 +M−

∆↑,∆↓,γ=π/2

)∣∣∣
|n|=0

= Ṽ [sin(φ)τ1 + cos(φ)τ2]⊗ [σ3 |∆|+ σ1 |∆↑| cos(φ↓ − φ) + σ2 |∆↑| sin(φ↓ − φ)]⊗ iγ1γ2.
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Writing |∆| = m0 cos (θ) and |∆↑| = m0 sin (θ), where m = m0 at the minimum of the energy,
leads to(

M∆,γ=π/2 +M+
∆↑,∆↓,γ=π/2 +M−

∆↑,∆↓,γ=π/2

)∣∣∣
|n|=0

= Ṽ m0 [sin(φ)τ1 + cos(φ)τ2]⊗ [cos(θ)σ3 + sin(θ) (σ1 cos (φ↓ − φ) + σ2 sin (φ↓ − φ))]⊗ iγ1γ2.

(4.83)

Ground-State Energy for ∆′ 6= 0
Now, the ground-state energy can be calculated including both the Kekule and hidden order
using the condition |n| = 0. The same relation as before is used to determine the energy∑

q

(
E0,m,∆′ +Mt +Mµ +Mm,γ=π/2 +M∆′

)
Ψ = Em,∆′γ=π/2Ψ,

where
E0,m,∆′ = 6NṼ

(
m2 + 2 |∆′|2

)
.

Squaring Mt +Mµ +Mm,γ=π/2 +M∆′ yields(
Mt +Mµ +Mm,γ=π/2 +M∆′

)2
=
(
Mt +Mµ +Mm,γ=π/2

)2
+M2

∆′

+
{
M∆,γ=π/2 +M+

∆↑,∆↓,γ=π/2 +M−
∆↑,∆↓,γ=π/2 , M∆′

}
,

where it was used that {Mt +Mµ , M∆′} = 0. Again, the following condition will be imposed{
M∆,γ=π/2 +M+

∆↑,∆↓,γ=π/2 +M−
∆↑,∆↓,γ=π/2 , M∆′

}
= 0.

For this to hold, a condition needs to be derived for the relative phase between the Kekule
and hidden order. To do this, one considers Eq. (4.83), which describes the Kekule order at
minimal energy. One can see immediately that the terms for the spin and sublattice-valley
space anticommute. Therefore, this condition is computed in the particle-hole space. For all
the components of the Kekule order, the dependence in the particle-hole space is the same.
This yields

{sin(φ) τ1 + cos(φ)τ2 , Re(∆′)τ2 + Im(∆′)τ1} = 2 sin(φ) Im(∆′) + 2 cos(φ) Re(∆′)

= 2 |∆′| [sin(φ) sin(ϕ) + cos(φ) cos(ϕ)] = 2 |∆′| cos (φ− ϕ) ,

where ∆′ = |∆′| eiϕ. Therefore, for the anticommutation relation to be zero the relative phase
between the Kekule and hidden order parameters should be π/2. This leads to(

Mt +Mµ +Mm,γ=π/2 +M∆′
)2

=
(
Mt +Mµ +Mm,γ=π/2

)2
+M2

∆′

= (Mt +Mµ +Mm,γ=0 +M∆′)
2 ,

which means that the ground-state energy is equal to Eg.s.,m,∆′,γ=0 in Eq. (4.56).
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Figure 4.14: Solutions of the finite-temperature gap equation for the Kekule and hidden order at critical
temperature with vF /t = Λ = 1, m(Tc) = ∆′(T ′

c) = 0. For the Kekule order the coupling is Ṽ /t = 3π and for
the hidden order Ṽ /t = 18π. The critical temperature increases with increasing µ.

Comparison between s-Kekule Order and p-Kekule Order

The fact that the ground-state energies for the s and p-Kekule order are identical means that
also their thermodynamical potential must be the same. Therefore, as mentioned before, the
zero- and finite-temperature gap equations, critical couplings, zero-temperature gaps and crit-
ical temperatures for the p-Kekule order correspond to those for the s-Kekule order in this
approximation. However, Roy and Herbut show that when electrons away from the Fermi level
are taken into account, the p-Kekule is preferred over the s-Kekule order, which implies that
the results for the critical couplings and critical temperatures will be different for the s and
p-Kekule order in that approximation [5].

4.5.3 Competition Between Kekule and Hidden Order Reviewed

In the previous Subsections, it was already mentioned that the Kekule order is preferred over
the hidden order. In this Subsection, the behavior of both orders, as well as the competition
between them is reviewed. In Fig. 4.11, it was already shown that the critical coupling for the
Kekule order is smaller than that for the hidden order, which is a first indication that the first
is preferred over the second. Then, in Fig. 4.14 the behavior of the critical temperature with
respect to chemical potential is reviewed. One can see that the critical temperature increases
with increasing chemical potential, which was already shown in Figs. 4.12 and 4.13. As different
couplings are taken to solve the finite-temperature gap equations for the Kekule and hidden
order, the critical temperature values cannot be compared in this Figure. Next, in Figs. 4.15 and
4.16 the behavior of the coupling with respect to increasing critical temperature is shown. One
can see that for increasing chemical potential the coupling decreases. Moreover, with increasing
interaction strength, the critical temperature also increases. Lastly, the finite-temperature gap
equations in Eqs. (4.73) and (4.76) have been solved self-consistently, the result of which can
be found in Fig. 4.17. There, it can be seen that the Kekule gap opens at a higher temperature
than the hidden order gap. Therefore, the critical temperature of the Kekule order is higher
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Figure 4.15: Solutions of the finite-temperature
gap equation for the Kekule order at critical tem-
perature with vF /t = Λ = 1, m(Tc) = 0 and
∆′ = 0 for different values of the chemical poten-
tial: µ/t = 0 (solid), µ/t = 0.1 (large dashed),
µ/t = 0.25 (small dashed) and µ/t = 0.5 (dot-
ted). With increasing interaction the critical tem-
perature also increases. For increasing chemical
potential the critical coupling is smaller.

Figure 4.16: Solutions of the finite-temperature
gap equation for the hidden order at critical tem-
perature with vF /t = Λ = 1, ∆′(T ′

c) = 0 and
m = 0 for different values of the chemical poten-
tial: µ/t = 0 (solid), µ/t = 0.1 (large dashed),
µ/t = 0.25 (small dashed) and µ/t = 0.5 (dot-
ted). With increasing interaction the critical tem-
perature also increases. For increasing chemical
potential the critical coupling is smaller.

than that of the hidden order. Seeing that the critical coupling for the Kekule order is lower
than that for the hidden order and the critical temperature is higher, it can be concluded that
the Kekule order is preferred over the hidden order when only electrons at Fermi level are
considered.
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Figure 4.17: Finite-temperature gap equations solved self-consistently for vF /t = Λ = 1, µ/t = 0.25 and
Ṽ /t = 58. The Kekule gap opens at higher temperature than the hidden order gap and remains larger for any
temperature.
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Chapter 5

Conclusion

In this Master’s Thesis, superconductivity in artificial graphene samples has been investigated.
To that end, first BCS theory was studied in Chapter 2 to provide a theoretical basis for
treating superconductivity. Considering a system with a square lattice, it was shown how an
attractive potential between electrons can be generated and how a superconducting gap can
be opened in the energy spectrum. In the following Chapter, graphene was reviewed. Due to
the geometrical similarity between graphene and artificial graphene, studying graphene pro-
vides the basis of the understanding of artificial-graphene systems. The tight-binding model
for graphene was explained extensively and it was shown that the low-energy excitations in the
system are massless Dirac fermions. Combining the knowledge from Chapters 2 and 3 then
allowed for the investigation of how superconductivity is manifested in graphene-like systems.
A honeycomb superlattice made of CdSe nanocrystals was considered with a longitudinal op-
tical phonon coupling to effective s-like electrons on the same site and on nearest-neighbor
sites. Superconducting order parameters were defined for on-site and nearest-neighbor electron
coupling. The latter resulted in a competition between the Kekule and hidden order.

Two main results were obtained in this Thesis. Firstly, an expression for the effective on-site
electron-electron interaction and nearest-neighbor electron-electron interaction was derived. A
numerical analysis by the group of Prof. C. Delerue (Lille, France) shows that the effective
interactions for both cases remains repulsive. This means that the honeycomb superstructure
of CdSe nanocrystals may not be superconductive. The model studied in this Thesis can also
be used for other materials, such as for instance PbSe nanocrystals assembled in a honeycomb
geometry. An analysis of the numerical values there will show whether superconductivity is
possible. Secondly, the competition between the Kekule and hidden order was investigated and
the results show that the first is preferred over the second. The critical coupling for the Kekule
order is lower, whereas the critical temperature for the Kekule order is higher than those for
the hidden order, which proves that indeed the Kekule order is preferred over the hidden order.
For both the s and p-Kekule order, the same results were obtained. Upon including electrons
further away from the Fermi level, this will be overturned, as shown by Ref. [5], and one will
find that the p-Kekule is preferred over the s-Kekule order. It was also found that the system
behaves BCS-like in the weak-coupling limit.

In the future, the research in this Thesis could be expanded in several directions. First
of all, the research in this Thesis could be expanded by including electrons that are further
away from the Fermi level as is done in Ref. [5] to show that the p-Kekule is preferred over
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the s-Kekule order. Secondly, orbital degree of freedom could be included in the model. The
conduction bands of CdSe nanocrystals arranged in a honeycomb superlattice reveal a Dirac-
like manifold for the s-like electrons as well as the p-like electrons, of which only the first were
considered in this research. Experimentally, the nanocrystals can be doped with electrons such
that p-like states can be filled. Theoretically, however, it is not clear yet how the p-like electrons
can be included in the tight-binding description. Including these electrons would increase the
theoretical understanding of tight-binding models, as well as lead to the formation of exotic
superconducting states. Thirdly, following the example of Ref. [11], the effect of straining on the
system could be studied, as it leads to exotic electron pairings. Lastly, in the conduction bands
of HgTe nanocrystals arranged in a honeycomb configuration topologically non-trivial gaps were
found [20]. One could study what happens when superconductivity is induced in this system.
The topological nature of the gaps will lead to non-trivial results for the superconducting states.
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Chapter 6

Appendix

6.1 Appendix to Chapter 2

6.1.1 Derivation of Hel−ph

The electron-phonon Hamiltonian is derived in second quantized language.1 A simple model for
a metal is considered, where conduction electrons interact with ions of a crystal. It is assumed
that there is one ion per unit cell at a position Ri. The ions are arranged in a square lattice
with N lattice sites.

In first quantization, the electron-ion Hamiltonian of the system is

Hei =
∑
i,j

Vei (ri −Rj) ,

where i, j = 1, ..., N , and Vei (ri −Rj) is the interaction energy between electrons at position
ri and ions at positions Rj.

The ion coordinates Ri have small fluctuations around their equilibrium position

Ri = R0
i + δRi.

Therefore, the electron-ion interaction can be expanded as∑
i,j

Vei (ri −Rj) =
∑
i,j

Vei
(
ri −R0

j

)
+
∑
i,j

δRj∇Vei
(
ri −R0

j

)
. (6.1)

All higher order terms are neglected. The first term is an external potential for the electron
coming from the periodicity of the crystalline lattice and contributes to the electron Hamilto-
nian. Therefore, this term is neglected here. The second term describes the interaction of the
electrons with lattice deformations to the lowest order.

The potential term can be diagonalized by introducing normal modes

δRi =
1√
NM

∑
q,λ

Qq,λEλ (q) eiq·R
0
i , (6.2)

Pi =

√
M

N

∑
q,λ

Πq,λEλ (q) e−iq·R
0
i , (6.3)

1This derivation is based on Section 2.6 in Ref. [29].
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where Eλ (q), λ = 1, 2, 3 are the polarization vectors. The commutation relation between Ri

and Pi is well-known [
Rµ
i ,P

ν
j

]
= i~δi,jδµ,ν .

This relation can be used to derive the commutation relation between Qq,λ and Πq,λ

[
δRµ

i ,P
ν
j

]
=

1√
NM

√
M

N

∑
q,λ

∑
q′,λ′

[Qq,λ,Πq′,λ′ ] Eµλ (q) Eνλ′ (q′) eiq·R
0
i e−iq

′·R0
j = i~δi,jδµ,ν

only if
[Qq,λ,Πq′,λ′ ] = i~δq,q′δλ,λ′ . (6.4)

Moreover, [Ri,Rj] = 0 = [Pi,Pj] imply

[Qq,λ, Qq′,λ′ ] = [Πq,λ,Πq′,λ′ ] = 0. (6.5)

The explicit form of the functions Qq,λ and Πq,λ can be derived using the ladder operators for
bosons

b†q,λ =

√
ωq,λ

2~

(
Q†q,λ −

i

ωq,λ

Π†−q,λ

)
,

bq,λ =

√
ωq,λ

2~

(
Qq,λ +

i

ωq,λ

Π−q,λ

)
,

and the conditions Q−q = Q†q and Π−q = Π†q. For Qq,λ this leads to

bq,λ + b†−q,λ =

√
ωq,λ

2~

(
Qq,λ +

i

ωq,λ

Π−q,λ +Q†−q,λ −
i

ωq,λ

Π†q,λ

)
=

√
2ωq,λ

~
Qq,λ,

such that

Qq,λ =

√
~

2ωq,λ

(
bq,λ + b†−q,λ

)
. (6.6)

Next, Πq,λ is retrieved

b†q,λ − b−q,λ =

√
ωq,λ

2~

(
Q†q,λ −

i

ωq,λ

Π†−q,λ −Q−q,λ −
i

ωq,λ

Πq,λ

)
=

1

i

√
2

~ωq,λ

Πq,λ,

such that

Πq,λ = i

√
~ωq,λ

2

(
b†q,λ − b−q,λ

)
. (6.7)

The ladder operators b† and b obey Bose-Einstein statistics and their commutation relations
are [

bq,λ, b
†
q′,λ′

]
= δq,q′δλ,λ′ , [bq,λ, bq′,λ′ ] =

[
b†q,λ, b

†
q′,λ′

]
= 0.

Inserting Eq. (6.2) into the second term in Eq. (6.1) yields∑
j

δRj∇Vei
(
r−R0

j

)
=

1√
NM

∑
j,q,λ

Qq,λEλ (q) eiq·R
0
j∇Vei

(
r−R0

j

)
.
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Denoting with a†k,σ and ak,σ the creation and annihilation operators of electrons in the basis of
Bloch functions χk (r), this expression can be written as

1√
NM

∑
j,q,λ

Qq,λEλ (q) eiq·R
0
j∇Vei

(
r−R0

j

)
=

1√
NM

∑
j,q,λ

∑
k,k′,σ

Qq,λEλ (q) eiq·R
0
j

∫
drχk (r)∇Vei

(
r−R0

j

)
χk′ (r) a

†
k,σak′,σ

=
1√
NM

∑
j,q,λ

∑
k,k′,σ

Qq,λEλ (q) eiq·R
0
j

∫
drχk

(
r + R0

j

)
∇Vei (r)χk′

(
r + R0

j

)
a†k,σak′,σ.

Using Bloch’s theorem
χk (r + R) = eik·Rχk (r) , (6.8)

where R is a lattice vector, leads to the following

1√
NM

∑
j,q,λ

∑
k,k′,σ

Qq,λEλ (q) eiq·R
0
j

∫
drχk

(
r + R0

j

)
∇Vei (r)χk′

(
r + R0

j

)
a†k,σak′,σ

=
1√
NM

∑
j,q,λ

∑
k,k′,σ

Qq,λEλ (q) eiq·R
0
j

∫
drχk (r)e−ik·R

0
j∇Vei (r)χk′ (r) eik

′·R0
ja†k,σak′,σ

=
1√
NM

∑
j,q,λ

∑
k,k′,σ

Qq,λEλ (q) ei(k
′−k+q)·R0

j

∫
drχk (r)∇Vei (r)χk′ (r) a

†
k,σak′,σ

=

√
N

M

∑
q,λ

∑
k,k′,G,σ

Qq,λEλ (q) δk′−k+q,G 〈k| ∇Vei |k′〉 a†k,σak′,σ,

where G is a vector of the dual lattice, i.e. eiG·R = 1 and∫
drχk (r)∇Vei (r)χk′ (r) ≡ 〈k| ∇Vei |k′〉 .

Therefore, the electron-phonon Hamiltonian in terms of normal modes is

Hnm
el−ph =

√
N

M

∑
q,λ

∑
k,k′,G,σ

〈k| ∇Vei |k′〉 Eλ (q) δk′−k+q,GQq,λa
†
k,σak′,σ. (6.9)

Eq. (6.9) can be expressed in terms of boson operators using Eq. (6.6)

Hel−ph =

√
N

M

∑
q,λ

∑
k,k′,G,σ

〈k| ∇Vei |k′〉 Eλ (q) δk′−k+q,GQq,λa
†
k,σak′,σ

=
∑
q,λ

∑
k,k′,G,σ

√
~N

2ωq,λM
〈k| ∇Vei |k′〉 Eλ (q) δk′−k+q,G

(
bq,λ + b†−q,λ

)
a†k,σak′,σ

=
∑
q,λ

∑
k,k′,G,σ

gk,k′ (q) δk′−k+q,G

(
bq,λ + b†−q,λ

)
a†k,σak′,σ, (6.10)
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where gk,k′ (q) describes the electron-phonon coupling

gk,k′ (q) =

√
~N

2ωq,λM
〈k| ∇Vei |k′〉 Eλ (q) . (6.11)

This expression can be simplified by setting G = 0

Hel−ph =
∑
q,λ

∑
k,k′,σ

√
~N

2ωq,λM
〈k| ∇Vei |k′〉 Eλ (q) δk′−k+q,0

(
bq,λ + b†−q,λ

)
a†k,σak′,σ

=
∑

k,q,λ,σ

√
~N

2ωq,λM
〈k + q| ∇Vei |k〉 Eλ (q)

(
bq,λ + b†−q,λ

)
a†k+q,σak,σ

=
∑
q,λ,σ

√
~N

iqj√
2ωq,λM

Eλ (q)
(
bq,λ + b†−q,λ

)
n̂q,σ

= γ
∑
q,λ,σ

iqj√
2ωq,λM

(
bq,λ + b†−q,λ

)
n̂q,σ, (6.12)

where n̂q,σ =
∑

k a
†
k+q,σak,σ and γ =

√
~NEλ (q).

6.1.2 Derivation of Sph and Sel−ph

To find the action, the following definition is used

S
[
ψ†, ψ

]
=

∫ ~β

0

dτ
[
ψ†(τ)∂τψ(τ) +H

(
ψ†, ψ

)]
, (6.13)

where the first term contributes to the kinetic term in H. To write the Hamiltonians in terms
of the fields, the operators are transformed to fields using the following

aq → ψq(τ) =
1√
~β
∑
n

ψq,ne−iωnτ ,

cq,j → φq,j(τ) =
1√
~β

∑
n

φq,j,ne−iω̂nτ ,

where ωn = (2n + 1)π/(~β) and ω̂n = 2nπ/(~β) for n ∈ Z are the Matsubara frequen-
cies for fermions and bosons, respectively, and φ† (ψ†) and φ (ψ) obey the boson (fermion)
(anti)commutation relations.

For the phonon action Sph

[
φ†, φ

]
this yields

Sph

[
φ†, φ

]
=

∫ ~β

0

dτ
∑
q,j

[
φ†q,j(τ)∂τφq,j(τ) + ωqφ

†
q,j(τ)φq,j(τ)

]
=

1

~β

∫ ~β

0

dτ
∑
q,j

∑
n,n′

ei(ω̂n−ω̂n′ )τ
[
φ†q,j,n (−iω̂n′)φq,j,n′ + ωqφ

†
q,j,nφq,j,n′

]
=

1

~β
∑
q,j

∑
n,n′

~β δ (n− n′)
[
φ†q,j,n (−iω̂n′)φq,j,n′ + ωqφ

†
q,j,nφq,j,n′

]
=
∑
q,j,n

φ†q,j,n (−iω̂n + ωq)φq,j,n =
∑
q,j

φ†q,j (−iω̂n + ωq)φq,j,

79



where q = (n,q), and the following identity was used∫ ~β

0

dτ ei(ω̂n−ω̂n′ )τ = 2πδ (ωn − ωn′) = 2πδ

(
2nπ

~β
− 2n′π

~β

)
= 2πδ

(
2π

~β
(n− n′)

)
= 2π

1
2π
~β
δ(n− n′) = ~β δ(n− n′).

Next, the electron-phonon action Sel−ph

[
ψ†, ψ, φ†, φ

]
is determined. This term does not

contain any terms contributing to the kinetic term, so the first term in Eq. (6.13) is not
included in this calculation. The following is found

Sel−ph

[
ψ†, ψ, φ†, φ

]
= γ

∫ ~β

0

dτ
∑
k,q,j

iqj

(2mωq)
1/2
ψ†k+q(τ)ψk(τ)

(
φ†−q,j(τ) + φq,j(τ)

)
=

γ

~β
√
~β

∫ ~β

0

dτ
∑
k,q,j

∑
n,n′,n′′

iqj

(2mωq)
1/2

×
(

ei(ωn−ωn′+ω̂n′′ )τψ†k+q,nψk,n′φ
†
−q,j,n′′ + ei(ωn−ωn′−ω̂n′′ )τψ†k+q,nψk,n′φq,j,n′′

)
=

γ

~β
√
~β
∑
k,q,j

∑
n,n′,n′′

~β
iqj

(2mωq)
1/2
ψ†k+q,nψk,n′

(
δ(n− n′ + n′′)φ†−q,j,n′′ + δ(n− n′ − n′′)φq,j,n′′

)
=

γ√
~β
∑
k,q,j

∑
n,n′

iqj

(2mωq)
1/2
ψ†k+q,nψk,n′

(
φ†−q,j,n′−n + φq,j,n−n′

)
.

Therefore, Sph

[
φ†, φ

]
and Sel−ph

[
ψ†, ψ, φ†, φ

]
read

Sph

[
φ†, φ

]
=
∑
q,j

φ†q,j (−iω̂n + ωq)φq,j, (6.14)

Sel−ph

[
ψ†, ψ, φ†, φ

]
=

γ√
~β
∑
k,q,j

∑
n,n′

iqj

(2mωq)
1/2
ψ†k+q,nψk,n′

(
φ†−q,j,n′−n + φq,j,n−n′

)
.

(6.15)

6.1.3 Derivation of Effective Action

Using the definition for ρq, the solution for Sel−ph

[
ψ†, ψ, φ†, φ

]
can be rewritten as

Sel−ph

[
ψ†, ψ, φ†, φ

]
=

γ√
~β
∑
k,q,j

∑
n,n′

iqj

(2mωq)
1/2
ψ†k+q,nψk,n′

(
φ†−q,j,n′−n + φq,j,n−n′

)
=

γ√
~β

∑
k,q,j

∑
n,m

iqj

(2mωq)
1/2
ψ†k+q,mψk,m−n

(
φ†−q,j,n + φq,j,−n

)
= γ

∑
q,j,n

iqj

(2mωq)
1/2
ρq,−n

(
φ†−q,j,−n + φq,j,n

)
= γ

∑
q,j,n

iqj

(2mωq)
1/2
ρq,−n

(
φ†−q,j + φq,j

)
.
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Using the solution for the phonon action Sph

[
φ†, φ

]
yields the following coherent state integral

Z =

∫
D
[
ψ†, ψ

] ∫
D
[
φ†, φ

]
exp

{
−

[
Sel

[
ψ†, ψ

]
+
∑
q,j,ωn

φ†q,j (−iωn + ωq)φq,j

+γ
∑
q,j,n

iqj

(2mωq)
1/2
ρq,−n

(
φ†−q,j + φq,j

)]
/~

}
.

To be able to integrate out the phonon fields, the square needs to be completed. This yields

−
∑
q,j

φ†q,j (−iω̂n + ωq)φq,j − γ
∑
q,j,n

iqj

(2mωq)
1/2
ρq,−n

(
φ†−q,j + φq,j

)
= −

∑
q,j

(−iω̂n + ωq)φ
†
q,jφq,j + γ

∑
q,j

iqj

(2mωq)
1/2
ρ−q,nφ

†
q,j − γ

∑
q,j

iqj

(2mωq)
1/2
ρq,−nφq,j

= −
∑
q,j

(−iω̂n + ωq)

(
φ†q,j −

iγqj

(2mωq)
1/2
ρq,−n

1

−iω̂n + ωq

)

×

(
φq,j +

iγqj

(2mωq)
1/2
ρ−q,n

1

−iω̂n + ωq

)
+
∑
q,n

γ2q2

2mωq

1

−iω̂n + ωq
ρq,−nρ−q,n.

Plugging this into partition function yields a Gaussian integral. Integrating out the phonon
field leads to the desired result

Z =

∫
D
[
ψ†, ψ

] ∫
D
[
φ†, φ

]
exp

[
−Sel

[
ψ†, ψ

]
/~

−1

~
∑
q,j

(−iω̂n + ωq)

(
φ†q,j −

iγqj

(2mωq)
1/2
ρq,−n

1

−iω̂n + ωq

)

×

(
φq,j +

iγqj

(2mωq)
1/2
ρ−q,n

1

−iω̂n + ωq

)
+

1

~
∑
q,n

γ2q2

2mωq

1

−iω̂n + ωq
ρq,−nρ−q,n

]

=

∫
D
[
ψ†, ψ

]
exp

[
−Sel

[
ψ†, ψ

]
/~ +

γ2

2~m
∑
q,n

q2

ωq

1

−iω̂n + ωq
ρq,−nρ−q,n

]
.

Using that ω̂n = −ω̂−n, sending n→ −n yields

Z =

∫
D
[
ψ†, ψ

]
exp

[
−Sel

[
ψ†, ψ

]
/~ +

γ2

2~m
∑
q,n

q2

ωq

1

−iω̂−n + ωq
ρq,nρ−q,−n

]

=

∫
D
[
ψ†, ψ

]
exp

[
−Sel

[
ψ†, ψ

]
/~ +

γ2

2~m
∑
q,n

q2

ωq

1

iω̂n + ωq
ρqρ−q

]
,

such that
Seff

[
ψ†, ψ

]
= Sel

[
ψ†, ψ

]
− γ2

2m

∑
q

q2

ωq

1

iω̂n + ωq
ρqρ−q.
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This result can be rewritten

Seff

[
ψ†, ψ

]
= Sel

[
ψ†, ψ

]
− γ2

2m

∑
q

q2

ωq

1

iω̂n + ωq

−iω̂n + ωq
−iω̂n + ωq

ρqρ−q

= Sel

[
ψ†, ψ

]
− γ2

2m

∑
q

q2

ωq

−iω̂n + ωq
ω̂2
n + ω2

q

ρqρ−q. (6.16)

iω̂n in the numerator will drop out because the function is symmetric. This leads to the desired
result

Seff

[
ψ†, ψ

]
= Sel

[
ψ†, ψ

]
− γ2

2m

∑
q

q2

ω̂2
n + ω2

q

ρqρ−q. (6.17)

6.2 Appendix to Chapter 3

6.2.1 Derivation of Energy Bands in First Quantized Language

In the tight-binding model discussed in this Chapter, the energy bands produced by the σ bonds
are neglected, and only the energy bands of the π electrons are taken into consideration. The
body of this Chapter employs second quantization techniques to find these bands. However,
as mentioned in the text, the relative sign between t (the nearest-neighbor hopping parameter)
and t′ (the next-nearest neighbor hopping parameter) does not follow from the second quantized
approach. That is why, in this Appendix, the energy bands for the π electrons will be derived in
the first quantized language to show that the relative sign between the two parameters should
be negative when both parameters are defined with equal sign in the Hamiltonian.

Graphene has two atoms per unit cell, this means that one can write a trial wavefunction

ψk (r) = αkψ
(A)
k (r) + βkψ

(B)
k (r) ,

where αk and βk are complex functions of the quasimomentum k. ψ
(A)
k (r) and ψ

(B)
k (r) are

Bloch functions

ψ
(j)
k (r) =

∑
Rl

eik·Rlφ(j) (r + rj −Rl) , with j = A,B (6.18)

where rj connects the sites of the underlying Bravais lattice of the j atom with the unit cell [35].
The functions φ(j) (r + rj −Rl) are the atomic orbitals for electrons in the vicinity of atom j
located at a position Rl − rj at the Bravais lattice site Rl [35].

Assuming that this trial wavefunction is correct, it can be used to find solutions to the
Schrödinger equation Hψk = εkψk. Multiplying with ψ∗k from the left gives ψ∗kHψk = εkψ

∗
kψk.

The left hand side is

ψ∗kHψk =
(
α∗kψ

∗(A)
k + β∗kψ

∗(B)
k

)
H
(
αkψ

(A)
k + βkψ

(B)
k

)
= α∗ψ

∗(A)
k Hαψ

(A)
k + α∗ψ

∗(A)
k Hβψ

(B)
k + β∗ψ

∗(B)
k Hαψ

(A)
k + β∗ψ

∗(B)
k Hβψ

(B)
k

=
(
α∗k β∗k

)(ψ∗(A)
k Hψ

(A)
k ψ

∗(A)
k Hψ

(B)
k

ψ
∗(B)
k Hψ

(A)
k ψ

∗(B)
k Hψ

(B)
k

)(
αk

βk

)
=
(
α∗k β∗k

)
Hk

(
αk

βk

)
, (6.19)
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where

Hk ≡

(
ψ
∗(A)
k Hψ

(A)
k ψ

∗(A)
k Hψ

(B)
k

ψ
∗(B)
k Hψ

(A)
k ψ

∗(B)
k Hψ

(B)
k

)
. (6.20)

This matrix is Hermitian

H†k =

(
ψ
∗(A)
k Hψ

(A)
k ψ

∗(A)
k Hψ

(B)
k

ψ
∗(B)
k Hψ

(A)
k ψ

∗(B)
k Hψ

(B)
k

)†
=

(
ψ

(A)
k Hψ

∗(A)
k ψ

(A)
k Hψ

∗(B)
k

ψ
(B)
k Hψ

∗(A)
k ψ

(B)
k Hψ

∗(B)
k

)∗

=

(
ψ
∗(A)
k Hψ

(A)
k ψ

∗(A)
k Hψ

(B)
k

ψ
∗(B)
k Hψ

(A)
k ψ

∗(B)
k Hψ

(B)
k

)
= Hk,

where in the first step the transpose was taken of the matrix, and in the second the complex
conjugate. The right hand side of the Schrödinger equation gives

εkψ
∗
kψk = εk

(
α∗kψ

∗(A)
k + β∗kψ

∗(B)
k

)(
αkψ

(A)
k + βkψ

(B)
k

)
= εk

(
α∗k β∗k

)(ψ∗(A)
k ψ

(A)
k ψ

∗(A)
k ψ

(B)
k

ψ
∗(B)
k ψ

(A)
k ψ

∗(B)
k ψ

(B)
k

)(
αk

βk

)
= εk

(
α∗k β∗k

)
Sk
(
αk

βk

)
, (6.21)

where

Sk ≡

(
ψ
∗(A)
k ψ

(A)
k ψ

∗(A)
k ψ

(B)
k

ψ
∗(B)
k ψ

(A)
k ψ

∗(B)
k ψ

(B)
k

)
, (6.22)

called the overlap matrix. From the hermicity ofHk it is clear that Sk is also hermitian Sk = S†k.
This leads to the following relation

(
α∗k β∗k

)
Hk

(
αk

βk

)
= εk

(
α∗k β∗k

)
Sk
(
αk

βk

)
. (6.23)

The energy bands of the π electrons correspond to the eigenvalues of εk

Hk

(
αk

βk

)
= εkSk

(
αk

βk

)
(
Hkαk

Hkβk

)
=

(
εkSkαk

εkSkβk

)
(
Hkαk − εkSkαk

Hkβk − εkSkβk

)
= 0

det
(
Hk − ελkSk

)
= 0.

The solution to the last equation yields the energy bands. The index λ on the energy indicates
that there is more than one solution, in this case two, because there are two atoms in one unit
cell [35].

To solve this equation, it can be written in terms of the orbital functions using Eq. (6.18).
The Hamiltonian H is split into a part for the atomic orbital Ha = −(~2/2p)∆+V (r+δj−Rl)
and a part ∆V , which is a perturbation that corrects the atomic potential so that the potential
of the Hamiltonian corresponds to the potential of the crystal (just like was done in Section 3.2).
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Ha satisfies the eigenvalue equation Haφ(j)(r+δj−Rl) = ε(j)φ(j)(r+δj−Rl) [35]. As all atoms
in the system are the same, they yield the same on-site energy. This means that this energy
only shifts the energy bands, and can therefore be omitted from the calculation by setting it to
zero, i.e. Haφ(j) = 0. The Bravais lattice vectors correspond to those of the A sublattice, such
that rA = 0, and the equivalent site on sublattice B is found by the displacement rB = δ3 [35].2
The orbital wavefunctions are normalized such that

∫
d2rφ∗(j) (r)φ(j) (r) = 1. Lastly, overlap

by orbitals that are not nearest-neighbor are neglected.
The four matrix elements of Hk − ελkSk will be treated seperately. First, the off-diagonal

elements will be evaluated. HAB
k = (HBA

k )∗ yields a hopping term. The nearest-neighbor
hopping amplitude is defined as

tNN ≡ −
∫

d2r φ∗(A) (r) ∆V φ(B) (r + δ3) (6.24)

An atom at site A has three nearest-neighbors. In Eq. (6.24), the hopping is defined as going
from site A to site B with a vector δ3. Therefore, to cover the other two possibilities, Eq. (6.24)
needs to be shifted with a phase factor as appears in Eq. (6.18). To go to the nearest-neighbor
at r + δ1, Eq. (6.24) needs to be multiplied by exp(ik · a1). To go to r + δ2, Eq. (6.24) needs
to be multiplied by exp(ik · a2). This leads to the following off-diagonal term

HAB
k = −tNN

(
1 + eik·a2 + eik·a3

)
= −tNN γk, (6.25)

where
γk ≡ 1 + eik·a2 + eik·a3 . (6.26)

Next, −ελkSABk = (−ελkSBAk )∗ yields a correction to the overlap of atomic orbitals. It is assumed
that only orbitals on nearest-neighbor sites overlap. The overlap correction is defined as

s ≡
∫

d2r φ∗(A) (r)φ(B) (r + δ3) . (6.27)

Using the same reasoning as before, the result is

−ελkSABk = −ελks
(
1 + eik·a1 + eik·a2

)
= −ελksγk.

So the off-diagonal terms are

HAB
k − ελkSABk = −

(
tNN + ελks

)
γk, HBA

k − ελkSABk = −
(
tNN + ελks

)
γ∗k. (6.28)

Next, the diagonal terms will be evaluated. HAA
k = HBB

k yields a hopping term between
next-nearest neighbor sites separated from each other by the lattice vectors in Eq. (3.1). The
following is found

HAA
k = ψ

∗(A)
k Hψ

(A)
k =

∫
d2r φ∗(A) (r) ∆V

[
eik·a1φ(A) (r− a1) + e−ik·a1φ(A) (r + a1)

+eik·a2φ(A) (r− a2) + e−ik·a2φ(A) (r + a2) + eik·a3φ(A) (r− a3) + e−ik·a3φ(A) (r + a3)
]
.

2One can choose any of the other vectors δj without changing the physics.

84



All sites A are equivalent to each other, i.e.

φ(A) (r− a1) = φ(A) (r + a1) = φ(A) (r− a2) = φ(A) (r + a2) = φ(A) (r− a3) = φ(A) (r + a3) .

Defining the next-nearest hopping amplitude as

tNNN ≡ −
∫

d2r φ∗(A) (r) ∆V φ(A) (r + a3) (6.29)

the following is retrieved

HAA
k = −tNNN

(
eik·a1 + e−ik·a1 + eik·a2 + e−ik·a2 + eik·a3 + e−ik·a3

)
= −2 tNNN

∑
i

cos (k · ai) = −tNNN
(
|γk|2 − 3

)
. (6.30)

That this last equality holds can be easily checked

|γk|2 − 3 =
(
1 + e−ik·a2 + e−ik·a3

) (
1 + eik·a2 + eik·a3

)
− 3

= 1 + 1 + 1 + eik·a2 + e−ik·a2 + eik·a3 + e−ik·a3 + eik·(a2−a3) + e−ik·(a2−a3) − 3

= 2cos (k · a1) + 2cos (k · a2) + 2cos (k · a3) = 2
∑
i

cos (k · ai) . (6.31)

The second part of this equation yields

−ελkψ
∗(A)
k ψ

(A)
k = −ελk

∫
d2r

∑
Rl,R′l

e−ik·(Rl−R′l)φ∗(A) (r−Rl)φ
(A) (r−R′l) .

Any overlap of orbitals that are not nearest neighbor is neglected, hence this equation yields
zero unless r−Rl = r−R′l, because then the renormalization condition can be used. Therefore,
the solution to this equation is

−ελkψ
∗(A)
k ψ

(A)
k = −ελk.

So the diagonal terms are

HAA
k − ελkSAAk = HBB

k − ελkSBBk = −tNNN
(
|γk|2 − 3

)
− ελk. (6.32)

These considerations lead to the following equation

det

[
−tNNN

(
|γk|2 − 3

)
− ελk −

(
tNN + ελks

)
γk

−
(
tNN + ελks

)
γ∗k −tNNN

(
|γk|2 − 3

)
− ελk

]
= 0.

Solving yields [
tNNN

(
|γk|2 − 3

)
+ ελk

]2
=

(
tNN + ελks

)2 |γk|2

tNNN
(
|γk|2 − 3

)
+ ελk = ±

(
tNN + ελks

)
|γk|

ελk (1∓ s |γk|) = ±tNN |γk| − tNNN
(
|γk|2 − 3

)
ελk =

tNNN
(
|γk|2 − 3

)
± tNN |γk|

1∓ s |γk|

ελk =
tNNN

(
|γk|2 − 3

)
+ λtNN |γk|

1− λs |γk|
, (6.33)
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where λ = ±. This equation can be expanded using that s� 1 and tNNN � tNN . The orbital
wavefunctions are defined to be localized, so their overlap is assumed to be extremely small,
hence the first assumption. The second assumption rests on the same argument and implies
that the overlap between orbital functions of next-nearest neighbors is much smaller than the
overlap of nearest-neighbor orbitals. The following is found

ελk ≈
[
tNNN

(
|γk|2 − 3

)
+ λtNN |γk|

]
[1 + λs |γk|]

= tNNN
(
|γk|2 − 3

)
+ λtNN |γk|+ λtNNNs |γk|

(
|γk|2 − 3

)
+ tNNs |γk|2

= (tNNN + tNNs) |γk|2 − 3tNNN + λtNN |γk|+ λtNNNs |γk|
(
|γk|2 − 3

)
= t′NNN |γk|

2 − 3tNNN + λtNN |γk|+ λtNNNs |γk|
(
|γk|2 − 3

)
,

where t′NNN ≡ tNNN + tNNs is the effective next-nearest neighbor parameter. The last term
in this equation can be neglected because it is extremely small compared to the other terms.
Moreover, the term −3tNNN is just a constant that shifts the energy bands and can be left out.
Using Eq. (6.31) leads to the following

ελk = t′NNN

[
3 + 2

∑
i

cos (k · ai)

]
+ λtNN

√
3 + 2

∑
i

cos (k · ai). (6.34)

Using Eq. (3.1), the energy bands can be computed explicitly. The cosine leads to the following

2
∑
i

cos (k · ai) = 2 cos (k · a1) + 2 cos (k · a2) + 2 cos (k · a3)

= 2 cos [kx(a1)x + ky(a1)y] + 2 cos [kx(a2)x + ky(a2)y] + 2 cos [kx(a1 − a2)x + ky(a1 − a2)y]

= 2 cos

(
kx

3a

2
+ ky

√
3a

2

)
+ 2 cos

(
kx

3a

2
− ky

√
3a

2

)
+ 2 cos

(
ky
√

3a
)

= 2 cos

(
kx

3a

2

)
cos

(
ky

√
3a

2

)
− 2 sin

(
kx

3a

2

)
sin

(
ky

√
3a

2

)
+ 2 cos

(
kx

3a

2

)
cos

(
ky

√
3a

2

)

+2 sin

(
kx

3a

2

)
sin

(
ky

√
3a

2

)
+ 2 cos

(
ky
√

3a
)

= 2 cos
(
ky
√

3a
)

+ 4 cos

(
kx

3a

2

)
cos

(
ky

√
3a

2

)
≡ f (k) .

The energy bands are

ελk = t′NNN

[
3 + 2 cos

(
ky
√

3a
)

+ 4 cos

(
kx

3a

2

)
cos

(
ky

√
3a

2

)]

+λtNN

√√√√3 + 2 cos
(
ky
√

3a
)

+ 4 cos

(
kx

3a

2

)
cos

(
ky

√
3a

2

)
= λtNN

√
3 + f (k) + t′NNN [3 + f (k)] . (6.35)
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The values of the hopping parameters can be found by fitting the energy dispersion to the
energy dispersion calculated numerically in more rigourous band-structure calculations. The
value of the nearest-neighbor hopping parameter is tNN ≈ −3 eV [35]. For the next-nearest
neighbor hopping t′NNN ≈ 0.1tNN , so indeed tNNN � tNN . This shows that in this case, where
tNN and tNNN are defined with equal sign, also have an equal sign in their value. Comparing
to the second quantized case shows that there t and t′ show up in the dispersion relation with
opposite sign. Therefore, their values fitted to first principle calculations, should be opposite.

6.2.2 Derivation of Energy Bands in Second Quantized Language

To find the energy bands from the Hamiltonian in Eq. (3.9), it is easiest to treat the nearest-
neighbor (nn) and next-nearest neighbor (nnn) parts separately. The nn part of the Hamiltonian
is

Hnn = −t
∑
〈i,j〉,σ

(
a†σ,ibσ,j + b†σ,jaσ,i

)
.

The nn of position ri is rj = ri + δα with α = 1, 2, 3 where δα is defined in Eq. (3.2). The
Fourier transform of the operators a and b is

aσ,i =
1√
N

∑
k

aσ,keik·ri , bσ,i =
1√
N

∑
k

bσ,keik·ri ,

where N is the number of atoms in each sublattice. Plugging the Fourier transform into Hnn

leads to the following

Hnn = − t

N

∑
σ

∑
ri,rj

∑
k,q

(
a†σ,kbσ,qe−ik·ri+iq·rj + b†σ,qaσ,ke−iq·rj+ik·ri

)
= − t

N

∑
σ

∑
ri,δα

∑
k,q

(
a†σ,kbσ,qe−ik·ri+iq·(ri+δα) + b†σ,qaσ,ke−iq·(ri+δα)+ik·ri

)
= − t

N

∑
σ

∑
ri,δα

∑
k,q

(
a†σ,kbσ,qe−i(k−q)·ri+iq·δα + b†σ,qaσ,ke−i(q−k)·ri−iq·δα

)
.

The following relation is used ∑
i

ei(k−q)·ri = Nδk,q

to find

Hnn = − t

N

∑
σ,δα

∑
k,q

(
a†σ,kbσ,qNδk,qeiq·δα + b†σ,qaσ,kNδk,qe−iq·δα

)
= −t

∑
σ,δα,k

(
a†σ,kbσ,keik·δα + b†σ,kaσ,ke−ik·δα

)
.

Defining the function
g(k) ≡ −t

∑
δα

eik·δα , (6.36)
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allows Hnn to be written as

Hnn =
∑
σ,k

(
a†σ,k b†σ,k

)( 0 g(k)
g∗(k) 0

)(
aσ,k
bσ,k

)
. (6.37)

This leads to the following relation(
0 g(k)

g∗(k) 0

)(
aσ,k
bσ,k

)
= Ek,nn

(
aσ,k
bσ,k

)
(
g(k)bσ,k
g∗(k)aσ,k

)
=

(
Ek,nnaσ,k
Ek,nnbσ,k

)
.

There are two equations that need to be satisfied

g(k)bσ,k = Ek,nnaσ,k,

g∗(k)aσ,k = Ek,nnbσ,k.

Rewriting

Ek,nnaσ,k − g(k)bσk = 0

−g∗(k)aσk + Ek,nnbσ,k = 0

leads to ∣∣∣∣ Ek,nn −g(k)
−g∗(k) Ek,nn

∣∣∣∣ = 0.

Such that the energy band for nn is

E2
k,nn − |g(k)|2 = 0

E2
k,nn = |g(k)|2

Ek,nn = ± |g(k)| . (6.38)

Next, Ek,nn will be computed explicitly. Starting with

g∗(k)g(k) =

(
−t
∑
δα

e−ik·δα

)−t∑
δβ

eik·δβ


= t2

(
e−ik·δ1 + e−ik·δ2 + e−ik·δ3

) (
eik·δ1 + eik·δ2 + eik·δ3

)
= t2

(
1 + e−ik·(δ2−δ1) + e−ik·(δ3−δ1) + e−ik·(δ1−δ2) + 1 + e−ik·(δ3−δ2) + e−ik·(δ1−δ3) + e−ik·(δ2−δ3) + 1

)
= t2

(
3 + eik·(δ1−δ2) + e−ik·(δ1−δ2) + eik·(δ1−δ3) + e−ik·(δ1−δ3) + eik·(δ2−δ3) + e−ik·(δ2−δ3)

)
= t2 [3 + 2 cos(k(δ1 − δ2)) + 2 cos(k(δ1 − δ3)) + 2 cos(k(δ2 − δ3))] , (6.39)

which can be evaluated explicitly using Eq. (3.2). The cosines are

2 cos [k(δ1 − δ2)] = 2 cos [kx(δ1 − δ2)x + ky(δ1 − δ2)y]

= 2 cos

[
kx

(a
2
− a

2

)
+ ky

(√
3a

2
+

√
3a

2

)]
= 2 cos

(
ky
√

3a
)
,
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2 cos [k(δ1 − δ3)] = 2 cos [kx(δ1 − δ3)x + ky(δ1 − δ3)y]

= 2 cos

[
kx

(a
2

+ a
)

+ ky

(√
3a

2
− 0

)]
= 2 cos

(
kx

3a

2
+ ky

√
3a

2

)

= 2 cos

(
kx

3a

2

)
cos

(
ky

√
3a

2

)
− 2 sin

(
kx

3a

2

)
sin

(
ky

√
3a

2

)
,

and

2 cos [k(δ2 − δ3)] = 2cos [kx(δ2 − δ3)x + ky(δ2 − δ3)y]

= 2 cos

[
kx

(a
2

+ a
)

+ ky

(
−
√

3a

2
+ 0

)]
= 2 cos

(
kx

3a

2
− ky

√
3a

2

)

= 2 cos

(
kx

3a

2

)
cos

(
ky

√
3a

2

)
+ 2 sin

(
kx

3a

2

)
sin

(
ky

√
3a

2

)
.

Plugging these results back into Eq. (6.39) leads to

g∗(k)g(k) = t2

[
3 + 2 cos

(
ky
√

3a
)

+ 2 cos

(
kx

3a

2

)
cos

(
ky

√
3a

2

)

−2 sin

(
kx

3a

2

)
sin

(
ky

√
3a

2

)
+ 2 cos

(
kx

3a

2

)
cos

(
ky

√
3a

2

)
+ 2 sin

(
kx

3a

2

)
sin

(
ky

√
3a

2

)]

= t2

[
3 + 2 cos

(
ky
√

3a
)

+ 4 cos

(
kx

3a

2

)
cos

(
ky

√
3a

2

)]
,

such that
Ek,nn = ±t

√
3 + f(k), (6.40)

with

f(k) = 2 cos
(
ky
√

3a
)

+ 4 cos

(
kx

3a

2

)
cos

(
ky

√
3a

2

)
, (6.41)

as desired.
Next, the nnn hopping will be included. The nnn-part of the Hamiltonian is

Hnnn = −t′
∑
〈〈i,j〉〉,σ

(
a†σ,iaσ,j + b†σ,ibσ,j + a†σ,jaσ,i + b†σ,jbσ,i

)
.

The nnn of position ri is rj = ri + δα − δβ with α, β = 1, 2, 3 and α 6= β where δα,β is defined
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in Eq. (3.2). Transforming to reciprocal space following the same procedure as before leads to

Hnnn = − t′

2N

∑
σ

∑
ri,rj

∑
k,q

[(
a†σ,kaσ,q + b†σ,kbσ,q

)
e−ik·ri+iq·rj +

(
a†σ,qaσ,k + b†σ,qbσ,k

)
e−iq·ri+ik·rj

]
= − t′

2N

∑
σ

∑
ri,δα,δβ
α 6=β

∑
k,q

[(
a†σ,kaσ,q + b†σ,kbσ,q

)
e−ik·ri+iq·(ri+δα−δβ)

+
(
a†σ,qaσ,k + b†σ,qbσ,k

)
e−iq·ri+ik·(ri+δα−δβ)

]
= − t′

2N

∑
σ

∑
ri,δα,δβ
α 6=β

∑
k,q

[(
a†σ,kaσ,q + b†σ,kbσ,q

)
e−i(k−q)·ri+iq·(δα−δβ)

+
(
a†σ,qaσ,k + b†σ,qbσ,k

)
e−i(q−k)·ri+ik·(δα−δβ)

]
= − t′

2N

∑
σ

∑
δα,δβ
α 6=β

∑
k,q

[(
a†σ,kaσ,q + b†σ,kbσ,q

)
Nδk,qeiq·(δα−δβ) +

(
a†σ,qaσ,k + b†σ,qbσ,k

)
Nδk,qeik·(δα−δβ)

]

= −t
′

2

∑
σ,k

∑
δα,δβ
α 6=β

[(
a†σ,kaσ,k + b†σ,kbσ,k

)
eik·(δα−δβ) +

(
a†σ,kaσ,k + b†σ,kbσ,k

)
eik·(δα−δβ)

]
,

where the following relation was used ∑
〈〈i,j〉〉

=
1

2

∑
ri,rj

to prevent double counting. Defining the following

h(k) ≡ −t′
∑
δα,δβ
α 6=β

eik·(δα−δβ), (6.42)

allows for Hnnn to be rewritten according to

Hnnn =
1

2

∑
σ,k

(
a†σ,k b†σ,k

)(h(k) + h∗(k) 0
0 h(k) + h∗(k)

)(
aσ,k
bσ,k

)
. (6.43)

This leads to the following relation

1

2

(
h(k) + h∗(k) 0

0 h(k) + h∗(k)

)(
aσ,k
bσ,k

)
= Ek,nnn

(
aσ,k
bσ,k

)
1

2

(
(h(k) + h∗(k))aσ,k
(h(k) + h∗(k))bσ,k

)
=

(
Ek,nnnaσ,k
Ek,nnnbσ,k

)
.

Hence,

Ek,nnn =
1

2
[h(k) + h∗(k)] . (6.44)
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The next step is to explicitly compute h(k)

h(k) = −t′
∑

δα,δβ ,α 6=β

eik·(δα−δβ) = −t′
∑

δβ ,α 6=β

(
eik·(δ1−δβ) + eik·(δ2−δβ) + eik·(δ3−δβ)

)
= −t′

(
eik·(δ1−δ2) + eik·(δ1−δ3) + eik·(δ2−δ1) + eik·(δ2−δ3) + eik·(δ3−δ1) + eik·(δ3−δ2)

)
= −t′

(
eik·(δ1−δ2) + e−ik·(δ1−δ2) + eik·(δ1−δ3) + e−ik·(δ1−δ3) + eik·(δ2−δ3) + e−ik·(δ2−δ3)

)
.

Comparing this result to Eq. (6.39) immediately yields the solution

h(k) = −t′
(

2 cos
(
ky
√

3a
)

+ 4 cos

(
kx

3a

2

)
cos

(
ky

√
3a

2

))
.

Moreover, from Eq. (??) it is clear that h(k) = h∗(k), such that the energy bands for nnn are

Ek,nnn = −t′
(

2 cos
(
ky
√

3a
)

+ 4 cos

(
kx

3a

2

)
cos

(
ky

√
3a

2

))
. (6.45)

Therefore, the energy bands derived from the Hamiltonian in Eq. (3.9) have the form

Ek = ±t
√

3 + f(k)− t′f(k), (6.46)

with

f(k) = 2 cos
(
ky
√

3a
)

+ 4 cos

(
kx

3a

2

)
cos

(
ky

√
3a

2

)
. (6.47)

6.2.3 Expansion of Energy Bands around Dirac Points for Nearest-
Neighbor Hopping up to O (q/K)

The full band structure close to the K point is determined by expanding as k = K + q with
|q| � |K|, where K is defined in Eq. (3.5). Only nn-hopping is considered. At k = K,
EK,nn = 0. This can be shown explicitly,

EK,nn = ±t
√

3 + f(K) = 0, such that 3 + f(K) = 0.

So f(K) = −3. To see whether this holds, Eqs. (3.5) and (3.12) are used to obtain the following

f(K) = 2 cos
(
Ky

√
3a
)

+ 4 cos

(
Kx

3a

2

)
cos

(
Ky

√
3a

2

)
= −3

2 cos

(
2π

3

)
+ 4 cos

(π
3

)
cos (π) = −3

2×−1

2
+ 4× 1

2
×−1 = −3

−3 = −3,

such that indeed EK,nn = 0. Now k will be expanded around K using Eqs. (6.36) and (6.38).
This leads to the following

g(K + q) = g(K) + qi∂kig|K = g(K) + qx∂kxg|K + qy∂kyg
∣∣
K
.
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From the fact that EK,nn = 0, g(K) should be zero,

g(K) = −t
∑
δα

eiK·δα = −t
(
eiK·δ1 + eiK·δ2 + eiK·δ3

)
= −t

{
exp

[
i

(
2π

3a
· a

2
+

2π

3
√

3a
·
√

3a

2

)]
+ exp

[
i

(
2π

3a
· a

2
− 2π

3
√

3a
·
√

3a

2

)]
+ exp

(
−i2π

3a
· a
)}

= −t
(
ei2π/3 + 1 + e−i2π/3

)
= −t

[
2cos

(
2π

3

)
+ 1

]
= −t(−1 + 1) = 0.

The other two functions in the expansion are

∂kxg|K = −t
∑
δα

(
iδα,xeik·δα

)∣∣∣∣∣
K

= −it
∑
δα

(
δα,xeiK·δα

)
,

and likewise
∂kyg|K = −it

∑
δα

(
δα,yeiK·δα

)
.

This leads to
g(K + q) = qi∂kig|K = −it

∑
δα

(qxδα,x + qyδα,y) eiK·δα .

This equation can be computed explicitly using Eqs. (3.2) and (3.5)

g(K + q) = −it
∑
δα

(qxδα,x + qyδα,y) eiK·δα

= −it
[
(qxδ1,x + qyδ1,y) eiK·δ1 + (qxδ2,x + qyδ2,y) eiK·δ2 + (qxδ3,x + qyδ3,y) eiK·δ3

]
= −it

[(
qx
a

2
+ qy

a
√

3

2

)
ei(Kxδ1,x+Kyδ1,y) +

(
qx
a

2
− qy

a
√

3

2

)
ei(Kxδ2,x+Kyδ2,y) − qxa ei(Kxδ3,x+Kyδ3,y)

]

= −it

[(
qx
a

2
+ qy

a
√

3

2

)
ei

2π
3 +

(
qx
a

2
− qy

a
√

3

2

)
ei(

π
3
−π

3 ) − qxa e−i
2π
3a
a

]

= −it

{(
qx
a

2
+ qy

a
√

3

2

)[
cos

(
2π

3

)
+ i sin

(
2π

3

)]
+ qx

a

2
− qy

a
√

3

2

−qxa
[
cos

(
2π

3

)
− i sin

(
2π

3

)]}
= −it

[(
qx
a

2
+ qy

a
√

3

2

)(
−1

2
+
i

2

√
3

)
+ qx

a

2
− qy

a
√

3

2
− qxa

(
−1

2
− i

2

√
3

)]

= −it
[
qx

3a

4

(
1 + i

√
3
)

+ qy
3a

4

(
−
√

3 + i
)]

.

Such that
g∗(K + q) = it

[
qx

3a

4

(
1− i

√
3
)

+ qy
3a

4

(
−
√

3− i
)]

.
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This leads to

g∗(K + q)g(K + q) =
9a2t2

16

[(
qx −

√
3qy

)
+ i
(√

3qx + qy

)] [(
qx −

√
3qy

)
− i
(√

3qx + qy

)]
=

9a2t2

16

[(
qx −

√
3qy

)2

+
(√

3qx + qy

)2
]

=
9a2t2

16

[
q2
x + 3q2

y − 2
√

3qxqy + 3q2
x + q2

y + 2
√

3qxqy

]
=

9a2t2

16

[
4q2

x + 4q2
y

]
=

9a2t2

4

[
q2
x + q2

y

]
. (6.48)

Such that the final result reads

Enn(K + q) =

√
9a2t2

4

[
q2
x + q2

y

]
= ±3at

2
|q| = ±vF |q|, (6.49)

with the Fermi velocity vF = 3at/2.

6.2.4 Expansion of Energy Bands around Dirac Points Including Next-
Nearest Neighbor Hopping up to O

(
q2/K2

)
A similar procedure as in App. 6.2.3 can be followed to find the expansion of the energy bands
around the Dirac points including nnn-hopping up O (q2/K2). First nn is considered followed
by nnn.

Expansion of Energy Bands around Dirac Points for Nearest-Neighbor Hopping up
to O (q2/K2)

To find the energy bands up to O (q2/K2), the same procedure as in the previous Appendices
is used, except that now g(q + K) needs to be expanded up to the third order in q. To see
why, one should consider the following expansion

g(K + q) = g(K) + qi∂kig|K +
1

2!
qiqj∂ki∂kjf

∣∣∣∣
K

+
1

3!
qiqjqk∂ki∂kj∂kkg

∣∣∣∣
K

= A(q0) +B(q1) + C(q2) +D(q3),

where

A(q0) ≡ g(K), B(q1) ≡ qi∂kig|K ,

C(q2) ≡ 1

2!
qiqj∂ki∂kjg

∣∣∣∣
K

, D(q3) ≡ 1

3!
qiqjqk∂ki∂kj∂kkg

∣∣∣∣
K

.

In App. 6.2.3, it was found that g(K) = 0, such that g(q + K) only needs to be expanded up
to third order in q. Therefore, computing Enn(q) up to O (q2/K2) yields

Enn(K + q) = ±|g(K + q)| =
√
g∗(K + q)g(K + q)

=
√

[B∗(q1) + C∗(q2) +D∗(q3)] [B(q1) + C(q2) +D(q3)]

=
{
B∗(q1)B(q1) +B∗(q1)C(q2) +B∗(q1)D(q3) + C∗(q2)B(q1)

+C∗(q2)C(q2) +D∗(q3)B(q1)
}1/2

+O(q3/K3) (6.50)
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The result for the first term, B∗(q1)B(q1), was calculated in App. 6.2.3 and reads

B∗(q1)B(q1) =
9a2t2

4

[
q2
x + q2

y

]
.

Next, the terms B(q1), C(q2), D(q3) and their complex conjugates need to be found. The
terms B(q1) and B∗(q1) were calculated in App. 6.2.3. They are

B(q1) = qi∂kig|K = t

[
qx

3a

4

(√
3− i

)
+ qy

3a

4

(
1 + i

√
3
)]

,

and B∗(q1) the complex conjugate of this equation. Next, C(q2) needs to be computed

C(q2) =
1

2!
qiqj∂ki∂kjg

∣∣∣∣
K

=
1

2
q2
x∂

2
kxg

∣∣∣∣
K

+
1

2
q2
y∂

2
kyg

∣∣∣∣
K

+ qxqy∂kx∂kyg
∣∣
K

= IC + IIC + IIIC,

where

IC ≡
1

2
q2
x∂

2
kxg

∣∣∣∣
K

, IIC ≡
1

2
q2
y∂

2
kyg

∣∣∣∣
K

, IIIC ≡ qxqy∂kx∂kyg
∣∣
K
.

The first term leads to the following

IC =
1

2
q2
x∂

2
kxg

∣∣∣∣
K

=
1

2
q2
x∂

2
kx

(
−t
∑
δα

eik·δα

)∣∣∣∣∣
K

=
t

2
q2
x

∑
δα

δ2
α,xeiK·δα

=
t

2
q2
x

[
δ2

1,xeiK·δ1 + δ2
2,xeiK·δ2 + δ2

3,xeiK·δ3
]

=
t

2
q2
x

{(a
2

)2

exp

[
i

(
2π

3a
· a

2
+

2π

3
√

3a
·
√

3a

2

)]
+
(a

2

)2

exp

[
i

(
2π

3a
· a

2
+

2π

3
√

3a
· −
√

3a

2

)]

+ (−a)2 exp

[
i

(
2π

3a
· −a

)]}
=
t

2
q2
xa

2

[
1

4
e2iπ/3 +

1

4
+ e−2iπ/3

]
=
t

2
q2
xa

2

{
1

4

[
cos

(
2π

3

)
+ i sin

(
2π

3

)]
+

1

4
+ cos

(
2π

3

)
− i sin

(
2π

3

)}
=
t

2
q2
xa

2

[
5

4
cos

(
2π

3

)
− 3i

4
sin

(
2π

3

)
+

1

4

]
=
t

2
q2
xa

2

(
−5

8
− 3
√

3i

8
+

1

4

)
= − 3t

16
q2
xa

2
(

1 +
√

3i
)
.
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The second term leads to

IIC =
1

2
q2
y∂

2
kyg

∣∣∣∣
K

=
1

2
q2
y∂

2
ky

(
−t
∑
δα

eik·δα

)∣∣∣∣∣
K

=
t

2
q2
y

∑
δα

δ2
α,yeiK·δα

=
t

2
q2
y

[
δ2

1,yeiK·δ1 + δ2
2,yeiK·δ2 + δ2

3,yeiK·δ3
]

=
t

2
q2
y


(√

3a

2

)2

exp

[
i

(
2π

3a
· a

2
+

2π

3
√

3a
·
√

3a

2

)]

+

(
−
√

3a

2

)2

exp

[
i

(
2π

3a
· a

2
+

2π

3
√

3a
· −
√

3a

2

)] =
3t

8
q2
ya

2
[
e2iπ/3 + 1

]
=

3t

8
q2
ya

2

[
cos

(
2π

3

)
+ i sin

(
2π

3

)
+ 1

]
=

3t

8
q2
ya

2

(
1

2
+
i

2

√
3

)
=

3t

16
q2
ya

2
(

1 +
√

3i
)
.

The third term yields

IIIC = qxqy∂kx∂kyg
∣∣
K

= qxqy∂kx∂ky

(
−t
∑
δα

eik·δα

)∣∣∣∣∣
K

= tqxqy
∑
δα

δα,xδα,yeiK·δα

= tqxqy
[
δ1,xδ1,yeiK·δ1 + δ2,xδ2,yeiK·δ2 + δ3,xδ3,yeiK·δ3

]
= tqxqy

[
a

2
·
√

3a

2
e2iπ/3 − a

2
·
√

3a

2

]
=

√
3t

4
qxqya

2

[
−1

2
+
i

2

√
3− 1

]
= −3t

8
qxqya

2
(√

3− i
)
.

C(q2) then reads

C(q2) = − 3t

16

(
q2
x − q2

y

)
a2
(

1 +
√

3i
)
− 3t

8
qxqya

2
(√

3− i
)
,

and C∗(q2) the complex conjugate of this equation. Lastly, D(q3) is evaluated

D(q3) =
1

3!
qiqjqk∂ki∂kj∂kkg

∣∣∣∣
K

=

(
1

6
q3
x∂

3
kx +

1

6
q3
y∂

3
ky +

1

2
q2
xqy∂

2
kx∂ky +

1

2
qxq

2
y∂kx∂

2
ky

)
g

∣∣∣∣
K

= ID + IID + IIID + IVD,

where

ID ≡
1

6
q3
x∂

3
kxg

∣∣∣∣
K

, IID ≡
1

6
q3
y∂

3
kyg

∣∣∣∣
K

,

IIID ≡
1

2
q2
xqy∂

2
kx∂kyg

∣∣∣∣
K

, IVD ≡
1

2
qxq

2
y∂kx∂

2
kyg

∣∣∣∣
K

.
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The first term leads to

ID =
1

6
q3
x∂

3
kxg

∣∣∣∣
K

=
1

6
q3
x∂

3
kx

(
−t
∑
δα

eik·δα

)∣∣∣∣∣
K

=
it

6
q3
x

∑
δα

δ3
α,xeiK·δα

=
it

6
q3
x

[
δ3

1,xeiK·δ1 + δ3
2,xeiK·δ2 + δ3

3,xeiK·δ3
]

=
it

6
q3
x

[(a
2

)3

e2iπ/3 +
(a

2

)3

+ (−a)3 e−2iπ/3

]
=
it

6
q3
xa

3

{
1

8

[
cos

(
2π

3

)
+ i sin

(
2π

3

)]
+

1

8
− cos

(
2π

3

)
+ i sin

(
2π

3

)}
=
it

6
q3
xa

3

[
−7

8
cos

(
2π

3

)
+

1

8
+

9i

8
sin

(
2π

3

)]
=
it

6
q3
xa

3

(
9

16
+ i

9
√

3

16

)
= − 3t

32
q3
xa

3
(√

3− i
)
.

The second term reads

IID =
1

6
q3
y∂

3
kyg

∣∣∣∣
K

=
1

6
q3
y∂

3
ky

(
−t
∑
δα

eik·δα

)∣∣∣∣∣
K

=
it

6
q3
y

∑
δα

δ3
α,yeiK·δα

=
it

6
q3
y

[
δ3

1,yeiK·δ1 + δ3
2,yeiK·δ2 + δ3

3,yeiK·δ3
]

=
it

6
q3
y

(√3a

2

)3

e2iπ/3 +

(
−
√

3a

2

)3


=

√
3it

16
q3
ya

3

{[
cos

(
2π

3

)
+ i sin

(
2π

3

)]
− 1

}
=

√
3it

16
q3
ya

3

(
−3

2
+
i

2

√
3

)
= − 3t

32
q3
ya

3
(

1 + i
√

3
)
.

The third term yields

IIID =
1

2
q2
xqy∂

2
kx∂kyg

∣∣∣∣
K

=
1

2
q2
xqy∂

2
kx∂ky

(
−t
∑
δα

eik·δα

)∣∣∣∣∣
K

=
it

2
q2
xqy
∑
δα

δ2
α,xδα,yeiK·δα

=
it

2
q2
xqy
[
δ2

1,xδ1,yeiK·δ1 + δ2
2,xδ2,yeiK·δ2 + δ2

3,xδ3,yeiK·δ3
]

=
it

2
q2
xqy

[(a
2

)2
(√

3a

2

)
e2iπ/3 +

(a
2

)2
(
−
√

3a

2

)]
=

√
3it

16
q2
xqya

3

[
cos

(
2π

3

)
+ i sin

(
2π

3

)
− 1

]
=

√
3it

16
q2
xqya

3

(
−3

2
+
i

2

√
3

)
= − 3t

32
q2
xqya

3
(

1 + i
√

3
)
.

The last term leads to

IVD =
1

2
qxq

2
y∂kx∂

2
kyg

∣∣∣∣
K

=
1

2
qxq

2
y∂kx∂

2
ky

(
−t
∑
δα

eik·δα

)∣∣∣∣∣
K

=
it

2
qxq

2
y

∑
δα

δα,xδ
2
α,yeiK·δα

=
it

2
qxq

2
y

[
δ1,xδ

2
1,yeiK·δ1 + δ2,xδ

2
2,yeiK·δ2 + δ3,xδ

2
3,yeiK·δ3

]
=
it

2
qxq

2
y

(a
2

)(√3a

2

)2

e2iπ/3 +
(a

2

)(
−
√

3a

2

)2
 =

3it

16
qxq

2
ya

3

[
cos

(
2π

3

)
+ i sin

(
2π

3

)
+ 1

]

=
3it

16
qxq

2
ya

3

(
1

2
+
i

2

√
3

)
= − 3t

32
qxq

2
ya

3
(√

3− i
)
.
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D(q3) then reads

D(q3) = − 3t

32
a3
[(
q3
x + qxq

2
y

) (√
3− i

)
+
(
q3
y + q2

xqy
) (

1 + i
√

3
)]
,

and D∗(q3) the complex conjugate of this equation. Now, the remaining terms in Eq. (6.50)
can be computed explicitly. First, B∗(q1)C(q2) is computed

B∗(q1)C(q2) =

{
t

[
qx

3a

4

(√
3 + i

)
+ qy

3a

4

(
1− i

√
3
)]}

×
{
− 3t

16

(
q2
x − q2

y

)
a2
(

1 + i
√

3
)
− 3t

8
qxqya

2
(√

3− i
)}

= −t
2a3

6

[
qx

(√
3 + i

)
+ qy

(
1− i

√
3
)] [(

q2
x − q2

y

) (
1 + i

√
3
)

+ 2qxqy

(√
3− i

)]
= −2t2a3

3

[
iq3

x − 3iqxq
2
y + 3q2

xqy − q3
y

]
,

and B(q1)C∗(q2) the complex conjugate of this equation, such that B∗(q1)C(q2)+C∗(q2)B(q1)
reads

B∗(q1)C(q2) + C∗(q2)B(q1) = −2t2a3

3

[
iq3

x − 3iqxq
2
y + 3q2

xqy − q3
y

]
−2t2a3

3

[
−iq3

x + 3iqxq
2
y + 3q2

xqy − q3
y

]
=

4t2a3

3

(
q3
y − 3q2

xqy
)
.

Next, B∗(q1)D(q3) is computed

B∗(q1)D(q3) =

{
t

[
qx

3a

4

(√
3 + i

)
+ qy

3a

4

(
1− i

√
3
)]}

×
{
− 3t

32
a3
[(
q3
x + qxq

2
y

) (√
3− i

)
+
(
q3
y + q2

xqy
) (

1 + i
√

3
)]}

= −9t2a4

128

[
qx

(√
3 + i

)
+ qy

(
1− i

√
3
)] [(

q3
x + qxq

2
y

) (√
3− i

)
+
(
q3
y + q2

xqy
) (

1 + i
√

3
)]

= −9t2a4

32

(
q4
x + 2q2

xq
2
y + q4

y

)
= −9t2a4

32

(
q2
x + q2

y

)2
,

where its complex conjugate B(q1)D∗(q3) is the same, such that

B∗(q1)D(q3) +D∗(q3)B(q1) = −9t2a4

16

(
q2
x + q2

y

)2
.

Lastly, C∗(q2)C(q2) is computed

C∗(q2)C(q2) =

{
− 3t

16

(
q2
x − q2

y

)
a2
(

1− i
√

3
)
− 3t

8
qxqya

2
(√

3 + i
)}

×
{
− 3t

16

(
q2
x − q2

y

)
a2
(

1 + i
√

3
)
− 3t

8
qxqya

2
(√

3− i
)}

=
9t2a4

256

[(
q2
x − q2

y

) (
1− i

√
3
)

+ 2qxqy

(√
3 + i

)]
×
[(
q2
x − q2

y

) (
1 + i

√
3
)

+ 2qxqy

(√
3− i

)]
=

9t2a4

64

(
q2
x + q2

y

)2
.
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Combining these results leads to a solution for the energy bands near the Dirac point for
nearest-neighbor hopping expanded up to O (q2/K2)

Enn(K + q) =

[
9a2t2

4

(
q2
x + q2

y

)
+

9t2a4

64

(
q2
x + q2

y

)2 − 9t2a4

16

(
q2
x + q2

y

)2
+

4t2a3

3

(
q3
y − 3q2

xqy
)]1/2

=

[
9a2t2

4
|q|2 − 27t2a4

64
|q|4 +

4t2a3

3

(
q3
y − 3q2

xqy
)]1/2

= ±3ta

2
|q|2

√
1− a2

6
|q|2 +

8a

9 |q|2
(
q3
y − 3q2

xqy
)

= ±vF |q| ∓
3ta2

8
sin(3θq)|q|2 +O

[
(q/K)3

]
, (6.51)

with
θq = arctan

(
qx
qy

)
(6.52)

the angle in momentum space.

Expansion of Energy Bands around Dirac Points for Next-Nearest Neighbor Hop-
ping up to O (q2/K2)

Now, the same procedure will be followed for nnn. This procedure is much more straightforward
because for nnn the Hamiltonian is diagonal. Using Eq. (6.44) it is evident that to find Ennn(q)
up to second order in (q/K), h(q + K) needs to be expanded up to O (q2/K2)

h(K + q) = h(K) + qi∂kih|K +
1

2!
qiqj∂ki∂kjh

∣∣∣∣
K

.

Upon explicit computation, one finds

h(K) = −t′
∑
δα,δβ
α 6=β

eiK·(δα−δβ) = −t′
∑

δβ ,α 6=β

(
eiK·(δ1−δβ) + eiK·(δ2−δβ) + eiK·(δ3−δβ)

)
= −t′

(
eiK·(δ1−δ2) + eiK·(δ1−δ3) + eiK·(δ2−δ1) + eiK·(δ2−δ3) + eiK·(δ3−δ1) + eiK·(δ3−δ2)

)
= −t′

(
eiK·(δ1−δ2) + e−iK·(δ1−δ2) + eiK·(δ1−δ3) + e−iK·(δ1−δ3) + eiK·(δ2−δ3) + e−iK·(δ2−δ3)

)
= −2t′ {cos [K (δ1 − δ2)] + cos [K (δ1 − δ3)] + cos [K (δ2 − δ3)]}

= −2t′
{

cos
[
Kx (δ1 − δ2)x +Ky (δ1 − δ2)y

]
+ cos [Kx (δ1 − δ3)x

+Ky (δ1 − δ3)y

]
+ cos

[
Kx (δ2 − δ3)x +Ky (δ2 − δ3)y

]}
= −2t′

{
cos

[
2π

3a

(a
2
− a

2

)
+

2π

3
√

3a

(
a
√

3

2
+
a
√

3

2

)]
+ cos

[
2π

3a

(a
2

+ a
)

+
2π

3
√

3a

(
a
√

3

2

)]
+ cos

[
2π

3a

(a
2

+ a
)

+
2π

3
√

3a

(
−a
√

3

2

)]}

= −2t′
[
cos

(
2π

3

)
+ cos

(
4π

3

)
+ cos

(
2π

3

)]
= −2t′

(
−1

2
− 1

2
− 1

2

)
= 3t′.
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The second term in the expansion leads to

qi∂kih|K = −t′ qx∂kx
∑
δα,δβ
α 6=β

eik·(δα−δβ)

∣∣∣∣∣∣∣∣
K

− t′ qy∂ky
∑
δα,δβ
α 6=β

eik·(δα−δβ)

∣∣∣∣∣∣∣∣
K

= −it′ qx
∑
δα,δβ
α 6=β

(δα − δβ)x eiK·(δα−δβ) − it′ qy
∑
δα,δβ
α 6=β

(δα − δβ)y eiK·(δα−δβ)

= −it′ qx Ih − it′ qy IIh,

where
Ih ≡

∑
δα,δβ
α 6=β

(δα − δβ)x eiK·(δα−δβ), IIh ≡
∑
δα,δβ
α 6=β

(δα − δβ)y eiK·(δα−δβ).

The first part yields

I =
∑
δα,δβ
α 6=β

(δα − δβ)x eiK·(δα−δβ)

=
∑

δβ ,α 6=β

[
(δ1 − δβ)x eiK·(δ1−δβ) + (δ2 − δβ)x eiK·(δ2−δβ) + (δ3 − δβ)x eiK·(δ3−δβ)

]
= (δ1 − δ2)x

[
eiK·(δ1−δ2) − e−iK·(δ1−δ2)

]
+ (δ1 − δ3)x

[
eiK·(δ1−δ3) − e−iK·(δ1−δ3)

]
+ (δ2 − δ3)x

[
eiK·(δ2−δ3) − e−iK·(δ2−δ3)

]
= 2i

{(a
2
− a

2

)
sin [K · (δ1 − δ2)] +

(a
2

+ a
)

sin [K · (δ1 − δ3)] +
(a

2
+ a
)

sin [K · (δ2 − δ3)]
}

= 3ia

[
sin

(
4π

3

)
+ sin

(
2π

3

)]
= 3ia

(
−1

2

√
3 +

1

2

√
3

)
= 0.

The second part leads to

IIh =
∑
δα,δβ
α 6=β

(δα − δβ)y eiK·(δα−δβ)

= (δ1 − δ2)y
[
eiK·(δ1−δ2) − e−iK·(δ1−δ2)

]
+ (δ1 − δ3)y

[
eiK·(δ1−δ3) − e−iK·(δ1−δ3)

]
+ (δ2 − δ3)y

[
eiK·(δ2−δ3) − e−iK·(δ2−δ3)

]
= 2i

{
(δ1 − δ2)y sin [K · (δ1 − δ2)] + (δ1 − δ3)y sin [K · (δ1 − δ3)] + (δ2 − δ3)y sin [K · (δ2 − δ3)]

}
= 2i

[(√
3a

2
+

√
3a

2

)
sin

(
2π

3

)
+

√
3a

2
sin

(
4π

3

)
−
√

3a

2
sin

(
2π

3

)]

=
√

3ia

[
2 sin

(
2π

3

)
+ sin

(
4π

3

)
− sin

(
2π

3

)]
=
√

3ia

(
1

2

√
3− 1

2

√
3

)
= 0.

Such that
qi∂kih|K = 0.
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The third and last term in the expansion h (K + q)

1

2!
qiqj∂ki∂kjh

∣∣∣∣
K

=
1

2
q2
x∂

2
kxh

∣∣∣∣
K

+
1

2
q2
y∂

2
kyh

∣∣∣∣
K

+ qxqy∂kx∂kyh
∣∣
K

= IIIh + IVh + Vh,

where
IIIh ≡

1

2
q2
x∂

2
kxh

∣∣∣∣
K

, IVh ≡
1

2
q2
y∂

2
kyh

∣∣∣∣
K

, Vh ≡ qxqy∂kx∂kyh
∣∣
K
.

The first term in the expansion yields

IIIh =
1

2
q2
x∂

2
kxh

∣∣∣∣
K

=
1

2
q2
x∂

2
kx

−t′ ∑
δα,δβ
α 6=β

eik·(δα−δβ)


∣∣∣∣∣∣∣∣
K

=
t′

2
q2
x

[
(δ1 − δ2)2

x

(
eiK·(δ1−δ2) + e−iK·(δ1−δ2)

)
+ (δ1 − δ3)2

x

(
eiK·(δ1−δ3) + e−iK·(δ1−δ3)

)
+ (δ2 − δ3)2

x

(
eiK·(δ2−δ3) + e−iK·(δ2−δ3)

)]
= t′q2

x

{(a
2
− a

2

)2

cos [K · (δ1 − δ2)] +
(a

2
+ a
)2

cos [K · (δ1 − δ3)] +
(a

2
+ a
)2

cos [K · (δ2 − δ3)]

}
=

9t′

4
q2
xa

2

[
cos

(
4π

3

)
+ cos

(
2π

3

)]
=

9t′

4
q2
xa

2

(
−1

2
− 1

2

)
= −9t′

4
q2
xa

2.

IVh leads to

IVh =
1

2
q2
y∂

2
kyh

∣∣∣∣
K

=
1

2
q2
y∂

2
ky

−t′ ∑
δα,δβ
α 6=β

eik·(δα−δβ)


∣∣∣∣∣∣∣∣
K

=
t′

2
q2
y

[
(δ1 − δ2)2

y

(
eiK·(δ1−δ2) + e−iK·(δ1−δ2)

)
+ (δ1 − δ3)2

y

(
eiK·(δ1−δ3) + e−iK·(δ1−δ3)

)
+ (δ2 − δ3)2

y

(
eiK·(δ2−δ3) + e−iK·(δ2−δ3)

)]
= t′q2

y


(√

3a

2
+

√
3a

2

)2

cos [K · (δ1 − δ2)] +

(√
3a

2

)2

cos [K · (δ1 − δ3)]

+

(
−
√

3a

2

)2

cos [K · (δ2 − δ3)]

 = t′q2
ya

2

[
3cos

(
2π

3

)
+

3

4
cos

(
4π

3

)
+

3

4
cos

(
2π

3

)]

= 3t′q2
ya

2

(
−1

2
− 1

8
− 1

8

)
= −9t′

4
q2
ya

2.
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Lastly,

Vh = qxqy∂kx∂kyh
∣∣
K

= qxqy∂kx∂ky

−t′ ∑
δα,δβ
α 6=β

eik·(δα−δβ)


∣∣∣∣∣∣∣∣
K

= t′qxqy

[
(δ1 − δ2)x (δ1 − δ2)y

(
eiK·(δ1−δ2) + e−iK·(δ1−δ2)

)
+ (δ1 − δ3)x (δ1 − δ3)y

(
eiK·(δ1−δ3) + e−iK·(δ1−δ3)

)
+ (δ2 − δ3)x (δ2 − δ3)y

(
eiK·(δ2−δ3) + e−iK·(δ2−δ3)

)]
= 2t′qxqy

[(
3a

2

)(√
3a

2

)
cos

(
4π

3

)
+

(
3a

2

)(
−
√

3a

2

)
cos

(
2π

3

)]

= 2t′qxqya
2

(
−3
√

3

4
+

3
√

3

4

)
= 0.

This leads to the following
1

2!
qiqj∂ki∂kjh

∣∣∣∣
K

= −9t′a2

4
|q|2.

Therefore, h(K + q) has the following solution

h(K + q) = 3t′ − 9t′a2

4
|q|2 = h∗(K + q),

such that
1

2
[h(K + q) + h∗(K + q)] = 3t′ − 9t′a2

4
|q|2. (6.53)

Combining the results leads to the final answer for E(q + K) to O(q2/K2)

E(q + K) = 3t′ ± vF |q| −
[

9t′a2

4
± 3ta2

8
sin(3θq)

]
|q|2 +O

[
(q/K)3

]
. (6.54)

6.2.5 Density of States

For t′ = 0, it is possible to derive an analytical expression for the density of states near the
Dirac point K. First, the Hamiltonian will be written in terms of σ and g(k) as defined in
Eq. (6.36)

Hnn =
∑
σ,k

(
a†σ,k b†σ,k

)( 0 g(k)
g∗(k) 0

)(
aσ,k
bσ,k

)
=
∑
σ,k

(
a†σ,k b†σ,k

)
Ĥ(k)

(
aσ,k
bσ,k

)
,

where Ĥ(k) = σ ·d(k) where σi are the Pauli matrices, d(k) = [d(x), d(y)] with d(x) = Re[g(k)]
and d(y) = −Im[g(k)]. To verify the validity this relation, Ĥ(k) will be computed. This leads
to

Re[g(k)] = −t
∑
δα

cos (k · δα) , Im[g(k)] = −t
∑
δα

sin (k · δα) ,
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yielding

Ĥ(k) = σ · d(k) = σxd(x) + σyd(y) =

(
0 1
1 0

)
Re[g(k)]−

(
0 −i
i 0

)
Im[g(k)]

=

(
0 Re[g(k)] + i Im[g(k)]

Re[g(k)]− i Im[g(k)] 0

)
= −t

∑
δα

(
0 cos (k · δα) + i sin (k · δα)

cos (k · δα)− i sin (k · δα) 0

)
=

(
0 g(k)

g∗(k) 0

)
.

Such that indeed Ĥ(k) = σ · d(k).
The density of states ρ is defined as

ρ(E) = − 1

π
Im Tr

(
E − Ĥ(k) + iδ

)−1

,

where δ > 0 to make sure the Green’s function is retarded. Absorbing iδ in the energy as
E ′ = E + iδ leads to (

E ′ − Ĥ(k)
)−1

=
1

E ′ − σ · d(k)
=
E ′ + σ · d(k)

E ′2 − d(k)2

=
E ′ + σ · d(k)

2E ′

(
1

E ′ − d(k)
+

1

E ′ + d(k)

)
.

The first term of this equation is the interesting part because d(k) > 0 and E > 0 is the energy
band considered here. This leads to the following relation for the density of states

ρ(E) = − 1

π
Im Tr

[
E ′ + σ · d(k)

2E ′
1

E ′ − d(k)

]
= − 1

π
Im Tr

[
1

2E ′

(
E ′ f(k)

f ∗(k) E ′

)
1

E ′ − d(k)

]
= −Ns

π

2E ′

2E ′

∫
dk Im

[
1

E ′ − d(k)

]
= −Ns

π

∫
dk Im

[
1

E − d(k) + iδ

]
,

where dk = d2k/(2π)2. The following identity is used

Im

(
1

x+ iδ

)
= −πδ(x)

to find
ρ(E) = −Ns

π

∫
dk · −πδ(E − d(k)) = Ns

∫
dk δ(E − d(k)).

So far the derivation of the density of states has been general. Now, the expansion around
the K point will be used. First of all, this means that Ns = 4 with a factor of 2 coming from the
spin degree of freedom and the another factor of 2 coming from the valley degree of freedom.
Next, d(k) needs to be computed

d(k) =
√
d(x)2 + d(y)2. (6.55)

In App. 6.2.3 the following was obtained

g(K + k) = −3at

4

[
−
(√

3kx + ky

)
+ i
(
kx −

√
3ky

)]
,
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such that

d(x) = Re[g(K + k)] =
3at

4

(√
3kx + ky

)
,

d(y) = −Im[g(K + k)] =
3at

4

(
kx −

√
3ky

)
.

This then yields

d(k) =
√
d(x)2 + d(y)2 = ±3at

4

√
3k2

x + k2
y + 2

√
3kxky + k2

x + 3k2
y − 2

√
3kxky

= ±3at

4

√
4k2

x + 4k2
y = ±vF |k|,

which coincides exactly with the result for Enn(q+K) up to O(q/K) in Eq. (6.49) as it should.
Remembering that E > 0 such that d(k) = vFk, the density of states is

ρ(E) =
4

(2π)2

∫
d2k δ(E − vFk) =

4

(2π)2

∫ 2π

0

dθ

∫
dk k δ(E − vFk).

Substituting according to x = vFk leads to the final result

ρ(E) =
4

2π

∫
dx

vF

x

vF
δ(E − x) =

2

π

E

v2
F

.

The same result would have been found in the case of E < 0, therefore

ρ(E) =
2

π

|E|
v2
F

. (6.56)

Next, the same procedure will be followed to find the density of states per unit cell for any
momentum k. As for the previous case, d(k) coincides with the energy bands

d(k) = ±t

√√√√3 + 2 cos
(
ky
√

3a
)

+ 4 cos

(
kx

3a

2

)
cos

(
ky

√
3a

2

)
= ±t

√
3 + f(k).

The density of states is

ρ(E) =
Ns

(2π)2

∫
d2k δ(E − t

√
3 + f(k)) =

Ns

(2π)2

∫
dkx dky δ(h(k)),

where h(k) = E − t
√

3 + f(k). The following identity will be used to simplify the integral∫ ∞
−∞

dx δ(f(x)) =
∑
i

1

f ′(xi)
, where f(xi) = 0.

This leads to
ρ(E) =

Ns

(2π)2

∫
dky

1

∂kxh(k)

∣∣∣∣
k∗x

,
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where k∗x is the value for which h(k) = 0. The derivative reads

∂kxh(k) = ∂kx

(
E − t

√
3 + f(k)

)
= −t ∂kxf(k)

2
√

3 + f(k)
,

where

∂kxf(k) = ∂kx

[
2 cos

(
ky
√

3a
)

+ 4 cos

(
kx

3a

2

)
cos

(
ky

√
3a

2

)]
= −6a sin

(
kx

3a

2

)
cos

(
ky

√
3a

2

)
,

such that

∂kxh(k) = 6at
sin
(
kx

3a
2

)
cos
(
ky
√

3a
2

)
2
√

3 + f(k)
.

Using the delta function to rewrite this derivative yields

δ(E − t
√

3 + f(k)) 6= 0, such that
√

3 + f(k) =
E

t
,

which leads to

∂kxh(k) =
3at2

E
sin

(
kx

3a

2

)
cos

(
ky

√
3a

2

)
.

Plugging this back into the density of states yields

ρ(E) =
Ns

(2π)2

∫
dky

E

3at2

[
sin

(
k∗x

3a

2

)
cos

(
ky

√
3a

2

)]−1

.

Next, sin
(
k∗x

3a
2

)
needs to be determined. The variable k∗x is defined such that h(k)|k∗x = 0

E − t
√

3 + f(k)
∣∣∣
k∗x

= 0

t

√√√√3 + 2 cos
(
ky
√

3a
)

+ 4 cos

(
k∗x

3a

2

)
cos

(
ky

√
3a

2

)
= E

E2

t2
− 3− 2 cos

(
ky
√

3a
)

4 cos
(
ky
√

3a
2

) = cos

(
k∗x

3a

2

)
. (6.57)

Using the identity sin(x) =
√

1− cos2(x)

ρ(E) =
Ns

(2π)2

E

3at2

∫
dky

[
cos2

(
ky

√
3a

2

)
− 1

16

E4

t4
− 9

16
− 1

4
cos2

(√
3aky

)
+

3

8

E2

t2
+

1

4

E2

t2
cos
(√

3aky

)
− 3

8
cos
(√

3aky

)]−1/2

.
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This can be rewritten to find

ρ(E) =
4

π2

|E|
t2

1√
Z0

F

(
π

2
,

√
Z1

Z0

)
, (6.58)

with at −t ≤ E ≤ t

Z0 =

(
1 +

∣∣∣∣Et
∣∣∣∣)2

− [(E/t)2 − 1]2

4
, (6.59)

Z1 = 4

∣∣∣∣Et
∣∣∣∣ , (6.60)

and at −3t ≤ E ≤ −t ∨ t ≤ E ≤ 3t

Z0 = 4

∣∣∣∣Et
∣∣∣∣ , (6.61)

Z1 =

(
1 +

∣∣∣∣Et
∣∣∣∣)2

− [(E/t)2 − 1]2

4
, (6.62)

where F
(
π
2
,
√

Z1

Z0

)
is the complete elliptical integral of the first kind.

6.3 Appendix to Chapter 4

6.3.1 Integrating out Phonons

As mentioned in Section. 4.2, the operators are replaced by fields using the following transfor-
mations

ak,σ → ψA,k,σ(τ) =
1√
~β
∑
n

ψA,k,σ,ne−iωnτ ,

bk,σ → ψB,k,σ(τ) =
1√
~β
∑
n

ψB,k,σne−iωnτ ,

cA,q → φA,q(τ) =
1√
~β

∑
n

φA,q,ne−iω̂nτ ,

cB,q → φB,q(τ) =
1√
~β
∑
n

φB,q,ne−iω̂nτ ,

where ωn = (2n + 1)π/(~β) and ω̂n = 2nπ/(~β) for n ∈ Z are the Matsubara frequencies
for fermions and bosons, respectively, and φ (ψ) obey the boson (fermion) (anti)commutation
relations. The following definition is used to determine the action

S
[
ψ†, ψ

]
=

∫ ~β

0

dτ
[
ψ†(τ)∂τψ(τ) +H

(
ψ†, ψ

)]
.

105



The phonon action for the phonon on sublattice A is

Sph,A

[
φ†A, φA

]
=

∫ ~β

0

dτ
∑
q

[
φ†A,q(τ)∂τφA,q(τ) + ~ωE φ†A,q(τ)φA,q(τ)

]
=

1

~β

∫ ~β

0

dτ
∑
q

∑
n,n′

[
φ†A,q,neiω̂nτ∂τφA,q,n′e

−iω̂n′τ + ~ωE φ†A,q,neiω̂nτφA,q,n′e
−iω̂n′τ

]
=

1

~β

∫ ~β

0

dτ
∑
q

∑
n,n′

ei(ω̂n−ω̂n′ )τ
[
φ†A,q,n (−iω̂n′)φA,q,n′ + ~ωE φ†A,q,nφA,q,n′

]
=

2π

~β
∑
q

∑
n,n′

δ (ω̂n − ω̂n′) [...] =
2π

~β
∑
q

∑
n,n′

δ

(
2nπ

~β
− 2n′π

~β

)
[...]

=
2π

~β
1
2π
~β

∑
q

∑
n,n′

δ (n− n′) [...] =
∑
q,n

[
φ†A,q,n (−iω̂n + ~ωA,E)φA,q,n

]
.

The phonon action for the phonon on sublattice B is the same upon applying A → B. The
electron-phonon action SA,el−ph

[
ψ†A, ψA, ψ

†
B, ψB, φ

†
A, φA

]
for the phonon on sublattice A is

SA,el−ph

[
ψ†A, ψA, ψ

†
B, ψB, φ

†
A, φA

]
=

∫ ~β

0

dτ
∑
k,q,σ

[(
u0ψ

†
A,k+q,σ(τ)ψA,k,σ(τ) + v(q)ψ†B,k+q,σ(τ)ψB,k,σ(τ)

)(
φ†A,−q(τ) + φA,q(τ)

)]
=

1

~β
√
~β

∫ ~β

0

dτ
∑
k,q,σ

∑
n,n′,n′′

[
ei(ωn−ωn′+ω̂n′′ )τ

(
u0ψ

†
A,k+q,σ,nψA,k,σ,n′

+v(q)ψ†B,k+q,σ,nψB,k,σ,n′
)
φ†A,−q,n′′

+ei(ωn−ωn′−ω̂n′′ )τ
(
g0ψ

†
A,k+q,σ,nψA,k,σ,n′ + h(q)ψ†B,k+q,σ,nψB,k,σ,n′

)
φA,q,n′′

]
=

2π

~β
√
~β
∑
k,q,σ

∑
n,n′,n′′

{δ (ωn − ωn′ + ω̂n′′) [...] + δ (ωn − ωn′ − ω̂n′′) [...]}

=
2π

~β
√
~β
∑
k,q,σ

∑
n,n′,n′′

{
δ

(
(2n+ 1)π

~β
− (2n′ + 1)π

~β
+

2n′′π

~β

)
[...]

+δ

(
(2n+ 1)π

~β
− (2n′ + 1)π

~β
− 2n′′π

~β

)
[...]

}
=

2π

~β
√
~β

1
2π
~β

∑
k,q,σ

∑
n,n′,n′′

{δ (n− n′ + n′′) [...] + δ (n− n′ − n′′) [...]}

=
1√
~β
∑
k,q,σ

∑
m,n

[(
u0ψ

†
A,k+q,σ,mψA,k,σ,m−n + v(q)ψ†B,k+q,σ,mψB,k,σ,m−n

)
φ†A,−q,−n

+
(
u0ψ

†
A,k+q,σ,mψA,k,σ,m−n + v(q)ψ†B,k+q,σ,mψB,k,σ,m−n

)
φA,q,n

]
.
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Using the following definition for the density of electrons on sublattice A

ρA,q,σ,n ≡
∑
k,m

ψ†A,k+q,σ,m+nψA,k,σ,m =
∑
k,m

ψ†A,k+q,σ,mψA,k,σm−n

yields

SA,el−ph

[
ψ†A, ψA, ψ

†
B, ψB, φ

†
A, φA

]
=

1√
~β

∑
q,σ,n

[
(u0ρA,q,σ,n + v(q)ρB,q,σ,n)φ†A,−q,−n + (u0ρA,q,σ,n + v(q)ρB,q,σ,n)φA,q,n

]
.

The total action SA
[
ψ†A, ψA, ψ

†
B, ψB, φ

†
A, φA

]
for the phonon on sublattice A reads

SA

[
ψ†A, ψA, ψ

†
B, ψB, φ

†
A, φA

]
=
∑
q,σ,n

[
φ†A,q,n (−iω̂n + ~ωE)φA,q,n +

1√
~β

(u0ρA,q,σ,n + v(q)ρB,q,σ,n)φ†A,−q,−n

+
1√
~β

(u0ρA,q,σ,n + v(q)ρB,q,σ,n)φA,q,n

]
=
∑
q,σ,n

[
φ†A,q,n (−iω̂n + ~ωE)φA,q,n +

1√
~β

(u0ρA,−q,σ,−n + v(−q)ρB,−q,σ,−n)φ†A,q,n

+
1√
~β

(u0ρA,q,σ,n + v(q)ρB,q,σ,n)φA,q,n

]
.

To be able to integrate out the phonons, the square needs to be completed. This yields

SA

[
ψ†A, ψA, ψ

†
B, ψB, φ

†
A, φA

]
=
∑

q,σ,σ′,n

(−iω̂n + ~ωA,E)

[
φ†A,q,n +

1√
~β

1

−iω̂n + ~ωE
(u0ρA,q,σ,n + v(q)ρB,q,σ,n)

]
×
[
φA,q,n +

1√
~β

1

−iω̂n + ~ωE
(u0ρA,−q,σ′,−n + v(−q)ρB,−q,σ′,−n)

]
− 1

~β
∑

q,σ,σ′,n

1

−iω̂n + ~ωE
(u0ρA,q,σ,n + v(q)ρB,q,σ,n) (u0ρA,−q,σ′,−n + v(−q)ρB,−q,σ′,−n) .

The action for the phonon on sublattice B can be found by applying A↔ B to this last result
and reads

SB

[
ψ†A, ψA, ψ

†
B, ψB, φ

†
B, φB

]
=
∑

q,σ,σ′,n

(−iω̂n + ~ωB,E)

[
φ†B,q,n +

1√
~β

1

−iω̂n + ~ωE
(u0ρB,q,σ,n + v(q)ρA,q,σ,n)

]
×
[
φB,q,n +

1√
~β

1

−iω̂n + ~ωE
(u0ρB,−q,σ′,−n + v(−q)ρA,−q,σ′,−n)

]
− 1

~β
∑

q,σ,σ′,n

1

−iω̂n + ~ωE
(u0ρB,q,σ,n + v(q)ρA,q,σ,n) (u0ρB,−q,σ′,−n + v(−q)ρA,−q,σ′,−n) .
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Next, the phonons are integrated out to obtain the effective action. For that purpose, the
partition function is used. This yields

Z =

∫
D
[
ψ†A, ψA

] ∫
D
[
ψ†B, ψB

] ∫
D
[
φ†A, φA

] ∫
D
[
φ†B, φB

]
exp

[
− 1

~β

(
Sel

[
ψ†A, ψA, ψ

†
B, ψB

]
+SA

[
ψ†A, ψA, ψ

†
B, ψB, φ

†
A, φA

]
+ SB

[
ψ†A, ψA, ψ

†
B, ψB, φ

†
B, φB

])]
=

∫
D
[
ψ†A, ψA

] ∫
D
[
ψ†B, ψB

] ∫
D
[
φ†A, φA

] ∫
D
[
φ†B, φB

]
exp

{
− 1

~β

(
Sel

[
ψ†A, ψA, ψ

†
B, ψB

]
+
∑

q,σ,σ′,n

(−iω̂n + ~ωE)

[
φ†A,q,n +

1√
~β

1

−iω̂n + ~ωE
(u0ρA,q,σ,n + v(q)ρB,q,σ,n)

]
×
[
φA,q,n +

1√
~β

1

−iω̂n + ~ωE
(u0ρA,−q,σ′,−n + v(−q)ρB,−q,σ′,−n)

]
− 1

~β
∑

q,σ,σ′,n

1

−iω̂n + ~ωE
(u0ρA,q,σ,n + v(q)ρB,q,σ,n) (u0ρA,−q,σ′,−n + v(−q)ρB,−q,σ′,−n)

+
∑

q,σ,σ′,n

(−iω̂n + ~ωE)

[
φ†B,q,n +

1√
~β

1

−iω̂n + ~ωE
(u0ρB,q,σ,n + v(q)ρA,q,σ,n)

]
×
[
φB,q,n +

1√
~β

1

−iω̂n + ~ωE
(u0ρB,−q,σ′,−n + v(−q)ρA,−q,σ′,−n)

]
− 1

~β
∑

q,σ,σ′,n

1

−iω̂n + ~ωE
(u0ρB,q,σ,n + v(q)ρA,q,σ,n) (u0ρB,−q,σ′,−n + v(−q)ρA,−q,σ′,−n)

)}

=

∫
D
[
ψ†A, ψA

] ∫
D
[
ψ†B, ψB

]
exp

[
− 1

~β

(
Sel

[
ψ†A, ψA, ψ

†
B, ψB

]
− 1

~β
∑

q,σ,σ′,n

1

−iω̂n + ~ωE
(u0ρA,q,σ,n + v(q)ρB,q,σ,n) (u0ρA,−q,σ′,−n + v(−q)ρB,−q,σ′,−n)

− 1

~β
∑

q,σ,σ′,n

1

−iω̂n + ~ωE
(u0ρB,q,σ,n + v(q)ρA,q,σ,n) (u0ρB,−q,σ′,−n + v(−q)ρA,−q,σ′,−n)

)]
.

This leads to

Seff

[
ψ†A, ψA, ψ

†
B, ψB

]
= Sel

[
ψ†A, ψA, ψ

†
B, ψB

]
− 1

~β
∑

q,σ,σ′,n

1

−iω̂n + ~ωE
(u0ρA,q,σ,n + v(q)ρB,q,σ,n) (u0ρA,−q,σ′,−n + v(−q)ρB,−q,σ′,−n)

− 1

~β
∑

q,σ,σ′,n

1

−iω̂n + ~ωE
(u0ρB,q,σ,n + v(q)ρA,q,σ,n) (u0ρB,−q,σ′,−n + v(−q)ρA,−q,σ′,−n) .

108



6.3.2 Deriving the Hubbard Action

Replacing the operators in Eq. (4.15) by fields leads to the following

SHub,U,V

[
ψ†A, ψA, ψ

†
B, ψB

]
=
U

N

∫ ~β

0

dτ
∑
k,k′,q

ψ†A,k−q,↑ (τ)ψ†A,k′+q,↓ (τ)ψA,k′,↓ (τ)ψA,k,↑ (τ) + A→ B

+
V

N

∫ ~β

0

dτ
∑
k,k′,q

∑
σ,σ′

γqψ
†
A,k+q,σ (τ)ψA,k,σ (τ)ψ†B,k′−q,σ′ (τ)ψ†B,k′,σ′ (τ) .

Expanding in terms of the Matsubara frequencies ωn yields the following for the Hubbard U
action for the electrons on sublattice A

SU

[
ψ†A, ψA

]
=

1

(~β)2

U

N

∫ ~β

0

dτ
∑
k,k′,q

∑
n,n′,n′′,n′′′

ei(ωn+ωn′−ωn′′−ωn′′′ )τ
[
ψ†A,k−q,↑,nψ

†
A,k′+q,↓,n′psiA,k′,↓,n′′ψA,k,↑,n′′′

]
=

2π

(~β)2

U

N

∑
k,k′,q

∑
n,n′,n′′,n′′′

δ (ωn + ωn′ − ωn′′ − ωn′′′) [...]

=
2π

(~β)2

U

N

∑
k,k′,q

∑
n,n′,n′′,n′′′

δ

(
(2n+ 1) π

~β
+

(2n′ + 1) π

~β
− (2n′′ + 1) π

~β
− (2n′′′ + 1) π

~β

)
[...]

=
2π

(~β)2

1
2π
~β

U

N

∑
k,k′,q

∑
n,n′,n′′,n′′′

δ (n+ n′ − n′′ − n′′′) [...]

=
1

~β
U

N

∑
k,k′,q

∑
n,m,m′

ψ†A,k−q,↑,m−nψ
†
A,k′+q,↓,m′+nψA,k′,↓,m′ψA,k,↑,m =

1

~β
U

N

∑
q,n

ρA,q,↓,nρA,−q,↑,−n,

where the density of electrons ρA,q,σ,n is defined in Eq. (4.11). The action for the Hubbard U
on sublattice B can be found by applying A → B. Replacing the operators by fields for the
Hubbard V term leads to the following action Lastly, SV

[
ψ†A, ψA, ψ

†
B, ψB

]
yields

SV

[
ψ†A, ψA, ψ

†
B, ψB

]
=

1

(~β)2

V

N

∫ ~β

0

dτ
∑
k,k′,q

∑
σ,σ′

∑
n,n′,n′′,n′′′

ei(ωn−ωn′+ωn′′−ωn′′′ )τ
[
γqψ

†
A,k+q,σ,nψA,k,σ,n′ψ

†
B,k′−q,σ′,n′′ψ

†
B,k′,σ′,n′′′

]
=

2π

(~β)2

V

N

∑
k,k′,q

∑
σ,σ′

∑
n,n′,n′′,n′′′

δ (ωn − ωn′ + ωn′′ − ωn′′′) [...]

=
2π

(~β)2

1
2π
~β

V

N

∑
k,k′,q

∑
σ,σ′

∑
n,n′,n′′,n′′′

δ (n− n′ + n′′ − n′′′) [...]

=
1

~β
V

N

∑
k,k′,q

∑
σ,σ′

∑
n,m,m′

γqψ
†
A,k+q,σ,m+nψA,k,σ,mψ

†
B,k′−q,σ′,m′−nψ

†
B,k′,σ′,m′

=
1

~β
V

N

∑
q,σ,σ′,n

γqρA,q,σ,nρB,−q,σ′,−n.
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6.3.3 Solving the Zero-Temperature Gap Equation for the Kekule
Order

The zero-temperature gap equation for the Kekule order yields the following

1 =
Ṽ

3

∑
s=±

∫
dq

(2π)2

1√
(vF |q|+ sµ)2 + Ṽ 2m2(0)

=
Ṽ

3

∑
s=±

∫ 2π

0

dθ

∫ Λ

0

dq

(2π)2

q√
(vF |q|+ sµ)2 + Ṽ 2m2(0)

=
Ṽ

6πvF

∑
s=±

∫ Λ

0

dq
vF q + sµ− sµ√

(vF |q|+ sµ)2 + Ṽ 2m2(0)

=
Ṽ

6πvF

∑
s=±

∫ Λ

0

dq

 vF q + sµ√
(vF |q|+ sµ)2 + Ṽ 2m2(0)

− sµ√
(vF |q|+ sµ)2 + Ṽ 2m2(0)


=

Ṽ

6πvF
[Im + IIm] ,

where

Im =
∑
s=±

∫ Λ

0

dq
vF q + sµ√

(vF |q|+ sµ)2 + Ṽ 2m2(0)
,

IIm = −
∑
s=±

∫ Λ

0

dq
sµ√

(vF |q|+ sµ)2 + Ṽ 2m2(0)
.

Im can be solved by substituting u = vF q + sµ such that

Im =
∑
s=±

∫ vFΛ

sµ

du

vF

u√
u2 + Ṽ 2m2(0)

=
1

vF

∑
s=±

[√
u2 + Ṽ 2m2(0)

]vFΛ

sµ

=
1

vF

∑
s=±

(
vFΛ−

√
µ2 + Ṽ 2m2(0)

)
=

2

vF

(
vFΛ−

√
µ2 + Ṽ 2m2(0)

)
,
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where it is used that Λ� m(0). To solve IIm, the substitution u = (vF q + sµ) /Ṽ m(0) is used

IIm = −
∑
s=±

sµ

vF

∫ vFΛ

Ṽ m(0)

sµ

Ṽ m(0)

du
Ṽ m(0)

Ṽ m(0)
√
u2 + 1

= −
∑
s=±

sµ

vF

[
ln
∣∣∣u+

√
u2 + 1

∣∣∣] vFΛ

Ṽ m(0)

sµ

Ṽ m(0)

= −
∑
s=±

sµ

vF

[
ln

∣∣∣∣∣ vFΛ

Ṽ m(0)
+

√(
vFΛ

Ṽ m(0)

)2

+ 1

∣∣∣∣∣− ln

∣∣∣∣∣ sµ

Ṽ m(0)
+

√(
sµ

Ṽ m(0)

)2

+ 1

∣∣∣∣∣
]

= −
∑
s=±

sµ

vF

[
ln

∣∣∣∣ vFΛ

Ṽ m(0)
+

1

Ṽ m(0)

√
v2
FΛ2 + Ṽ 2m2(0)

∣∣∣∣− ln

∣∣∣∣ sµ

Ṽ m(0)
+

1

Ṽ m(0)

√
µ2 + Ṽ 2m2(0)

∣∣∣∣]
= − µ

vF

[
ln

∣∣∣∣vFΛ +

√
v2
FΛ2 + Ṽ 2m2(0)

∣∣∣∣− ln

∣∣∣∣µ+

√
µ2 + Ṽ 2m2(0)

∣∣∣∣]
+
µ

vF

[
ln

∣∣∣∣vFΛ +

√
v2
FΛ2 + Ṽ 2m2(0)

∣∣∣∣− ln

∣∣∣∣−µ+

√
µ2 + Ṽ 2m2(0)

∣∣∣∣]

=
µ

vF
ln

 µ+
√
µ2 + Ṽ 2m2(0)

−µ+
√
µ2 + Ṽ 2m2(0)

 .
Therefore, the following result is obtained

1 =
Ṽ

6πv2
F

2

(
vFΛ−

√
µ2 + Ṽ 2m2(0)

)
+ µ ln

 µ+
√
µ2 + Ṽ 2m2(0)

−µ+
√
µ2 + Ṽ 2m2(0)

 ,
which corresponds to the result in Ref. [40].

6.3.4 Strong-Coupling Limit in Natural Logarithm

The following limit has to be solved

ln

(√
1 + x2 + 1√
1 + x2 − 1

)∣∣∣∣∣
x→∞

.

To be able to take the limit, the natural logarithm is rewritten according to

ln

(√
1 + x2 + 1√
1 + x2 − 1

)
= ln


√

1
x2 + 1 + 1

x√
1
x2 + 1− 1

x

 ≡ ln

(√
y2 + 1 + y√
y2 + 1− y

)
,

where y ≡ 1/x such that in the limit x→∞, y → 0. This leads to

ln

(√
y2 + 1 + y√
y2 + 1− y

)
y→0−−→ ln

(√
y2 + 1 + y√
y2 + 1− y

)∣∣∣∣∣
y→0

+ y

[
d

dy
ln

(√
y2 + 1 + y√
y2 + 1− y

)]∣∣∣∣∣
y→0

.

The first term is clearly zero, i.e.

ln

(√
y2 + 1 + y√
y2 + 1− y

)∣∣∣∣∣
y→0

= ln

(
1

1

)
= 0.

111



The derivative in the second term yields

d

dy
ln

(√
y2 + 1 + y√
y2 + 1− y

)
=

√
y2 + 1− y√
y2 + 1 + y

d

dy

(√
y2 + 1 + y√
y2 + 1− y

)

=

√
y2 + 1− y√
y2 + 1 + y

1(√
y2 + 1− y

)2

[(
y√
y2 + 1

+ 1

)(√
y2 + 1− y

)

−
(√

y2 + 1 + y
)( y√

y2 + 1
− 1

)]

=
1(√

y2 + 1 + y
)(√

y2 + 1− y
) [y +

√
y2 + 1− y2√

y2 + 1
− y − y +

√
y2 + 1− y2√

y2 + 1
+ y

]

=
1

y2 + 1− y2

(
2
√
y2 + 1− 2y2√

y2 + 1

)
= 2

(
y2 + 1− y2√

y2 + 1

)
=

2√
y2 + 1

,

such that the following is obtained

ln

(√
y2 + 1 + y√
y2 + 1− y

)
y→0−−→= y

2√
y2 + 1

∣∣∣∣∣
y→0

= 2y =
2

x
.

Therefore, the result is

ln

(√
1 + x2 + 1√
1 + x2 − 1

)∣∣∣∣∣
x→∞

=
2

x
. (6.63)

6.3.5 Solving the Zero-Temperature Gap Equation for the Kekule
Order

To be able to solve the zero-temperature gap equation for the hidden order, the denominator
is rewritten according to

(vF |q|+ sµ)2 + v2
F |q|2

Ṽ 2 |∆′(0)|2

t2
= v2

F |q|2
(

1 +
Ṽ 2 |∆′(0)|2

t2

)
+ 2s µ vF |q|+ µ2

= v2
F

(
1 +

Ṽ 2 |∆′(0)|2

t2

)|q|2 +
2s µ

vF

(
1 + Ṽ 2|∆′(0)|2

t2

) |q|+ µ2

v2
F

(
1 + Ṽ 2|∆′(0)|2

t2

)


= v2
F

(
1 +

Ṽ 2 |∆′(0)|2

t2

)
|q|+ s µ

vF

(
1 + Ṽ 2|∆′(0)|2

t2

)
2

+
µ2

v2
F

(
1 + Ṽ 2|∆′(0)|2

t2

) − µ2

v2
F

(
1 + Ṽ 2|∆′(0)|2

t2

)2


= v2

F δ

[(
|q|+ s µ

vF δ

)2

+
µ2

v2
F δ
− µ2

v2
F δ

2

]
,
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where 1 + Ṽ 2|∆′(0)|2
t2

≡ δ. This yields the following for Eq. (4.58)

1 =
Ṽ

6

v2
F

t2

∑
s=±

∫
dq

(2π)2

q2√
v2
F δ

[(
|q|+ s µ

vF δ

)2

+ µ2

v2
F δ
− µ2

v2
F δ

2

]
=

Ṽ

6

v2
F

t2
1

vF
√
δ

∑
s=±

∫ 2π

0

dθ

∫ Λ

0

dq

(2π)2

q3√(
|q|+ s µ

vF δ

)2

+ µ2

v2
F δ
− µ2

v2
F δ

2

.

Substituting with u = |q|+ s µ
vF δ

leads to

1 =
Ṽ

6

vF

t2
√
δ

1

2π

∑
s=±

∫ Λ

sµ
vF δ

du

(
u− sµ

vF δ

)3

√
u2 + µ2

v2
F

(
1
δ
− 1

δ2

) .
Expanding

(
u− sµ

vF δ

)3

yields(
u− sµ

vF δ

)3

=

(
u2 +

µ2

v2
F δ

2
− 2

sµ

vF δ
u

)(
u− sµ

vF δ

)
= u3 − 3

sµ

vF δ
u2 + 3

µ2

v2
F δ

2
u− sµ3

v3
F δ

3
,

such that

1 =
Ṽ

6

vF

t2
√
δ

1

2π

∑
s=±

∫ Λ

sµ
vF δ

du

(
u3 + 3 µ2

v2
F δ

2u
)
− sµ

vF δ

(
3u2 + µ2

v2
F δ

2

)
√
u2 + µ2

v2
F

(
1
δ
− 1

δ2

)
=

Ṽ

6

vF

t2
√
δ

1

2π
[I∆′ + II∆′ ] ,

where

I∆′ =
∑
s=±

∫ Λ

sµ
vF δ

du
u3 + 3 µ2

v2
F δ

2u√
u2 + µ2

v2
F

(
1
δ
− 1

δ2

) ,
II∆′ = −

∑
s=±

∫ Λ

sµ
vF δ

du
sµ

vF δ

3u2 + µ2

v2
F δ

2√
u2 + µ2

v2
F

(
1
δ
− 1

δ2

) .
Solving I∆′ leads to

I∆′ =

∫ Λ

µ
vF δ

du
u3 + 3 µ2

v2
F δ

2u√
u2 + µ2

v2
F

(
1
δ
− 1

δ2

) +

∫ Λ

− µ
vF δ

du
u3 + 3 µ2

v2
F δ

2u√
u2 + µ2

v2
F

(
1
δ
− 1

δ2

) .
Writing ∫ Λ

− µ
vF δ

du =

∫ µ
vF δ

− µ
vF δ

du+

∫ Λ

µ
vF δ

du,
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leads to

I∆′ = 2

∫ Λ

µ
vF δ

du
u3 + 3 µ2

v2
F δ

2u√
u2 + µ2

v2
F

(
1
δ
− 1

δ2

) +

∫ µ
vF δ

− µ
vF δ

du
u3 + 3 µ2

v2
F δ

2u√
u2 + µ2

v2
F

(
1
δ
− 1

δ2

) .
The second integral equals zero because an odd function is integrated over a symmetric limit.
Therefore,

I∆′ = 2

∫ Λ

µ
vF δ

du
u3 + 3 µ2

v2
F δ

2u√
u2 + µ2

v2
F

(
1
δ
− 1

δ2

) = I
(1)
∆′ + I

(2)
∆′ ,

where

I
(1)
∆′ = 2

∫ Λ

µ
vF δ

du
u3√

u2 + µ2

v2
F

(
1
δ
− 1

δ2

) ,
I

(2)
∆′ =

6µ2

v2
F δ

2

∫ Λ

µ
vF δ

du
u√

u2 + µ2

v2
F

(
1
δ
− 1

δ2

) .
I

(1)
∆′ is solved using the substitution v =

√
u2 + µ2

v2
F

(
1
δ
− 1

δ2

)
. This leads to

I
(1)
∆′ = 2

∫ Λ

µ

vF
√
δ

dv v
v2 − µ2

v2
F

(
1
δ
− 1

δ2

)
v

= 2

∫ Λ

µ

vF
√
δ

dv

[
v2 − µ2

v2
F

(
1

δ
− 1

δ2

)]

= 2

[
1

3
v3 − µ2

v2
F

(
1

δ
− 1

δ2

)
v

]Λ

µ

vF
√
δ

=
2

3
Λ3 − 2

µ2 (δ − 1)

v2
F δ

2
Λ +

4

3

µ3

v3
F δ
√
δ
− 2

µ3

v3
F δ

2
√
δ
.

Solving I(2)
∆′ leads to

I
(2)
∆′ =

6µ2

v2
F δ

2

[√
u2 +

µ2

v2
F

(
1

δ
− 1

δ2

)]Λ

µ
vF δ

=
6µ2

v2
F δ

2

[
Λ−

√
µ2

v2
F δ

2
+
µ2

v2
F

(
1

δ
− 1

δ2

)]

=
6µ2

v2
F δ

2

(
Λ− µ

vF
√
δ

)
=

6µ2

v2
F δ

2
Λ− 6µ3

v3
F δ

2
√
δ
.

Therefore,

I∆′ =
2

3
Λ3 − 2

µ2 (δ − 1)

v2
F δ

2
Λ +

4

3

µ3

v3
F δ
√
δ
− 2

µ3

v3
F δ

2
√
δ

+
6µ2

v2
F δ

2
Λ− 6µ3

v3
F δ

2
√
δ

=
2

3
Λ3 − 2µ2

v2
F δ

Λ +
8µ2

v2
F δ

2
Λ +

4

3

µ3

v3
F δ
√
δ
− 8µ3

v3
F δ

2
√
δ

=
2

3
Λ3 − 2µ2 (δ − 4)

v2
F δ

2
Λ +

4µ3 (δ − 6)

3v3
F δ

2
√
δ
.
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Solving II∆′ leads to

II∆′ = −
∫ Λ

µ
vF δ

du
µ

vF δ

3u2 + µ2

v2
F δ

2√
u2 + µ2

v2
F

(
1
δ
− 1

δ2

) +

∫ Λ

− µ
vF δ

du
µ

vF δ

3u2 + µ2

v2
F δ

2√
u2 + µ2

v2
F

(
1
δ
− 1

δ2

)
=

∫ µ
vF δ

Λ

du
µ

vF δ

3u2 + µ2

v2
F δ

2√
u2 + µ2

v2
F

(
1
δ
− 1

δ2

) +

∫ Λ

− µ
vF δ

du
µ

vF δ

3u2 + µ2

v2
F δ

2√
u2 + µ2

v2
F

(
1
δ
− 1

δ2

)
=

∫ µ
vF δ

− µ
vF δ

du
µ

vF δ

3u2 + µ2

v2
F δ

2√
u2 + µ2

v2
F

(
1
δ
− 1

δ2

) .
Realizing that the integrant is an even function finally leads to

II∆′ = 2

∫ µ
vF δ

0

du
µ

vF δ

3u2 + µ2

v2
F δ

2√
u2 + µ2

v2
F

(
1
δ
− 1

δ2

) = II
(1)
∆′ + II

(2)
∆′ ,

where

II
(1)
∆′ =

6µ

vF δ

∫ µ
vF δ

0

du
u2√

u2 + µ2

v2
F

(
1
δ
− 1

δ2

) , II
(2)
∆′ =

2µ3

v3
F δ

3

∫ µ
vF δ

0

du
1√

u2 + µ2

v2
F

(
1
δ
− 1

δ2

) .
II

(1)
∆′ is solved using the substitution u = µ

vF

√
1
δ
− 1

δ2 sinh(v). This leads to

II
(1)
∆′ =

6µ

vF δ

∫ sinh−1(
√
δ−1

−1)

0

dv
µ

vF

√
1

δ
− 1

δ2
cosh(v)

µ2

v2
F

(
1
δ
− 1

δ2

)
sinh2(v)

µ
vF

√
1
δ
− 1

δ2

√
sinh2(v) + 1

=
6µ3

v3
F δ

(
1

δ
− 1

δ2

)∫ sinh−1(
√
δ−1

−1)

0

dv
cosh(v)sinh2(v)

cosh(v)

=
6µ3

v3
F δ

(
δ

δ2
− 1

δ2

)∫ sinh−1(
√
δ−1

−1)

0

dv sinh2(v) =
3µ3

v3
F

δ − 1

δ3

∫ sinh−1(
√
δ−1

−1)

0

dv [cosh(2v)− 1]

=
3µ3

v3
F

δ − 1

δ3

[
1

2
sinh(2v)− v

]sinh−1(
√
δ−1

−1)

0

=
3µ3

v3
F

δ − 1

δ3
[sinh(v)cosh(v)− v]

sinh−1(
√
δ−1

−1)
0

=
3µ3

v3
F

δ − 1

δ3

{
1√
δ − 1

cosh
[
sinh−1

(√
δ − 1

−1
)]
− sinh−1

(√
δ − 1

−1
)}

=
3µ3

v3
F

δ − 1

δ3

 1√
δ − 1

√
1 +

(
1√
δ − 1

)2

− ln

 1√
δ − 1

+

√(
1√
δ − 1

)2

+ 1


=

3µ3

v3
F

δ − 1

δ3

[
1√
δ − 1

√
δ − 1

δ − 1
+

1

δ − 1
− ln

(
1√
δ − 1

+

√
1

δ − 1
+
δ − 1

δ − 1

)]

=
3µ3

v3
F

δ − 1

δ3

[ √
δ

δ − 1
− ln

(√
δ + 1√
δ − 1

)]
=

3µ3

v3
F

[
1

δ2
√
δ
− δ − 1

δ3
ln

(√
δ + 1√
δ − 1

)]
.
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II
(2)
∆′ is solved using the substitution u = µ

vF

√
1
δ
− 1

δ2 sinh(w). This leads to

II
(2)
∆′ =

2µ3

v3
F δ

3

∫ sinh−1(
√
δ−1

−1)

0

dw
µ

vF

√
1

δ
− 1

δ2

cosh(w)

µ
vF

√
1
δ
− 1

δ2

√
sinh2(w) + 1

=
2µ3

v3
F δ

3

∫ sinh−1(
√
δ−1

−1)

0

dw
cosh(w)

cosh(w)
=

2µ3

v3
F δ

3

∫ sinh−1(
√
δ−1

−1)

0

dw

=
2µ3

v3
F δ

3
[w]

sinh−1(
√
δ−1

−1)
0 =

2µ3

v3
F δ

3
sinh−1

(√
δ − 1

−1
)

=
2µ3

v3
F δ

3
ln

(√
δ − 1

−1
+

√
(δ − 1)−1 + 1

)
=

2µ3

v3
F δ

3
ln

(√
δ + 1√
δ − 1

)
(6.64)

Therefore,

II∆′ =
3µ3

v3
F

[
1

δ2
√
δ
− δ − 1

δ3
ln

(√
δ + 1√
δ − 1

)]
+

2µ3

v3
F δ

3
ln

(√
δ + 1√
δ − 1

)

=
µ3

v3
F δ

2

[
3√
δ

+ ln

(√
δ + 1√
δ − 1

)(
5

δ
− 3

)]
.

Therefore,

1 =
Ṽ

6

vF

t2
√
δ

1

2π

[
2

3
Λ3 − 2µ2 (δ − 4)

v2
F δ

2
Λ +

4µ3 (δ − 6)

3v3
F δ

2
√
δ

+
3µ3

v3
F δ

2
√
δ

+
µ3

v3
F δ

2
ln

(√
δ + 1√
δ − 1

)(
5

δ
− 3

)]

=
Ṽ

6

vF
t2

1

2π

[
2Λ3

3
√
δ
− 2µ2 (δ − 4)

v2
F δ

2
√
δ

Λ +
µ3
(

4δ
3
− 5
)

3v3
F δ

3
+

µ3

v3
F δ

2
√
δ

ln

(√
δ + 1√
δ − 1

)(
5

δ
− 3

)]
.

Plugging δ = 1 + Ṽ 2|∆′(0)|2
t2

≡ 1 + α2 where α = Ṽ |∆′(0)|
t

, back in leads to the final result

1 =
Ṽ

6

vF
t2

1

2π

{
2Λ

[
Λ2

3
√

1 + α2
+
µ2

v2
F

(
4− 1− α2

(1 + α2)5/2

)]

+
µ3

v3
F

[
4 (1 + α2)− 15

9 (1 + α2)3 + ln

(√
1 + α2 + 1√
1 + α2 − 1

)(
5− 3 (1 + α2)

(1 + α2)7/2

)]}

=
Ṽ

6

vF
t2

1

2π

{
2Λ

[
Λ2

3
√

1 + α2
+
µ2

v2
F

(
3− α2

(1 + α2)5/2

)]

+
µ3

v3
F

[
4α2 − 11

9 (1 + α2)3 + ln

(√
1 + α2 + 1

α

)(
2− 3α2

(1 + α2)7/2

)]}
.
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6.3.6 Solving the Finite-Temperature Gap Equation for the Kekule
Order at Critical Temperature

Solving Eq. (4.73) at the critical temperature leads to the following

1 =
Ṽ

3

∑
s=±

∫
dq

(2π)2

1

vF |q|+ sµ
tanh

(
βc (vF |q|+ sµ)

2

)
=

Ṽ

3

∑
s=±

∫ 2π

0

dθ

∫ Λ

0

dq

(2π)2

q

vF |q|+ sµ
tanh

(
βc (vF |q|+ sµ)

2

)
=

Ṽ

3vF

∑
s=±

∫ 2π

0

dθ

∫ Λ

0

dq

(2π)2

vF q + sµ− sµ
vF |q|+ sµ

tanh

(
βc (vF |q|+ sµ)

2

)
=

Ṽ

3vF

∑
s=±

∫ 2π

0

dθ

∫ Λ

0

dq

(2π)2

[
tanh

(
βc (vF |q|+ sµ)

2

)
− sµ

vF |q|+ sµ
tanh

(
βc (vF |q|+ sµ)

2

)]
=

Ṽ

6πvF
[I ′m + II ′m] ,

where

I ′m ≡
∑
s=±

∫ Λ

0

dq tanh

(
βc (vF |q|+ sµ)

2

)
,

II ′m ≡ −
∑
s=±

∫ Λ

0

dq
sµ

vF |q|+ sµ
tanh

(
βc (vF |q|+ sµ)

2

)
.

Solving I ′m using the substitution u = βc
2

(vF |q|+ sµ) leads to

I ′m =
2

βcvF

∑
s=±

∫ βc
2
vFΛ

βc
2
sµ

du tanh(u) =
2

βcvF

∑
s=±

[ln (cosh(u))]
βc
2
vFΛ

βc
2
sµ

=
2

βcvF

∑
s=±

ln

[
cosh(βc

2
vFΛ)

cosh(βc
2
sµ)

]
.

Using that cosh(−x) = cosh(x) then yields

I ′m =
4

βcvF
ln

[
cosh(βc

2
vFΛ)

cosh(βc
2
µ)

]
.

Rewriting II ′m leads to

II ′m = −
∑
s=±

sµ

∫ Λ

0

dq
1

vF |q|+ sµ
tanh

(
βc (vF |q|+ sµ)

2

)
= −

∑
s=±

sµ
βc
2

∫ Λ

0

dq
2

βc (vF |q|+ sµ)
tanh

(
βc (vF |q|+ sµ)

2

)
.
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Again substituting with u = βc
2

(vF |q|+ sµ) leads to

II ′m = −
∑
s=±

sµ
βc
2

∫ βc
2
vFΛ

βc
2
sµ

2

βcvF
du

1

u
tanh(u) = −

∑
s=±

sµ

vF

∫ βc
2
vFΛ

βc
2
sµ

du
tanh(u)

u
.

Performing the sum over s and realizing that tanh(u)/u is an even function yields

II ′m = − µ

vF

∫ βc
2
vFΛ

βc
2
µ

du
tanh(u)

u
+

µ

vF

∫ βc
2
vFΛ

−βc
2
µ

du
tanh(u)

u

=
µ

vF

∫ βc
2
µ

βc
2
vFΛ

du
tanh(u)

u
+

µ

vF

∫ βc
2
vFΛ

−βc
2
µ

du
tanh(u)

u

=
µ

vF

∫ βc
2
µ

−βc
2
µ

du
tanh(u)

u
=

2µ

vF

∫ βc
2
µ

0

du
tanh(u)

u
.

Therefore, the following is obtained

1 =
Ṽ

6πvF

{
4

βcvF
ln

[
cosh(βc

2
vFΛ)

cosh(βc
2
µ)

]
+

2µ

vF

∫ βc
2
µ

0

du
tanh(u)

u

}
.

6.3.7 Solving the Finite-Temperature Gap Equation for the Hidden
Order at Critical Temperature

Solving Eq. (4.76) at the critical temperature leads to the following

1 =
Ṽ

6

v2
F

t2

∑
s=±

∫
dq

(2π)2

|q|2

vF |q|+ sµ
tanh

(
β (vF |q|+ sµ)

2

)
=

Ṽ

6

v2
F

t2

∑
s=±

∫ 2π

0

dθ

∫ Λ

0

dq

(2π)2

q3

(vF |q|+ sµ)
tanh

(
βc (vF |q|+ sµ)

2

)
=

Ṽ

6

v2
F

t2
1

2π

∑
s=±

∫ Λ

0

dq
q3

(vF |q|+ sµ)
tanh

(
βc (vF |q|+ sµ)

2

)
.

Substituting according to u = vF q + sµ leads to

1 =
Ṽ

6

v2
F

t2
1

2π

∑
s=±

∫ vFΛ

sµ

du

vF

(u− sµ)3

v3
F

1

u
tanh

(
βcu

2

)
=

Ṽ

6

1

t2v2
F

1

2π

∑
s=±

∫ vFΛ

sµ

du
(u− sµ)3

u
tanh

(
βcu

2

)
.

Expanding (u− sµ)3 yields

(u− sµ)3 =
(
u2 + µ2 − 2sµu

)
(u− sµ) = u3 − 3sµu2 + 3µ2u− sµ3,
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such that

1 =
Ṽ

6

1

t2v2
F

1

2π

∑
s=±

∫ vFΛ

sµ

du

u

[(
u3 + 3µ2u

)
− s

(
3µu2 + µ3

)]
tanh

(
βcu

2

)
=

Ṽ

6

1

t2v2
F

1

2π

∑
s=±

∫ vFΛ

sµ

du

[(
u2 + 3µ2

)
− sµ(3u2 + µ2)

u

]
tanh

(
βcu

2

)
=

Ṽ

6

1

t2v2
F

1

2π
[I ′∆′ + II ′∆′ ] ,

where

I ′∆′ ≡
∑
s=±

∫ vFΛ

sµ

du
(
u2 + 3µ2

)
tanh

(
βcu

2

)
,

II ′∆′ ≡ −
∑
s=±

∫ vFΛ

sµ

du

u
sµ
(
3u2 + µ2

)
tanh

(
βcu

2

)
.

Solving I ′∆′ leads to

I ′∆′ =

∫ vFΛ

µ

du
(
u2 + 3µ2

)
tanh

(
βcu

2

)
+

∫ vFΛ

−µ
du
(
u2 + 3µ2

)
tanh

(
βcu

2

)
.

Writing ∫ vFΛ

−µ
du =

∫ µ

−µ
du+

∫ vFΛ

µ

du,

leads to

I ′∆′ = 2

∫ vFΛ

µ

du
(
u2 + 3µ2

)
tanh

(
βcu

2

)
+

∫ µ

−µ
du
(
u2 + 3µ2

)
tanh

(
βcu

2

)
.

The second integral equals zero because an odd function is integrated over a symmetric limit.
Therefore,

I ′∆′ = 2

∫ vFΛ

µ

du
(
u2 + 3µ2

)
tanh

(
βcu

2

)
.

Substituting v = (βcu)/2 leads to

I ′∆′ = 2

∫ βc
2
vFΛ

βc
2
µ

2dv

βc

((
2v

βc

)2

+ 3µ2

)
tanh (v)

=
4

β3
c

∫ βc
2
vFΛ

βc
2
µ

dv
(
4v2 + 3β2

cµ
2
)

tanh (v) .

Solving II ′∆′ leads to

II ′∆′ = −
∫ vFΛ

µ

du

u
µ
(
3u2 + µ2

)
tanh

(
βcu

2

)
+

∫ vFΛ

−µ

du

u
µ
(
3u2 + µ2

)
tanh

(
βcu

2

)
=

∫ µ

vFΛ

du

u
µ
(
3u2 + µ2

)
tanh

(
βcu

2

)
+

∫ vFΛ

−µ

du

u
µ
(
3u2 + µ2

)
tanh

(
βcu

2

)
=

∫ µ

−µ

du

u
µ
(
3u2 + µ2

)
tanh

(
βcu

2

)
.
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Substituting v = (βcu)/2 leads to

II ′∆′ =

∫ βc
2
µ

−βc
2
µ

2dv

βc

βc
2v
µ

(
3

(
2v

βc

)2

+ µ2

)
tanh (v)

=
1

β2
c

∫ βc
2
µ

−βc
2
µ

dv

v
µ
(
12v2 + β2

cµ
2
)

tanh (v) .

Realizing that the integrant is an even function finally leads to

II ′∆′ =
2

β2
c

∫ βc
2
µ

0

dv

v
µ
(
12v2 + β2

cµ
2
)

tanh (v) .

Therefore,

1 =
Ṽ

6

1

t2v2
F

1

π

1

β3
c

[
2

∫ βc
2
vFΛ

βc
2
µ

dv
(
4v2 + 3β2

cµ
2
)

tanh (v) + βcµ

∫ βc
2
µ

0

dv

v

(
12v2 + β2

cµ
2
)

tanh (v)

]
.

6.3.8 s-Wave Superconductor

In this Appendix, s-wave superconducting state is reviewed to show that it is preferred over the
Kekule order, as one would expect. It will be seen that the s-wave order behaves in a similar
fashion as the Kekule order, which makes sense because they both open a superconducting
gap in the system. This means that the results such as the gap equations for the s-wave will
correspond to those of the Kekule order up to a prefactor. It will be shown that the s-wave
is preferred over the Kekule and hidden order. First, the ground-state energy is computed.
This will be followed by deriving the zero-temperature gap equation, critical coupling, zero-
temperature gap, finite-temperature gap and the critical temperature for the s-wave from the
results found for the s-Kekule order.

Ground-State Energy

To find the energy, the following is used∑
q

(E0,∆0 +Mt +Mµ +M∆0)ψ = E∆0ψ,

where
E0,∆0 = 4NŨ |∆0|2 .

Squaring Mt +Mµ +M∆0 leads to

(Mt +Mµ +M∆0)2 = M2
t +Mµ +M2

∆0
+ 2MtMµ,

where it is used that {Mt , Mµ} = 2MtMµ and {Mt +Mµ , M∆0} = 0, and where M2
t , M2

µ and
2MtMµ were computed before and

M2
∆0

= Ũ2 |∆0|2 (τ0 ⊗ σ0 ⊗ I) .
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Therefore, the result is

(Mt +Mµ +M∆0)2 =
(
µ2 + v2

F |q|2 + Ũ2 |∆0|2
)

(τ0 ⊗ σ0 ⊗ I)

−2µ vF τ3 ⊗ σ0 ⊗ (iγ0γ1qy − iγ0γ2qx) .

Diagonalizing this term leads to the dispersion

(ω∆0,s)
2 = (vF |q|+ sµ)2 + Ũ2 |∆0|2 ,

where s = ±. Now the energy is given by

E∆0 = E0,∆0 +
∑
q,s=±

√
(ω∆0,s)

2 = E0,∆0 ±
∑
q,s=±

ω∆0,s,

such that the ground-state energy reads

Eg.s.,∆0 = E0,∆0 −
∑
q,s=±

ω∆0,s

= 4NŨ |∆0|2 − 4N
∑
s=±

∫
dq

(2π)2

√
(vF |q|+ sµ)2 + Ũ2 |∆0|2,

where
∑

q → 4N
∫

dq/(2π)2 with the extra factor of 2 coming from the spin degree of freedom
and where s represents the particle-hole degree of freedom. This leads to the final result for
the ground-state energy per site of honeycomb lattice

Eg.s.,∆0

4N
= Ũ |∆0|2 −

∑
s=±

∫
dq

(2π)2

√
(vF |q|+ sµ)2 + Ũ2 |∆0|2. (6.65)

Zero Temperature

Minimizing the ground-state energy over the s-wave order parameter leads to the zero-temperature
gap equation

1 =
Ũ

2

∑
s=±

∫
dq

(2π)2

1√
(vF |q|+ sµ)2 + Ũ2 |∆0(0)|2

. (6.66)

One can see immediatly that this gap equation looks the same as the one for the Kekule order
in Eq. (4.57) up to a prefactor. Therefore, the critical coupling and the zero-temperature gap
derived from this equation will also be the same up to a prefactor. This leads to the following
results for the critical coupling

Ũc =
2πvF

Λ
, (6.67)

and for the zero-temperature gap at zero chemical potential

|∆0 (0, µ = 0)| = 2πv2
F

ŨcŨ

(
1− Ũc

Ũ

)
, (6.68)
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and at finite chemical potential in the weak and strong-coupling limit, respectively,

|∆0(0, µ)| →


|∆0(0,µ=0)|

2

[
1 +

√
1 + 4µ2

Ũ2|∆0|2

]
, |Ũ | > |Ũc|, |∆0(0)| /µ� 1,

2µ

Ũ
e
Ũ
µ
|∆0(0,µ=0)|−1, |Ũ | < |Ũc|, |∆0(0)| /µ� 1.

The critical coupling for the s-wave order parameter Ũc is smaller than the critical coupling for
the Kekule order parameter Ṽc, which means that as predicted the s-wave order is preferred
over the Kekule order and subsequently, also over the hidden order.

Finite-Temperature Gap Equation

The thermodynamical potential for this system reads

Ω∆0 = 4NŨ |∆0|2 −
1

β

∑
q;s,s′=±

ln

[
1 + exp

(
−βs

√
(vF |q|+ s′µ)2 + Ũ2 |∆0|2

)]
.

Minimizing with respect to the s-wave gap ∆0 following the same steps as for the Kekule order
leads to the following finite-temperature gap equation

1 =
Ũ

2

∫
dq

(2π)2

∑
s=±

1

ω̃∆0;s

tanh

(
βω̃∆0;s

2

)
, (6.69)

where
ω̃∆0;s =

√
(vF |q|+ sµ)2 + Ũ2 |∆0|2. (6.70)

The finite-temperature gap equation corresponds to the one for the Kekule order up to a
prefactor.

Critical Temperature

The critical temperature for the s-wave order parameter is found in a similar fashion as for the
Kekule order. The result reads for the strong and weak-coupling limit, respectively,

T ′′c →

{
1

2 ln(2)kB

[
Ũ2|∆0(0,µ)|2

µ+Ũ2|∆0(0,µ)| + µ
]
, |Ũ | > |Ũc|, βcµ� 1,

eγ

kBπ
Ũ |∆0(0, µ)| , |Ũ | < |Ũc|, βcµ� 1.
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